2016年秋人教版九年级数学上华章教育单元测试(二).doc

合集下载

人教版九年级数学上册二检参考答案.docx

人教版九年级数学上册二检参考答案.docx

初中数学试卷桑水出品2015—2016学年度(上)学期教学质量检测九年级数学试卷(二)参考答案试卷满分:150分一、选择题(每小题3分,共30分)1.B2.C3.D4.A5.D6.D7.A8.B9.C 10.C二、填空题(每小题3分,共24分) 11.120,2x x == 12.(2,0),(-4,0) 13.(1,-2) 14.3515.0或1 16.217.163π18. 23三、解答题(第19题10分,第20题12分,共计22分)19. 解:(1)连接OA.--------------------------------------------------------------------------------------1 由圆周角定理得:12∠AOC=∠ADC=30°,-------------------------------------------2 ∴∠AOC=60°--------------------------------------------------------------------------------3 ∵OC ⊥AB ,OA=OB∴∠BOC=∠AOC=60°-----------------------------------------------------------------------5(2)∠OBE=90°-∠BOC=30°,OE=12OB=2,BE=223OB OE -=---------8 S 阴影部分=S 扇形OBC -S △OBE =26021433313602ππ⨯--⨯⨯=----------------------------1020.第19题图解:(1)240÷40%=600,即本次参加抽样调查的居民有600人.--------------------------2 (2)扇形图A部分180÷600=30%,C部分1-10%-30%-40%=20%条形图C部分600-180-60-240=120补图正确-----------------------------------------------------------------------------------5 (3)8000×40%=3200,即估计爱吃D粽的人数为3200人-------------------------7第一个第二个A B C DA (A,B)(A,C)(A,D)B (B,A)(B,C)(B,D)C (C,A)(C,A)(C,A)D (D,A) (D,B) (D,C)----------------------------------------------------------------------------------------------------------9 共有12种结果,每种结果出现的可能性相同,--------------------------------------------10 满足条件的结果有3种,分别是(A,C)、(B,C)、(D,C)----------------------------------11∴小王第二个吃到的恰好是C粽的概率是P(第二次吃到C粽)=31124.------12四、解答题(第21题12分,第22题12分,共计24分)21.解:(1)取出黄球的概率是13---------------------------------------------------3(2)第一个球第二个球黄白红黄(黄,黄)(黄,白)(黄,红)第20题图白(白,黄)(白,白)(白,红)红(红,黄)(红,白)(红,红)----------------------------------------------------------------------------------------------------------7 共有9种结果,每种结果出现的可能性相同,----------------------------------------------9 满足条件的结果有1种,即(红,红)-----------------------------------------------------10 ∴两次取出的都是红色球的概率的概率是P(两次均为红球)=19-------------------------12 22.解:设钢产量的月平均增长率为x.---------------------------------------1则25000(1)5000(1)13200x x+++=--------------------------------6 化简得22575160x x+-=-------------------------------------------7解得:1120%5x==,2165x=-(不合题意,舍去)-------------------11 答:该厂钢产量的月平均增长率为20%.------------------------------------12五、解答题(12分)23.解(1)DE与⊙O相切,理由如下:----------------------------------------------------------1 连接OD交BC于M-----------------------------------------------------------------------2 ∵AB为直径∴∠ACB=90°∴∠MCE=180°-90°=90°-------------------------------------------------3 又∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAC∴∠OAD=∠DAE,∴∠ODA=∠DAE---------------------------------------------------------------------------------4 ∴MD∥CE又DE∥BC∴四边形CNDE为平行四边形----------------------------------------------------------------5第23题图∴∠ODE=∠MCE=90°-------------------------------------------------------------------------6 ∴DE 与⊙O 相切---------------------------------------------------------------------------------7 (2)∵MD ∥CE ∴∠DMC=∠ACB=90°∴BM=MC------------------------------------------------------------------------------------------8 又∵OA=OB∴OM=12AC=3-----------------------------------------------------------------------------------9 MD=OD-OM=12×10-3=2-----------------------------------------------------------------------10∵四边形CNDE 为平行四边形-----------------------------------------------------------------11 ∴CE=MD=2----------------------------------------------------------------------------------------12 六、解答题(12分)24. 解:(1)设甲、乙两种商品的进货单价分别为x 元和y 元.------------------------------------1 则3327x y x y +=⎧⎨+=⎩------------------------------------------------------------------------------------------3解得12x y =⎧⎨=⎩----------------------------------------------------------------------------------------------5答:甲、乙两种商品的进货单价分别为1元和2元.-------------------------------------------6 (2)设商店每天销售甲、乙两种商品获取的总利润w 元 则2(21)(500100)(32)1300100050018000.1mw m m m =--+⨯+-⨯=-++-----8 21000(0.25)1862.5w m =--+∵a=-1000<0,抛物线开口向下对称轴为m=0.25,当m <0.25时,w 随m 的增大而增大∵m 为0.1的正整数倍,∴m=0.2时,w 有最大值1860元---------------------------------10 当m >0.25时,w 随m 的增大而增减小∵m 为0.1的正整数倍,∴m=0.3时,w 有最大值1860元---------------------------------11答:当m 等于0.2或0.3时,商店每天销售甲、乙两种商品获取的总利润最大,最大利润为1860元.-------------------------------------------------------------------------------------------12 七、解答题(12分) 25.(1)作EG ⊥OB 交AB 于G----------------------------------------------------------------------------1 ∴∠GEB=90°∴∠FEB+∠FEG=∠FEG+∠AEG=90°∴∠FEB=∠AEG-------------------------------------------------------------------------------------2 ∵四边形A BCD 是正方形∴∠GBE=45°,AB=AD ,∴∠BAD=90° ∴∠BGE=90°-45°=45°=∠GBE ,EB+ED=BD=22222AB AD AB AB +==-----------------------------------------------------------------------------------------------------------------3 ∴EB=EG ,BG=22222BG EB EG EG EB =+==-------------------------------4①∠FEB+∠BAE=∠AEG+∠BAE=∠BGE=45°---------------------------------------------------5 ②在△EBF 和△EGA 中∴△EBF ≌△EGA (SAS )---------------------------------------------------------------------------6 ∴BF=AG-------------------------------------------------------------------------------------------------7 ∴EB+ED=BD=2AB =2()2(2)22BG AG EB BF EB BF +=+=+∴ED -EB=2BF------------------------------------------------------------------------------------8 (分写:①3分,②5分)(2)补图正确----------------------------------------------------------------------------------------10 EB -ED=2BF---------------------------------------------------------------------------------12八、解答题(14分) 26解:(1)∵抛物线的对称轴为1x =第25题图a第25题图bEF EAFEB AEG EB EG =⎧⎪∠=∠⎨⎪=⎩∴抛物线的解析式可设为2(1)y a x k =-+-------------------------------------1 又抛物线经过A (-1,0),B (4,5)两点 ∴4095a k a k +=⎧⎨+=⎩------------------------------------------------------------2解得14a k =⎧⎨=-⎩-------------------------------------------------------------4∴抛物线的解析式可设为22(1)423y x x x =--=---------------------------5 (2)设直线AB 的解析式是y mx n =+ 所以045m n m n -+=⎧⎨+=⎩,解得11m n =⎧⎨=⎩∴1y x =+----------------------------------6设点P 坐标为(,)x y①当P 在线段AB 上时,如图①PQ=21(23)6x x x +---=,解得121,2x x ==,所以P 点坐标为(1,2)或(2,3) ------------------------------------------------------------------------8当P 在线段AB 延长线或反向延长线上时,如图②PQ=223(1)6x x x ---+=,解得2x =-或5x =所以P 点坐标为(-2,-1)或(5,6) -------------------------------------------------------------------------9 所以P 点坐标为(1,2)或(2,3)或(-2,-1)或(5,6)②存在---------------------------------------------------------------------------------------------------10 P 1(2,3),P 2(3,4),P 3(42,52)--,P 4(42,52)++---------------------------14第26题图。

人教版数学九年级上册单元测试卷含答案

人教版数学九年级上册单元测试卷含答案

第二十一章 一元二次方程检测题一.填空题(每题5分,共25分)1. 方程1)32)(13(=-+x x 化成一般式是__________,其中二次项系数是____,一次项系数是____,常数项是______。

2. 关于x 的方程02)1()1(22=-++-x k x k ,当k____时,它是一元二次方程;当k____时,它是一元一次方程。

3. 方程)3(5)3(2-=-x x x 的根是____________。

4. 如果方程0622=--+k kx x 的一个根是-3,那么另一个根是____,k=______。

5. 若方程043222=-+-a x x 有两个不相等的实数根,则a 的取值范围为_______,则a a a 81622-+--的值等于________。

二. 选择题(每题6分,共30分)6. 下列关于x 的方程中,一定是一元二次方程的是 ( )A . 023)3(2=---x x m B. 0652=++k x kC .0214222=--x x D. 02132=-+xx 7. 关于x 的方程0122=---m mx x 的根的情况 ( )A. 没有实数根 B. 有两个相等的实数根C . 有两个不相等的实数根D . 不能确定。

8. 方程04322=-+x x 的两根倒数之和为 ( )A . 43B . 43-C . 23 D . 以上答案都不对。

9. 在实数范围内分解因式364-x 的结果正确的是 ( )A . )6)(6(22-+x x B . )6)(6)(6(2-++x x xC .)6)(6()6(2-++x x x D . 以上答案都不对。

10.某厂一月份生产空调机1200台,三月份生产空调机1500台,若二、三月份 每月平均增长的百分率是x,则所列方程是 ( )A. 1500)1(12002=+x B . 1500)1(12002=+xC. 1500)21(1200=+x D. 1500)1(12002=+x x 三.用适当的方法解方程(每题5分,共20分)11.027)2(2=--x 12. 01452=--x x13. 12)3(22=+-y y 14. x x 32132=+四.用配方法解方程:(本题5分) 15. 05622=-+x x五.(本题6分)16. k 为什么数时,关于x 的方程032)1(2=+++-k kx x k 有两个实数根?六.(本题7分)17.已知:关于x的方程02)12(22=-+++k x k x 的两个实数根的平方和等于11,求k 的值。

最新人教版初中数学九年级数学上册第二单元《二次函数》检测题(答案解析)(2)

最新人教版初中数学九年级数学上册第二单元《二次函数》检测题(答案解析)(2)

一、选择题1.对于二次函数()()2140y ax a x a =+->,下列说法正确的是( )①抛物线与x 轴总有两个不同的交点;②对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点; ③若该函数图象的对称轴为直线0x x =,则必有012x <<; ④当2x ≥时,y 随x 的增大而增大,则102a <≤ A .①②B .②③C .①④D .③④2.已知抛物线()20y ax bx c a =++<过()30A -,、()1,0O 、()15,B y -、()25,C y 四点,则1y 与2y 的大小关系是( ) A .12y y >B .12y y <C .12y y =D .不能确定3.()11,y -()20,y ()34,y 是抛物线22y xx c =-++上三点的坐标,则1y ,2y ,3y 之间的大小关系为( ) A .123y y y << B .213y y y <<C .312y y y <<D .321y y y <<4.已知函数221y x x =--,下列结论正确的是( )A .函数图象过点()1,1-B .函数图象与x 轴无交点C .当1≥x 时, y 随x 的增大而减小D .当1x ≤时, y 随x 的增大而减小5.抛物线2(2)3y x =-+的对称轴是( ) A .直线2x =-B .直线3x =C .直线1x =D .直线2x =6.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A 、B 两点.下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1;⑥a +b ≥m (am +b )(m 实数)其中正确的是( )A .①②③⑥B .①③④C .①③⑤⑥D .②④⑤7.如图所示的抛物线形构件为某工业园区的新厂房骨架,为了牢固起见,构件需要每隔0.4m 加设一根不锈钢的支柱,构件的最高点距底部0.5m ,则该抛物线形构件所需不锈钢支柱的总长度为( )A .0.8mB .1.6mC .2mD .2.2m8.二次函数()20y ax bx c a =++≠的图象如图所示,则下列结论正确的是( )A .0abc >B .20a b +<C .关于x 的方程230ax bx c +++=有两个相等的实数根D .930a b c ++<9.已知二次函数2y ax bx c =++的图象如图所尔,对称轴为直线x=1,则下列结论正确的是( )A .0ac >B .方程20ax bx c ++=的两根是1213x x =-=, C .20a b -=D .当x>0时,y 随x 的增大而减小.10.已知二次函数2y ax bx c =++,当2x =时,该函数取最大值9.设该函数图象与 x 轴的一个交点的横坐标为1x ,若15x >则a 的取值范围是( ) A .3a 1-<<- B .2a 1-<< C .1a 0-<< D .2a 4<< 11.抛物线y=2(x -1)2-3向左平移3个单位长度,此时抛物线的对称轴是直线( ) A .x =-3B .x =-1C .x =-2D .x =412.在西宁市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间满足函数解析式y 112=-x 223+x 53+,由此可知该生此次实心球训练的成绩为( ) A .6米B .8米C .10米D .12米二、填空题13.如图,抛物线()()13y a x x =+-与x 轴交于A ,B 两点(点A 在B 的左侧),点C 为抛物线上任意一点....(不与A ,B 重合),BD 为ABC 的AC 边上的高线,抛物线顶点E 与点D 的最小距离为1,则抛物线解析式为______.14.已知二次函数2y ax bx c =++自变量x 的部分取值和对应函数值y 如表:x2- 1- 0 1 23 y831-3则在实数范围内能使得成立的取值范围是_______.15.若二次函数()221y x k =++的图象上有两点()(),,,03A m B n -,m ____________n .(填“>”,“=”或“<”)16.写出一个二次函数,其图像满足:①开口向下;②与y 轴交于点(0,3)-,这个二次函数的解析式可以是_______________________. 17.已知抛物线243y x x =-+与x 轴交于A 、B 两点,P 为抛物线上一点,且1APB S ∆=,则P 的坐标为_______.18.已知自变量为x 的二次函数4()()y ax b x b=++经过(,4),(2,4)m m +两点,若方程4()()0ax b x b++=的一个根为3x =,则其另一个根为__________.19.如图,抛物线 y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①2a +b =0;②b 2-4ac <0;③当y >0时,x 的取值范围是 -1<x <3;④当 x >0时,y 随x 增大而增大;⑤若t 为任意实数,则有a+b≥at 2+bt .其中结论正确的是_________.20.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列结论:①0ac <;②20b a -=;③0a b c -+=;④当1x >时,y 随x 的增大而减小.其中正确的结论是______.(填序号)三、解答题21.“新冠肺炎”疫情期间某工厂为支持国家抗击疫情每天连夜生产急缺的消毒液,已知每瓶消毒液的生产成本为20元,为了合理定价,根据市场调查发现,当销售单价为30元时,每天的销售量为6000瓶,若销售单价每降低1元,则每天能多销售1000瓶,但要求销售单价不能低于成本且不高于30元.(1)求每天的销售量y (瓶)与销售单价x (元)之间的函数关系式; (2)求每天的利润w (元)与销售单价x (元)之间的函数关系式;(3)该工厂负责人决定将每天的利润全部捐献出来进一步支持国家抗击“新冠肺炎”疫情,则当销售单价为多少元时,每天的销售利润最大?最大利润是多少? 22.已知抛物线2(0)y ax bx a =+≠经过点(4,8)A -和点(,0)(0)P m m ≠.(1)若点A 是抛物线的顶点,则m =______.(2)如图,若2m =,设此时抛物线的顶点为B ,求OAB 的面积.23.某商场新上市一款运动鞋,每双进货价为150元,投入市场后,调研表明:当销售价为200元时,平均每天能售出10双;而当销售价每降低5元时,平均每天就能多售出5双.(1)商场要想尽快回收成本,并使这款运动鞋的销售利润平均每天均达到675元,那么这款运动鞋的销售价应定为多少元?(2)请用配方法求:这款运动鞋的销售价定为多少元时,可使商场平均每天获得的利润最大?最大利润是多少元?24.已知:二次函数2y x bx c =++过点(0,-3),(1,-4) (1)求出二次函数的表达式;(2)在给定坐标系中画出这个二次函数的图像;(3)根据图像回答:当0≤x <3时,y 的取值范围是 .25.如图,二次函数2y x bx c =-++与x 轴交于点B 和点()1,0A -,与y 轴交于点()0,4C ,与一次函数y x a =+交于点A 和点D .(1)求出a 、b 、c 的值;(2)若直线AD 上方的抛物线存在点E ,可使得EAD 面积最大,求点E 的坐标; (3)点F 为线段AD 上的一个动点,点F 到(2)中的点E 的距离与到y 轴的距离之和记为d ,求d 的最小值及此时点F 的坐标.26.已知二次函数的图象经过点(0,3),(3,0),(1,0)-,求此二次函数的解析式,并判断点(2,3)P -是否在这个二次函数图象上.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】①由y=0,一元二次方程()214=0ax a x +-,判别式()2=14a ∆-=0即可判断①;②抛物线中c=0,恒过原点,当x=4,函数值为4即可判断②;③抛物线对称轴为:122x a =-当11222a<-<时,解得102a <<,求出12a >即可判断③;④0a >,对称轴为:1222x a=-<,由抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大即可判断④. 【详解】①由y=0,()214=0ax a x +-,()2=14a ∆-,当1=04a >时,()2=14=0a ∆-有一个交点,为此抛物线与x 轴总有两个不同的交点不正确;②由()()2140y ax a x a =+->中c=0,抛物线恒过原点(0,0),当x=4,()4=1166144416y a a a a ⨯-=++=-,抛物线恒过(4,4),为此对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点正确; ③()()2140y ax a x a =+->对称轴为:1441122222b a a x a a a a--=-=-==-, 当11222a<-<时,解得102a <<,∴12a >, 为此当12a >,若该函数图象的对称轴为直线0x x =,则必有012x <<正确;④()()2140y ax a x a =+->对称轴为:122x a=-, ∵0a >,抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大, 由此1222x a=-≤, 解得10a>即0a >, 为此当2x ≥时,y 随x 的增大而增大,则102a <≤不正确. 故选择:B . 【点睛】本题考查抛物线与一元二次方程的关系,抛物线过定点,抛物线的对称轴,抛物线的增减性等问题,掌握抛物线的性质以及一元二次方程根的判别式是解题关键.2.A解析:A 【分析】根据A (-3,0)、O (1,0)两点可确定抛物线的对称轴,再根据开口方向,B 、C 两点与对称轴的远近,判断y 1与y 2的大小关系. 【详解】解:∵抛物线过A (-3,0)、O (1,0)两点, ∴抛物线的对称轴为x=312-+=-1, ∵a <0,抛物线开口向下,离对称轴越远,函数值越小,由()15,B y -、()25,C y 可知C 点离对称轴远,对应的纵坐标值小, 即y 1>y 2. 故选:A . 【点睛】此题主要考查了二次函数图象上点的坐标特征,比较抛物线上两点纵坐标的大小,关键是确定对称轴,开口方向,两点与对称轴的远近.3.C解析:C 【分析】先判断函数的开口向下,对称轴为x=1,从而得出距离对称轴越远,函数值越小,再结合三点坐标即可判断1y ,2y ,3y 之间的大小关系. 【详解】 解:∵在22y xx c =-++中,21,122b a a =--=-=-, ∴该函数开口向下,对称轴为x=1,且距离对称轴越远,函数值越小,∵()11,y -、()20,y 、()34,y 三点距离对称轴的距离为:2,1,3, ∴312y y y <<, 故选:C . 【点睛】本题考查比较二次函数值的大小.理解二次函数当a<0时距离对称轴越远的点,函数值越小是解题关键.4.D解析:D 【分析】根据二次函数的性质进行判断即可. 【详解】解:A 、当x=-1时,221y x x =--=1+2﹣1=2,函数图象过点(-1,2),此选项错误;B 、∵△=(﹣2)2﹣4×1×(﹣1)=8>0, ∴函数图象与x 轴有两个交点, 故此选项错误;C 、∵221y x x =--=(x ﹣1)2﹣2,且1>0,∴当x≥1时,y 随x 的增大而增大, 故此选项错误;D 、当x≤1,时,y 随x 的增大而减小,此选项正确, 故选:D . 【点睛】本题考查二次函数的性质、抛物线与x 轴的交点问题,熟练掌握二次函数的性质是解答的关键.5.D解析:D 【分析】直接利用二次函数对称轴求法得出答案. 【详解】解:抛物线y=(x-2)2+3的对称轴是:直线x=2. 故选:D . 【点睛】此题主要考查了二次函数的性质,正确掌握对称轴确定方法是解题关键.6.C解析:C 【分析】根据拋物线的开口方向以及对称轴为x =1,即可得出a 、b 之间的关系以及ab 的正负,由此得出①正确;根据抛物线与y 轴的交点在y 轴正半轴上,可知c 为正结合a <0、b >0即可得出②错误;将抛物线往下平移3个单位长度可知抛物线与x 轴只有一个交点从而得知③正确;根据拋物线的对称性结合抛物线的对称轴为x =1以及点B 的坐标,即可得出抛物线与x 轴的另一交点坐标,④正确;⑤根据两函数图象的上下位置关系即可判断y 2<y 1,故⑤正确;当1x =时y 1有最大值,a +b +c ≥am 2+bm +c ,即可判断⑥正确. 【详解】解:由抛物线对称轴为直线x =2ba-,从而b =﹣2a ,则2a +b =0,故①正确; 抛物线开口向下,与y 轴相交于正半轴,则a <0,c >0,而b =﹣2a >0,因而abc <0,故②错误;方程ax 2+bx +c =3从函数角度可以看做是y =ax 2+bx +c 与直线y =3求交点,从图象可以知道,抛物线顶点为(1,3),则抛物线与直线有且只有一个交点 故方程ax 2+bx +c =3有两个相等的实数根,故③正确;由抛物线对称性,与x 轴的一个交点B (4,0),则另一个交点坐标为(﹣2,0),故④错误;由图象可知,当1<x <4时,y 2<y 1,故⑤正确;因为x =1时,y 1有最大值,所以a +b +c ≥am 2+bm +c ,即a +b ≥m (am +b )(m 实数),故⑥正确. 故选C . 【点睛】本题主要考查了二次函数的图像、一次函数图像、二次函数的图象与系数的关系等知识考查知识点较多.解答的关键在于读懂图象信息,掌握二次函数知识,灵活运用所学知识解决问题,属于中考常考题型.7.B解析:B 【分析】根据题意建立平面直角坐标系,得出B 、C 的坐标,然后根据待定系数法求出抛物线解析式,然后求出当当0.2x =和0.6x =时y 的值,然后即可求解. 【详解】如图,由题意得()0,0.5B ,()1,0C .设抛物线的解析式为2y ax c =+, 代入得12a =-,12c =,∴抛物线的解析式为21122y x =-+. 当0.2x =时,0.48y =, 当0.6x =时,0.32y =.∴()1122334420.480.32 1.6BC B C B C B C m +++=⨯+=, 故选B . 【点睛】本题考查了二次函数的拱桥问题,关键是要根据题意作出平面直角坐标系,并根据所建立的平面直角坐标系求出函数解析式.8.D解析:D 【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:由图象可知:a <0,b >0,c >0,abc <0,故A 选项错误;对称轴为x=-2ba=1,得2a=-b , ∴2a+b=0,故B 错误;由图像可得二次函数的图象与x 轴有两个交点,故230ax bx c +++=有两个相等的实数根的说法错误,故C 错误; ∵对称轴为x=1,∴抛物线与x 轴的另一个交点得横坐标小于2, ∴当x=3时,y=9a+3b+c <0,故D 正确; 【点睛】本题考查了图象与二次函数系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.9.B解析:B 【解析】 解:A 、∵抛物线开口向下,与y 轴交于正半轴,∴a <0,c >0,ac <0,故本选项错误;B 、∵抛物线对称轴是x=1,与x 轴交于(3,0),∴抛物线与x 轴另一交点为(-1,0),即方程ax2+bx+c=0的两根是x1=-1,x2=3,故本选项正确;C 、∵抛物线对称轴为,∴b=-2a ,∴2a+b=0,故本选项错误;D 、∵抛物线对称轴为x=1,开口向下,∴当x >1时,y 随x 的增大而减小,故本选项错误.故选B .根据抛物线的开口方向,对称轴,与x 轴、y 轴的交点,逐一判断.10.C解析:C【分析】根据二次函数2y ax bx c =++,当2x =时,该函数取最大值9,可以写出该函数的顶点式,得到0a <,再根据该函数图象与x 轴的一个交点的横坐标为1x ,15x >,可知,当5x =时,0y >,即可得到a 的取值范围,本题得以解决.【详解】 解:二次函数2y ax bx c =++,当2x =时,该函数取最大值9, 0a ∴<,该函数解析式可以写成2(2)9y a x =-+,设该函数图象与x 轴的一个交点的横坐标为1x ,15x >,∴当5x =时,0y >,即2(52)90a -+>,解得,1a >-,a ∴的取值范围时10a -<<,故选:C .【点睛】本题考查二次函数图象与系数的关系、二次函数的最值、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.11.C解析:C【分析】根据二次函数图象的平移规律得出平移后的抛物线的解析式,由此即可得出答案.【详解】由题意,平移后的抛物线的解析式为2213()3y x =-+-,即22(2)3y x =+-, 则此时抛物线的对称轴是直线2x =-,故选:C .【点睛】本题考查了二次函数图象的平移、二次函数的对称轴,熟练掌握二次函数图象的平移规律是解题关键. 12.C解析:C【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可.【详解】解:当y =0时,即y 112=-x 223+x 53+=0, 解得:x =﹣2(舍去),x =10.∴该生此次实心球训练的成绩为10米.故选:C .【点睛】 本题考查了二次函数的应用中函数式中变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.二、填空题13.【分析】根据题意可确定出AB 两点的坐标从而求出对称轴为x=1依题意要使DE 最小则D 点必在对称轴上从而根据题意画出图形求解即可【详解】解:如图所示使DE 最小则D 点必在对称轴x=1上过点E 作EF ⊥AB 则解析:2339424y x x =-- 【分析】根据题意可确定出A ,B 两点的坐标,从而求出对称轴为x=1,依题意要使DE 最小则D 点必在对称轴上,从而根据题意画出图形求解即可.【详解】解:如图所示,使DE 最小则D 点必在对称轴x=1上,过点E 作EF ⊥AB ,则AF=BF ,∴AD=BD ,∵BD 为ABC 的AC 边上的高线,∴∠ADB=90°,∴∠DBF=∠BDF=45°,∴DF=BF=2.当x=1时,y=-4a ,∵抛物线开口向上,∴a>0,∴EF=4a .∵DE=1,∴4a-2=1解得:a=34. ∴抛物线解析式为3(1)(3)4y x x =+- 即2339424y x x =-- 故答案为:2339424y x x =--. 【点睛】本题考查了二次函数的综合题,结图象求最值问题,利用好数形结合找出最小值的点是解题的关键.14.或【分析】根据表格中的数据和二次函数的性质可以得到对称轴函数图象的开口方向再根据表格中的数据即可得到y-3>0成立的x 取值范围【详解】解:由表格可知该二次函数的对称轴是直线函数图象开口向上故y-3> 解析:1x <-或3x >【分析】根据表格中的数据和二次函数的性质,可以得到对称轴、函数图象的开口方向,再根据表格中的数据,即可得到y-3>0成立的x 取值范围.【详解】解:由表格可知, 该二次函数的对称轴是直线1312x -+==,函数图象开口向上, 故y-3>0成立的x 的取值范围是x <-1或x >3,故答案为:x <-1或x >3.【点睛】 本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,利用二次函数的性质解答.15.【分析】抛物线开口向上且对称轴为直线根据二次函数的图象性质:在对称轴的右侧y 随x 的增大而增大【详解】∵二次函数∴该抛物线开口向上且对称轴为直线:∴点A (-3m )关于对称轴的对称点为(1m )∵-1<0解析:>【分析】抛物线开口向上,且对称轴为直线1x =-,根据二次函数的图象性质:在对称轴的右侧,y 随x 的增大而增大.【详解】∵二次函数22(1)y x k =++,∴该抛物线开口向上,且对称轴为直线:1x =-.∴点A (-3,m )关于对称轴的对称点为(1,m ),∵-1<0<1,∴m >n .故答案为:>.【点睛】本题主要考查了二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.16.【分析】根据二次函数的性质可得出a <0利用二次函数图象上点的坐标特征可得出c=-3取a=-1b=0即可得出结论【详解】解:设二次函数的解析式为y=ax2+bx+c ∵抛物线开口向下∴a <0∵抛物线与y解析:23=--y x【分析】根据二次函数的性质可得出a <0,利用二次函数图象上点的坐标特征可得出c=-3,取a=-1,b=0即可得出结论.【详解】解:设二次函数的解析式为y=ax 2+bx+c .∵抛物线开口向下,∴a <0.∵抛物线与y 轴的交点坐标为(0,-3),∴c=-3.取a=-1,b=0时,二次函数的解析式为y=-x 2-3.故答案为:y=-x 2-3(答案不唯一).【点睛】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征,找出a <0,c=-3是解题的关键.17.(2-1)或(2-1)或(2+1)【分析】当y=0时求得x 的值确定AB 的长设点P 坐标为根据三角形面积公式列方程求解即可【详解】解:当y=0时解得:∴AB=2设点P 坐标为∴∴当时解得x=2此时P 点坐标解析:(2,-1)或(1),或(,1).【分析】当y=0时,求得x 的值,确定AB 的长,设点P 坐标为2(,43)x x x -+,根据三角形面积公式列方程求解即可.【详解】解:当y=0时,243=0x x -+解得:121,3x x ==∴AB=2设点P 坐标为2(,43)x x x -+, ∴214312APB S AB x x ∆=-+= ∴2431x x -+=当2431x x -+=-时,解得x=2,此时P 点坐标为(2,-1)当2431x x -+=时,解得122x x =P 点坐标为(,1),或(,1)综上,P 的坐标为:(2,-1)或(1),或(,1)故答案为:(2,-1)或(,1),或(,1).【点睛】本题考查二次函数与图形,利用数形结合思想列方程求解是解题关键.18.x=﹣1或﹣5【分析】根据题意该函数一定过点(04)可得两点的坐标进而求得对称轴根据解析式与方程的关系即可求得方程另一个根【详解】解:∵当x=0时=4∴m=0或m=﹣2∴二次函数经过或∴对称轴为直线解析:x=﹣1或﹣5【分析】根据题意该函数一定过点(0,4),可得(,4),(2,4)m m +两点的坐标,进而求得对称轴,根据解析式与方程的关系即可求得方程另一个根.【详解】解:∵当x=0时,4()()y ax b x b =++=4,∴m=0或m=﹣2,∴二次函数4()()y ax b x b =++经过(0,4),(2,4)或(2,4),(0,4)-,∴对称轴为直线x=1或x=﹣1,∵方程4()()0ax b x b++=的一个根为3x =,∴方程的另一个根为x=﹣1或﹣5,故答案为:x=﹣1或﹣5.【点睛】本题考查二次函数图象上的点的坐标特征、二次函数与一元二次方程的关系,熟练掌握二次函数的图象与性质,根据二次函数的对称性求解是解答的关键. 19.①③⑤【分析】根据二次函数的图象及性质即可判断【详解】解:由图象可知:该抛物线的对称轴为x=1∴抛物线与x 轴的另外一个交点为:(30)∵对称轴为x=−=1从而可知:2a+b=0故①正确;∵抛物线与x解析:①③⑤【分析】根据二次函数的图象及性质即可判断.【详解】解:由图象可知:该抛物线的对称轴为x=1,∴抛物线与x 轴的另外一个交点为:(3,0)∵对称轴为x=−2b a=1, 从而可知:2a+b=0,故①正确;∵抛物线与x 轴有两个交点(-1,0),(3,0)∴△=b 2-4ac >0,而②b 2-4ac <0,故②错误;由图象可知:当y >0时,x 的取值范围是-1<x <3,故③正确;由图象可知:当x <1时,y 随x 增大而增大,故④错误;若t 为任意实数,x=1时,函数取得最大值,故a+b+c≥at 2+bt+c ,∴a+b≥at 2+bt ,故⑤正确,所以,结论正确的是①③⑤.故答案为:①③⑤.【点睛】本题考查二次函数图象与系数的关系,解题的关键是熟练正确理解二次函数图象与系数的关系,本题属于中等题型.20.①③【分析】由抛物线的开口方向判断的符号由抛物线与轴的交点判断的符号然后根据对称轴抛物线的增减性进行推理进而对所得结论进行判断【详解】解:①图象开口向上与轴交于负半轴能得到:故①正确;②对称轴为直线解析:①③【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴、抛物线的增减性进行推理,进而对所得结论进行判断.【详解】解:①图象开口向上,与y 轴交于负半轴,能得到:0a >,0c <,0ac ∴<,故①正确; ②对称轴为直线1x =,12b a∴-=, 2b a ∴=-,20b a ∴+=,故②错误;③由图象可知,当1x =-时,0y a b c =-+=,故③正确;④由图象可知,在对称轴的右侧,从左往右图象逐渐上升,所以当1x >时,y 随x 的增大而增大,故④错误.故答案为:①③.【点睛】主要考查二次函数的图象与系数之间的关系,熟练掌握二次函数的性质是解题的关键.三、解答题21.(1)函数关系式为y =-1000x +36000;(2)函数关系式为w =-1000x 2+56000x -720000;(3)当销售单价为28元时,最大利润是64000元.【分析】(1)抓住关键的已知条件:当销售单价为30元时,每天的销售量为6000瓶,若销售单价每降低1元,则每天能多销售1000瓶,由此可得到y 与x 之间的函数解析式. (2)利用根据每天的利润=每一件的利润×销售量,列出w 与x 之间的函数解析式. (3)将(2)中的函数解析式转化为顶点式,利用二次函数的性质,可得结果.【详解】(1)解:由题意得y =(30-x )×1×1000+6000=-1000x +36000.∴每天的销售量y (瓶)与销售单价x (元)之间的函数关系式为y =-1000x +36000. (2)解:由题意得w =(x -20)(-1000x +36000)=-1000x 2+56000x -720000.∴每天的利润w (元)与销售单价x (元)之间的函数关系式为w =-1000x 2+56000x -720000. (3)解:w =-1000x 2+56000x -720000=-1000(x -28)2+64000.∵a =-1000<0∴当x =28时,w 有最大值为64000.答:当销售单价为28元时,最大利润是64000元.【点睛】本题考查一次函数和二次函数的实际应用-销售问题;二次函数顶点式的转化也是本题求最值问题的关键.22.(1)8;(2)6.【分析】(1)先将点(4,8)A -代入抛物线的解析式可得1648a b +=-,再根据点A 是抛物线的顶点可得其对称轴42b x a=-=,从而可得8b a =-,求出a 、b 的值,然后将点P 的坐标代入抛物线的解析式即可得; (2)如图(见解析),先利用待定系数法求出抛物线的解析式,从而可得顶点B 的坐标,再利用待定系数法求出直线AB 的函数解析式,从而可得点C 的坐标,然后根据OAB 的面积等于OAC 与OBC 的面积之和即可得.【详解】(1)由题意,将点(4,8)A -代入抛物线的解析式得:1648a b +=-,点A 是抛物线的顶点,∴抛物线的对称轴为42b x a=-=,即8b a =-, 联立16488a b b a +=-⎧⎨=-⎩,解得124a b ⎧=⎪⎨⎪=-⎩, 则抛物线的解析式为2142y x x =-, 将(,0)(0)P m m ≠代入2142y x x =-得:21402m m -=, 解得8m =或0m =(不符题意,舍去),故答案为:8;(2)2m =,(2,0)P ∴, 将点(4,8),(2,0)A P -代入抛物线的解析式得:1648420a b a b +=-⎧⎨+=⎩, 解得12a b =-⎧⎨=⎩, 则此时抛物线的解析式为222(1)1y x x x =-+=--+,∴顶点B 的坐标为(1,1)B ,设直线AB 的函数解析式为y kx c =+,将点(4,8),(1,1)A B -代入得:481k c k c +=-⎧⎨+=⎩,解得34k c =-⎧⎨=⎩, 则直线AB 的函数解析式为34y x =-+,当0y =时,340x -+=,解得43x =,即4(,0)3C , 43OC ∴=, (4,8)(1),1,B A -,OAC ∴的OC 边上的高为8,OBC 的OC 边上的高为1, OAC OB B COA S S S ∴=+, 1414812323=⨯⨯+⨯⨯, 6=,即OAB 的面积为6.【点睛】本题考查了利用待定系数法求二次函数和一次函数的解析式、二次函数的性质等知识点,熟练掌握待定系数法是解题关键.23.(1)商场要想尽快回收成本,这款运动鞋的销售价应定为165元;(2)这款运动鞋的销售价定为180元时,利润最大,最大利润是900元.【分析】(1)根据题意列方程即可得到结论;(2)根据销售利润=一双运动鞋的利润×销售运动鞋数量,一双运动鞋的利润=售价-进价,降低售价的同时,销售量就会提高,“一减一加”,根据每部的盈利×销售的数量=y ,即可列函数关系式;利用函数最值求法得出即可.【详解】解:(1)设这款运动鞋的销售价应定为x 元.200(150)(105)6755x x --+⨯= 解得:x 1=195,x 2=165因为商场想尽快回收成本,所以定价应为165元;(2)200(150)(105)5x y x -=-+⨯ 2(180)900x =--+∴当定价为180元时,获利最多,最大利润为900元.【点睛】此题主要考查了二次函数的应用,本题关键是找到关键描述语,找到等量关系是解决问题的关键.24.(1)2-2-3y x x =;(2)见解析;(3)-4≤y <0【分析】(1)把已知点的坐标代入函数解析式,即可求出答案;(2)根据函数的解析式画出抛物线即可;(3)把二次函数解析式化成顶点式,再根据图形分析计算y 的取值范围即可.【详解】解:(1)将点(0,-3),(1,-4)代入二次函数2y x bx c =++得:314c b c =-⎧⎨++=-⎩, 解得:23b c =-⎧⎨=-⎩, 所以,二次函数的表达式为:223y x x =--;(2)二次函数的图象如下:(3)∵()214y x =--∴当x =1时,有最小值-4,当x =0时,y =(0−1)2-4=−3,当x =3时,y =(3−1)2-4=0,又对称轴为x =1,∴当0≤x <3时,y 的取值范围是−4<y≤0.【点睛】本题考查了用待定系数法求二次函数的解析式、也考查了二次函数的图象与性质,熟练掌握二次函数的三种常用形式:一般式、顶点式、交点式.25.(1)1a =,3b =,4c =;(2)()1,6;(3)最小值为5,F 点的坐标为()1,2【分析】(1)将()1,0A -与()0,4C分别代入二次函数2y x bx c =-++和一次函数y x a =+求解即可;(2)过点E 作x 轴的垂线1,交x 轴于点G ,交AD 于点H ,过点D 作l 的垂线,垂足为T ,由(1)可设点()2,34E m m m -++,则点H 的坐标为(),1m m +,然后根据割补法进行求解面积即可;(3)过A 作y 轴的平行线AS ,过F 作FG y ⊥轴交AS 于点M ,过F 作FN x ⊥轴于N ,由题意易得45DAB ∠=︒,则可证FM FN =,进而可得当N 、F 、E 所在直线与x 轴垂直时,1d FE FN =+-最小,然后问题可求解.【详解】(1)解:将()1,0A -与()0,4C分别代入二次函数2y x bx c =-++,得()2104b c c ⎧---+=⎪⎨=⎪⎩ , 解得34b c =⎧⎨=⎩; 将点()1,0A -代入一次函数y x a =+,得10a -+=,解得1a =,∴1a =,3b =,4c =;(2)解:由(1)所求的a ,b ,c 的值可得一次函数的解析式为:1y x =+,抛物线的解析式为:234y x x =-++,联立1y x =+与234y x x =-++得2134y x y x x =+⎧⎨=-++⎩,解得34x y =⎧⎨=⎩ ∴点D 的坐标为:()3,4,设点()2,34E m m m -++, 过点E 作x 轴的垂线1,交x 轴于点G ,交AD 于点H ,则点H 的坐标为(),1m m +,过点D 作l 的垂线,垂足为T ;∴223EH m m =-++,4=AD , ∴()11112222AED AEH HED S S S EH AG EH DT EH AG DT =+=⨯+⨯=+=△△△ ()()223414218m m m m -++--⨯=--+,当1m =时,最大值为8,此时点E 的坐标为()1,6;(3)解:过A 作y 轴的平行线AS ,过F 作FP y ⊥轴交AS 于点M ,过F 作FN x ⊥轴于N ,∵点D 的坐标为()3,4,点A 坐标为()1,0-∴45DAB ∠=︒,∴AD 平分SAB ∠,∴FM FN =,∴11d FE FM FE FN =+-=+-显然,当N 、F 、E 所在直线与x 轴垂直时,1d FE FN =+-最小,最小值为615-=.此时点F 的横坐标为1,代入1y x =+得F 点的坐标为()1,2.【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的性质是解题关键.26.223y x x =--+,点(2,3)P -在这个二次函数的图象上.【分析】先设此二次函数解析式的交点式,再将点(0,3)代入即可得,然后将点P 的坐标代入进行验证即可得.【详解】由题意,设此二次函数的解析式为31y a x x =+-()(),将点(0,3)代入得:(03)(01)3a +⨯-=,解得1a =-,则此二次函数的解析式为2(3)(1)23y x x x x =-+-=--+,即223y x x =--+;当2x =-时,()()222233=---⨯-+=y ,则点(2,3)P -在这个二次函数的图象上.【点睛】本题考查了利用待定系数法求二次函数的解析式等知识点,熟练掌握待定系数法是解题关键.。

人教版九年级数学上册全册单元测试题(每章一份共5份)

人教版九年级数学上册全册单元测试题(每章一份共5份)

第二十一章一元二次方程一、单选题(共10题;共30分)1、上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元. 下列所列方程中正确的是()A、168(1+a)2=128B、168(1-a%)2=128C、168(1-2a%)=128D、168(1-a2%)=1282、在俄罗斯民间流着这样一道数学趣题:甲、乙两人合养了若干头羊,而每头羊的卖价又恰与羊的头数相等,全部卖完后,两人按下面的方法分钱:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩下不足十元,轮到乙拿去。

为了平均分配,甲应该找补给乙多少元?()A、1元B、2元C、3元D、4元3、已知关于x的方程(m+3)x2+x+m2+2m-3=0的一根为0,另一根不为0,则m的值为()A、1B、-3C、1或-3D、以上均不对4、用因式分解法解方程,下列方法中正确的是()A、(2x-2)(3x-4) =0 ∴2-2x=0或3x-4=0B、(x+3)(x-1)=1 ∴x+3=0或x-1=1C、(x-2)(x-3)=2×3 ∴x-2=2或x-3=3D、x(x+2)=0 ∴x+2=05、已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值是A、3或﹣1B、3C、1D、﹣3或16、方程x2=9的解是()A、x1=x2=3B、x1=x2=9C、x1=3,x2=﹣3D、x1=9,x2=﹣97、如果关于x的一元二次方程x2﹣6x+2k=0有两个实数根,那么实数k的取值范围是()A、k≤B、kC、kD、k8、已知x=2是方程x2﹣6x+m=0的根,则该方程的另一根为()A、2B、3C、4D、89、若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围是()A、k>1B、k≠0C、k<1D、k<1且k≠010、(2017•黔东南州)已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A、2B、﹣1C、D、﹣2二、填空题(共8题;共25分)11、(2015•凉山州)已知实数m,n满足3m2+6m﹣5=0,3n2+6n﹣5=0,且m≠n,则=________ .12、校生物小组有一块长32m,宽20m的矩形实验田,为了管理方便,准备沿平行于两边的方向纵、横个开辟一条等宽的小道,要使种植面积为540m2,小道的宽应是________米.13、已知x为实数,且满足(x2+3x)2+2(x2+3x)﹣3=0,那么x2+3x=________ .14、某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,那么根据题意可列关于x的方程是________15、关于x的一元二次方程x2+3x﹣m=0有两个不相等的实数根,则实数m的取值范围是________16、方程3x2﹣2x﹣1=0的一次项系数是________,常数项是________.17、关于x的方程kx2﹣4x+3=0有实数根,k的取值范围________.18、关于x的方程x2﹣4x+k=0有两个相等的实数根,则实数k的值为________.三、解答题(共5题;共35分)19、已知关于x的方程(a-1)+2x+a-1=0.(1)若该方程有一根为2,求a的值及方程的另一根;(2)当a为何值时,方程仅有一个根?求出此时a的值及方程的根.20、某商场进价为每件40元的商品,按每件50元出售时,每天可卖出500件.如果这种商品每件涨价1元,那么平均每天少卖出10件.当要求售价不高于每件70元时,要想每天获得8000元的利润,那么该商品每件应涨价多少元?21、已知关于x的方程mx2﹣(m+3)x+3=0(m≠0).(1)求证:方程总有两个实数根;(2)如果方程的两个实数根都是整数,且有一根大于1,求满足条件的整数m的值.22、解方程:﹣x2﹣2x=2x+123、(2016•新疆)周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?四、综合题(共1题;共10分)24、已知关于x的方程x(x-k)=2-k的一个根为2.(1)求k的值;(2)求方程2y(2k-y)=1的解.第二十二章二次函数一、单选题(共10题;共30分)1、西宁中心广场有各种音乐喷泉,其中一个喷水管的最大高度为3米,此时距喷水管的水平距离为米,在如图所示的坐标系中,这个喷泉的函数关系式是()A、y=-(x-)2+3B、y=-3(x+)2+3C、y=-12(x-)2+3D、y=-12(x+)2+32、抛物线y=x2向左平移1个单位,再向下平移2个单位,得到新的图象的二次函数表达式是()A、B、C、D、3、如图,在平面直角坐标系中,抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积为A、2B、4C、8D、164、抛物线向右平移3个单位长度得到的抛物线对应的函数关系式为A、B、C、D、5、下列关系式中,属于二次函数的是(x是自变量)()A、y=B、y=C、y=D、y=ax2+bx+c6、下列函数解析式中,一定为二次函数的是()A、y=3x﹣1B、y=ax2+bx+cC、s=2t2﹣2t+1D、y=x2+7、抛物线y=﹣2x2+4的顶点坐标为()A、(4,0)B、(0,4)C、(4,2)D、(4,﹣2)8、已知矩形的周长为36m,矩形绕着它的一条边旋转形成一个圆柱,设矩形的一条边长为xm,圆柱的侧面积为ym2,则y与x的函数关系式为()A、y=﹣2πx2+18πxB、y=2πx2﹣18πxC、y=﹣2πx2+36πxD、y=2πx2﹣36πx9、已知将二次函数y=x2+bx+c的图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣4x﹣5,则b,c的值为()A、b=0,c=6B、b=0,c=﹣5C、b=0,c=﹣6D、b=0.c=510、(2011•梧州)2011年5月22日﹣29日在美丽的青岛市举行了苏迪曼杯羽毛球混合团体锦标赛.在比赛中,某次羽毛球的运动路线可以看作是抛物线y=﹣ x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是()A、y=﹣ x2+ x+1B、y=﹣ x2+ x﹣1C、y=﹣ x2﹣ x+1D、y=﹣ x2﹣ x﹣1二、填空题(共8题;共30分)11、在实验中我们常常采用利用计算机在平面直角坐标系中画出抛物线y=x2和直线y=﹣x+3,利用两图象交点的横坐标来求一元二次方程x2+x﹣3=0的解,也可以在平面直角坐标系中画出抛物线y=x2﹣3和直线y=﹣x,用它们交点的横坐标来求该方程的解.所以求方程的近似解也可以利用熟悉的函数________和________的图象交点的横坐标来求得.12、如图,某涵洞的截面是抛物线形,现测得水面宽AB=1.6m,涵洞顶点O到水面的距离CO为2.4m,在图中直角坐标系内,涵洞截面所在抛物线的解析式是________13、如图,在一幅长50cm,宽30cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂画,设整个挂画总面积为ycm2,金色纸边的宽为xcm,则y与x的关系式是________ .14、函数y=2(x﹣1)2图象的顶点坐标为________.15、二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是________,对称轴为________.16、如图所示,在同一坐标系中,作出①y=3x2②y= x2③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号)________17、一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面的函数关系式;h=﹣5t2+10t+1,则小球距离地面的最大高度是________.18、二次函数y=x2+6x+5图像的顶点坐标为________三、解答题(共5题;共30分)19、在同一坐标系内,画出函数y=2x2和y=2(x-1)2+1的图象,并说出它们的相同点和不同点.20、已知抛物线y=x²-4x+3.(1)该抛物线的对称轴是,顶点坐标;(2)将该抛物线向上平移2个单位长度,再向左平移3个单位长度得到新的二次函数图像,请写出相应的解析式,并用列表,描点,连线的方法画出新二次函数的图像;(3)新图像上两点A(x1, y1),B(x2, y2),它们的横坐标满足x1<-2,且-1<x2<0,试比较y1, y2, 0三者的大小关系.21、已知抛物线l1的最高点为P(3,4),且经过点A(0,1),求l1的解析式.22、甲、乙两个仓库向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨,B地需110吨水泥,两库到A,B两地的路程和费用如下表:(表中运费“元/吨·千米”表示每吨水泥运送1千米所需要人民币).设甲库运往A地水泥x吨,总运费W元.(1)写出w关于x的函数关系式,并求x为何值时总运费最小?(2)如果要求运送的水泥数是10吨的整数倍,且运费不能超过38000元,则总共有几种运送方案?23、已知二次函数y=﹣(x+1)2+4的图象如图所示,请在同一坐标系中画出二次函数y=﹣(x﹣2)2+7的图象.四、综合题(共1题;共10分)24、成都地铁规划到2020年将通车13条线路,近几年正是成都地铁加紧建设和密集开通的几年,市场对建材的需求量有所提高,根据市场调查分析可预测:投资水泥生产销售后所获得的利润y1(万元)与投资资金量x(万元)满足正比例关系y1=20x;投资钢材生产销售的后所获得的利润y2(万元)与投资资金量x(万元)满足函数关系的图象如图所示(其中OA是抛物线的一部分,A为抛物线的顶点,AB∥x轴).(1)直接写出当0<x<30及x>30时,y2与x之间的函数关系式;(2)某建材经销公司计划投资100万元用于生产销售水泥和钢材两种材料,若设投资钢材部分的资金量为t(万元),生长销售完这两种材料后获得的总利润为W(万元).①求W与t之间的函数关系式;②若要求投资钢材部分的资金量不得少于45万元,那么当投资钢材部分的资金量为多少万元时,获得的总利润最大?最大总利润是多少?第二十三章旋转单元测试一、单选题(共10题;共30分)1、如图所示,下图可以看作是一个菱形通过几次旋转得到的,每次可能旋转()。

人教版数学九年级上册第二单元测试试卷(含答案)

人教版数学九年级上册第二单元测试试卷(含答案)

人教版数学9年级上册第2单元·时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)已知二次函数y=ax2+bx+c,且a<0,4a﹣2b+c>0,则一定有( )A.b2﹣4ac<0B.b2﹣4ac≤0C.b2﹣4ac=0D.b2﹣4ac>0 2.(3分)抛物线y=3(x﹣2)2+1的对称轴是( )A.直线x=﹣2B.直线x=﹣1C.直线x=1D.直线x=2 3.(3分)将抛物线y=2x2+2向左平移3个单位长度,再向上平移2个单位长度,得到抛物线的解析式是( )A.y=2(x+3)2+4B.y=2(x+3)2C.y=2(x﹣3)2+4D.y=2(x﹣3)24.(3分)二次函数y=ax2+bx+c的部分图象如图,其对称轴是直线x=1.下列结论:①abc>0;②b2>4ac;③4a+2b+c>0;④3b﹣2c>0;⑤关于x的一元二次方程ax2+bx+c=a(a≠0)有两个不相等的实数根.其中正确结论的个数是( )A.2B.3C.4D.55.(3分)在平面直角坐标系中,将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为( )A.y=(x﹣2)2﹣1B.y=(x﹣2)2+3C.y=x2+1D.y=x2﹣1 6.(3分)已知二次函数y=x2+ax+b=(x﹣x1)(x﹣x2)(a,b,x1,x2为常数),若1<x1<x2<2,记t=a+b,则( )A.―2<t<―34B.﹣2<t<0C.―1<t<―34D.﹣1<t<07.(3分)已知二次函数y=x2+2(k﹣1)x+k2的图象与x轴无交点,则k的取值范围是( )A.k>12B.k<12C.k>2D.k<28.(3分)将抛物线y =2x 2向右平移1个单位,再向上平移2个单位后,所得新抛物线和原抛物线相比,不变的是( )A .对称轴B .开口方向C .和y 轴的交点D .顶点9.(3分)如图,二次函数y =ax 2+bx +c 的图象经过点A (﹣1,0),B (3,0),与y 轴交于点C .下列结论:①ac >0;②当x >0时,y 随x 的增大而增大;③3a +c =0;④b =2a .其中正确的是( )A .④B .③C .②D .①10.(3分)用配方法将二次函数y =12x 2﹣2x ﹣4化为y =a (x ﹣h )2+k 的形式为( )A .y =12(x ﹣2)2﹣4B .y =12(x ﹣1)2﹣3C .y =12(x ﹣2)2﹣5D .y =12(x ﹣2)2﹣6二、填空题(共5小题,满分15分,每小题3分)11.(3分)二次函数y =﹣(x ﹣2)2+3的最大值是 .12.(3分)函数y =x 2m ﹣1+x ﹣3是二次函数,则m = .13.(3分)如图,抛物线y =ax 2+bx +c 的对称轴为x =1,点P 是抛物线与x 轴的一个交点,若点P 的坐标为(4,0),则关于x 的一元二次方程ax 2+bx +c =0的解为 .14.(3分)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y 与加工时间x (单位:min )满足函数表达式y =﹣0.3x 2+1.5x ﹣1,则最佳加工时间为 min .15.(3分)已知二次函数y =x 2﹣4x ﹣5的图象与x 轴交于A 、B 两点,顶点为C ,则△ABC的面积为 .三、解答题(共8小题,满分75分)16.(9分)已知y与x2成正比例,并且x=1时y=2.(1)求y与x之间的函数关系式.(2)当x=﹣1时y的值.17.(9分)先确定抛物线y=﹣2x2+8x﹣8的开口方向、对称轴和顶点坐标,再描点画图.18.(9分)一个二次函数的图象经过(﹣1,0),(0,6),(3,0)三点.求:这个二次函数的解析式.19.(9分)某商品的进价为每件20元,售价为每件30元,每月可卖出180件.如果该商品的售价每上涨1元,就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数)时,月销售利润为y元.(1)求y与x之间的函数解析式,并直接写出自变量x的取值范围.(2)当每件商品的售价定为多少元时,可获得的月利润最大?最大月利润是多少?20.(9分)已知二次函数y=ax2+bx+c图象上部分点的横坐标x、纵坐标y的对应值如下表:x…01234…y…﹣3﹣4﹣305…(1)求该二次函数的表达式;(2)直接写出该二次函数图象与x轴的交点坐标.21.(10分)已知y=(k﹣1)x k2+k―4是二次函数.(1)若其图象开口向下,求k的值;(2)若当x<0时,y随x的增大而减小,求函数关系式.22.(10分)已知二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,求:(1)点A、B、C的坐标;(2)△ABC的面积.23.(10分)已知二次函数y=ax2+4x+2的图象经过点A(3,﹣4).(1)求a的值;(2)求此抛物线的对称轴;(3)直接写出函数y随自变量的增大而减小的x的取值范围.参考答案一、选择题(共10小题,满分30分,每小题3分)1.D;2.D;3.A;4.B;5.D;6.D;7.A;8.B;9.B;10.D;二、填空题(共5小题,满分15分,每小题3分)11.312.3 213.x1=4,x2=﹣214.2.515.27三、解答题(共8小题,满分75分)16.解:(1)∵y与x2成正比例,∴设y=kx2(k≠0),∵当x=1时,y=2,∴2=k•12,解得,k=2,∴y与x之间的函数关系式为y=2x2.(2)∵函数关系式为y=2x2,∴当x=﹣1时,y=2×1=2.17.解:y=﹣2x2+8x﹣8=﹣2(x﹣2)2,∵a=﹣2<0,∴开口向下,对称轴为:直线x=2,顶点坐标为:(2,0),图象如下:18.解:设抛物线的解析式为y=ax2+bx+c,根据题意得:a―b+c=09a+3b+c=0 c=6,解得:a=―2 b=4c=6,所以抛物线的解析式为y=﹣2x2+4x+6.19.解:(1)y=(30﹣20+x)(180﹣10x)=﹣10x2+80x+1800(0≤x≤5,且x为整数);(2)由(1)知,y=﹣10x2+80x+1800(0≤x≤5,且x为整数).∵﹣10<0,∴当x=802×(10)=4时,y最大=1960元;∴每件商品的售价为34元.答:每件商品的售价为34元时,商品的利润最大,为1960元;20.解:(1)∵抛物线经过点(0,﹣3),(2,﹣3),(1,﹣4),∴抛物线的对称轴为直线x=1,顶点坐标为(1,﹣4),设抛物线解析式为y=a(x﹣1)2﹣4,把(0,﹣3)代入得a(0﹣1)2﹣4=﹣3,解得a=1,∴抛物线解析式为y=(x﹣1)2﹣4;(2)∵抛物线与x轴的一个交点坐标为(3,0),而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点坐标为(﹣1,0),即该二次函数图象与x轴的交点坐标为(﹣1,0),(3,0).21.解:(1)根据题意得k 2+k―4=2k―1≠0,解得k=﹣3或2;(2)∵当x<0时,y随x的增大而减小,∴图象开口向上,∴k﹣1>0,即k>1,∴k=2.22.解:(1)令x=0,则y=﹣3,∴C(0,﹣3);令y=0,则x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)∵A(﹣1,0),B(3,0),C(0,﹣3),∴AB=4,OC=3,∴S△ABC =12AB•OC=12×4×3=6.23.解:(1)∵二次函数y=ax2+4x+2的图象经过点A(3,﹣4),∴﹣4=9a+12+2,解得:a=﹣2,∴a的值为﹣2;(2)由(1)可知抛物线解析式为y=﹣2x2+4x+2=﹣2(x﹣1)2+4,∴抛物线对称轴为直线x=1;(3)∵抛物线开口向下,对称轴为x=1,∴当x≥1时,y随x的增大而减小.。

人教版九年级上册数学第二章测试题(附答案)

人教版九年级上册数学第二章测试题(附答案)

人教版九年级上册数学第二章测试题(附答案)一、单选题(共12题;共36分)1.把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是()A. ﹣4B. 0C. 2D. 62.如图,二次函数的图象的对称轴是直线,则以下四个结论中:①,② ,③ ,④ .正确的个数是()A. 1B. 2C. 3D. 43.如图,在四边形中,,,,,.动点M,N同时从点A出发,点M以的速度沿向终点B运动,点N以的速度沿折线向终点C运动.设点N的运动时间为,的面积为,则下列图象能大致反映S与t之间函数关系的是()A. B. C. D.4.已知二次函数,则下列关于这个函数图象和性质的说法,正确的是()A. 图象的开口向上B. 图象的顶点坐标是C. 当时,y随x的增大而增大D. 图象与x轴有唯一交点5.如图,二次函数()的图象与轴交于,两点,与轴交于点,点坐标为,点在与之间(不包括这两点),抛物线的顶点为,对称轴为直线,有以下结论:① ;②若点,点是函数图象上的两点,则;③ ;④可以是等腰直角三形.其中正确的有()A. 1个B. 2个C. 3个D. 4个6.点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n的最大值等于()A. B. 4 C. ﹣ D. ﹣7.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A. 4 米B. 5 米C. 2 米D. 7米8.已知二次函数 ( 为常数)的图象与x 轴有交点,且当时,y 随x 的增大而增大,则a 的取值范围是( )A.B.C.D.9.如图,已知抛物线 的图象与x 轴交于 两点,其对称轴与x 轴交于点C 其中两点的横坐标分别为-1和1下列说法错误的是( )10题A. B. C. D. 当 时,y 随x 的增大而减小10.对称轴为直线x =1的抛物线 (a 、b 、c 为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc <0,②b 2>4ac ,③4a +2b +c >0,④3a +c >0,⑤a +b≤m(am +b)(m 为任意实数),⑥当x <-1时,y 随x 的增大而增大,其中结论正确的个数为( ) A. 3 B. 4 C. 5 D. 611.将二次函数y=(x ﹣1)2+2的图象向上平移3个单位长度,得到的拋物线相应的函数表达式为( ) A. y=(x+2)2﹣2 B. y=(x ﹣4)2+2 C. y=(x ﹣1)2﹣1 D. y=(x ﹣1)2+5 12.竖直上抛物体离地面的高度 与运动时间 之间的关系可以近似地用公式 表示,其中是物体抛出时离地面的高度,是物体抛出时的速度.某人将一个小球从距地面的高处以 的速度竖直向上抛出,小球达到的离地面的最大高度为( ) A. B. C. D. 二、填空题(共5题;共15分) 13.抛物线与x 轴有交点,则k 的取值范围是________.14.二次函数y =ax 2+bx+c 的图象如图所示,下列结论:①ab >0;②a+b ﹣1=0;③a >1;④关于x 的一元二次方程ax 2+bx+c =0的一个根为1,另一个根为﹣ .其中正确结论的序号是________.15.下表中y 与x 的数据满足我们初中学过的某种函数关系,其函数表达式为________. 16.如图,对于抛物线y 1=-x 2+x+1, y 2=-x 2+2x+1, y 3=-x 2+3x+1,给出下列结论:①这三条抛物线都经过点C(0,1); ②抛物线y 3的对称轴可由抛物线y 1的对称轴向右平移1…… -1 0 1 3 …… …… 0 3 4 0 ……个单位而得到;③这三条抛物线的顶点在同一条直线上;④这三条抛物线与直线y=1的交点中,相邻两点之间的距离相等。

2016年秋人教版九年级数学上华章教育课后练习22.3.2二次函数与商品利润.doc

2016年秋人教版九年级数学上华章教育课后练习22.3.2二次函数与商品利润.doc

第2课时二次函数与商品利润基础题知识点销售中的最大利润1.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x元,则可卖出(350-10x)件商品,那么卖出商品所赚钱y元与售价x元之间的函数关系为()A.y=-10x2-560x+7 350B.y=-10x2+560x-7 350C.y=-10x2+350xD.y=-10x2+350x-7 3502.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,该件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为()A.5元B.10元C.0元D.6元3.出售某种文具盒,若每个获利x元,一天可售出(6-x)个,则当x=________元时,一天出售该种文具盒的总利润最大.4.我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资与收益的关系为:每投入x万元,可获得利润P=-1100(x-60)2+41(万元).每年最多可投入100万元的销售投资,则5年所获利润的最大值是________.5.(天水中考)天水“伏羲文化节”商品交易会上,某商人将每件进价为8元的纪念品,按每件9元出售,每天可售出20件.他想采用提高售价的办法来增加利润,经试验,发现这种纪念品每件提价1元,每天的销售量会减少4件.(1)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式;(2)每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?6.(江苏中考)某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-75.其图象如图.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?中档题7.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=-n2+14n-24,则该企业一年中应停产的月份是()A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月8.(沈阳中考)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为________元.9.(营口中考)某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为________元时,该服装店平均每天的销售利润最大.10.(莆田中考)某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图1所示(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2-8mx+n,其变化趋势如图2所示.(1)求y2的解析式;(2)第几月销售这种水果,每千克所获的利润最大?最大利润是多少?综合题11.(黄石中考)大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销售量为y(件),月利润为w(元).(1)直接写出y与x之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6 000元应如何控制销售价格?参考答案基础题1.B2.A3.34.205万元5.(1)由题意得:y =(x -8)[20-4(x -9)],化简得:y =-4x 2+88x -448(9≤x≤14). (2)y =-4x 2+88x -448=-4(x -11)2+36.所以当x =11时,y 最大=36.答:每件售价定为11元时,一天所得的利润最大,最大利润是36元.6.(1)y =ax 2+bx -75图象过点(5,0),(7,16).∴⎩⎪⎨⎪⎧25a +5b -75=0,49a +7b -75=16.解得⎩⎪⎨⎪⎧a =-1,b =20.∴y =-x 2+20x -75=-(x -10)2+25.∴当x =10时,y 最大=25.答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元.(2)∵函数y =-x 2+20x -75图象的对称轴为直线x =10,可知点(7,16)关于对称轴的对称点是(13,16).又∵函数y =-x 2+20x -75图象开口向下,∴当7≤x≤13时,y ≥16.答:销售单价不少于7元且不超过13元时,该种商品每天的销售利润不低于16元. 中档题7.C 8.25 9.2210.(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7,解得⎩⎨⎧m =18,n =638.∴y 2的解析式为y 2=18x 2-x +638(1≤x≤12).(2)设y 1=kx +b ,∵函数y 1的图象过两点(4,11),(8,10),∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10,解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的解析式为y 1=-14x +12(1≤x≤12).设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638)=-18x 2+34x +338,∴w =-18(x -3)2+214(1≤x≤12).∴当x=3时,w 取最大值214.答:第3月销售这种水果,每千克所获的利润最大,最大利润是214元/千克. 综合题11.(1)由题可知:y =⎩⎪⎨⎪⎧300-10x (0≤x≤30),300-20x (-20≤x<0).(2)w=⎩⎪⎨⎪⎧(20+x )(300-10x )(0≤x≤30),(20+x )(300-20x )(-20≤x<0).化简得:w =⎩⎪⎨⎪⎧-10x 2+100x +6 000(0≤x≤30),-20x 2-100x +6 000(-20≤x<0).即:w =⎩⎪⎨⎪⎧-10(x -5)2+6 250(0≤x≤30),-20(x +52)2+6 125(-20≤x<0).①当0≤x≤30,x =5时,w 最大值为6 250;②当-20≤x<0,x =-52时,w 最大值为6 125.由题意知x 应取整数,故当x =-2或-3时,w<6 125<6 250.故当销售价格为65元时,月利润最大,最大月利润为6 250元.(3)由题意知:w≥6 000,如图,令w =6 000,得x 1=-5,x 2=0,x 3=10,∴-5≤x≤10,故将销售价格控制在55元到70元之间(含55元和70元)才能使每月利润不少于6 000元.。

九年级数学(上)第二章一元二次方程检测题有答案

九年级数学(上)第二章一元二次方程检测题有答案

第二章 一元二次方程检测题(本试卷满分:120分,时间:120分钟)一、选择题(每小题3分,共30分)1.下列关于错误!未找到引用源。

的方程:①错误!未找到引用源。

;②错误!未找到引用源。

;③错误!未找到引用源。

;④(错误!未找到引用源。

)错误!未找到引用源。

错误!未找到引用源。

-1,其中一元二次方程的个数是( )A .1B .2C .3D .42.用配方法解一元二次方程x 2-4x =5时,此方程可变形为( )A.(x +2)2=1B.(x -2)2=1C.(x +2)2=9D.(x -2)2=93.若错误!未找到引用源。

为方程错误!未找到引用源。

的解,则错误!未找到引用源。

的值为( )A.12B.6C.9D.164.若2690,x x ++=则x y -的值为( )A.0B.-6C.6D.以上都不对5. 目前我国已建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A .438错误!未找到引用源。

=389B .389错误!未找到引用源。

=438C .389(1+2x )=438D .438(1+2x )=3896.判断关于0(0)ax bx c a ++=≠A.x <3.24 B.3.24<x <3.25C.3.25<x <3.26D.3.25<x <3.287.已知错误!未找到引用源。

分别是三角形的三边长,则一元二次方程错误!未找到引用源。

的根的情况是( )A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根8.已知12x x ,是一元二次方程122+=x x 的两个根,则2111x x +的值为( ) A.21- B.2 C.21 D.错误!未找到引用源。

9. 关于x 的方程2210x kx k ++-=的根的情况描述正确的是( )A . k 为任何实数,方程都没有实数根B . k 为任何实数,方程都有两个不相等的实数根C . k 为任何实数,方程都有两个相等的实数根D . 根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种10. 某城市为了申办冬运会,决定改善城市容貌,绿化环境,计划用两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是( )A .19%B .20%C .21%D .22%二、填空题(每小题3分,共24分)11.对于实数a ,b ,定义运算“*”:错误!未找到引用源。

人教版九年级上册数学第二单元二次函数单元测试卷(含答案)

人教版九年级上册数学第二单元二次函数单元测试卷(含答案)

人教版九年级上册数学第二单元二次函数单元测试卷一.选择题(共10小题)1 •二次函数y=χ2+px+q l 当0WXWl 时,设此函数最大值为8,最小值为匸w=s-t, (S 为 常数)则VV 的值()A •与p 、q 的值都有关B •与P 无关,但与q 有关C •与p 、q 的值都无关D •与P 有关,但与q 无关 2 •二次函数y=ax'+bx+c (a≠0)的大致图象如图所示,顶点坐标为(-2, -9a)l 下列结论:φabc > 0 ; 24a+2b+c> 0 ; @9a-b+c=0 ;④若方程a (x+5) (X-I)二有两个根X 丄和X=且Xi < Xz 1则-5 < Xi<‰<1;⑤若方程IaX =+bx+c ∣=l 有四个根,则这四个根的和为-8 •其中正确的结论有()个C . 4D ・ 54・将抛物线y=x^4x∙4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为 () A . y= (x+l) z -13 B ・ y 二(x∙5) 2-5C . y= (x-5) z -13D ・ y 二(x÷l)【5 5 .如果二次函数y=x =+2x+t 与一次函数y=x 的图象两个交点的横坐标分别为m 、n,且m <l<n,则t 的取值范围是() 6 •已知抛物线y=-x z ÷mx÷2m t 当x < 1时,y 随X 的增大而增大,则抛物线的顶点在() A.第一象限 B•第二象限 C.第三象限 D.第四象限7 •定义:在平面直角坐标系中,点P (X t y)的横、纵坐标的绝对值之和叫做点P (X J y) 的勾股值,记[P]=∣x ∣+∣y ∣ •若抛物线y=ax 2÷bx÷2与直线y=x 只有一个交点C,已知点C 在 第一3 .二次函数y=aχ2÷bx+c 的图象如图所示, 那么一次函数y 二ax+b 的图象大致是(A . t> -2B . t<-2 D・象限,且2≤[C]≤4,令t=2b z-4a+2020,则t的取值范围为()A ・2017≤t≤2018B ・2018≤t≤2019C ・2019≤t≤2020D ・2020≤t≤2021X的增大而增大;④方程aχz÷bx÷c=0有一个根大于4・其中正确的结论有()A.1个B.2个 C . 3个 D.4个9 .将函数y=-χz+2x+m (OWXW4)在X轴下方的图象沿X轴向上翻折,在X轴上方的图象保持不变,得到一个新图象一新图象对应的函数最大值与最小值之差最小,则m的值为()A・2-5 B・3 C・35 D・410 .定义符号min{a, b}的含义为:当aNb 时min{a, b}=b ;当a < b 时min{a, b}=a .如:min{l, -3}=-3, min{-4, -2}=-4 •则min{-χz+l, ∙x}的最大值是( )v,z5-l2二・填空题(共6小题)H •抛物线尸(k-l) x=-x+l与X轴有交点,则k的取值范围是____________________12 .对于任意实数m,抛物线y=x2+4mx+m+n与X轴都有交点,则n的取值范围是__________13 •当-lWχW3时,二次函数y二x2-4x+5有最大值m,则m二______________24 •在平面直角坐标系中,已知A (-1, m)和B (5, m)是抛物线y=x2+bx÷l上的两点,将抛物线y=x2+bx÷l的图象向上平移n (n是正整数)个单位,使平移后的图象与X轴没有交点,则n的最小值为______________________________15 •已知抛物线y=a×2+bx+c (a<0)的对称轴为X二-1,与X轴的一个交点为(2, 0),若关于X的一元二次方程ax2+bx+c=p (P > 0)有整数根,则P的值有______________ 个16 •对于一个函数,如果它的自变量X与函数值y满足:当JWXWl时,-l≤y≤l,则称这个函数为“闭函数”.例如:y=x, y二-X均是“闭函数・.已知y=ax2+bx+c (a≠0)是-闭函数",且抛物线经过点A (1, -1)和点B (-1, 1),则a的取值范围是_____________________三•解答题(共7小题)17 •已知抛物线C : y=x3+mx+n (m, n为常数).(1) 如图,若抛物线C的顶点坐标为P (1, 2).求m, n的值;(2) 在(1)的条件下,设点Q (a, b)在抛物线C±,且点Q离y轴的距离不大于2, 直接写出b的取值范围;(3) 将抛物线C向左平移2个单位得到抛物线Cl,将抛物线C向右平移2个单位得到拋物线C2,若Cl与C2的交点坐标为(1, 3),求抛物线C的函数解析式-18 •在平面直角坐标系XOy中,抛物线y二x^2x∙3与X轴相交于A, B (点A在点B的左边),与y轴相交于C •(1)求直线BC的表达式.(2)垂直于y轴的直线I与直线BC交于点N (Xl I yι),与抛物线相交于点P (冷,y=)1 Q (X3, y≡).若Xl < Xz < X3,结合函数图象.求X1 + ×2÷X3的取值范围・19・某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象-图中的折线ODE表示日销售量y (件)与销售时间X (天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件・(1)_____________________ 第26天的日销售量是_______ 件,日销售利润是元. (2)求y与X之间的函数关系式,并写出X的取值范围;⑶日销售利润不低于600元的天数共有多少天?试销售期间,日销售最大利润是多少元?20・某商场销售一批衬衫,进货价为每件40元按每件50元出售:一个月内可售出500 件•已知这种衬衫每涨价1元,其销售量要减少10件•(1) 为在月内赚取8000元的利润,售价应定为每件多少元?(2) 要想获得的利润最大,该商场应当如何定价销售?21 .某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查, 得出每天销售量y (件)是每件售价X (元)(X为正整数)的一次函数,其部分对应数据如下表所示:(1) 求y关于X的函数解析式;(2) 若用W (元)表示工艺品厂试销该工艺品每天获得的利润,试求W关于X的函数解析式;(3) 该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是多少元?22.如图,在平面直角坐标系中,抛物线y=-⅛-^χ + √3与X轴交于A, B两点,与y 轴交于点C ・(1) 若点P为直线AC上方抛物线上的动点,当APAC的面积最大时,求此时P点的坐标;(2) 若点Q是抛物线对称轴上的动点,点M是抛物线上的动点,当以点M、A、C、Q为顶点的四边形是平行四边形时,直接写出此时Q点的坐标・备用图23 •如图,抛物线CI : y=-∣√ + 2x + 2的顶点为A,且与y轴于点B,将抛物线C丄沿y=a 对称后,得到抛物线G与y轴交于点C .(1)求A、B两点坐标;(2)若抛物线G上存在点D,使得ABCD为等腰直角三角形,求出此时抛物线G的表达参考答案->选择题12345678910D C C D B A B A C A二.填空题11. k≤⅛k≠ 112、n≤-^713. 104 6414、4 15、3 16、-詁QVo 或OVQ 今三、解答题17、毎:(1 )・・・挞物袋C : y=x2+wx÷n ( Jn t H为学数)顶庶坐标为P (1,2) J•—巴一1 4n~rr,2-->,∙ 2 ~ 「 ----------⅞?得巾二―2 f刃二3 ;(2 )在(1 )的条件下.≡∣S¾)^C为:y=x2-2x+3 ,・・•拋物线与》轴的交点为(0,3),过点(0 , 3 )作;C轴的平行线r与抛物线的另一个交点为(2,3) r 此时忌(2,3)到卩柏的距离为2 I••焉Q (.a t b)衽抛物线C上,目葱畑的距离不大于2 •田图象可知r2≤6≤3・(3 )将牠搦线C向左平移2个单位得到枷物线C1⅛v= (Λ+2 ) 2+m (Λ+2 )卄;将拋物钱C向右平移2个单位得到抛物线C伪y=(x-2 ) 2 + m ( x-2 ) +” ;由(x+2 ) ‘―加(x+2 ) +Λ=(Λ-2)^+m ( x-2 ) ÷n ,解得K二一:加r・・•若G与G的交点坐标为(1 r 3 ),・•・-;/«二1 ,解得加二-2 r乙rB⅛S (1,3)代入y= ( x+2 ) ‘一2 ( x+2 ) + 刃得3=9-6+Λ T.∖Λ⊂O r•・•抛物袋f的函数解忻式⅛y=r2-2x •18劣:(I )由y=x i -2r-3⅛到:y=(才一3 ) ( x+ 1 ) i C ( O z -3 )・ SrUU (-1,0) .5(3,0) I设宜线的表达式为:y=Aχ÷h (A≠O),(6=7则 •(3*÷Λ=0解得FJ , lfr=-3 隔以克进BC 的去达式⅛j=x -3 ;(2 )由y=x*-2r-3⅛到:y= (T-I) J -4 R晤以拋物賤y=X-2x-3的对称⅛⅛≡⅛x=l r 顶点坐标昱(1 r -4 )・ β∙yτ=yj.• ∙X 2*t*X ∖ = 2 •令y=_4 ” y=x-3 r J=-I ・VXl < Xz < X ),.*.-l <r ∣ < 0 r §Dl <xι+x 2+x 3 < 2 ・19、^Z(I) 340- ( 26-22 ) ×5=320 (件},320X ( 8-6 ) =640 (元)・故答崟为:320 ; 64& ;C 2 )设逹段OD 才麦示的上m 之同的函姿关系式为尸虹,»( 17 - 340}代入V 二虹中P340 = 17* . ⅜≡i5 : *-20 I.∙.⅛⅛□D 所表示的FMr 之间的函数关系式无尸2(h .很据埜京得:农段%所表示的」却之间的函散矢君弍为尸340-5 (—22 > =-α+450 . 鉄立鬲遜既所耒示的函敕关系式成方程运I(3) 当0≤x≤∣8时 I 浪据SSrS : (8-6}×20x⅞60ft i ft≡zx>iS; 当 I R < x≤30ffif I 唄据蕊爲扫:C8-6)x(-5x-450 ) ^600 I teS :x<30.Λ∣5≤x≤3G ・3O-I5+L = lft(天),-■■ B^S 利润不低亍600元的天或共有托天-••・点D 的坐标为(I & r 360),「•日矗大销皆量方3创件I360X2=720 (元)l••试销宫姿间I 日销官最大利润是720元.⅛=X÷450 •疯: -V=IK V=360 ・••交点D 的坐标为< 18 j 360 } 与X 之间的屈数关系式为P 2Ojf(O≤x≤3O)-5κ+450(l8<x≤30)20、解:(1 )设涨工元Z 根据题意得(50-40十Jr ) ( 500-IOJr ) =SOoo f 整理‰2-40r+300=0 J 解‰1=10 * x 2=^0 J 当工二 10时 J 50+10=60 ;当X 二30时.50+30=80 r此时售价应走为每件60元或80元,利润为8000元;(2 )设每件涨X 元r 利润为F 元,贝D= ( 50-40+κ ) ( 500- IX )= -I0√+400^+5000= -10 (x-20 ) 2+9000 fVa=-IO <0 Z当x=20时J 丿有最大值,最大值为9000 r•・,要想获得的利润最大J 销售价应左为70元•21、解;(1 )设y 二层十b "由表可知:当x=l5时f y = ↑ 50 ,当X=I 6时J y= 140 Z 则(150二 L5 屮[140 二 16上+6关于X 的函数解析式为:卩二-10卄300;(2〉由题意可得:w=(-10工+300) (X-Il ) =-10X 2+410X -3300 R关于X 的函数解析式为:W= -1 Ox 2+41 Ox-3300 ;(3 )・・・对称轴工二一 二20.5 J ZZ=-IO<0 J X 是整数,一 2x(-10)・・二二20或21时,W 有最大值J当x=20或21时Z 代入l 可得:w=900 ,.∙.该工艺品每件售价为20元或21元时f 工艺品厂试销该工艺品每天获得的利润最大,最大利润是900元. 22、: ( 1 ) ••物线”=一斗与话由立于/1 ■ 8两点Z.∙.0=-^2-≡^X ÷√3..∙.X ∣= 1 r X≡ = -3 r ・・・E 的坐琢为(一3 , O ),卫的坐标为(1,0) ••・•池物线,=—x 2 ~ ~3~x 轴交于点 C r・•・点C 的坐転为(O j √3 ),・・•点/的坐标为(一3 , O ) ■点C 的坐标为(O , √3 ),Ic 解析式为:y=^x÷√3 ,SO 医1 r IZt 原P 作PE 丄/18 r 态/ C 于点E ,,解得寸fc ^1°6=300⅛√i).∙.FE二一—¥“十近一(⅛+√3 ) =-^-α2-α , V∆P4C的面积二fxFEx3二一孚(°+匸)$十誓 ,<2 2 2 o.∙.当α二-耳时,"AC的面机有最大值J .俑P(W,1 召);C 2 )设烏M坐标为(X I y)t•・・点”的坐标为(一3 , O ),点〃的坐标为(1,0)r・•・抛物线的对称轴为直线χ=-l ZT点0是抛物线对称轴上的动点(「•设点。

(人教版)初中数学九年级上册全册综合测试题二(附答案)

(人教版)初中数学九年级上册全册综合测试题二(附答案)

(人教版)初中数学九年级上册全册综合测试题二(附答案)第二十一章综合测试一、选择题(30分)1.一元二次方程22(32)10x x x --++=的一般形式是( ) A .2550x x -+= B .2550x x +-= C .2550x x ++=D .250x +=2.一元二次方程260x +-=的根是( )A .12x x ==B .10x =,2x =-C .1x =2x =-D .1x =2x =3.用配方法解一元二次方程245x x -=时,此方程可变形为( ) A .2(2)1x +=B .2(2)1x -=C .229x +=()D .229x -=()4.一元二次方程220x x -=的两根分别为1x 和2x 则12x x 为( ) A .2-B .1C .2D .05.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .不能确定6.若2x =-是关于x 的一元二次方程22502x ax a -+=的一个根,则a 的值为( )A .1或4B .1-或4-C .1-或4D .1或4-7.已知等腰三角形的腰和底的长分别是一元二次方程2680x x -+=的根,则该三角形的周长为( ) A .8B .10C .8或10D .128.若α,β是一元二次方程定2260x x +-=的两根,则22αβ+=( ) A .8-B .32C .16D .409.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的方程为( )A .1(1)282x x += B .1(1)282x x -= C .(1)28x x +=D .(1)28x x -=10.已知关于的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程20x bx a ++=的根B .0一定不是关于x 的方程20x bx a ++=的根C .1和1-都是关于x 的方程20x bx a ++=的根D .1和1-不都是关于x 的方程20x bx a ++=的根 二、填空题(24分)11.如果关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.若将方程定267x x +=化为2()16x m +=,则m =__________.13.一个三角形的两边长分别为3和6,第三边长是方程210210x x -+=的根,则三角形的周长为__________.14.已知一元二次方程21)10x x -+=的两根为1x ,2x ,则1211x x +=__________. 15.已知关于x 的方程224220x x p p --++=的一个根为p ,则p =__________. 16.关于x 的一元二次方程2(5)220m x x -++=有实根,则m 的最大整数解是__________. 17.若关于x 的一元二次方程号2124102x mx m --+=有两个相等的实数根,则2 2 2)1)((m m m ---的值为__________.18.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),则方程2260a x m +++=()的解是__________.三、解答题(8+6+6+6+6+7+7=46分) 19.解方程.(1)3(2)2(2)x x x -=-(2)2220x x --=(用配方法)(3)()()11238x x x +-++=()(4)22630x x --=20.已知关于x 的一元二次方程()22(22)20x m x m m --+-=. (1)求证:方程有两个不相等的实数根,(2)如果方程的两实数根为1x ,2x ,且221210x x +=求m 的值.21.已知关于x 的一元二次方程2640x x m -++=有两个实数根1x ,2x . (1)求m 的取值范围.(2)若1x ,2x 满足1232x x =+,求m 的值.22.在水果销售旺季,某水果店购进一种优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系。

人教版数学九年级上册第二单元测试试卷(含答案)(2)

人教版数学九年级上册第二单元测试试卷(含答案)(2)

人教版数学9年级上册第2单元·时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)若将双曲线y=2x向下平移3个单位后,交抛物线y=x2于点P(a,b),则a的取值范围是( )A.0<a<12B.12<a<1C.1<a<2D.2<a<32.(3分)已知抛物线y=﹣(x﹣m)2+2m过不同的两点A(a,n),B(b,n),则当点C(a+b,m)在该函数图象上时,m的值为( )A.0B.1C.0或1D.±13.(3分)抛物线y=(x﹣x1)(x﹣x2)+mx+n与x轴只有一个交点(x1,0).下列式子中正确的是( )A.x1﹣x2=m B.x2﹣x1=m C.m(x1﹣x2)=n D.m(x1+x2)=n4.(3分)如果二次函数y=ax2+bx+c的图象全部在x轴的上方,那么下列判断中一定正确的是( )A.a>0,b>0B.a>0,b<0C.a>0,c<0D.a>0,c>0 5.(3分)已知:二次函数y=﹣x2+x+6,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数,当直线y=m与新图象有2个交点时,m的取值范围是( )A.m<―254B.m≤―254或m=0C.m<―254或m=0D.―254<m<06.(3分)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)中,x与y的部分对应值如表:x…﹣10124…y…﹣10.510.5﹣3.5…有下列结论:①函数有最大值,且最大值为1;②b=1;③若x 0满足a x 02+bx 0+c =0,则2<x 0<3或﹣1<x 0<0;④若方程ax 2+bx +c +m =0有两个不等的实数根则m <﹣1;其中正确结论的个数是( )A .1B .2C .3D .47.(3分)二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如表:x …﹣2﹣1012…y =ax 2+bx +c…tm﹣2﹣2n…且当x =―12时与其对应的函数值y >0,则下列各选项中不正确的是( )A .abc >0B .m =nC .a <83D .图象的顶点在第四象限8.(3分)二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =2,方程a (x +1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则下列结论正确的是( )A .x 1<﹣1<5<x 2B .x 1<﹣1<x 2<5C .﹣1<x 1<5<x 2D .﹣1<x 1<x 2<59.(3分)已知二次函数y =x 2+bx +c ,当m ≤x ≤m +1时,此函数最大值与最小值的差( )A .与m ,b ,c 的值都有关B .与m ,b ,c 的值都无关C .与m ,b 的值都有关,与c 的值无关D .与b ,c 的值都有关,与m 的值无关10.(3分)已知二次函数y =2x 2﹣4x ﹣1在0≤x ≤a 时,y 取得的最大值为15,则a 的值为( )A .1B .2C .3D .4二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),则方程ax2﹣bx﹣c=0的解是 .12.(3分)已知抛物线y=x2与直线y=(k+2)x+1﹣2k的两个不同交点分别为A(x1,y1),B(x2,y2).若x1和x2均为整数,则实数k的值为 .13.(3分)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降 米,水面宽8米.14.(3分)如图,抛物线y=﹣x2﹣6x﹣5交x轴于A、B两点,交y轴于点C,点D (m,m+1)是抛物线上的点,则点D关于直线AC的对称点的坐标为 .15.(3分)已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为 .三、解答题(共8小题,满分75分)16.(9分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若抛物线y=x2﹣(2k+1)x+k2+k与x轴相交于A、B两点,当OA+OB=5时,求k的值.17.(9分)如图,抛物线y=―12x2+2x+2与x轴交于A、B两点,与y轴交于C点.(1)求A、B、C三点的坐标;(2)证明△ABC为直角三角形.18.(9分)某科技公司生产一款精密零件,每个零件的成本为80元,当每个零件售价为200元时,每月可以售出1000个该款零件,若每个零件售价每降低5元,每月可以多售出100个零件,设每个零件售价降低x元,每月的销售利润为w元.(1)求w与x之间的函数关系式;(2)为了更好地回馈社会,公司决定每销售1个零件就捐款n(0<n≤6)元作为抗疫基金,当40≤x≤60时,捐款后每月最大的销售利润为135000元,求n的值.19.(9分)在平面直角坐标系中,已知抛物线L1:y=ax2+bx+c经过A(﹣2,0),B(1,―94)两点,且与y轴交于点C,点B是该抛物线的顶点.(1)求抛物线L1的表达式;(2)将L1平移后得到抛物线L2,点D,E在L2上(点D在点E的上方),若以点A,C,D,E为顶点的四边形是正方形,求抛物线L2的解析式.20.(9分)如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c 经过B,C两点.(1)求抛物线的解析式;(2)E是直线BC上方抛物线上的一动点,当点E到直线BC的距离最大时,求点E 的坐标;(3)Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,B,C 为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.21.(10分)如图,隧道的截面由抛物线DEC和矩形ABCD构成,矩形的长AB为4m,宽BC为3m,以DC所在的直线为x轴,线段CD的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,最高点E到地面距离为4米.(1)求出抛物线的解析式.(2)在距离地面134米高处,隧道的宽度是多少?(3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.22.(10分)如图,抛物线y=﹣x2+ax与直线y=﹣x+b交于点A(4,0)和点C.(1)求a和b的值;(2)求点C的坐标,并结合图象写出不等式﹣x2+ax>﹣x+b的解集;(3)点M是直线AB上的一个动点,将点M向右平移2个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标x M的取值范围.23.(10分)如图,抛物线y=ax2﹣2ax﹣3a与x轴交于A,B两点,与y轴交点为(0,﹣3),顶点为C.(1)求a的值;(2)求顶点C的坐标;(3)抛物线的对称轴与x轴交于点P,连接BC,BC的垂直平分线MN交直线PC 于点M,交BC于点N,求线段PM的长.参考答案一、选择题(共10小题,满分30分,每小题3分)1.B;2.C;3.B;4.D;5.C;6.C;7.C;8.A;9.C;10.D;二、填空题(共5小题,满分15分,每小题3分)11.x1=﹣3,x2=1.12.213.14 914.(﹣5,﹣4)或(0,1)15.1或―4 5三、解答题(共8小题,满分75分)16.(1)证明:∵Δ=[﹣(2k+1)]2﹣4(k2+k)=1>0,∴无论k取何值时,方程总有两个不相等的实数根;(2)解:由x2﹣(2k+1)x+k2+k=0,解得:x1=k,x2=k+1,∴A(k,0),B(k+1,0),∵OA+OB=5,∴|k|+|k+1|=5,①当k<﹣1时,|k|+|k+1|=5变为﹣k﹣(k+1)=5,解得:k=﹣3;②当﹣1≤k<0时,|k|+|k+1|=5变为﹣k+k+1=5,此方程无解;③当k≥0时,|k|+|k+1|=5变为k+k+1=5,解得:k=2.综上所述,k的值为﹣3或k=2.17.(1)解:对于抛物线y=―12x22x+2,当y=0时,则―12x2+2x+2=0,解得x1=―x2=当x=0时,y=2,∴A(―0),B(0),C(0,2).(2)证明:连接AC,BC,∵OA OB=AOC=∠BOC=90°,∴AC22+22=6,BC2=(2+22=12,∴AC2+BC2=6+12=18;∵AB=(―∴AB2=(2=18,∴AC2+BC2=AB2,∴△ABC是直角三角形.18.解:(1)设每个零件售价降低x元,则每个零件的实际售价为(200﹣x)元,每月的实际销售量为(1000+x5×100),则w=(200﹣x﹣80)(1000+x5×100)=20x2十1400x+120000,∵x≥0200―x―80≥0,∴0≤x≤120,∴w与x之间的函数关系式为w=﹣20x2+1400x+120000(0≤x≤120);(2)设捐款后的实际利润为p元,则p=﹣20x2+1400x+120000﹣(1000+x5×100)n,整理得:p=﹣20x2+(1400﹣20n)x+120000﹣1000n,则p是x的二次函数,其对称轴为直线x=―140020n2×(20)=70n2,∵0<n≤6,∴32≤70n2<35,∵﹣20<0,∴函数图象开口向下,当40≤x≤60时,p随x的增大而减小,∴当x=40时,p有最大值135000,即﹣20×402+40(1400﹣20n)+120000﹣1000n=135000,解得:n=5.19.解:(1)设抛物线L1的表达式是y=a(x―1)2―9 4,∵抛物线L1过点A(﹣2,0),∴0=a(―2―1)2―9 4,解得a=1 4,∴y=14(x―1)2―94.即抛物线L1的表达式是y=14(x―1)2―94;(2)令x=0,则y=﹣2,∴C(0,﹣2).Ⅰ.当AC为正方形的对角线时,如图所示,∵AE3=E3C=CD3=D3A=2,∴点D3的坐标为(0,0),点E3的坐标为(﹣2,﹣2).设y=14x2+bx,则―2=14×22―2b,解得b=32即抛物线L2的解析式是y=14x2+32x.Ⅱ.当AC为边时,分两种情况,如图,第①种情况,点D1,E1在AC的右上角时.∵AO=CO=E1O=D1O=2,∴点D1的坐标为(0,2),点E1的坐标为(2,0).设y=14x2+bx+2,则0=14×22+2b+2,解得:b=―3 2,即抛物线L2的解析式是y=14x2―32x+2.第②种情况,点D2E2在AC的左下角时,过点D2作D2M⊥x轴,则有△AD2M≌△AD1O,∴AO=AM,D1O=D2M.过E2作E2N⊥y轴,同理可得,△CE2N≌△CE1O,∴CO=CN,E1O=E2N.则点D2的坐标为(﹣4,﹣2),点E2的坐标为(﹣2,﹣4),设y=14x2+bx+c,则―2=14×16―4b+c―4=14×4―2b+c,解得b=12c=―4,即抛物线L2的解析式是y=14x2+12x―4.综上所述:L2的表达式为:y=14x2+32x,y=14x2―32x+2或y=14x2+12x―4.20.解:(1)∵直线y=﹣x+4与x轴交于点C,与y轴交于点B,∴点B,C的坐标分别为B(0,4),C(4,0),把点B(0,4)和点C(4,0)代入抛物线y=ax2+x+c,得:16a+4+c=0,c=4,,解之,得a=―12,c=4,,∴抛物线的解析式为y=―12x2+x+4.(2)∵BC为定值,∴当△BEC的面积最大时,点E到BC的距离最大.如图,过点E作EG∥y轴,交直线BC于点G.设点E的坐标为(m,―12m2+m+4),则点G的坐标为(m,﹣m+4),∴EG=―12m2+m+4―(―m+4)=―12m2+2m,∴S△BEC=12EG⋅OC=12×4(―12m2+2m)=―m2+4m=―(m―2)2+4,∴当m=2时,S△BEC最大.此时点E的坐标为(2,4).(3)存在.由抛物线y=―12x2+x+4可得对称轴是直线x=1.∵Q是抛物线对称轴上的动点,∴点Q的横坐标为1.①当BC为边时,点B到点C的水平距离是4,∴点Q到点P的水平距离也是4.∴点P的横坐标是5或﹣3,∴点P的坐标为(5,―72)或(―3,―72);②当BC为对角线时,点Q到点C的水平距离是3,∴点B到点P的水平距离也是3,∴点P的坐标为(3,52 ).综上所述,在抛物线上存在点P,使得以P,Q,B,C为顶点的四边形是平行四边形,点P的坐标是(5,―72)或(―3,―72)或(3,52).21.解:(1)根据题意得:D (﹣2,0),C (2,0),E ((0,1),设抛物线的解析式为y =ax 2+1(a ≠0),把D (﹣2,0)代入得:4a +1=0,解得a =―14,∴抛物线的解析式为y =―14x 2+1;(2)在y =―14x 2+1中,令y =134―3=14得:14=―14x 2+1,解得x∴距离地面134米高处,隧道的宽度是;(3)这辆货运卡车能通过该隧道,理由如下:在y =―14x 2+1中,令y =3.6﹣3=0.6得:0.6=―14x 2+1,解得x =±5,∴|2x |≈2.53(m ),∵2.53>2.4,∴这辆货运卡车能通过该隧道.22.解:(1)∵抛物线y =﹣x 2+ax 的图象过点A (4,0),∴0=﹣42+a ×4,解得a =4,∵直线y =﹣x +b 的图象过点A (4,0),∴0=﹣4+b ,解得b =4;(2)由(1)得,抛物线解析式为y =﹣x 2+4x ,一次函数解析式为y =﹣x +4,联立方程组y =―x 2+4x y =―x +4,解得:x =1y =3或x =4y =0(舍去),∴点C 坐标为(1,3),由图象得不等式﹣x 2+ax >﹣x +b 的解集为:1<x <4;(3)∵抛物线y =﹣x 2+4x 的对称轴为直线x =2,∴C 点关于对称轴的对称点坐标为(3,2),又∵抛物线y =﹣x 2+4x 的顶点坐标为(2,4),∴当M (0,4)时,N 点坐标为(2,4),此时抛物线与线段MN 有一个交点,当M (4,0)时,此时抛物线与线段MN 有一个交点,当M (1,3)时,此时抛物线与线段MN 有两个交点,∴0≤x M ≤4且x M ≠1.23.解:(1)∵抛物线y =ax 2﹣2ax ﹣3a 与y 轴交点为(0,﹣3),∴﹣3a =﹣3,∴a =1,即a 的值为1;(2)∵a =1,∴抛物线y =ax 2﹣2ax ﹣3a =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴顶点C 的坐标为(1,﹣4);(3)∵顶点C 的坐标为(1,﹣4),∴物线的对称轴为直线x =1,∴P (1,0),∵抛物线y =x 2﹣2x ﹣3与x 轴交于A ,B 两点,令y =0,则x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,∴A (﹣1,0),B (3,0),∴BP =2,PC =4,∴BC =∵MN 垂直平分BC ,∴CN =12BC MNC =90°,∴∠BPC =∠MNC .又∠MCN =∠BCP ,∴△MCN ∽△BCP ,∴CN CP =CM CB ,即4CM ,∴CM =52,∴PM =PC ﹣CM =4―52=32.即线段PM 的长为32.。

九年级上册数学第二章单元测试卷(含答案)

九年级上册数学第二章单元测试卷(含答案)

九年级上册数学第二章单元测试卷(含答案)[时间:120分钟分值:150分]一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.方程( x +1)( x -2)=0的根是()A. x =-1 B. x =2C. x 1 =1, x 2 =-2 D. x 1 =-1, x 2 =22.用配方法解一元二次方程 x 2 +8 x +7=0,则方程可变形为()A.( x -4) 2 =9 B.( x +4) 2 =9—C.( x -8) 2 =16 D.( x +8) 2 =573.已知α 是一元二次方程 x 2 - x -1=0较大的根,则下面对α 的估计正确的是()A.0<α <1 B.1<α <C.<α <2 D.2<α <34.已知关于 x 的一元二次方程3 x 2 +4 x -5=0,下列说法正确的是(B) A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根:D.无法确定5.若 x =-2 是关于 x 的一元二次方程 x 2 - ax + a 2 =0的一个根,则A 的值为( )A.1或4 B.-1或-4C.-1或4 D.1或-46.某县为了大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造和更新.2016年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2018年投资亿元人民币,那么每年投资的增长率为()A.20%或-220% B.40%C.120% D.20%7.三角形两边长分别为3和6,第三边是方程 x 2 -13 x +36=0的根,则三角形的周长为()-A.13 B.15C.18 D.13或188.从正方形的铁片上截去2 c m 宽的长方形,余下的面积是48 c m 2 ,则原来的正方形铁片的面积是()A.8 c m 2 B.32 c m 2C.64 c m 2 D.96 c m 29.若关于 x 的方程 x 2 +2 x + A =0不存在实数根,则 A 的取值范围是()A. A <1 B. A >1C.A ≤1 D.A ≥1(10. x 1 , x 2 是关于 x 的一元二次方程 x 2 - mx + m -2=0的两个实数根,是否存在实数 m 使+=0成立则正确的结论是()A. m =0 时成立 B. m =2 时成立C. m =0 或2时成立 D.不存在二、填空题(本大题共6个小题,每小题4分,共24分)11.已知 x 1 =3是关于 x 的一元二次方程 x 2 -4 x + C =0的一个根,则方程的另一个根 x 2 =__ ____.12.一小球以15 m/s的速度竖直向上抛出,它在空中的高度 h (m)与时间 t (s)满足关系式: h =15 t -5 t 2 ,当 t =_________时,小球高度为10 m.小球所能达到的最大高度为________m.13.若关于 x 的一元二次方程 x 2 - x + m =0有两个不相等的实数根,则 m 的值可能是_____________(写出一个即可).14.菱形的两条对角线长分别是方程 x 2 -14 x +48=0的两实根,则菱形的面积为________.—15.已知关于 x 的一元二次方程 x 2 +(2 k +1) x + k 2 -2=0的两根为 x 1 , x 2 ,且( x 1 -2)( x 1 - x 2 )=0,则 k 的值是___________.16.如果关于 x 的方程 Ax 2 +2 x +1=0有两个不相等的实数根,则实数 A 的取值范围是________________.三、解答题(本大题共9个小题,共96分)17.(16分)解方程:(1)( x +8) 2 =36;;(2) x (5 x +4)-(4+5 x )=0;,(3) x 2 +3=3( x +1);(4)2 x 2 - x -1=0(用配方法).(18.(8分)已知关于 x 的方程 x 2 + x + n =0有两个实数根-2, m ,求 m , n 的值.!19.(10分)先化简,再求值: ÷ ,其中 m 是方程x 2 +2 x -3=0的根.。

人教版九年级数学上华章教育期末测试(二)(含答案)

人教版九年级数学上华章教育期末测试(二)(含答案)

期末测试(二)(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列选项中所指的图形,不属于中心对称图形的是( )A .等边三角形B .正方形C .正六边形D .圆2.用配方法解方程x 2+1=8x ,变形后的结果正确的是( )A .(x +4)2=15B .(x +4)2=17C .(x -4)2=15D .(x -4)2=173.关于x 的一元二次方程ax 2-x +1=0有实数根,则a 的取值范围是( )A .a ≤14且a≠0B .a ≤14C .a ≥-14且a≠0D .a ≥-144.把抛物线y =-12x 2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线解析式为( )A .y =-12(x +1)2+1B .y =-12(x +1)2-1C .y =-12(x -1)2+1D .y =-12(x -1)2-15.已知点A(m ,1)与点B(5,n)关于原点对称,则m 和n 的值为( )A .m =5,n =-1B .m =-5,n =1C .m =-1,n =-5D .m =-5,n =-16.如图,已知在 ABCD 中,AE ⊥BC 于点E ,以点B 为中心,取旋转角等于∠ABC ,把△BAE 顺时针旋转,得到△BA′E′,连接DA′.若∠ADC =60°,∠ADA ′=50°,则∠DA′E′的大小为( )A .130°B .150°C .160°D .170°7.“从一个布袋中随机摸出1个球恰好是红球的概率为16”的意思是( )A .布袋中有1个红球和5个其他颜色的球B .摸球6次就一定有1次摸中红球C .如果摸球次数很多,那么平均每摸球6次就有1次摸中红球D .布袋中共有6个红球,从中摸到了一个红球8.在矩形ABCD 中,AB =16,按如图所示裁出一扇形ABE ,将扇形围成一个圆锥(AB 和AE 重合),则此圆锥的底面圆半径为( )A .4B .16C .4 2D .89.如图,PA ,PB ,CD 分别切⊙O 于点A ,B ,E ,CD 分别交PA ,PB 于点C ,D.下列关系:①PA =PB ;②∠ACO =∠DCO ;③∠BOE 和∠BDE 互补;④△PCD 的周长是线段PB 长度的2倍.则其中说法正确的有( )A .1个B .2个C .3个D .4个10.抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1,与x 轴的一个交点在(-3,0)和(-2,0)之间,其部分图象如图,则下列结论:①4ac -b 2<0;②2a -b =0;③a +b +c <0;④点(x 1,y 1),(x 2,y 2)在抛物线上,若x 1<x 2,则y 1<y 2.正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.已知抛物线y=x2-3x+m与x轴只有一个公共点,则m=________.12.在m2□6m□9的“□”中任意填上“+”或“-”号,所得的代数式为完全平方式的概率为________.13.在国家政策的宏观调控下,某市的商品房成交价由去年10月份的7 000元/m2下降到12月份的5 670元/m2,则11、12两月平均每月降价的百分率是________.14.(张家界中考)将量角器按如图所示的方式放置在三角形纸板上,使顶点C在半圆上,点A,B的读数分别为100°,150°,则∠ACB的大小为________度.15.如图,在△ABO中,AB⊥OB,OB=3,AB=1.将△ABO绕O点旋转90°后得到△A1B1O,则点A1的坐标为________.16.一个正六边形的边心距是3,则它的面积为________.17.如图所示,⊙O内有折线OABC,其中OA=2,AB=4,∠A=∠B=60°,则BC的长为________.18.如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P ,Q.连接AC.关于下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是△ACQ 的外心,其中正确结论是________(只需填写序号).三、解答题(共66分) 19.(8分)解方程:(1)3x 2+2x -5=0; (2)(1-2x)2=x 2-6x +9.20.(8分)某农场要建一个长方形的养鸡场,鸡场的一边靠着长为25米的墙,另外三边用木栏围成,木栏长40米.问养鸡场的面积能达到220平方米吗?如果能,请给出设计方案;如果不能,请说明理由.21.(8分)在一个不透明的袋子中,装有除颜色外其余均相同的红、蓝两种球,已知其中红球有3个,且从中任意摸出一个是红球的概率为0.75.(1)根据题意,袋中有________个蓝球;(2)若第一次随机摸出一球,不放回,再随机摸出第二个球.请用画树状图或列表法求“摸到两球中至少一个球为蓝球(记为事件A)”的概率P(A).22.(10分)为了了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是关于车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求彩虹桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使彩虹桥上的车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.23.(10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB 上一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧DE所围成的阴影部分的面积.(结果保留根号和π)24.(10分)给出定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE.已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.25.(12分)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=-x2+4x刻画,斜坡可以用一次函数y=12x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O,A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.参考答案1.A 2.C 3.A 4.B 5.D 6.C 7.C 8.A 9.D 10.C 11.94 12.12 13.10% 14.2515.(-1,3)或(1,-3) 16.63 17.6 18.②③ 19.(1)∵a =3,b =2,c =-5.b 2-4ac =22-4×3×(-5)=64. ∴x =-2±642×3=-1±43.即x 1=1,x 2=-53.(2)因式分解,得(1-2x)2=(x -3)2.开平方,得1-2x =x -3或1-2x =-(x -3).解得x 1=43,x 2=-2.20.设养鸡场垂直于墙的一边长为x 米,若面积达到220平方米,则列方程,得x(40-2x)=220.整理,得x 2-20x +110=0.Δ=400-440<0,此方程没有实数根.所以养鸡场的面积不能达到220平方米.21.(1)1 (2)将袋中各球分别记为红1、红2、红3、蓝.根据题意,可以画出如下的树状图:由树状图可以看出,所有可能出现的结果共有12种,这些结果出现的可能性相等,其中事件A 的结果共有6种,所以P(A)=612=12.22.(1)设车流速度v 与车流密度x 的函数关系式为v =kx +b ,则⎩⎪⎨⎪⎧80=20k +b ,0=220k +b.解得⎩⎪⎨⎪⎧k =-25,b =88.∴当20≤x≤220时,v =-25x +88.当x =100时,v =48 千米/小时.(2)当v =40,则-25x +88=40,解得x =120;当v =60,则-25x +88=60,解得x =70.∵k=-25<0,∴v 随x 的增大而减小.∴应控制彩虹桥上的车流密度在70<x <120范围内.(3)设车流量y 与x 之间的关系式为y =vx ,当20≤x≤220时,y =(-25x +88)x =-25(x -110)2+4 840,∴当x =110时,y 最大=4 840.∴当车流密度是110辆/千米时,车流量y 取得最大值是4 840辆/小时. 23.(1)相切,理由如下:连接OD.∵AD 平分∠BAC , ∴∠CAD =∠OAD.∵OA =OD ,∴∠OAD =∠ODA , ∴∠CAD =∠ODA.∴OD ∥AC ,又∠C =90°,∴OD ⊥BC ,∴BC 与⊙O 相切.(2)①∵AC =3,∠B =30°,∴AB =6.又OA =OD =r ,∴OB =2r.∴AB =3r.∴3r =6,r =2,即⊙O 的半径是2;②由(1)得OD =2,在Rt △ODB 中,∠B =30°,则OB =4,BD =2 3. ∴S 阴影=S △BOD -S 扇形EOD =12×23×2-60π×22360=23-2π3.24.(1)正方形、矩形、直角梯形中任写两个.(2)①证明:∵△ABC ≌△DBE ,∴BC =BE.∵∠CBE =60°,∴△BCE 是等边三角形. ②证明:∵△ABC ≌△DBE ,∴AC =DE.∵△BCE 是等边三角形,∴BC =CE ,∠BCE =60°. ∵∠DCB =30°,∴∠DCE =90°.∴在Rt △DCE 中,DC 2+CE 2=DE 2.∴DC 2+BC 2=AC 2.即四边形ABCD 是勾股四边形. 25.(1)由题意,得y =-x 2+4x =-(x -2)2+4,故二次函数图象的最高点P 的坐标为(2,4). (2)解方程-x 2+4x =12x ,得x 1=0,x 2=72.当x =72时,y =12×72=74.∴点A 的坐标为(72,74).(3)作PQ ⊥x 轴于点Q ,AB ⊥x 轴于点B.S △POA =S △POQ +S 梯形PQBA -S △BOA =12×2×4+12×(74+4)×(72-2)-12×72×74=4+6916-4916=214.(4)过P 作OA 的平行线,交抛物线于点M ,连接OM ,AM ,则△MOA 的面积等于△POA 的面积.设直线PM 的解析式为y =12x +b ,∵P 的坐标为(2,4),∴4=12×2+b ,解得b =3.∴直线PM 的解析式为y =12x +3.解方程-x 2+4x =12x +3,得x 1=2,x 2=32.当x =32时,y=12×32+3=154.∴点M 的坐标为(32,415).。

九年级数学(人教版)上学期单元试卷(二)

九年级数学(人教版)上学期单元试卷(二)

九年级数学(人教版)上学期单元试卷(二)内容:22.1—22.2 总分:100分一、选择题(本大题共10小题,每小题3分,共30分)1.下列方程中,是关于x 的一元二次方程的是( )A .23(1)2(1)x x +=+B .21120x x+-= C .20ax bx c ++= D .21x =2.将方程 3x (x -1)= 5(x + 2)化为一元二次方程的一般式,正确的是( )A .4x 2-4x + 5 = 0B .3x 2-8x -10 = 0C .4x 2 + 4x -5 = 0D .3x 2 + 8x + 10 = 03.关于x 的方程(6)16x x +=解为( )A .12x =,22x =B .18x =,24x =-C .18x =-,22x =D . 18x =,22x =-4.一元二次方程032=+x x 的解是( )A .3-=xB .3,021-==x xC .3,021==x xD .3=x5.方程2(3)5(3)x x x -=-的根为( )A. 2.5x =B.3x =C. 2.5x =或3x =D.非上述答案6.如果x =4是一元二次方程223a x x =-的一个根,则常数a 的值是( )A .2B .-2C .±2D .±47.三角形的两边长分别为3和6,第三边的长是方程2680x x -+=的一个根,则这个三角形的周长是( )A.9 B.11 C.13 D .148.用配方法解方程2670x x ++=,下面配方正确的是( )A.2(3)2x +=-B.2(3)2x += C.2(3)2x -= D.2(3)2x -=- 9.如果两个连续偶数的积为288,那么这两个数的和等于( )A .34B .34或-34C .35或-34D .-3410.根据下面表格中的取值,方程230x x +-=的一个根的近似值(精确到0.1)是( )A . 1.二、填空题(本大题共4小题,每小题3分,共12分)11.已知一元二次方程032=++mx x 的一个根为3-,则=m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元测试(二) 二次函数(时间:45分钟 满分:100分)一、选择题(每小题3分,共30分)1.下列各式中,y 是x 的二次函数的是( )A .xy +x 2=1B .x 2-y +2=0C .y =1x2 D . y 2-4x =32.下列关于二次函数y =-12x 2图象的说法:①图象是一条抛物线;②开口向下;③对称轴是y 轴;④顶点(0,0).其中正确的有( )A .1个B .2个C .3个D .4个3.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位,再向上平移3个单位B .先向左平移2个单位,再向下平移3个单位C .先向右平移2个单位,再向下平移3个单位D .先向右平移2个单位,再向上平移3个单位4.在平面直角坐标系中,抛物线y =x 2-1与x 轴的交点的个数是( )A .3B .2C .1D .0 5.(宝应县校级期中)函数y =12x 2+1与y =12x 2+2的图象的不同之处是( )A .对称轴B .开口方向C .顶点D .形状 6.已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如下表:则下列判断中正确的是( )A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x =4时,y >0D .方程ax 2+bx +c =0的正根在3与4之间 7.已知二次函数y =3(x -1)2+k 的图象上有A(2,y 1),B(2,y 2),C(-5,y 3)三个点,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 18.(河东区校级期中)同一坐标系中,抛物线y =(x -a)2与直线y =a +ax 的图象可能是( )9.向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的关系为y =ax 2+bx +c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A .第8秒B .第10秒C .第12秒D .第15秒10.(日照中考)如图是抛物线y =ax 2+bx +c(a≠0)图象的一部分.抛物线的顶点坐标是A(1,3),与x 轴的一个交点是B(4,0).直线y 2=mx +n(m≠0)与抛物线交于A 、B 两点.下列结论:①2a +b =0;②abc>0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(-1,0);⑤当1<x<4时,有y 2<y 1.其中正确的是( )A .①②③B .①③④C .①③⑤D .②④⑤二、填空题(每小题4分,共24分)11.当x =________时,二次函数y =x 2+2x -2有最小值.12.如图,⊙O 的半径为2,C 1是函数y =12x 2的图象,C 2是函数y =-12x 2的图象,则阴影部分的面积是________.13.如图,从某建筑物10 m 高的窗口A 处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直).如果抛物线的最高点M 离墙1 m ,离地面403 m ,则水流落地点B 离墙的距离OB 是______.14.二次函数y =-x 2+2x +3的图象与x 轴交于A 、B 两点,P 为它的顶点,则S △PAB =________.15.(温州中考)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m 宽的门,已知计划中的材料可建墙体总长为27 m ,则能建成的饲养室总占地面积最大为________m 2.16.已知二次函数y =(x -2a)2+(a -1)(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.如图分别是当a =-1,a =0,a =1,a =2时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是____________________.三、解答题(共46分)17.(8分)二次函数y =ax 2+bx +c(a≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax 2+bx +c =0的两个根为____________; (2)不等式ax 2+bx +c>0的解集为________;(3)y 随x 的增大而减小的自变量x 的取值范围为________;(4)若方程ax 2+bx +c =k 有两个不相等的实数根,则k 的取值范围为________. 18.(8分)如图,一次函数y 1=kx +b 与二次函数y 2=ax 2的图象交于A 、B 两点.(1)利用图中条件,求两个函数的解析式;(2)根据图象写出使y 1>y 2的x 的取值范围.19.(8分)在一次篮球比赛中,如图,队员甲正在投篮.已知球出手时离地面209 m ,与篮圈中心的水平距离为7 m ,球出手后水平距离为4 m 时达到最大高度4 m ,设篮球运行轨迹为抛物线,篮圈距地面3 m.(1)建立如图所示的平面直角坐标系,问此球能否准确投中?(2)此时,对方队员乙在甲面前1 m处跳起盖帽拦截,已知乙的最大摸高为3.1 m,那么他能否获得成功?20.(10分)(鄂州中考)鄂州市化工材料经销公司购进一种化工材料若干千克,价格为每千克30元,物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现,日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;(3)当销售单价为多少元时,该公司日获利最大?最大利润是多少元?21.(12分)矩形OABC的顶点A(-8,0)、C(0,6),点D是BC边上的中点,抛物线y=ax2+bx经过A、D两点,如图所示.(1)求点D关于y轴的对称点D′的坐标及a、b的值;(2)在y轴上取一点P,使PA+PD长度最短,求点P的坐标;(3)将抛物线y=ax2+bx向下平移,记平移后点A的对应点为A1,点D的对应点为D1,当抛物线平移到某个位置时,恰好使得点O是y轴上到A1、D1两点距离之和OA1+OD1最短的一点,求此抛物线的解析式.参考答案1.B2.D3.B4.B5.C6.D7.D8.D9.B 10.C 11.-1 12.2π 13.3 m 14.8 15.75 16.y =12x -1 17.(1)x 1=1,x 2=3 (2)1<x<3 (3)x>2 (4)k<218.(1)由图象可知:B(2,4)在二次函数y 2=ax 2图象上,∴4=a·22.∴a =1.则y 2=x 2.又∵A(-1,n)在二次函数y 2=x 2图象上,∴n =(-1)2.∴n =1.则A(-1,1).又∵A 、B 两点在一次函数y 1=kx +b 图象上,∴⎩⎪⎨⎪⎧1=-k +b ,4=2k +b.解得⎩⎪⎨⎪⎧k =1,b =2.则y 1=x +2.∴一次函数解析式为y 1=x +2,二次函数解析式为y 2=x 2.(2)根据图象可知:当-1<x<2时,y 1>y 2.19.(1)由题意知,抛物线的顶点为(4,4),经过点(0,209).设抛物线解析式为y =a(x -4)2+4,代入(0,209),解得a =-19,∴y =-19(x -4)2+4.当x =7时,y =-19(7-4)2+4=3,∴一定能准确投中.(2)当x =1时,y =-19(1-4)2+4=3<3.1,∴队员乙能够成功拦截.20.(1)设y =kx +b ,由题意得:⎩⎪⎨⎪⎧80=60k +b ,100=50k +b.解得⎩⎪⎨⎪⎧k =-2,b =200.∴y =-2x +200(30≤x≤60). (2)w =(x -30)(-2x +200)-450=-2x 2+260x -6 450.(3)w =-2(x -65)2+2 000.∵30≤x≤60,∴当x =60时,w 有最大值,w 最大=1 950元.∴销售单价为60元时,该公司日获利最大,最大利润是1 950元.21.(1)由矩形的性质可知:B(-8,6),∴D(-4,6).∴点D 关于y 轴对称点D′(4,6).将A(-8,0)、D(-4,6)代入y =ax 2+bx ,得⎩⎪⎨⎪⎧64a -8b =0,16a -4b =6.解得⎩⎪⎨⎪⎧a =-38,b =-3.(2)设直线AD′的解析式为y =kx +n ,∴⎩⎪⎨⎪⎧-8k +n =0,4k +n =6.解得⎩⎪⎨⎪⎧k =12,n =4.∴直线y =12x +4与y 轴交于点(0,4).∴P(0,4).(3)解法1:由于OP =4,故将抛物线向下平移4个单位时,有OA 1+OD 1最短.∴y +4=-38x 2-3x ,即此时的解析式为y =-38x 2-3x -4. 解法2:设抛物线向下平移了m 个单位,则A 1(-8,-m),D 1(-4,6-m),∴D ′1(4,6-m).令直线A 1D ′1为y =k′x +b′.则⎩⎪⎨⎪⎧-8k′+b′=-m ,4k ′+b′=6-m.解得⎩⎪⎨⎪⎧k′=12,b ′=4-m.∵点O 为使OA 1+OD 1最短的点,∴b ′=4-m =0.∴m =4,即将抛物线向下平移了4个单位.∴y +4=-38x 2-3x ,即此时的解析式为y =-38x 2-3x -4.。

相关文档
最新文档