(经典)北师大版八年级二元一次方程应用题(带答案)

合集下载

北师大版八年级数学上册第五章《二元一次方程组》应用练习题(五)

北师大版八年级数学上册第五章《二元一次方程组》应用练习题(五)

八年级数学上册第五章《二元一次方程组》应用练习题(五)一.选择题1.今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,商品的价格为y,依题意可列方程组为()A.B.C.D.2.《九章算术》有题曰:“今有五雀,六燕,集称之衡,雀俱轻,一雀一燕交而处,衡适平,并燕雀重一斤.问燕雀一枚各重几何?”,其大意是:“现在有5只雀,6只燕,分别集中在天平上称重,聚在一起的雀重燕轻,将一只雀一只燕交换位置,质量相等.5只雀和6只燕共重一斤,问燕、雀各重多少?”古代记八两为半斤,则设1只雀x两,一只燕y两,可列方程()A.B.C.D.3.一种饮料有两种包装,2大盒、4小盒共装88瓶,3大盒、2小盒共装84瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组()A.B.C.D.4.在抗击“新冠肺炎”的战役中,某品牌消毒液生产厂家计划向部分学校共捐赠13吨消毒液,如果这13吨消毒液的大瓶装(500克)与小瓶装(250克)两种产品分装的数量(按瓶计算)比为3:7,那么这两种产品应该各分装多少瓶?若设生产的消毒液应需分装x 大瓶、y小瓶,则以下所列方程组正确的是()A.B.C.D.5.“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的A、B两种长方体形状的无盖纸盒.现有正方形纸板120张,长方形纸板360张,刚好全部用完,问能做成多少个A型盒子?”则下列结论正确的个数是()①甲同学:设A型盒子个数为x个,根据题意可得:4x+3•=360②乙同学:设B型盒中正方形纸板的个数为m个,根据题意可得:3•+4(120﹣m)=360③A型盒72个④B型盒中正方形纸板48个.A.1 B.2 C.3 D.46.如图,长为12,宽为m的长方形,被7个大小相同的边长分别为a,b的小长方形分割成对称的图案(图中每个小于平角的角都为直角),则下列选项正确的是()①;②;③若m=8,则;④若m为正整数,则a,b不可能同时为正整数.A.①②④B.②③④C.①②③D.①③④7.一艘船有一个漏洞,水以均匀的速度进入船内,发现漏洞时船内已经进入了一些水,如果9个人淘水,4小时淘完,如果6个人淘水,10小时才能淘完,假设每个人向外淘水的速度一样,现在要在两个小时内淘完,需要()人.A.14 B.16 C.18 D.208.童威购买7块橡皮、5个作业本、1支圆珠笔共花费20元;购买10块橡皮、7个作业本、1支圆珠笔共花费26元;若购买11个橡皮、8个作业本、2支圆珠笔则要花费()元.A.31 B.32 C.33 D.34二.填空题9.程大位《算法统宗》中有一道题为“隔沟计算”其原文是:甲乙隔沟放牧,二人暗里参详,甲云得乙九只羊,多你一倍之上;乙说得甲九只,二家之数相当.两人闲坐恼心肠,画地算了半晌.这个题目翻译成现代文的意思是:甲、乙两个牧人隔着山沟放羊,两个人都在暗思对方有多少只羊,甲对乙说:“我若得你9只羊,我的羊多你一倍.”乙说:“我若得你9只羊,我们两家的羊数就一样多.”两人都在用心计算着对方的羊数,在地上列算式算了半天才知道对方的羊数.若设甲有x只羊,乙有y只羊,则可列二元一次方程组为.10.要用20张白卡纸做长方体的包装盒,准备把这些白卡纸分成两部分,一部分x张做侧面,另一部分y张做底面.已知每张白卡纸可以做侧面2个,或做底面3个,如果5个侧面可以和2个底面做成一个包装盒.依题意列方程组为11.在一年一度的“药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,为了求解x和y的值,你认为小明应该列出的方程组是:.12.某学校有两种类型的学生宿舍30间,大宿舍每间可以住8人,小宿舍每间可以住5人,该学校共有198个住宿生,恰好可以住满这30间宿舍,若设大宿舍x间,小宿舍y间,则可以列出的方程组为:.13.一条船顺流航行,每小时行20km,逆流航行,每小时行16km,则船在静水的速度km/h.14.今年甲和乙的年龄和为24,6年后,甲的年龄就是乙的年龄的2倍,则甲今年的年龄是岁.15.如图,用大小形状完全相同的长方形纸片在直角坐标系中摆成如图图案,已知A(﹣2,6),则点B的坐标为.三.解答题16.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是200cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图甲所示,(单位:cm)(1)列出方程(组),求出图甲中a与b的值.(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?17.“无夜景,不重庆”,以“祖国万岁”为主题的庆祝中华人民共和国成立70周年灯光秀,9月21日至10月10日在“山水之城,美丽之地”重庆上演.据了解,此次以重庆大剧院灯光“领舞”,临近的12栋楼宇灯光联动变化的“梦幻江北嘴”灯光秀共使用LED 照明灯和LED投射灯共50万个,共花费860万元.已知LED照明灯的售价为每个8元,LED投射灯的售价为每个100元.请用方程或方程组的相关知识解决下列问题:(1)本次“梦幻江北嘴”灯光秀使用LED照明灯和LED投射灯各多少个?(2)某栋楼宇计划安装LED照明灯18000,LED投射灯500个因楼宇本身的设计原因,实际安装时LED投射灯比计划多安装了20%,LED照明灯的数量不变,商家为祖国70华诞而让利把LED照明灯和LED投射灯售价分别降低了m%、m%,实际上这栋楼宇LED照明灯和LED投射灯的总价为159000元,请求出m的值.18.某农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)求每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)农场要租赁两种型号的收割机一共10台,要求2小时完成的小麦收割任务不少于8公顷,则至少需要租赁大型收割机几台?19.某商店决定购进A、B两种纪念品出售,若购进A种纪念品10件,B种纪念品5件,需要215元;若购进A种纪念品5件,B种纪念品10件,需要205元.(1)求A、B两种纪念品的购进单价;(2)已知商店购进两种纪念品(A、B都要有)共花费750元,那么该商店购进这A、B两种纪念品有几种可行的方案,并写出具体的购买方案.20.某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉m盆,求当m的值等于40时,两种花卉全部销售后获得的利润是多少?21.如图,在平面直角坐标系中,点O是坐标原点,点A在y轴的正半轴上,坐标为(0,a),点B在x轴的负半轴上,坐标为(b,0),同时a、b满足.连接AB,且AB=10.点D是x轴正半轴上的一个动点,点E是线段AB上的一个动点,连接DE.(1)求A、B两点坐标;(2)若∠BED=90°,点D的横坐标为x,线段DE的长为d,请用含x的式子表示d;(3)若∠BED=100°,AF、DF分别平分∠BAO、∠BDE相交于点F,求∠F的度数.参考答案一.选择题1.解:设有x人,商品的价格为y,依题意,得.故选:D.2.解:设1只雀x两,一只燕y两,依题意,得:.故选:C.3.解:由题意可得,,故选:A.4.解:设生产的消毒液应需分装x大瓶、y小瓶,由题意得,.故选:A.5.解:设A型盒子个数为x个,则A型纸盒需要长方形纸板4x张,正方形纸板x张,∵制作一个B型纸盒需要两张正方形纸板,∴可制作B型纸盒的数量为个,需要长方形纸板3×张,∴4x+3•=360,故①正确;设B型盒中正方形纸板的个数为m个,则B型纸盒有个,需要长方形纸板3×个,A型纸盒有(120﹣m)个,需长方形纸板4(120﹣m)个,∴3×+4(120﹣m)=120,故②正确;设制作A型盒子a个,B型盒子b个,依题意,得:,解得:,∴A型纸盒有72个,B型纸盒有24个,∴B型盒中正方形纸板48个.故③④正确.故选:D.6.解:∵小长方形的长为b,宽为a,∴,∴结论①符合题意;解方程组①,得:,∴结论②符合题意;将m=8代入②,得:,∵a,b均为正数,∴结论③不符合题意;∵a>0,b>0,即,解得:6<m<8,∵m为正整数,∴m=7,∴,∴结论④符合题意.故选:A.7.解:设x为原有水量,y为每小时进水量,z为每个人每小时向外淘水量,依题意,得:,解得:,∴=14.故选:A.8.解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.则由题意得:,由②﹣①得3x+2y=6 ④由②+①得17x+12y+2z=46 ⑤由⑤﹣④×2﹣③得0=46﹣12﹣a∴a=34故选:D.二.填空题(共7小题)9.解:设甲有x只羊,乙有y只羊,根号题意得,,故答案为:.10.解:设用x张白卡纸做侧面,用y张白卡纸做底面,由题意得,.故答案为:.11.解:设买了甲种药材x斤,乙种药材y斤,根据题意可得:.故答案为:.12.解:由题意可得,,故答案是:.13.解:设船在静水的速度为xkm/h,水流的速度为ykm/h,依题意,得:,解得:.故答案为:18.14.解:设甲今年的年龄是x岁,乙今年的年龄是y岁,依题意,得:,解得:.故答案为:18.15.解:设小长方形的长为x,宽为y,依题意,得:,解得:,∴2x=,x+y=,∴点B的坐标为(﹣,).三.解答题(共6小题)16.解:(1)依题意,得:,解得:.答:图甲中a的值为50,b的值为40.(2)设可以做竖式无盖礼品盒m个,横式无盖礼品盒n个,依题意,得:,解得:.答:可以做竖式无盖礼品盒200个,横式无盖礼品盒400个.17.解:(1)设本次“梦幻江北嘴”灯光秀使用LED照明灯x个,使用LED投射灯y个,依题意,得:,解得:.答:本次“梦幻江北嘴”灯光秀使用LED照明灯450000个,使用LED投射灯50000个.(2)依题意,得:8×(1﹣m%)×18000+100×(1﹣m%)×500×(1+20%)=159000,解得:m=25.答:m的值为25.18.解:(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y 公顷,根据题意得:,解得,答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.(2)设大型收割机用m台,则小型收割机用(10﹣m)台,根据题意得:2×0.5m+2×0.3(10﹣m)≥8,解得m≥5.答:至少需要租赁大型收割机5台.19.解:(1)设A种纪念品的购进单价为x元,B种纪念品的购进单价为y元,依题意,得:,解得:.答:A种纪念品的购进单价为15元,B种纪念品的购进单价为13元.(2)设购进A种纪念品m件,B种纪念品n件,依题意,得:15x+13y=750,∴x=50﹣y.∵x,y均为正整数,∴y为15的倍数,∴或或,∴该商店共有3种进货方案,方案1:购进37件A种纪念品,15件B种纪念品;方案2:购进24件A种纪念品,30件B种纪念品;方案3:购进11件A种纪念品,45件B种纪念品.20.解:(1)设购进甲种花卉每盆x元,乙种花卉每盆y元,,解得,,即购进甲种花卉每盆16元,乙种花卉每盆8元;(2)由题意可得,W=6m+,化简,得W=4m+100,即W与x之间的函数关系式是:W=4m+100,当m=40时,W=260元,答:当m的值等于40时,两种花卉全部销售后获得的利润是260元.21.解:(1)∵a、b满足,∴解方程组得,,∴点A坐标为(0,8),点B坐标为(﹣6,0);(2)如图1,连接AD,∵A(0,8),B(﹣6,0),∴OA=8,OB=6,在Rt△AOB中,由勾股定理可得AB=10.∵点D是x轴正半轴上的一个动点,点D的横坐标为x,∴OD=x,∴BD=6+x,∵AB=10,DE=d,∠BED=90°,∴S△BAD=AB•DE=BD•OA,∴10d=8(6+x),∴d=x+(x>0);(3)如图2,延长AF,交BD于点C,∵AF、DF分别平分∠BAO、∠BDE,∴∠CAO=∠BAO,∠CDF=∠BDE,∵∠BED=100°,∠BOA=90°,∴∠ABD=180°﹣∠BED﹣∠BDE=80°﹣∠BDE,又∵∠ABD=90°﹣∠BAO,∴80°﹣∠BDE=90°﹣∠BAO,∴∠BAO﹣∠BDE=10°,∵∠ACD=90°﹣∠CAO=90°﹣∠BAO,∴∠AFD=180°﹣∠CFD=∠ACD+∠CDF=90°﹣∠BAO+∠BDE=90°﹣(∠BAO﹣∠BDE)=90°﹣×10°=85°.。

北师大版数学八年级上期第五章二元一次方程组应用题表格类训练(含答案)

北师大版数学八年级上期第五章二元一次方程组应用题表格类训练(含答案)

北师大版数学八年级上期第五章二元一次方程组应用题表格类训练一1.为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如下表是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+ 220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元.(1)请问表中二档电价、三档电价各是多少?(2)小明家6月份用电560度,应交费多少元?2.芳芳妈对家里的经济收支情况有记账的好习惯.下表记录的是她家2018年第一季度水表、电表的读表数和所缴水电费的情况:(1)请你根据表中提供的信息求出水、电的收费单价(即每吨水的收费标准和每度电的收费标准);(2)今年4月份芳芳家水表读数为574(吨),电表读数为1340(度),那么芳芳家本月水电费应缴多少元?3.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元吨15吨及以下a超过15吨但不超过25吨的部分b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费______元;用a,b的代数式表示(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a,b的值.(3)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a,b的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.4.茜茜数码专卖店销售容量分别为1G、2G、4G、8G和16G的五种移动U盘,2020年10月1日的销售情况如下表:U盘容量(G)124816销售数量(只)563(1)由于不小心,表中销售数量中,2G和4G销售数量被污染,但知道4G的销售数量比2G的销售数量的2倍少2只,且5种U盘的销售总量是30只.求2G和4G的销售数量.(2)若移动U盘的容量每增加1G,其销售单价增加10元,已知2020年10月1日当天销售这五种U盘的营业额是2730元,求容量为4G的移动U盘的销售单价是多少元?5.某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型每车限载人数(人)租金(元/辆)商务车6300轿车4(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?6.在石家庄外国语学校组织的读书节活动中,为帮扶山区学校贫困同学,某班班长代表班级购买了一些学习用品,他与学习委员的对话如图所示:(1)请根据图中信息,列出二元一次方程组,并通过求解说明班长确实算错了;(2)若要将领来的700元全部用来买水笔,恰好花完.班长用列表法将所用方案进行了梳理:单价6元笔的数量a05…单价10元笔的数量b7067…则满足条件的所有方案共______种,表中a+b的最大值是______.7.宏远商贸公司有A,B两种型号的商品需运出,这两种商品的体积和质量分别如右表所示.体积(m3/件)质量(吨/件)A型商品0.80.5B型商品21(1)已知一批商品有A,B两种型号,体积一共是20m3,质量一共是10.5吨,则A,B两种型号的商品各有几件?(2)物流公司现有可供使用的货车,每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.要将(1)中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式才能使运费最少?并求出该方式下的运费.8.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费。

北师大版八年级数学第五章《应用二元一次方程组-鸡兔同笼》课时练习题(含答案)

北师大版八年级数学第五章《应用二元一次方程组-鸡兔同笼》课时练习题(含答案)

北师大版八年级数学第五章《3.应用二元一次方程组-鸡兔同笼》课时练习题(含答案)一、单选题1.甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么()A.甲20岁,乙14岁B.甲22岁,乙16岁C.乙比甲大18岁D.乙比甲大34岁2.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为()A.30 B.26 C.24 D.223.《九章算术》中有这样一道题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其译文是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现有30钱,买得2斗酒.问醇酒、行酒各买得多少?设醇酒买得x斗,行酒买得y斗,则可列二元一次方程组为()A.2501030x yx y+=⎧⎨-=⎩B.2501030x yx y-=⎧⎨+=⎩C.2105030x yx y+=⎧⎨+=⎩D.2501030x yx y+=⎧⎨+=⎩4.《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为()A.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yy x⎧-=⎪⎪⎨⎪-=⎪⎩C.2502503x yx y+=⎧⎪⎨+=⎪⎩D.2502503x yx y-=⎧⎪⎨-=⎪⎩5.我国古代数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊三,直金十二两.问牛、羊各直金几何?”题目大意是:5头牛、2只羊共19两银子;2头牛、3只羊共12两银子,每头牛、每只羊各多少两银子?设1头牛x两银子,1只羊y两银子,则可列方程组为()A.52192312x yx y+=⎧⎨+=⎩B.52122319x yx y+=⎧⎨+=⎩C.25193212x yx y+=⎧⎨+=⎩D.25123219x yx y+=⎧⎨+=⎩6.用如图的长方形和正方形纸板作侧面和底面,做成如图的竖式和横式两种无盖纸盒.现在仓库里有500张正方形纸板和1000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?若设做竖式纸盒x个,横式纸盒y个,则可列方程组()A.+=5004+3=1000x yx y⎧⎨⎩B.+2=5004+3=1000x yx y⎧⎨⎩C.2+=50003+4=1000x yx y⎧⎨⎩D.2+2=5003+4=1000x yx y⎧⎨⎩7.现用190张铁皮做盒子,每张铁皮可做8个盒身,或做22个盒底,一个盒身与两个盒底配成一个盒子.设用x张铁皮做盒身,y张铁皮做盒底正好配套,则可列方程组为()A.1902822x yx y+=⎧⎨⨯=⎩B.1902228x yy x+=⎧⎨⨯=⎩C.2190822y xx y+=⎧⎨=⎩D.21902822y xx y+=⎧⎨⨯=⎩8.普通火车从绵阳至成都历时大约2小时,成绵城际快车开通后,时间大大缩短至几十分钟,现假定普通火车与城际快车两列对开的火车于同一时刻发车,其中普通火车由成都至绵阳,城际快车由绵阳至成都,这两车在途中相遇之后,各自用了80分钟和20分钟到达自己的终点绵阳、成都,则城际快车的平均速度是普通火车平均速度的()倍.A.2 B.2.5 C.3 D.4二、填空题9.一名学生问老师:“你今年多大了?”老师风趣地说“我像你这样大的时候,你才2岁;你到我这么大时,我已经38岁了”,则今年老师的岁数是_____.10.《孙子算经》是中国古代重要的数学著作,其中记载了这样一道有趣的问题:“一百马,一百瓦,大马一拖三,小马三拖一.”意思是:“现有100匹马恰好拉100片瓦.已知1匹大马能拉3片瓦,3匹小马能拉1片瓦.”则共有大马_____匹.11.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?”译文是:今有甲、乙两人持钱不知道各有多少,甲若得到乙所有钱的12,则甲有50钱,乙若得到甲所有钱的23,则乙也有50钱,问甲、乙各持钱多少?设甲持钱数为x钱,乙持钱数为y钱,列出关于x,y的二元一次方程组是______.12.某中学为积极开展校园足球运动,计划购买A和B两种品牌的足球,已知一个A品牌足球价格为120元,一个B品牌足球价格为150元.学校准备用3000元购买这两种足球(两种足球都买),并且3000元全部用完,请写出一种购买方案:买_______个A品牌足球,买________个B品牌足球.13.《九章算术》记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两,问一牛一羊共直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问一头牛和一只羊共值金多少两?”根据题意可得,一头牛和一只羊共值金____两.三、解答题14.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?15.某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?16.有A、B两种型号的货车:用2辆A型货车和1辆B型货车装满货物一次可运货10吨;用1辆A型货车和2辆B型货车装满货物一次可运货11吨.请用学过的方程(组)知识解答下列问题:(1)求A型、B型两种货车装满货物每辆分别能运货多少吨?(2)现某物流公司有31吨货物,计划同时租用A型车m辆,B型车n辆,一次运完,且恰好每辆车都装满货物.若A 型货车每辆需租金100元/次,B 型货车每辆需租金120元/次.请你帮该物流公司选出最省钱的租车方案,并求出最少租车费用.17.某地区2020年进出口总额为520亿元.2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额. (1)设2020年进口额为x 亿元,出口额为y 亿元,请用含x ,y 的代数式填表:(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额度分别是多少亿元?18.今年(2022年)4月20日,是云大附中建校95周年暨云大附中恢复办学40周年校庆日,我校初一年级数学兴趣小组的小明同学发现这样一个有趣的巧合;小明的爸爸和爷爷都是云附的老校友,且爸爸和妹妹的年龄差恰好与爷爷和小明的年龄差的和为95,而爸爸的年龄恰好比爷爷的年龄小40.已知小明今年13岁,妹妹今年4岁.(1)求今年小明的爸爸和爷爷的年龄分别是多少岁?(要求用二元一次方程组解答) (2)假如小明的爸爸和爷爷都是15岁初中华业的,请问小明的爸爸和爷爷分别是哪一年毕业的云附学子?19.某企业有A ,B 两条加工相同原材料的生产线,在一天内,A 生产线共加工a 吨原材料,加工时间为()41a +小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b +小时. (1)当1a b ==时,两条生产线的加工时间分别时多少小时?(2)第一天,该企业把5吨原材料分配到A .B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到两条生产线的的吨数是多少?(3)第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料,若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则m 和n 有怎样的数量关系?若此时m 与n 的和为6吨,则m 和n 的值分别为多少吨?参考答案1.A2.B3.D4.A5.A6.B7.A8.A 9.26 10.2511.15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩12. 10 12 13.187##42714.解:设用x 立方米的木料做桌面,y 立方米的木料做桌腿,即做桌面50x 个,做桌腿300y 条,此时恰好能配成方桌50x 张,根据题意得10450300x y x y +=⎧⎨⨯=⎩ 解得64x y =⎧⎨=⎩ 则能配成方桌650300⨯=(张)故用6 m 3的木料做桌面,4 m 3的木料做桌腿,恰好能配成方桌300张. 15.解:设改进加工方法前用了x 天,改进加工方法后用了y 天, 则6,3522.x y x y +=⎧⎨+=⎩解得4,2.x y =⎧⎨=⎩ 经检验,符合题意.答:改进加工方法前用了4天,改进加工方法后用了2天.16.(1)设1辆A 型车装满货物一次可运货x 吨,1辆B 型车装满货物一次可运货y 吨,依题意,得:210211x y x y +=⎧⎨+=⎩,解得:34x y =⎧⎨=⎩.答:1辆A 型车装满货物一次可运货3吨,1辆B 型车装满货物一次可运货4吨. (2)由题意可得:3m +4n =31,即3134mn -=, ∵m ,n 均为整数,∴有17m n =⎧⎨=⎩,54m n =⎧⎨=⎩,91m n =⎧⎨=⎩三种情况.设租车费用为W 元, 则W =100m +120n =100m +120•3134m- =10m +930, ∵10>0,∴W 随m 的增大而增大,∴当m =1时,W 最小,此时W =10×1+930=940.∴当租用A 型车1辆,B 型车7辆,最少租车费用为940元. 17.(1)解:故答案为:1.25x +1.3y ; (2)解:根据题意1.25x +1.3y =520+140,∴5201.25 1.3520140x y x y +=⎧⎨+=+⎩,解得:320200x y =⎧⎨=⎩,2021年进口额1.25x =1.25320400⨯=亿元,2021年出口额是1.3 1.3200260y =⨯=亿元. 18.(1)设今年小明的爸爸x 岁,爷爷y 岁.()()4139540x y y x ⎧-+-=⎨-=⎩. 解得:3676x y =⎧⎨=⎩答:今年小明的爸爸36岁,爷爷76岁; (2)202236152001-+=(年) 202276151961-+=(年)小明的爸爸是2001年华业,爷爷是1961年毕业的云附学子. 19.(1)解:当1a b ==时, 415a +=,235b +=; 即两条生产线的的加工时间分别为5小时和5小时.(2)解∶设分配到A 生产线x 吨,则分配到B 生产线y 吨,根据题意得:54123x y x y +=⎧⎨+=+⎩,解得23x y =⎧⎨=⎩, 即分配到A 生产线2吨,则分配到B 生产线3吨; (3)解:根据题意得:()()421233m n ++=++, 整理得:2m n =, ∵6m n +=, ∴2m =,4n =,答:m 与n 的关系为2m n =,当6m n +=吨时,m 为2吨,n 为4吨.。

北师大版八年级数学上册 第五章 解二元一次方程组50题配完整答案

北师大版八年级数学上册  第五章 解二元一次方程组50题配完整答案

北师大版八年级数学(上)解二元一次方程组50题配完整解析1.解下列方程组.(1)(2).【解答】解:(1)方程组整理得:,②﹣①×2得:y=8,把y=8代入①得:x=17,则方程组的解为;(2)方程组整理得:,①×3﹣②×2得:5y=5,即y=1,把y=1代入①得:x=8,则方程组的解为.2.解方程组:①;②.【解答】解:①,①×3+②×2得:13x=52,解得:x=4,则y=3,故方程组的解为:;②,①+12×②得:x=3,则3+4y=14,解得:y=,故方程组的解为:.3.解方程组.(1).(2).【解答】解:(1),②﹣①得:x=1,把x=1代入①得:y=9,∴原方程组的解为:;(2),①×3得:6a+9b=6③,②+③得:10a=5,a=,把a=代入①得:b=,∴方程组的解为:.4.计算:(1)(2)【解答】解:(1),①×2﹣②得:5x=5,解得:x=1,把x=1代入②得:y=﹣2,所以方程组的解为:;(2),①﹣②×2得:y=1,把y=1代入①得:x=﹣3,所以方程组的解为:.5.解下列方程组:(1)(2).【解答】解:(1),①×5,得15x﹣20y=50,③②×3,得15x+18y=126,④④﹣③,得38y=76,解得y=2.把y=2代入①,得3x﹣4×2=10,x=6.所以原方程组的解为(2)原方程组变形为,由②,得x=9y﹣2,③把③代入①,得5(9y﹣2)+y=6,所以y=.把y=代入③,得x=9×﹣2=.所以原方程组的解是6.解方程组:【解答】解:由①得﹣x+7y=6③,由②得2x+y=3④,③×2+④,得:14y+y=15,解得:y=1,把y=1代入④,得:﹣x+7=6,解得:x=1,所以方程组的解为.7.解方程组:.【解答】解:原方程组可化为,①+②得:y=,把y的值代入①得:x=.所以此方程组的解是.或解:①代入②得到,2(5x+2)=2x+8,解得x=,把x=代入①可得y=,∴.8.解方程组:(1)(2)【解答】解:(1)①代入②,得:2(2y+7)+5y=﹣4,解得:y=﹣2,将y=﹣2代入①,得:x=﹣4+7=3,所以方程组的解为;(2)①×2+②,得:11x=11,解得:x=1,将x=1代入②,得:5+4y=3,解得:y=﹣,所以方程组的解为.9.解方程组(1)(2).【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.10.计算:(1)(2).【解答】解:(1),把①代入②得:5x+4x﹣10=8,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2),②×2﹣①得:7y=21,解得:y=3,把y=3代入②得:x=﹣14,则方程组的解为.11.解方程组:【解答】解:方程组整理得:,①×4﹣②×3得:7x=42,解得:x=6,把x=6代入①得:y=4,则方程组的解为.12.解方程组:(1)(2)【解答】解:(1),①代入②,得:5x﹣3(2x﹣1)=7,解得:x=﹣4,将x=﹣4代入②,得:y=﹣8﹣1=﹣9,所以方程组的解为;(2),①×2+②,得:15x=3,解得:x=,将x=代入②,得:+6y=13,解得:y=,所以方程组的解为.13.解方程组(1)(2)【解答】解:(1),①+②,得:3x=3,解得:x=1,将x=1代入①,得:1+y=2,解得:y=1,则方程组的解为;(2),①×8﹣②,得:y=17,解得:y=3,将y=3代入②,得:4x﹣9=﹣1,解得:x=2,则方程组的解为.14.解方程组(1)(2)【解答】解:(1),①×3+②得:10x=25,解得:x=2.5,把x=2.5代入②得:y=0.5,则方程组的解为;(2)方程组整理得:,①×4+②×11得:42x=15,解得:x=,把x=代入②得:y=﹣,则方程组的解为.15.解方程组:【解答】解:①+②得:9x﹣33=0x=把x=代入①,得y=∴方程组的解是16.解方程组【解答】解:方程组整理得:,①×3﹣②×2得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.17.用适当方法解下列方程组.(1)(2)【解答】解:(1),①×2,得:6s﹣2t=10③,②+③,得:11s=22,解得:s=2,将s=2代入②,得:10+2t=12,解得:t=1,则方程组的解为;(2)原方程组整理可得,①×2,得:8x﹣2y=10③,②+③,得:11x=22,解得:x=2,将x=2代入②,得:6+2y=12,解得:y=3,则方程组的解为.18.解方程组:(1)(2)【解答】解:(1),②﹣①,得:3y=6,解得:y=2,将y=2代入①,得:x﹣2=﹣2,解得:x=0,则方程组的解为;(2)方程组整理可得,①+②,得:6x=18,解得:x=3,将x=3代入②,得:9+2y=10,解得:y=,则方程组的解为.19.解方程组:【解答】解:方程组整理成一般式可得:,①+②,得:﹣3x=3,解得:x=﹣1,将x=﹣1代入①,得:﹣5+y=0,解得:y=5,所以方程组的解为.20.用适当的方法解下列方程组:(1)(2)【解答】解:(1),①代入②,得:7x﹣6x=2,解得:x=2,将x=2代入①,得:y=6,所以方程组的解为;(2)方程组整理可得,②﹣①,得:y=2,将y=2代入①,得:3x﹣4=2,解得:x=2,所以方程组的解为.21.解二元一次方程组:(1)(2)【解答】解:(1),②×3﹣①,得:13y=﹣13,解得:y=﹣1,将y=﹣1代入①,得:3x+4=10,解得:x=2,∴方程组的解为;(2)原方程组整理可得,①﹣②,得:y=10,将y=10代入①,得:3x﹣10=8,解得:x=6,∴方程组的解为.22.解方程组:(1)(2)【解答】解:(1),①×2+②得:7x=14,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2)方程组整理得:,①+②得:3x=7,解得:x=,把x=代入①得:y=﹣,则方程组的解为.23.解下列方程组:(1)(2)【解答】解:(1)整理,得:,②﹣①×6,得:19y=114,解得:y=6,将y=6代入①,得:x﹣12=﹣19,解得:x=﹣7,所以方程组的解为;(2)方程整理为,②×4﹣①×3,得:11y=﹣33,解得:y=﹣3,将y=﹣3代入①,得:4x﹣9=3,解得:x=3,所以方程组的解为.24.解方程组(1)(2)【解答】解:(1),①×2,得:2x﹣4y=2③,②﹣③,得:7y=14,解得:y=2,将y=2代入①,得:x﹣4=1,解得:x=5,所以方程组的解为;(2)方程组整理可得,②×4,得:24x+4y=60③,③﹣①,得:23x=46,解得:x=2,将x=2代入②,得:12+y=15,解得:y=3,所以方程组的解为.25.(1)(2)【解答】解:(1)方程组整理得:,①×2﹣②×3得:﹣m=﹣162,解得:m=162,把m=162代入①得:n=204,则方程组的解为;(2)方程组整理得:,①﹣②×6得:﹣11x=﹣55,解得:x=5,把x=5代入①得:y=1,则方程组的解为.26.解方程(1)(代入法)(2)【解答】解:(1),由②,得:y=3x+1③,将③代入①,得:x+2(3x+1)=9,解得:x=1,将x=1代入②,得:y=4,所以方程组的解为;(2)原方程组整理可得,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+4y=14,解得:y=,则方程组的解为.27.解方程:(1)(2)【解答】解:(1),①×2,得:2x+4y=0③,②﹣③,得:x=6,将x=6代入①,得:6+2y=0,解得:y=﹣3,所以方程组的解为;(2)方程组整理可得,①+②,得:10x=30,解得:x=3,①﹣②,得:6y=0,解得:y=0,则方程组的解为.28.解下列二元一次方程组(1)(2)【解答】解:(1),①+②得:5x=10,解得:x=2,把x=2代入①得:y=3,则方程组的解为;(2),①×3+②得:10a=5,解得:a=,把a=代入①得:b=,则方程组的解为.29.解下列方程组:(1)(2)【解答】解:(1),由②得:x=y+4③代入①得3(y+4)+4y=19,解得:y=1,把y=1代入③得x=5,则方程组的解为;(2)方程组整理得:,①+②×4得:﹣37y=74,解得:y=﹣2,把y=﹣2代入①得:x=﹣,则方程组的解为.30.解下列方程组:(1)用代入消元法解;(2)用加减消元法解.【解答】解:(1),由①,得:a=b+1③,把③代入②,得:3(b+1)+2b=8,解得:b=1,则a=b+1=2,∴方程组的解为;(2),①×3,得:9m+12n=48③,②×2,得:10m﹣12n=66④,③+④,得:19m=114,解得:m=6,将m=6代入①,得:18+4n=16,解得:n=﹣,所以方程组的解为.31.解方程组:.【解答】解:方程组整理得:,①+②得:8x=24,解得:x=3,把x=3代入②得:y=﹣5,则方程组的解为.32.解下列方程组①;②.【解答】解:①化简方程组得:,(1)×3﹣(2)×2得:11m=55,m=5.将m=5代入(1)式得:25﹣2n=11,n=7.故方程组的解为;②化简方程组得:,(1)×4+(2)化简得:30y=22,y=.将y=代入第一个方程中得:﹣x+7×=4,x=.故方程组的解为.33.解下列方程组:(1);(2);(3);(4).【解答】解:(1)由①得x=y③,把③代入②,得y﹣3y=1,解得y=3,把y=3代入③,得x=5.即方程组的解为;(2)把①代入②,得4(y﹣1)+y﹣1=5,解得y=2,把y=2代入①,得x=4.即方程组的解为;(3)原方程组整理得,把②代入①,得x=,把x=代入②,得y=,即方程组的解为;(4)原方程组整理得,把①代入②,得﹣14n﹣6﹣5n=13,解得n=﹣1,把n=﹣1代入①,得m=4.即方程组的解为.34.用合适的方法解下列方程组(1)(2)(3)(4)==4.【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为.35.计算解下列方程组(1)(2)(3).【解答】解:(1)①×2﹣②,得3y=15,解得y=5,将y=5代入①,得x=0.5,故原方程组的解是;(2)化简①,得﹣4x+3y=5③②+③,得﹣2x=6,得x=﹣3,将x=﹣3代入②,得y=﹣,故原方程组的解是;(3)将③代入①,得5y+z=12④将③代入②,得6y+5z=22⑤④×5﹣⑤,得19y=38,解得,y=2,将y=2代入③,得x=8,将x=8,y=2代入①,得z=2,故原方程组的解是.36.解下列方程组(1)(2)(3)【解答】解:(1),由①得:x=﹣2y③,将③代入②,得:3(﹣2y)+4y=6,解得:y=﹣3,将y=﹣3代入③得:x=6.所以方程组的解为;(2),①×2得:2x﹣4y=10③,②﹣③得:7y=﹣14.解得:y=﹣2,把y=﹣2代入①,得x+4=5,解得:x=1.所以原方程组的解是;(3),①+②得2y=16,即y=8,①+③得2x=12,即x=6,②+③得2z=6,即z=3.故原方程组的解为.37.解方程组:(1)(2).【解答】解:(1)把①代入②得:3(3+2y)﹣8y=13,解得:y=﹣2,把y=﹣2代入①得:x=3﹣4=﹣1,所以原方程组的解为;(2)①+②得:2x+3y=21④,③﹣①得:2x﹣2y=﹣2⑤,由④和⑤组成一元二元一次方程组,解得:,把代入①得:++z=12,解得:z=,所以原方程组的解为.38.解下列方程组:(1);(2);(3);(4).【解答】解:(1)将①代入②,得5x+2x﹣3=11解得,x=2将x=2代入②,得y=1故原方程组的解是;(2)②×3﹣①,得11y=22解得,y=2将y=2代入①,得x=1故原方程组的解是;(3)整理,得①+②×5,得14y=14解得,y=1将y=1代入②,得x=2故原方程组的解是;(4)①+②×2,得3x+8y=13④①×2+②,得4x+3y=25⑤④×4﹣⑤×3,得23y=﹣23解得,y=﹣1将y=﹣1代入④,得x=7将x=7,y=﹣1代入①,得z=3故原方程组的解是.39.解方程(1)(2)(3)(4).【解答】解:(1),①﹣②得y=1,把y=1代入②得x+2=1,解得x=﹣1.故方程组的解为.(2),①×4+②×3得17x=34,解得x=2,把x=2代入②得6+4y=2,解得y=﹣1.故方程组的解为.(3),②﹣①得x=2,把x=2代入②得12+0.25y=13,解得y=4.故方程组的解为.(4),①+②+③得2(x+y+z)=38,解得x+y+z=19④,④﹣①得z=3,④﹣②得x=7,④﹣③得y=9.故方程组的解为.40.解下列方程组:(1)(2)(3)(4).【解答】解:(1)可化为①﹣②得3y=4,y=;代入①得﹣y=4,y=;∴方程组的解为:;(2)方程组可化为,①×3﹣②×2得m=18,代入①得3×18+2n=78,n=12;方程组的解为:;(3)方程组可化为,把①变形代入②得9(36﹣5x)﹣x=2,x=7;代入①得35+y=36,y=1;方程组的解为:;(4)原方程组可化为,①﹣②得﹣6y=3,y=﹣;③﹣①×2得﹣6y﹣7z=﹣4,即﹣6×(﹣)﹣7z=﹣4,z=1;代入①得x+2×(﹣)+1=2,x=2.方程组的解为:.41.解方程组:(1)(2)(3).【解答】解:(1)由得,①﹣②得2x=4,∴x=2,把x=2代入①得,3×2﹣2y=0,∴y=3,∴;(2),原方程组可化为,①×6﹣②×2得,4y=8,∴y=2,把y=2代入①得,8x+9×2=6,∴x=﹣,∴;(3),①+②得,4x+y=16④,②×2+③得,3x+5y=29⑤,④×5﹣⑤得,17x=51,∴x=3,把x=3代入④得,y=4,把x=3和y=4代入①得,3×3﹣4+z=10,∴z=5,∴.42.解方程组(1)(2)(3).【解答】解:(1),由①得:x=3y+5③,把③代入②得:6y+10+5y=21,即y=1,把y=1代入③得:x=8,则方程组的解为;(2),①×3+②×2得:13x=52,即x=4,把x=4代入①得:y=3,则方程组的解为;(3),由①得:x=1,②+③得:x+2z=﹣1,把x=1代入得:z=﹣1,把x=1,z=﹣1代入③得:y=2,则方程组的解为.43.解方程组:(1)(2)(3).【解答】解:(1),由②得:x=2y+4③,将③代入①得:11y=﹣11,解得:y=﹣1,将y=﹣1代入③得:x=2,则原方程组的解是;(2),②﹣①×2得:13y=65,即y=5,将y=5代入①得:x=2,则原方程组的解是;(3),将①代入②得:4x﹣y=5④,将①代入③得:y=3,将y=3代入④得:x=2,将x=2,y=3代入①得:z=5,则原方程组的解是.44.解方程组:(1)(2)(3)(4).【解答】解:(1)①+②得:3x=3,解得:x=1,把x=1代入①得:1﹣y=1,解得:y=0,所以原方程组的解为:;(2)①×3+②×2得:13x=52,解得:x=4,把x=4代入①得:12﹣2y=6,解得:y=3,所以原方程组的解为:;(3)整理得:①﹣②得:﹣7y=﹣7,解得:y=1,把y=1代入①得:3x﹣2=﹣8,解得:x=﹣2,所以原方程组的解为:;(4)①+②得:3x+3y=15,x+y=5④,③﹣②得:x+3y=9⑤,由④和⑤组成一个二元一次方程组,解得:x=3,y=2,把x=3,y=2代入①得:z=1,所以原方程组的解为:.45.解方程组:(1);(2);(3).【解答】解:(1)①+②得:3x=9解得:x=3把x=3代入①得:y=﹣1所以;(2)原方程可化为①×4﹣②×3得:7x=42解得:x=6把x=6代入①得:y=4所以;(3)把③变为z=2﹣x把z代入上两式得:两式相加得:2y=4解得:y=2把y=2代入①得:x=﹣1,z=3所以.46.用合适的方法解下列方程组:(1)(2)(3)(4)(5)【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为;(5)把②代入③得,5x+3(12x﹣10)+2z=17,即41x+2z=47…④,①+④×2得,85x=85,解得,x=1,把x=1代入①得,3﹣4z=﹣9,解得,z=3,把x=1代入②得,y=12﹣10=2,故原方程组的解为.47.解方程组:(1)(2)(3)(4).【解答】解:(1),①×3﹣②得:﹣16y=﹣160,解得:y=10,把y=10代入①得:x=10,则原方程组的解是:;(2),①+②得;x+y=③,①﹣③得:2008x=,解得:x=,把x=代入③得:y=,则原方程组的解是:;(3)①4x﹣6y=13③,②﹣③得:3y=﹣6,解得:y=﹣2,把y=﹣2代入②得:x=,则原方程组的解为:;(4)由①得,y=1﹣x把y=1﹣x代入②得,1﹣x+z=6④④+③得2z=10,解得z=5,把z=5代入②得,y=1,把y=1代入②得,x=0,则原方程组的解为.48.解下列方程组:(1)(2)(3)(4).【解答】解:(1)②﹣①×2,得3x=6,解得,x=2,将x=2代入①,得y=﹣1,故原方程组的解是;(2)①×9+②,得x=9,将x=9代入①,得y=6,故原方程组的解是;(3)②﹣①,得y=1,将y=1代入①,得x=1故原方程组的解是;(4)②+③×3,得5x﹣7y=19④①×5﹣④,得y=﹣2,将y=﹣2代入①,得x=1,将x=1,y=﹣2代入③,得z=﹣1故原方程组的解是.49.(1);(2);(3);(4).【解答】解:(1)把①变形后代入②得:5(3x﹣7)﹣x=7,x=3;代入①得:y=2;即方程组的解为;(2)原方程化简为①×5﹣②得:y=﹣988代入①得:x﹣988=600,x=1588.原方程组的解为;(3)在中,把两方程去分母、去括号得:①+②×5得:14y﹣28=0,y=2;代入②得:x=﹣2.原方程组的解为;(4)在③×3﹣②得:7x﹣y=35,代入①得:5x+3(7x﹣35)=25,x=5;代入①得:25+3y=25,y=0;代入②得:2×5﹣3z=19,z=﹣3.原方程组的解为.50.解方程组:①;②;③.【解答】解:①方程组整理得:,①+②×5得:7x=﹣7,解得:x=﹣1,把x=﹣1代入②得:y=3,则方程组的解为;②方程组整理得:得,①×6+②得:19y=114,解得:y=6,把y=6代入①得:x=﹣7,则方程组的解为;③,①+②得:x+z=1④,③+④得:2x=5,解得:x=2.5,把x=2.5代入④得:z=﹣1.5,把x=2.5,z=﹣1.5代入①得:y=1,则方程组的解为.。

北师大版八年级数学上册第五章二元一次方程组解二元一次方程组练习题(有答案)

北师大版八年级数学上册第五章二元一次方程组解二元一次方程组练习题(有答案)

解二元一次方程组一.选择题1.小明在解关于x、y的二元一次方程组时,解得则△和★代表的数分别是()A.3、﹣1B.1、5C.﹣1、3D.5、12.解方程组,下列解法中比较简捷的是()A.由①得s=,再代入②B.由①得t=3s﹣5,再代入②C.由②得t=,再代入①D.由②得s=,再代入①3.由方程组,可得x与y的关系是()A.2x+y=﹣4B.2x﹣y=﹣4C.2x+y=4D.2x﹣y=44.已知二元一次方程组,如果用加减法消去n,则下列方法可行的是()A.①×4+②×5B.①×5+②×4C.①×5﹣②×4D.①×4﹣②×55.已知x、y满足方程组,则x+y的值是()A.3B.5C.7D.96.已知方程组,x与y的值之和等于2,则k的值为()A.﹣2B.﹣C.2D.7.若x、y是两个实数,且,则x y y x等于()A.B.C.D.8.如果方程组的解是二元一次方程3x﹣5y﹣30=0的一个解,那么m的值为()A.7B.6C.3D.29.用加减法解方程组时,若要求消去y,则应()A.①×3+②×2B.①×3﹣②×2C.①×5+②×3D.①×5﹣②×310.若|3x+2y﹣4|+27(5x+6y)2=0,则x,y的值分别是()A.B.C.D.11.已知二元一次方程x+y=a+1的一个解也是方程组的解,则a的值为()A.﹣1B.1C.0D.212.已知关于x、y的方程组的解是,则关于x、y的方程组的解是()A.B.C.D.二.填空题13.已知二元一次方程组,则2a+4b=.14.如果|x﹣2y+1|与(x+y﹣5)2互为相反数,那么x=,y=.15.已知|x﹣2y|+(3x﹣4y﹣2)2=0,则x=,y=.16.关于x、y的方程组与有相同的解,则(﹣a)b=.17.已知x,y满足方程组,则x+y的值为.18.方程组的解是.19.已知:x、y满足我们可以不解这个方程组,用①×a+②×b整体求出x+11y的值,则a:b的值是.20.对于x、y,规定一种新的运算:x*y=ax+by,其中a、b为常数,等式右边是通常的加法和乘法运算,已知3*5=15,4*7=28,则a+b=.21.甲乙两人同解方程组时,甲正确解得,乙因抄错c而得,则a+c=.22.解方程组时,一学生把c看错而得到,而正确的解是,那么a+b﹣c=.23.在解方程组时,若先消去x,现在提供三种做法:(1)把方程①的两边都乘3,再减去方程②;(2)把方程①变为x=1﹣y,再将其代入方程②;(3)把方程②变为y=,再将其代入方程①.其中,正确的是.(填序号)三.解答题24.解方程组(1)(2)25.解方程组:.26.解下列方程组:(1)(2).27.已知:+(x﹣y﹣1)2=0,求y x的值.28.已知关于x、y的方程组和的解相同,求a、b值.29.解方程组:(1)(2).30.解下列方程:(1)(2).31.已知方程组与有相同的解,求m,n的值.32.先阅读第(1)小题的解答,然后解答第(2)小题.(1)解方程组解:由①得x﹣y=1③将③代入②得4×1﹣y=5,即y=﹣1,将y=﹣1代入③得,x=0所以.(2)解方程组.33.解下列方程组:①②.34.解下列方程组:(1);(2).参考答案一.选择题1.解:把x=4代入2x﹣3y=5得:8﹣3y=5,解得:y=1,把x=4,y=1代入得:x+y=5,则△和★代表的数分别是5、1,故选:D.2.解:解方程组,下列解法中比较简捷的是由①得t=3s﹣5,再代入②,故选:B.3.解:,把②代入①得:2x+y﹣3=1,整理得:2x+y=4,故选:C.4.B.5.解:,①+②得:3(x+y)=15,则x+y=5.故选:B.6.解:,①+②得:8(x+y)=4k+2,即x+y=,代入x+y=2得:=2,解得:k=,故选:D.7.解:当x≥0,y≥0时,原方程组为:,方程组无解;当x≥0,y≤0时,原方程组为:,解得x=3,y=﹣2;当x≤0,y≥0时,原方程组为:,方程组无解;当x≤0,y≤0时,原方程组为:,方程组无解;综上得,原方程组的解为:.∴x y y x=3﹣2×(﹣2)3=﹣.故选:C.8.解:,①+②得:2x=5m,解得:x=2.5m,①﹣②得:2y=﹣3m,解得:y=﹣1.5m,代入3x﹣5y﹣30=0得:7.5m+7.5m﹣30=0,解得:m=2,故选:D.9.解:用加减法解方程组时,若要求消去y,则应①×5+②×3,故选:C.10.解:∵|3x+2y﹣4|+27(5x+6y)2=0,∴,①×3﹣②得:4x=12,即x=3,把x=3代入①得:y=﹣,则方程组的解为,故选:B.11.解:,①+②得:3x=3,解得:x=1,把x=1代入①得:y=﹣1,把代入方程得:1﹣1=a+1,解得:a=﹣1,故选:A.12.解:∵关于x、y的方程组的解是,∴关于x、y的方程组,即的解为,即,故选:B.二.填空题13.解:,①﹣②,得:2a+4b=6,故答案为:6.14.解:∵|x﹣2y+1|与(x+y﹣5)2互为相反数,∴|x﹣2y+1|+(x+y﹣5)2=0,∴,②﹣①得,3y=6,解得y=2,把y=2代入①得,x﹣2×2+1=0,解得x=3,所以方程组的解是.故答案为:3,2.15.解:∵|x﹣2y|+(3x﹣4y﹣2)2=0,∴,②﹣①×2得:x=2,把x=2代入①得:y=1,故答案为:2;116.解:∵两方程组有相同的解,∴可将两方程组转化为:(1),(2),解(1)得,代入(2)得,解得.故(﹣a)b=(﹣2)3=﹣8.17.解:,①+②得:4x+4y=20,则x+y=5,故答案为:518.解:②﹣3×①,得2x=24,∴x=12.把x=12代入①,得12+y=16,∴y=4.∴原方程组的解为.故答案为:.19.解:①×a+②×b左边可得,a(2x﹣3y)+b(3x﹣2y)=(2a+3b)x+(﹣3a﹣2b)y,∵①×a+②×b可整体得到x+11y的值,∴,③×2得,4a+6b=2⑤,④×3得,﹣9a﹣6b=33⑥,⑤+⑥得,﹣5a=35,解得a=﹣7,将a=﹣7代入③得,2×(﹣7)+3b=1,解得b=5,所以,方程组的解是,故a,b的值可以是a=﹣7,b=5.故答案为:(﹣7):5.20.解:根据题意得:,②×3﹣①×4得:b=24,将b=24代入①得:a=﹣35,则a+b=24﹣35=﹣11.故答案为:﹣11.21.解:把代入②得:3c+14=8,解得:c=﹣2,把和代入①得:,解得:,所以a+c=4+(﹣2)=2,故答案为:2.22.解:把与代入ax+by=2得:,即,①×3+②得:b=5,把b=5代入①得:a=4,把代入cx﹣7y=8得:3c+14=8,解得:c=﹣2,则a+b﹣c=4+5﹣(﹣2)=4+5+2=11.故答案为:1123.解:依题意得(1)、(2)、(3)三种方法都可以解方程组,但是(3)计算比较复杂,所以选择(1)、(2)解方程组比较简单.故答案为:(1)(2).三.解答题24.解:(1),①﹣②×4得:11y=﹣11,解得:y=﹣1,把y=﹣1代入②得:x=2,则方程组的解为;(2)方程组整理得:,①×2﹣②得:3y=9,解得:y=3,把y=3代入①得:x=5,则方程组的解为.25.解:,①+②×3得:10x=50,解得:x=5,把x=5代入②得:y=3,则方程组的解为.26.解:(1)①×2﹣②得:7x=70,解得:x=10,把x=10代入①得:y=10,则方程组的解为;(2)原方程组整理得:,①+②得:6x=48,解得:x=8,把x=8代入①得:y=8,则方程组的解为.27.解:∵+(x﹣y﹣1)2=0,∴,解得:,则原式=1.28.解:方程4x+ay=16和3x+ay=13相减,得x=3,把x=3代入方程2x﹣3y=﹣6,得y=4.把x=3,y=4代入方程组,得解这个方程组,得a=1,b=2.29.解:(1),②代入①得x+2x+1=4,解得x=1,把x=1代入②得y=3.故方程组的解为;(2),①+②得18x=18,解得x=1,把x=1代入②得y=.故方程组的解为.30.(1)解:①×2﹣②得7x=70,解得:x=10,将x=10代入②得10﹣2y=﹣10,解得:y=10,则原方程组的解为;(2)方程组整理得:,解:①×4﹣②×3得7x=42,解得:x=6,把x=6代入①得:y=4,方程组的解为.31.解:∵方程组与有相同的解,∴与原两方程组同解.由5y﹣x=3可得:x=5y﹣3,将x=5y﹣3代入3x﹣2y=4,则y=1.再将y=1代入x=5y﹣3,则x=2.将代入得:,将①×2﹣②得:n=﹣1,将n=﹣1代入②得:m=4.∴m=4,n=﹣1.32.解:(2),将①代入②得:1+2y=9,即y=4,将y=4代入①得:x=7,则方程组的解为.33.解:(1),由②得,y=5x﹣1③,③代入①得,3x=5(5x﹣1),解得x=,把x=代入③得,y=5×﹣1=,所以,方程组的解是;(2)方程组可化为,①﹣②得,4y=28,解得y=7,把y=7代入①得,3x﹣7=8,解得x=5,所以,方程组的解是.34.解:(1),①×2+②得:11x=22,解得:x=2,把x=2代入①得:6﹣y=7,解得:y=﹣1,则原方程组的解为;(2)方程组整理得:,①+②得:10x=30,即x=3,①﹣②得:6y=0,即y=0,则方程组的解为.。

北师大版八年级数学上册第五章《二元一次方程组》应用练习题(有解析)

北师大版八年级数学上册第五章《二元一次方程组》应用练习题(有解析)

八年级数学上册第五章《二元一次方程组》应用练习题1.某超市对甲、乙两种商品进行打折销售,其中甲种商品打八折,乙种商品打七五折,已知打折前,买6件甲种商品和3件乙种商品需600元;打折后,买50件甲种商品和40件乙种商品需5200元.(1)打折前甲、乙两种商品每件分别为多少元?(2)某人购买甲种商品80件,乙种商品100件,问打折后购买这些商品比不打折可节省多少元?2.育德中学800名学生参加第二十届运动会开幕式大型表演,道具选用红黄两色锦绣手幅.已知红色手幅每个4元;黄色手幅每个2.5元;购买800个道具共花费2420元,那么两种手幅各多少个?3.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?4.某山区有若干名中,小学生因贫困失学需要捐助,资助一名中学生的学习费用需要a元,资助一名小学生的学习费用需要b元.某校学生积极捐款,初中各年级学生捐款数额与其捐助贫困中学生和小学生人数的部分情况如下表:捐款数额/元资助贫困中学生人数/名资助贫困小学生人数/名七年级4000 2 4八年级4200 3 3九年级5000(1)求a,b的值;(2)九年级学生的捐款恰好解决了剩余贫困中小学生的学习费用,请计算九年级学生可捐助的贫困小学生人数.5.某写字楼门口安装了一个如图所示的旋转门,旋转门每转一圈按正常负载可以出去6人,每分钟转4圈.(1)问:按正常负载半小时此旋转门可出去多少人?(2)紧急情况时,旋转门每圈负载出去人数可增加50%,但因此每分钟门的转速降低25%.①直接写出紧急情况时旋转门每分钟可以出去人;②该写字楼有9层,每层10间办公室,平均每个办公室6人,为了符合消防安全要求,要在一楼再安装几近普通侧门,每近侧门每分钟能通过45人,在紧急情况下,要使整写字楼的人能在5分钟内全部安全离(下楼时间忽略不计),至少要安装几道普通侧门.6.工厂接到订单生产如图所示的巧克力包装盒子,每个盒子由3个长方形侧面和2个正三角形底面组成,仓库有甲、乙两种规格的纸板共2600张,其中甲种规格的纸板刚好可以裁出4个侧面(如图①),乙种规格的纸板可以裁出3个底面和2个侧面(如图②),裁剪后边角料不再利用.(1)若裁剪出的侧面和底面恰好全部用完,问两种规格的纸板各有多少张?(2)一共能生产多少个巧克力包装盒?7.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”8.列二元一次方程组解应用题:某居民小区为了绿化小区环境,建设和谐家园.准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示.计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?9.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?10.某商店欲购进A、B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元;(1)求A、B两种商品每件的进价分别为多少元?(2)若该商店,A种商品每件的售价为48元,B种商品每件的售价为31元,且商店将购进A、B共50件的商品全部售出后,要获得的利润超过348元,求A种商品至少购进多少件?参考答案1.解:(1)设打折前甲种商品每件x元,乙种商品每件y元,依题意,得:,解得:.答:打折前甲种商品每件40元,乙种商品每件120元.(2)80×40+100×120﹣80×0.8×40﹣100×0.75×120=3640(元).答:打折后购买这些商品比不打折可节省3640元.2.解:设购买红色手幅x个;购买黄色手幅y个,根据题意得,解得,答:购买红色手幅280个;购买黄色手幅520个.3.解:设甲每小时行x千米,乙每小时行y千米,则可列方程组为,解得,答:甲每小时行10千米,乙每小时行15千米.4.解:(1)由题意得:解得:(2)设初三年级学生捐助x名贫困中学生,捐助y名贫困小学生.由题意得:800x+600y=5000得:4x+3y=25∵x、y均为非负整数∴x=1,y=7或x=4,y=3答:初三年级学生可捐助1名贫困中学生,捐助7名贫困小学生;或捐助4名贫困中学生,捐助3名贫困小学生.5.解:(1)正常负载下,半小时可出去:30×4×6=720人(2)①紧急情况下,出去人数可增加50%,则每圈出去人数为:6×(1+50%)=9人,每分钟门转速降低25%,即每分钟转的圈数为4×(1﹣25%)=3圏则每分钟可以出去:3×9=27人故答案填27②写字楼的总人数为:9×10×6=540人急情况下,要使整写字楼的人能在5分钟,旋转门出去的人数为:5×27=135人则剩下的人数为540﹣135=405人,要从普通侧门通过则有405÷(45×5)≈1.8,即至少安装2道普通侧门6.解:(1)设甲种规格的纸板有x个,乙种规格的纸板有y个,依题意,得:,解得:.答:甲种规格的纸板有1000个,乙种规格的纸板有1600个.(2)1600×3÷2=2400(个).。

北师大版八年级上册数学《二元一次方程组应用题》测试试题以及答案

北师大版八年级上册数学《二元一次方程组应用题》测试试题以及答案

方程组应用题练习1、某农场去年计划生产玉米和小麦共200吨,采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%,该农场去年实际生产玉米、小麦各多少吨?2、某工厂生产甲、乙两种商品共8万件,已知2件甲种商品与3件乙种商品售价收入相同,3件甲种商品比2件乙种商品销售收入多1500元,问甲种商品和乙种商品的销售单价各是多少元?3、某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆。

(1)现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?(2)经研究,停车场降低了收费标准,中型汽车的停车费改为10元/辆,小型汽车的停车费改为6元/辆,价格调价后停放这些汽车共需缴纳停车费多少元?4、某服装店用6000元购进A、B两种新式服装,按标价售出后可获得利润3800元(利润=售价-进价),这两种服装的进价、标价如下表所示:(1)求这两种服装各购进的件数;(2)如果A中服装按标价的8折出售,B中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价售出少收入多少元?5、某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样成订货的45不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?6、今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人,求该市今年外来和外出旅游的人数?7、某商场用36000元购进甲、乙两种商品,销售完后共获利6000元,其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元。

(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售,若两种商品销售完毕,要使第二次经营活动获利为8160元,乙种商品售价为每件多少元?8、某地方为了加快建设美丽乡村,对A、B两类村庄进行了全面改建,根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;建设2个A类村庄和5个B类村庄共投入资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)若改建3个A类美丽村庄和6个B类美丽村庄,问共需资金多少万元?9、购进甲、乙两种商品,其中甲商品的进件是120元/件,售价是130元/件,乙中商品的进件是100元/件,售价是150元/件。

北师大版八年级上册第5章《二元一次方程组》实际应用提优训练(附解析)

北师大版八年级上册第5章《二元一次方程组》实际应用提优训练(附解析)

《二元一次方程组》实际应用提优训练1.某校七年级甲、乙两个班共103人(其中甲班超过50人,乙班不足50人)去景点游玩,如果两班都以班为单位分别购票,那么一共需付486元.(1)两班分别有多少名学生?(2)若两班联合起来,作为一个团体购票,可以节约多少钱?购票人数(人)1﹣50人51﹣100人100人以上每人门票单价5元 4.5元4元2.某公司以每吨600元的价格收购了100吨某种药材,若直接在市场上销售,每吨的售价是1000元,该公司决定加工后再出售,相关信息如下表所示:工艺每天可加工药材的吨数成品率成品售价粗加工14 80% 6000精加工 6 60% 11000(注:①成品率80%指加工100吨原料能得到80吨可销售药材;②加工后的废品不产生效益)受市场影响,该公司必须在10天内将这批药材加工完毕.(1)若全部粗加工,可获利元;(2)若尽可能多的精加工,剩余的直接在市场上销售,可获利元;(3)若部分粗加工,部分精加工,恰好10天完成,求可获利多少元?3.江南实验学校准备用9万元购进50台电视机,为了节省费用,学校打算以出厂价从厂家直接采购,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若学校同时购进其中两种不同型号电视机共50台,用去9万元,请研究一下学校的采购方案;(2)若学校去商场购买,在出厂价相同的情况下,商场销售一台甲种电视机获利150元,销售一台乙种电视机获利200元,销售一台丙种电视机获利250元,在(1)的条件下,学校选择哪种方案省下的钱最多?(3)若学校准备用9万元同时购进三种不同的电视机50台,请你设计进货方案.4.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:污水处理器型号A型B型处理污水能力(吨/月)240 180已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?5.在学校组织的游艺会上,投飞标游艺区游戏区规则如下,如图投到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外部分(掷中一次记一个点)现统计小华、小明和小芳掷中与得分情况如图所示.(1)求掷中A区、B区一次各得多少分?(2)依此方法计算小明的得分为多少分?6.为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.7.学完二元一次方程组的应用之后,老师写出了一个方程组如下:,要求把这个方程组赋予实际情境.小军说出了一个情境:学校有两个课外小组,书法组和美术组,其中书法组的人数的二倍比美术组多5人,书法组平均每人完成了4幅书法作品,美术组平均每人完成了3幅美术作品,两个小组共完成了40幅作品,问书法组和美术组各有多少人?小明通过验证后发现小军赋予的情境有问题,请找出问题在哪?8.某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润.甲乙丙每辆汽车能装的数量4 2 3(吨)5 7 4每吨水果可获利润(千元)(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?9.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?10.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆) 5 8 10汽车运费(元/辆)400 500 600(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,该公司打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?参考答案1.解:(1)设甲班有x名学生,乙班有y名学生.根据题意得:解得:答:甲班有58名学生,乙班有45名学生.(2)486﹣103×4=74答:可以节约74元钱.2.解:(1)全部粗加工共可售得6000×80%×100=480000(元),成本为600×100=60000(元),获利为480000﹣60000=420000(元).全部粗加工可获利420000元.故答案为420000;(2)10天共可精加工10×6=60(吨),可售得60×60%×11000+40×1000=436000(元),获利为436000﹣60000=3760000(元).可获利37600000元,故答案为376000;(3)设精加工x天,粗加工y天,则解得,销售可得:30×60%×11000+70×80%×6000=534000(元),获利为534000﹣60000=474000(元),答:可获利474000元.3.解:(1)设学校购买甲种型号的电视机x台,购买乙种型号的电视剧y台,购买丙种型号的电视机z台,。

北师大版八年级上册数学第五章二元一次方程组的应用常考题型练习题(含答案)

北师大版八年级上册数学第五章二元一次方程组的应用常考题型练习题(含答案)

北师大版八年级上册数学第五章二元一次方程组的应用常考题型练习题一.选择题1.某公园门票的价格为:成人票10元/张,儿童票5元/张.现有x名成人、y名儿童,买门票共花了75元.据此可列出关于x、y的二元一次方程为()A.10x+5y=75B.5x+10y=75C.10x﹣5y=75D.10x=75+5y2.某家具生产厂生产某种配套桌椅(一张桌子,两把椅子),已知每块板材可制作桌子1张或椅子4把,现计划用120块这种板材生产一批桌椅(不考虑板材的损耗),设用x块板材做桌子,用y块板材做椅子,则下列方程组正确的是()A.B.C.D.3.通过对一份中学生营养快餐的检测,得到以下信息:①快餐总质量为300g;②快餐的成分:蛋白质、碳水化合物、脂肪、矿物质;③蛋白质和脂肪含量占50%;矿物质的含量是脂肪含量的2倍;蛋白质和碳水化合物含量占85%.若设一份营养快餐中含蛋白质x(g),含脂肪y(g),则可列出方程组()A.B.C.D.4.为了绿化校园,某班学生参与共种植了144棵树苗.其中男生每人种3棵,女生每人种2棵,且该班男生比女生多8人,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.B.C.D.5.用一块A型钢板可制成2块C型钢板、3块D型钢板;用一块B型钢板可制成1块C型钢板、4块D 型钢板.某工厂现需14块C型钢板、36块D型钢板,设恰好用A型钢板x块,B型钢板y块,根据题意,则下列方程组正确的是()A.B.C.D.6.某中学八(1)班45名同学参加市“精准扶贫”捐款助学活动,共捐款400元,捐款情况记录表:捐款(元)35810人数2■■31表格中捐款5元和8元的人数不小心技墨水污染看不清楚.若设捐款5元的有x名同学,捐款8元的有y名同学,根据题意可得方程组()A .B .C .D .7.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()A .B .C .D .8.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是()A .B .C .D .9.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x尺,绳子长为y尺,则下列符合题意的方程组是()A .B .C .D .10.甲,乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.若设甲的速度为x米/秒,乙的速度为y米/秒,则下列方程组中正确的是()A .B .C .D .11.今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,商品的价格为y,依题意可列方程组为()A .B .C .D .12.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x元,每个实心球y元,则根据题意列二元一次方程组得()A .B .C .D .13.某校八年级共有学生160人,已知男生人数比女生人数的2倍少50人,设男生、女生的人数分别为x、y人,根据题意可列方程组是()A.B.C.D.14.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x间、房客y人,下列方程组中正确的是()A.B.C.D.二.填空题15.体育馆的环形跑道长400米,甲、乙分别以一定的速度练习长跑和骑自行车.如果同向而行80秒乙追上甲一次;如果反向而行,他们每隔30秒相遇一次;求甲、乙的速度分别是多少?如果设甲的速度是x 米/秒,乙的速度是y米/秒,所列方程组是.16.《九章算术》是中国传统数学最重要的著作,方程术是《九章算术》最高的数学成就.《九章算术》中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?译文:假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少?若设每头牛值金x两,每只羊值金y两,可列方程组为.17.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为.18.甲、乙两人相距50千米,若同向而行,乙10小时可追上甲;若相向而行,2小时两人相遇.设甲、乙两人每小时分别走x千米,y千米,则可列出方程组.19.学完“里程碑上的数”之后有这样一个问题:“小明家离学校1000米,其中有一段为上坡路,另一段为下坡路.他跑步去学校共用时18分钟,已知小明上坡的平均速度为30米/分,下坡的平均速度为80米/分,小明上坡和下坡各用了多长时间?”小亮同学设出未知数x,y后列出了方程组,小颖也设出未知数后却列了和小亮不同的方程组:,则横线上应填的方程是.(写一个即可)20.弟弟对哥哥说:“我像你这么大的时候你已经20岁.”哥哥对弟弟说:“我像你这么大的时候你才5岁.”求弟弟和哥哥的年龄.设这一年弟弟x岁,哥哥y岁,根据题意可列出二元一次方程组是.21.小东在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图1所示.小林看见了说:“我也来试一试.”结果小林七拼八凑,拼成了如图2那样的正方形,中间还留下了一个恰好是边长为2cm的小正方形,则这个小长方形的面积为cm2.22.如图所示,8个相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是.23.如图,三个一样大小的小长方形沿“横﹣竖﹣横”排列在一个长为10,宽为8的大长方形中,则图中一个小长方形的面积等于.24.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有袋.25.某电台组织知识竞赛,共设置20道选择题,各题分值相同,每题必答,下表记录了3个参赛者的得分情况.若参赛者D得82分,则他答对了道题.参赛者答对题数答错题数得分A200100B19194C14664三.解答题26.大型客车每辆能坐54人,中型客车每辆能坐36人,现有378人,问需要大、中型客车各几辆才能使每个人上车都有座位,且每辆车正好坐满?设需要大型客车x辆,中型客车y辆.27.某两位数,两个数位上的数之和为11.这个两位数加上45,得到的两位数恰好等于原两位数的两个数字交换位置所表示的数,求原两位数.(1)列一元一次方程求解.(2)设原两位数的十位数字为x,个位数字为y,列二元一次方程组.(3)检验(1)中求得的结果是否满足(2)中的方程组.28.在当地农业技术部门指导下,小明家种植的菠萝喜获丰收.去年菠萝的收入结余12000元,今年菠萝的收入比去年增加了20%,支出减少10%,结余今年预计比去年多11400元.请计算:(1)今年结余元;(2)若设去年的收入为x元,支出为y元,则今年的收入为元,支出为元.(以上两空用含x、y的代数式表示)(3)列方程组计算小明家今年种植菠萝的收入和支出.29.某县在创建省级卫生文明县城中,对县城内的河道进行整治.现有一段长为180米的河道整治任务由甲、乙两个工程队先后接力完成.甲工程队每天整治8米,乙工程队每天整治12米,共用时20天.要求整治任务完成后甲、乙工程队分别整治河道的长度.(1)小明、小华两位同学提出的解题思路如下:小明同学:设整治任务完成后甲工程队整治河道x米,乙工程队整治河道y米.根据题意,得小华同学:设整治任务完成后,m表示,n表示;得请你补全小明、小华两位同学的解题思路.(2)求甲、乙两工程队分别整治河道多少米?请从中任选一个方程组求解.(写出完整的解答过程)30.春节将至,一电商平台A对本年度最受消费者喜爱的某品牌辣椒酱进行促销,促销方式为:每人每次凡购买不超过15瓶的,每瓶4元,外加运费a元;超过15瓶的,超过的部分每瓶减少b元,并付运费a元,若设购买的瓶数为x瓶.(1)当x≤15时,请用含x和a的代数式表示购买所需费用:;当x>15时,请用含x和a,b 的代数式表示购买所需费用:.(2)王老师和李老师看到促销信息后拟打算在该平台分别购买20瓶和26瓶该品牌辣椒酱,①经过预算,两位老师在该平台购买分别花费82元和100元,请通过计算求出a,b的值.②你能帮两位老师设计一种更省钱的购买方案吗?31.某公司需要粉刷一些相同的房间,经调查3名师傅一天粉刷8个房间,还剩40m2刷不完;5名徒弟一天可以粉刷9个房间;每名师傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的面积;(2)该公司现有36个这样的房间需要粉刷,若只聘请1名师傅和2名徒弟一起粉刷,需要几天完成?(3)若来该公司应聘的有3名师傅和10名徒弟,每名师傅和每名徒弟每天的工资分别是240元和200元,该公司要求这36个房间要在2天内粉刷完成,问人工费最低是多少?32.某校七、八年级师生开展“一日游”活动,已知七年级师生共300人,八年级师生共220人.(1)已知七年级教师比八年级教师多6人,七年级学生比八年级学生多37%,求七年级教师与学生各有多少人;(2)参观某景点时、需要乘船游玩,现有A、B两种型号的游船,A型船的座位数是B型船的1.5倍,若七年级师生全部乘坐A型船若干艘,刚好坐满,八年级全部乘坐B型船,要比七年级乘坐的A型船多一艘且空20个座位,问:①A、B两种游船每艘分别有多少个座位;②若两个年级的师生联合租船,且每艘游船恰好全部坐满,请写出所有的租船方案.33.甲、乙两家商场同时出售同样的水瓶和水杯,且定价相同,请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(请列方程解应用题)(2)为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和12个水杯,请问选择哪家商场购买更合算,并说明理由(水瓶和水杯必须在同一家购买).34.“中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?35.在2月份“抗疫”期间,某药店销售A、B两种型号的口罩,已知销售800只A型和450只B型的利润为210元,销售400只A型和600只B型的利润为180元.求每只A型口罩和B型口罩的销售利润.36.某天,一蔬菜经营户用60元钱从蔬菜批发市场批发了萝卜和白菜共40kg到菜市场去卖,萝卜和白菜这天每千克的批发价与零售价如下表所示:品名萝卜白菜批发价/元 1.6 1.2零售价/元 2.5 1.8问:他当天卖完这些萝卜和白菜共能赚多少钱?37.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?38.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?参考答案一.选择题1.解:设x名成人、y名儿童,由题意得,10x+5y=75.故选:A.2.解:设用x块板材做桌子,用y块板材做椅子,∵用100块这种板材生产一批桌椅,∴x+y=120 ①,生产了x张桌子,4y把椅子,∵使得恰好配套,1张桌子2把椅子,∴2x=4y②,①和②联立得:,故选:D.3.解:设一份营养快餐中含蛋白质x(g),含脂肪y(g),根据题意得:,即,故选:D.4.解:由题意可得,,故选:B.5.解:设恰好用A型钢板x块,B型钢板y块,根据题意,得:,故选:A.6.解:设捐款5元的有x名同学,捐款8元的有y名同学,根据题意可得:,即.故选:A.7.解:设甲的钱数为x,乙的钱数为y,依题意,得:.故选:A.8.解:设有x人,物品价值y元,由题意得:,故选:C.9.解:由题意可得,,故选:B.10.解:根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x=5y+10;根据乙先跑2秒,则甲跑4秒就可追上乙,得方程4x=4y+2y.可得方程组.故选:A.11.解:设有x人,商品的价格为y,依题意,得.故选:D.12.解:设每个排球x元,每个实心球y元,则根据题意列二元一次方程组得:,故选:B.13.解:设男生、女生的人数分别为x,y人,依题意,得:.故选:D.14.解:设该店有客房x间,房客y人;根据题意得:,故选:A.二.填空题15.解:根据题意,得.故答案为:.16.解:根据题意得:,故答案为:,17.解:由题意可得,,故答案为:.18.解:设甲、乙两人每小时分别走x千米、y千米,根据题意得:,故答案为:.19.解:根据题意得出x,y分别表示上坡距离和下坡距离,由题意可得:横线上应填的方程是:8(或).故答案为:8(或).20.解:设这一年弟弟x岁,哥哥y岁,根据题意得:,故答案为:.21.解:设每个长方形的宽为xcn,长为ycm,那么可得出方程组为:,解得:,因此每个长方形的面积应该是xy=60cm2.故答案为:60.22.解:设一个小长方形的长为xcm,宽为ycm,则可列方程组,得.30×10=300cm2.答:每块小长方形地砖的面积是300cm2.故答案为:300cm2.23.解:设小长方形的长为x,宽为y,根据题意得:,解得:,∴xy=4×2=8.故答案为:8.24.解:设驴子原来所驮货物的袋数是x,骡子原来所驮货物的袋数是y.由题意得解得,即:驴子原来所驮货物的袋数是5,骡子原来所驮货物的袋数是7.故答案是:5.25.解:设答对一题得a分,答错一题得b分,依题意,得:,解得:.设参赛者D答对了x道题,则答错了(20﹣x)道题,依题意,得:5x﹣(20﹣x)=82,解得:x=17.故答案为:17.三.解答题26.解:设需要大型客车x辆,中型客车y辆,由题意得:54x+36y=378,则3x+2y=21,当x=1时,y=9;当x=2时,y=(不合题意);当x=3时,y=6;当x=4时,y=(不合题意);当x=5时,y=3;当x=6时,y=(不合题意);当x=7时,y=0;答:一共有4种符合题意的答案.27.解:(1)设原两位数的个位数字为m,则十位数字为(11﹣m),依题意,得:10×(11﹣m)+m+45=10m+(11﹣m),解得:m=8,∴11﹣m=3.答:原两位数为38.(2)设原两位数的十位数字为x,个位数字为y,依题意,得:.(3)结合(1),可知:x=3,y=8,∴x+y=11,10x+y+45=83=10y+x,∴(1)中求得的结果满足(2)中的方程组.28.解:(1)由题意可得,今年结余:12000+11400=23400(元),故答案为:23400;(2)由题意可得,今年的收入为:x(1+20%)=1.2x(元),支出为:y(1﹣10%)=0.9y(元),故答案为:1.2x,0.9y;(3)由题意可得,,解得,,则1.2x=1.2×42000=50400,0.9y=0.9×30000=27000,答:小明家今年种植菠萝的收入和支出分别为50400元、27000元.29.解:(1)小明、小华两位同学提出的解题思路如下:小明同学:设整治任务完成后甲工程队整治河道x米,乙工程队整治河道y米.根据题意得,小华同学:设整治任务完成后,m表示甲工程队整治河道用的天数,n表示乙工程队整治河道用时的天数;得;(2)选小明同学所列方程组解答如下:,由②×24得:3x+2y=480③,由①×2得:2x+2y=360④,由③﹣④得:x=120,x=120代入到①得:y=60,故甲工程队整治河道120米,乙工程队整治河道60米.30.解:(1)当x≤15时,购买所需费用(4x+a)元;当x>15时,购买所需费用4×15+(4﹣b)(x﹣15)+a=[60+a+(4﹣b)(x﹣15)]元.故答案为:(4x+a);[60+a+(4﹣b)(x﹣15)].(2)①依题意,得:,解得:.答:a的值为7,b的值为1.②两人可以合在一起在该平台一次购买46瓶.60+7+(46﹣15)×(4﹣1)=160(元).∵160<182,∴两人合在一起在该平台一次购买46瓶,比分开购买更省钱.31.解:(1)设每个房间需要粉刷的面积为xm2,每名徒弟一天粉刷ym2的墙面,则每名师傅一天粉刷(y+30)m2的墙面,依题意,得:,解得:.答:每个房间需要粉刷的面积为50m2.(2)由(1)可知:每名徒弟一天粉刷90m2的墙面,每名师傅一天粉刷120m2的墙面,∴50×36÷(120+90×2)=6(天).答:需要6天完成.(3)设聘请m名师傅和n名徒弟完成粉刷任务,依题意,得:120m+90n=36×50÷2,∴n=10﹣m.∵m,n均为非负整数,且0≤m≤3,0≤n≤10,∴,,∴该公司共有两种聘请方案,方案1:聘请10名徒弟完成粉刷任务;方案2:聘请3名师傅和6名徒弟完成粉刷任务.方案1所需人工费为200×10×2=4000(元),方案2所需人工费为(200×6+240×3)×2=3840(元).∵4000>3840,∴方案2聘请3名师傅和6名徒弟完成粉刷任务所需人工费最低,最低人工费为3840元.32.解:(1)设八年级教师有x人,学生有y人,依题意,得:,解得:,∴x+6=26,(1+37%)y=274.答:七年级教师有26人,学生有274人.(2)①设B型船每艘有m个座位,则A型船每艘有1.5m个座位,依题意,得:﹣=1,解得:m=40,经检验,m=40是原分式方程的解,且符合题意,∴1.5m=60.答:A型船每艘有60个座位,B型船每艘有40个座位.②设需租用A型船a艘,租用B型船b艘,依题意,得:60a+40b=300+220,∴b=13﹣a.又∵a,b均为非负整数,∴,,,,,∴共有5种租船方案,方案1:租用13艘B型船;方案2:租用2艘A型船,10艘B型船;方案3:租用4艘A型船,7艘B型船;方案4:租用6艘A型船,4艘B型船;方案5:租用8艘A型船,1艘B 型船.33.解:(1)设一个水瓶与一个水杯分别是x元y元,根据题意,得解得答:一个水瓶与一个水杯分别是40元和8元;(2)甲商场所需费用为:(40×5+8×12)×80%=236.8(元)乙商场所需费用为:5×40+(12﹣5×2)×8=216(元)236.8>216,所以选择乙商场购买更合算.34.解:设A型号的空调购买价为x元,B型号的空调购买价为y元,依题意得:,解得:.答:A型号的空调购买价为2120元,B型号的空调购买价为2320元.35.解:设每只A型口罩销售利润为a元,每只B型口罩销售利润为b元,根据题意得:,解得,答:每只A型口罩销售利润为0.15元,每只B型口罩销售利润为0.2元.36.解:设白菜的重量是xkg,萝卜的重量是ykg,依题意有解得:,10×(1.8﹣1.2)+30×(2.5﹣1.6)=33(元)答:他当天卖完这些白菜和萝卜能赚33元.37.解:(1)解分三种情况计算:①设购甲种电视机x台,乙种电视机y台.解得.②设购甲种电视机x台,丙种电视机z台.则,解得:.③设购乙种电视机y台,丙种电视机z台.则解得:(不合题意,舍去);(2)方案一:25×150+25×200=8750.方案二:35×150+15×250=9000元.答:购甲种电视机25台,乙种电视机25台;或购甲种电视机35台,丙种电视机15台.购买甲种电视机35台,丙种电视机15台获利最多.38.解:设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,,解得:.答:需安排25名工人加工大齿轮,安排60名工人加工小齿轮.。

北师大版八年级数学上册第五章《应用二元一次方程组-里程碑上的数》课时练习题(含答案)

北师大版八年级数学上册第五章《应用二元一次方程组-里程碑上的数》课时练习题(含答案)

北师大版八年级数学上册第五章《5.应用二元一次方程组-里程碑上的数》课时练习题(含答案)一、单选题1.一个两位数,十位数字比个位数字大4;将这个两位数的十位数字与个位数字对调后,比原数减少了36,求原两位数.若设原两位数十位数字是x ,个位数字是y ,则列出方程组为( )A .4101036x y x y y x -=⎧⎨+=+-⎩B .4101036x y x y y x +=⎧⎨+=+-⎩C .4103610x y x y y x-=⎧⎨+-=+⎩D .4103610y x x y y x-=⎧⎨+-=+⎩2.如图,AB ⊥BC ,∠ABC 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x °,y °,那么下面可以求出这两个角的度数的方程组是( ).A .9015x y x y +=⎧⎨=-⎩B .90215x y x y +=⎧⎨=+⎩C .90152x y x y +=⎧⎨=-⎩D .90215x y x y +=⎧⎨=-⎩3.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩4.《算法统宗》中有一道题为“隔沟计算”,其原文是:甲乙隔沟放牧,二人暗里参详,甲云得乙九只羊,多你一倍之上;乙说得甲九只羊,二家之数相当,两人闲坐恼心肠,画地算了半晌.这个题目的意思是:甲、乙两个牧人隔着山沟放羊,两人都在暗思对方有多少只羊,甲对乙说:“我若得你9只羊,我的羊多你一倍.”乙对甲说:“我若得你9只羊,我们两家的羊数就一样多.”设甲有x只羊,乙有y只羊,根据题意列出二元一次方程组为()A.()929,99.x yy x⎧-=+⎨+=-⎩B.()929,99.x yy x⎧+=-⎨+=-⎩C.92,9.x yy x+=⎧⎨+=⎩D.92,99.x yy x-=⎧⎨+=-⎩5.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为()A.8374x yx y-=⎧⎨+=⎩B.8374x yx y+=⎧⎨-=⎩C.8374y xy x-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩6.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是()A.9 B.10 C.11 D.127.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A.3201036x yx y-=⎧⎨+=⎩B.3201036x yx y+=⎧⎨+=⎩C.3201036y xx y-=⎧⎨+=⎩D.3102036x yx y+=⎧⎨+=⎩8.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天二、填空题9.《九章算术》中记载了一道数学问题,其译文为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hú,是古代一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒x 斛、1个小桶可以盛酒y 斛.根据题意,可列方程组为__________.10.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?”译文是:今有甲、乙两人持钱不知道各有多少,甲若得到乙所有钱的12,则甲有50钱,乙若得到甲所有钱的23,则乙也有50钱,问甲、乙各持钱多少?设甲持钱数为x 钱,乙持钱数为y 钱,列出关于x ,y 的二元一次方程组是______. 11.某公司向银行申请了甲、乙两种贷款,共计68万元,每年需付出3.2万元利息.已知甲种贷款每年的利率为4.5%,乙种贷款每年的利率为5%,则该公司申请的甲种贷款的数额为_____万元.12.小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的,写出题中被墨水污染的条件和第一个方程,并求解这道应用题.应用题:小东在某商场看中的一台电视和一台空调在“五一”前共需要5500元,由于该商场开展“五一”促销活动,同样的电视打八折销售,于是小东在促销期间购买了同样的电视一台,空调两台,共花费7200元,求“五一”前同样的电视和空调每台各多少元?解:设“五一”的同样的电视每台x 元,空调每台y 元,根据题意,得()0.824007200x y ⎧⎪⎨+-=⎪⎩■■■■①②. 被墨水污染的条件是:_________________;被墨水污染的第一个方程是:___________. 三、解答题13.2022年北京冬奥会和冬残奥会的吉祥物“冰墩墩”和“雪容融”深受国内外广大朋友的喜爱,北京奥组委官方也推出了许多与吉祥物相关的商品,其中有A 型冰墩墩和B 型雪容融两种商品.已知购买1个A 型商品和1个B 型商品共需要220元,购买3个A 型商吕和2个B 型商品共需要560元,求每个A 型商品的售价.14.根据市场调查,某厂某种消毒液的大瓶装(500g) 和小瓶装(250g) 两种产品的销售数量(按瓶计算)比为2:5.该厂每天生产这种消毒液22.5吨,这些消毒液应分装大、小瓶两种产品各多少瓶?15.如图,在33⨯的方格内,填写了一些代数式和数.(1)在图1中各行、各列及对角线上三个数之和都相等,请你求出x ,y 的值; (2)把满足(1)的其它6个数填入图2中的方格内.16.5月19日是“中国旅游日”,为拓宽学生视野,某校组织去井冈山开展研学旅行活动.在此次活动中,小明、小亮等同学随家长一同到某游乐园游玩.已知成人票每张35元,学生票按成人票五折优惠.他们一共12人,门票共需350元. (1)小明他们一共去了几个成人,几个学生?(2)如果团体票(16人或16人以上)按成人票六折优惠,请你帮助小明算一算,用哪种方式购票更省钱?17.如果一个自然数N 的个位数字不为0,且能分解成A ×B ,其中A 与B 都是两位数,A 的十位数字比B 的十位数字大2,A 、B 的个位数字之和为10,则称数N 为“美好数”,并把数N 分解成N A B =⨯的过程,称为“美好分解”.例如:∵2989 6149=⨯,61的十位数字比49的十位数字大2,且61、49的个位数字之和为10,∴2989是“美好数”;又如:∵6053519=⨯,35的十位数字比19的十位数字大2,但个位数字之和不等于10,∴605不是“美好数”.(1)判断525,1148是否是“美好数”?并说明理由;(2)把一个大于4000的四位“美好数”N 进行“美好分解”,即分解成N A B =⨯,A 的各个数位数字之和的2倍与B 的各个数位数字之和的和能被7整除,求出所有满足条件的N .18.如图,在数轴上有A ,B 两点,其中点A 在点B 的左侧,已知点B 对应的数为4,点A 对应的数为a .(1)若7113372663145a ⎛⎫=⨯-⨯÷⨯ ⎪⎝⎭,则线段AB 的长为______(直接写出结果);(2)若点C 在射线AB 上(不与A ,B 重合),且236AC BC -=,求点C 对应的数;(结果用含a 的式子表示)(3)若点M 在线段AB 之间,点N 在点A 的左侧(M 、N 均不与A 、B 重合),且2AM BM -=,当3AMAN =,6BN BM =时,求a 的值。

北师大版数学八年级上备考训练:二元一次方程组应用(附答案)

北师大版数学八年级上备考训练:二元一次方程组应用(附答案)

期末备考训练:二元一次方程组应用1.某校七年级一、二班各有两位老师带领两个班学生参加春游活动.若从一班学生调12人到二班,则二班的人数是一班的两倍;若从二班学生调8人到一班,则一班的人数是二班的倍.(1)求这两个班各有多少人?(2)若门票两种方式售票:第一种:老师全票,学生半价优惠;第二种:团体票:所有的老师和学生都按全票价的6折优惠;问若门票为a元,该选择哪种方式比较优惠.解:(1)设一班有x人,二班有y人,依题意,得:,解得:.答:一班有37人,二班有38人.(2)选择第一种方案所需费用:2×2a+(37+38)×0.5a=41.5a(元);选择第二种方案所需费用:(2×2+37+38)×0.6a=47.4a(元).∵41.5a<47.4a,∴选择第一种方案比较优惠.2.某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽是否存在恰好配套?若存在恰好配套,请求出加工螺栓和螺帽各需要的金属原料块数,若不存在恰好配套,请说明理由.解:设把x块金属原料加工成螺栓,y块金属原料加工成螺帽正好配套,依题意,得:,解得:,∵x,y均为整数,∴加工的螺栓和螺帽不存在恰好配套.3.某旅馆的客房有三人间和两人间两种,三人间每人每天90元,两人间每人每天120元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费5280元,两种客房各租住了多少间?解:设三人间客房有x间,二人间客房有y间,根据题意,得:,化简,得②﹣①×3,得2y=26∴y=13 ③将③代入①,得3x+26=50∴3x=24∴x=8答:三人间客房租了8间,二人间客房租了13间.4.学校订做校服,要求在规定期限内完成.若按服装厂原来生产能力,每天可生产这种校服150套,则在期限内只能完成校服数量的;现服装厂改进设备,每天可生产这种校服200套,则可提前1天完成,且多生产25套,求原规定期限多少天?订做校服数量多少套?解:设原规定期限为x天,订做校服数量为y套,依题意,得:,解得:.答:原规定期限为18天,订做校服数量为3375套.5.为建设资源节约型、环境友好型社会,切实做好节能减排工作,某市决定对居民家庭用电实行“阶梯电价”.电力公司规定居民家庭每月用电量在80千瓦时以下(含80千瓦时),1千瓦时俗称1度/时,实行“基本电价”;当居民家庭月用电量超过80千瓦时,超过部分实行“提高电价”.已知小张家2017年2月份用电100千瓦时,上缴电费68元;3月份用电120千瓦时,上缴电费88元.若7月份小张家预计用电130千瓦时,请预算小张家7月份应上缴的电费.解:设“基本电价”为x元/千瓦时,“提高电价”为y元/千瓦时,依题意,得:,解得:,80×0.6+(130﹣80)×1=98(元).答:预计小张家7月份应上缴的电费98元.6.某超市为“开业三周年”举行了店庆活动,对A,B两种商品实行打折出售.打折前,购买5件A商品和1件B商品需用84元;购买6件A商品和3件B商品需用108元.(1)求A、B商品的单价.(2)店庆期间,购买50件A商品和50件B商品仅需960元,这比不打折节约了多少钱?解:(1)设A商品的单价为x元,B商品的单价为y元,依题意,得:,解得:.答:A商品的单价为16元,B商品的单价为4元.(2)(16+4)×50﹣960=40(元).答:比不打折节约了40元钱.7.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价5万元/件,乙种产品售价3万元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,要求甲种产品比乙种产品多生产15件,如何安排甲、乙两种产品,使总产值是131.7万元.解:(1)设应安排生产x件甲种产品,y件乙种产品,依题意,得:,解得:,所以5x+3y=135.答:应安排生产15件甲种产品,20件乙种产品,才能恰好使两种原料全部用完,此时总产值是135万元.(2)设生产乙种产品m件,则生产甲种产品(m+15)件,依题意,得:5×(1+10%)(m+15)+3×(1﹣10%)m=131.7,解得:m=6,∴m+15=21(件).答:生产乙种产品6件,则生产甲种产品21件,使总产值是131.7万元.8.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有34吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.解:(1)设1辆A型车载满货物一次可运货x吨,1辆B型车载满货物一次可运货y吨,依题意,得:,解得:.答:1辆A型车载满货物一次可运货3吨,1辆B型车载满货物一次可运货4吨.(2)依题意,得:3a+4b=34,∴a=.∵a,b均为非负整数,∴,,,∴该物流公司共有三种租车方案,方案1:租用A型车10辆,B型车1辆;方案2:租用A型车6辆,B型车4辆;方案3:租用A型车2辆,B型车7辆.(3)方案1所需租金:100×10+120×1=1120(元),方案2所需租金:100×6+120×4=1080(元),方案3所需租金:100×2+120×7=1040(元).∵1120>1080>1040,∴方案3租用A型车2辆、B型车7辆最省钱,最少租车费为1040元.9.某校准备组织师生共300人参加一项公益活动,学校联系租车公司提供车辆,该公司现有A,B两种座位数不同的车型,如果租用A型车3辆,B型车3辆,则空余15个座位;如果租用A型车5辆,B型车1辆,则有15个人没座位.(1)求A,B两种车型各有多少个座位.(2)若最终租用了两种车型的车,且座位恰好坐满,则两种车型的车各租用了多少辆?解:(1)设每个A型车有x个座位,B型车有y个座位,依题意,得:,解得:.答:每个A型车有45个座位,B型车有60个座位.(2)设需租A型车m辆,B型车n辆,依题意,得:45m+60n=300,∴n=5﹣m.∵m,n均为正整数,∴.答:需租用A型车4辆,B型车2辆.10.《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?解:设甲原有x文钱,乙原有y文钱,由题意可得,,解得:,答:甲原有36文钱,乙原有24文钱.11.某商店欲购进A、B两种商品,若购进A种商品5件,B种商品3件,共需450元;若购进A种商品10件,B种商品8件,共需1000元.(1)购进A、B两种商品每件各需多少元?(2)该商店购进足够多的A、B两种商品,在销售中发现,A种商品售价为每件80元,每天可销售100件,现在决定对A种商品在每件80元的基础上降价销售,每件每降价1元,多售出20件,该商店对A种商品降价销售后每天销量超过200件;B种商品销售状况良好,每天可获利7000元,为使销售A、B两种商品每天总获利为10000元,A种商品每件降价多少元?解:(1)设购进A商品每件需x元,B商品每件需y元,则由题意得:解得:答:购进A商品每件需60元,B商品每件需50元.(2)设A种商品每件降价m元,则由题意得:,化简得:∴m=10,A种商品每件降价10元.12.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)用含x、y的代数式表示地面总面积;(2)已知客厅面积比卫生间面积多21平方米,且地面总面积是卫生间面积的15倍.若铺1平方米地砖的平均费用为100元,那么铺地砖的总费用为多少元?解:(1)设客厅的宽是x,卫生间的宽是y,地面的总面积为:3×4+2y+2×3+6x=6x+2y+18;(2)由题意得,整理得:,①﹣②×2得:26y=39,解得:y=1.5,把y=1.5代入①解得:x=4,解得:,∴地面总面积为:S=6x+2y+18=45(m2),(总)∴铺地砖的总费用为:45×100=4500(元).答:那么铺地砖的总费用为4500元(1分)13.为了积极推进轨道交通建设,某城市计划修建总长度36千米的有轨电车.该任务由甲、乙两工程队先后接力完成甲工程队每天修建0.06千米,乙工程队每天修建0.08千米,两工程队共需修建500天.根据题意,小明和小华两名同学分别列出尚不完整的方程组如下:小明:小华:(1)根据两名同学所列的方程组,请你分别指出未知数x表示的意义小明:x表示甲工程队修建的天数;小华:x表示甲工程队修建的长度.(2)求甲、乙两工程队分别修建有轨电车多少千米?解:(1)小明:x表示甲工程队修建的天数;小华:x表示甲工程队修建的长度.故答案为:甲工程队修建的天数;甲工程队修建的长度.(2)设甲工程队修建x千米,乙工程队修建y千米,由题意得:解得答:甲工程队修建12千米,乙工程队修建24千米.14.某物流公司现有114吨货物,计划同时租用A,B两种车,经理发现一个运货货单上的一个信息是:根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)若物流公司打算一次运完,且恰好每辆车都装满货物,请你帮该物流公司设计租车方案;(3)若A型车每辆需租金800元/次,B型车每辆需租金1000元/次,那么最少租车费是多少元?此时的租车方案是什么?解:(1)设1辆A型车和1辆B型车一次分别可以运货x吨,y吨,根据题意得:,解得:,则1辆A型车和1辆B型车一次分别可以运货6吨,10吨;(2)∵某物流公司现有114吨货物,计划同时租用A型车a辆,B型车b辆,∴6a+10b=114,则有,解得:0≤a≤19,∵a为正整数,∴a=1,2,…,10,11,12,13,14,15,16,17,18,19.∵b=为正整数,∴a=4,9,14,∴a=4,b=9;a=9,b=6;a=14,b=3.∴满足条件的租车方案一共有3种,a=4,b=9;a=9,b=6;a=14,b=3.(3)∵A型车每辆需租金800元/次,B型车每辆需租金1000元/次,当a=4,b=9,租车费用为:W=800×4+9×1000=12200元;当a=9,b=6,租车费用为:W=800×9+6×1000=13200元;当a=14,b=3,租车费用为:W=800×14+3×1000=14200元.∴当租用A型车4辆,B型车9辆时,租车费最少.15.滨江区各学校积极参加“给贫困山区献爱心”活动,教育局筹集了120吨的衣物书籍等物品运往山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)全部物资可用甲型车8辆,乙型车5量,丙型车4辆来运送.(2)若全部物资都用甲、乙两种车型来运送,需运费4100元,问分别需甲、乙两种车型各几辆?(3)为了节省运费,教育局打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?解:(1)根据题意得:(120﹣5×8﹣5×8)÷10=4(辆),答:丙型车需4辆来运送.故答案为:4.(2)设需要甲x辆,乙y辆,根据题意得:,解得:,答:分别需甲、乙两种车型为8辆和10辆.(3)设甲车有a辆,乙车有b辆,则丙车有(14﹣a﹣b)辆,由题意得5a+8b+10(14﹣a﹣b)=120,即a=4﹣b,∵a、b、14﹣a﹣b均为正整数,∴b只能等于5,从而a=2,14﹣a﹣b=7,∴甲车2辆,乙车5辆,丙车7辆,则需运费200×2+250×5+300×7=3750(元),答:甲车2辆,乙车5辆,丙车7辆,需运费3750元.。

北师大版八年级数学初二上册:二元一次方程组的应用题集

北师大版八年级数学初二上册:二元一次方程组的应用题集

北师大版八年级数学初二上册:二元一次方程组的应用题集二元一次方程组应用题1.一次篮、排球竞赛,共有48个队,520名运动员参加,此中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛?2.某厂买进甲、乙两种资料共56吨,用去9860元。

若甲种资料每吨190元,乙种资料每吨160元,则两种资料各买多少吨?3.某人用元买进甲、乙两种股票,在甲股票增值15%,乙股票下跌10%时卖出,共赢利1350元,试问某人买的甲、乙两股票各是多少元?4.一次篮、排球竞赛,共有48个队,520名运动员参加,此中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛?5.某厂买进甲、乙两种资料共56吨,用去9860元。

若甲种资料每吨190元,乙种资料每吨160元,则两种资料各买多少吨?6.某人用元买进甲、乙两种股票,在甲股票增值15%,乙股票下跌10%时卖出,共赢利1350元,试问某人买的甲、乙两股票各是多少元?7.有甲乙两种债券年利率分别是多少?10%与12%,现有400元债券,一年后赢利45元,问两种债券各有8.种饮料大小包装有3种,1此中瓶比2小瓶廉价2角,1个大瓶比1此中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。

3种包装的饮料每瓶各多少元?9.某班同学去18千米的北山郊游。

只有一辆汽车,需分两组,甲组先搭车、乙组步行。

车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。

已知汽车速度是度是4千米/时,求A点距北山站的距离。

60千米/时,步行速10.一级学生去饭堂开会,假如每4人共坐一张长凳,则有28人没有地点坐,假如6人共坐一张长凳,求初一级学生人数及长凳数.11.两列火车同时从相距910千米的两地相向出发,10小时后相遇,假如第一列车比第二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.12.购置甲种图书10本和乙种图书16本共付款410元,甲种图书比乙种图书每本贵乙两种图书每本各买多少元?15元,问甲、13.甲、乙两人分别从甲、乙两地同时相向出发,在甲超出中点乙抵达乙、甲两地后立刻返身往回走,结果甲、乙两人在距甲地地的行程。

北师大版八年级数学上册--第五单元 《应用二元一次方程组-鸡兔同笼》应用题精选练习题(含答案)

北师大版八年级数学上册--第五单元 《应用二元一次方程组-鸡兔同笼》应用题精选练习题(含答案)

《应用二元一次方程组---鸡兔同笼》应用题精选一.列方程组:1、一个笼里装有鸡和兔子,它们共有8个头、22只脚。

设笼中有x只鸡,y只兔子,根据题意,可列方程组为2、我市某企业向玉树地震灾区捐助价值26万元的甲、乙两种帐篷共300顶.已知甲种帐篷每顶800元,乙种帐篷每顶1000元。

设甲帐篷有x顶,乙种帐篷有y 顶,根据题意,可列方程组为3、受气候等因素的影响,今年某些农产品的价格有所上涨. 张大叔在承包的10亩地里所种植的甲、乙两种蔬菜共获利13800元.其中甲种蔬菜每亩获利1200元,乙种蔬菜每亩获利1500元。

设甲种蔬菜种植了x亩,乙种蔬菜种植了y亩,根据题意可列方程组为4、花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.设甲种花木每株成本为x元,乙种花木每株成本为y元,可列方程组为5、在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.如果改造一所A类学校的校舍需要x万元,改造一所B类学校的校舍需要y万元,根据题意,可列方程组为6、去冬今春,我市部分地区遭受了罕见的旱灾.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.设饮用水有x件,蔬菜有y 件,则可列方程组为7、2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米。

设生产运营用水x亿立方米,生产居民家庭用水y亿立方米,根据题意可列方程组为二.列方程并解答:1、某住宅小区计划购买并种植甲、乙两种树苗共300株.已知甲种树苗每株60元,乙种树苗每株90元.若购买树苗共用21000元,问甲、乙两种树苗应各买多少株?2、2010年1月1日,全球第三大自贸区——中国——东盟自由贸易区正式成立,标志着该贸易区开始步入“零关税”时代.广西某民营边贸公司要把240吨白砂糖运往东盟某国的A、B两地,现用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,求这两种货车各用多少辆;3、为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品.若购进A 种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.求购进A、B两种纪念品每件各需多少元?4、郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典。

北师大版八年级上册二元一次方程组的应用练习题

北师大版八年级上册二元一次方程组的应用练习题

二元一次方程的应用应用一:鸡兔同笼例1、我国古代数学名著《孙子算经》中有这样一题,“今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?”此题的答案是鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是鸡有只,兔有只.【跟踪训练1】我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马,多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()例2、用一根绳子环绕一个圆柱形油桶:若环绕油桶3周,则绳子还多4尺;若环绕油桶4周,则绳子又少了3尺.这根绳子有多长?环绕油桶一周需要多少尺?【跟踪训练2】“今有木,不知长短,引绳量之,余绳四尺五寸;屈绳量之,不足一尺.问:木,绳各几何?”(选自《九章算术》)题目大意是:有一根木条,用另一根绳子测量它,绳子多出4尺5寸,将绳子折一半测量它,还差1尺,问木条和绳子各长多少?(单位:1尺=10寸)例3、电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户.章女士在某网店花220元买了1只茶壶和10只茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.(1)求茶壶和茶杯的单价分别是多少元?(2)中秋将至,该网店决定推出优惠酬宾活动:买一只茶壶送一只茶杯,茶杯单价打八折.请你计算此时买1只茶壶和10只茶杯共需多少元.【跟踪训练3】在永州市青少年禁毒教育活动中,某班男生小明与班上同学一起到禁毒教育基地参观,以下是小明和妈妈的对话,请根据对话内容,求小明班上参观禁毒教育基地的男生和女生的人数.对应练习 1、小方、小红和小军三人玩飞镖游戏,各投四支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图37-3,则小红的得分是( )图37-3A .30分B .32分C .33分D .34分2、如图37-4,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15,两根铁棒长度之和为220 cm ,此时木桶中水的深度是 cm.图37-43、我市某校组织爱心捐书活动,学生会准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的23,结果打了16个包,还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包.那么这批书共有多少本?4、某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?。

(经典)北师大版八年级二元一次方程应用题(带答案)

(经典)北师大版八年级二元一次方程应用题(带答案)

北师大版八年级二元一次方程应用题1、一个校办工厂购进了5立方米的木材,厂长决定构成方桌销售,已知一张方桌由一个桌面和4个桌腿做成,经试验发现1立方米木材可以做成50张桌面或者桌腿300个,问工厂能做多少张方桌?2、某人用有机肥给玉米施肥,如果每亩施10千克,就缺200千克;如果每亩施8千克,又剩余300千克,问该人有多少亩玉米?又有多少千克有机肥?(1公顷=15亩)3、古题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空”。

问:有多少间房?多少客人?4、某工厂去年的总产值比总支出多500万元,而今年计划的总产值比总支出多950万元,已知今年计划的总产值去去年增加15%,而计划总支出比去年减少10%,求今年计划的总产值和总支出各为多少?5、某商场购进商品后,加价40%作为销售价,商场搞优惠促销,决定甲、乙两种商品分别打七折和九折销售,某顾客购买甲、乙两种商品,共付款399元,这两种商品原销售价之和为490元,问:这两种商品的进价分别是多少元?6、某同学的父母用甲、乙两种形式为其存储了一笔教育准备金10000元,甲种年利率为2.25%,乙种年利率为2.5%,一年后,这名同学得到本息和共10242.5元,问其父母为其存储的甲、乙两种形式的教育准备金各多少元?7、某间寺庙有大小和尚共100人,在一顿午餐中一个大和尚一人能吃掉三个馒头,三个小和尚一起才吃掉一个馒头。

现知道这顿午餐共计吃掉100个馒头,问这间寺庙大和尚多少人?小和尚多少人?8、由甲、乙两种铜与银的合金,甲种含银25%,乙种含银37.5%,现在要溶成含银30%的合金100千克,两种合金各取多少千克?9、在某校举办的足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分,某班足球队参加了12场比赛,共得22分,已知这个队只负了2场,那么这个队胜了几场?平了几场?10、某体育场的一条环形跑道长400m,甲乙两人从跑道上同一地点出发,分别以不变的速度练习长跑和骑自行车,如果背向而行,每隔1/2分钟他们相遇一次;如果同向而行,每隔4/3乙就追上甲一次。

北师大版八年级数学上册 单元过关 : 二元一次方程组应用(含答案)

北师大版八年级数学上册 单元过关 : 二元一次方程组应用(含答案)

单元过关:二元一次方程组应用1.在“端午”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮助算算,小明用更省钱的购票方式是指什么?2.某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽是否存在恰好配套?若存在恰好配套,请求出加工螺栓和螺帽各需要的金属原料块数,若不存在恰好配套,请说明理由.3.某旅馆的客房有三人间和两人间两种,三人间每人每天90元,两人间每人每天120元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费5280元,两种客房各租住了多少间?4.学校订做校服,要求在规定期限内完成.若按服装厂原来生产能力,每天可生产这种校服150套,则在期限内只能完成校服数量的;现服装厂改进设备,每天可生产这种校服200套,则可提前1天完成,且多生产25套,求原规定期限多少天?订做校服数量多少套?5.与经典同行,与好书相伴.近期,我校开展了“图书漂流活动”初年级小主人委员会的同学自愿整理图书.若俩个男生和一个女生共整理160本.一个男生和两个女生共整理170本.(1)男生和女生每人各整理多少本图书?(2)如果小主人委员会有12个男生和8个女生,他们恰好能整理完所有图书,请问这些图书一共有多少本?6.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.7.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价5万元/件,乙种产品售价3万元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,要求甲种产品比乙种产品多生产15件,如何安排甲、乙两种产品,使总产值是131.7万元.8.已知某种GY型产品每套由4个G型装置和3个Y型装置配套组成.工厂现有80名熟练工人,每人每天能加工6个G型装置或3个Y型装置.现将工人分成两组,每组分别加工一种装置,并要求每天加工的G,Y型装置正好配套.(1)工厂每天应安排多少名工人生产G型装置?每天能生产多少套GY型产品?(2)现工厂要在20天内生产1200套GY型产品,决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.①设每天安排x名熟练工人和m名新工人生产G型装置,求x的值(用含m的代数式表示)②请问需要补充多少名新工人才能刚好在规定期限完成生产任务?9.甲、乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇;若同向而行,且甲比乙先出发1小时追及乙,那么在乙出发后4小时两人相遇.分别求出甲、乙两人的速度.10.根据图中信息,解答下列问题:(1)放入一个小球时,量杯水位上升多少厘米?(2)当在同一个量杯中放入的小球数是大球数的2倍多1个时,量杯中的水位由26cm 上升到49cm,求放入大、小球的个数.11.工厂接到订单生产如图所示的巧克力包装盒子,每个盒子由3个长方形侧面和2个正三角形底面组成,仓库有甲、乙两种规格的纸板共2600张,其中甲种规格的纸板刚好可以裁出4个侧面(如图①),乙种规格的纸板可以裁出3个底面和2个侧面(如图②),裁剪后边角料不再利用.(1)若裁剪出的侧面和底面恰好全部用完,问两种规格的纸板各有多少张?(2)一共能生产多少个巧克力包装盒?12.一辆货车送货上山,并按原路下山,上山速度为a千米/时,下山速度为b千米/时,求货车上、下山的平均速度.13.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价5万元/件,乙种产品售价3万元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品售价下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是137.5万元,A、B两种原料还剩下多少吨?14.将一批树苗栽在一条马路的两旁,若每隔3m栽1棵,将剩下3棵;若每隔2.5m栽1棵,则还缺77棵,求这条马路的长及这批树苗的棵树.15.一个两位数的十位上的数字是个位上的数字的两倍,若把两个数字对调,则新得到的两位数比原两位数小36,求原两位数.16.某体育文化用品商店购进篮球和排球共30个,进价和售价如下表,若全部销售完后共可获利润1680元.(1)请利用二元一次方程组求购进篮球和排球各多少个?(2)“双11”快到了,这个体育文化用品商店也准备搞促销活动,计划篮球9折销售,排球8折销售,则销售8个篮球的利润与销售几个排球的利润相等?参考答案1.解:(1)设去了x个成人,y个学生,依题意,得:,解得:.答:他们一共去了8个成人,4个学生.(2)若按团体票购票:16×40×0.6=384(元),∵384<400,∴按团体票购票更省钱.2.解:设把x块金属原料加工成螺栓,y块金属原料加工成螺帽正好配套,依题意,得:,解得:,∵x,y均为整数,∴加工的螺栓和螺帽不存在恰好配套.3.解:设三人间客房有x间,二人间客房有y间,根据题意,得:,化简,得②﹣①×3,得2y=26∴y=13 ③将③代入①,得3x+26=50∴3x=24∴x=8答:三人间客房租了8间,二人间客房租了13间.4.解:设原规定期限为x天,订做校服数量为y套,依题意,得:,解得:.答:原规定期限为18天,订做校服数量为3375套.5.解:(1)设男生每人整理x本图书,女生每人整理y本图书,依题意,得:,解得:.答:男生每人整理50本图书,女生每人整理60本图书.(2)12×50+8×60=1080(本).答:这些图书一共有1080本.6.解:(1)设学校购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:学校购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:该校这次义卖活动共获得3800元利润.7.解:(1)设应安排生产x件甲种产品,y件乙种产品,依题意,得:,解得:,所以5x+3y=135.答:应安排生产15件甲种产品,20件乙种产品,才能恰好使两种原料全部用完,此时总产值是135万元.(2)设生产乙种产品m件,则生产甲种产品(m+15)件,依题意,得:5×(1+10%)(m+15)+3×(1﹣10%)m=131.7,解得:m=6,∴m+15=21(件).答:生产乙种产品6件,则生产甲种产品21件,使总产值是131.7万元.8.解:(1)设安排x名工人生产G型装置,则安排(80﹣x)名工人生产Y型装置,根据题意得:,解得:x=32,∴=48.答:工厂每天应安排32名工人生产G型装置,工厂每天能配套组成48套GY型电子产品.(2)①设每天安排x名熟练工人和m名新工人生产G型装置,则安排(80﹣x)名工人生产Y型装置,根据题意得:,解得x=32﹣.②设至少需要补充m名新工人才能刚好在规定期限完成生产任务,安排n名工人生产Y型装置,则安排(80﹣n)名工人及m名新工人生产G型装置,根据题意得:,解得:,答:至少需要补充30名新工人才能刚好在规定期限完成生产任务.9.解:设甲的速度为x千米/时,乙的速度为y千米/时,依题意得:,解得:,答:甲的速度为6千米/时,乙的速度为3千米/时.10.解:(1)设放入一个小球使水面升高x厘米,由图形得:3x=32﹣26,解得:x=2,答:放入一个小球水面升高2厘米;(2)设放入一个大球使水面升高y厘米,由图形得:2y=32﹣26,解得:y=3,则放入一个大球水面升高3cm;设放入大球m个,小球n个,根据题意得:,解得:,答:如果要使水面上升到49cm,应放入大球3个,小球7个.11.解:(1)设甲种规格的纸板有x个,乙种规格的纸板有y个,依题意,得:,解得:.答:甲种规格的纸板有1000个,乙种规格的纸板有1600个.(2)1600×3÷2=2400(个).答:一共能生产2400个巧克力包装盒.12.解:设上山的路程为x千米,则上山的时间为小时,下山的时间为小时,∴上、下山的平均速度为千米/时.答:货车上、下山的平均速度为千米/时.13.解:(1)设应安排生产x件甲种产品,y件乙种产品,依题意,得:,解得:,∴5x+3y=135(万元).答:应安排生产15件甲种产品,20件乙种产品,才能恰好使两种原料全部用完,此时总产值是135万元.(2)设生产乙种产品m件,则生产甲种产品(m+25)件,依题意,得:5×(1+10%)(m+25)+3×(1﹣10%)m=137.5,解得:m=0,∴m+25=25.120﹣25×4=20(吨),50﹣25×2=0(吨).答:应生产甲种产品50件,使总产值是137.5万元,A种原料还剩下20吨,B种原料还剩下0吨.14.解:设这条马路长x米,这批树苗共y棵,依题意,得:,解得:.答:这条马路长600米,这批树苗共405棵.15.解:设原两位数十位上的数字为x,个位数的数字为y,依题意,得:,解得:,∴10x+y=84.答:原两位数为84.16.解:(1)设购进篮球x个,排球y个,依题意,得:,解得:.答:购进篮球12个,排球18个.(2)(个).答:销售8个篮球的利润与销售10个排球的利润相等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版八年级二元一次方程应用题
1、一个校办工厂购进了5立方米的木材,厂长决定构成方桌销售,已知一张方桌由一个桌面和4个桌腿做成,经试验发现1立方米木材可以做成50张桌面或者桌腿300个,问工厂能做多少张方桌?
2、某人用有机肥给玉米施肥,如果每亩施10千克,就缺200千克;如果每亩施8千克,又剩余300千克,问该人有多少亩玉米?又有多少千克有机肥?(1公顷=15亩)
3、古题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空”。

问:有多少间房?多少客人?
4、某工厂去年的总产值比总支出多500万元,而今年计划的总产值比总支出多950万元,已知今年计划的总产值去去年增加15%,而计划总支出比去年减少10%,求今年计划的总产值和总支出各为多少?
5、某商场购进商品后,加价40%作为销售价,商场搞优惠促销,决定甲、乙两种商品分别打七折和九折销售,某顾客购买甲、乙两种商品,共付款399元,这两种商品原销售价之和为490元,问:这两种商品的进价分别是多少元?
6、某同学的父母用甲、乙两种形式为其存储了一笔教育准备金10000元,甲种年利率为2.25%,乙种年利率为2.5%,一年后,这名同学得到本息和共10242.5元,问其父母为其存储的甲、乙两种形式的教育准备金各多少元?
7、某间寺庙有大小和尚共100人,在一顿午餐中一个大和尚一人能吃掉三个馒头,三个小和尚一起才吃掉一个馒头。

现知道这顿午餐共计吃掉100个馒头,问这间寺庙大和尚多少人?小和尚多少人?
8、由甲、乙两种铜与银的合金,甲种含银25%,乙种含银37.5%,现在要溶成含银30%的合金100千克,两种合金各取多少千克?
9、在某校举办的足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分,某班足球队参加了12场比赛,共得22分,已知这个队只负了2场,那么这个队胜了几场?平了几场?
10、某体育场的一条环形跑道长400m,甲乙两人从跑道上同一地点出发,分别以不变的速度练习长跑和骑自行车,如果背向而行,每隔1/2分钟他们相遇一次;如果同向而行,每隔4/3乙就追上甲一次。

问;甲、乙每分钟各行多少米?
11、甲乙两列火车均长180m,如果两列火车相对行驶,从车头相遇到车尾相遇共需12s;如果两列车同向行驶,那么从甲的车头遇到乙的车尾到甲的车头超过乙的车头共需60s,假定甲乙两车的速度不变,求甲乙两列火车的速度。

12、A、B两地相距20 km,甲从A地向B地前进,同时乙从B地向A地前进,2h 后二人在途中相遇,相遇后,甲返回A地,乙仍向A地前进,甲回到A地时,乙离A地还有2 km,求甲乙二人的速度。

13、有一个两位数,个位上的数字比十位上的数字大5,如果把两个数字的位置对调,那么所得的新数与原数的和为143,求这个两位数。

14、某铁路桥长1000米,一列火车从桥上通过,从上桥到离开桥共用1分钟,整列火车全在桥上的时间为40秒,求火车的长度与速度。

答案:
1、设用x 立方米木材做桌面,y 立方米木材做桌腿,则 ⎝
⎛=⨯=+y x y 3005045x 解的⎩
⎨⎧==23x y 150350x 50=⨯=∴(张) 答:5立方米的木材恰好能做成150张方桌。

2、设该人有x 亩玉米,有y 千克有机肥,由题意得⎩⎨⎧=+=-y x y 3008200x 10解的⎩⎨⎧==2300
250x y 答:该人有250亩玉米,有2300千克有机肥。

3、设有x 间房,y 名客人,根据题意得⎩
⎨⎧=-=+y x x )1(9y 77解的⎩⎨⎧==638x y 答:有8间房,63名客人。

4、设今年计划的总产值为x 万元,总支出为y 万元,根据题意的
⎪⎩⎪⎨⎧=-=--+950
x 500%101%151y y x 解的⎩⎨⎧==13502300y x 答:今年计划的总产值为2300万元,总支出为1350万元.
5、设甲乙两种商品进价分别为x 元、y 元,根据题意得

⎨⎧=⋅++⋅+=+++399%90%)401(%70%)401(490%)401(%)401(y x y x 解的⎩⎨⎧==200150y x 答:甲乙两种商品进价分别为150元、200元。

6、设甲种形式的教育准备金存了x 元,乙种形式的教育准备金存了y 元,根据题意的
⎩⎨⎧-=⋅+⋅=+10000
5.10242%5.2%25.210000x y x y 解的⎩⎨⎧==70003000x y 答:甲种形式的教育准备金存了3000元,乙种形式的教育准备金存了7000元。

7、设大和尚有x 人,小和尚y 人
⎪⎩
⎪⎨⎧=+=+100313100x y x y 解的⎩⎨⎧==7525y x 答:大和尚有25人,小和尚75人.
8、设应取甲种合金x 千克,乙种合金y 千克,根据题意得
⎩⎨⎧⨯=+=+%
30100%y 5.37%25100x x y 解的⎩⎨⎧==4060x y 答:应取甲种合金60千克,乙种合金40千克。

9、设这个球队胜了x 场,平了y 场,根据题意的

⎨⎧=+=++223122x y x y 解的⎩⎨⎧==46x y 答:这个球队胜了6场,平了4场.
10、设乙骑自行车每分钟行x m,甲每分钟跑y m ,根据题意得
⎪⎪⎩⎪⎪⎨⎧=-=+40034x 3
4400y 2121y x 解的⎩⎨⎧==250550x y
答:乙骑自行车每分钟行550m,甲每分钟跑250 m
11、设甲车的速度为x m/s ,乙车的速度为y m/s ,根据题意得

⎨⎧=-=+360)(60360x 12y x y )( 解的⎩⎨⎧==1218x y 答:甲车的速度为18 m/s ,乙车的速度为12 m/s
12、设甲车的速度为 x km/s,乙车的速度为y km/s,根据题意得
⎩⎨⎧=-=+2222022y x y x 解的⎩
⎨⎧==5.45.5x y 答:甲车的速度为 5.5 km/s,乙车的速度为4.5 km/s
13、设这个两位数十位上的数字为x ,个位上的数字为y ,根据题意得
⎩⎨⎧=+++=-143
)10()10(5y x y y x x 解的⎩⎨⎧==94x y 所以这个两位数为49.
14、设火车长为x 米,速度为y m/s ,根据题意的
⎩⎨⎧-=+=x y x y 100040100060 解的⎩⎨⎧==20
200x y 答:火车长为200米,速度为20 m/s.。

相关文档
最新文档