小学五年级奥数练习及部分答案--2等差数列求和的应用--数列(二)
五年级奥数数列计算练习题及答案
数列计算从第二项起,后一项与前一项的比值是同一个数,这样的数叫做等比数列。
从1的立方开始的自然数的立方之和等于这些和的平方。
例题精讲例1 计算:0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.15+…+0.97+0.99。
【思路点拨】在计算时如果把所有的数看成是一个等差数列,那就错了,因为前几个数相邻两数之间相差0.2,而后面的数相邻两数的差是0.02,所以在求和时要分开考虑,从0.1到0.9是一个等差数列,而从0.11到0.99又是一个等差数列。
【详细解答】0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.15+…+0.97+0.99(0.1+0.9)×5÷2+(0.11+0.99)×45÷2=2.5+49.5÷2=2.5+24.75=27.25【题后反思】首先观察时应该把小数分为两类:一位小数、两位小数。
再分别求和,注意要理解并牢记等差数列求和公式。
例2计算:1+3+9+27+81+243+729+2187。
【思路点拨】加法算式中的数后一项总是前一项的3倍,构成一个等比数列。
在求和时要根据等比数列的特点来做。
把这些数的和用S来表示,如果把每项扩大3倍,则3S=3+9+27+81+243+729+2187+6561。
把3S的每项与原来等比数列的每项比较,很多项是相同的,3S比S多的就是6561-1=6560,3s是S的3倍,比S多2倍,所以S=6560÷2=3280。
【详细解答】设S=1+3+9+27+81+243+729+2187,则3S=3+9+27+81+243+729+2187+65613S-S=6561-1,2S=6560S=6560÷2=3280【题后反思】扩倍法、缩倍法是等比数列求和的基本方法,扩的倍数就是公比。
这远远比中学的公式法好理解。
同步练习1.计算下列一组数的和:105,110,115,120…,195,2002.有一列数:2.1,2.2,2.3,2.4,2.5,2.6,2.7,…它的第2005项是几?前2005项的和是多少?3.计算:1+216+64+256+1024+40964.计算:100+20+4+0.8+0.16+0.032+0.00645.计算:13+23+33+43+…+10036.计算:103+113+123+…+3037.找出下面数列的生成规律并填空1,2,4,8,16,□,□,128,2568.找出下面数列的生成规律,并填空。
5年级奥数等差数列求和
德国著名大科学家高斯(1777~ 1855)出生在一个贫穷的家庭。高斯在还 不会讲话就自己学计算,在三岁时有一 天晚上他看着父亲在算工钱时,还纠正 父亲计算的错误。
长大后他成为当代最杰出的天文学 家、数学家。他在物理的电磁学方面有 一些贡献,现在电磁学的一个单位就是 卡尔·弗里德里希·高斯 用他的名字命名。数学家们则称呼他为 “数学王子”。
44 44 44 44 44 44 44 44 44 两数列之和=(6+38)×9
解:原数列之和=(6+38)×9÷2 =44×9÷2 =198
等差数列的和=(首项+末项)×项数÷2
例:计算1 + 6+ 11 + 16 + 21+ 26 +......+ 276
分析:这是一个等差数列;首项=1,末项=276,公差=5
等差数列的和=(首项+末项)×项数÷2 ?
等差数列的项数=(末项-首项)÷公差+1
解:等差数列的项数: (276-1)÷5+1=56(项)
原数列之和=(1+276)×56÷2 = 277×28 =7756
练习
1、计算 (1)7+10+13+16+19+22+25+28+31+34+37 (2)7+11+15+19+......+403 (3)9+19+29+39+......+99 (4)1+3+5+7+......+99
练习
1、一串数:1、3、5、7、9、……49。(1)它的第 21项是多少?(2)这串数共有多少个?
小学五年级奥数 数列与数表(二)
⑴ 第一行的第100个数是____. ⑵ 自然数207位于数表的第几行第几列?
1
247
11 ……
3 5 8 12 ……
6 9 13 ……
10 14 ……
15 ……
……Байду номын сангаас
知识大总结 1.等差数列常用公式.
⑴ 求和、求项数 2.常⑵见求数an列=:首项+(n-1)×公差.
等差数列、斐波那契、间隔数列、二级等差数列 3.关于数表
⑴ 看行、看列、看斜线 ⑵ 对数列进行分组 【今日讲题】
基本公式
例2,例4,例5,超常大挑战
【讲题心得】
__________________________________________________________________.
【家长评价】
_________________________________________________________________. 2
98
⑵第500个分数是几分之几?
1
版块二:数表找规律
【例4】(★★★☆)
将非零自然数按照表中规律地不断写出,发现有些数被写出多次,还
有些数永远不会出现,那么99在数表中共出现过几次?最小的永不出
现的数等于几?
1 2 3 4 … 97 98 99
2 3 4 5 … 98 99 100
4 5 6 7 … 100 101 102
【课前小练习】(★) ⑴ 1, 4, 7, 10, 13,____,…… ⑵ 1, 2, 4, 7, 11,____,…… ⑶ 1, 2, 4, 8, 16,____,…… ⑷ 1, 4, 9, 16, 25,____,……
【例1】(★★☆) 一串数按下述规律排列: 1,2,3,2,3,4,3,4, 5,4,5,6,…… ⑴ 数列中,第200个数是_______. ⑵ 数列中,前200个数的和是______.
小学五年级奥数练习及部分答案部分答案
奥数五年级上一、数列规律的应用--找规律(四) (1)二、等差数列求和的应用--数列(二) (7)三、包含与排除(二) (14)四、小数的巧算--巧算(四) (19)五、行程问题(三) (25)六、行程问题(四) (31)七、牛吃草问题 (36)八、平面图形的面积(二) (39)九、计数问题 (45)十、数的进位制(二) (50)十一、简单抽屉原理(一) (54)十二、简单的统筹规划问题 (60)部分答案 (68)奥数五年级上部分答案例2、解:从2到1994,偶数的个数是1994÷2=997(个)997÷8=124(组)……5(个)那么1994在第125组中的第5个,它在第4列,它所在的行数是第125组中第2行,也就是从上往下的第125×2=250(行)所以1994在第250行第4列。
例3、解:①各行的数的个数是:1,3,5,7,9,……各行最后一个数依次是:12,22,32,42,……那么第9行最后一个数是92=81∴第10行有2×10-1=19(个)数,第10行正中的一个数是第10个数:81+10=91(或100-10+1=91)②估算1999在哪个完全平方数之间?442=1936 452=2025则1999=442+(1999-1936)= 442+63∴1999在第45行左起第63个数。
观察每一行正中的数:1,3,7,13,……例4、解:①第一行第8个数是:1+2+3+…+8=36②第10行第1个数是:1+1+2+3+…+(10-1)=46第10行第8个数是:46+11+12+13+…+17=46+98=144例12、解:这串数字是:199731339731339……,这串数从第3个起,每6个为一周期(973133),(2002-2)÷6=333(周期) (2)∴第2002个是第334个周期的第2个数,是7。
例14、解:试算后可知当n依次等于1,2,3,4,5,……时,7n 的个位依次是:7,9,3,1,7,9,3,1,……,每4次重复出现(为一周期) 1998÷4=499…2,即共有499个周期多2个,∴1998个47(71998)的乘积的个位数字是9。
小学奥数:等差数列计算题.专项练习及答案解析
等差数列的相关公式(1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;知识点拨等差数列计算题②65636153116533233331089(),++++++=+⨯÷=⨯=题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++=⑵13578799++++++=⑶471013404346+++++++=【考点】等差数列计算题【难度】2星【题型】计算【解析】⑴根据例1的结果知:算式中的等差数列一共有76项,所以:34567677783787623078()+++++++=+⨯÷=⑵算式中的等差数列一共有50项,所以:13578799(199)5022500++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:()471013404346446152375+++++++=+⨯÷=【答案】⑴3078⑵2500⑶375【巩固】1+2+……+8+9+10+9+8+……+2+1=_____。
2022-2023学年小学五年级奥数(全国通用)测评卷02《等差数列》(解析版)
【五年级奥数举一反三—全国通用】测评卷02《等差数列》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共6小题,满分12分,每小题2分)1.(2分)(2011•其他模拟)有20个数,第一个数是9,以后每一个数都比前一个数大2,第20个数是()A.47 B.49 C.51 D.53【分析】由于第一个数是9,从第二个数起,每一个数都比前一个数大2,所以第20个数比9大19个2.【解答】解:9+(20﹣1)×2=9+19×2=9+38=47.答:第20个数是47.故选:A.2.(2分)下面一列数5、8、11、14、…、第()个数为2015.A.667 B.668 C.669 D.671【分析】此题首项是5,末项是2015,公差是3,求第几个数为2015,即求项数,根据等差数列的通项公式进行求解即可.【解答】解:首项是5,末项是2015,公差是3,(2015﹣5)÷3+1=2010÷3+1=671答:第671个数为2015.故选:D.3.(2分)(2015•创新杯)从小到大排列99个数,每两个相邻数的差都相等,第7个与第93个的和为262,则这列数的第50个数为()A.50 B.51 C.120 D.131【分析】因为一共有99个,所以正中间的一个数是50,这个数就是这个数列之和的平均数.第93个数是倒数第7个数,所以此题常采用画图的方法解决.【解答】解:262÷2=131故选:D.4.(2分)(2014•迎春杯)一个12项的等差数列,公差是2,且前8项的和等于后4项的和,那么,这个数列的第二项是()A.7 B.9 C.11 D.13【分析】找出前8项数字和与后4项数字和相等,列出关系式,求出其中一项即可.【解答】解:根据题意后4项和前8项数字和相等可知,这个数列是递增数列,(a1+a8)×8÷2=(a9+a12)×4÷2,因为a8=a1+14,a9=a1+16,a12=a1+22,所以代入得(a1+a1+14)×8÷2=(a1+16+a1+22)×4÷2,解得a1=5,所以a2=a1+2=7.故选:A.5.(2分)5个连续自然数的和是315,那么紧接在这5个自然数后面的5个连续自然数的和是()A.360 B.340 C.350 D.无法求出【分析】这些自然数是等差数列,紧接在这5个自然数后面的5个连续自然数的和比315多5×5,然后进一步解答即可.【解答】解:315+5×5=315+25=340故选:B.6.(2分)(2011•其他模拟)有10只盒子,44只羽毛球.能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球不相等?()A.能B.不能C.不确定【分析】这是一个等差数列的应用题,解题关键是由已知数列所有项的个数按最少量算出它们的总和,然后与题意中给的羽毛球的总数44相比较,如果相等,就说明能够将44只羽毛球放到10个盒子中去,且使各盒子里的羽毛球数不相等;否则就不能.【解答】解:由题意,要使10个盒子中羽毛球的数量不相等,最少的放法是:0,1,2…9.计算总和:0+1+2+…+9=9×5=45,因为45>44,所以原题不能.答:不能使各个盒子里的羽毛球数不相等.故选:B.二.填空题(共12小题,满分31分)7.(2分)(2017•走美杯)一箱苹果60个,第一天大家一起吃了17个,以后我每天吃1个,过了几天发现只剩下16个,苹果怎么少这么快?有人告诉我,小张每天都去偷偷地拿2个.请你算一算:这几天小张共拿了18个苹果.【分析】可以先用总数减去大家吃的苹果数和剩下的苹果数,再除以我每天吃的苹果数和小张偷的苹果数之和,就能求得天数,就能知道小张偷了几天,不难求得小张偷拿了多少苹果.【解答】解:根据分析,先求得小张偷拿苹果的天数,故有:(60﹣17﹣16)÷(2+1)=9(天),小张共偷了:9×2=18个.故答案是:18.8.(2分)(2016•学而思杯)表中每行,每列分别从左至右、从上至下构成等差数列,那么m×n=300.4 89 1512 nm25【分析】首先,确定第一行公差,填全第一行;从第二列确定公差,确定m;同样从第四列,确定n.【解答】解:第一行公差为(8﹣4)÷2=2,第一行数字为:4、6、8、10;确定第二列确定公差为12﹣9=3,确定m=12+3=15;同样确定n=20.m×n=300即:填3009.(2分)(2018•陈省身杯)小明去麦当当打暑期工,连续工作了5天后共挣了180元,如果这5天里他每一天所挣的钱都比前一天多6元.那么第1天小明挣了24元.【分析】根据等差数列的规律,第三天小明挣了180÷5=36元,公差是6,所以第一天小明挣了36﹣6×2=24元,据此解答即可.【解答】解:180÷5=36(元)36﹣6×2=24(元)故答案为:24.10.(2分)(2017•其他杯赛)小明希望通过做一些数学题目来巩固知识,他每天都会比前一天多做2道题目.如果小明第一天做了2道题目,那么前七天他共做了56道题目.【分析】首项是2,末项是2+(7﹣1)×2=14,然后利用等差数列求和公式:(首项+末项)×项数÷2求出结果.【解答】解:2+(7﹣1)×2=14(道)(2+14)×7÷2=56(道)故填56.11.(2分)(2017•小机灵杯)从1,2,3,4,…,50中取5个不同的数,使这5个数构成一个等差数列,那么,可以得到不同的等差数列的个数为576.【分析】根据题意,分析当得到的等差数列公差为1、2、3时,可以得到的等差数列的数目,依此类推,发现其数目的变化规律,进而根据等差数列的前n项公式计算可得答案.【解答】解:根据题意,当得到的等差数列公差为1时,有1、2、3、4、5,…,46、47、48、49、50,共46种情况;当其公差为2时,有1、3、5、7、9,…,42、44、46、48、50,共42种情况;…当其公差为12时,有1、13、25、37、49,2、14、26、38、50,共2种情况;综上所述,共有2+6+…+46==288种,考虑到等差数列也可以是从大到小,所以共有288×2=576种不同的等差数列,故答案为576.12.(2017•春蕾杯)九只小猴子依次去摘桃子,每一只都比前一只多摘2个桃子,摘得最多的一只猴子摘了25个桃子,那么这些猴子一共摘了153个桃子.【分析】九只小猴子摘桃子数,构成一个等差数列,公差是2,末项是25,那么首项是25﹣2×(9﹣1)=9,然后根据高斯求和公式解答即可.【解答】解:25﹣2×(9﹣1)=9(个)(9+25)×9÷2=153(个)故答案为:153.13.(2016•迎春杯)帅帅背了7天单词,从第2天开始每天都比前一天多背1个单词,且前4天所背单词个数的和等于后3天所背单词个数的和,那么帅帅这7天一共背了单词84个.【分析】首先表示出这7天的数量关系,然后根据前4天等于后3天的数量列出等式,求出每天的数量相加即可.【解答】解:依题意可知:设帅帅背单词的数量为:a,a+1,a+2,a+3,a+4,a+5,a+6共7天a+a+1+a+2+a+3=a+4+a+5+a+6解:a=9.共背9+10+11+12+13+14+15=84故答案为:8414.(2015•走美杯)梯形的上底、高、下底依次构成一个等差数列,其中高是12,那么梯形的面积是144.【分析】首先根据梯形的上底、高、下底依次构成一个等差数列,可得:上底+下底=高×2,据此求出梯形的上底和下底的和是多少;然后根据:梯形的面积=(上底+下底)×高÷2,求出梯形的面积是多少即可.【解答】解:(12×2)×12÷2=24×12÷2=288÷2=144答:梯形的面积是144.故答案为:144.15.(2018•迎春杯)四位同学一起讨论一个由无数个自然数组成的等差数列:小叶说:这个等差数列的第一项是个两位数.小刚说:数列中不大于215的数有20多个.小王说:数列的公差小于5.小红说:数列前两项的平均数是102.这四位同学的话中只有一句是错的,那么这个等差数列的第100项是496.【分析】如果小叶和小红说得对,那么前两项的和是102×2=204,根据小叶说的,可以确定第一个数最大是99,那第二个数就是105,说明公差至少是105﹣99=6,与小王说的相矛盾,因此可以判断出小叶、小红和小王三人之中肯定有一个是错的,那么小刚说的话肯定是对的.根据小刚说的,那说明公差一定不大于215÷20≈10,假设小王说的是错的,则说明公差大于或等于6,根据小叶和小红说的话可以确定公差是一个偶数,因此接下来验证公差是6、8、10的情况.如果公差是6,则第1项是99,第2项是105,那么第21项就是99+20×6=219,大于215,所以公差不是6;如果公差是8,那么第1项就是98,第21项就是98+20×8>215,所以公差也不是8,同样的道理公差也不是10,由此可以判断出小王说的话是对的.那只有小叶和小红两人有一个说错了.根据公差小于5,说明公差最大是4,那第一个数最大是215﹣28×4=103,最小是215﹣28×4﹣3=100,说明小叶说错了;同样根据公差是3、2、1,也能得出第一个数是三位数.根据前两项的和的平均数是102,说明这两个数可能是100和104,也可能是101和103,如果是100和104,那么第100项就是100+99×4=496;如果前两项是101和103,那么215之前就不止20多个数,故不对.【解答】解:根据上面的推理可以知道是小叶说错了.102×2=100+104=101+103如果公差是104﹣100=4,则第100项是100+99×4=496;如果公差是103﹣101=2,则第30项是101+29×2=159<215,与小刚说的话矛盾.故答案为:496.16.(2016•创新杯)已知数列a1,a2,…,a n为一等差数列,平均数为71,把相邻的4个数相加,其和为新的一列数,这新一列数的总和为28400,则n=103.【分析】由题意,a1+a2+…+a n﹣1+a n=71n①,a1+2a2+3a3+4a4+4a5+…+4a n﹣4+4a n﹣3+3a n﹣2+﹣2a n﹣1+a n=28400②,②﹣①可以得到a2+2a3+3a4+3a5+…+3a n﹣4+3a n﹣3+2a n﹣2+a n﹣1=28400﹣71n③,依次利用①式进行变换最后得出a4+a5+…+a n﹣4+a n﹣3=28400﹣71(3n﹣6)⑤,利用等差数列的求和公式,即可得出结论.【解答】解:由题意,a1+a2+…+a n﹣1+a n=71n①,a1+2a2+3a3+4a4+4a5+…+4a n﹣4+4a n﹣3+3a n﹣2+﹣2a n﹣1+a n=28400②,②﹣①可得a2+2a3+3a4+3a5+…+3a n﹣4+3a n﹣3+2a n﹣2+a n﹣1=28400﹣71n③,a2+a3+…+a n﹣2+a n﹣1=71(n﹣2)④,③﹣④可得a3+2a4+2a5+…+2a n﹣4+2a n﹣3+a n﹣2=28400﹣71(2n﹣2)⑤,a3+a4+…+a n﹣3+a n﹣2=71(n﹣4)④,⑤﹣④可得a4+a5+…+a n﹣4+a n﹣3=28400﹣71(3n﹣6)⑤,(n﹣3﹣4+1)×71=28400﹣71(3n﹣6),解得n=103,故答案为:103.17.(2014•其他模拟)艾丽斯工作5天后,共挣了65元,其中每一天所挣的都比前一天多2元.她第一天挣了9元.【分析】每天的钱数构成一个公差为“2”的等差数列,首项是要求的数,项数为5.因此本题根据高斯求和公式“S n=na1+n(n﹣1)÷2”进行计算即可:【解答】解:设她第一天挣了x元,5x+5×(5﹣1)×2÷2=655x+20=655x=45x=9故答案为:9.18.一个电影院的第一排有15个座位,以后每排都比前排多2个座位,最后一排有53个座位,这个电影院共有20排座位.【分析】把座位数可以看作是一个等差数列:首项是15,末项是53,公差是2,求这个电影院共有几排座位,就相当于等差数列的项数,列式是(53﹣15)÷2+1=20,然后解答即可求出一共有的排数.【解答】解:根据分析可得,(53﹣15)÷2+1,=38÷2+1,=20(排),答:这个电影院共有20排座位.故答案为:20.三.计算题(共1小题,满分3分,每小题3分)19.92+90+88+ (2)【分析】根据等差数列通项公式:项数=(末项﹣首项)÷公差+1,(首数+尾数)×项数÷2=和解答即可.【解答】解:(2+92)×[(92﹣2)÷2+1]÷2=94×46÷2=2162四.解答题(共12小题,满分54分)20.(4分)(2012•其他模拟)把一堆苹果分给8个朋友,要使每个人都能拿到苹果,而且每个人拿到苹果个数都不同的话,这堆苹果至少应该有几个?【分析】由题意可知,要使8个人中的每个人都能拿到苹果,而且每个人拿到苹果个数都不同,则分到苹果最少的应为1个,而其他人至少分别分到2,3…8个苹果.那么这堆苹果应有的个数为:1+2+3+…+8.计算这个公差为1的等差数列的和即可.【解答】解:1+2+3+4+5+6+7+8=(1+8)×8÷2=9×8÷2=72÷2=36(个).答:这堆苹果至少应有36个.21.(4分)小张看一本故事书,第一天看了25页,以后每天比前一天多看5页,最后一天看55页,刚好看完,这本故事书一共有多少页?【分析】根据题意,可得小红每天看故事书的页数是一个等差数列,数列的首项是25,末项是55,公差是5,所以求出等差数列的项数,即可求出这本故事书共多少页.【解答】解:(55﹣25)÷5+1=30÷5+1=7(25+55)×7÷2=80×7÷2=280(页)答:这本故事书一共有280页.22.(4分)已知一个等差数列第9项等于131,第10项等于137,这个数列的第1项是多少?第19项是多少?【分析】由题可知,本题是一个公差为137﹣131=6的等差数列,因此本题根据高斯求和的有关公式解答即可:末项=首项+(项数﹣1)×公差,首项=末项﹣(项数﹣1)×公差.【解答】解:公差:137﹣131=6第1项:131﹣(9﹣1)×6=131﹣48=83第19项:83+(19﹣1)×6=83+18×6=83+108=191答:这个数列的第1项是83,第19项是191.23.(4分)某电影院有26排座位,后一排比前一排多1个座位,最后一排有45个座位,求这个影院一共有多少个座位?【分析】因后一排在比前一排多1个座位,可看作是看作一个等差数列,末项是45,所以首项是45﹣26+1=20,本题可根据高斯求和公式解答即可.【解答】解:45﹣26+1=20(个)(20+45)×26÷2=845(个)答:这个影院一共有845个座位.24.(4分)有一堆粗细均匀的圆木,最上面一层有6根,每向下一层增加一根,如果最下面一层有98根,那么共堆了多少层?【分析】每层的根数构成了一个等差数列,首项是6,公差是1,末项是98,求项数,根据“项数=(末项﹣首项)÷公差+1”解答即可.【解答】解:(98﹣6)÷1+1=92+1=93(层)答:共堆了93层.25.(4分)求1,5,9,13,…,这个等差数列的第30项.【分析】首先求出1,5,9,13,…,这个等差数列的公差,然后根据:a n=a1+(n﹣1)d(a1、a n、d 分别是等差数列的第1项、第n项、公差),求出这个等差数列的第30项即可.【解答】解:1+(30﹣1)×(5﹣1)=1+29×4=1+116=117答:这个等差数列的第30项是117.26.(5分)(2012•其他杯赛)把90米长的一条绳子分成三段,要使后一段都比前一段多3米.三段绳子的长度各是多少?【分析】设第一段绳子长x米,那么第二段,第三段绳子的长度分别是:(x+3)米,(x+3+3)米,根据三段绳子的长度是90米列方程,依据等式的性质即可解答.【解答】解:设第一段绳子长x米,x+(x+3)+(x+3+3)=90,3x+9=90,3x+9﹣9=90﹣9,3x=81,3x÷3=81÷3,x=27,27+3=30(米),27+3+3,=30+3,=33(米),答:第一段绳子长27米,第二段绳子长30米,第三段绳子长33米.27.(5分)(2009•两岸四地)张师傅做一批零件,第一天做了20个,以后每天都比前一天多做2个,第30天做了78个,正好做完.这批零件共有几个?【分析】第一天20个,根据“以后每天都比前一天多做2个”,求得第二天是22个,第三天为24个,第30天为78个,设s=20+22+24+…+76+78 ①,则s=78+76+74+…+24+22+20 ②,①+②得,2s=(20+22+24+…+76+78)+(78+76+74+…+24+22+20 )=(20+78)+(22+76)+…+(76+22)+(78+20)=98×30,求得问题的答案.【解答】解:因为第一天20个,第二天是22个,第三天为24个,•,则第30天为78个,设s=20+22+24+…+76+78 ①,则s=78+76+74+…+24+22+20 ②,①+②得,2s=(20+22+24+…+76+78)+(78+76+74+…+24+22+20),=(20+78)+(22+76)+…+(76+22)+(78+20),=98×30,=2940,所以s=1470.答:这批零件共有1470个.28.(5分)(2016•学而思杯)若一个三位数的三个数字a、b、c按从小到大排列后,怡好可组成一个等差数列(公差可以为0),这我们将这样的三位数叫做“和谐数”,如375,102,….(1)100至199之间,有多少个“和谐数”?(2)总共有多少个“和谐数”?(3)将所有的“和谐数”排成一列,546排在第几位?【分析】将公差分类,求出相应的“和谐数”,即可得出结论.【解答】解:(1)公差为0:111;公差为1:102,120,123,132;公差为2:135,153;公差为3:147,174;公差为4:159,195,所以100至199之间,有11个“和谐数”;(2)公差为0:111,222, (999)公差为1,(0,1,2),(1,2,3),…,(7,8,9),共8组,第1组有四种情况,其它组有6种情况,4+7×6=46个;公差为2,(0,2,4),(1,3,5),…,(5,7,9),共6组,第1组有四种情况,其它组有6种情况,4+5×6=34个;公差为3,(0,3,6),(1,4,7),(2,5,8),(3,6,9),共4组,第1组有四种情况,其它组有6种情况,4+3×6=22个;公差为4,(0,4,8),(1,5,9),共2组,第1组有四种情况,其它组有6种情况,4+1×6=10个;总共有9+46+34+22+10=121个“和谐数”;(3)将所有的“和谐数”排成一列,100~199:11个;200~299:公差为0:222;公差为1:201,210,213,231,234,243;公差为2:204,240,246,264;公差为3:258,285,共13个;300~399:公差为0:333;公差为1:312,321,324,342,345,354;公差为2:315,351,357,375;公差为3:306,360,369,396,共15个;400~499:公差为0:444;公差为1:423,432,435,453,456,465;公差为2:402,420,426,462,468,486;公差为3:417,471;公差为4:408,480,共17个;500~599:公差为0:555;公差为1:534,543,546,564,567,576;公差为2:513,531,537,573,579,597;公差为3:528,582;公差为4:519,591,共17个;11+13+15+17+8=64,所以546排在第64位.29.(5分)从一列数1,5,9,13,…,93,97中,任取14个数.证明:其中必有两个数的和等于102.【分析】首先根据题意可知这列数是一组公差是4等差数列,根据项数=(末项﹣首项)÷公差+1,求出这组等差数列一共有几项,据此分析解答即可.【解答】解:(97﹣1)÷4+1=25(个)将这25个组分成13组:{1},{5,97},{9,93},{13,89},…,{45,57},{49,53}.在这25个数中任取14个数来,必有二数属于上述13组中的同一组,故这一组二数之和是102.30.(5分)一个项数是偶数的等差数列,奇数项和偶数项的和分别是240和300.若最后一项超过第一项105,那么,该等差数列有多少项?【分析】设给出的数列有2n项,由偶数项的和减去奇数项的和等于n倍的公差,再根据最后一项比第一项多105得到一个关于项数和公差的式子,联立后可求项数.【解答】解:假设数列有2n项,公差为d,因为奇数项之和与偶数项之和分别是240与300所以S偶﹣S奇=300﹣240=nd,即nd=60①.又因为a2n﹣a1=105即a1+(2n﹣1)d﹣a1=105所以(2n﹣1)d=105②.联立①②得:n=4.则这个数列一共有2n项,即8项.答:该等差数列有8项.31.(5分)一堆电线杆,共有5层,第一层有8根,下面每层比上层多一根,这堆电线杆一共有多少根?【分析】根据题意,把第一层的根数看作梯形的上底,最下层的根数看作梯形的下底,层数看作梯形的高,由梯形的面积公式就可以求出结果.【解答】解:根据题意可得最下面的一层的根数是:8+5﹣1=12(根),由梯形的面积公式可得:这垛电线杆的总数为:(12+8)×5÷2=100÷2=50(根);答:这一堆电线杆共有50根.。
五年级奥数 等差数列求和二
五年级奥数等差数列求和二五年级奥数 - 等差数列求和二简介本文档将探讨五年级奥数中的等差数列求和问题。
我们将重点讨论如何计算等差数列的和。
等差数列等差数列是由一系列数字组成的序列,其中每个数字与前一个数字的差固定。
例如,2,4,6,8,10 是一个等差数列,每个数字之间的差为2。
等差数列求和公式求解等差数列的和可以使用等差数列求和公式。
对于等差数列a1, a2, a3, ..., an,它们的和 Sn 可以通过以下公式计算:Sn = (a1 + an) * n / 2其中,a1 是等差数列的第一个数字,an 是等差数列的最后一个数字,n 是等差数列中数字的个数。
解题步骤使用等差数列求和公式求解等差数列的和的步骤如下:1. 确定等差数列的首项 a1 和公差 d(即等差数列中相邻两个数字的差)。
2. 确定等差数列的前 n 项和 Sn 的计算公式。
3. 将 a1、d 和 n 的值代入求和公式,计算得到 Sn。
例子假设有一个等差数列的首项为 a1 = 2,公差为 d = 3,要求计算该等差数列的前 5 项和 Sn。
根据求和公式,可以得到:Sn = (a1 + a5) * n / 2将 a1、d 和 n 的值代入公式,得到:Sn = (2 + (2 + (5-1)*3)) * 5 / 2计算结果为:Sn = (2 + 14) * 5 / 2 = 16 * 5 / 2 = 80 / 2 = 40所以,该等差数列的前 5 项和为 40。
总结等差数列求和是五年级奥数中的一个重要概念,通过使用等差数列求和公式,可以快速计算等差数列的和。
以上是关于等差数列求和问题的简要介绍和解题方法。
如果你有任何问题或需要进一步的解释,请随时联系我。
奥数:等差数列及求和
五年级奥数第二讲:等差数列及求和例1.找规律填数:(1)1,3,5,7,(),()(2)6,10,14,18,(),()(3)5,5,5,5,5,5,5,()按一定次序排列的一列数称为数列。
数列中的每一个数都叫做这个数列的项。
排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项。
想想上题中的数列究竟是什么规律呢?像这样从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列。
公差:这个等差数列中每相邻两项之间固定不变差叫做公差。
例2. 90,80,70,60,50,……20,10这是什么数列?第8项是多少?第5项是多少?30是此数列中的第几项?项数是多少?有没有更简单的方法计算此题呢?等差数列的相关公式:例3.2,11,20,29,38,…是按一定规律排列的一串数,第21项是多少?解:从第二项起每一项与前一项的差是9,所以此数列是等差数列,公差是9,将第21项看作是末项,末项=2+(21-1)×9 =182所以第21项是182。
练习:求等差数列3,8,13,18,……的第30项是多少?例4.已知等差数列4,7,10,13,16,……,问(1)这个数列的第321项是多少?(2)790是这个数列的第几项?解:这是一个首项为4,公差为3的等差数列。
(1)暂定321为数列的末项,即,第321项是:4+(321-1)×3 =964(2)暂定790为数列的末项第n项,即790 =4+(n-1)×3n =(790 -4 +3) ÷3=263例5.求等差数列46,52,58……172共有多少项?解:此数列是等差数列,公差是6,根据项数=(末项-首项)÷公差+1所以项数=(172 -46)÷6 +1=22等差数列求和公式:和=(首页+末页)×项数÷2.求等差数列的和,必须知道数列的首项、末项、公差和项数分别是多少.要熟记和灵活运用等差数列的通项公式、求项数公式、求和公式,这样才能轻松解题.例6.计算数列的和:(1)2+4+6+8+…+598+600;(2)3+7+11+ (399)解:(1)项数=(末项-首项)÷公差+1=(600-2)÷2+1=300.2+4+6+8+…+598+600=(2+600) ×300÷2=90300(2) 项数=(399-3)÷4+1=100.3+7+11+…+399=(3+399)×100÷2=20100例7、计算:(1+3+5+7+…+2009)-(2+4+6+…+2008).(1+3+5+7+…+2009)-(2+4+6+…+2008).=1+(3-2)+(5-4)+(7-6)+… +(2009-2008)=1 +1 +… +1共1005个1=1005例8:建筑工地上堆着一些钢管(如图),求这堆钢管一共有多少根?解: 3 +4 +5 +…+8 +9 +10=(3+10)×8 ÷2=52(根)答:这堆钢管一共有52根.例9、有12名同学聚会,见面时每人和其余的人握手一次,那么一共要握手多少次?解:11 +10+9+8+7+6+5+4+3 +2+1=(11 +1 )×11 ÷2=66(次)答:一共握手66次。
小学五年级奥数练习及部分答案1数列规律应用找规律(四)
奥数五年级上一、数列规律地应用--找规律(四> (1)二、等差数列求和地应用--数列(二> (7)三、包含与排除(二> (14)四、小数地巧算--巧算(四> (19)五、行程问题(三> (25)六、行程问题(四> (31)七、牛吃草问题 (36)八、平面图形地面积(二> (39)九、计数问题 (45)十、数地进位制(二> (50)十一、简单抽屉原理(一> (54)十二、简单地统筹规划问题 (60)部分答案 (68)一、数列规律地应用--找规律(四>按一定地顺序排列地一串数,叫做数列,每一个数是数列地一项,排在第几个位置就叫第几项.要找到数列地规律,必须善于观察,一般可以从以下几方面去观察数列:①数列地每一项怎样随项数变化而变化;②后面地项与前面地项有什么关系;③数列分组后有什么规律.注意:同一个数列,从不同地方面去观察,可以有不同地规律性.如数列:1,4,9,16,25,36,……规律1:从第2项起每一项比前一项依次大3,5,7,9,11,……规律2:每一项=它地项数地平方.把这个数列看作:12,22,32,42,52,62,……例1、准备题,按规律填数.(1> 2,9,16,23,,。
(2> 1,2,4,7,11,,。
(3> ,,,,,。
(4> 2,4,5,10,11,22,23,,。
例2、把自然数中地偶数:2,4,6,8,……依次排成5列<如图)从上到下为列,从左到右为行,最左边地一列叫第一列,最上面一行叫第一行,那么数1994出现在第几行第几列?2 4 6 816 14 12 1018 20 22 2432 30 28 26例3、把自然数如右图排列, ①第10行正中地数是哪个? ②1999在第几行左起第几个 数?例4、自然数如右图排列:①第一行中自左至右第8个数是几? ②自上至下第10行中第8个数是几? 例5、把所有自然数按下图规律排列后,从上到下分成A,B,C,D,E 五类,问1991在哪一类?例6、所有自然数如右图排列, ①300应位于哪个字母下面? ②字母F 下面,从上往下数 第6个数是多少?例7、有列数:2,3,6,8,8,…,从第3个数起,每个数都是前两个数乘积地个位数字,那么这一列数地第80个数是多少?例8、有一列数:1,1989,1988,1,1987,…,从第3个数起,每一个数都是前两个数中大数减小数地差,那么第1989个数是多少?例9、如数表,第n 行有一个数A,它地下一行(第n+1行>有一个数B,且A 和B 在同一竖列,如果A+B=394,那么n 是多少?例10、右图是一个由数字组成地三角形.试研究它地组成规律,从而确定其中地x.34 36 38 40… … … … 第一行 1 第二行 2 3 4 第三行 5 6 7 8 9 第四行 10 11 12 13 14 15 16…1 3 6 10 15 21 …2 5 914 20 …4 813 19 …712 18 …11 17 … 16 …A BC D E 1 2 3 4 8 7 6 5 9 10 11 12 16 15 14 13 17 … … …… … … … A B CD E F G 1 2 3 47 6 5 8 9 10 11 14 13 12 15 16 …………第1行 12345… 14 15第2行 30 29 28 27 26 … 17 16 第3行 31 32 33 34 35 … 44 45 ……………………………………………………第n 行 ………………………A……第n+1行 ……………………… B ……11例11、把自然数如图排列:①第8行左起第8个数是多少?②97位于第几行第几列?例12、在1997后面写一串数字,写下地每个数字都是它前面两个数字乘积地个位数.这样得到地一串数是199731……,问这串数字从1开始往右第2002个数字是几?例13、求2000个333…3,除以7地余数. 例14、1998个47地乘积地个位数字是几? 例15、a n ,如果a 是整数,填表后解答: ①a n 地个位数有什么规律?②根据规律求下面计算结果地个位数字(尾数>.19915+19925+19935+19946+19956+19967+19977+19988+19998填表:a n 地尾数例16、在一张足够长地纸条上从左到右依次写上1到1999这1999个自然数,然后从左到右每隔三位点一个逗号:1 10 1 2 2 5 5 42 0 0 5 10 14 1616 61 61 56 46 32 16· · · x · ·· ·1 2 510 174 3 6 11 18 … 9 8 7 12 19 …1615 14 13 20 … 25 24 23 22 21 … ……123,456,789,101,112,……,那么第100个逗号前地那个数字是多少?例17、把自然数依次写下来得到一个数:1234567891……问这个数从左边第一位起第1999个数字是几?。
小学五年级奥数题大全及答案(更新版)
小学五年级奥数题大全及答案五年级奥数1、小数的巧算2、数的整除性3、质数与合数4、约数与倍数5、带余数除法6、中国剩余定理7、奇数与偶数8、周期性问题9、图形的计数10、图形的切拼11、图形与面积12、观察与归纳13、数列的求和14、数列的分组15、相遇问题16、追及问题17、变换和操作18、逻辑推理19、逆推法20、分数问题1.1小数的巧算(一)年级班姓名得分一、填空题1、计算 1.135+3.346+5.557+7.768+9.979=_____.2、计算 1.996+19.97+199.8=_____.3、计算 9.8+99.8+999.8+9999.8+99999.8=_____.4、计算6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78 +1.89=_____.5、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____.6、计算 2.89⨯4.68+4.68⨯6.11+4.68=_____.7、计算 17.48⨯37-17.48⨯19+17.48⨯82=_____.8、计算 1.25⨯0.32⨯2.5=_____.9、计算 75⨯4.7+15.9⨯25=_____.10、计算 28.67⨯67+32⨯286.7+573.4⨯0.05=_____.二、解答题11、计算 172.4⨯6.2+2724⨯0.3812、计算 0.00...0181⨯0.00 (011)963个0 1028个013、计算12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.2314、下面有两个小数:a=0.00...0105 b=0.00 (019)1994个0 1996个0求a+b,a-b,a⨯b,a÷b.1.2小数的巧算(二)年级班姓名得分一、真空题1、计算 4.75-9.64+8.25-1.36=_____.2、计算 3.17-2.74+4.7+5.29-0.26+6.3=_____.3、计算 (5.25+0.125+5.75)⨯8=_____.4、计算 34.5⨯8.23-34.5+2.77⨯34.5=_____.5、计算 6.25⨯0.16+264⨯0.0625+5.2⨯6.25+0.625⨯20=_____.6、计算 0.035⨯935+0.035+3⨯0.035+0.07⨯61⨯0.5=_____.7、计算 19.98⨯37-199.8⨯1.9+1998⨯0.82=_____.8、计算 13.5⨯9.9+6.5⨯10.1=_____.9、计算 0.125⨯0.25⨯0.5⨯64=_____.10、计算 11.8⨯43-860⨯0.09=_____.二、解答题11、计算32.14+64.28⨯0.5378⨯0.25+0.5378⨯64.28⨯0.75-8⨯64.28⨯0.125⨯0.537812、计算 0.888⨯125⨯73+999⨯313、计算 1998+199.8+19.98+1.99814、下面有两个小数:a=0.00...0125 b=0.00 (08)1996个0 2000个0试求a+b, a-b, a⨯b, a÷b.2.1数的整除性(一)年级班姓名得分一、填空题1、四位数“3AA1”是9的倍数,那么A=_____.2、在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3、能同时被2、3、5整除的最大三位数是_____.4、能同时被2、5、7整除的最大五位数是_____.5、1至100以内所有不能被3整除的数的和是_____.6、所有能被3整除的两位数的和是______.7、已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8、如果六位数1992□□能被105整除,那么它的最后两位数是_____.9、42□28□是99的倍数,这个数除以99所得的商是_____.10、从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题1、173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12、在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14、试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.2.2数的整除性(二)年级班姓名得分一、填空题1、一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.2、123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.3、下面一个1983位数33…3□44…4中间漏写了一个数字(方框),已知这991个 991个个多位数被7整除,那么中间方框内的数字是_____.4、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.5、有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.6、一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.7、任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.8、有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.9、从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____.10、所有数字都是2且能被66……6整除的最小自然数是_____位数.100个二、解答题11、找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?12、只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?13、500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?14、试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.3.1质数与合数(一)年级班姓名得分一、填空题1在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2、最小的质数与最接近100的质数的乘积是_____.3、两个自然数的和与差的积是41,那么这两个自然数的积是_____.4、在下式样□中分别填入三个质数,使等式成立.□+□+□=505、三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6、找出1992所有的不同质因数,它们的和是_____.7、如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.8、9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.9、从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10、今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11、2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13、学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?14、四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?3.2质数与合数(二)年级班姓名得分一、填空题1、在1~100里最小的质数与最大的质数的和是_____.2、小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.3、把232323的全部质因数的和表示为AB,那么A⨯B⨯AB=_____.4、有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6、如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7、某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8、有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是____________.9、有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除.10、主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。
小学五年级奥数题及答案
在日常生活和解答数学问题时,经常要进行计算,在数学课里我们学习了一些简便计算的方法,但如果善于观察、勤于思考,计算中还能找到更多的巧妙的计算方法,不仅使你能算得好、算得快,还可以让你变得聪明和机敏。
例1:计算:9.996+29.98+169.9+3999.5解:算式中的加法看来无法用数学课中学过的简算方法计算,但是,这几个数每个数只要增加一点,就成为某个整十、整百或整千数,把这几个数“凑整”以后,就容易计算了。
当然要记住,“凑整”时增加了多少要减回去。
9.996+29.98+169.9+3999.5=10+30+170+4000-(0.004+0.02+0.1+0.5)=4210-0.624=4209.376例2:计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01解:式子的数是从1开始,依次减少0.01,直到最后一个数是0.01,因此,式中共有100个数而式子中的运算都是两个数相加接着减两个数,再加两个数,再减两个数……这样的顺序排列的。
由于数的排列、运算的排列都很有规律,按照规律可以考虑每4个数为一组添上括号,每组数的运算结果是否也有一定的规律?可以看到把每组数中第1个数减第3个数,第2个数减第4个数,各得0.02,合起来是0.04,那么,每组数(即每个括号)运算的结果都是0.04,整个算式100个数正好分成25组,它的结果就是25个0.04的和。
1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01=(1+0.99-0.98-0.97)+(0.96+0.95-0.94-0.93)+…+(0.04+0.03-0.02-0.01)=0.04×25=1如果能够灵活地运用数的交换的规律,也可以按下面的方法分组添上括号计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01=1+(0.99-0.98-0.97+0.96)+(0.95-0.94-0.93+0.92)+…+(0.03-0.02-0.01)=1例3:计算:0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20解:这个算式的数的排列像一个等差数列,但仔细观察,它实际上由两个等差数列组成,0.1+0.2+0.3+…+0.8+0.9是第一个等差数列,后面每一个数都比前一个数多0.1,而0.10+0.11+0.12+…+0.19+0.20是第二个等差数列,后面每一个数都比前一个数多0.01,所以,应分为两段按等差数列求和的方法来计算。
等差数列五年级奥数练习题
等差数列五年级奥数练习题等差数列是数学中常见的一种序列形式,它的每一个元素与前一个元素之间具有相等的差值。
在五年级奥数练习题中,等差数列也是一个常见的考点。
下面我们将介绍几个与等差数列相关的五年级奥数练习题。
练习题一:已知等差数列的前四项依次是2,5,8,11,求这个等差数列的通项公式。
解析:我们可以观察到这个等差数列的公差是3,第一项是2。
根据等差数列的通项公式:an = a1 + (n-1)d,其中an表示第n项,a1表示第一项,d表示公差。
代入已知条件可得:an = 2 + (n-1)3。
简化后得到通项公式为:an = 3n-1。
练习题二:已知等差数列的前五项依次是1,4,7,10,13,求这个等差数列的第十项。
解析:我们可以观察到这个等差数列的公差是3,第一项是1。
根据等差数列的通项公式:an = a1 + (n-1)d,代入已知条件可得:a10 = 1 + (10-1)3。
简化后得到第十项为:a10 = 28。
练习题三:已知等差数列的第五项是13,公差是4,求这个等差数列的前十项的和。
解析:我们可以观察到这个等差数列的公差是4,第五项是13。
根据等差数列的求和公式:Sn = (n/2)(a1 + an),其中Sn表示前n项的和,a1表示第一项,an表示第n项。
代入已知条件可得:S10 = (10/2)(13 + a10)。
由于已知条件中只给出了第五项,我们需要根据公差和第五项求得第十项a10。
根据等差数列的通项公式:an = a1 + (n-1)d,代入已知条件可得:13 = a1 + (5-1)4。
解方程得到第一项a1为1。
将a1和公差d代入求和公式,得到S10 = (10/2)(13 + (1 + (10-1)4))/2。
简化后得到前十项的和为:S10 = 265。
练习题四:已知等差数列的前三项之和是12,公差是2,求这个等差数列的前十项的和。
解析:我们可以观察到这个等差数列的公差是2,前三项之和是12。
小学奥数等差数列练习及答案
小学奥数等差数列练习及答案【三篇】【篇一】知识点:1、数列:按一定顺序排成的一列数叫做数列。
数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。
数列中共有的项的个数叫做项数。
2、等差数列与公差:一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差。
3、常用公式等差数列的总和=(首项+末项)项数2项数=(末项-首项)公差+1末项=首项+公差(项数-1)首项=末项-公差(项数-1)公差=(末项-首项)(项数-1)等差数列(奇数个数)的总和=中间项项数【篇二】典例剖析:例(1)在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?分析:(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:项数=(末项-首项)公差+1,便可求出。
(2)根据公式:末项=首项+公差(项数-1)解:项数=(201-3)3+1=67末项=3+3(201-1)=603答:共有67个数,第201个数是603练一练:在等差数列中4、10、16、22、……中,第48项是多少?508是这个数列的第几项?答案:第48项是286,508是第85项例(2)全部三位数的和是多少?分析::所有的三位数就是从100~999共900个数,观察100、101、102、……、998、999这一数列,发现这是一个公差为1的等差数列。
要求和可以利用等差数列求和公式来解答。
解:(100+999)9002=10999002=494550答:全部三位数的和是494550。
练一练:求从1到2000的自然数中,所有偶数之和与所有奇数之和的差。
答案:1000例(3)求自然数中被10除余1的所有两位数的和。
分析一:在两位数中,被10除余1最小的是11,的是91。
从题意可知,本题是求等差数列11、21、31、……、91的和。
它的项数是9,我们可以根据求和公式来计算。
解一:11+21+31+……+91=(11+91)92=459【篇三】1、有10只金子,54个乒乓球,能不能把54个乒乓球放进盒子中去,使各盒子的乒乓球数不相等?2、小明家住在一条胡同里,胡同里的门牌号从1号开始摸着排下去。
小学奥数:等差数列计算题.专项练习及答案解析
等差数列的相关公式(1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;知识点拨等差数列计算题②65636153116533233331089(),++++++=+⨯÷=⨯=题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++=⑵13578799++++++=⑶471013404346+++++++=【考点】等差数列计算题【难度】2星【题型】计算【解析】⑴根据例1的结果知:算式中的等差数列一共有76项,所以:34567677783787623078()+++++++=+⨯÷=⑵算式中的等差数列一共有50项,所以:13578799(199)5022500++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:()471013404346446152375+++++++=+⨯÷=【答案】⑴3078⑵2500⑶375【巩固】1+2+……+8+9+10+9+8+……+2+1=_____。
小学奥数等差数列求和习题及答案
等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。
二、表达方式:常用n S 来表示 。
三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。
对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++11002993985051=++++++++共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。
四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。
譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。
例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。
例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。
(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。
五年级奥数等差数列求和题
五年级奥数等差数列求和题五年级学生学习奥数,掌握求和题的解题方法是很重要的。
本文将重点介绍求等差数列求和的方法。
首先,有关等差数列的求和问题,我们需要先了解一些基础知识。
等差数列是指公差为不变的数列,其中最重要的特点是每一项与它的前一项的差都是同一个常数。
求和的目的是确定等差数列的所有项的总和。
使用公式法求等差数列的和需要做到以下几点:1、求出首项和末项:我们可以确定等差数列的首项和末项,这是确定等差数列和的关键。
2、确定公差:我们可以通过前两项的差来确定公差。
3、计算项数:我们可以计算出该等差数列中有多少项。
4、计算和:有了首项、末项和公差之后,我们就可以用公式1计算出等差数列的和。
公式1:Sn = n/2 *(a1 + an)其中,Sn为等差数列的和,n为该等差数列的项数,a1为该等差数列的首项,an为该等差数列的末项。
在实际求和时,学生可以要求把题目中给出的等差数列的项数由少到多由大到小排列列出,以便更快地进行计算。
例如:从一个等差数列的第一项至第十七项的和是多少?此时,我们需要确定该等差数列的首项和末项,然后根据公式1计算出和:a1=1,an=17,n=17,Sn=17/2*(1+17)=153所以,从一个等差数列的第一项至第十七项的和为153。
实际应用中,学生可以利用等差数列的求和法,更快地完成题目,提高解题速度。
除了计算等差数列和外,求和还可以用来计算等比数列的总和。
首先,等比数列是指公比为不变的数列,其中最重要的特点是每一项与它的前一项的比都是同一个常数。
求和的目的是确定等比数列的所有项的总和。
使用公式法求等比数列的和也需要以下几点:1、确定首项和末项:我们可以确定等比数列的首项和末项,这是确定等比数列和的关键。
2、确定公比:我们可以通过前两项的比来确定公比。
3、计算项数:我们可以计算出该等比数列中有多少项。
4、计算和:有了首项、末项和公比之后,我们就可以用公式2计算出等比数列的和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥数
五年级上
一、数列规律的应用--找规律(四) (1)
二、等差数列求和的应用--数列(二) (7)
三、包含与排除(二) (14)
四、小数的巧算--巧算(四) (19)
五、行程问题(三) (25)
六、行程问题(四) (31)
七、牛吃草问题 (36)
八、平面图形的面积(二) (39)
九、计数问题 (45)
十、数的进位制(二) (50)
十一、简单抽屉原理(一) (54)
十二、简单的统筹规划问题 (60)
部分答案 (68)
二、等差数列求和的应用--数列(二)
对等差数列a1,a2,a3,…,a n,…,如果公差是d,第n项是a n,前n 项的和是s n(n=1,2,3,……)那么:
a n=a1+(n-1)d
即: 第n项=首项+公差的(n-1)倍
n=( a n-a1)÷d+1
即: 项数=(末项-首项)÷公差+1
s n=(a1+a n)×n÷2
即: 前n项和=(首项+末项)×项数÷2
前n个奇数的和:1+3+5+…+(2n-1)=n2
前n个偶数的和:2+4+6+…+2n=n2+n
例18、有一列数:5,8,11,14,……。
①求它的第100项;②求前100项的和。
例19、有一串数:1,4,7,10,……,298。
求这串数的和。
例20、1998+1997-1996-1995+1994+1993-1992-1991+……198+197-196-195
例21、1+2+3-4-5-6+7+8+9-10-11-12+……+182+183
例22、写出数列:1,2,3,4,5,6, ……中,第n个偶数和第n 个奇数。
例23、分别求自然数列中前n个奇数之和,以及前n个偶数(不包括0)的和。
例24、1+3+5+7+…+99
例25、2+4+6+8+…+100
例26、21+23+25+27+…+99
例27、已知一串数1,5,9,13,17,…,问这串数中第100个数是多少?
例28、1971,1981,1991,2001,2011,…,2091,这几个数的和是多少?
例29、98+97-96-95+94+93-92-91+…-4-3+2+1
例30、1+2-3+4+5-6+7+8-9+…+97+98-99
例31、在小于100的自然数中,被7除余3的数的和是多少? 例32、从一点o引出20条不重复的射线共形成多少个锐角?
例33、求所有比11的倍少5的三位数的和?
例34、下图有中的30个方格中各有一个数,每个格子中的数等于同一横行最左边一格和同一竖列最上面一格的数之和(如a=14+17=31)。
问这30个数的总和等于多少?
例35、已知一列数:1,3,6,10,15,21,…,问第59个数是多少?
例36、在一个八层的宝塔上安装节日彩灯共888盏。
已知从第二层开始,每一层比下边一层少安装6盏。
问最上边一层安装多少盏?
例37、若干个同样的盒子排成一排,小明把50多个同样的棋子分装在盒子中。
其中只有一个盒子是空的,然后他外出了,小光从每个有棋子的盒子里各拿了一个棋子放在空盒子内,再把盒子重新排了一下,小明回来没有发现有人动过棋子,问共有多少个盒子?多少棋子?
例38、能不能把44颗花生分给10只猴子,使每只猴子分的花生颗数都不同?
例39、一堆相同的立方体堆积如图,第1层1个,第2层3个,第3层6个,…第10层有多少个?
例40、每相邻的3个圆点组成一个小三角形,如图,问图中这样的小三角形个数多还是圆点个数多?
例41、红光电影院有22排座位,后一排都比前一排多2个座位,最后一排42个座位。
那么这个电影院一共有多少个座位?
例42、小明和小强比赛口算,计算:1+2+3+4+……,当计算到规定的那个加数时,小明的得数是60,小强的得数是66,老师说他们两人的得数有一个错了。
问:他们谁算错了,错在哪里?
例43、100这个自然数最多能写成多少个不同的自然数的和?
例44、如果十个互不相同的两位奇数之和等于898,那么这十个数中最小的一个是多少?。