Hinged dissection of polypolyhedra
聚苯胺-聚噻吩自组装超薄膜的电化学性能
聚苯胺--聚噻吩自组装超薄膜的电化学性能1聚苯胺肖妙妙1,佟斌1,田谋锋1,赵玮1,石建兵1,潘月秀1,支俊格2,董宇平1*,唐本忠31北京理工大学材料科学与工程学院,北京(100081)2北京理工大学理学院,北京(100081)3香港科技大学化学系 清水湾九龙香港e-mail:chdongyp@摘要:本论文以部分掺杂聚苯胺PAN为聚阳离子,聚(3-羧酸)噻吩P3TEA为聚阴离子,通过自组装技术构筑全共轭自组装膜。
实验结果表明聚电解质沉积量随层数的增加而线性增加,形成均匀的自组装超薄膜;循环伏安实验结果显示自组装膜的电化学性能与纯聚苯胺非常相似,而聚噻吩却是相对稳定的;同时氧化-还原电化学峰位及其电流强度取决于掺杂剂的种类:以H2SO4为最强,HCl次之,而1M KCl由于对聚苯胺不能解离出掺杂离子,所以只使聚苯胺呈现分子链中苯胺二聚体链节的氧化电化学反应。
关键词:聚苯胺、聚噻吩、自组装、电化学1.引言随着超大规模集成技术的不断改进,已要求信息功能材料能够达到智能化和超薄膜化。
在这一进程中,以高分子为基础的超薄膜研究与应用始终是一个非常活跃的领域。
制备超薄膜方法之一的自组装法是1991年Decher等人[1]基于在稀溶液中静电相互作用而提出的一种交替沉积制备超薄膜的方法。
该方法对设备和原材料没有特殊要求,以水为溶剂而对环境友好,在结构、厚度、表面特性上可以做到分子水平的调控,得到分子有序排列的多层膜,为此人们已从许多方面进行研究。
虽然近几年以共轭高分子为聚离子的研究报道逐渐增多,但多是研究具有部分共轭结构的自组装膜性能[2-7]。
我们在前期分别以聚(4-羧酸)苯乙炔、部分掺杂聚苯胺等为聚阴、阳离子,通过自组装技术制备具有完全共轭结构的超薄功能膜。
研究结果表明该自组装膜对酸、强电解质溶液和极性溶剂均具有良好的稳定性,其光电转换性质显著优于非共轭的自组装膜[8,9]。
聚苯胺和聚噻吩作为两种典型的共轭聚合物,因其优异的导电性、电化学性、半导体性和发光特性,广泛应用于许多半导体器件中,如聚合物场效应管、聚合物光电二极管、传感器件、静电屏蔽、电致变色显示屏以及光学器件上。
高分子专业英语词汇汉译英
--- 均方末端距mean-aquare end-to-end distance 均方末端距- 非交联的uncross-linked 非交联的- 三维有序的three-dimensionally ordered 三维有序的- 三乙基硼氟酸羊triethyloxonium-borofluoride 三乙基硼氟酸羊- 射线光X-ray x射线 x光- 缨状微束理论fringed-micelle theory 缨状微束理论- 折叠链片晶理论folded-chain lamella theory 折叠链片晶理论- 逐步聚合step-growth polymerization 逐步聚合(表面)发粘的,粘连性tacky (表面)发粘的 ,粘连性(空间)排布,排列arrangement (空间)排布,排列(链)引发initiation (链)引发(链)终止terminate (链)终止(链)转移,(热)传递transfer (链)转移,(热)传递(生)面团,揉好的面dough (生)面团,揉好的面(作用于)分子间的intermolecular (作用于)分子间的氨基,氨基的amino 氨基,氨基的氨基甲酸酯urethane 氨基甲酸酯把…相互连接起来连接interlink 把…相互连接起来连接半晶semicrystalline 半晶半径radius 半径饱和saturation 饱和苯基锂phenyllithium 苯基锂苯基钠phenyl sodium 苯基钠变化,改变variation 变化,改变变形deformation 形变变形性,变形能力deformability 变形性,变形能力表面活性剂surfactant 表面活性剂表征成为…的特征characterize 表征成为…的特征玻璃(态)的glassy 玻璃态的玻璃化温度glass transition temperature 玻璃化温度玻璃态glassy 玻璃(态)的玻璃态的glassy state 玻璃态不饱和的unsaturated 不饱和的不规则性,不均匀的irregularity 不规则性,不均匀的不均匀的,非均匀的heterogeneous 不均匀的,非均匀的不了或缺的indispensable 不了或缺的不完全的imperfect 不完全的参数parameter 参数侧基pendant group 侧基缠结,纠缠entanglement 缠结,纠缠产率yield 产率超声波ultrasonic 超声波超速离心(分离)ultracentrifugation 超速离心(分离)撤出evacuate 撤出沉淀,澄清settle 沉淀,澄清沉降(法)sedimentation 沉降(法)衬里,贴面line 衬里,贴面成分ingredient 成分成型shaping 成型尺寸dimension 尺寸尺寸稳定性dimensional stability 尺寸稳定性稠度,粘稠度consistency 稠度,粘稠度纯度purity 纯度醇(碱金属)烯催化剂Alfin catalyst 醇(碱金属)烯催化剂催化剂,触媒catalyst 催化剂,触媒脆的,易碎的brittle 脆的,易碎的错位,位错dislocation 错位,位错大分子,高分子macromelecule 大分子,高分子单官能度的monofunctional 单官能度的单键single bond 单键单体monomer 单体单轴的uniaxial 单轴的弹性模量elastic modulus 弹性模量弹性体elastomer 弹性体弹性指数slastic parameter 弹性指数当量的,化学计算量的stoichiometric 当量的,化学计算量的导电材料conductive material 导电材料等规立构的isotactic 等规立构的丁二烯butadiene 丁二烯丁基锂butyllithium 丁基锂定向,取向orient 定向,取向定向orientation 定向动力学kinetics 动力学动力学链长kinetic chain length 动力学链长断裂rupture 断裂堆积物,沉积deposit 堆积物,沉积堆砌packing 堆砌多分散的polydisperse 多分散的多分散性polydispersity 多分散性多官能度的polyfunctional 多官能度的多孔性,孔隙率porosity 多孔性,孔隙率二(元)胺diamine 二(元)胺二(元)醇diol 二(元)醇二(元)酸diacid 二(元)酸二次成型secondary shaping operation 二次成型二聚物(体)dimer 二聚物(体)二烯烃diolefin 二烯烃二元的dibasic 二元的反应物,试剂reactent 反应物,试剂反应性,活性reactivity 反应性,活性反应性的,活性的reactive 反应性的,活性的芳香(族)的aromatic 芳香(族)的非弹性的nonelastic 非弹性的分级fractionation 分级分解,分散,分离disintegrate 分解,分散,分离分解decomposition 分解分类(法)categorization 分类(法)分散剂dispersant 分散剂分子量molecular weight distribution 分子量分布分子量分布molecular weight 分子量粉状的powdery 粉状的副作用side reaction 副作用改性modify 改性隔离基团spacer group 隔离基团各项同性的isotropic 各项同性的功能聚合物functional polymer 功能聚合物功能聚合物functionalized polymer 功能聚合物共聚(合)copolymerization 共聚(合)共聚物copolymer 共聚物构象conformation 构象固有的intrinsic 固有的官能团functional group 官能团光敏剂photosensitizer 光敏剂光气,碳酰氯phosgene 光气,碳酰氯光散射light scattering 光散射合成synthesis 合成合成synthesize 合成合成的synthetic 合成的核磁共振nuclear magnetic resonance 核磁共振核径迹探测器nuclear track detector 核径迹探测器红外光谱法infrared spectroscopy 红外光谱法花纹,图样式样pattern 花纹,图样式样缓释剂corrosion inhibitor 缓释剂机理mechanism 机理基体,结晶crystal 基体,结晶基体,母体,基质,矩阵matrix 基体,母体,基质,矩阵挤出extrusion 注射成型挤压squeeze 挤压加成聚合物,加聚物addition polymer 加成聚合物,加聚物加工,成型processing 加工,成型加重,恶化aggravate 加重,恶化夹杂(带)的occluded 夹杂(带)的假定的,理想的,有前提的hypothetical 假定的,理想的,有前提的间歇式的intermittent 间歇式的碱金属alkali metal 碱金属键断裂能bond dissociation energy 键断裂能降解depropagation 降解交联crosslinking 交联胶体colloid 胶体搅拌agitation 搅拌结构,组织texture 结构,组织结晶的crystalline 晶体,晶态,结晶的,晶态的结晶性,结晶度crystallinity 结晶性,结晶度解除,松开release 解除,松开解聚depolymerization 解聚介质中等的,中间的medium 介质中等的,中间的界限,范围boundary 界限,范围晶体,晶态,结晶的,晶态的crystalline 结晶的竞聚率reactivity ratio 竞聚率聚苯烯polypropylene 聚苯烯聚苯乙烯polystyrene 聚苯乙烯聚丁烯polybutene 聚丁烯聚合(物)的polymeric 聚合(物)的聚合度degree of polymerization 聚合度聚合物【体】,高聚物polymer 聚合物【体】,高聚物聚氯乙烯polyvinylchloride 聚氯乙烯聚酰胺polyamide 聚酰胺聚乙烯polyethylene 聚乙烯聚乙烯醇polyvinyl alcohol 聚乙烯醇聚酯化(作用)polyesterification 聚酯化(作用)开链unzippering 开链开始,着手commence 开始,着手抗静电剂antistatic agent 抗静电剂抗氧剂antioxidant 抗氧剂抗张强度tensile strength 抗张强度控制释放controlled release 控制释放口模成型dieforming 口模成型扩散diffuse 扩散拉直,拉长stretch 拉直,拉长冷冻水chilled water 冷冻水离解dissociate 离解离心centrifuge 离心离子ion exchange resin 离子交换树脂离子的ionic polymerization 离子型聚合离子交换树脂ion 离子离子型聚合ionic 离子的理想的,概念的ideal 理想的,概念的力学性能,机械性能mechanical property 力学性能,机械性能立构规整性【度】srereoregularity 立构规整性【度】连锁反应chain reaction 连锁反应链段segment 链段链段segment 链段链间的interchain 链间的链终止chain termination 链终止流动性mobility 流动性流体静力学hydrostatic 流体静力学硫化vulcanization 硫化络合物complex 络合物氯(气)chlorine 氯(气)氯乙烯vinyl 乙烯基(的)密度density 密度密封seal 密封模塑成型moulding 模塑成型模型model 模型逆流countercurrent 逆流黏弹态viscoelastic 黏弹性的黏弹性的viscoelastic state 黏弹态黏度viscosity average molecular weight 黏均分子量黏均分子量viscosity 黏度黏流态viscofluid state 黏流态凝胶gel 凝胶农药,化肥agrochemical 农药,化肥排列成行align 排列成行配方formulation 配方喷洒sprinkle 喷洒片晶platelet 片晶平衡equilibrium 平衡潜在的latent 潜在的嵌入,埋入,包埋imbed 嵌入,埋入,包埋强度strength 强度氢(气)hydrogen bonding 氢键氢键hydrogen 氢(气)取代,代替substitution 取代,代替缺陷defect 缺陷热成型thermoforming 热成型热传递heat transfer 热传递热固性的thermoset 热固性的热解pyrolysis 热解热力学地thermondynamically 热力学地热塑性的thermoplastic 热塑性的溶剂solvent 溶剂溶解dissolution 溶解溶解度solubility 溶解度溶胀swell 溶胀溶胀的swollen 溶胀的熔化的molten 熔化的柔量compliance 柔量柔软的flexible 柔软的三苯甲基钾triphenylenthyl potassium 三苯甲基钾三聚物(体)trimer 三聚物(体)三氯化铁titanium trichloride 三氯化铁三元的,叔(特)的tertiary 三元的,叔(特)的筛子,筛分scalp 筛子,筛分熵entropy 熵伸长率,延伸率elongation 伸长率,延伸率渗透性permeability 渗透性生物(学)的biological 生物(学)的生物医学的biomedical 生物医学的生长链,活性链growing chain 生长链,活性链食盐common salt 食盐使…变形,扭曲distort 使…变形,扭曲使…溶解dissolve 使…溶解使脱氢dehydrogenate 使脱氢收缩retract 收缩数均分子量number average molecular weight 数均分子量双键double bond 双键四氯化钛titanium tetrachloride 四氯化钛四氢呋喃tetrahydrofuran 四氢呋喃塑料plastics 塑料碎屑,碎片fragment 碎屑,碎片羧基carboxyl 羧基羧基酸hydocy acid 羧基酸缩(合)聚(合)polycondensation 缩(合)聚(合)缩合聚合物,缩聚物condensation polymer 缩合聚合物,缩聚物太阳能solar energy 太阳能炭char 炭特性peculiarity 特性烃基hydroxyl 烃基同时,同步simultaneously 同时,同步统计的statistical 统计的涂覆coating 涂覆脱单塔stripping tower 脱单塔脱水dewater 脱水外形,轮廓contour 外形,轮廓烷基铝aluminum alkyl 烷基铝微晶crystallite 微晶稳定剂stabilizer 稳定剂稳定性stability 稳定性污物contaminant 污物无定型的,非晶体的amorphous 无定型的,非晶体的无规降解random decomposition 无规降解无规立构的atactic 无规立构的无规线团random coil 无规线团无机聚合物inorganic polymer 无机聚合物烯丙基allyl 烯丙基烯烃的olefinic 烯烃的细分区分subdivide 细分区分纤维fiber 纤维酰胺化(作用)amidation 酰胺化(作用)线团coil 线团线团状的coiling 线团状的相互作用interaction 相互作用想象,推测imagine 想象,推测橡胶rubber 橡胶橡胶态的rubbery 橡胶态的消除,打开,除去eliminate 消除,打开,除去小球,液滴,颗粒globule 小球,液滴,颗粒形变deformation 变形形态(学)morphology 形态(学)型柸parison 型柸性能,行为behavior 性能,行为性能,特征performance 性能,特征絮凝剂flocculating agent 絮凝剂旋转,回旋gyration 旋转,回旋压延calendering 压延成型压延成型calendering 压延衍射diffraction 衍射阳(正)离子的cationic 阳(正)离子的氧鎓羊oxonium 氧鎓羊药品,药物,药物的,医药的pharmaceutical 药品,药物,药物的,医药的药品,药物drug 药品,药物液晶liquid crystal 液晶依数性colligative 依数性乙烯基(的)vinyl ether 乙烯基醚乙烯基醚vinyl chloride 氯乙烯异丙醇金属,异丙氧化金属isopropylate 异丙醇金属,异丙氧化金属异丁烯isobutylene 异丁烯异氰酸酯isocyanate 异氰酸酯阴(负)离子的anionic 阴(负)离子的引发剂initiator 引发剂引力,吸引attraction 引力,吸引硬度hardness 硬度油轮,槽车tanker 油轮,槽车有规立构的,立构规整性的stereoregular 有规立构的,立构规整性的淤浆slurry 淤浆运动,流动mobilize 运动,流动杂质impurity 杂质载体carrier 载体增进,改善improve 增进,改善粘稠的viscous 粘稠的照射,辐射irradiation 照射,辐射真是的real 真是的争论,争议controversy 争论,争议正[阳]离子cation 正[阳]离子正的,阳(性)的positive 正的,阳(性)的脂肪(族)的aliphatic 脂肪(族)的酯化(作用)esterification 酯化(作用)中性的neutral 中性的种类,类型category 种类,类型重复单元repeating unit 重复单元重均分子量weight average molecular weight 重均分子量主链,骨干backbone 主链,骨干助催化剂cocatalyst 助催化剂注射成型extrusion 挤出转化conversion 转化率转化率conversion 转化转矩torsion 转矩自由基radical polymerization 自由基聚合自由基聚合radical 自由基阻燃剂flame retardant 阻燃剂最佳的,最佳值[点,状态]optimum 最佳的,最佳值[点,状态]最小化minimise 最小化最小值,最小的minimum 最小值,最小的() 模型mo(u)lding 模型活化(作用)activation 活化(作用)手风琴手风琴。
【高分子专业英语翻译】
【高分子专业英语翻译】第五课乳液聚合大部分的乳液聚合都是由自由基引发的并且表现出其他自由基体系的很多特点,最主要的反应机理的不同源自小体积元中自由基增长的场所不同。
乳液聚合不仅允许在高反应速率下获得较高分子量,这在本体聚合中是无法实现或效率低下的,,同时还有其他重要的实用优点。
水吸收了大部分聚合热且有利于反应控制,产物在低粘度体系中获得,容易处理,可直接使用或是在凝聚,水洗,干燥之后很快转化成固体聚合物。
在共聚中,尽管共聚原理适用于乳液体系,单体在水相中溶解能力的不同也可能导致其与本体聚合行为不同,从而有重要的实际意义。
乳液聚合的变化很大,从包含单一单体,乳化剂,水和单一引发剂的简单体系到这些包含有2,3个单体,一次或分批添加,,混合乳化剂和助稳定剂以及包括链转移剂的复合引发体系。
单体和水相的比例允许变化范围很大,但是在技术做法上通常限制在30/70到60/40。
单体和水相比更高时则达到了直接聚合允许的极限,只有通过分批添加单体方法来排除聚合产生的大量的热。
更复杂的是随着胶体数的增加粘度也大大增加,尤其是当水溶性的单体和聚合物易容时,反应结束胶乳浓度降低。
这一阶段常常伴随着通过聚集作用或是在热力学不稳定时凝结作用而使胶粒尺寸增大。
第十课高分子的构型和构象本课中我们将使用根据经典有机化学术语而来的构型和构象这两个词。
构型异构是由于分子中存在一个或多个不对称中心,以最简单的C原子为例,每一碳原子的绝对构型为R型和S型,当存在双键时会有顺式和反式几何异构。
以合成聚合物为例,构型异构的典型问题和R.S型不对称碳原子在主链上的排布有关。
这些不对称碳原子要么来自不对称单体,如环氧丙烷,要么来自对称单体,如乙烯单体,,这些物质的聚合,在每个单体单元中形成至少一个不对称碳原子。
大分子中的构型异构源于侧链上存在不对称的碳原子,例如不对称乙烯单体的聚合,也是可能的,现今已经被广泛研究。
和经典有机化学术语一致,构象,旋转体,旋转异构体,构象异构体,指的是由于分子单键的内旋转而形成的空间排布的不同。
响应面法优化龙须菜多糖快速溶剂萃取提取工艺及其抗炎活性研究
王慧颖,刘燕飞,张敬远,等. 响应面法优化龙须菜多糖快速溶剂萃取提取工艺及其抗炎活性研究[J]. 食品工业科技,2023,44(23):110−117. doi: 10.13386/j.issn1002-0306.2023030309WANG Huiying, LIU Yanfei, ZHANG Jingyuan, et al. Optimization of Accelerated Solvent Extraction of Polysaccharides from Gracilaria lemaneiformis Using Response Surface Methodology and Anti-inflammatory Activity[J]. Science and Technology of Food Industry, 2023, 44(23): 110−117. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030309· 研究与探讨 ·响应面法优化龙须菜多糖快速溶剂萃取提取工艺及其抗炎活性研究王慧颖,刘燕飞,张敬远,杜 彬*,杨越冬*(河北省天然产物活性成分与功能重点实验室,河北秦皇岛 066004)摘 要:为了建立快速溶剂萃取技术(ASE )提取龙须菜多糖的新方法,本文以秦皇岛龙须菜为原料,利用ASE 提取龙须菜粗多糖(GLP-K ),以多糖得率为指标,采用单因素实验结合响应面试验法优化提取工艺条件。
通过傅里叶红外光谱和高效液相色谱对多糖进行结构表征;探索GLP-K 在脂多糖(LPS )诱导的RAW264.7巨噬细胞中的抗炎作用。
结果表明,快速溶剂萃取法用于龙须菜多糖提取的最佳工艺参数为提取温度70 ℃,提取时间8.5 min ,循环4次,在此条件下,多糖实验得率为9.58%±0.31%;红外光谱证实该多糖含有糖醛酸,重均分子量在4.4~747.1 kDa 之间;GLP-K 在浓度1000 μg/mL 及以下时对RAW264.7细胞增殖也无影响(P <0.001);与模型组相比,GLP-K 给药组(50、100、200、300、400、500 μg/mL )NO 的释放量显著降低43.76%~69.47%(P <0.001)。
葡萄糖苷酶抑制剂作用机理的分子动力学模拟和自由能计算
[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.⁃Chim.Sin .2012,28(9),2191-2201September Received:May 7,2012;Revised:July 6,2012;Published on Web:July 6,2012.∗Corresponding author.Email:jmj@;Tel:+86-10-88256326.The project was supported by the National Natural Science Foundation of China (21173264),National Science and Technology Major Special Project of China (2009ZX09501-011),and Foundation of Knowledge Innovative Engineering of Chinese Academy of Sciences (ZNWH-2011-011).国家自然科学基金(21173264),科技部重大专项(2009ZX09501-011)和中国科学院知识创新工程基金(ZNWH-2011-011)资助项目ⒸEditorial office of Acta Physico ⁃Chimica Sinicadoi:10.3866/PKU.WHXB 201207063葡萄糖苷酶抑制剂作用机理的分子动力学模拟和自由能计算罗芳1高剑1成元华1,2崔巍1计明娟1,*(1中国科学院研究生院化学与化学工程学院,北京100049;2清华大学化学系,教育部有机光电分子工程重点实验室,北京100084)摘要:含有锍离子的葡萄糖苷酶抑制剂如kotalanol (SK)和它除去磺酸基团后的衍生物(DSK),是潜在的毒副作用较小的治疗II 型糖尿病的候选药物.α-葡萄糖苷酶抑制活性实验显示,DSK 活性比SK 略高,而将二者环上的S 原子替换成NH 后(分别称为DSN 和SN),DSN 的活性要比SN 高1500倍左右.本文用分子动力学模拟,结合自由能计算和自由能分解的方法对上述四个抑制剂的作用机理进行了研究.研究结果表明活性的巨大差异是由NH 基团取代效应和磺酸基团立体效应共同作用的结果,由于N ―C 键长比S ―C 键长短,NH 基团取代导致烷基链的翻转,同时,磺酸基团限制了链的翻转,因此改变了抑制剂的结合模式.计算结果与实验基本一致.本文的研究结果有助于进一步理解含锍离子的葡萄糖苷酶抑制剂的结合机理,并为设计更有潜力的葡萄糖苷酶抑制剂提供了有价值的信息.关键词:锍离子;葡萄糖苷酶抑制剂;分子动力学模拟;自由能计算;自由能分解中图分类号:O641Interaction Mechanisms of Inhibitors of Glucoamylase by MolecularDynamics Simulations and Free Energy CalculationsLUO Fang 1GAO Jian 1CHENG Yuan-Hua 1,2CUI Wei 1JI Ming-Juan 1,*(1College of Chemistry and Chemical Engineering,Graduate University of Chinese Academy of Sciences,Beijing 100049,P .R.China ;2Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education,Department of Chemistry,Tsinghua University,Beijing 100084,P .R.China )Abstract:Sulfonium ion glucosidase inhibitors such as kotalanol (SK)and de-O -sulfonated kotalanol (DSK)are potential drug candidates for the treatment of type II diabetes,with no serious toxicity or side effects.Experimental binding assays against glucosidase show that the activity of DSK is slightly higher than that of SK,while the activity of the nitrogen analogue of de-O -sulfonated kotalanol (DSN)is ~1500-fold higher than that of the nitrogen analog of kotalanol (SN).Here,the binding mechanisms of four representative inhibitors of glucoamylase,SK,DSK,and their two nitrogen analogues,were explored in an integrated modeling study combining molecular dynamics (MD)simulations,binding free energy calculations,and binding free energy decomposition analysis.Our simulations highlight the significant impact of the combination of nitrogen substitution and sulfate anion group.Nitrogen substitution in the five-membered ring leads to the overturning of the polyhydroxylated chain,originating from the shorter bond length of N ―C compared with S ―C,while the sulfate anion group restrains the freedom of the polyhydroxylated chain.These cumulative effects are able to significantly change the binding conformation of the inhibitor and substantially impair interactions between the inhibitor and glucosidase.The structural insights obtained in this study are expected to be valuable for increased understanding of the binding2191Acta Phys.⁃Chim.Sin.2012V ol.28 mechanism of sulfonium ion glucosidase inhibitors and future design of more potent glucosidase inhibitors.Key Words:Sulfonium ion;Glucoamylase inhibitor;Molecular dynamic simulation;Free energy calculation;Free energy decomposition1IntroductionIn human,four enzymes,i.e.,salivary,pancreaticα-amylas-es,maltase-glucoamylase,and sucrase-isomaltase,are in-volved in the complete digestion of starch into glucose.Malt-ase-glucoamylase(MGAM)belongs to the family GH31of gly-coside hydrolases and is a key intestinal human glucosidase re-sponsible for the digestion of terminal starch products left after α-amylase action.1Anchored to the small-intestinal brush-bor-der epithelial cells,it contains two catalytic subunits:an N-ter-minal subunit(ntMGAM)that is proximal to the mem-brane-bound end and a C-terminal luminal subunit(ctMGAM). The catalytic subunits have various but overlapping substrates, including maltose,isomaltose,sucrose,and small linear and branched oligosaccharides.2,3Due to their involvement in the breakdown of dietary sugars and starches,the inhibition of MGAM byα-glucosidase inhibitors can be a means of control-ling postprandial blood glucose levels for individuals with type II diabetes.4This class of inhibitors can also be used for ac-quired immune deficiency syndrome(AIDS)treatment.5Acar-bose and miglitol are currently used to control blood glucose levels by inhibiting amylases and glucosidase.They keep blood sugar levels within a safe range by slowing the rate at which the intestines absorb sugar(glucose)from food.Previ-ous studies of the interaction betweenα-glucosidase and acar-bose,miglitol and glycosidase indicated that the carbohydrate mimics containing nitrogen are protonated in the active site of glucosidase and act as glucosidase inhibitors due to their simi-larity in the shape and charge to the presumed transition state for enzymatic glycoside hydrolysis.6Theα-glucosidase inhibitors with sulfonium ions were first isolated from Salacia reticulate,a plant that is widely used in traditional Ayurvedic medicine for treating type II diabetes in Sri Lanka and South India.7The Salacia extract was shown to be effective for the treatment of type II diabetes with less toxic-ity and side effects compared to the existing commercial gluco-sidase inhibitors that may cause liver dysfunction.8Six active compounds have been isolated from the extract,including sala-prinol,9salacinol,10ponkoranol,9kotalanol(SK),11de-O-sulfo-nated kotalanol(DSK),12and de-O-sulfonated salacinol.13All of these compounds share a common structural motif:a zwitter-ionic sulfonium sulfate structure comprising a1,4-anhydro-4-thio-D-arabinitol and a polyhydroxylated acyclic chain.Pon-koranol and kotalanol differ in the length of the polyhydroxyl-ated chain where ponkoranol has a six-carbon chain whereas kotalanol has a seven-carbon chain.The permanent positive charge of the sulfur atom is supposed to bind in the same way as acarbose and miglitol in the active sites of glucosidases.14Sim et al.15recently reported the X-ray crystallographic structures of ntMGAM in complex with threeα-glucosidase in-hibitors derived from the natural extracts of Salacia reticulate, including salacinol,SK,and DSK and they found that among these three inhibitors DSK is the most potent one with a inhibi-tion constant(K i)value of30nmol·L-1.The synthesis and bio-logical evaluation of the nitrogen analogues of SK(SN)and DSK(DSN)16show that the activity of DSK is slightly higher than that of SK,while the activity of DSN is~1500-fold higher than that of SN.Until now there have been few theoretical stud-ies on the effect of heteroatom substitution regarding this class of inhibitors,and an atomic level understanding of the substitu-tion effect has not been achieved and there still remains some debates regarding several aspects of the interaction mecha-nism.17In the current work,the interactions between ntMGAM and four inhibitors(SK,DSK SN,and DSN)were investigated by molecular dynamics(MD)simulations,molecular mechan-ics/generalized born surface area(MM/GBSA)free energy cal-culations,and MM/GBSA free energy decomposition analysis. The structural and energetic insights obtained here are helpful for designing more potent inhibitors of glucosidase.2Materials and methods2.1Preparation of the inhibitorsThe structures and inhibitory activities15,16of the studied glu-cosidase inhibitors are summarized in Table1.The starting structures for the MD simulations of ntMGAM in complex with SK and DSK were retrieved from the protein data bank(PDB)(PDB entries:3L4V and3L4U).15The struc-tures of the other two inhibitors were built by replacing the ring sulfur atom in SK or DSK with a nitrogen atom(SN or DSN).The missing hydrogen atoms of the inhibitors and the proteins were added using the tleap program in AMBER11.18 The inhibitors were minimized using the HF/6-31G*optimi-zation in Gaussian03program,19and the partial charges were obtained by fitting the electrostatic potentials derived by Gaussian program via the RESP fitting technique20in AMBER11.The partial charges and the force field parameters for the inhibitors were generated by the antechamber program in AMBER11.2.2Molecular dynamics simulationsThe general AMBER force field(GAFF)21was chosen for the inhibitors and the AMBER03force field22for the protein. All the systems were immersed in a truncated octahedral box with TIP3P water molecules,23and the crystallographic waters from the X-ray experiments were retained.Na+ions were add-ed to maintain electrostatic neutrality.Energy minimizations2192LUO Fang et al .:Interaction Mechanisms of Inhibitors of Glucoamylase by Molecular Dynamics SimulationsNo.9and MD simulations were carried out by using the sander mod-ule in AMBER11.The whole systems were minimized in threestages to remove bad contacts.Firstly,the water molecules were minimized by restraining the protein;secondly,water and the side chains of the protein were minimized by restraining the backbone of the protein,and each stage was performed by using the steepest descent minimization of 2500steps followed by a conjugate gradient minimization of 2500steps;thirdly,the entire system was minimized without any restriction by 10000steps starting with the steepest descent minimization fol-lowed by the conjugate gradient minimization after 5000cy-cles.The system was then heated gradually from 0to 310K in the NVT ensemble and equilibrated at 310K for another 60ps,and then 14ns MD simulations were performed at a constant temperature of 310K and a constant pressure of 105Pa.During the sampling process,the coordinates were saved every 1ps and the conformations generated from the last 2ns simulations were used for further binding free energy calculations and de-composition analysis.Particle mesh ewald (PME)was em-ployed to deal with the long-range electrostatic interactions in a periodic boundary condition.24A cutoff equal to 1nm was used for short-range electrostatics and van der Waals interac-tions and a continuum model correction term was added up to the van der Waals energies.Temperature was regulated using the weak-coupling algorithm 25with the time constant of 0.5ps.The SHAKE method was used to constrain hydrogen atoms and the time step was set to 2fs.262.3MM/GBSA free energy calculations and freeenergy decomposition analysisThe obtained stable MD trajectory for each complex was used to estimate the binding free energy (ΔG bind )using the MM/GBSA technique implemented in AMBER11.27-37According to the previous studies,MM/GBSA showed better performance to rank the binding affinities for systems without metals than molecu-lar mechanics/poisson boltzmann surface area (MM/PBSA).38In MM/GBSA,the binding free energy (ΔG bind )between a li-gand (L)and a receptor (R)is calculated by the following equa-tion:ΔG bind =G complex -G protein -G ligand=ΔH +ΔG solvation -T ΔS≈ΔE MM +ΔG GB +ΔG SA -T ΔS (1)where ΔE MM accounts for the non-bonded interaction energy in the gas phase that encompasses the terms for electrostatic inter-action energy (ΔE ele ),the van der Waals interaction energy (ΔE vdw ),and the difference of internal energy (ΔE inter ).In this case the difference of internal energy is zero because the single MD trajectory was used to derive the energy components for li-gand,receptor,and complex;ΔG GB and ΔG SA are the polar and non-polar components of the desolvation free energy,respec-tively;-T ΔS is the change of conformational entropy upon li-gand binding,which was estimated by using normal-mode analysis.Considering the expensive computational cost,only the residues in the catalytic domain of protein were included in the calculations of entropy,and 50snapshots taken at an inter-val of 40ps from the final 2ns of the MD simulation were used to estimate the conformational entropy.The polar compo-nent of desolvation (ΔG GB )was calculated with a generalized Born model (GB)39,40of the AMBER suite.The non-polar component was determined by solvent accessible surface area (SASA)using the LCPO method:41ΔG SA =0.0072ΔSASA,where ΔSASA=SASA complex -(SASA protein +SASA ligand )and the sol-vent accessible surface areas were calculated with a solvent-probe radius of 0.14nm.For each system,free energy calcula-tions were performed for 200snapshots extracted from the last 2ns MD trajectories.The interactions between each residue in protein and each inhibitor were analyzed using the MM/GBSA free energy decomposition analysis applied in the mm_pbsa module in AMBER11.This analysis is essential as it facilitates us to dis-cover the key residues which contribute more to the ligand binding with the residues which are responsible for the differ-ent binding affinities of the four inhibitors.The binding interac-tion between each residue and an inhibitor includes three terms:van der Waals contribution (ΔG vdw ),electrostatic contri-bution (ΔG ele ),and desolvation contribution (ΔG solvation ).ΔG residue-inhibitor =ΔG vdw +ΔG ele +ΔG solvation=ΔG vdw +ΔG ele +ΔG GB +ΔG SA (2)All energy components in Eq.(2)were calculated using the same snapshots as the free energy calculation.The polar contri-bution of desolvation energy (ΔG GB )was estimated by using GB models,and the parameters for GB calculations were devel-oped by Onufriev et al.(igb=2).42The exterior dielectriccon-1Structures and inhibitory activities of 2193Acta Phys.⁃Chim.Sin.2012V ol.28stant was set to80,and the solute dielectric constant value wasset to4.38The non-polar contribution of desolvation(ΔG SA)was determined by SASA using the ICOSA technique.433Results and discussion3.1Stability and flexibility of the complexesTo explore the stability and dynamic properties of the fourcomplexes,14ns MD simulations were performed.The root-mean-square-deviation(RMSD)values of the protein back-bone atoms relative to the initial structures were calculated andshown in Fig.1.The plot indicates that the DSK complexachieves equilibrium at around500ps,and fluctuates around0.10-0.15nm,while the DSN complex reaches equilibrium ataround4000ps,and fluctuates around0.11-0.17nm.The SKand SN complexes reach equilibrium at around5000ps.All ofthe four complexes achieve equilibrium after5000ps,and theMD trajectories taken from the last2000ps simulations wereused for the following analysis.3.2Validation of the binding modes predicted bythe MD simulationsTo evaluate the prediction accuracy of the MD simulations,the predicted structures of the last snapshot from the MD simu-lations for the four complexes were superimposed to the crys-tal structures of the DSK and SK complexes(Fig.2).The bind-ing pocket of ntMGAM is comprised of the-1and+1sub-sites.44From Fig.2(A,C),we can see that the ring part of the in-hibitors occupies the-1subsite and polyhydroxylated chain part of them occupies the+1subsite,which is in agreement with the experiment report.43The MD structures of DSK and SK have a little difference from the crystal structures ofthe 1Time dependence of RMSD of the backbone atoms(Cα,N,and C)with respect to the first snapshot ofthe inhibitor/ntMGAMcomplexesFig.2Comparison of the ntMGAM-inhibitor active site(A)the MD and crystal structures of the DSK complex;(B)the MD structure of the DSN complex and the crystal structure of the DSK complex;(C)the MD and crystal structures of the SK complex;(D)the MD structure of the SN complex and the crystal structure of the SK complex.green:crystal structure,purple:MD structure;stick,line,and ball are used to represent bound inhibitors,residues,and conserved water molecules,respectively. 2194LUO Fang et al .:Interaction Mechanisms of Inhibitors of Glucoamylase by Molecular Dynamics SimulationsNo.9DSK and SK,we think that it is because of the moving of wa-ter molecules,which results in the moving of -pared to the orientations of C2ʹOH in DSK and SK,which are very different in DSN and in SN and they turn up.Most inter-esting finding is that the predicted SN in the binding site from the MD simulations is substantially different from SK in the crystal structure.Quite different from the conformations of the other inhibitors in the binding site,SN does not form effective interactions with the -1subsite.That is to say,the stable struc-ture of SN predicted by the MD simulations is quite different from the initial structure modified from SK for the MD simula-tions.3.3MM/GBSA binding free energy analysisThe binding free energies were calculated for all the com-plexes using the MM/GBSA method and summarized in Table 2.It is encouraging that the predicted binding free energies (∆G bind )of the inhibitors are almost consistent with the experi-mental values except for the DSN complex.One possible rea-son for this inconsistency is that the difference of activity be-tween DSK and DSN is so small.Moreover,DSK and DSN are positively charged,and the desolvation energies for the charged systems cannot be well predicted in many cases.38,45The data in Table 2demonstrate that the contribution of the non-polar part (∆E vdw +∆G SA )is more favorable than that of the polar part (∆E ele +∆G GB )because the electrostatic interaction is effectively neutralized by ∆G GB .The van der Waals interaction (-112.44kJ ·mol -1)between SN and ntMGAM is more favor-able than that between DSK and ntMGAM (-93.72kJ ·mol -1)and that between DSN and ntMGAM (-107.37kJ ·mol -1).Compared to those of SK and SN complexes,the polar contri-butions for DSK and DSN complexes are much stronger (-18.88and -19.63kJ ·mol -1,respectively).It is not surprising because DSK and DSN are positively charged,and they tend to form stronger electrostatic interactions with the negatively charged residues in the binding sites than SK and SN.The elec-trostatic interactions for the SK and SN complexes are not strong enough to compensate the unfavorable desolvation con-tributions,hence leading to overall more unfavorable binding affinities than DSK and pared with that for the SK complex (5.48kJ ·mol -1),the polar contribution (∆E ele +∆G GB )for the SN complex (16.37kJ ·mol -1)is more unfavorable.The difference of the polar contribution (∆E ele +∆G GB )between the four inhibitors is higher than that of the non-polar contribution (∆E vdw +∆G SA ),which maybe lead to the difference of their in-hibitory activities. 3.4Structure -binding affinity relationship analysis From Fig.2we can see that the ring hydroxyl groups of the inhibitors form close contacts with the side chains of the resi-dues D327,W441,F575,H600and water molecules in the -1subsite.The hydroxyl groups in the acyclic chains of the inhibi-tors can interact with the side chains of D203,R526,and D542in the +1subsite except for the SN complex.There are some hydrophobic amino acids in the active site of ntMGAM,such as W406,W441,W539,Y299,and F575,which can form van der Waals interactions with the pare to the crys-tal structure,our MD simulation structures of inhibitors have a little difference due to the moving of water molecule,which in-dicates that the role of water molecule in the active site is im-portant.By comparing the structures of the inhibitors and their binding modes three factors are found to be important for the difference of inhibitory activities:(a)role of the sulfate anion group,(b)effect of the nitrogen atom substitution,and (c)role of water in the active site.In order to elucidate the important residues involved in pro-tein -inhibitor interaction,the total binding free energy for each inhibitor was decomposed into residue-inhibitor pairs by using the MM/GBSA free energy decomposition analysis.34,43,46The interaction patterns between the inhibitors and the residues of ntMGAM are shown in Figs.3-5.3.4.1Role of the sulfate anion groupIn general,de-O -sulfonation leads to an increase of affinity compared to the parent sulfated compounds because removing the sulfate group enhances the freedom of the polyhydroxylat-ed chain of DSK,thus making it be easier to interact with the residues in the active site.15As can be seen from Fig.3and Fig.4,compared with the de-O -sulfonated compounds (DSN and DSK),the parent sulfat-ed compounds (SN and SK)have stronger van der Waals inter-actions with Y299and W406.The impact of the sulfate anion group on glycosidase inhibitory activity was inferred by Yuasa et al .47by docking salacinol into the active site of glucoamy-lase.Their study illustrates that the sulfate ion can form strong non-covalent interaction with the arginine residues in the bind-ing site.However,Sim et al .15found that the sulfate group does not form any significant hydrogen bonding interactions with the ntMGAM active site but seems to be constrained by Y299,W406,and F575.Mohan et al .16proposed that the positioning of the sulfate anion of SN in a hydrophobic pocket in the ac-tive site is more sterically compromised than that of SK.According to Yuasa ʹs opinion,47the positively charged argi-Table 2Binding free energies and the individual energy terms predicted by MM/GBSA∆E ele ,electrostatic energy;∆E vdw ,van der Waals energy;∆G GB ,the polar desolvation energy;∆G SA ,nonpolar desolvation energy;∆G polar =∆E ele +∆G GB ,the polar contribution;∆G exp =-RT ln K iName DSK DSN SK SN∆E ele /(kJ ·mol -1)-645.02±16.83-638.95±11.93-156.64±13.10-104.27±10.17∆E vdw /(kJ ·mol -1)-93.72±18.17-107.37±18.25-111.47±21.01-112.44±12.85∆G SA /(kJ ·mol -1)-20.55±1.42-18.75±1.25-23.48±0.84-20.01±0.80∆G GB /(kJ ·mol -1)626.14±14.40619.32±9.46162.17±9.13120.64±8.20∆G polar /(kJ ·mol -1)-18.88±5.27-19.63±5.025.48±6.5316.37±4.19T ∆S /(kJ ·mol -1)-90.59±29.76-88.49±36.46-108.38±32.69-106.95±21.56∆G bind /(kJ ·mol -1)-42.57-57.26-21.10-9.13∆G exp /(kJ ·mol -1)-44.54-42.70-39.77-23.94K i /(nmol ·L -1)301561161901590000162195Acta Phys.⁃Chim.Sin .2012V ol.28nine can form strong electrostatic interaction with the negative charge of the sulfate group.As shown in Fig.4we cannot find favorable electrostatic interaction between any arginine in the active site and the inhibitor,and there are only unfavorable electrostatic interactions between the inhibitors and the residue R526,which is not consistent with the Yuasa ʹs theory.In order to understand if the sulfate group can form stable hydrogen bonds with the residues in the active site,the hydrogen bond ratio was analyzed by the ptraj module in AMBER11.The3Inhibitor -residue interaction spectra for(A)the DSK complex,(B)the DSN complex,(C)the SK complex,and (D)the SNcomplexFig.4Inhibitor -residue interaction spectra ofindividual energy terms for the residues in the active site for (A)the DSK complex,(B)the DSN complex,(C)the SK complex,and (D)the SN complex2196LUO Fang et al .:Interaction Mechanisms of Inhibitors of Glucoamylase by Molecular Dynamics SimulationsNo.9order number of O atom is shown in Fig.6.The important hy-drogen bonding interactions in all the complexes are summa-rized in Table 3.A hydrogen bond is defined by a distance (<0.35nm)and an orientation (the angle θ(A ···H ―D)>120.0°).Our analysis shows that stable hydrogen bonding inter-action between the sulfate group and Y299may exist in the SK complex,and it is between the H atom of hydroxyl in Y299and the three equivalent O atoms connected by the sulfur atom of the sulfate anion.The hydrogen bond ratios between SK and Y299are 26.65%,22.45%,and 16.35%,respectively.More-over,there is no hydrogen bonding interaction between the sul-fate group and Y299in the SN complex and Y299can form a stable hydrogen bond with the O4atom of SN,and the corre-sponding hydrogen bond ratio is 98%.Due to the structural difference between C2ʹOH in DSN and in SN,SN is closer to Y299and W406than DSN,and there-fore,the van der Waals interaction between SN and the resi-dues Y299and W406is stronger than that between SK and the residues Y299and W406(Fig.4).Meanwhile,the distances be-tween SN and D542,R526,D443are increased and the corre-sponding interactions are decreased.The difference of the in-hibitory activities between DSK and SK suggests that the ef-fect of the sulfate anion group on activity is not significant.3.4.2Impact of nitrogen atom substitutionMohan 16and Eskandari 48et al .studied the effect of the re-placement of ring sulfur atom by nitrogen and selenium on in-hibitory activity,but they did not elucidate the mechanism at atomic pared to sulfur,the smaller radius of nitro-gen accounts for its shorter bond length of N ―C (0.15nm)than that of S ―C (0.18nm),which leads to the repulse interac-tion between C2ʹOH and the H atom of NH.Fig.5(D)shows that the polyhydroxylated chain of SN is close to the side chain of W406.It is possible that the repulse interaction between C2ʹOH and NH leads to a trend of turning up for C2ʹOH,and due to the static effect between sulfate group and Y299,the turnover is inhibited.As shown in Fig.5,it is obvious that SK can form more hydrogen bonds with ntMGAM than SN.Fig.5(B)shows that removing the sulfate group relieves the position-al constraint imposed by the bulky hydrophobic residues sur-rounding the C2ʹOH group,and then the whole polyhydroxylat-ed chain can turn up freely in the DSN complex.We can also observe that the contribution of F575for the DSN complex is stronger (-12.22kJ ·mol -1)than those for the other three com-plexes (Fig.3and Fig.4),because the turnover of the C2ʹOH group in polyhydroxylated chain of DSN enhances theinterac-Fig.5Structural representations for the studied inhibitors in complex with ntMGAM(A)the DSK complex,(B)the DSN complex,(C)the SK complex,(D)the SNcomplexFig.6Order numbers of the oxygen atoms in (A)DSK orDSN and (B)SK or SN2197Acta Phys.⁃Chim.Sin .2012V ol.28tion between DSN and F575(Fig.5(B)).The overturning of C2ʹOH disrupts the close contacts of DSN with D542or R526in the ntMGAM active site and weak-ens the hydrogen bond interaction between DSN and R526.On the contrary,both SK and DSK have stable interaction with R526.The difference of the activity between DSK and DSN is smaller than that between SK and SN because there is only one factor of the nitrogen substitution to affect the binding affinity of DSN compared with DSK.However,the accumulative ef-fects caused by the nitrogen substitution and the sulfate anion group can change the binding conformation of the inhibitor sig-nificantly and impair the interactions between glucosidase and inhibitor substantially.In order to investigate the interaction between the ring am-monium ion (sulfonium ion)and D443,the distance between D443and the ring ammonium ion (sulfonium ion)of each in-hibitor was examined.We found that there is a stable salt bridge between the ring ammonium ion (sulfonium ion)and D443,which stabilizes the inhibitors,especially DSK and SK.Fig.7shows that the distance between D443and the ring sulfo-nium ion of DSK is about 0.42nm,which is quite similar to that between D443and the sulfonium ion of SK.For the DSN and SN complexes,the distances are about 0.5and 0.6nm,re-spectively.The distance for SN reaches equilibrium after 3000ps and that for DSN after 5000ps.It suggests that there is strong electrostatic interaction between the sulfonium ion (am-monium ion)and the catalytic nucleophile D443.Therefore,the positively charged centers of the ligands obviously play an important role in ligand binding.3.4.3Role of water in the active siteFinally,we studied the role of the waters in the active site.The importance of the water molecules in the binding site lies in their ability to mediate the interactions between ligand and protein and form hydrogen-bonding networks that can stabilizeTable 3Hydrogen bond analysis from the last 2ns MDThe order numbers of the oxygen atoms are shown in Fig.6.Name DSK complexDSN complexSK complexSN complexAcceptor W2@O D571@OD1D327@OD2DSK@O6DSK@O8D443@OD2D571@OD1N543@OD1DSK@O7H600@ND1D203@OD1D327@OD2D443@OD1W1@O D443@OD2D571@OD2D542@OD2DSN@O8D443@OD2D443@OD2DSN@O7D327@OD1D327@OD2W2@O D443@OD2D203@OD2SK@O6SK@O8D542@OD2SK@O11SK@O10SK@O12W539@NE1D327@OD2D327@OD1Y299@OH SN@O8Donor:S297@HG-:S297@OG :DSK@H5-:DSK@O7:DSK@H9-:DSK@O8:R526@HH11-:R526@NH1:H600@HE2-:H600@NE2:DSK@H2-:DSK@O9:W1@H1-:W1@O :W1@H2-:W1@O :W2@H2-:W2@O :W2@H1-:W2@O :DSK@H1-:DSK@O1:DSN@H21-:DSN@O8:DSN@H9-:DSN@O4:DSN@H19-:DSN@O7:DSN@H7-:DSN@O3:W1@H2-:W1@O :DSN@H13-:DSN@O6:H600@HE2-:H600@NE2:DSN@H25-:DSN@O9:DSN@H9-:DSN@O4:R598@HH22-:R598@NH2:SK@H2-:SK@O9:SK@H7-:SK@O8:SK@H4-:SK@O7:SK@H5-:SK@O6:SK@H6-:SK@O3:R526@HH12-:R526@NH1:H600@HE2-:H600@NE2:W2@H2-:W2@O :Y299@HH-:Y299@OH :Y299@HH-:Y299@OH :Y299@HH-:Y299@OH :W2@H1-:W2@O :SN@H16-:SN@O8:SN@H14-:SN@O9:SN@H22-:SN@O4:H600@HE2-:H600@NE2Occupancy/%98.6598.2591.4088.6568.9555.4055.1052.7043.9530.3025.50100.0099.9599.9099.5099.2597.8077.8572.7540.7536.75100.00100.0099.9097.7084.8073.8552.9544.3026.6522.4516.3511.70100.0099.6598.0095.40Distance/nm 0.28200.27180.26210.29470.28940.27560.27500.28180.29610.30150.28200.25920.27000.27070.27540.27290.27160.30270.27970.32340.32590.26410.25940.26470.26400.28230.29400.31020.27630.30060.30350.30260.32800.25970.26680.29240.29382198。
大蒜多糖提取、结构测定、化学修饰及生物活性研究进展
代爽,李琳琳,尹卫,等. 大蒜多糖提取、结构测定、化学修饰及生物活性研究进展[J]. 食品工业科技,2024,45(1):9−17. doi:10.13386/j.issn1002-0306.2023060161DAI Shuang, LI Linlin, YIN Wei, et al. Research Progress on Extraction, Structure Determination, Chemical Modification and Biological Activity of Garlic Polysaccharides[J]. Science and Technology of Food Industry, 2024, 45(1): 9−17. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060161· 特邀主编专栏—食品中天然产物提取分离、结构表征和生物活性(客座主编:杨栩、彭鑫) ·大蒜多糖提取、结构测定、化学修饰及生物活性研究进展代 爽1,2,李琳琳1,2,尹 卫1,王 乐1,王煜伟1, *,梁 健1,*(1.青海大学省部共建三江源生态与高原农牧业国家重点实验室,青海西宁 810016;2.青海大学农牧学院,青海西宁 810016)摘 要:作为大蒜的主要活性成分之一,大蒜多糖具有增强免疫力、抗菌、抗病毒、抗氧化、保肝、降血脂、降血糖等多种生物活性,应用前景广阔。
大蒜多糖的提取方法以热水法、酶法和超声辅助法最为常见,大蒜多糖是由果糖、葡萄糖、半乳糖、甘露糖、半乳糖醛酸等组成的杂多糖,乙酰化、硒化和磷酸化等化学修饰可以增加大蒜多糖抗氧化等生物活性。
本文从大蒜多糖的提取、结构测定、化学修饰及生物活性的角度出发,系统总结了大蒜多糖的研究现状,未来应关注多糖结构与生物活性的构效关系,深入探讨大蒜多糖的功效机理,以期为大蒜多糖作为功能性产品的开发利用提供理论参考。
浙江大学高分子化学(潘祖仁)名词解释
第一章绪论(Introduction)高分子化合物(High Molecular Compound):所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。
单体(Monomer):合成聚合物所用的-低分子的原料。
如聚氯乙烯的单体为氯乙烯。
重复单元(Repeating Unit):在聚合物的大分子链上重复出现的、组成相同的最小基本单元。
如聚氯乙烯的重复单元为。
单体单元(Monomer Unit):结构单元与原料相比,除了电子结构变化外,其原子种类和各种原子的个数完全相同,这种结构单元又称为单体单元。
结构单元(Structural Unit):单体在大分子链中形成的单元。
聚氯乙烯的结构单元为。
聚合度(DP、X n)(Degree of Polymerization) :衡量聚合物分子大小的指标。
以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以表示。
聚合物是由一组不同聚合度和不同结构形态的同系物的混合物所组成,因此聚合度是一统计平均值,一般写成、。
聚合物分子量(Molecular Weight of Polymer):重复单元的分子量与重复单元数的乘积;或结构单元数与结构单元分子量的乘积。
数均分子量 (Number-average Molecular Weight):聚合物中用不同分子量的分子数目平均的统计平均分子量。
,N i:相应分子所占的数量分数。
重均分子量(Weight-average Molecular Weight):聚合物中用不同分子量的分子重量平:相应的分子所占的重量分数。
均的统计平均分子量。
,W粘均分子量(Viscosity-average Molecular Weight):用粘度法测得的聚合物的分子量。
分子量分布(Molecular Weight Distribution, MWD ):由于高聚物一般由不同分子量的同系物组成的混合物,因此它的分子量具有一定的分布,分子量分布一般有分布指数和分子量分布曲线两种表示方法。
21世纪是生命科学的世纪20世纪后叶分子生物学的突破性...
第一章绪论一简答题1. 21世纪是生命科学的世纪。
20世纪后叶分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。
试阐述分子生物学研究领域的三大基本原则,三大支撑学科和研究的三大主要领域?答案:(1)研究领域的三大基本原则:构成生物大分子的单体是相同的;生物遗传信息表达的中心法则相同;生物大分子单体的排列(核苷酸,氨基酸)导致了生物的特异性。
(2)三大支撑学科:细胞学,遗传学和生物化学。
(3)研究的三大主要领域:主要研究生物大分子结构与功能的相互关系,其中包括DNA和蛋白质之间的相互作用;激素和受体之间的相互作用;酶和底物之间的相互作用。
2. 分子生物学的概念是什么?答案:有人把它定义得很广:从分子的形式来研究生物现象的学科。
但是这个定义使分子生物学难以和生物化学区分开来。
另一个定义要严格一些,因此更加有用:从分子水平来研究基因结构和功能。
从分子角度来解释基因的结构和活性是本书的主要内容。
3 二十一世纪生物学的新热点及领域是什么?答案:结构生物学是当前分子生物学中的一个重要前沿学科,它是在分子层次上从结构角度特别是从三维结构的角度来研究和阐明当前生物学中各个前沿领域的重要学科问题,是一个包括生物学、物理学、化学和计算数学等多学科交叉的,以结构(特别是三维结构)测定为手段,以结构与功能关系研究为内容,以阐明生物学功能机制为目的的前沿学科。
这门学科的核心内容是蛋白质及其复合物、组装体和由此形成的细胞各类组分的三维结构、运动和相互作用,以及它们与正常生物学功能和异常病理现象的关系。
分子发育生物学也是当前分子生物学中的一个重要前沿学科。
人类基因组计划,被称为“21世纪生命科学的敲门砖”。
“人类基因组计划”以及“后基因组计划”的全面展开将进入从分子水平阐明生命活动本质的辉煌时代。
目前正迅速发展的生物信息学,被称为“21世纪生命科学迅速发展的推动力”。
尤应指出,建立在生物信息基础上的生物工程制药产业,在21世纪将逐步成为最为重要的新兴产业;从单基因病和多基因病研究现状可以看出,这两种疾病的诊断和治疗在21世纪将取得不同程度的重大进展;遗传信息的进化将成为分子生物学的中心内容”的观点认为,随着人类基因组和许多模式生物基因组序列的测定,通过比较研究,人类将在基因组上读到生物进化的历史,使人类对生物进化的认识从表面深入到本质;研究发育生物学的时机已经成熟。
组织学与胚胎学中英文对照
英文对照第二章上皮组织上皮组织:epithelial tissue 简称上皮:epithelial极性:polarity被覆上皮:covering epithelium 腺上皮:glandular epithelium单层扁平上皮:simple squamous epithelium内皮:endothelium 间皮:mesothelium单层立方上皮:simple cuboidal epithelium单层柱状上皮:simple columnar epithelium黏原颗粒:mucinogen granule假复层纤毛柱状上皮:pseudostratified ciliated columnar epithelium 复层扁平上皮:stratified squamous epithelium复层柱状上皮:stratified columnar epithelium变移上皮:transitional epithelium 导管:duct外分泌腺:exocrine gland 内分泌腺:endocrine gland腺泡:acinus 酶原颗粒:zymogen granule黏液性细胞:mucous cell 浆液性细胞:serous cell微绒毛:microvillus 纹状缘:striated border终末网:terminal web 纤毛:cilium动力蛋白:dynein 基体:basal body细胞连接:cell junction 紧密连接:tight junction黏合带:adhesion belt 钙黏蛋白:cadherin锚定蛋白:anchor protein 桥粒:desmosome桥粒斑:desmosomal plaque 缝隙连接:gap junction(又称通讯连接:communication junction)连接蛋白:connexon 连接复合体:junctional complex基膜:basement membrane 基板:basal lamina网板:reticular lamina 致密层:lamina densa质膜内褶:plasma membrane infolding 半桥粒:hemidesmosome第三章结缔组织结缔组织:connective tissue 间充质:mesenchyme间充质细胞:mesenchymal cell 疏松结缔组织:loose connective tissue纤维细胞:fibrocyte 巨噬细胞:macrophage(又称组织细胞:histocyte)趋化性:chemotaxis 趋化因子:chemotactic factor吞噬作用:phagocytosis 多核巨噬细胞:multinuclear giant cell抗原:antigen 抗原呈递细胞:antigen presenting cell溶菌酶:lysozyme 补体:complement白介素1:interleukin-1 浆细胞:plasma cell免疫球蛋白:immunoglobulin 抗体:antibody肥大细胞:mast cell 组胺:histamine白三烯:leukotriene 肝素:heparin脂肪细胞:adipocyte、fat cell 白细胞:leukocyte胶原纤维:collagen fiber 胶原原纤维:collagen fibril 弹性纤维:elastic fiber 弹性蛋白:elastin微原纤维:microfibril 原纤维蛋白:fibrillin网状纤维:reticular fiber 基质:ground substance蛋白聚糖:proteoglycan 氨基聚糖:glycosaminoglycan纤维粘连蛋白:fibronectin 组织液:tissue fluid致密结缔组织:dense connective tissue 键细胞:tenocyte 不规则致密结缔组织:dense irregular connective tissue 脂肪组织:adipose tissue第四章血液血液:blood 淋巴:lymph红细胞:erythrocyte (red blood cell) 血红蛋白:hemoglobin,Hb 血影蛋白:spectrin 溶血:hemolysis血影:erythrocyte ghost 网织红细胞:reticulocyte白细胞:leukocyte (white blood cell) 中心粒细胞:neutrophil嗜天青颗粒:azurophilic granule 吞噬素:phagocytin(又称防御素:defensin) 嗜碱性颗粒:basophil 嗜酸性颗粒:eosinophil单核细胞:monocyte 淋巴细胞:lymphocyte胸腺依赖淋巴细胞:thymus dependent lymphocyte骨髓依赖淋巴细胞:bone marrow dependent lymphocyte自然杀伤细胞:nature killer cell 血小板:blood platelet血小板源性生长因子:platelet derived growth factor , PDGF凝血酶敏感蛋白:thrombospondin第五章软骨和骨软骨:cartilage 软骨组织:cartilage tissue骨祖细胞:osteoprogenitor cell 成软骨细胞:chondroblast软骨细胞:chondrocyte 软骨陷窝:cartilage lacunae同源细胞群:isogenous group 软骨基质:cartilage matrix软骨囊:cartilage capsule 软骨膜:perichondrium透明软骨:hyaline cartilage 弹性软骨:elastic cartilage纤维软骨:fibrous cartilage 骨组织:osseous tissue骨基质:bone matrix 骨盐:bone salt羟基磷灰石结晶:hydroxyapatite crystal类骨质:osteoid 编织骨:woven bone板层骨:lamellar bone 骨板:bone lamella密质骨:compact bone 松质骨:spongy bone成骨细胞:osteoblast 基质小泡:matrix vesicle骨被覆细胞:bone lining cell 破骨细胞:osteoclast穿通管:perforating canal 环骨板:circumferential lamellae 哈弗斯系统:Haversian system 骨单位:osteon中央管:central canal 间骨板:interstitial lamellae黏合线:cement line 骨外膜:periosteum骨内膜:endosteum 滑膜:synovial membrane滑膜细胞:synovial cell 关节腔:articular cavity滑液:synovial fluid。
甲氧基乙酸甲酯的合成及应用进展
第49卷第10期2021年5月广㊀州㊀化㊀工Guangzhou Chemical Industry Vol.49No.10 May.2021甲氧基乙酸甲酯的合成及应用进展陈春玉,王少楠,胡㊀迎(西南化工研究设计院有限公司,四川㊀成都㊀610225)摘㊀要:甲氧基乙酸甲酯不仅是一种合成维生素B6㊁周效磺胺等药物的重要原材料,而且还是更经济合理合成乙二醇的重要原材料㊂当前制备工艺主要包括甲醛和甲酸甲酯偶联法㊁氯乙酸类和甲醇钠取代法㊁乙二醇单甲醚氧化法和甲缩醛羰基法㊂分析了制备甲氧基乙酸甲酯的方法的优缺点,综述了甲氧基乙酸甲酯在应用领域的研究进展,并对其发展趋势和应用前景作了展望㊂关键词:甲氧基乙酸甲酯;合成;应用㊀中图分类号:O622.5㊀文献标志码:A文章编号:1001-9677(2021)010-0014-02 Synthesis and Application of PolymethylmethacrylateCHEN Chun-yu,WANG Shao-nan,HU Ying(Southwest Research&Design Institute of the Chemical Industry Co.,Ltd.,Sichuan Chengdu610225,China)Abstract:Methyl methoxyacetateis not only an important raw material for vitamin B6,sulfanilamide and other drugs, but also an important even more economical and reasonable raw material for ethylene glycol.Current productions include mainly formaldehyde and methyl formate coupling method,chloroacetic acid and sodium methoxide substitution method, ethylene glycol monomethyl ether oxidation method and methylal carbonyl method.The advantages and disadvantages of eachmethods,the research progress on application of methyl methoxyacetate and the developing trend,as well as prospects for future application of methyl methoxyacetate,were presented.Key words:methyl methoxyacetate;synthetic;application甲氧基乙酸甲酯(下简称MMAc)是一种非常重要的精细化学品,具有酯的性质,常用于水解反应或加成反应,应用面广,比如:是手性胺类化合物的拆分剂,也是多种化工产品的中间体,同时在医药方面也具有很大用途,例如合成维生素B6㊁周效磺胺等药物;此外它也是高效合成下游产品乙二醇重要的前驱体原料㊂1㊀MMAc的合成方法MMAc的合成方法比较多,按照原料划分,有甲醛和甲酸甲酯偶联法㊁氯乙酸类和甲醇钠取代法㊁乙二醇单甲醚氧化法和甲缩醛羰基法等㊂(1)甲醛和甲酸甲酯偶联法甲醛和甲酸甲酯在酸催化剂条件下反应生成MMAc,此法分三步进行,第一步是甲酸甲酯在酸催化剂条件下分解成甲醇和一氧化碳;第二步是甲醇在酸催化剂条件下,醇羟基与氢离子结合生成佯盐的过渡态,甲醛在酸催化剂条件下,醛基与氢离子结合形成质子化的过渡态;第三步是两种过渡态分别与CO结合,发生羰基化反应,最终生成目标产物㊂基于此合成机理,2006年,王克冰等[1]报道了以三聚甲醛和甲酸甲酯为原料,在CF3SO3H酸催化条件下,110ħ反应2h,MMAc的收率为42.72%,由于此反应副产物多,所以收率很低㊂(2)氯乙酸类和甲醇钠取代法氯乙酸类化合物和甲醇钠反应生成MMAc,是卤代烃与醇钠反应制备混合醚的威廉姆逊合成法,反应机理为醇羟基在碱性条件下形成醇负离子,进攻卤代烃的碳正中心,卤代烃脱去卤素形成醚键㊂1989年,中国专利[2]报道了一种制备甲氧基乙酸的方法,采用氯乙酸和甲醇钠为原料,在40ħ条件下反应,得到甲氧基乙酸收率为91%;然后甲氧基乙酸与甲醇酯化后生成MMAc㊂CH3ONa+ClCH2COOHңCH3OCH2COOH+NaCl CH3OOH+CH3OCH2COOHңCH3OCH2COOCH3+H2O 2002年,徐志珍等[3]报道以氯乙酸甲酯和甲醇钠为原料,在80ħ条件下反应4h,合成的MMAc收率为96.2%㊂CH3ONa+ClCH2COOCH3ңCH3OCH2COOCH3+NaCl此法中使用的甲醇钠,价格比较昂贵,而且容易与空气中的水蒸气反应,不易保存,故不是一条经济合理的工业化合成路线㊂(3)乙二醇单甲醚氧化法以乙二醇单甲醚为原料合成MMAc,分两步完成,第一步是乙二醇单甲醚氧化生成甲氧基乙酸,第二步是甲氧基乙酸与甲醇发生酯化反应,生成目标产物㊂第49卷第10期陈春玉,等:甲氧基乙酸甲酯的合成及应用进展15㊀2015年,中国专利[4]报道以Pt/C为催化剂,O2为氧化剂,水为溶剂,在70ħ下反应7h,则乙二醇单甲醚氧化制得甲氧基乙酸,收率为91%;然后甲氧基乙酸再与甲醇酯化,生成MMAc㊂3CH3CO(CH2)2OH+3O2ң4CH3OCH2COOHCH3OCH2COOH+CH2OHңCH3OCH2COOCH3+H2O此氧化法中虽然反应收率较高,但是反应中使用了贵金属,成本高,同时反应时间较长,不是一条合适的工业化路线㊂(4)甲缩醛羰基法甲缩醛羰基法是迄今为止研究的最多的制备MMAc的方法㊂以甲缩醛为原料合成MMAc,是一种Koch型机理,即CO 与酸中氢正离子结合后,进攻甲缩醛中的仲碳,使仲碳失去氢正离子后,完成在仲碳上的插入CO的羰基化反应㊂3CH3OCH2OCH3+COңCH3OCH2COOCH3+2CH3OCH3+HCOOCH3 2015年,中国专利[5]报道在一价铜改性的磺酸型聚苯乙烯交联树脂催化剂条件下,甲缩醛与CO在120ħ下发生羰基化反应,生成最终产物MMAc,反应收率为87%左右㊂2016年,中国专利[6]报道在固体酸催化剂和多聚甲醛的条件下,110ħ反应6h,含水甲缩醛(含水量2%)与CO生成主产物MMAc,反应收率为72%左右㊂2020年,张晓艳[7]报道以ZSM-5分子筛为催化剂,110ħ下反应7h,甲缩醛和CO生成的MMAc收率为69%左右㊂甲缩醛简单易得且价格便宜,是合成MMAc的最佳原料,但是由于甲缩醛易发生歧化反应,副产物较多,只有通过研究不同催化剂来提高MMAc的选择性,才能走出一条清洁生产㊁经济合理的工业化路线㊂综上所述,尽管合成MMAc的路线很多,但由于反应条件苛刻,反应过程复杂,副产物比较多,收率比较低,所用催化剂难回收,分离成本高,易腐蚀设备,耗能高,污染环境,不利于工业化高质量生产㊂故迫切需要找出一种低能耗㊁高效率㊁低污染的生产MMAc的方法㊂2㊀MMAc的应用研究MMAc是一种重要的医药中间体和精细化工产品中间体,能在一定条件下转化为其衍生物维生素B6㊁周效磺胺以及乙二醇等药物或化工产品,具有广泛的用途㊂(1)医药领域MMAc经取代㊁环化等过程可以合成维生素B6,该方法是1939年Harris S A等[8]开发的,简称 吡啶酮法 ㊂维生素B6是人体必需的维生素之一,是人体内约140种酶的辅酶,参与催化80多种生化反应,是人体内许多代谢反应不可或缺的指挥者,还可以预防妇产科疾病以及在保健方面也有一定的作用,所以MMAc在制备维生素B6过程中有着悠久的历史㊂另外,由MMAc经克氏反应㊁酰胺化环合反应㊁氯化反应㊁缩合反应㊁甲氧基化反应合成周效磺胺㊂周效磺胺治疗各种细菌感染,特别适用于皮肤感染㊁肺及上呼吸道感染㊁细菌性痢疾,还治疗疟疾㊁麻疯病,与异烟肼合用治疗肺结核[9]㊂由此可见,MMAc在制备周效磺胺过程中发挥着重要作用,相信在不久的将来,越来越多的以MMAc为原料的药物将会被合成㊂(2)化工领域MMAc除了可以合成维生素B6㊁合成周效磺胺外,更多的使用价值是作为乙二醇的前体,即MMAc通过加氢㊁水解两步高效制成乙二醇㊂乙二醇是国家重要的化工原料和战略物资,可用作溶剂㊁防冻剂以及合成涤纶的原料㊂在溶剂方面,乙二醇常可代替甘油使用,在制革和制药工业中分别用作水合剂和溶剂,也可用于玻璃纸㊁纤维㊁皮革㊁粘合剂的湿润剂㊂在防冻剂方面,乙二醇60%的水溶液凝固点为-40ħ,可用作冬季汽车散热器的防冻剂和飞机发动机的致冷剂㊂乙二醇也是合成聚酯涤纶㊁纤维和化妆品的原料㊂乙二醇的高聚物聚乙二醇(PEG)是一种相转移催化剂,用于细胞融合;乙二醇的硝酸酯是一种炸药,因此,MMAc作为合成下游产品乙二醇的应用前景十分广阔㊂3㊀结㊀语通过对MMAc的合成方向及应用方面的介绍,可以看出,虽然MMAc在国内外研究较多,但是至今在工业化生产道路上还是存在,如何提高其反应收率,降低生产成本,减少环境污染等问题㊂尤其是在廉价的甲缩醛法越来越显现出其特有的优越性的条件下,但是甲缩醛法的研究工作仍然进展缓慢,且不是很理想㊂一方面,甲缩醛容易发生歧化反应,使得反应副产物多,后处理困难,不利于环保要求,如何尽可能多的得到目标产物MMAc,以此提高反应收率也是迫切需要解决的问题;另一方面,甲缩醛的羰基化反应受酸强度的影响非常大,较强的酸具有较强的催化活性,但是强酸对设备腐蚀严重,所以就需要通过寻找合适的催化剂或助催化剂来解决,还需要通过探索最佳化学计量比㊁改变反应时间或温度来提高反应的收率与纯度,以此取得较好的效果㊂因此,发展高效㊁温和的催化体系,实现生产成本低,环境污染小,适合于MMAc的工业化生产路线无论从经济利益还是环境影响两个方面,都具有重要意义㊂总之,随着科技的进步,MMAc的应用领域会越来越广,因此对其合成方向及应用领域的深入开发和研究还是十分有价值的㊂参考文献[1]㊀王克冰,姚洁,王越,等.酸催化剂在甲醛与甲酸甲酯偶联反应中的作用研究[J].天然气化工2006,31(6):19-21.[2]㊀奥戈奇㊃巴尔,瑞奇㊃劳尤什,佩伊瓦㊃耶诺,等.甲氧基乙酸的制备方法[P].中国:1039798A.1989-07-14.[3]㊀徐志珍,潘鹤林.甲氧基乙酸甲酯合成工艺研究[J].上海化工,2002,27(7):14-15.[4]㊀聂俊琦,李雄,王亦鸣,等.一种甲氧基乙酸的制备方法[P].中国:104892390A.2015-04-17.[5]㊀李晓明,吕建刚,刘波,等.甲氧基乙酸甲酯催化剂[P].中国:106582833A.2015-10-14.[6]㊀石磊,龚页境,王玉鑫.利用工业含水原料甲缩醛制备甲氧基乙酸甲酯的方法[P].中国:106518676A.2016-09-05.[7]㊀张晓艳.ZSM-5分子筛催化甲缩醛气相羰基化制备甲氧基乙酸甲酯研究[D].太原:山西大学化学化工学院,2020.[8]㊀Harris S A,Folkers K.Synthesis of vitamin B6[J].J.Am.Chem.Soc.,1939,61:1245-1247.[9]㊀上海化学工业设计院.周效磺胺设计简介[J].医药农药工业设计,1972(4):1-7.。
植物病理学专业英语词汇(带音标)
植物病理学词汇1)abacterial 无菌的英[ˌeibækˌtiəriəl] 美[ˌebækˌtɪriəl]2)abiotic 无生命的,非生物的英[ˌeibaiˌɔtik] 美[ˌebaɪˌɑtɪk]3)acidic 酸性的[əˌsɪdɪk]4)acquired resistance 获得抗病性[əˌkwaɪəd] [riˈzistəns]5)acquired susceptibility 获得感病性[səˌseptəˌbɪlɪti:]6)actinomyces 放线菌英[ˌækt i nəuˌmaisi:z] 美[ˌæktənoˌmaɪˌsiz]7)active ingredient 有效成分[inˌɡri:djənt]8)agroecosystem 农业生态系统[,æɡrəu,i:kəu'sistəm]9)agronomic 农艺学的, 农事的[,æɡrəu'nɔmik]10)amino acid 氨基酸英[əˌmi:nəʊ] 美[əˌmino]11)analysis of covariance 协方差分析[ə'næləsis] [kəu'vɛəriəns]12)analysis of variance 方差分析英[ˈveəri:əns] 美[ˈvɛriəns]13)anatomy 剖析, 解剖学[əˌnætəmi:]14)anoxic 厌氧的[æ'nɔksik]15)anthesis 开花期,开花[æn'θi:sis]16)antibiotics 抗生素, 英[ˌæntɪbaɪˌɔtɪks] 美[ˌæntɪbaɪˌɑtɪks]17)antibody 抗体英[ˌæntɪˌbɔdi:, ˌæntaɪ-] 美[ˌæntɪˌbɑdi, ˌæntaɪ-]18)antigen 抗原英[ˌæntɪdʒən] 美[ˌæntɪdʒən]19)antitumor 抗癌的英[ˌæntiˌtjumə] 美[ˌæntɪˌtumɚ, -ˌtju-]20)apoplastic 非原质体的21)ascomycetes 子囊菌[,æskəumai'si:ti:z]22)asexual 无性的[ei'seksjuəl]23)avirulence 无毒性[æ'virjulənt]24)baccine 疫苗25)bacteria 细菌[bæk'tiəriə]26)bactericides 杀细菌剂27)basidiomycetes 担子菌[bə,sidiəumai'si:t]28)biomass 生物数量英[ˌbaiəumæs] 美[ˌbaɪoˌmæs]29)biosynthesis 生物合成[,baiəu:'sinθisis]30)biotroph 活体营养['baiəutrɔf]31)biotype 生物型['baiətaip]32)blast 枯萎病['baiəu,blæst]33)blight 枯萎病,疫病[blait]34)botanical 植物学的[bə'tænikəl]35)causal agents 病原体['kɔ:zəl] ['eidʒənt]36)causal organism 病原生物['ɔ:ɡənizəm]37)chlamydospore 厚垣孢子['klæmidəspɔ:]38)chlorophyll 叶绿素['klɔrəfil]39)chlorothalonil (daconil) 百菌清[,kləurə'θælənil]40)chromosome 染色体['krəuməsəum]41)coevolution 协同进化[,kəui:və'lju:ʃən]42)colonization 移植[,kɔlənai'zeiʃən]43)cultilar 栽培品种44)cytogenetics 细胞遗传学[,saitəudʒi'netiks]45)cytokinetic 细胞动力学的46)cytoplasm 细胞质['saitəuplæzəm]47)deactivation 灭活作用[di:,ækti'veiʃən]48)degradation 退化[,deɡrə'deiʃən]49)derosal 多菌灵50)detection 检定[di'tekʃən]51)detoxification 脱毒[di:,tɔksifi'keiʃən]52)dextrose 葡萄糖['dekstrəus]53)diagnostic 诊断的[,daiəɡ'nɔstik]54)diagnostics 诊断学55)diapause 滞育(昆虫生长的停滞期),间歇期['daiəpɔ:z]56)dicots 双子叶的['daikɔt]57)dicotyledon 双子叶植物[,daikɔti'li:dən]58)disease-resistant cultivar 抗病品种['kʌltivɑ:]59)dormancy 冬眠['dɔ:mənsi]60)dose 剂量61)downy mildews 霜霉['dauni] ['mildju:, -du:]62)economic thresholds 经济阈值['θreʃhəuld]63)ectoparasite 皮外寄生物, 外寄生虫[,ektəu'pærəsait]64)electrophoresis 电泳[,ilektrəfə'ri:sis]65)endoparasitic 内部寄生的['endəu,pærə'sitik]66)enzyme 酶['enzaim]67)epidemiology 流行病学['epi,di:mi'ɔlədʒi]68)epiphytotics 植物流行病的,植物流行病[,epifai'tɔtik]69)evolutionary 进化[,i:və'lu:ʃənəri]70)fatal temperature 致死温度71)fauna 动物群, 动物区系, 动物志['fɔ:nə]72)fermentation 发酵[,fə:men'teiʃən]73)flagellum 鞭毛[flə'dʒeləm]74)fungi 真菌['fʌŋɡai]75)fungicides 杀真菌剂['fʌndʒisaid]76)genera 属['dʒenərə]77)genome 基因组,染色体组['dʒi:nəum]78)genome 基因组79)genomic library 基因组库80)genotype 基因型['dʒi:nəutaip]81)habitat 生境['hæbitæt]82)herbicide 除草剂['hə:bisaid]83)hereditary 遗传的[hi'reditəri]84)heterozygous 杂合的[,hetərəu'zaiɡəs]85)hormone 荷尔蒙,激素['hɔ:məun]86)hybrid 杂交,杂种的['haibrid]87)hydrophilic 亲水的[,haidrəu'filik]88)hydrophobic 疏水的[,haidrəu'fəubik]89)hypersensitive 过敏的[,haipə'sensətiv]90)hypha 菌丝['haifə]91)immunology 免疫学[,imju'nɔlədʒi]92)in vitro 体外['vi:trəu]93)in vivo 体内['vi:vəu]94)inbreeding 近亲交配['in,bri:diŋ]95)induced mutation 诱导突变[mju:'teiʃən]96)inducible 可诱导的,可导致的[in'dju:səbl]97)infection cycle 侵染循环98)infection processs 侵染过程99)infective 可侵染的,有传染性的100)inhibition zone 抑菌圈[,inhi'biʃən]101)inoculate 接种,嫁接[i'nɔkjuleit]102)inoculum 接种体[i'nɔkjuləm]103)inorganic 无机的[inɔ:'ɡænik]104)interferon 干扰素[,intə'fiərɔn]105)invasion 入侵[in'veiʒən]106)invertebrate 无脊椎动物[in'və:tibrət, -breit]107)isotope 同位素['aisəutəup]108)larva 幼虫['lɑ:və]109)lethal dose 致死中量['li:θəl]110)mammalian 哺乳动物[mæ'meiliən]111)matrix 矩阵['meitriks]112)metabolic 代谢作用的, 新陈代谢的113)metabolite 代谢物[,metə'bɔlik,-kəl]114)microbial 微生物的,由细菌引起的[mai'krəubiəl]115)micronutrient 微量营养素[,maikrəu'nju:triənt]116)microscopic 用显微镜可见的[,maikrə'skɔpik]117)mildethane 托布津118)mildew 霉病['mildju:, -du:]119)mitochondria 线粒体[,maitəu'kɔndriə]120)mold 霉,霉菌[məuld]121)molecular 分子的,由分子组成的[məu'lekjulə]122)monoclonal antibody 单克隆抗体[,mɔnə'kləunəl] ['ænti,bɔdi] 123)monocotyledonous 单子叶植物的[,mɔnəu,kɔti'li:dənəs] 124)morphology 形态学[mɔ:'fɔlədʒi]125)morphology 形态学126)mortality 死亡率[mɔ:'tæləti]127)mosaic 花叶[məu'zeiik]128)multinucleate (细胞等)多核的[,mʌlti'nju:kliit]129)mutant 突变异种['mju:tənt]130)mutation 突变[mju:'teiʃən]131)mutualism 互惠共生['mju:tʃuəlizəm, -tju-]132)mycelium 菌丝体(复数mycelia) [mai'si:liəm]133)mycotoxin 真菌毒素[,maikəu'tɔksin]134)necrotic 坏死的[ne'krɔtik]135)nematicide 杀线虫剂['nemətisaid, ni'mætisaid]136)nematode 线虫['nemətəud]137)normal saline 生理盐水['seilain, -li:n]138)oomycetes 卵菌[,əuə'maisi:t]139)oviposition 产卵[,əuvipɔ'ziʃən]140)parasite 寄生虫,食客['pærəsait]141)parasitism 寄生['pærəsaitizəm]142)parthenogenesis 单性生殖, 孤雌生殖['pɑ:θinəu'dʒenisis] 143)passive resistance 被动抗性144)Pasteurization 巴氏灭菌法[,pæstərai'zeiʃən]145)pathogenicity 病原性,致病性[,pæθədʒi'nisiti]146)pathogens 病原体(物) ['pæθədʒəns]147)pathology 病理学[pə'θɔlədʒi]148)penetrate 渗透['penitreit]149)pesticide 杀虫剂['pestisaid]150)pesticide residue 农药残留['rezidju:,-du:]151)phenology 物候学[,fi'nɔlədʒi]152)phenotype 显型['fi:nə,taip]153)photosynthesis 光合作用[,fəutə'sinθəsis]154)phylogeny 系统学,系统发育[fai'lɔdʒəni]155)phytocentric 植物群落156)phytocide 植物杀菌素['faitəsaid]157)phytohormone 植物生长素[,faitə'hɔ:məun]158)phytopathology 植物病理学[,faitəupə'θɔlədʒi]159)phytotoxic 植物性毒素的[,faitə'tɔksik]160)pollination 传粉, 授粉(作用) [pɔli'neiʃn]161)polyclonal antibody 双克隆抗体[,pɔli'kləunəl] ['ænti,bɔdi] 162)polygenic 多基因的[,pɔli'dʒenik]163)polymorphism 多型现象[,pɔli'mɔ:fizm]164)postharvest 收割期后的['pəust'ha:vist]165)potential host 潜伏寄主166)probe 探针[prəub]167)proliferation 增殖[prəu-,lifə'reiʃən]168)propagule 繁殖体['prɔpəɡju:l]169)protist 原生生物['prəutist]170)protoplast 原生质体['prəutəuplæst]171)quarantine 检疫['kwɔrənti:n]172)reciprocal 互惠的[ri'siprəkəl]173)resistance 抗药性[ri'zistəns]174)rodenticide 灭鼠剂[rəu'dentisaid]175)root-knot nematode 根结线虫[nɔt]176)protozoan 原生动物[,prəutəu'zəuən, -ən] 177)secretion 分泌,分泌物(液) [si'kri:ʃən]178)segregate 隔离['seɡriɡit, -ɡeit]179)sensitivity [,sensi'tiviti] 敏感性180)serology 血清学[si'rɔlədʒi, sə-]181)silborne 土传的182)smut 黑粉病[smʌt]183)soilborne 土壤带有的,土壤传播的184)sporangium 孢子囊[spəu'rændʒiəm, spɔ:-] 185)sporosorus 休眠孢子堆186)stochastic 随机的[stɔ'kæstik, stəu-]187)strains 菌株[strein]188)stripe 斑纹,条纹[straip]189)sublethal dose 亚致死中量[,sʌb'li:θəl, 'sʌbli:θəl] 190)sustainable agriculture 可持续农业191)symbiosis 共生关系[,simbi'əusis, -bai-]192)symposia 座谈会, 评论集[sim'pəuziə]193)symptomology 症状学[,simptə'mɔlədʒi] 194)target 靶子,标的195)taxonomy 分类学(法)['tæk'sɔnəmi]196)template 模板['templit]197)therapeutics 治疗学、疗法[,θerə'pju:tiks] 198)threshold 临界值['θreʃhəuld]199)toxicity 毒性的[tɔk'sisəti]200)toxigenic 产毒的[,tɔksi'dʒenik]201)transgenic 转基因的[trænz'dʒenik]202)tumor 瘤['tju:mə]203)ultrastructural 超微的[,ʌltrə'strʌktʃə]204)vaccine 疫苗['væksi:n]205)vector 介体['vektə]206)virion 病毒粒子['vaiəriɔn]207)virological 病毒学的virological208)virulence 毒力,毒性['virjuləns]209)virus 病毒['vaiərəs]210)vivo 活泼的['vi:vəu]211)wilt 萎蔫病212)winter spore 越冬孢子[spɔ:]213)zoospore 游动孢子['zəuəspɔ:]。
高强玻璃纤维板抗高速破片侵彻性能试验
工 程 塑 料 应 用ENGINEERING PLASTICS APPLICATION第45卷,第12期2017年12月V ol.45,No.12Dec. 2017102反辐射导弹爆炸产生的大量高速破片会对舰船重要舱室内的仪器设备和人员安全造成巨大伤害,舰船重要舱室的装甲防护日益受到关注。
高强玻璃纤维具有高比强度、高比刚度、耐腐蚀、断后延伸率大、抗冲击性能好等优良特性,国内外学者对高强玻璃纤维抗侵彻性能进行了大量研究[1–9]。
E. P. Gellert 等[10]探讨了不同形状的弹体侵彻不同厚度高强玻璃纤维板,发现靶板弹道极限吸能与厚度呈现出非线性增长关系;根据试验中靶板的不同变形破坏形貌,分别建立了薄板与厚板的变形吸能模型,模型计算结果与试验结果吻合较好。
杜忠华等[11]基于复合材料的本构关系和失效准则,结合不同厚度层合板的破坏模式和能量守恒定律建立了弹体侵彻玻纤纤维层合板分析模型,给出了正交各向异性纤维层合板的弹道极限速度公式。
Ochola 等[12]研究了高强玻璃纤维板在高应变率下的力学性能。
高强玻璃纤维板在低应变率冲击下主要出现纤维弯曲、断裂破坏,高应变率下的高强玻璃纤维板则表现为整体变形、界面分离和纤维拔脱。
高强玻璃纤维板的动态力学性能随着应变率的增加而增加。
梅志远等[13]开展了针对不同种类玻璃纤维和芳纶纤维层合板的弹道试验,发现具有良好界面特性的C 玻doi:10.3969/j.issn.1001-3539.2017.12.021高强玻璃纤维板抗高速破片侵彻性能试验*方志威,侯海量,李永清,李茂,朱锡(海军工程大学舰船工程系,武汉 430033)摘要:为了研究高强玻璃纤维板抗高速破片侵彻性能,开展了弹道试验,探讨了破片入射速度、靶板厚度对高强玻璃纤维板抗侵彻性能的影响,通过对弹道试验结果分析,指出了高强玻璃纤维板的变形失效模式、吸能特性和抗侵彻机理。
结果表明:破片在侵彻高强玻璃纤维板过程中可视为刚体,高强玻璃纤维板迎弹面破坏模式为纤维剪切破坏并伴随纤维反向喷出,迎弹面弹孔附近区域出现基体碎裂、纤维脱粘;背弹面破坏模式为纤维拉伸断裂,背弹面损伤区域远大于迎弹面损伤区域;高强玻璃纤维板单位面密度吸能随着破片侵彻速度增加呈线性增加,在试验速度范围内,得出了立方体破片侵彻不同厚度靶板入射速度与剩余速度、入射速度与靶板单位面密度吸能关系。
基于逐步回归分析法的玉竹多糖吸湿因素探索及其防潮中间体片剂的研制
邓碧莲,吴璐,李婷,等. 基于逐步回归分析法的玉竹多糖吸湿因素探索及其防潮中间体片剂的研制[J]. 食品工业科技,2023,44(17):212−221. doi: 10.13386/j.issn1002-0306.2022100309DENG Bilian, WU Lu, LI Ting, et al. Exploration of the Hygroscopic Factors of Polygonatum odoratum Polysaccharide Based on Stepwise Regression Method and the Development of Its Moisture-resistant Intermediate Tablets[J]. Science and Technology of Food Industry, 2023, 44(17): 212−221. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100309· 工艺技术 ·基于逐步回归分析法的玉竹多糖吸湿因素探索及其防潮中间体片剂的研制邓碧莲,吴 璐,李 婷,柳 婷,欧阳征海,杨华生*(江西中医药大学药学院,江西南昌 330004)摘 要:目的:探索影响玉竹多糖吸湿的因素,研制玉竹多糖防潮中间体片剂。
方法:以玉竹多糖粉末中多糖、蛋白质、果糖的含量,以及表征玉竹多糖粉体性质的指标中位径D50、分布跨度Span 、比表面积、休止角、松密度、振实密度为研究对象,采用逐步回归分析法探索影响玉竹多糖吸湿的主要因素。
根据逐步回归分析结果,通过制片的方法降低比表面积;采用单因素实验考察片剂直径、稀释剂、润滑剂对休止角、吸湿率、硬度、脆碎度的影响;在此基础上,采用Box-Behnken 设计-响应面法优化片剂处方,制备玉竹多糖防潮中间体片剂,同时测定其平衡吸湿率、临界相对湿度,并与玉竹多糖粉末比较。
桦褐孔菌多糖的提取 功能特性及结构表征研究进展
第5期(总第527期)2021年5月农产品加工Farm Products ProcessingNo.5May.文章编号:1671-9646(2021) 05a-0072-07桦褐孔菌多糖的提取功能特性及结构表征研究进展李振江1,郎双静蔦姜秀杰2,王欣卉3,李天文4, **王立东2收稿日期:2021-01-22基金项目:国家级大学生创新创业训练计划项目(202010223011);大庆市指导性科技计划项目(ZD-2019-34);黑龙江八一农垦大学"三纵”基础培育项目(ZRCPY202008)。
作者简介:李振江(1999—),男,本科,研究方向为食品科学。
*通讯作者:王立东(1978—),男,博士,副研究员,研究方向为谷物健康食品及淀粉资源的深度加工与利用。
(1.黑龙江八一农垦大学食品学院,黑龙江大庆163319; 2.黑龙江八一农垦大学国家杂粮工程技术研究中心,黑龙江大庆163319; 3.齐齐哈尔大学食品与生物工程学院,黑龙江齐齐哈尔161006;4.山东龙大肉食品股份有限公司,山东烟台265200)摘要:桦褐孔菌多糖是桦褐孔菌中主要的生物活性成分,在降血糖、降血脂、抗氧化、抗肿瘤、提高免疫等方面具有重要作用和广泛的食药价值。
综述了桦褐孔菌中多糖的现代常用提取方法及辅助手段,脱蛋白和色素等初步纯化方法和色谱分离等分级纯化方法,降血糖、降血脂、抗肿瘤、抗疲劳和免疫调节等生物功能特性,以及多糖多级结 构的表征方法等方面的国内外研究进展,并针对桦褐孔菌多糖研究与应用存在的问题进行分析与展望,以期为桦褐 孔菌资源及其组分中多糖的深入研究与开发利用提供参考。
关键词:桦褐孔菌;多糖;提取;功能特性;结构表征中图分类号:R285.5 文献标志码:A doi : 10.16693/ki.1671-9646(X ).2021.05.019Advances in Extraction Functional Properties and Structural Characterization ofInonotus obliquus PolysaccharidesLI Zhenjiang 1, LANG Shuangjing 1, JIANG Xiujie 2, WANG Xinhui 3, LI Tianwen 4, *W ANG Lidong 1,2(1. College of Food Science , Heilongjiang Bayi Agricultural University , Daqing , Heilongjiang 163319, China ;2. Department of National Coarse Cereals Engineering Research Center , Heilongjiang Bayi Agricultural University , Daqing , Heilongjiang 163319, China ; 3. College of Food and Bioengineering , Qiqihar University , Qiqihar , Heilongjiang 161006,China ; 4. Shandong Longda Meat Foodstuff Co., Ltd., Yantai , Shandong 265200, China)Abstract : Polysaccharide is the main bioactive component in Inonotus obliquus . Inonotus obliquus polysaccharides plays animportant role in lowering blood sugar , lowering blood fat , anti-oxidation , anti-tumor , improving immunity and so on , and has a wide range of food and drug value. The paper reviews the research progress of polysaccharides from Inonotus obliquus at home and abroad. Firstly , the modern common extraction methods and auxiliary means of polysaccharide extraction were dis cussed. Secondly , the crude polysaccharide deproteinization and pigment purification and chromatographic separation methods were used. Thirdly , the biological functional characteristics were also reviewed about hypoglycemia , hypolipidemia , anti-tu-mor , anti-fatigue and immune regulation. Fourthly, the multistage structure of polysaccharides was characterized. And finally the problems in the research and application of polysaccharides are analyzed and prospected. The paper was to provide a refer ence for the research and product development of polysaccharides from Inonotus obliquus .Key words : Inonotus obliquus ; polysaccharide ; extraction ; functional properties ; structural characterization桦褐孔菌(Inonotus obliquus (Fr.) Pilat),又被称 为白桦茸、斜管纤孔菌、桦癌褐孔菌,属真菌门 (Eumycota )、担子菌亚门(Basidiomycotina )、褐卧孔 菌属(纤孔菌属)(Inonotus )叫天然桦褐孔菌主要分布于北半球北纬45~50°的地区,如俄罗斯、日 本、芬兰、波兰和中国等地叫早年间,桦褐孔菌作 为一种传统药用真菌被用来治疗和预防肿瘤、糖尿 病等疾病叫随着科学技术的发展,桦褐孔菌的功效受到各国学者的广泛关注,如俄罗斯政府批准开发 桦褐孔菌相关药品,美国十分重视桦褐孔菌这个 “特殊的天然物质”,日本研究者将桦褐孔菌称为 “万能药”,在世界范围内申请了多项专利。
多尺度结构 阻隔 聚合物
多尺度结构阻隔聚合物英文回答:Multiscale Architectures to Hinder Polymer Barricade.Polymer barricades, such as biofilms and hydrogels, pose a significant challenge in various fields, including medicine, biotechnology, and environmental science. These barricades can impede drug delivery, hinder cell migration, and interfere with biological processes. Therefore, there is a pressing need for innovative strategies to overcome these barriers.Multiscale architectures offer a promising approach to disrupt polymer barricades. By combining materials with different structural features at multiple length scales, researchers can create materials that can effectively penetrate and degrade barricades. For example, researchers have developed nano-microstructured materials that can penetrate biofilms and release antimicrobial agents. Thesematerials exploit the different size scales of the biofilm matrix to disrupt its architecture and enhance drug delivery.Another approach involves using stimuli-responsive materials that can change their properties in response to external cues. For example, researchers have developed hydrogels that can undergo a phase transition upon exposure to a specific enzyme, leading to the degradation of the hydrogel barricade. This approach offers precise control over the degradation process and can be tailored tospecific biological environments.Furthermore, researchers are exploring the use of biomimetic materials to mimic the natural mechanisms that cells use to penetrate and degrade barriers. For example, researchers have developed materials inspired by the extracellular matrix that can promote cell migration and facilitate the degradation of biofilms. These materials offer a biocompatible and targeted approach to overcoming polymer barricades.In summary, multiscale architectures provide apromising strategy to disrupt polymer barricades and enhance biological processes. By combining materials with different structural features at multiple length scales, researchers can create materials that can effectively penetrate, degrade, and modulate these barricades. These materials offer the potential to improve drug delivery, promote tissue regeneration, and address other challengesin medicine and biotechnology.中文回答:多尺度结构阻碍聚合物屏障。
拼宽路基台背回填相结合施工工艺
拼宽路基台背回填相结合施工工艺发布时间:2022-05-06T03:29:38.567Z 来源:《科学与技术》2022年2期作者:宋龙强王慧鹏盖志宇[导读] 我国迅猛发展的经济推动了高速公路提质扩容宋龙强王慧鹏盖志宇中建铁路投资建设集团有限公司、蚌五高速公路沫河口项目安徽蚌埠 233316摘要:我国迅猛发展的经济推动了高速公路提质扩容,现有高速改扩建,给施工提出挑战,路基台背回填挖台阶已成为成熟的施工工艺,在蚌五高速公路沫河口项目拼宽路基台背回填施工方法设计为两侧挖台阶。
采用拼宽路基与台背回填相结合工艺,从而提高施工效率,并显著减少工程造价。
关键词:拼宽路基;台背回填;沫河口项目Design and application of diaphragm combined with prefabrication and cast-in-situSong longqiang,Wang huipeng,Gai zhiyuAbstract: The rapid development of economy in China has promoted the quality and expansion of expressways, and the existing high-speed reconstruction and expansion poses challenges to construction. Backfilling and digging steps on the back of subgrade abutment has become a mature construction technology. In the Mohekou project of Bengwu expressway, the construction method of backfilling of roadbed and platform is designed to dig steps on both sides. The combination of widening roadbed and backfilling technology is adopted to improve the construction efficiency and significantly reduce the project cost.Keywords:Bottom of diaphragm; Prefabrication; Cast-in-situ; Lugouhe Super Large Bridge1 工程概况蚌五高速公路(蚌埠—五河高速公路)连接蚌淮、S95凤阳支线高速公路、宁洛、徐明和江苏宁(南京)——宿(宿迁)——徐(徐州)等高速公路,建成后将串联沿淮地区的河南信阳,安徽阜阳、淮南、蚌埠、滁州(凤阳),江苏淮安、宿迁和沿海等地区,打通沿淮快速通道、皖苏省际通道和陆路出海通道,进一步完善中东部高速公路网布局与结构、发挥路网整体效益,对促进沿淮地区、皖北地区与东部沿海地区的联系具有十分重要的作用。
聚甲基丙烯酸缩水甘油酯疏水纳凝胶的制备与表征
化工进展CHEMICAL INDUSTRY AND ENGINEERING PROGRESS2019年第38卷第12期开放科学(资源服务)标识码(OSID ):聚甲基丙烯酸缩水甘油酯疏水纳凝胶的制备与表征黄杰,张颂红,贠军贤,姚克俭(浙江工业大学化学工程学院,浙江杭州310032)摘要:采用乳液聚合法制备了聚甲基丙烯酸缩水甘油酯疏水纳凝胶。
通过透射电子显微镜、傅里叶红外光谱和动态激光光散射等测试对其结构和形貌进行了表征,对疏水纳凝胶形成过程规律和对温度、pH 和时间稳定性进行了考察,并探究了单体浓度、交联剂含量和乳化剂浓度对纳凝胶粒径的影响规律。
结果表明:所得疏水纳凝胶具有粒径均一、分散稳定和溶胀性能好等优点。
疏水纳凝胶粒径在一定温度和pH 范围内无变化,在30天内粒径从76nm 增至116nm ,zeta 电位随温度升高而增加,其值稳定在-90~-30mV 之间,说明是一种较为稳定的凝胶体系。
在实验范围内,纳凝胶粒径随单体甲基丙烯酸缩水甘油酯和交联剂二甲基丙烯酸乙二醇酯浓度的增加从80nm 增至250nm ,随乳化剂浓度增加从230nm 降至60nm 。
关键词:乳液聚合;纳凝胶;稳定性;平均粒径;zeta 电位中图分类号:TQ314.2文献标志码:A文章编号:1000-6613(2019)12-5435-07Preparation and characterization of poly(glycidyl methacrylate)hydrophobic nanogelsHUANG Jie ,ZHANG Songhong ,YUN Junxian ,YAO Kejian(College of Chemical Engineering,Zhejiang University of Technology,Hangzhou 310032,Zhejiang,China)Abstract:Poly(glycidyl methacrylate)hydrophobic nanogels were synthesized successfully via emulsion polymerization.The structure and morphology of the nanogels were characterized by transmission electron microscopy,fourier transform infrared microscopy and dynamic light scattering analysis.The formation process of hydrophobic nanogels and the stability of temperature,pH and time were investigated experimentally.The results showed that the obtained nanogels were spherical in shape with uniform sizes and had properties of dispersion stability and good swelling capacity.The average size of the nanogels was almost not influenced by the temperature and pH under the present conditions.The sizes of the nanogels increased from 76nm to 116nm within 30days.The zeta potential of the nanogels increased with the increase of temperature.The stable values of the zeta potential in the range from -90mV to -30mV were observed,indicating that the present hydrophobic nanogels could be considered as a stable system.The sizes of the nanogels increased from 80nm to 250nm with the increase of the concentrations of the monomer glycidyl methacrylate and the cross-linker ethylene glycol dimethacrylate,and decreased from 230nm to 60nm with increasing surfactant concentration.Keywords:emulsion polymerization;nanogels;stability;average particle size;zeta potential研究开发DOI :10.16085/j.issn.1000-6613.2019-0392收稿日期:2019-03-15;修改稿日期:2019-08-28。
何曼君高分子物理名词解释完整版
何曼君高分子物理名词解释完整版链结构:指单个分子的结构和形态。
近程结构:(一次结构)化学结构,包括高分子的组成和构型。
远程结构:(二次结构)高分子的大小及其在空间的形态,链的柔顺性及构象。
聚集态结构:(三次结构)通过范德华力和氢键形成具有一定规则排列的聚集态结构。
构型:是指分子中由化学键所固定的原子在空间的排列。
构造:是指链中原子的种类和排列,取代基和端基的种类单体单元的排列顺序,支链的类型和长度等。
几何异构(顺反异构):由于主链双键的碳原子分子没有旋光性的,原因是多个不对称C﹡原子的内消旋或外消旋的作用。
有规立构:有两种旋光异构单元完全是全同立构或间同立构的高分子。
规整度:(等规度)是指聚合物种全同立构和间同立构的聚合物占所有聚合物分子总的百分比。
规整聚合物:全同立构和间同立构的高分子。
全同立构:高分子链全部由一种旋光异构单元键接而成。
间同立构:高分子链由两种旋光异构单元交替键接而成。
无规立构:高分子链由两种旋光异构单元无规键接而成。
交联:缩聚反应中有三个或三个以上官能度的单体存在时,高分子链之间通过支链联结成一个三维空间网形大分子时即成交联结构交联度:用相邻两个交联点之间的链的平均分子量Mc来表示。
交联度愈大,Mc愈小。
共聚物的序列结构:是指共聚物根据单体的连接方式不同所形成的结构,共聚物的序列结构分为四类:无规共聚物、嵌段共聚物、交替共聚物、接枝共聚物共聚物:由两种或两种以上的结构单元组成的高分子。
均聚物:由一种单体聚合而成的聚合物称为均聚物。
嵌段数:指在100个单体单元中出现的各种嵌段C原子上总是带有其它原子或基团,当这些原子充分接近时,原子的外层电子之间将产生排斥力使之不能接近。
链段:高分子链上划分出的可以任意取向的最小单元或高分子链上能够独立运动的最小单元称为链段。
多分散性:聚合物是分子量不均一的同系物的混合物,这一性质称为多分散性柔顺性:高分子链能够通过内旋转作用改变其构象的性能称为高分子链的柔顺性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Hinged Dissection of PolypolyhedraErik D.Demaine 1⋆,Martin L.Demaine 1,Jeffrey F.Lindy 2⋆⋆,and Diane L.Souvaine 3⋆⋆⋆1Computer Science and Artificial Intelligence Laboratory,Massachusetts Institute of Technology,Cambridge,MA,USA,email:{edemaine,mdemaine }@ 2Courant Institute of Mathematical Sciences,New York University,New York,NY,USA,email:lindy@ 3Department of Computer Science,Tufts University,Medford,MA,USA,email:dls@.Abstract.This paper presents a general family of 3D hinged dissections for polypolyhedra ,i.e.,connected 3D solids formed by joining several rigid copies of the same polyhedron along identical faces.(Such joinings are possible only for reflectionally symmetric faces.)Each hinged dissection consists of a linear number of solid polyhedral pieces hinged along their edges to form a flexible closed chain (cycle).For each base polyhedron P and each positive integer n ,a single hinged dissection has folded config-urations corresponding to all possible polypolyhedra formed by joining n copies of the polyhedron P .In particular,these results settle the open problem posed in [7]about the special case of polycubes (where P is a cube)and extend analogous results from 2D [7].Along the way,we present hinged dissections for polyplatonics (where P is a platonic solid)that are particularly efficient:among a type of hinged dissection,they use the fewest possible pieces.1IntroductionFig.1.Hinged dissection of square and equilateral trian-gle [8].Different shades show different folded states.A dissection of a set of figures (solid 2D or 3Dshapes,e.g.,polygons or polyhedra)is a way tocut one of the figures into finitely many (compact)pieces such that it can be transformed into anyother of the figures by moving the pieces rigidly.Dissections have been studied extensively,partic-ularly in 2D [12,15].It is well-known that any twopolygons of the same area have a dissection [5,12,16].By transitivity,it is easy to extend this resultto a dissection of any finite set of polygons.Thus,in this context,the main interest is in finding thedissection of the polygons that uses the fewest possible pieces.On the other hand,not every two polyhedra of the same volume have a dissection:for exam-ple,there is no dissection of a regular tetrahedron and an equal-volume cube [5].This result was a solution to Hilbert’s Third Problem [5].A hinged dissection of a set of figures is a dissection in which the pieces are hinged together at points (in 2D or 3D)or along edges (in 3D),and there is a motion between any two of the figures that adheres to the hinging,keeping the hinge connections between pieces intact.While a few hinged dissections such as the one in Figure 1are quite old [8],hinged dissections have received most of their study in the last few years [3,7,9,13].It remains open whether every two polygons of the same area have a hinged dissection,or whether every two polyhedra that have a dissection also have a hinged dissection.It also remains open whether hinge-dissectability istransitive.Fig.2.Joining two rigid copies of a tetrahedron.The face of joining is reflectionally symmetric.In this paper we develop a broad family of3D hinged dissections for a class of polyhedracalled polypolyhedra.For a polyhedron Pwith labeled faces,a polypolyhedron of type Pis an interior-connected non-self-intersectingsolid formed by joining several rigid copiesof P wholly along identically labeled faces.See Figure 2.These joinings must perfectly match two opposite orientations of the same face of P ,so joinings can occur only along faces with reflectional symmetry.We call P the base polyhedron .If a polypoly-hedron consists of n rigid copies of P ,we call it an n -polyhedron of type P .Examples of polypolyhedra include polycubes (where P is a cube)or more gen-erally polyplatonics (where P is any fixed platonic solid);in any of these cases,any pair of faces can be joined because of the regular symmetry of the platonic solids.See Figure 3for some examples ofpolycubes.Fig.3.Two polycubes of or-der 8,which have a 24-piece edge-hinged dissection by our results.For every polyhedron P and positive in-teger n ,we develop one hinged dissectionthat folds into all (exponentially many)n -polyhedra of type P .This result is superiorto having one hinged dissection between ev-ery pair of n -polyhedra of type P .The num-ber of pieces in the hinged dissection is linearin n and the combinatorial complexity of P .For polyplatonics,we give particularly effi-cient hinged dissections,tuning the number of pieces to the minimum possible among a natural class of “regular”hinged dissectionsof polypolyhedra.For polyparallelepipeds (where P is any fixed parallelepiped),we give hinged dissections in which every piece is a scaled copy of P .All of our hinged dissections are hinged along edges and form a cyclic chain of pieces,which can be broken into a linear chain of pieces.Our solution combines several techniques to obtain increasingly more gen-eral families of hinged dissections.We reduce the problem offinding a hinged dissection of polypolyhedra of type P tofinding a hinged dissection of P that has“exposed hinges”at certain locations on its surface.Wefind thefirst such hinged dissection for every platonic solid,exploiting that such a solid is star-shaped and has a Hamiltonian cycle on its faces.Then we relax the star-shaped constraint,generalizing P to be any solid with a Hamiltonian cycle on its faces, using a more general refinement scheme based on the straight skeleton.Then we relax the Hamiltonicity constraint by using a Hamiltonian refinement scheme. Finally,we show how faces with more than a single reflectional symmetry can be joined even when their labeled rotations are not equal.This step uses a gen-eral“twister”gadget,a hinged dissection that can rotate by any angle that is a multiple of360◦/k forfixed k.Our results generalize analogous results about hinged dissections of“poly-forms”in2D[7].For a polygon P with labeled edges,a polyform of type P is an interior-connected non-self-intersecting planar region formed by joining several rigid copies of P wholly along identically labeled edges.In particular,polyforms include polyominoes(where P is a square)and polyiamonds(where P is an equi-lateral triangle).In2D,edges are always reflectionally symmetric(about their midpoint),so a polyform can join any pair of identically labeled edges.For any polygon P and positive integer n,[7]develops a single vertex-hinged dissection that folds into all n-forms of type P.The same paper asks whether analogous dissections exist in3D,in particular for polycubes;we solve this open problem, building on the general inductive approach of[7].We do not know whether our hinged dissections can be folded from one config-uration to another without self-intersection.(The same is true of most previous theoretical work in hinged dissections[3,7,9].)However,we demonstrate such motions for the most complicated gadget,the twister.Our results have applications in self-assembly and nanomanufacturing,and mayfind applications in self-reconfigurable robotics.Existing reconfigurable robots(see,e.g.,[19])consist of units that can attach and detach from each other,and this mechanism is complicated;3D hinged dissection may offer a way to avoid this complication and still achieve arbitrary reconfiguration.4In self-assembly,recent progress has enabled chemists to build millimeter-scale“self-working”2D hinged dissections[17].An analog for3D hinged dissections may enable building a complex3D structure out of a chain of units.If the process is programmable,we could even envision an object that can re-assemble itself into different3D structures on demand.These directions have recently been explored (so far at a more macroscale)using ideas from this paper[14].2PolyplatonicsIn this section we demonstrate our approach for constructing a hinged dissection of polypolyhedra of type P in the special case that P is a platonic solid.Althoughseveral of the details change in more general settings in later sections,the overall approach remains the same.First,we find a suitable hinged dissection of the base polyhedron P .The exact constraints on this dissection vary,but two necessary properties are that the hinged dissection must be (1)cyclic ,forming a closed chain (cycle)of pieces in which there is a single hinge connecting every consecutive pair of pieces and there are no other hinges,and (2)exposed in the sense that,for every face of P ,there is a hinge in H that lies on the face (either interior to the face or on its boundary).For platonic solids,these hinges will be edges of the polyhedron.Second,we repeat n copies of this hinged dissection of P ,spliced together into one long closed chain.Finally,we prove that this new hinged dissection can fold into all n -polyhedra of type P ,by induction on n .2.1Exposed Cyclic Hinged Dissections of PlatonicSolidsFig.4.Carving a regular tetrahedron into four face-based pyramids.We construct an exposed cyclichinged dissection of any pla-tonic solid as follows.First wecarve the platonic solid intoa cycle of face-based pyramids with the platonic solid’s cen-troid as the apex.Thus,a re-fined tetrahedron consists of four triangle-based pyramids (irregular tetrahe-dra);a refined cube consists of six square-based pyramids;a refined octahedron consists of eight triangle-based pyramids;a refined dodecahedron consists of twelve pentagon-based pyramids;and a refined icosahedron consists of twenty triangle-based pyramids.Every platonic solid has a Hamiltonian cycle on its faces.Consequently,the pieces in the refinement can be hinged together in a cycle,following the Hamiltonian path on the faces.Figure 5shows unfoldings of these hinged dissections,in particular illustrating the Hamiltonian cycle.Because there is a hinge dual to every edge in the Hamiltonian path on the faces,every face of the platonic solid has exactly two hinges.Therefore,the hinged dissection is exposed.Even more,we can merge adjacent pairs of pyramids along a face,halving the number of pieces,and leave exactly one hinge per face of the platonic solid.Now two faces share every hinge,but still the hinged dissection is exposed because every face has a hinge along its boundary.Thus we have provedTheorem 1.The platonic solid with f faces has an exposed cyclic hinged dis-section of f/2pieces in which every hinge is an edge of the platonic solid.These exposed hinged dissections have the fewest possible pieces,subject to the exposure constraint,because a hinge can simultaneously satisfy at most two faces of the original polyhedron.cubeicosahedron tetrahedronoctahedrondodecahedronFig.5.Unfolded exposed cyclic hinged dissections of the platonic solids.The bold lines indicate a pair of edges that are joined by a hinge but have been separated in this figure to permit unfolding.The dashed lines denote all other hinges between pieces.In the unfolding,the bases of all of the pyramid pieces lie on a plane,and the apexes lie above that plane (closer to the viewer).2.2Inductive Hinged DissectionNext we show how to build a hinged dissection of all n -platonics of type P based on a repeatable hinged dissection of a platonic solid P .The hinged dissection is essentially n repetitions of the exposed hinged dissection from the previous section.Specifically,the n th repetition of a cyclic hinged dissection is the result of cutting the cyclic hinged dissection at an arbitrary hinge to form an open chain,repeating this open chain n times,and then reconnecting the ends to restore a closed chain.Thus,if there are k pieces H 1,H 2,...,H k connected in that order (and cyclically)in a cyclic hinged dissection,then the n th repetition consists of nk pieces H 1,...,H k ,H 1,...,H k ,......H 1,...,H k connected in that order (and cyclically).(Although the order H 1,...,H k depends on where we cut the cyclic order,the resulting n th repetition is independent of this cut.)We prove that this hinged dissection has the desired foldings by an induc-tive/incremental construction based on the following tool,similar to [7,Prop.1]:Lemma 1.Every n -polyhedron of type P has a copy of P whose removal results in a (connected)(n −1)-polyhedron,provided n >1.Proof.The graph of adjacencies between copies of P in an n -polyhedron is a connected graph on n vertices.Any spanning tree of this graph has at least two leaves,and the removal of either leaf leaves the original graph connected.The resulting pruned graph is the adjacency graph of a (n −1)-polyhedron.2Reversing the inductive process of this lemma implies that any n -polyhedron of P can be built up by adding one copy of P at a time,yielding a connected 1-,2-,...,and (n −1)-polyhedron along the way.Theorem 2.Given an exposed cyclic hinged dissection of the platonic solid P in which exactly one piece is incident to each face of P ,the n th repetition of this hinged dissection can fold into any n -platonic of type P .Proof.The proof is by induction.The base case of n=1is trivial:there is only one1-platonic of type P,namely P itself.The exposed hinged dissection satisfies all the desired properties.Consider an n-platonic Q of type P.By Lemma1,one copy P1of P can be removed from Q to produce an(n−1)-platonic Q′.By induction,the(n−1)st repetition of the exposed hinged dissection can fold into Q′.Also,P1itself can be decomposed into an instance of the exposed hinged dissection.Our goal is to merge these two hinged dissections.Let P2denote a copy of P in Q′that shares a face f with P1.Suppose the exposed cyclic hinged dissection of P consists of pieces H1,H2,...,H k in that order.Let H i denote the piece in the hinged dissection of P2incident to face f. Let h be a hinge incident to f(which must be an edge of f)and thus incident to H i.Suppose by symmetry that the other piece in Q′incident to hinge h is H i+1.Then we rotate P1so that its piece H i+1isflush against the H i piece in P2,along the shared face f between P1and P2.We further rotate P1so that the hinge h′between pieces H i and H i+1in P1aligns with the hinge h between pieces H i and H i+1in P2.We then replace hinges h and h′with two hinges, one from H i in P2to H i+1in P1,and the other from H i in P1to H i+1in P2. The resulting hinged dissection is a single cycle,and every instance of piece H i hinges to pieces H i−1and H i+1,so the resulting hinged dissection is a folding of the n th repetition of H1,H2,...,H k as desired.2 Corollary1.If P is the platonic solid with f faces,then there is an(nf/2)-piece cyclic hinged dissection that can fold into all n-platonics of type P.3Generalized Interior DissectionThe proof of hinged dissections for polyplatonics consists of two main parts: (1)the construction of an exposed cyclic hinged dissection of a single platonic solid,with the property that at most one piece is incident to each face,and(2)an inductive argument about the n th repetition.In this section we generalize the first part to any polyhedron with a Hamiltonian cycle on its faces.The second part will remain restrictive until future sections.3.1Exposed Cyclic Hinged Dissections of Hamiltonian Polyhedra The exposed cyclic hinged dissection for platonic solids from Section2.1essen-tially exploited that platonic solids,like all convex polyhedra,are“star-shaped”.A polyhedron is star-shaped if it has at least one point c in its interior from which the line segment to any point on the polyhedron’s surface remains interior to the polyhedron.Any star-shaped polyhedron can be carved into face-based pyramids with apexes at c.These pyramids can be hinged together cyclically at the edges of the polyhedron crossed by the Hamiltonian cycle on the faces.Dissection of a polyhedron into face-based pyramids with a common apex is possible precisely when the polyhedron is star-shaped.However,it is not hard toobtain a dissection of an arbitrary polyhedron into one piece per face,though the pieces are no longer pyramids.One approach is to use the straight skeleton[2,1, 10,6].The straight skeleton is normally defined as a particular one-dimensional tree structure contained in a given two-dimensional polygon.For our purposes, the relevant property is that the tree structure subdivides the polygon into ex-actly one region per polygon edge,and only that region is incident to that polygon edge[2].The straight skeleton can be generalized to3D as a decomposition of a given polyhedron into exactly one cell per facet,and only that cell is incident to that facet.We imagine sweeping every facet perpendicularly inwards at the same speed in parallel.Faces change geometry as they are inset by clipping or extend-ing to where they meet adjacent faces.Faces may become disconnected,in which case the sweep continues with each piece,or disappear,in which case the sweep continues without that face.In the end,the entire polyhedron is swept,and the regions swept by individual faces form a partition with the desired property that exactly one region is incident to each facet.Erickson[11]points out that the straight skeleton is no longer well-defined in3D:there are choices during the offset process that can be resolved multiple ways.However,for our purposes,we just need a single straight skeleton,with an arbitrary decision for each choice, for a suitable decomposition.As before,the pieces can be hinged together cyclically at the edges of the polyhedron crossed by the Hamiltonian cycle.Thus,for any polyhedron with a Hamiltonian cycle on its n faces,we obtain an n-piece exposed cyclic hinged dissection with the property that each face of the polyhedron is incident to exactly one piece.3.2Inductive Hinged DissectionThe second part of the argument is the inductive construction.The key steps here are the two rotations of an added piece P1.Thefirst rotation ensures that the next piece in the hinging of P1(H i+1)is against the piece to which we want to join P1(H i of P2).The second rotation ensures that the exposed hinges of these two pieces coincide.These rotations enforce restrictions on what types of polypolyhedra we can build.Thefirst rotation essentially requires that all faces of P“look the same”(in addition to having the same shape):the rotation that brings any face to any other face should result in an identical copy of P(but with faces relabeled).The second rotation requires that all orientations of a face look the same.Unfortunately, these two restrictions force P to be a platonic solid.The goal of the remaining sections is to remove these restrictions,in addition to the restriction that P has a Hamiltonian cycle on its faces.4Surface RefinementIn this section we remove two constraints on the base polyhedron P:the require-ment that P has a Hamiltonian cycle on its faces,and the requirement that allfaces of P look the same.We achieve both of these generalizations by subdividing each face of P by a collection of linear cuts.First,we divide each reflectionally symmetric face of P along one of its lines of symmetry.Recall that joinings between copies of P are possible only along reflectionally symmetric faces.Now if we can arrange for these symmetry lines to be hinges in an exposed cyclic hinged dissection of the new polyhedron P ′,then whenever we attempt to attach a new piece P ′1,we are guaranteed that the two consecutive pieces H i and H i +1of the hinging that we need to placeagainst Fig.6.Hamiltonian refinement of five faces in a hypothetical polyhedron,shown here unfolded.Bold lines outline faces.Dashed lines show triangulations and are not cuts.Thin solid lines are cuts.The curved line shows a Hamilto-nian cycle induced by the span-ning tree of this unfolding.each other are in fact the two reflectionalhalves of the original face.Thus the first ro-tation in the induction construction does ex-actly what we want:it brings together thetwo identically labeled faces of P .Second,we divide each face of P ′so thatany spanning tree of the faces in P ′trans-lates into a Hamiltonian cycle in the result-ing polyhedron P ′′.This reduction is simi-lar to the Hamiltonian triangulation resultof [4]as well as a refinement for hinged dis-section of 2D polyforms [7,Section 6].Weconceptually triangulate each face f of P ′us-ing chords (though we do not cut along the edges of that triangulation).Then,for each triangle,we cut from an arbitrarily chosen interior point to the midpoints of the three edges.Figure 6shows an example of this pro-cess.For any spanning tree of the faces of P ′,we can walk around the tree (i.e.,follow an Eulerian tour)and produce a Hamiltonian cycle on the faces of P ′′.In particular,we can start from the matching on the faces of P ′from the reflectionally symmetric pairing,and choose a spanning tree on the faces of P ′that contains this matching.Then the resulting Hamiltonian cycle in P ′′crosses a subdivided edge of every line of symmetry.(In fact,the Hamiltonian cycle crosses every subdivided edge of every line of symmetry.)Thus,in the exposed cyclic hinged dissection of the Hamiltonian polyhedron P ′′,there is an exposed hinge along every line of symmetry.Therefore all joinings between copies of P ′′can use these hinges,which means that the first rotation in the induction construction happens automatically from joining along corresponding faces.5Mutually Rotated Base Polyhedra:TwistersThe last generalization concerns the second rotation in the inductive construc-tion.If every reflectionally symmetric face has only one line of symmetry,this second rotation is automatic just from making the faces meet geometrically.However,if a face has more than one line of symmetry,the polypolyhedron may require different rotations of the two base polyhedra around their common face.To enable these kinds of joinings,we introduce the twister gadget shown in Figure 7.This gadget allows the top face to rotate by any integer multiple of 360◦/k with respect to the bottom face.The volume occupied by the twister gadget is a prism with a regular k -gon as abase.B Fig.7.The twister gadget with k =4:32pieces allowing any between none and three quarter turns.For visual clarity,the two layers are drawn substantially separated in (a)and slightly separated in (b)and (c);in fact they are flush.(d)shows the result of unfolding along the perimeter hinges.(c)shows a refolding that achieves a half turn.To construct the pieces,we slice this prism in half parallel to the base,leaving two identical prisms,one stacked atop the other.Then we divide each prism by making several planar cuts perpendicular to the base:in projection of a regular k -gon,we cut from the center to every vertex,to the midpoint of every edge,and to each quarter point between a vertex and an edge midpoint.The resulting 8k pieces are all triangular prisms.We hinge these prisms together cyclicly as follows.Two hinges connect the top and bottom levels,lying (in projection)along a cut from the center to an edge midpoint.For each remaining cut from the center to an edge midpoint (in projection),and for each cut from the center to a vertex (in projection),there is a hinge connecting the two incident pieces on the “inside”(on the bottom of the top prism and on the top of the bottom prism).For each cut from the center to a quarter point (in projection),there is a hinge connecting the two incident pieces on the perimeter of the regular k -gon.The perimeter hinges enable the twister to unfold as shown in Figure 7(d)to make all the inside hinges parallel.The inside hinges allow the twister to be further unfolded from this state into a convex three-dimensional “ring”.Then we can reverse the process,collapsing the 3D ring back down along the insidehinges to a nearlyflat unfolding like Figure7(d),and folding it back along the perimeter hinges into the regular k-gon configuration.In between the unfolding and folding,by rotating the ring state,we can change which pieces are ultimately on which layer as shown in Figure7(c).Specifically,by this continuous folding process,we can move any multiple of 4pieces from the top layer to the bottom layer on one side of the gap where the layers connect,and the same number of pieces from the bottom layer to the top layer on the other side of the gap.If we move4j pieces on either side,we rotate the top regular k-gon by j·360◦/k relative to the bottom regular k-gon.If we restrict j to satisfy0≤j<k(which suffices for the desired set of k possible rotations),then there are four pieces A1,A2,A3,A4that always remain on the top layer and four pieces B1,B2,B3,B4that always remain on the bottom layer.To allow the twister gadget to attach to other pieces on its top and bottom, we need to add exposed hinges.We remove the inner hinge connecting A2and A3,which in projection connects the center to a vertex of the regular k-gon,and replace it with a corresponding outer hinge on the top side of the twister gadget. Similarly,we remove the inner hinge connecting B2and B3,whose projection connects the center to the same vertex of the regular k-gon,and replace it with a corresponding outer hinge on the bottom side of the twister gadget.The modified twister gadget can be folded continuously as before,except that now we keep A2rigidly attached to A3and B2rigidly attached to B3when opening up into a three-dimensional ring,not folding the two outer hinges at all.We embed the modified twister gadget in each face of the base polyhedron P that has k-fold symmetry for k≥3.More precisely,we carve out of P a thin prism with a small regular k-gon base,centered at the symmetry center of the face,and infuse this carved space with a twister gadget.Then we construct the refinement P′′of P as before,choosing an arbitrary line of symmetry of a k-fold symmetric face for the subdivision and resulting matching.The line of symmetry actually now“bends”slightly to dip underneath the thin twister gadget at the center.Normally the hinged dissection of P′′would have a hinge along this line of symmetry,connecting the two incident pieces C and D.Instead,we rotate the embedded twister gadget so that its outer hinges(those between A2and A3 and between B2and B3)align with this chosen line of symmetry,and so that B2is atop C and B3is atop D.Then we replace the outer hinge between B2 and B3with a hinge between B2and C and a hinge between B3and D.(All three of these hinges lie geometrically along the same line segment in the folded configuration.)In the inductive construction of an n-polyhedron of type P,we use the outer hinge between pieces A2and A3to combine two copies of P′′′along a k-fold symmetric face,k≥3.This hinge lies along the chosen line of symmetry,in the middle of the face,and therefore can be aligned between the two copies.Note that the resulting construction has two copies of the twister gadget joined along their top sides,which is redundant because it allows up to two full turns of the faces,but we cannot easily remove this redundancy while having two identical copies of a single hinged dissection.Two copies of P ′′′joined along a face of k -fold symmetry can now rotate with respect to each other by j ·360◦/k ,for any desired 0≤j <k .This property is exactly what we need to perform the second rotation in the inductive argument of hinged dissectibility.This completes our construction of a hinged dissection that folds into all n -polyhedra of type P ,for any positive integer n and for any polyhedron P .6Self-Similar Hinged DissectionsThis section considers a related side problem from the main line of the paper,called “self-similar hinged dissections”.A hinged dissection is self-similar if every piece is similar to (a scaled copy of)the base polyhedron P .Self-similar dissec-tions (without hingings)are well-studied in recreational mathematics,usually in 2D,so it is natural to consider their hinged,3D counterparts.Figure 8gives a self-similar exposed hinged dissection of a cube,which by our techniques leads to a self-similar hinged dissection of all n -cubes,for any n .The dissection is simple,dividing the cube into a 2×2×2array of identical subcubes.The hinging is less trivial because of the requirement that every face of the original cube has an exposed hinge.The hinges are always between the midpoint of an original edge to the center of an original face,so two hinges between adjacent cubes can always be brought into alignment,after possible rotation around the shared face,during the merging process in the inductive construction.bottom left front front bottom right right bottom back backbottomleft back left top back top right top right front top front leftFig.8.A hinged dissection of a cube into a 2×2×2array of 8subcubes.This hinged dissection can be used in place of that in Figure 5;every face has (at least)one exposed hinge.Top-left:The dissection.Top-right:The cyclic hinging.Bottom:Unfolded after cutting one hinge.Hinges are drawn bold.The resulting dissection of n -cubes uses 8n pieces (compared to 3n pieces from Corollary 1):。