2008年福建省宁德市中考数学压轴题解析

合集下载

2008年全国中考数学压轴题精选3含答案(修)

2008年全国中考数学压轴题精选3含答案(修)

2008年全国中考数学压轴题精选精析(三)21(08江西南昌24题)如图,抛物线2212191128y ax ax P y ax ax ⎛⎫=--+-=-- ⎪⎝⎭经过点且与抛物线,,相交于A B ,两点. (1)求a 值;(2)设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点(0)Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C ,D 两点,试问当x 为何值时,线段CD 有最大值?其最大值为多少?(08江西南昌24题解析)解:(1) 点1928P ⎛⎫- ⎪⎝⎭,在抛物线211y ax ax =--+上,1191428a a ∴-++=, ··························· 2分解得12a =. ······························· 3分(2)由(1)知12a =,∴抛物线2111122y x x =--+,2211122y x x =--. ··· 5分当2111022x x --+=时,解得12x =-,21x =. 点M 在点N 的左边,2M x ∴=-,1N x =. ···· 6分当2111022x x --=时,解得31x =-,42x =. 点E 在点F 的左边,1E x ∴=-,2F x =. ················· 7分 0M F x x += ,0N E x x +=,∴点M 与点F 对称,点N 与点E 对称. ··················· 8分(3)102a => .∴抛物线1y 开口向下,抛物线2y 开口向上. ······ 9分 根据题意,得12CD y y =-22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭. ·············· 11分A B x x x ≤≤,∴当0x =时,CD 有最大值2.·············· 12分 说明:第(2)问中,结论写成“M N ,,E F ,四点横坐标的代数和为0”或“MN EF =”均得1分.22(08江西南昌25题)如图1,正方形ABCD 和正三角形EFG 的边长都为1,点E F ,分别在线段AB AD ,上滑动,设点G 到CD 的距离为x ,到BC 的距离为y ,记HEF ∠为α(当点E F ,分别与B A ,重合时,记0α=).(1)当0α= 时(如图2所示),求x y ,的值(结果保留根号);(2)当α为何值时,点G 落在对角形AC 上?请说出你的理由,并求出此时x y ,的值(结果保留根号); (3)请你补充完成下表(精确到0.01):(4)若将“点E F ,分别在线段AB AD ,上滑动”改为“点E F,分别在正方形ABCD 边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G 运动所形成的大致图形. 1.732sin150.259sin 750.966==,,.)(08江西南昌25题解析)解:(1)过G 作MN AB ⊥于M 交CD 于N ,GK BC ⊥于K .60ABG ∠= ,1BG =,图1 图2 B (E A (F D图3 H DAC B 图42MG ∴=,12BM =. ························· 2分12x ∴=-,12y =. ·························· 3分(2)当45α=时,点G 在对角线AC 上,其理由是: ············· 4分 过G 作IQ BC ∥交AB CD ,于I Q ,, 过G 作JP AB ∥交AD BC ,于J P ,.AC 平分BCD ∠,GP GQ ∴=,GI GJ ∴=.GE GF = ,Rt Rt GEI GFJ ∴△≌△,GEI GFJ ∴∠=∠.60GEF GFE ∠=∠= ,AEF AFE ∴∠=∠. 90EAF ∠= ,45AEF AFE ∴∠=∠= .即45α=时,点G 落在对角线AC 上. ··················· 6分 (以下给出两种求x y ,的解法)方法一:4560105AEG ∠=+=,75GEI ∴∠=.在Rt GEI △中,sin 754GI GE ==,1GQ IQ GI ∴=-=. ······················ 7分1x y ∴==. ·························· 8分 方法二:当点G 在对角线AC 上时,有122+= ··························· 7分解得1x =1x y ∴==. ·························· 8分 (3)α153045607590x0.130.030.030.130.290.50B (EA (FDQy0.50 0.29 0.13 0.03 0 0.03 0.13··················· 10分 (4)由点G 所得到的大致图形如图所示:······················· 12分说明:1.第(2)问回答正确的得1分,证明正确的得2分,求出x y ,的值各得1分;2.第(3)问表格数据,每填对其中4空得1分;3.第(4)问图形画得大致正确的得2分,只画出图形一部分的得1分.23(08山东滨州23题)(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.BDCA(2)结论应用:①如图2,点M 、N 在反比例函数y=)0( k xk的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F. 试应用(1)中得到的结论证明:MN ∥EF.y xONMF E②若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断MN 与E 是否平行.H AC DB(08山东滨州23题解析)(1)证明:分别过点C 、D 作.CG AB DH AB ⊥⊥、 垂足为G 、H ,则090.CGA DHB ∠=∠=CG DHABC ABD ∴∴∴∴ 与的面积相等CG=DH四边形CGHD 为平行四边形AB CD.(2)①证明:连结MF ,NE设点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y , ∵点M ,N 在反比例函数()0ky k x= 的图象上, ∴11x y k =,22x y k =2,ME y NF x OF x ⊥⊥∴= 1轴,轴OE=y112211221122EFM EFN EFM EFN S x y k S x y k S S ∴====∴=由(1)中的结论可知:MN ∥EF 。

【真题】宁德市中考数学试题含答案解析(版)

【真题】宁德市中考数学试题含答案解析(版)

【真题】宁德市中考数学试题含答案解析(版)宁德市中考数学试题含答案解析一、选择题1. 某工厂用两种型号的机器加工产品,分别为A型和B型。

若只使用A型机器,加工一件产品需要12小时;若只使用B型机器,加工一件产品需要16小时;若同时使用A型和B型机器,加工一件产品需要8小时。

那么,在同样的条件下,同时使用2台A型机器和3台B型机器,加工3件产品需要多少小时?A. 33B. 24C. 22D. 15答案:B解析:设同时使用2台A型机器和3台B型机器加工3件产品需要的时间为t。

根据题意,可列出方程:2×12t + 16t = 3×8解得,t = 2因此,同时使用2台A型机器和3台B型机器,加工3件产品需要24小时。

2. 卡卡在超市购买了若干只眼睛彩球,其中3只是不同颜色的,其余的是红色的。

每只彩球塞在同样大小的盒子里。

已知卡卡用这些盒子可以摆出2个边长为6厘米的正方形,每个正方形上的盒子数量一样。

在这些彩球中,红色彩球的只数是蓝色彩球的2倍。

那么,红色彩球的总只数是多少?A. 36B. 30C. 18D. 12答案:A解析:设红色彩球的只数为x,则蓝色彩球的只数为2x。

根据题意,可列出方程:x + 2x + 3 = 12解得,x = 3因此,红色彩球的总只数为3 + 2×3 = 9 + 6 = 15.3. 小明投篮,在3分钟内射入2个篮球,这2个篮球的出手次序相同。

小明每次投篮有命中的可能性是80%,没有命中的可能性是20%。

在这次投篮中,最早投进的篮球与最后投进的篮球之间,连续的没有命中的次数正好是1次。

请问,在这3分钟内,小明一共进行了多少次投篮?A. 14B. 13C. 12D. 10答案:B解析:设连续没有命中的次数为n,则投进第一个篮球前有n次没有命中。

根据题意,可列出方程:0.2×0.8^n = 0.2^n–1×0.2×0.8化简得 4 = 5×0.8^n解得,n = 1因此,在这3分钟内,小明一共进行了2 + 2×1 + 1 = 5次投篮。

2008年福建省各市中考数学试题

2008年福建省各市中考数学试题

1 ,试求每张乒乓球门票的价格. 8
22. (12 分)如图,在平面直角坐标系中,将四边形 ABCD 称为“基本图形”,且各点的坐标 分别为 A(4,4) ,B(1,3) ,C(3,3) ,D(3,1). (1)画出“基本图形”关于原点 O 对称的四边形 A1B1C1D1,并求出 A1,B1,C1,D1 的坐标.
17.已知 α 为锐角,则 m=sinα +cosα 的值( ) A.m>1 B.m=1 C.m<1 D.m≥1 三、解答题(本大题共 8 小题,共 92 分) 18. (8 分)计算:2008 +|-1|- 3 cos30°+ (
0
1 3 ). 2
19.(10 分)化简求值:(
a2 b2 a2 b2 1 +2)÷ ,其中 a 2 , b . ab ab 2
数学试题第 3 页(共 78 页)
A1(

),B1(

),C1(

),D1(

) ;
(2)画出“基本图形”关于 x 轴的对称图形 A2B2C2D2 ; (3)画出四边形 A3B3C3D3,使之与前面三个图形组成的图形既是中心对称图形又是轴对称图形.
23. (13 分)汶川地震发生后,全国人民抗震救灾,众志成城. 某地政府急灾民之所需, 立即组织 12 辆汽车,将 A、B、C 三种救灾物资共 82 吨一次性运往灾区,假设甲、乙、 丙三种车型分别运载 A、B、C 三种物资. 根据下表提供的信息解答下列问题: 车 型 甲 5 乙 8 丙 10
5 x 19 及题意知 y>0, x>0且x 必须是 2 的整数倍, 2
x y
2 14 4 9 6 4 8 -1 „ „ 10 分

福建各地历年数学中考压轴题

福建各地历年数学中考压轴题

福建各地历年中考压轴题1、(05宁德中考28)(13分)如图,直线8y分别与x轴、y轴相交于A、B两点,O+=kx为坐标原点,A点的坐标为(4,0).⑴求k的值;⑵若P为y轴(B点除外)上的一点,过P作PC⊥y轴交直线AB于C.设线段PC的长为l,点P的坐标为(0,m).①如果点P在线段...)上移动,求l与m的函数关系式,并写出自变量m的..BO..(B.点除外取值范围;②如果点P在射线....)上移动,连结PA,则△APC的面积S也随之发..(B.、O.两点除外..BO生变化.请你在面积S的整个变化过程中,求当m为何值时,S=4.2、(06泉州质检27)(13分)施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为X轴建立直角坐标系(如图所示).(1)直接写出点M及抛物线顶点P的坐标;(2)求出这条抛物线的函数解析式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上,B、C点在地面OM上.为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长.度之和...的最大值是多少?请你帮施工队计算一下.3、(06宁德中考25)(本题满分13分)如图1,矩形纸片ABCD 中,AD =14cm ,AB =10cm 。

(1)将矩形纸片ABCD 沿折线AE 对折,使AB 边与AD 边重合,B 点落在F 点处,如图2所示;再剪去四边形CEFD ,余下的部分如图3所示。

若将余下的纸片展开,则所得的四边形的ABEF 的形状是_______;它的面积为_____cm 2。

(2)将图3中的纸片沿折线AG 对折,使AF 与AE 边重合,F 点落在H 点处,如图4所示;再沿HG 将△HGE 剪去,余下的部分如图5所示。

把图5的纸片完全展开,请你在图6的矩形ABCD 中画出展开后图形的示意图,剪去的部分用阴影表示,折痕用虚线表示;(3)求图5中的纸片完全展开后的图形面积(结果保留整数)。

2008年全国中考数学压轴题精选精析(一)

2008年全国中考数学压轴题精选精析(一)

2008年全国中考数学压轴题精选精析(一)1.(08广东中山22题)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB 重合,直角边不重合,已知AB=8,BC=AD=4,AC 与BD 相交于点E ,连结CD .(1)填空:如图9,AC= ,BD= ;四边形ABCD 是 梯形. (2)请写出图9中所有的相似三角形(不含全等三角形). (3)如图10,若以AB 所在直线为x 轴,过点A 垂直于AB 的直线为y 轴建立如图10的平面直角坐标系,保持ΔABD 不动,将ΔABC 向x 轴的正方向平移到ΔFGH 的位置,FH 与BD 相交于点P ,设AF=t ,ΔFBP 面积为S ,求S 与t 之间的函数关系式,并写出t 的取值值范围.(08广东中山22题解析)解:(1)1分等腰;…………………………2分(2)共有9对相似三角形.(写对3-5对得1分,写对6-8对得2分,写对9对得3分)①△DCE 、△ABE 与△ACD 或△BDC 两两相似,分别是:△DCE ∽△ABE ,△DCE ∽△ACD ,△DCE ∽△BDC ,△ABE ∽△ACD ,△ABE ∽△BDC ;(有5对)②△ABD ∽△EAD ,△ABD ∽△EBC ;(有2对) ③△BAC ∽△EAD ,△BAC ∽△EBC ;(有2对)所以,一共有9对相似三角形.…………………………………………5分(3)由题意知,FP ∥AE , ∴ ∠1=∠PFB , 又∵ ∠1=∠2=30°, ∴ ∠PFB =∠2=30°,∴ FP =BP (6)过点P 作PK ⊥FB 于点K ,则F K B K =∵ AF =t ,AB =8, ∴ FB =8-t ,1(8)2B K t =-.在Rt △BPK 中,1tan 2(8)tan 30)26PK BK t t =⋅∠=-︒=-. ……………………7分∴ △FBP 的面积11(8)(8)226S FB PK t t =⋅⋅=⋅-⋅-,∴ S 与t 之间的函数关系式为:DCBE图9图1028)12S t =-,或24123S t =-+…………………………………8分t 的取值范围为:08t ≤<. …………………………………………………………9分2.(08湖北十堰25题)已知抛物线b ax ax y ++-=22与x 轴的一个交点为A(-1,0),与y 轴的正半轴交于点C .⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标;⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式;⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.(08湖北十堰25题解析)解:⑴对称轴是直线:1=x ,点B 的坐标是(3,0). ……2分说明:每写对1个给1分,“直线”两字没写不扣分.⑵如图,连接PC ,∵点A 、B 的坐标分别是A(-1,0)、B (3,0), ∴AB =4.∴.AB PC 242121=⨯==在Rt △POC 中,∵OP =PA -OA =2-1=1, ∴.POPCOC 3122222=-=-=∴b =.3 ………………………………3分 当01=-=,y x 时,,a a 032=+--∴.a 33= ………………………………4分∴.x x y 3332332++-= ………………5分⑶存在.……………………………6分理由:如图,连接AC 、BC .设点M 的坐标为),(y x M .①当以AC 或BC 为对角线时,点M 在x 轴上方,此时CM ∥AB ,且CM =AB .由⑵知,AB =4,∴|x|=4,3==OC y .∴x =±4.∴点M 的坐标为)3,4()3,4(-或M .…9分说明:少求一个点的坐标扣1分.②当以AB 为对角线时,点M 在x 轴下方. 过M 作MN ⊥AB 于N ,则∠MNB =∠AOC =90°. ∵四边形AMBC 是平行四边形,∴AC =MB ,且AC ∥MB .∴∠CAO =∠MBN .∴△AOC ≌△BNM .∴BN =AO =1,MN =CO . ∵OB =3,∴0N =3-1=2.∴点M 的坐标为(2,M . ……………………………12分说明:求点M 的坐标时,用解直角三角形的方法或用先求直线解析式,然后求交点M 的坐标的方法均可,请参照给分.综上所述,坐标平面内存在点M ,使得以点A 、B 、C 、M 为顶点的四边形是平行四边形.其坐标为123((2,M M M -.说明:①综上所述不写不扣分;②如果开头“存在”二字没写,但最后解答全部正确,不扣分。

2008年全国中考数学压轴题精选2含答案(修)

2008年全国中考数学压轴题精选2含答案(修)

(第24题图)2008年全国中考数学压轴题精选精析(二)11(08江苏连云港24题)(本小题满分14分)如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的AOB △,COD △处,直角边OB OD ,在x 轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至PEF △处时,设PE PF ,与OC 分别交于点M N ,,与x 轴分别交于点G H ,.(1)求直线AC 所对应的函数关系式;(2)当点P 是线段AC (端点除外)上的动点时,试探究:①点M 到x 轴的距离h 与线段BH 的长是否总相等?请说明理由;②两块纸板重叠部分(图中的阴影部分)的面积S 是否存在最大值?若存在,求出这个最大值及S 取最大值时点P 的坐标;若不存在,请说明理由.(08江苏连云港24题解析)解:(1)由直角三角形纸板的两直角边的长为1和2,知A C ,两点的坐标分别为(12)(21),,,. 设直线AC 所对应的函数关系式为y kx b =+. ················ 2分有221k b k b +=⎧⎨+=⎩,.解得13k b =-⎧⎨=⎩,.所以,直线AC 所对应的函数关系式为3y x =-+. ·············· 4分 (2)①点M 到x 轴距离h 与线段BH 的长总相等.因为点C 的坐标为(21),, 所以,直线OC 所对应的函数关系式为12y x =. 又因为点P 在直线AC 上,所以可设点P 的坐标为(3)a a -,. 过点M 作x 轴的垂线,设垂足为点K ,则有MK h =.因为点M 在直线OC 上,所以有(2)M h h ,. ······ 6分 因为纸板为平行移动,故有EF OB ∥,即EF GH ∥.(第24题答图)又EF PF ⊥,所以PH GH ⊥.法一:故Rt Rt Rt MKG PHG PFE △∽△∽△,从而有12GK GH EF MK PH PF ===. 得1122GK MK h ==,11(3)22GH PH a ==-.所以13222OG OK GK h h h =-=-=.又有13(3)(1)22OG OH GH a a a =-=--=-. ··············· 8分所以33(1)22h a =-,得1h a =-,而1BH OH OB a =-=-,从而总有h BH =. ··························· 10分法二:故Rt Rt PHG PFE △∽△,可得12GH EF PH PF =-. 故11(3)22GH PH a ==-.所以13(3)(1)22OG OH GH a a a =-=--=-.故G 点坐标为3(1)02a ⎛⎫-⎪⎝⎭,. 设直线PG 所对应的函数关系式为y cx d =+,则有330(1)2a ca d c a d -=+⎧⎪⎨=-+⎪⎩,.解得233c d a =⎧⎨=-⎩ 所以,直线PG 所对的函数关系式为2(33)y x a =+-. ············ 8分 将点M 的坐标代入,可得4(33)h h a =+-.解得1h a =-.而1BH OH OB a --=-,从而总有h BH =. ··············· 10分 ②由①知,点M 的坐标为(221)a a --,,点N 的坐标为12a a ⎛⎫ ⎪⎝⎭,.ONH ONG S S S =-△△1111133(1)222222a NH OH OG h a a a -=⨯-⨯=⨯⨯-⨯⨯- 22133133224228a a a ⎛⎫=-+-=--+ ⎪⎝⎭. ·················· 12分当32a =时,S 有最大值,最大值为38. S 取最大值时点P 的坐标为3322⎛⎫ ⎪⎝⎭,. ···················· 14分12(08江苏连云港25题)(本小题满分12分)我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB 的最小覆盖圆就是以线段AB 为直径的圆.(1)请分别作出图1中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明); (3)某地有四个村庄E F G H ,,,(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由.(08江苏连云港25题解析)解:(1)如图所示: ··············· 4分(注:正确画出1个图得2分,无作图痕迹或痕迹不正确不得分) (2)若三角形为锐角三角形,则其最小覆盖圆为其外接圆; ··········· 6分若三角形为直角或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆. ····································· 8分(3)此中转站应建在EFH △的外接圆圆心处(线段EF 的垂直平分线与线段EH 的垂直平分线的交点A A B B CC 80100 (第25题图1)GF(第25题图2)(第25题答图1)处). ····················· 10分 理由如下:由47.835.182.9HEF HEG GEF ∠=∠+∠=+=,50.0EHF ∠= ,47.1EFH ∠= ,故EFH △是锐角三角形,所以其最小覆盖圆为EFH △的外接圆,设此外接圆为O ,直线EG 与O 交于点E M ,, 则50.053.8EMF EHF EGF ∠=∠=<=∠.故点G 在O 内,从而O 也是四边形EFGH 的最小覆盖圆. 所以中转站建在EFH △的外接圆圆心处,能够符合题中要求. ························ 12分13(08江苏南通28题)(14分)已知双曲线k y x=与直线14y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线ky x=上的动点.过点B 作BD ∥y 轴交x 轴于点D .过N (0,-n )作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C . (1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.(08江苏南通28题解析)解:(1)∵D (-8,0),∴B 点的横坐标为-8,代入14y x =中,得y =-2. ∴B 点坐标为(-8,-2).而A 、B 两点关于原点对称,∴A (8,2).从而8216k =⨯=.……………………………………………………………………3分(2)∵N (0,-n ),B 是CD 的中点,A 、B 、M 、E 四点均在双曲线上,∴mn k =,B (-2m ,-2n),C (-2m ,-n ),E (-m ,-n ). ……………4分 S 矩形DCNO 22mn k ==,S △DBO =1122mn k =,S △OEN =1122mn k =, ………………7分F(第25题答图2)(第28题)∴S 四边形OBCE = S 矩形DCNO -S △DBO - S △OEN =k .∴4k =. …………………………8分由直线14y x =及双曲线4y x=,得A (4,1),B (-4,-1), ∴C (-4,-2),M (2,2).………………………………………………………9分 设直线CM 的解析式是y ax b =+,由C 、M 两点在这条直线上,得 42,2 2.a b a b -+=-⎧⎨+=⎩ 解得23a b ==. ∴直线CM 的解析式是2233y x =+.………………………………………………11分 (3)如图,分别作AA 1⊥x 轴,MM 1⊥x 轴,垂足分别为A 1、M 1.设A 点的横坐标为a ,则B 点的横坐标为-a .于是 111A M MA a mp MP M O m-===. 同理MB m aq MQ m+==,……………………………13分 ∴2a m m ap q m m-+-=-=-.……………………14分14(08江苏宿迁27题)(本题满分12分)如图,⊙O 的半径为1,正方形ABCD 顶点B 坐标为)0,5(,顶点D 在⊙O 上运动.(1)当点D 运动到与点A 、O 在同一条直线上时,试证明直线CD 与⊙O 相切;(2)当直线CD 与⊙O 相切时,求CD 所在直线对应的函数关系式;(3)设点D 的横坐标为x ,正方形ABCD 的面积为S ,求S 与x 之间的函数关系式,并求出S 的最大值与最小值.第27题(08江苏宿迁27题解析)解:(1) ∵四边形ABCD 为正方形 ∴CD AD ⊥ ∵A 、O 、D 在同一条直线上 ∴︒=∠90ODC ∴直线CD 与⊙O 相切; (2)直线CD 与⊙O 相切分两种情况:①如图1, 设1D 点在第二象限时,过1D 作x E D ⊥11轴于点1E ,设此时的正方形的边长为a ,则2225)1(=+-a a ,解得4=a 或3-=a (舍去).由BOA Rt ∆∽11OE D Rt ∆ 得OBOD BA E D OA OE 1111== ∴54,53111==E D OE ∴)54,53(1-D ,故直线OD 的函数关系式为x y 34-=;②如图2, 设2D 点在第四象限时,过2D 作x E D ⊥22轴于点2E ,设此时的正方形的边长为b ,则2225)1(=++b b ,解得3=b 或4-=b (舍去).由BOA Rt ∆∽22OE D Rt ∆得OBOD BA E D OA OE 2222== ∴53,54222==E D OE ∴)53,54(2-D ,故直线OD 的函数关系式为x y 43-=. (3)设),(0y x D ,则201x y -±=,由)0,5(B 得x x x DB 1026)1()5(22-=-+-=∴x x BD S 513)1026(21212-=-==∵11≤≤-x第27题图1第27题图2∴851318513=-==+=最小值最大值,S S .15(08江苏泰州29题)已知二次函数)0(21≠++=a c bx ax y 的图象经过三点(1,0),(-3,0),(0,23-)。

2008年中考数学压轴题解析汇编(含解析)

2008年中考数学压轴题解析汇编(含解析)

2年以上基 层工作经历
学(代码:050102)、汉语
言文字学(代码:050103)
统计学(代码:020208、
0714)、应用统计(代码:
0252)、图书情报与档案管
执法勤务类 二级警长以 29019053

2
硕士研究 生以上
理(代码:1205)、图书情 报(代码:1255)、交通运 18周岁以上、 2年以上基
一级主任科 员以下
29015011
3
博士研究 经济学门类、理学门类、工 18周岁以上、 2年以上基

学门类
35周岁以下 层工作经历
工学门类、管理科学与工程
一级主任科 员以下
290150214 Nhomakorabea硕士研究 (代码:1201)、金融(代 18周岁以上、 2年以上基 生以上 码:0251)、金融学(代 35周岁以下 层工作经历
省发展改革委
一级主任科 员以下
29015031
3
硕士研究 生以上
码:020204) 不限
18周岁以上、 2年以上基 35周岁以下 层工作经历
经济学类、金融学类、电子
三级主任科 员以下
29015041
5
大学本科 信息类、自动化类、能源动 18周岁以上、 2年以上基 以上 力类、机械类、交通运输类 35周岁以下 层工作经历
高等学历教育各阶段 均需取得相应学历学 位。曾连续六个月以 上在国(境)外留学
、工作、生活,国 (境)外期间经历和 政治表现难以进行考
察的,不得报考。
高等学历教育各阶段 均需取得相应学历学 位。曾连续六个月以 上在国(境)外留学
、工作、生活,国 (境)外期间经历和 政治表现难以进行考

2008年全国中考数学压轴题精选(6)(含答案)

2008年全国中考数学压轴题精选(6)(含答案)

2008年全国中考数学压轴题精选(六)51.(08湖南郴州27题)(本题满分10分)如图10,平行四边形ABCD 中,AB =5,BC =10,BC 边上的高AM =4,E 为 BC 边上的一个动点(不与B 、C 重合).过E 作直线AB 的垂线,垂足为F . FE 与DC 的延长线相交于点G ,连结DE ,DF .. (1) 求证:ΔBEF ∽ΔCEG .(2) 当点E 在线段BC 上运动时,△BEF 和△CEG 的周长之间有什么关系?并说明你的理由.(3)设BE =x ,△DEF 的面积为 y ,请你求出y 和x 之间的函数关系式,并求出当x 为何值时,y 有最大值,最大值是多少?(08湖南郴州27题解析)(1) 因为四边形ABCD 是平行四边形, 所以AB DG 1分 所以,B GCE G BFE ∠=∠∠=∠所以BEF CEG △∽△ ··············································································· 3分 (2)BEF CEG △与△的周长之和为定值.····················································· 4分 理由一:过点C 作FG 的平行线交直线AB 于H ,因为GF ⊥AB ,所以四边形FHCG 为矩形.所以 FH =CG ,FG =CH 因此,BEF CEG △与△的周长之和等于BC +CH +BH由 BC =10,AB =5,AM =4,可得CH =8,BH =6, 所以BC +CH +BH =24 ··············································································· 6分 理由二:由AB =5,AM =4,可知在Rt △BEF 与Rt △GCE 中,有:4343,,,5555EF BE BF BE GE EC GC CE ====,所以,△BEF 的周长是125BE , △ECG 的周长是125CE 又BE +CE =10,因此BEF CEG 与的周长之和是24. ···································· 6分图10MBDCEF Gx AA M xH GFED CB(3)设BE =x ,则43,(10)55EF x GC x ==- 所以21143622[(10)5]2255255y EF DG x x x x ==-+=-- ······························· 8分配方得:2655121()2566y x =--+. 所以,当556x =时,y 有最大值. ·································································· 9分最大值为1216.···························································································· 10分52(08湖南郴州28题)(本题满分10分)如图13,在平面直角坐标系中,圆M 经过原点O ,且与x 轴、y 轴分别相交于()()8006A B --,、,两点.(1)求出直线AB 的函数解析式;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在⊙M 上,开口向下,且经过点B ,求此抛物线的函数解析式;(3)设(2)中的抛物线交x 轴于D 、E 两点,在抛物线上是否存在点P ,使得A BC P DE S S ∆∆=101?若存在,请求出点P 的坐标;若不存在,请说明理由.(08湖南郴州28题解析)解:(1)设AB 的函数表达式为.b kx y +=∵()(),6,0,0,8--B A ∴⎩⎨⎧=-+-=.6,80b b k ∴⎪⎩⎪⎨⎧-=-=.6,43b k∴直线AB 的函数表达式为364y x =--. ·························································· 3分 (2)设抛物线的对称轴与⊙M 相交于一点,依题意知这一点就是抛物线的顶点C 。

中考数学压轴题思路与技巧

中考数学压轴题思路与技巧

关于中考数学压轴题的思考思考一:中考数学压轴题如何攻克对中考数学卷,压轴题是考生最怕的,以为它一定很难,不敢碰它。

其实,对历年中考的压轴题作一番分析,就会发现,其实也不是很难。

这样,就能减轻做“压轴题”的心理压力,从中找到应对的办法。

压轴题难度有约定:历年中考,压轴题一般都由3个小题组成。

第(1)题容易上手,得分率在0.8以上;第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。

近十年来,最后小题的得分率在0.3以下的情况,只是偶尔发生,但一旦发生,就会引起各方关注。

控制压轴题的难度已成为各届命题组的共识,“起点低,坡度缓,尾巴略翘”已成为各地区数学试卷设计的一大特色,以往茂名卷的压轴题大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。

由此可见,压轴题也并不可怕。

压轴题一般都是代数与几何的综合题,很多年来都是以函数和几何图形的综合作为主要方式,用到三角形、四边形、相似形和圆的有关知识。

如果以为这是构造压轴题的唯一方式那就错了。

方程与图形的综合的几何问题也是常见的综合方式,就是根据已知的几何条件列出代数方程而得解的,这类问题在外省市近年的中考试卷中也不乏其例。

动态几何问题中有一种新题型,如北京市去年的压轴题,在图形的变换过程中,探究图形中某些不变的因素,它把操作、观察、探求、计算和证明融合在一起。

在这类动态几何问题中,锐角三角比作为几何计算的一种工具,它的重要作用有可能在压轴题中初露头角。

总之,压轴题有多种综合的方式,不要老是盯着某种方式,应对压轴题,决不能靠猜题、押题。

分析结构理清关系:解压轴题,要注意它的逻辑结构,搞清楚它的各个小题之间的关系是“平列”的,还是“递进”的,这一点非常重要。

如果(1)、(2)、(3)三个小题是平列关系,它们分别以大题的已知为条件进行解题,(1)的结论与(2)的解题无关,(2)的结论与(3)的解题无关,整个大题由这三个小题“拼装”而成。

2008年福建省宁德市初中毕业、升学考试重点

2008年福建省宁德市初中毕业、升学考试重点

2008年福建省宁德市初中毕业、升学考试物理试题温馨提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!(满分:100分;考试时间:90分钟)一、选择题(本大题共11小题,每小题2分,共22分。

每小题只有一个选项是正确的,请把正确选项的序号填在题后的括号里,错选、多选和不选均得0分)1.我市地处沿海,昼夜温差较小,其主要原因是水比沙石具有较大的()A.热量B.密度C.比热容D.热值2.下列事例能够增大压强的是()A.书包背带做得宽些B.刀刃磨得很薄C.铁轨铺在枕木上D.增加载重汽车的轮子3.发生地震时,小明被困在建筑物的废墟中,他处变不惊,通过敲击就近的铁制管道,被救援人员发现而获救。

小明这种做法是利用铁管能够()A.传声B.传热C.导电D.通风4.壹元硬币的外观有银色的金属光泽,一些同学认为它可能是铁制成的,在探究中,有同学提出:“我们可以拿磁铁来吸一下”。

“拿磁铁来吸一下”这一过程,是属于科学探究中的()A.结论B.评估C.猜想与假设D.进行实验5.在风景秀丽的太姥山下,宁德核电站正在筹建中。

关于核电站,下列说法正确的是()A.核电站所使用的核燃料是煤和石油B.核电站核反应堆中发生的是可以控制的核裂变C.核电站发电的能量转化过程中:核能→内能→电能→机械能D.核电站产生的核废料可以当作生活垃圾处理6.在下面四幅图中,属于光的反射现象是()7.初春的早晨,大雾弥漫,大雾的形成属于雾态变化中的()A.凝华B.凝固C.液化D.汽化8.将质量相同的木块、铝块、铜块放入水中,木块漂浮,铝块、铜块下沉,则它们受到的浮力()A.铝块最大B.木块最大C.铜块最大D.一样大9.两个小灯泡L1和L2,L1的阻值是R,L2的阻值是2R,把它们串联起来接入电路中,如果L1两端的电压是4V,那么L2两端的电压为()A.8V B.6V C.4V D.2V10.下列做法中,正确的是()A.为了节约用电,夏天使用空调时把温度调得很低B.废旧的干电池不会污染环境,没有必要进行集中分类处理C.为了节约用电,要养成随手关灯的习惯D.用湿布擦正在发光的白炽灯和日光灯11.“频闪摄影”是研究物体运动时常用的一种方法,下图A、B、C、D分别是用照相机拍摄(每0.1s拍摄一次)的小球在四种不同运动状态下的照片,其中受到平衡力作用的是()二、填空题(本大题共9小题,每空1分,共21分)12.人们为了纪念物理学家所作出的杰出贡献,有些物理量就用他们的名字作为单位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档