高中数学排列组合高频经典题目练习及答案解析(最新整理)
(完整版)经典排列组合问题100题配超详细解析
1.n N ∈且55n <,则乘积(55)(56)(69)n n n ---等于A .5569nn A --B .1555n A -C .1569n A -D .1469n A -【答案】C【解析】根据排列数的定义可知,(55)(56)(69)n n n ---中最大的数为69-n,最小的数为55—n ,那么可知下标的值为69—n ,共有69—n-(55—n )+1=15个数,因此选择C2.某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( ) A. 24种 B. 36种 C 。
38种 D 。
108种 【答案】B【解析】因为平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,那么特殊元素优先考虑,分步来完成可知所有的分配方案有36种,选B3.n ∈N *,则(20-n )(21—n )……(100-n)等于( )A .80100n A - B .nn A --20100 C .81100n A -D .8120n A -【答案】C【解析】因为根据排列数公式可知n ∈N *,则(20-n )(21—n)……(100—n)等于81100n A -,选C4.从0,4,6中选两个数字,从3.5。
7中选两个数字,组成无重复数字的四位数。
其中偶数的个数为 ( ) A 。
56 B. 96 C. 36 D 。
360 【答案】B【解析】因为首先确定末尾数为偶数,那么要分为两种情况来解,第一种,末尾是0,那么其余的有A 35=60,第二种情况是末尾是4,或者6,首位从4个人选一个,其余的再选2个排列即可 433⨯⨯,共有96种5.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有 ( )A. 280种B. 240种 C 。
高三——排列组合专题汇编(含答案+解析)
1.五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有 ( )A .120种B .96种C .78种D .72种解析:①若甲在排位,剩下四人可自由排,有44A =24种排法;②若甲在第二、三、四位上,则有54131333=A A A 种排法;共78种。
2.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为( )A .8B .24C .48D .120解析:483412=A A 。
3.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A .324B .328C .360D .648解析:当尾数是2、4、6、8时,个位有四种选法,因百位不能为0,所以百位有8种,共有8*8*4=256;当尾数为0时,百位有9种选法。
十位有8种结果,共有9*8*1=72;共有256+72=328.4.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种解析:①所有两人各选修2门的总数362424=C C ;②两人所选两门都相同的有624=C 种;③都不同的种数为624=C ;所以恰好有一门相同的选法有36-6-6=24种。
5.甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。
若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A.150种 B.180种 C.300种 D.345种解析:恰有1名女同学的选法分两类:甲组选一男一女,乙组两男的选法有225261315=C C C 种;乙组选一男一女,甲组两男的选法有120121625=C C C 种,共有345种。
6.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为A.18B.24C.30D.36解析:法一)总的方法数是363324=A C ,甲乙被分到同一个班级的方法数是633=A ,故甲乙不分到同一个班级的方法数是36-6=30.法二)如丙丁分到同一个班级,则为33A ;如甲丙分到同一个班级,则丁只能独自一个班级,方法数是33A ;如乙丙分到同一个班级,则丁也只能独自一个班级,方法数是33A ;同理,若丁分到甲或乙所在班级,方法数是332A 。
高中数学排列组合专题练习题
高中数学排列组合专题练习题一、选择题1、从 5 名男同学和 4 名女同学中选出 3 名男同学和 2 名女同学,分别担任 5 种不同的职务,不同的选法共有()A 5400 种B 18000 种C 7200 种D 14400 种解析:第一步,从 5 名男同学中选出 3 名,有\(C_{5}^3\)种选法;第二步,从 4 名女同学中选出 2 名,有\(C_{4}^2\)种选法;第三步,将选出的 5 名同学进行排列,有\(A_{5}^5\)种排法。
所以不同的选法共有\(C_{5}^3 × C_{4}^2 × A_{5}^5 = 10×6×120 =7200\)种,故选 C。
2、有 5 本不同的书,其中语文书 2 本,数学书 2 本,物理书 1 本。
若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是()A 24B 48C 72D 96解析:先排语文书有\(A_{2}^2 = 2\)种排法,再在语文书的间隔(含两端)处插数学书有\(A_{3}^2 = 6\)种插法,最后将物理书插入 4 个间隔中的一个有 4 种方法。
所以共有\(2×6×4 = 48\)种排法,故选 B。
3、从 0,1,2,3,4,5 这 6 个数字中,任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A 300B 216C 180D 162解析:分两类情况讨论:第一类:取出的偶数含 0。
偶数 0 和另外一个偶数的取法有\(C_{2}^1\)种,奇数的取法有\(C_{3}^2\)种。
0 在个位时,其他三个数字全排列,有\(A_{3}^3\)种;0 不在个位时,0 有 2 种位置,其他三个数字全排列,有\(2×A_{2}^1×A_{2}^2\)种。
此时共有\(C_{2}^1×C_{3}^2×(A_{3}^3 + 2×A_{2}^1×A_{2}^2) = 108\)种。
(完整版)排列组合问题经典题型解析含答案
排列组合问题经典题型与通用方法1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有()A、60种B、48种C、36种D、24种2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()A、6种B、9种C、11种D、23种5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是()A、1260种B、2025种C、2520种D、5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有()A、4441284C C C种 B、44412843C C C种 C、4431283C C A种 D、444128433C C CA种6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为()A、480种 B、240种 C、120种 D、96种7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。
高中数学 排列组合真题(解析版)
高中数学专题14 排列组合真题汇编1.将6个数2,0,1,9,20,19按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为.【答案】498【解析】所有首位非0的8位数:6!-5!2、0相邻的不同8位数:.1、9相邻的不同8位数:.2、0与1、9均相邻的不同8位数:故所求的8位数个数为:.2.现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目.则满足上述要求的不同安排方案数为______(用数字作答).【答案】15000【解析】由题意知满足条件的方案有两种情形:1.有一个项目有3人参加,共有种方案;2.有两个项目各有2人参加,共有种方案.故所求的方案数为.故答案为:150003.将3333的方格表中毎个格染三种颜色之一,使得每种颜色的格的个数相等.若相邻两格的颜色不同,则称其公共边为“分隔边".试求分隔边条数的最小值。
【答案】56【解析】记分隔边的条数为L。
首先,将方格表按图分成三个区域,分别染成三种颜色,粗线上均为分隔边。
此时,共有56条分隔边,即L=56。
其次证明:L≥56。
将方格表的行从上至下依次记为,列从左至右依次记为。
行中方格出现的颜色数记为,列中方格出现的颜色个数记为。
三种颜色分别记为,对于一种颜色为含有色方格的行数与列数之和。
定义类似地定义.所以由于染色的格有个,设含有色方格的行有a个、列有b个,则色的方格一定在这a行和b 列的交叉方格中。
从而,所以①由于在行中有种颜色的方格,于是,至少有条分隔边。
类似地,在列中,至少有条分隔边。
则②③下面分两种情形讨论。
1.有一行或一列所有方格同色。
不妨设有一行均为色则方格表的33列中均含有色的方格,又色方格有363个,故至少有11行含有色方格.于是,④由式①、③、④得(2)没有一行也没有一列的所有方格同色.则対任意均有从而,由式②知;综上,分割边条数的最小值为56.4.给定空间中十个点,其中任意四点不在一个平面上,将某些点之间用线段相连,若得到的图形中没有三角形也没有空间四边形,试确定所连线段数目的最大值.【答案】15【解析】以这十个点为顶点、所连线段为边得一个十阶简单图G.下面证明:图G的边数不超过15.设图G的顶点为,共有k条边,用表示顶点的度.若均成立,则.假设存在顶点满足.不妨设,且均相邻.于是,之间没有边,否则,就形成三角形.从而,之间恰有n条边.对每个至多与中的一个顶点相邻(否则,设相邻,则就对应了一个空间四边形的四个顶点,这与题设条件矛盾).从而,之间的边数至多为.在个顶点之间,由于没有三角形,由托兰定理,知至多有条边.因此,图G 的边数为.如图所示给出的图共有15条边,且满足要求.综上,所求边数的最大值为15.5.一种密码锁的密码设置是在正边形的每个顶点处赋值0和1两个数中的一个,同时,在每个顶点处染红、蓝两种颜色之一,使得任意相邻的两个顶点的数字或颜色中至少有一个相同.问:该种密码锁共有多少种不同的密码设置?【答案】当为奇数时,有种;当为偶数时,有种.【解析】对于该种密码锁的一种密码设置,若相邻两个顶点上所赋值的数字不同,则在它们所在的边上标上;若颜色不同,则标上;若数字和颜色都相同,则标上.于是,对于给定的点上的设置(共有4种),按照边上的字母可以依次确定点上的设置.为了使得最终回到时的设置与初始时相同,标有的边都是偶数条.所以,这种密码锁的所有不同的密码设置方法数等于在边上标记使得标有的边都是偶数条的方法数的4倍.设标有的边有)条,标有的边有)条.选取条边标记的有种方法,在余下的边中取出条边标记的有第种方法,其余的边标记.由乘法原理知共有种标记方法.对求和,密码锁的所有不同的密码设置方法数为.①这里,约定.当为奇数时,,此时,.②代入式①中得.当为偶数时,若,则式②仍然成立;若,则正边形的所有边都标记,此时,只有一种标记方法.于是,所有不同的密码设置的方法数为.综上,这种密码锁的所有不同的密码设置方法数是:当为奇数时,有种;当为偶数时,有种.1.把16本相同的书全部分给4名学生,每名学生至少有一本书且所得书的数量互不相同,则不同的分配方法种数为__________.(用数字作答)【答案】216.【解析】将16分解成四个互不相同的正整数的和有9种不同的方式:16=1+2+3+10,16=1+2+4+9,16=1+2+5+8,16=1+2+6+7,16=1+3+4+8,16=1+3+5+7,16=1+4+5+6,16=2+3+4+7,16=2+3+5+6.故符合条件的不同分配方法数为9=216.2.把1,2,…,按照顺时针螺旋方式排成n行n列的表格,第一行是1,2,…,n.例如:.设2018在的第i行第j列,则(i,j)=___________.【答案】(34,95)【解析】设,则的第k行第k列元素是.因此,1901在第6行第6列,1900在第6行第95列,2018在第34行第95列.故答案为:(34,95)3.【2018年湖南】从-3、-2、-1、0、1、2、3、4八个数字中,任取三个不同的数字作为二次函数的系数.若二次函数的图象过原点,且其顶点在第一象限或第三象限,这样的二次函数有_____个.【答案】24【解析】可将二次函数分为两大类:一类顶点在第一象限;另一类顶点在第三象限,然后由顶点坐标的符号分别考查.因为图象过坐标原点,所以c=0.故二次函数可写成的形式.又,所以其顶点坐标是.若顶点在第一象限,则有.故.因此,这样的二次函数有个.若顶点在第三象限,则有.故.这样的二次函数有个.由加法原理知,满足条件的二次函数共有个.故答案为:244.的展开式中常数项为_____.【答案】-20【解析】因为.所以.故答案为:-205.【2018年广东】袋中装有m个红球和n个白球,m>n≥4.现从中任取两球,若取出的两个球是同色的概率等于取出的两个球是异色的概率,则满足关系的数组(m,n)的个数为_______.【答案】3【解析】记“取出两个红球”为事件A,“取出两个白球”为事件B,“取出一红一白两个球”为事件C,则.依题意得,即.所以,从而为完全平方数.又由,得.所以.解之得(m,n)=(6,3)(舍去),或(10,6),或(15,10),或(21,15).故符合题意的数组(m,n)有3个.故答案为:36.将圆的一组等分点分别涂上红色或蓝色,从任意一点开始,按逆时针方向依次记录个点的颜色,称为该圆的一个“阶色序”,当且仅当两个阶色序对应位置上的颜色至少有一个不相同时,称为不同的阶色序.若某圆的任意两个“3阶色序”均不相同,则该圆中等分点的个数最多可有______个.【答案】8【解析】“3阶包序”中,每个点的颜色有两种选择,故“3阶色序”共有种.一方面,个点可以构成个“3阶色序”,故该圆中等分点的个数不多于8个.另一方面,若,则必须包含全部8个“3阶色序”,如按逆时针方向确定8个的颜色为“红,红,红,蓝,蓝,蓝,红,蓝”符合条件.故该圆中等分点的个数最多可有8个.7.在八个数字2,4,6,7,8,11,12,13中任取两个组成分数.这些分数中有________个既约分数.【答案】36【解析】在7,11,13中任取一个整数与在2,4,6,8,12中任取一个整数构成既约分数,共有种;在7,11,13中任取两个整数也构成既约分数,共有中.合计有36种不同的既约分数.8.学校5月1日至5月3日拟安排六位领导值班,要求每人值班1天,每天安排两人.若六位领导中的甲不能值2日,乙不能值3日,则不同的安排值班的方法共有_______种.【答案】42【解析】分两类:(1)甲、乙同一天值班,则只能排在1日,有种排法.(2)甲、乙不在同一天值班,有种排法.故共有42种方法.。
高中排列组合试题及答案
高中排列组合试题及答案一、选择题1. 从5个人中选出3个人参加比赛,不同的选法有()种。
A. 10B. 15C. 20D. 60答案:B2. 有3个不同的球和3个不同的盒子,每个盒子只能放一个球,不同的放法有()种。
A. 3B. 6C. 9D. 27答案:D3. 从6本不同的书中选3本送给3个不同的人,每人一本,不同的送法有()种。
A. 20B. 60C. 120D. 720答案:B二、填空题4. 一个班级有20名学生,需要选出5名学生组成一个小组,那么不同的选法有______种。
答案:15,5045. 从10个人中选出3个人担任班长、副班长和学习委员,不同的选法有______种。
答案:720三、解答题6. 某学校有5个不同学科的竞赛,每个学生可以选择参加1个或多个竞赛,求至少参加一个竞赛的学生的选法总数。
答案:首先,每个学生有6种选择:不参加任何竞赛,只参加一个竞赛,参加两个竞赛,参加三个竞赛,参加四个竞赛,参加所有五个竞赛。
对于每个学科,学生有两种选择:参加或不参加,所以总共有2^5=32种可能的组合。
但是,我们需要排除不参加任何竞赛的情况,所以选法总数为32-1=31种。
7. 一个班级有30名学生,需要选出一个5人的篮球队,其中必须包括1名队长和4名队员。
如果队长和队员可以是同一个人,那么不同的选法有多少种?答案:首先,选择队长有30种可能,然后从剩下的29人中选择4名队员,有C(29,4)种可能。
但是,由于队长和队员可以是同一个人,我们需要减去只选了4名队员的情况,即C(30,4)种。
所以,总的选法为30*C(29,4) - C(30,4) = 30*1911 - 27,405 = 57,330种。
四、计算题8. 一个数字密码由5个不同的数字组成,每位数字可以是0-9中的任意一个,求这个密码的所有可能组合。
答案:每位数字有10种可能,所以总的组合数为10^5 = 100,000种。
9. 一个班级有15名学生,需要选出一个7人的足球队,不同的选法有多少种?答案:从15名学生中选出7人,不同的选法有C(15,7) = 6,435种。
高中数学_排列组合100题(附解答)
高中数学_排列组合100题一、填充题1. (1)设{}3,8A =﹐{}8,36B x =+﹐若A B =﹐则x =____________﹒(2)设{}2|320A x x x =-+=﹐{}1,B a =﹐若A B =﹐则a =____________﹒2. (1)822x x ⎛⎫- ⎪⎝⎭展开式中10x 项的系数为____________﹒ (2)52123x x ⎛⎫- ⎪⎝⎭展开式中3x 项的系数为____________﹒ (3)53212x x ⎛⎫+ ⎪⎝⎭展开式中常数项为____________﹒ 3. (1)()82x y z +-展开式中332x y z 项的系数为____________﹒(2)()532x y z -+展开式中﹐2.3x y 项的系数为____________﹒4. 四对夫妇围一圆桌而坐﹐夫妇相对而坐的方法有___________种﹒5. {}{}1,21,2,3,4,5,A ⊂⊂且A 有4个元素﹐则这种集合A 有____________个﹒6. 从2000到3000的所有自然数中﹐为3的倍数或5的倍数者共有____________个﹒7. 从1至10的十个正整数中任取3个相异数﹐其中均不相邻的整数取法有____________种﹒8. 某女生有上衣5件﹑裙子4件﹑外套2件﹐请问她外出时共有____________种上衣﹑裙子﹑外套的搭配法﹒(注意:外套可穿也可不穿﹒) 9. 已知数列n a 定义为1132n n a a a n +=⎧⎨=+⎩﹐n 为正整数﹐求100a =____________﹒ 10. 设A ﹑B ﹑T 均为集合﹐{},,,A a b c d =﹐{},,,,=B c d e f g ﹐则满足T A ⊂或T B ⊂的集合T 共有____________个﹒11. 李先生与其太太有一天邀请邻家四对夫妇围坐一圆桌聊天﹐试求下列各情形之排列数:(1)男女间隔而坐且夫妇相邻____________﹒(2)每对夫妇相对而坐____________﹒12. 体育课后﹐阿珍将4个相同排球﹐5个相同篮球装入三个不同的箱子﹐每箱至少有1颗球﹐则方法有____________种﹒13. 如图﹐由A 沿棱到G 取快捷方式(最短路径)﹐则有____________种不同走法﹒14. 0﹑1﹑1﹑2﹑2﹑2﹑2七个数字全取排成七位数﹐有____________种方法﹒1013⎛⎫16. 有一数列n a 满足11a =且1213n n a a +=+﹐n 为正整数﹐求()13n n a ∞=-=∑____________﹒ 17. 设{}2,4,1A a =+﹐{}24,2,23B a a a =----﹐已知A B ⋂{}2,5=﹐则()()A B A B ⋃-⋂=____________﹒18. 把1~4四个自然数排成一行﹐若要求除最左边的位置外﹐每个位置的数字比其左边的所有数字都大或都小﹐则共有____________种排法﹒(例如:2314及3421均为符合要求的排列) 19. 从1到1000的自然数中﹐(1)是5的倍数或7的倍数者共有____________个﹒(2)不是5的倍数也不是7的倍数者共有____________个﹒(3)是5的倍数但不是7的倍数者共有____________个﹒20. 如图﹐从A 走到B 走快捷方式﹐可以有____________种走法﹒21. 1到1000的正整数中﹐不能被2﹑3﹑4﹑5﹑6之一整除者有____________个﹒22. 将100元钞票换成50元﹑10元﹑5元﹑1元的硬币﹐则(1)50元硬币至少要1个的换法有____________种﹒(2)不含1元硬币的换法有____________种﹒23. 求()21x -除1001x +的余式为____________﹒24. 在()8x y z ++的展开式中﹐同类项系数合并整理后﹐(1)共有____________个不同类项﹒(2)其中323x y z 的系数为____________﹒25. 小明与小美玩猜数字游戏﹐小明写一个五位数﹐由小美来猜;小美第一次猜75168﹐小明说五个数字都对﹐但只有万位数字对﹐其他数字所在的位数全不对﹐则小美最多再猜____________次才能猜对﹒26. 若{}|,,110000S x x x x =≤≤為正整數為正整數﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐则()n S T -=____________﹒27. 小于10000之自然数中﹐6的倍数所成集合为A ﹐9的倍数所成集合为B ﹐12的倍数所成集合为C ﹐则(1)()n A B ⋂=____________﹒ (2)()n A B C ⋂⋂=____________﹒ (3)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒(4)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒28. 1到300的自然数中﹐是2或3的倍数但非5的倍数有____________个﹒29. ()10222x x -+除以()31x -所得的余式为____________﹒ 30.如圖﹐以五色塗入各區﹐每區一色且相鄰區不得同色﹐則有____________種不同的塗法﹒(圖固定不得旋轉)(1)由A 取捷徑到B 的走法有____________種﹒(2)由A 走到B ﹐走向可以↑﹑→或↓﹐但不可以←﹐且不可重複走﹐則走法有____________種﹒32. 求()()23311x x ++++……()2031x ++展开式中12x 项系数为____________﹒ 33. ()1001k k x =-∑展开式中5x 的系数为____________﹒34. 展开()200.990.abcd =……﹐则a b c ++=____________﹒35. 建中高二教室楼梯一层有11个阶梯﹐学生上楼时若限定每步只可跨一阶或二阶﹐则上楼的走法有____________种﹒36. 利用二项式定理求12323n n n n n C C C nC +++⋅⋅⋅⋅⋅⋅+和为____________﹒37. 四对夫妇Aa ﹑Bb ﹑Cc ﹑Dd 围一圆桌而坐﹐若Aa 要相对且Bb 要相邻的坐法有____________种﹒38. 许多白色及黑色的磁砖﹐白色的磁砖为正方形﹐边长为1单位;黑色为长方形﹐其长为2单位﹐宽为1单位﹔则贴满一个长7单位﹐宽1单位的长方形墙壁﹐共有____________种方法﹒39.如圖,有三組平行線,每組各有三條直線,則(1)可決定____________個三角形.(2)可決定____________個梯形.(一組對邊平行,另一組對邊不平行).40. 小功家住在一栋7楼的电梯公寓﹐今天小功回家时有5人同时和小功一起进入1楼电梯欲往上﹐假设每人按下自己想要到的楼层(可相同或不同)﹐请问电梯有____________种停靠方式﹒(假设这期间电梯只会由下而上依次停靠这6人所按的楼层)41. 设202020201232023......20,S C C C C =+⋅+⋅++⋅则S 为____________位数﹒(设log20.3010=)42. 4面不同色的旗子﹐若任取一面或数面悬挂在旗杆上来表示讯号﹐如果考虑上下的次序﹐则可作成____________种不同的讯号﹒43.如圖的棋盤式街道﹐甲走捷徑從A 至B ﹐則 (1)走法有____________種﹒(2)若不得經過C 且不經過D 的走法有____________種﹒44.圖中的每一格皆是正方形﹐邊長均為1個單位﹐試問由圖中線段(1)共可決定____________個矩形﹒(2)可決定____________個正方形﹒45. 有红﹑白﹑黄三种大小一样的正立方体积木各20个﹐从中取出7个积木﹐相同颜色堆在一起﹐一一重迭堆高﹐共有____________种堆法﹒47. A ﹑B ﹑C ﹑D ﹑E 五对夫妇围成一圆桌而坐(座位无编号)﹐A 夫妇相对且B 夫妇相邻的情形有____________种﹒48. 如图﹐取快捷方式而走﹐由A 不经P ﹑Q 至B 有____________种方法﹒49. 将pallmall 的字母全取排成一列﹐相同字母不相邻的排法有____________种﹒50. 二个中国人﹑二个日本人﹑二个美国人排成一列﹐同国籍不相邻有____________种排法﹒二、计算题1. 设数列n a 满足14a =且132k n a a +=+﹐n 为自然数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)推测n a 之值(以n 表示)﹒(3)401k k a =∑﹒2. 某校从8名教师中选派4名教师分别去4个城市研习﹐每地一人﹒其中甲和乙不能同时被选派﹐甲和丙只能同时被选派或同时不被选派﹐问共有几种选派方法?3. 试求()632x y -的展开式﹒4. 试求()421x -的展开式﹒6. 下列各图形﹐自A 到A 的一笔划﹐方法各有多少种﹖ (1) (2) (3)7. 如图﹐至少包含A 或B 两点之一的矩形共有几个?8. 设()n x y +展开式中依x 降序排列的第6项为112﹐第7项为7﹐第8项为14﹐试求x ﹑y 及n 之值﹒(但x ﹑y 都是正数)9. 红﹑白﹑绿﹑黑四色大小相同的球各4颗共16颗球﹐任取四颗﹐则(1)四球恰为红﹑白二色的情形有几种?(2)四球恰具两种颜色的情形有几种?10. 一楼梯共10级﹐某人上楼每步可走一级或两级﹐要8步走完这10级楼梯﹐共有多少种走法?11. 设{}1,2,3,4,5,6,7,8,9,10U =为一基集(宇集)﹐则{}1,2,4,5,8A =﹐{}1,2,5,7,9B =﹐求(1)A B ⋃(2)A B ⋂ (3)A B - (4)B A - (5)'A (6)'B (7)()'⋃A B (8)''⋂A B (9)()'A B ⋂ (10)''A B ⋃﹒12. 若()1922381211x x a x a x x -+=+++⋅⋅⋅⋅⋅⋅+﹐求1a 和2a 的值﹒13. 某一场舞会将4位男生与4位女生配成4对﹐每一对皆含一位男生与一位女生﹐试问总共有几种配对法﹖(1)43C ﹒ (2)44P ﹒ (3)44﹒ (4)44H ﹒ (5)4﹒14. 如图﹐A A →一笔划的方法数有几种﹖ (1)(2)16. 求()70.998之近似值﹒(至小数点后第6位)17. 设()1012220211x x ax bx cx +-=+++⋅⋅⋅⋅⋅⋅+﹐求a ﹑b ﹑c 之值﹒18. (1)试证明下列等式成立:()1012121.12311n n n n n n C C C C n n ++++⋅⋅⋅⋅⋅⋅+=-++ (2)设n 为自然数﹐且满足12031,2311n n n nn C C C C n n +++⋅⋅⋅⋅⋅⋅+=++则n 之值为何?19. 王老师改段考考卷﹐她希望成绩是0﹑4﹑5﹑6﹑7﹑8﹑9所组成的2位数﹐则(1)不小于60分的数有几个﹖(2)有几个3的倍数﹖(3)改完考卷后发现由小到大排列的第12个数正是全班的平均成绩﹐请问班上的平均成绩是几分﹖20. 某日有七堂课﹐其中有两堂是数学﹐有两堂是国文﹐另外是英文﹑生物﹑体育各一堂﹒若数学要连两堂上课﹐国文也要连两堂上课﹐但同科目的课程不跨上﹑下午(即第四五节课不算连堂)﹐若第四﹑五堂课也不排体育﹐则该日之课程有几种可能的排法﹖21. ()10122320211,x x ax bx cx x +-=++++⋅⋅⋅⋅⋅⋅+求a ﹑b ﹑c ﹒22. 已知{}{}{}0,,1,2,1,1,2=∅A ﹐下列何者为真﹖(A)∅∈A (B)∅⊂A (C)0A ∈ (D)0A ⊂ (E){}1,2A ∈ (F){}1,2A ⊂ (G){}∅⊂A ﹒23.設有A ﹑B ﹑C ﹑D ﹑E 五個市鎮﹐其通道如圖所示﹐今某人自A 地到E 地﹐同一市鎮不得經過兩次或兩次以上﹐且不必走過每一市鎮﹐求有幾種不同路線可走﹖24. 设数列n a 的首项15a =且满足递归关系式()123n n a a n +=+-﹐n 为正整数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)一般项n a (以n 表示)﹒(3)20a ﹒25. 方程式10x y z ++=有多少组非负整数解?26. 用0﹑1﹑2﹑3﹑4﹑5作成大于230的三位数奇数﹐数字可重复使用(1)可作成多少个﹖ (2)其总和若干﹖27. 求5678192023451617C C C C C C ++++++的值﹒28. 妈妈桌球俱乐部拟购买8把桌球拍以供忘记携带球拍的会员使用﹐若球拍分为刀板﹐直拍与大陆拍3类﹐试问俱乐部有多少种不同的购买方式?29. 设直线方程式0ax by +=中的,a b 是取自集合{}3,2,1,0,2,4,6---中两个不同的元素﹐且该直线的斜率为正值﹐试问共可表出几条相异的直线﹖30. 下列各图﹐由A 到B 的一笔划﹐方法各有多少种﹖31. 以五种不同的颜色﹐涂入下列各图(图形不能转动)﹐同色不相邻﹐颜色可重复使用﹐则涂法各有多少种﹖ (1) (2)32. 平面上有n 个圆﹐其中任三个圆均不共点﹐此n 个圆最多可将平面分割成n a 个区域﹐则(1)求1a ﹐2a ﹐3a ﹐4a ﹒(2)写出n a 的递归关系式﹒(3)求第n 项n a (以n 表示)﹒33. 于下列各图中﹐以五色涂入各区﹐每区一色但相邻不得同色﹐则各有几种不同的涂法﹖(各图固定﹐不得旋转) (1) (2) (3)34. 车商将3辆不同的休旅车及3辆不同的跑车排成一列展示﹒求下列各种排列方法:(1)休旅车及跑车相间排列﹒ (2)休旅车及跑车各自排在一起﹒35. 从6本不同的英文书与5本不同的中文书中﹐选取2本英文书与3本中文书排在书架上﹐共有几种排法?36. 将9本不同的书依下列情形分配﹐方法各有几种?(1)分给甲﹐乙﹐丙3人﹐每人各得3本﹒(2)分装入3个相同的袋子﹐每袋装3本﹒(3)分装入3个相同的袋子﹐其中一袋装5本﹐另两袋各装2本﹒37. 学校举办象棋及围棋比赛﹐已知某班级有42位同学参赛﹐其中有34位同学参加围棋比赛﹐而两种棋赛都参加的同学有15人﹒试问此班有多少位同学参加象棋比赛?38. 求()321x x ++的展开式中2x 的系数﹒39. 求()322x x -+的展开式中4x 的系数﹒41. 自甲地到乙地有电车路线1条﹐公交车路线3条﹐自乙地到丙地有电车路线2条﹐公交车路线2条﹒今小明自甲地经乙地再到丙地﹐若甲地到乙地与乙地到丙地两次选择的路线中﹐电车与公交车路线各选一次﹐则有几种不同的路线安排?42. 某班举行数学测验﹐测验题分A﹐B﹐C三题﹒结果答对A题者有15人﹐答对B题者有19人﹐答对C题者有20人﹐其中A﹐B两题都答对者有10人﹐B﹐C两题都答对者有12人﹐C﹐A两题都答对者有8人﹐三题都答对者有3人﹒试问A﹐B﹐C三题中至少答对一题者有多少人?43. 在1到600的正整数中﹐是4﹐5和6中某一个数的倍数者共有几个?44.用黑白兩種顏色的正方形地磚依照如右的規律拼圖形:a是第n圖需用到的白色地磚塊數﹒設n(1)寫下數列n a的遞迴關係式﹒a﹒(2)求一般項n(3)拼第95圖需用到幾塊白色地磚﹒45. 欲将8位转学生分发到甲﹐乙﹐丙﹐丁四班﹒(1)若平均每班安排2人﹐共有几种分法?(2)若甲乙两班各安排3人﹐丙丁两班各安排1人﹐共有几种分法?46. 求满足12320003000n n n n n C C C C <++++<的正整数n ﹒47. (1)方程式9x y z ++=有多少组非负整数解﹖(2)方程式9x y z ++=有多少组正整数解﹖48. 旅行社安排两天一夜的渡假行程﹐其中往返渡假地点的交通工具有飞机﹑火车及汽车3种选择﹐而住宿有套房与小木屋2种选择﹒试问全部渡假行程﹐交通工具与住宿共有几种安排法﹖49. 老师想从10位干部中选出3人分别担任班会主席﹑司仪及纪录﹒试问有几种选法﹖50. 如果某人周末时﹐都从上网﹑打牌﹑游泳﹑慢跑与打篮球等5种活动选一种作休闲﹐那么这个月4个周末共有多少种不同的休闲安排呢﹖一、填充题 (65格 每格0分 共0分)1. (1)1-;(2)22. (1)112;(2)0;(3)403. (1)4480;(2)90-4. 485. 36. 4687. 568. 609. 9903 10. 44 11.(1)48;(2)384 12. 228 13. 6 14. 90 15. 12- 16. 6 17. {}4,4- 18. 8 19. (1)314;(2)686;(3)172 20. 35 21. 266 22. (1)37;(2)18 23. 10098x - 24. (1)45;(2)560 25. 9 26. 84 27. (1)555;(2)277;(3)1111;(4)1111 28. 160 29. 2102011x x -+ 30. 780 31. (1)26;(2)120 32. 20349 33. 462- 34. 16 35. 144 36. 12n n -⋅ 37. 192 38. 2139. (1)27;(2)81 40. 63 41. 8 42. 64 43. (1)56;(2)20 44. (1)369;(2)76 45. 129 46. 3756 47. 8640 48. 80 49. 54 50. 240二、计算题 (75小题 每小题0分 共0分)1. (1)2112a =﹐37a =﹐4172a =﹐510a =;(2)3522n +;(3)1330 2. 600 3. 见解析 4. 见解析 5. 18 6. (1)48;(2)48;(3)96 7. 150 8. 4x =﹐12y =﹐8n = 9. (1)3;(2)18 10. 28 11. 见解析 12. 1219,190a a =-= 13. (2) 14. (1)32;(2)64 15. 27 16. 0.986084 17. 101,4949,a b ==1c =- 18. (1)见解析;(2)4 19. (1)28;(2)14;(3)5720. 52 21. 101,4949,a b ==156550c = 22. (A)(B)(C)(E)(F)(G) 23. 76 24. (1)24a =﹐35a =﹐48a =﹐513a =;(2)248n n -+;(3)328 25. 66 26. (1)63;(2)25299 27. 5980 28. 45 29. 13 30. (1)72;(2)864 31. (1)420;(2)3660 32. (1)12a =﹐24a =﹐38a =﹐414a =;(2)12n n a a n +=+⨯;(3)22n n -+ 33. (1)260;(2)3380;(3)43940 34. (1)72;(2)72 35. 1800036. (1)1680;(2)280;(3)378 37. 23 38. 6 39. 9 40. 20 41. 8 42. 27 43. 280 44.(1)15,2n n a a n -=+≥;(2)53n +;(3)478 45. (1)2520;(2)1120 46. 11 47. (1)55;(2)28 48. 18 49. 720 50. 625一、填充题 (65格 每格0分 共0分)1. (1)3631x x +=⇒=-﹒(2)()()2320120x x x x -+=⇒--=1,2x ⇒=﹐∴2a =﹒2. (1)设第1r +项为10x 项﹐则()()882816222rr r r r r r C x C x x x ---⎛⎫-=- ⎪⎝⎭ 163102r r ⇒-=⇒=﹐∴10x 项之系数为()2822112C -=﹒(2)设第1r +项为3x 项﹐则()55255102112233r rr r r r r r C x C x x x ----⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭ 710333r r ⇒-=⇒=(不合)﹐∴3x 项之系数为0﹒ (3)设第1r +项为常数项﹐则()5535515322122rr r r r r r C x C x x x ----⎛⎫= ⎪⎝⎭3. (1)()()()()332238!22144803!3!2!x y z -⇒⨯⨯-=﹒ (2)()()()()2303223235!321031902!3!x y z x y x y -=⨯-=-﹐∴系数为90-﹒ 4. 所求为1161412148⨯⨯⨯⨯⨯⨯⨯=﹒[另解]34!2484⨯=﹒ 5. {}1,2,3,4﹐{}1,2,3,5﹐{}1,2,4,5﹐共3个﹒6. 2000~3000中3的倍数有3000200033433⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ 2000~3000中5的倍数有30002000120155⎡⎤⎡⎤-+=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ 2000~3000中15的倍数有30002000671515⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ ∴所求为33420167468+-=﹒ 7. 83563!P =﹒ 8. ()542160⨯⨯+=﹒9. ∵12n n a a n +=+﹐∴2121a a =+⨯3222a a =+⨯()1)21n n a a n -+=+⨯-()()21121213232n n n a a n n n -⋅=+⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦﹐ ∴210010010039903a =-+=﹒10. ∵T A T B ⊂⋃⊂﹐∴T 的个数为4522221632444+-=+-=﹒ 11. (1)5!2485⨯=﹒ (2)A a B b C c D d E e1181614121384⨯⨯⨯⨯⨯⨯⨯⨯⨯=﹒[另解]55!1238452⨯⨯=﹒ 12. 全部-(恰有一空箱)-(恰有二空箱)()67564545323228C C C C =⨯-⨯--=﹒13. 3216⨯⨯=﹒14. 任意排0-在首位7!6!5675610515904!2!4!2!22⨯⨯⨯=-=-=-=﹒ 15. 展开后各实数项和为24681086421010101010024681111122222C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭100101012C ⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭512110242=-=-﹒ [另解]原式()()10cos 60sin 60i =⎡-︒+-︒⎤⎣⎦()()cos 600sin 600i =-︒+-︒122=-+﹐ ∴实数项和为12-﹒ 16. ∵1213n n a a +=+⋅⋅⋅⋅⋅⋅ ∴1213n n a a -=+⋅⋅⋅⋅⋅⋅ -()1123n n n n a a a a +-⇒-=- 而11a =﹐2125133a a =+=﹐2123a a -=﹐ 表示数列1n n a a +-为首项23﹐公比23的等比数列﹐ ()()()121321n n n a a a a a a a a -=+-+-+⋅⋅⋅⋅⋅⋅+-111221332211213223313n n n ---⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦=+=+-=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦-﹐ ∴()111223262313n n n n a -∞∞==⎛⎫-=== ⎪⎝⎭-∑∑﹒17. ∵{}2,5A B ⋂=﹐∴154a a +=⇒=﹐∴{}2,4,5A =﹐{}4,2,5B =-﹐{}4,2,4,5A B ⋃=-﹐2134 32412314 34212341 4321共8种﹒19. 设1到1000的自然数所成的集合为基集U ﹐1到1000的自然數中﹐5的倍數者所成的集合為A ﹐ 而7的倍數者所成的集合為B ﹐ 則A B ⋂表示35的倍數者所成的集合﹐(1)即求()()()()n A B n A n B n A B ⋃=+-⋂100010001000200142283145735⎡⎤⎡⎤⎡⎤=+-=+-=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦﹒(2)即求()()()()1000314686⎡⎤'''⋂=⋃=-⋃=-=⎢⎥⎣⎦n A B n A B n U n A B ﹒ (3)即求()()()20028172n A B n A n A B -=-⋂=-=﹒20. 7!354!3!=﹒ 21. 若一整数不能被2整除﹐则必不能被4﹑6整除﹐故本题即求1到1000正整数中﹐不能被2﹑3﹑5之一整除者的个数﹒设1到1000之正整数中﹐可被2﹑3﹑5整除者之集合分别为A ﹑B ﹑C ﹐则()10005002n A ⎡⎤==⎢⎥⎣⎦﹐()10003333n B ⎡⎤==⎢⎥⎣⎦﹐()10002005n C ⎡⎤==⎢⎥⎣⎦﹐ ()10001666n A B ⎡⎤⋂==⎢⎥⎣⎦﹐()100010010n A C ⎡⎤⋂==⎢⎥⎣⎦﹐()10006615n B C ⎡⎤⋂==⎢⎥⎣⎦﹐ ()10003330n A B C ⎡⎤⋂⋂==⎢⎥⎣⎦﹐ ()()()()()()()()n A B C n A n B n C n A B n A C n B C n A B C ⋃⋃=++-⋂-⋂-⋂+⋂⋂ 5003332001661006633734=++---+=﹐故所求为()()'''10001000734266n A B C n A B C ⋂⋂=-⋃⋃=-=(个)﹒22. (1)①一个50⇒设10元x 个﹐5元y 个﹐1元z 个﹐则10550x y z ++=﹐x 0 1 2 3 4 5y 0~10 0~8 0~6 0~4 0~2 0z 50~0 40~0 30~0 20~0 10~0 0∴所求为36137+=种﹒(2)设50元x 个﹐10元y 个﹐5元z 个﹐则50105100x y z ++= 10220x y z ⇒++=﹐共116118++=种﹒23. ()()()1002100100100121111111x x C x C x +=⎡+-⎤+=+-+-+⎣⎦……()10010010011C x +-+﹐∴1001x +除以()21x -的余式为()11001110098x x +-+=-﹒24. (1)3101088245H C C ===﹒ (2)8!560.3!2!3!= 25. 先考虑5不在千位﹐1不在百位﹐6不在十位﹐8不在个位的方法﹐ 14!43!62!41!10!9⨯-⨯+⨯-⨯+⨯=﹐∴最多再猜9次﹒26. {}{}2222,1100001,2,3,,100,=≤≤=正整數S x x ∴()100n S =﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐ 令()222212232336x k k ==⨯⨯=⨯⨯=﹐ 则()()(){}22261,62,,616,⋂=⨯⨯⨯S T ∴()16n S T ⋂=﹐故()1001684n S T -=-=﹒27. (1)所求为999955518⎡⎤=⎢⎥⎣⎦﹒ (2)所求为999927736⎡⎤=⎢⎥⎣⎦﹒ (3)()()()()n A B C n A B n C n A B C ⎡⋂⋃⎤=⋂+-⎡⋂⋂⎤⎣⎦⎣⎦5558332771111=+-=﹒(4)()()()n A B C n A B A C ⎡⋂⋃⎤=⎡⋂⋃⋂⎤⎣⎦⎣⎦()()()()n A B n A C n A B A C =⋂+⋂-⎡⋂⋂⋂⎤⎣⎦ ()555833n A B C =+-⋂⋂5558332771111=+-=﹒28.()()()()()()236151030n n n n n n +---+15010050203010160=+---+=﹒29. ()()1010222211x x x ⎡⎤-+=-+⎣⎦ ()()10922101010911C x C x ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦……()()22210101021011C x C x C ⎡⎤+-+-+⎣⎦ 故余式为()()210102210110211102011C x C x x x x -+=-++=-+﹒ 30.①B ﹑D 同﹐54143240,A B D C E⨯⨯⨯⨯= ②B ﹑D 異﹐ 54333540,A B D C E⨯⨯⨯⨯=由①②可得﹐共有240540780+=种﹒31.(1)走捷徑等於是走向只許向右與向上兩種﹒如圖﹐ 由A 開始朝任何方向走都有1種走法﹐走至交叉 點P 後﹐將會合箭頭的方法數全部加起來﹐即為走到該點的走法數(累加法)﹒如圖﹐走法有26種﹒(2)走向可以↑﹑→或↓﹐但不可以←又不可重複走﹒如圖﹐由P 出發﹐依所規定的走法﹐走到隔鄰的鉛垂路線上立即停止﹐再決定走向﹒如此相鄰的兩鉛垂路線間的走法數相乘﹐即為所求的走法數﹒∴走法有120種﹒32. ()()23311x x ++++……()()()()()()203321332033311111111x x x x x x x ⎡⎤++-+-+⎢⎥⎣⎦++==+-﹐ 所求即分子()2131x +展开式中15x 项系数 ∴所求为21521201918172034954321C ⨯⨯⨯⨯==⨯⨯⨯⨯﹒ 33. ()()()()1001201111k k x x x x =-=-+-+-+∑……()101x +- ()()()11111111111x x x x⎡⎤----⎣⎦==--﹐ 展开式中5x 系数即为()1111x --展开式中6x 系数﹐∴所求为()61161462C --=-﹒()()()2320202012310.010.010.01C C C =+-+-+-+……()2020200.01C +-10.20.0190.00114=-+-+……0.81786≈﹐ ∴81716a b c ++=++=﹒35. 设一步一阶走x 次﹐一步二阶走y 次﹐则211x y +=﹐6!7!8!9!10!15!3!4!5!3!7!2!9!⇒+++++144=﹒ 36. 令12323n n n n n S C C C nC =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅ 则()0111n n n n S nC n C C -=+-+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅+()0122n n n nn S n C C C n ⇒=++⋅⋅⋅⋅⋅⋅+=⋅﹐∴12n S n -=⋅﹒ 37.()1142!4!192.⨯⨯⨯⨯=選位A aBb38. 设白色x 块﹐黑色y 块﹐则27x y +=﹐⇒6!5!4!116104215!2!3!3!+++=+++=﹒ 39. (1)33311127C C C =﹒ (2)33333333321121121181C C C C C C C C C ++=﹒40. 62163-=41. 20202020123202320S C C C C =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅ 20202001192019S C C C =++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅()202020200120220202S C C C +⇒=++⋅⋅⋅⋅⋅⋅+=⨯﹐∴20102S =⨯﹐∵20log 220log 2200.3010 6.02==⨯=﹐∴202为7位数﹐∴S 为8位数﹒ 42. ①选一面4⇒﹐ ②选二面4312⇒⨯=﹐ ③选三面43224⇒⨯⨯=﹐ ④选四面⇒432124⨯⨯⨯=﹐由①②③④可得﹐共可作成412242464+++=种﹒ 43. (1)8!565!3!=﹒ (2)所求=全部()n C D -⋃()()()56A C B A D B A C D B =-⎡→→+→→-→→→⎤⎣⎦3!5!4!4!3!4!5612!3!2!3!2!2!2!2!2!⎛⎫=-⨯+⨯-⨯⨯ ⎪⎝⎭()5630241820=-+-=﹒44. (1)含中空:3342111172,C C C C ⨯⨯⨯= 左 上 右 下不含中空:37934792334342222222222222223C C C C C C C C C C C C C C +++----左 上 右 下 左上 右上 左下 右下 631081263691836297=+++----= ∴所求为72297369.+=(2)含中空:边长为31⇒﹐边长为44⇒﹐边长为56⇒﹐边长为63⇒﹐∴共14个﹐ 不含中空:()()()()625128176352418523122362,⨯+⨯+⨯+⨯+⨯+⨯+⨯+--⨯+⨯--=左 上 右 下 左上 右上 左下 右下 ∴所求为146276+=个﹒ 45. ①只用一色:3种﹐②只用二色:()()()()()()6,1,5,2,4,3,3,42,5,1,6∴()322!636,C ⋅⨯=上下色交換③用三色:红+白+黄=7 1 1 1 剩4∴36443!690,⨯=⨯=H C 紅白黃排列∴共33690129++=种﹒46. 444333222111234234234234146410H H H H H H H H H H H H ⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯+⨯700049006604103756=-⨯+⨯-⨯+=﹒ 47. 6A a Bb →→→坐法其他人坐法1162!6!8640⨯⨯⨯⨯=﹒48. ()A B A P B A Q B A P Q B →-→→+→→-→→→ 10!4!6!5!5!4!5!16!4!2!2!4!2!3!2!3!2!2!2!3!2!⎛⎫⇒-⨯+⨯-⨯⨯ ⎪⎝⎭()210901006080=-+-=﹒ 49. aa 不相邻且llll 不相邻﹐可先排pmaa ﹐再安插llll ﹐ ①aa 排在一起时:aa 排法有3!6=种﹐再安插4个l :p m a a △△△△△方法有434C =种﹒↑ l②aa 不排在一起时:p m △△△排法有322!6C ⨯=种﹐ 再安排4个l :p a m a △△△△△方法有545C =种﹒ 由①②可知﹐排法有646554⨯+⨯=种﹒ [另解]llll 不相邻llll -不相邻且aa 相邻54444!3!606542!4!4!P P =⨯-⨯=-=﹒ 50. 6!35!2!34!2!2!13!2!2!2!240-⨯⨯+⨯⨯⨯-⨯⨯⨯⨯=﹒二、计算题 (75小题 每小题0分 共0分)1. ∵132n n a a +=+﹐∴132n n a a +-=﹐ 表示n a 为首项4﹐公差32的等差数列﹐(1)2133114222a a =+=+=﹐ 3231137222a a =+=+=﹐ 4333177222a a =+=+=﹐ 54317310222a a =+=+=﹒ (2)()()1335141222n a a n d n n =+-=+-⨯=+﹒ (3)()401240134024401213302k k a a a a =⎡⎤⨯+-⨯⎢⎥⎣⎦=++⋅⋅⋅⋅⋅⋅+==∑﹒ 2. 从8名教师中选出4名教师去4个城市研习的方式可分为甲去和甲不去两种情形: (1)若是甲去研习﹐则丙也会去﹐而乙不去﹐因此需从剩下的5名教师中选出2人去参加研习﹐故选法有52C 种﹒ (2)若是甲不去研习﹐则丙也不会去﹐而乙可去也可不去﹐因此需从剩下的6名教师中选出4名教师去参加研习﹐故选法有64C 种﹒综合这两种情形﹐从8名教师中选派4名教师的选法共有562425C C +=种﹒而选出4名教师后﹐分别安排到4个城市去研习﹐则安排的方式有4!种﹐ 因此总共有254!600⨯=种选派方法﹒3. ()()()()()()()()()()6651423324666660123432332323232x y C x C x y C x y C x y C x y -=+-+-+-+- ()()()566656322C x y C y +-+-6542332456729291648604320216057664.x x y x y x y x y xy y =-+-+-+4. ()()()()()()()()()44312213444444012342122121211x C x C x C x C x C -=+-+-+-+-43216322481x x x x =-+-+﹒5. SENSE 的5个字母中取3种字母﹐其中任取3个字母可能取出「三个字母皆不相同」或「两个字母同另一不同」两种情形:(1)选出三个字母皆不相同的选法有331C =种﹐排列的方法有3!种﹐ 因此排法有333!6C ⨯=种﹒(2)选出两个字母同另一不同的选法有2211C C ⨯种﹐排列的方法有3!2!1!种﹐ 因此排法有22113!122!1!C C ⨯⨯=种﹒ 综合这两种情形﹐共有18种排法﹒6. (1)先走任一瓣都可以﹐故将3瓣视为3条路任意排列﹐方法3!种﹐又每一瓣走法有2种(两个方向)﹐故所求为323!⨯48=种﹒(2)323!48⨯=﹒ (3)423!96⨯=﹒7. ()()()()n A B n A n B n A B ⋃=+-⋂253343422332111111111111C C C C C C C C C C C C =⨯⨯⨯+⨯⨯⨯-⨯⨯⨯909636150.=+-=8. 555112n n C x y -=⋅⋅⋅⋅⋅⋅ 6667n n C x y -=⋅⋅⋅⋅⋅⋅77714n n C x y -=⋅⋅⋅⋅⋅⋅6165xn y⇒⋅=⋅⋅⋅⋅⋅⋅- 7286xn y⇒⋅=⋅⋅⋅⋅⋅⋅- ()()66167528n n -⇒=-﹐∴8n =﹐ 代入⇒8x y =﹐由⇒()877184C y y =8812y ⎛⎫⇒= ⎪⎝⎭﹐即得12y =±﹐4x =±﹐∴14,,82x y n ===(取正值)﹒9. (1)红+白=41 1 剩223223H C ⇒==﹒[另解] 红 白1322313.⇒共種 (2)利用第(1)题的结果42318C ⇒⨯=﹒10. 用8步走完10级楼梯﹐假设一级走了x 步﹐两级走了y 步﹐ 可列得8210x y x y +=⎧⎨+=⎩解得6x =﹐2y =﹐因此用这样的走法共有8!286!2!=(种)﹒ 11.(1){}1,2,4,5,7,8,9A B ⋃=﹒ (2){}1,2,5A B ⋂=﹒ (3){}4,8A B -=﹒(4){}7,9B A -=﹒(5){}3,6,7,9,10'=-=A U A ﹒ (6){}3,4,6,8,10'=-=B U B ﹒(7)(){}3,6,10'⋃=A B ﹒(8){}3,6,10''⋂=A B ﹒ (9)(){}3,4,6,7,8,9,10'⋂=A B ﹒(10){}3,4,6,7,8,9,10''⋃=A B ﹒12. ()()()()191919182219192011111x x x x C x C x x ⎡⎤-+=-+=-+-+⋅⋅⋅⋅⋅⋅⎣⎦﹐∴()1919101119,a C C =-=-1919192021190.a C C C =+=13. 可看作第一位男生有4位女生舞伴可选择﹐第二位男生有3位女生舞伴可选择﹐以此类推得舞会配对方法数共有44432124P =⨯⨯⨯=种﹒故选(2)﹒ 14. (1)5232=﹒(2)①先往右42232⨯=﹐ ②先往左42232⨯=﹐ 共有323264+=﹒ 15.如图﹐共有27种方法﹒16. ()()()()()77237777712370.99810.00210.0020.0020.0020.002C C C C =-=-⨯+⨯-⨯+⋅⋅⋅⋅⋅⋅-⨯10.0140.0000840.0000002800.9860837200.986084.≈-+-=≈ 17. ()()1011012211x x x x ⎡⎤+-=+-⎣⎦()()()()()21011011009910121012101212101111x C x x C x x C x =+-+++-⋅⋅⋅⋅⋅⋅+-()10111c =-=-﹐∵()1011x +展开式中才有x 项﹐∴1011101,a C == ∵()1011x +及()100101211C x x -+展开式中均有2x 项﹐∴101101214949.b C C =-=18. (1)∵()()()()()()111!!11!1!1!1!1n n kk n C n C k n k k k n n k k n +++===+-+⋅+⋅-++﹐ ∴左式()()1111121011121.111nn n n n n k n k C C C C k n n +++++==⨯=++⋅⋅⋅⋅⋅⋅+=-+++∑ (2)承(1)知﹐()1113121213111n n n n ++-=⇒-=++﹐得4n =﹒ 19. (1)□□:4728⨯=﹒ ↓ 6﹑7﹑8﹑9(2)45﹑48﹑54﹑57﹑60﹑66﹑69﹑75﹑78﹑84﹑87﹑90﹑96﹑99﹐共14个﹒ (3)4□7⇒个﹐ 5□7⇒个﹐∴1459a =﹐1358a =﹐1257a =﹐∴平均为57分﹒ 20.上午 下午 1 2 3 4 5 6 7數 數 國 國 ╳ 體 體 2228⇒⨯⨯= 數 數 體 ╳ 國 國 體 2228⇒⨯⨯=數 數 體 ╳ ╳ 國 國 2124⇒⨯⨯= 體 數 數 ╳ 國 國 體 2228⇒⨯⨯= 體 數 數 ╳ ╳ 國 國 2124⇒⨯⨯=體 體數數國國 體 23212⇒⨯⨯=體體 數 數 ╳國國 2228⇒⨯⨯=∴共有8848412852++++++=種﹒21. ()()()()1011012211x xx x+-=++-()()()()()()21011011009910121012101212101111x C x x C x x C x =+++-++-+⋅⋅⋅⋅⋅⋅+-()()()1011002411011x x x x f x =+-++⋅﹐其中()f x 为一多项式﹐∴x 项的系数1011101,a C == 2x 项的系数10121014949,b C =-=3x 项的系数10110031101156550.c C C =-⨯=23.∴共有441212218396676+++++++++=种走法﹒ 24. (1)∵()123n n a a n +=+-且15a =﹐ ∴()21213514a a =+⨯-=-=﹐ ()32223415a a =+⨯-=+=﹐ ()43233538a a =+⨯-=+=﹐ ()542438513a a =+⨯-=+=﹒ (2)∵()123n n a a n +=+-﹐ ∴()21213a a =+⨯- ()32223a a =+⨯-()()121223)213n n n n a a n a a n ---=+⎡⨯--⎤⎣⎦+=+⎡⨯--⎤⎣⎦()()()2112121315233482n n n a a n n n n n -⋅=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤--=+⨯-+=-+⎣⎦﹒(3)20a =2204208328-⨯+=﹒25. x ﹐y ﹐z 的非负整数解共有331011212101010266H C C C +-====(组)﹒26. (1)3﹑4﹑5 1﹑3﹑5 →有363⨯⨯个 2 4﹑5 1﹑3﹑5 →有123⨯⨯个 2 3 1﹑3﹑5 →有113⨯⨯个∴共有()()36323363⨯⨯+⨯+=个大于230的三位数奇数﹒(2)①个位数字为1者有()()()36121121⨯+⨯+⨯=个﹐为3﹑5者也各有21个﹐ 故个位数字的和为()21135189⨯++=﹒②十位数字为1﹑2者各有339⨯=个﹐为3者有()33312⨯+=个﹐为4﹑5者各有 ()331312⨯+⨯=个﹐故十位数字和为()()()9121231245171⨯++⨯+⨯+=﹒③百位数字为3﹑4﹑5者各有6318⨯=个﹐为2者有()()23139⨯+⨯=个﹐故百位数字和为()()1834592234⨯++⨯⨯=﹒由①②③可知﹐总和为()()1891711023410025299+⨯+⨯=﹒27. 由于515C =且565622125C C C C =-=-﹐于是利用帕斯卡尔定理111n n n m m m C C C ---=+﹐得原式()66781920234516175C C C C C C =++++++-778192034516175C C C C C =+++++-8819204516175C C C C =++++-21175C =- 5980=﹒28. 设桌球俱乐部拟购买刀板﹐直拍与大陆拍各1x ﹐2x ﹐3x 把﹐ 根据题意得1238x x x ++=﹒其非负整数解有33811010888245H C C C +-====(组)﹐故共有45种不同的购买方式﹒29. 直线0ax by +=是恒过原点﹐且斜率为a b -的直线﹒因为斜率ab-为正值﹐所以,a b 必须异号﹐且,a b 皆不等于0﹒我们以a 的正负情形讨论如下﹕(1)当0a >时﹐a 有3种选法﹐而此时0b <亦有3种选法﹐ 因此有339⨯=种选法﹒(2)当0a <时﹐a 有3种选法﹐而此时0b >亦有3种选法﹐ 因此有339⨯=种选法﹒ 但是①当()()()(),2,1,4,2,6,3a b =---时﹐均表示同一条直线20x y -=﹒ ②当()()()(),3,6,2,4,1,2a b =---时﹐均表示同一条直线20x y -+=﹒ ③当()(),2,2a b =-﹐()2,2-时﹐均表示同一条直线0x y -=﹒ 因此需扣除重复计算的2215++=条直线﹒ 故共可表出99513+-=条相异的直线﹒ 30.(1)從A 走到P 後 ﹐方法有2種﹐完成A 到P 的各路線﹐方法有3!種﹐ 完成P 到B 的各路線﹐方法有3!種﹐ ∴共有()223!3!23!⨯⨯=⨯72=種﹒(2)A 到P 後 ﹐方法2種﹐P 到Q 後 ﹐方法2種﹐∴共有()32223!3!3!23!⨯⨯⨯⨯=⨯864=種﹒ABA Q P B31. (1)B ﹑D 同色﹐A BD C E →→→ 5433180⨯⨯⨯=﹐ B ﹑D 异色﹐A B D C E →→→→54322240⨯⨯⨯⨯=﹐ ∴共有180240420+=种涂法﹒(2)B ﹑D ﹑F 同色﹐A BDF C E G →→→→ 54333540⨯⨯⨯⨯=﹐ B ﹑D ﹑F 异色﹐A B D F C E G →→→→→→ 5432222960⨯⨯⨯⨯⨯⨯=﹐ B ﹑D 同色﹐F 异色﹐A BD F C E G →→→→→ 543322720⨯⨯⨯⨯⨯=﹐同理B ﹑F 同色﹐D 异色;D ﹑F 同色﹐B 异色涂法也各有720种﹐ ∴共有54096072033660++⨯=种﹒ 32.(1)12a = 24a = 38a = 414a =1n = 2n = 3n = 4n =(2)12a =﹐212a a =+﹐3222a a =+⨯﹐4323a a =+⨯﹐∴12n n a a n +=+⨯﹒ (3)∵12n n a a n +=+⨯且12a =﹐ ∴2121a a =+⨯ 3222a a =+⨯()1222n n a a n --=+⨯- ()1)21n n a a n -+=+⨯-()()21121212222n n n a a n n n -⨯=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦∴22n a n n =-+﹒ 33. (1)①A ﹑C 同色﹐541480,A B C D ⨯⨯⨯=②A ﹑C 异色﹐5433180,A B C D ⨯⨯⨯=由①②可得﹐共有80180260+=种﹒(2)由(1)可知[]541433⨯⨯⨯+⨯﹐推得[]25414333380⨯⨯⨯+⨯=﹒ (3)[]354143343940⨯⨯⨯+⨯=﹒34.(1)休旅車及跑車相間排列的情形﹐可分為兩種情形﹐如圖所示:3輛休旅車排成一列共有3!6=種方法﹐同樣地﹐3輛跑車排成一列共有3!6=種方法﹐ 因此根據乘法原理﹐共有26672⋅⋅=種排法﹒ (2)因為休旅車及跑車要各自排在一起﹐如圖所示:所以可以將3輛休旅車看成「1」輛﹐3輛跑車看成「1」輛﹐變成2輛的排列問題﹐有2!2=種方法﹒又3輛休旅車之間有3!6=種排列方法﹐3輛跑車之間有3!6=種排列方法﹒故共有2!3!3!26672⋅⋅=⋅⋅=種排法﹒35. 选出2本英文书3本中文书的方法有6523150C C ⋅=(种)﹐将此5本书作直线排列﹐有5!种排法﹐故所求排法为65235!18000C C ⋅⋅=(种)﹒36.(1)從9本中取出3本給甲﹐取法有93C 種;再從其餘的6本取出3本給乙﹐取法有63C 種;剩下的3本給丙﹐即33C 種﹒因此﹐全部分配方式共有9633331680C C C ⋅⋅=(種)﹒(2)先假設袋子上依序標示有甲﹐乙﹐ 丙的記號﹐則有963333C C C ⋅⋅種分 法﹐但事實上袋子是相同的﹐因此每3!種只能算1種﹐如圖所示﹒故分配方式共有96333316802803!6C C C ⋅⋅==(種)﹒ (3)仿上述作法﹐先假設袋子依序有甲﹐乙﹐丙的記號﹐甲得5本﹐乙丙各得2本的分法有942522C C C ⋅⋅種﹒因袋子是無記號的﹐所以如圖的2!種其實是同1種﹒故分配方式共有9425223782!C C C ⋅⋅=(種)﹒37.設集合A 表示參加象棋比賽的同學﹐ 集合B 表示參加圍棋比賽的同學﹐ 集合A B ⋃表示參加棋藝活動的同學﹐集合A B ⋂表示參加兩種棋藝活動的同學﹒由題意知()34n B =﹐()42n A B ⋃=﹐()15n A B ⋂=﹒ 利用()()()()n A B n A n B n A B ⋃=+-⋂﹐得()423415n A =+-﹐即()23n A =﹒ 故這個班級中共有23位同學參加象棋比賽﹒。
高中数学排列组合必考知识点经典练习题(完整版)
排列组合复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同3. 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。
高中数学排列组合典型题大全含答案
排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A 、38 B、83 C、38A D 、38C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。
所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合的试题及答案高中
排列组合的试题及答案高中一、选择题1. 从5个不同的小球中取出3个进行排列,共有多少种不同的排列方式?A. 20种B. 60种C. 120种D. 240种2. 有5个人排成一排,其中甲乙两人必须相邻,共有多少种不同的排法?A. 48种B. 60种C. 120种D. 240种二、填空题3. 用0,1,2,3,4这五个数字组成没有重复数字的三位数,其中个位数字为1的共有多少个?4. 某班有10名同学,需要选出3名代表,有多少种不同的选法?三、解答题5. 某公司有10名员工,需要选出5名员工组成一个工作小组,要求其中至少有1名女性员工。
如果公司中有5名女性员工和5名男性员工,问有多少种不同的组合方式?6. 某校有5个社团,每个学生最多可以参加2个社团,问有多少种不同的参加方式?答案一、选择题1. 答案:B解析:从5个不同的小球中取出3个进行排列,使用排列公式A_{5}^{3} = 5 × 4 × 3 = 60。
2. 答案:A解析:将甲乙两人看作一个整体,有4!种排法,再将甲乙两人内部排列,有2!种排法,所以总共有4! × 2! = 48种排法。
二、填空题3. 答案:18解析:首先确定百位,有4种选择(不能选0和1),然后确定十位,有3种选择(不能与百位相同),最后确定个位为1,所以共有 4 × 3 = 12种。
但是,由于0不能作为百位,所以需要减去3种情况,最终答案为 12 - 3 = 9种。
4. 答案:120解析:从10个人中选出3个人,使用组合公式 C_{10}^{3} = 10! / (3! × (10 - 3)!) = 120。
三、解答题5. 答案:252种解析:首先计算所有可能的组合数,即 C_{10}^{5} = 252。
然后计算没有女性员工的组合数,即 C_{5}^{5} = 1。
所以至少有1名女性员工的组合数为 252 - 1 = 251。
(完整版)排列组合练习试题和答案解析
一、排列与组合
1.从9人中选派2人参加某一活动,有多少种不同选法?
2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?
3.现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是
4.有编号为1、2、3的3个盒子和10个相同的小球,现把10个小球全部装入3个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有
A.9种B.12种C.15种D.18种
5.将7只相同的小球全部放入4个不同盒子,每盒至少1球的方法有多少种?
6.某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1人参加的选法有多少种?
由分类计数原理得,不同的三角形共有5+20+10=35个.
12.从5部不同的影片中选出4部,在3个影院放映,每个影院至少放映一部,每部影片只放映一场,共有种不同的放映方法(用数字作答)。
五、元素与位置——位置分析
1.7人争夺5项冠军,结果有多少种情况?
2. 75600有多少个正约数?有多少个奇约数?
(2)甲乙必须站两端,丙站中间,有多少种不同排法?
2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数?
3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是
A.3761 B.4175 C.5132 D.6157
4.设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有
(完整版)排列组合高考真题及答案
1•将标号为1, 2, 3, 4, 5, 6的6张卡片放入3个不同的信圭寸中.若每个 信封放2张,其中标号为1, 2的卡片放入同一信封,则不同的方法共有 【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力 .【解析】标号1,2的卡片放入同一封信有4种方法;其他四封信放入两个信 封,每个信封两个有圧’种方法,共有'M “ 种,故选B.2.某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每 天安排2人,每人值班1天.若6位员工中的甲不值14日,乙不值16日, 则不同的安排方法共有(A ) 30 种 (C ) 42 种 解析:法一:所有排法减去甲值 14日或乙值16日,再加上甲值14日且乙值16日的排法即 C ;C : 2 C ;C : C :C 3=42法二:分两类甲、乙同组,贝y 只能排在15日,有C :=6种排法3.某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天, 若7位员工中的甲、乙排在相邻两天,丙不排在 10月1日,丁不排在10月 7日,则不同的安排方案共有(A 12 种种【答案】B(B ) 18 种 (C ) 36 种 (D )54 (B ) 36种(D ) 48 种A. 504 种B. 960 种C. 1008 种D.1108种解析:分两类:甲乙排1、2号或6、7号共有2 A2A4A:种方法甲乙排中间, 丙排7 号或不排7 号,共有4A22( A44A31A31A33)种方法故共有1008 种不同的排法4.8 名学生和2 位第师站成一排合影,2 位老师不相邻的排法种数为(A)A88A92(B)A88C92(C)A88A72(D)A88C72答案:A5. 由1、2、3、4、5、6 组成没有重复数字且1、3 都不与5 相邻的六位偶数的个数是(A)72 (B)96 (C)108 (D)144解析:先选一个偶数字排个位,有3 种选法①若5在十位或十万位,则1、3有三个位置可排,3A;A; = 24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共3A|A2 =12个算上个位偶数字的排法,共计3(24 + 12)= 108个答案:C6. 如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用(A)288 种(B)264 种(C)240 种(D)168 种【答案】D【解析】本题主要考查排列组合的基础知识与分类讨论思想,属于难题。
(word完整版)高中数学排列组合高频经典题目练习及答案解析.docx
⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯⋯ ⋯ ⋯ ⋯○ ⋯_ _⋯____⋯__⋯: 号考 _ ⋯_ _ _ _⋯_ _ _⋯ :⋯班○_ __ _ ⋯_ _ _⋯_:⋯名 ⋯姓 _ _ _ 装_ _ _⋯_ _ _ ⋯_ _ :⋯ 校 学⋯ ○ ⋯ ⋯ ⋯ ⋯ 外 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯⋯⋯⋯⋯⋯○ 绝密 ★启用前⋯2018 年 04 月 14 日 910****3285 的高中数学组卷⋯ ⋯试卷副标题⋯考试范围: xxx ;考试时间: 100 分钟;命题人: xxx⋯ 题号 一总分⋯ 得分⋯⋯ 注意事项:○1.答题前填写好自己的姓名、班级、考号等信息⋯2.请将答案正确填写在答题卡上⋯⋯⋯第Ⅰ 卷(选择题)请点击修改第I 卷的文字说明⋯⋯ 评卷人得分⋯⋯ 一.选择题(共 10 小题)○⋯ 1.在航天员进行一项太空实验中,要先后实施6 个程序,其中程序 A 只能⋯ 出现在第一或最后一步,程序 B 和 C 在实施时必须相邻,问实验顺序的编排⋯⋯ 方法共有()装 A . 34 种B .48 种C .96 种D .144 种⋯ 2.要排出某理科班一天中语文、数学、物理、英语、生物、化学6 堂课的⋯⋯ 课程表,要求语文课排在上午(前 4 节),生物课排在下午(后 2 节),不同⋯ 排法种数为()○A . 144B .192C . 360D .720⋯⋯ 3.福州西湖公园花展期间,安排6 位志愿者到 4 个展区提供服务,要求⋯甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方⋯ 案共有()内⋯A . 90 种B .180 种C .270 种D .360 种⋯ 4.若有 5 本不同的书,分给三位同学,每人至少一本,则不同的分法数是⋯⋯()○A . 120B .150C . 240D .300⋯⋯试卷第 1 页,总 3 页⋯⋯5.我国的第一艘航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有 5 架“歼﹣15”飞机准备着舰,如果乙机不能最先着舰,而丙机必须在甲机之前着舰(不一定相邻),那么不同的着舰方法种数为()A.24 B. 36 C.48D.966.某学校需要把6 名实习老师安排到A,B,C 三个班级去听课,每个班级安排 2 名老师,已知甲不能安排到 A 班,乙和丙不能安排到同一班级,则安排方案的种数有()A.24 B. 36 C.48D.727.上海某小学组织 6 个年级的学生外出参观包括甲博物馆在内的 6 个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的方案有()A.A× A种B. A×54种C.C× A种D. C×54种8.从 7 名男队员和 5 名女队员中选出 4 人进行乒乓球男女混合双打,不同的组队种数是()A.B.C.D.9.甲、乙、丙等 6 个人排成一排照相,且甲、乙不在丙的同侧,则不同的排法共有()A.480 B. 240 C.120 D.36010.用数字0,1,2,3,4,5 组成没有重复数字的五位数,其中比40000大的偶数共有()A.144 个 B.120 个 C.96 个D.72 个试卷第 2 页,总 3 页⋯⋯⋯⋯⋯⋯⋯⋯○○⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯○※○⋯⋯※⋯⋯※⋯※⋯⋯答⋯※※内⋯※⋯⋯※⋯⋯※⋯※⋯⋯○※○※⋯装⋯⋯※⋯※⋯在⋯※⋯※⋯装要装※⋯※⋯不⋯⋯※⋯※⋯⋯※⋯○※○⋯⋯⋯⋯⋯⋯⋯⋯内外⋯⋯⋯⋯⋯⋯⋯⋯○○⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯⋯ ⋯ ⋯ ⋯○ ⋯_ _⋯____⋯__⋯: 号考 _⋯_ _ _ _ ⋯_ _ _⋯ :⋯班○_ __ _ ⋯_ _ _⋯_:⋯名 ⋯姓 _ _ _ 装_ _ _⋯_ _ _ ⋯_ _ :⋯校 学⋯ ○ ⋯ ⋯ ⋯ ⋯ 外 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯⋯⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯⋯ ⋯ ⋯ ⋯○⋯ ⋯ ⋯ ⋯⋯⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 装 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 内 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯⋯试卷第 3 页,总 3 页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
高中数学选修_排列组合经典问题练习(详细解析)
排列组合经典练习(含解析)1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为( )A .40B .50C .60D .70 【解析】先分组再排列,一组2人一组4人有C 26=15种不同的分法;两组各3人共有C 36A 22=10种不同的分法,所以乘车方法数为25×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A .36种B .48种C .72种D .96种【解析】恰有两个空或n =6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( )A .45种B .36种C .28种D .25种【解析】因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶 ②所得空间直角坐标系中的点的坐标中含有1个1的有C 12·A 33+A 33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C 13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )A .72B .96C .108D .144 【解析】分两类:若1与3相邻,有A 22·C 13A 22A 23=72个,若1与3不相邻有A 33·A 33=36个故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( )A .50种B .60种C .120种D .210种【解析】先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C 16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A 25种,按照分步乘法计数原理可知共有不同的安排方法C 16·A 25=120种,故选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)【解析】先安排甲、乙两人在后5天值班,有A 25=20(种)排法,其余5人再进行排列,有A 55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)【解析】由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C 49·C 25·C 33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).【解析】先将6名志愿者分为4组,共有C 26C 24A 22种分法,再将4组人员分到4个不同场馆去,共有A 44种分法,故所有分配方案有:C 26·C 24A 22·A 44=1 080种. 13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).【解析】5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有( )(A )12种 (B )18种 (C )36种 (D )54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )A. 504种B. 960种C. 1008种D. 1108种 解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法故共有1008种不同的排法16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( ) (A )72 (B )96 (C ) 108 (D )144【解析】先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个算上个位偶数字的排法,共计3(24+12)=108个答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )A.10B.11C.12D.15【解析】与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110有两个对应位置上的数字相同有624=C 个第二类:与信息0110有一个对应位置上的数字相同有414=C 个第三类:与信息0110没有一个对应位置上的数字相同有104=C 个。
排列组合典型例题(带详细答案)
例1用O到9这10个数字•可组成多少个没有重复数字的四位偶数?例2三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?例3排一张有5个歌唱节目和4个舞蹈节目的演出节目单。
(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种?例6下是表是高考第一批录取的一份志愿表•如果有4所重点院校,每所院校有3个专业是你较为满意的选择•若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法?例7 7名同学排队照相.(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?(4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法?例8计算下列各题:(1) A15 ;⑵A6;例9 a,b,c,d,e,f六人排一列纵队,限定a要排在b的前面(a与b可以相邻,也可以不相邻),求共有几种排法.例10八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?例11计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有例12由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数的个数共有()•例13用1,2,3,4,5 ,这五个数字,组成没有重复数字的三位数,其中偶数共有()•例14用0、1、2、3、4、5共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?1、解法1当个位数上排“ O”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有A个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有A4 A A I(个)•「•没有重复数字的四位偶数有Ag + A;.A;'A2 =504 + 1792 =22962、解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有A6种不同排法•对于其中的每一种排法,三个女生之间又都有A对种不同的排法,因此共有A(6 Aa =4320种不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻•由于五个男生排成一排有A5种不同排法,对于其中任意一种排法,从上述六个位置中3 5 3选出三个来让三个女生插入都有A6种方法,因此共有A A6 = 14400种不同的排法.(3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有As种不同的排法,对于其中的任意一种排法,其余六位都有Af种排法,所以共有A A=14400种不同的排法... 8 2 6(4)3个女生和5个男生排成一排有A种排法,从中扣去两端都是女生排法 A A种,就能得到两端不都是女生的排法种数•因此共有A; - A;∙A65 = 36000种不同的排法.3、解:(1)先排歌唱节目有A)种,歌唱节目之间以及两端共有6个位子,从中选4个放入舞蹈节目,共有A64中方法,所以任两个舞蹈节目不相邻排法有: A A = 43200.(2)先排舞蹈节目有A:中方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入。
(完整版)排列组合习题_[含详细答案解析]
圆梦教育中心排列组合专项训练1.题 1 (方法对比,二星)题面:(1)有 5 个插班生要分配给 3 所学校,每校至少分到一个,有多少种不同的分配方法?(2)有5个数学竞赛名额要分配给3所学校,每校至少分到一个名额,有多少种不同的名额分配方法?解析:“名额无差别”——相同元素问题(法1)每所学校各分一个名额后,还有 2 个名额待分配,21 可将名额分给 2 所学校、1 所学校,共两类:C32C31(种)(法 2 ——挡板法)2 相邻名额间共 4 个空隙,插入 2 个挡板,共:C426(种)注意:“挡板法”可用于解决待分配的元素无差别,且每个位置至少分配一个元素的问题.(位置有差别,元素无差别)题面:有10 个运动员名额,分给7 个班,每班至少一个, 有多少种分配方案?答案:C96详解:因为10 个名额没有差别,把它们排成一排。
相邻名额之间形成9 个空隙。
在9 个空档中选 6 个位置插个隔板,可把名额分成7 份,对应地分给7 个班级,每一种插板6方法对应一种分法共有C96种分法。
题面:完美WORD 格式由隔板分成的左、中、右三部分的球数分别为x、y、z 之值, 故解的个数为 C 9 2=36 (个)。
2.题 2 (插空法,三星)题面:某展室有9 个展台,现有3 件展品需要展出,要求每件展品独自占用1 个展台,并且3 件展品所选用的展台既不在两端又不相邻,则不同的展出方法有 ______________________________ 种;如果进一步要求3 件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____ 种.答案:60,48 同类题一题面:6 男 4 女站成一排,任何 2 名女生都不相邻有多少种排法?答案:A66·A47种.详解:任何 2 名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A66·A47种不同排法.题面:有 6 个座位连成一排,现有 3 人就坐,则恰有两个空座位相邻的不同坐法有()A.36 种B.48 种C.72 种D.96 种答案: C. 详解:恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A 33A24=72 种排法,故选 C.求方程X+Y+Z=10 的正整数解的个数。
(word完整版)高中数学排列组合高频经典题目练习及答案解析
试卷第1页,总3页 绝密★启用前 2018年04月14日910****3285的高中数学组卷 试卷副标题 考试范围:xxx ;考试时间:100分钟;命题人:xxx 题号 一 总分 得分 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第Ⅰ卷(选择题) 请点击修改第I 卷的文字说明 评卷人 得 分 一.选择题(共10小题) 1.在航天员进行一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,问实验顺序的编排方法共有( ) A .34种 B .48种 C .96种 D .144种 2.要排出某理科班一天中语文、数学、物理、英语、生物、化学6堂课的课程表,要求语文课排在上午(前4节),生物课排在下午(后2节),不同排法种数为( ) A .144 B .192 C .360 D .720 3.福州西湖公园花展期间,安排 6 位志愿者到 4 个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有( ) A .90 种 B .180 种 C .270 种 D .360 种 4.若有5本不同的书,分给三位同学,每人至少一本,则不同的分法数是( ) A .120 B .150 C .240 D .300试卷第2页,总3页 …………○…………外…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※ …………○…………内…………○…………装…………○…………订…………○…………线…………○………… 5.我国的第一艘航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼﹣15”飞机准备着舰,如果乙机不能最先着舰,而丙机必须在甲机之前着舰(不一定相邻),那么不同的着舰方法种数为( )A .24B .36C .48D .966.某学校需要把6名实习老师安排到A ,B ,C 三个班级去听课,每个班级安排2名老师,已知甲不能安排到A 班,乙和丙不能安排到同一班级,则安排方案的种数有( )A .24B .36C .48D .727.上海某小学组织6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的方案有( )A .A ×A 种B .A ×54种C .C ×A 种D .C ×54种8.从7名男队员和5名女队员中选出4人进行乒乓球男女混合双打,不同的组队种数是( )A .B .C .D .9.甲、乙、丙等6个人排成一排照相,且甲、乙不在丙的同侧,则不同的排法共有( )A .480B .240C .120D .36010.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )A .144个B .120个C .96个D .72个试卷第3页,总3页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
排列组合题集(含详细答案)
排列组合题集一、解决排列、组合问题常用方法:两个原理、优限法、排除法、捆绑法(视一法)、插空法、隔板法、等可能法、固定模型、树图法等,但最基础的是“两个原理”.二、排列、组合问题大体分以下几个类型类型一:排队问题例1:7人站成一排,求满足下列条件的不同站法:(1)甲不站排头,乙不站排尾____________________(2)甲、乙两人不站两端________________________ (3)甲、乙两人相邻____________________________(4)甲、乙两人不相邻________________________ (5)甲、乙之间隔着2人______________________(6)甲在乙的左边____________________________ (7)若7人顺序不变,再加入3个人,要求保持原先7人顺序不变________________(8)若7人中有4男生,3女生,男、女生相间隔排列________(9)7人站成前后两排,前排3人,后排4人的站法____________(10)甲站中间______ _____(11)7人中现需改变3人所站位置,则不同排法____________ (12)若7人身高各不相同,则按照从高到低的站法________________(13)甲、乙、丙3人中从左向右看由高到底(3人身高不同)的站法________(14)若甲、乙两人去坐标号为1,2,3,4,5,6,7的七把椅子,要求每人两边都有空位的坐法_____ 类型二:分组与分配问题例2:将6本不同的书,若按如下方式来分,则不同分法种数有:(1)平均分成3堆,每堆2本______________________(2)分给甲、乙、丙3人,每人2本________________ (3)分成3堆,每堆本数分别是1,2,3,____________(4)分给甲1本,乙2本,丙3本________ __ (5)分给3人,1人1本,1人2本,1人3本________________(6)分给甲、乙、丙3人,每人至少1本____________________(7)若将6本不同书放到5个不同盒子里,有________种不同放法(8)若将6本不同书放到5个不同盒子里,每个盒子至少1本,则有_____种不同放法。
高考数学专题《排列与组合》习题含答案解析
专题11.2 排列与组合1.(2021·福建宁德·高三期中)三名学生报名参加校园文化活动,活动共有三个项目,每人限报其中一项,则恰有两名学生报同一项目的报名方法种数有( )A .6种B .9种C .18种D .36种【答案】C 【分析】根据题意首先从三名学生中选2名选报同一项目,再从三个项目中选2项项目,全排即可.【详解】由题意可得22233233218C C A ⋅⋅=⨯⨯=,故选:C2.(2021·山东潍坊·高三月考)甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军”,对乙说:“你不会是最差的”,从这两个回答分析,这5人的名次排列所有可能的情况共有( )A .18种B .36种C .54种D .72种【答案】C 【分析】甲、乙不是第一名且乙不是最后一名.乙的限制最多,故先排乙,有可能是第二、三、四名3种情况;再排甲,也有3种情况;余下的问题是三个元素在三个位置全排列,根据分步计数原理即可得到结果.【详解】由题意得:甲、乙都不是第一名且乙不是最后一名.乙的限制最多,故先排乙,有可能是第二、三、四名3种情况;再排甲,也有3种情况;余下3人有33A 种排法.故共有33333332154A ⨯⨯=⨯⨯⨯⨯=种不同的情况.故选:C.3.(2021·全国·高三月考(理))某地计划在10月18日至11月18日举办“菊花花会”,如图是某展区的一个菊花布局图,现有5个不同品种的菊花可供选择摆放,要求相邻的两个展区不使用同一种菊花,则不同的布置方法有()练基础A .240种B .300种C .360种D .420种【答案】D 【分析】先放A ,分B 、D 选则同一种花和不同种花两种情况,再考虑C 、E ,由分步乘法和分类加法原理可得答案.【详解】先放A ,共有5种选择,若B 、D 选则同一种花,有四种选择,剩下的C 、E 均有三种选择,共5433180⨯⨯⨯=种,若B 、D 选则不同种花,有24A 种选择,剩下的C 、E 均有两种选择,共245A 22240⨯⨯⨯=种,故共有180+240=420种.故选:D.4.(2021·全国·高二课时练习)某工程队有卡车、挖掘机、吊车、混凝土搅拌车各一辆,将它们全部派往3个工地进行作业,每个工地至少派一辆,则不同的派法种数是( )A .18B .9C .27D .36【答案】D 【分析】利用捆绑法,先把4辆车分成3组,再把分好的3组分别派给3个工地,即可得到答案;【详解】先把4辆车分成3组,再把分好的3组分别派给3个工地,则不同的派法共有2343C A 36=(种).故选:D5.(2021·浙江·模拟预测)若从1,2,3,9, 这个9个整数中取出4个不同的数排成一排,依次记为a b c d ,,,,则使得a b c d ⨯⨯+为偶数的不同排列方法有( )A .1224B .1200C .1080D .840【答案】A 【分析】考虑d 为偶数和d 为奇数两种情况,判断a b c ⨯⨯的奇偶性,根据,,a b c 中偶数的个数计算得到答案.【详解】d 为偶数,则a b c ⨯⨯为偶数,有11221334353533()1104C C C C C C A ++=;d 为奇数,则a b c ⨯⨯为奇数,四个数均为奇数,有45120A =.故共有1224种.故选:A.6.(2021·福建省漳州第一中学高二月考)将7个相同的球放入4个不同的盒子中,则每个盒子都有球的放法种数为( )A .22B .25C .20D .48【答案】C 【分析】将7个相同的球放入4个不同的盒子中,即把7个相同的球分成4组,不妨将7个球摆成一排,中间形成6个空,只需在这6个空插入3个隔板将它们隔开,即分成4组,据此即可的解.【详解】解:将7个相同的球放入4个不同的盒子中,即把7个相同的球分成4组,因为每个盒子都有球,所以每个盒子至少又一个球,不妨将7个球摆成一排,中间形成6个空,只需在这6个空插入3个隔板将它们隔开,即分成4组,不同插入方法共有3620C =种,所以每个盒子都有球的放法种数为20.故选:C.7.【多选题】(2021·福建省漳州第一中学高二月考)男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A .1人B .2人C .3人D .4人【答案】BC 【分析】设女生有n 人,则男生有8-n 人,由21830n n C C -⋅=求解.设女生有n 人,则男生有8-n 人,由题意得:21830n n C C -⋅=,即()()87302n n n --⋅=,解得2n =或3n =,故选:BC8.(2021·上海·闵行中学高三期中)从4男2女六名航天员中选出三名作为神舟十四号乘组,则恰好有一名女航天员被选中的选法有______种.(用数字作答)【答案】12【分析】利用组合数来计算出选法数.【详解】依题意可知,选法有214212C C =种.故答案为:129.(2020·新疆·克拉玛依市教育研究所三模(理))新型冠状肺炎疫情发生后,新疆某医院有2名医生,4名护士自愿报名参加援助武汉医疗队,现要将这6名医护人员分成2个小组,分别安排到武汉市的两所方舱医院参加医疗救助活动,每个小组由1名医生和2名护士组成,不同的安排方案共有_________种.(用数字作答)【答案】12【分析】先从2名医生中选1名去一所方舱医院,再从4名护士选2名护士去同一所方舱医院,利用分步乘法计数原理即可求出.【详解】先从2名医生中选1名去一所方舱医院,有122C =种,再从4名护士选2名护士去同一所方舱医院,有246C =种,剩下的1名医生2名护士去另一所方舱医院,则不同的安排方案共有2612⨯=种.故答案为:12.10.(2021·全国·高二课时练习)求下列各式中的正整数n :(1)33210n n A A =;(2)101098765nA =⨯⨯⨯⨯⨯.【答案】(1)8n =(2)6(1)根据排列数公式列出方程即可求解;(2)根据排列数公式列出方程即可求解;(1)解:因为33210n n A A =,所以()()()()221221012n n n n n n ⨯-⨯-=⨯⨯-⨯-,解得8n =;(2)解:因为101098765nA =⨯⨯⨯⨯⨯,又()10109101n A n =⨯⨯⨯-+ ,所以1015n -+=,解得6n =.1.(2020·上海市沪新中学高三月考)某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩,若其中学生甲必须参赛且不担任四辩,则不同的安排方法种数为________(结果用数值表示)【答案】180【分析】利用组合和排列的含义分别求出从6名学生中选出四名且甲必须参赛和甲不担任四辩的情况种数,然后按照分步乘法原理计算即可.【详解】首先从6名学生中选出四名且甲必须参赛共有35C 种情况,甲不担任四辩的情况共有333A 种,故不同的安排方法种数为33533180C A ⋅=.故答案为:180.2.(2018·浙江·绍兴市柯桥区教师发展中心高三学业考试)为宣传地方特色,某电视台派出3名男记者和2名女记者到民间进行采访.期间工作的任务有A ,B ,C ,D 四项,每项任务至少一人参加,但两名女记者不参加A 任务,则不同的安排方案数共有_______.【答案】126【分析】采用分类计数原理,排列组合进行计算可得.【详解】两名女记者不参加A 任务,由题意分两类情况:①1男参加A 任务;②2男参加A 任务,其余人员再排列;即:①1男参加A 任务,将3男选1排在A 任务,再将剩下4人选两人打捆,再排在其它3项任务,即11233143108C A C A =种.②2男参加A 任务,将3男选2人排在A 任务,再将剩下的人排在其它3项任务,练提升即233318C A =种,所以选出符合条件参加活动的人员共有: 108+18= 126种,故答案为: 126种3.(2021·全国·高三月考)某学校安排甲,乙等5位中层干部深入4个班级进行班级课堂教学调研,每班至少安排一位中层干部,若甲、乙不能安排到同一个班级,则不同的安排方法共有______________________种(用数字作答).【答案】216【分析】先将5位中层干部分成4组,有1组2人其他3组各1人,除去甲、乙分在一起的情况,所以分组结果有25C 19-=种,再分配到4个班级,由分步乘法计数原理即可求解.【详解】首先把5位中层干部分成4组,有1组2人其他3组各1人.又甲、乙不能分在一起,因此有25C 19-=种,再对分好的4组分配到4个班级有44A 24=种,根据分步乘法原理得:924216⨯=种,故答案为:216.4.利用组合数公式证明111m m m n n n C C C ++++=.【答案】证明见解析【分析】利用组合数公式分别计算等式左右两边即可证明.【详解】证明:因为()11(1)!1!()!m n n C m n m +++=+-,()()()1!11!!!(1)!(1)!!()!(1)!()!(1)!()!m mn n n n m m n n n C C n m m m n m m n m m n m +⎡⎤-+++⎣⎦++==--+-+--=+,所以111m m m nn n C C C ++++=.5.(2021·全国·高二课时练习) 把分别标有1,2,3,4号的4个不同的小球放入3个分别标有1号、2号、3号的盒子中,不许有空盒子且任意一个小球都不能放入标有相同标号的盒子中,则不同的放法共有多少种?【答案】12【分析】由于4号球没有限制,所以以4号球分两类讨论:一类是4号球与1,2,3号球中的一个在一个盒子,另一类是4号球单独放在一个盒子,其他3个球放入两个盒子.【详解】由于4号球没有限制,所以以4号球分类:当4号球与1,2,3号球中的一个在一个盒子时,它们有2个盒子可选,其他两个球只有1种放法,共有11326C C =种放法;当4号球单独放在一个盒子,其他3个球放入两个盒子时,首先在1,2,3号球中先选出两个球占一个盒子有23C 种,再分配剩下那个球与4号球,满足条件的放法种数为22326C A =种,所以共有6612+=种不同放法.6.(2021·福建省漳州第一中学高二月考)为配合国家精准扶贫战略,某省示范性高中安排6名高级教师(不同姓)到基础教育薄弱的甲、乙、丙三所中学进行扶贫支教,每所学校至少1人,因工作需要,其中李老师不去甲校,则分配方案种数为多少种?(请写出分类过程)【答案】360【分析】根据题意,按甲校安排的人数分4种情况讨论,求出每种情况下安排方案的数目,由加法原理计算可得答案.【详解】分四种情况讨论:甲校安排1名老师,分配方案种数有()11422325542532150C C C A C C A +=,甲校安排2名老师,分配方案种数有()213222543242140C C C A C C +=,甲校安排3名老师,分配方案种数有3122532260C C C A =,甲校安排4名老师,分配方案种数有41152110C C C =所以分配方案共有150+140+60+10=360种.7.(2021·全国·高二课时练习)现有编号分别为A ,B ,C ,D ,E ,F ,G 的7个不同的小球,将这些小球排成一排(1)若要求A ,B ,C 相邻,则有多少种不同的排法?(2)若要求A 排在正中间,且B ,C ,D 各不相邻,则有多少种不同的排法?【答案】(1)720;(2)216.【分析】(1)利用“捆绑法”可求;(2)分B ,C ,D 中有1个在A 的左侧和有2个在A 的左侧讨论求解.【详解】(1)把A ,B ,C 看成一个整体与剩余的4个球全排列,则不同的排法有3535A A 720=(种).(2)A 在正中间,所以A 的排法只有1种.因为B ,C ,D 互不相邻,所以B ,C ,D 不可能同时在A 的左侧或右侧.若B ,C ,D 中有1个在A 的左侧,2个在A 的右侧且不相邻,则不同的排法有22133233C A C A 108=(种),若B ,C ,D 中有2个在A 的左侧且不相邻,1个在A 的右侧,则不同的排法有22133233C A C A 108=(种).故所求的不同排法有108108216+=(种).8.(2021·河北·藁城新冀明中学高二月考)从1到6的六个数字中取两个偶数和两个奇数组成没有重复数字的四位数.试问:(1)能组成多少个不同的四位数?(2)四位数中,两个偶数排在一起的有几个?(3)两个偶数不相邻的四位数有几个?(所有结果均用数值表示)【答案】(1)216(2)108(3)108【分析】(1)分三步完成:第一步,取两个偶数,第二步,取两个奇数,第三步,将取出的四个数全排列,最后利用分步计数原理求解;(2)分三步完成:第一步,取两个偶数,第二步,取两个奇数,第三步,将两个偶数看作一个整体与两个奇数排列,最后利用分步计数原理求解;(3分三步完成:第一步,取两个偶数,第二步,取两个奇数,第三步,先将两个奇数排列,再从三个空中选两个空,将两个偶数排列上,最后利用分步计数原理求解.(1)解:分三步完成:第一步,取两个偶数,有23C 种方法,第二步,取两个奇数,有23C 种方法,第三步,将取出的四个数全排列,有44A 种方法,由分步计数原理得:共能组成423422163A C C ⋅=⋅个不同的四位数;(2)解:分三步完成:第一步,取两个偶数,有23C 种方法,第二步,取两个奇数,有23C种方法,第三步,将两个偶数看作一个整体与两个奇数排列,有2323A A⋅种方法,由分步计数原理得:共能组成22232333108C C A A⋅⋅⋅=个不同的四位数;(3)解:分三步完成:第一步,取两个偶数,有23C种方法,第二步,取两个奇数,有23C种方法,第三步,先将两个奇数排列,再从三个空中选两个空,将两个偶数排列上,有2223A A⋅种方法,由分步计数原理得:共能组成22222333108C C A A⋅⋅⋅=个不同的四位数;9.(2021·全国·高二课时练习)甲、乙、丙、丁、戌五名同学参加某项竞赛,决出了第一名到第五名的5个名次.甲、乙两人去询问成绩,组织者对甲说:“很遗憾,你和乙都未拿到冠军.”对乙说:“你当然不会是最差的.”从组织者的回答分析,这五名同学的名次排列共有多少种不同的情况.【答案】54【分析】安排方案可分3步完成,第一步先安排乙,再安排甲,最后安排其他同学完成,由分步乘法原理求满足条件的方案数.【详解】满足要求的方案可分3步完成,第一步先安排乙,乙可以排在第2,3,4位,有3种安排方法,第二步安排甲,有3种安排方法,第三步再安排其他同学,有33A种安排方法,由分步乘法原理满足条件的安排方法有54种.39.(2021·全国·高二课时练习)在3000—7000之间有多少个没有重复数字的5的倍数?【答案】392【分析】分各位数字是0和5两种情况进行讨论即可.【详解】第一类,个位是5时,首位从3,4,6中选,中间两位从0到9的数中,去掉5与首位的数中选2个排列,所以共有1238168C A=个;第二类,个位是0时,首位从3,4,5,6中选,中间两位从0到9的数中,去掉0与首位的数中选2个排列,所以共有1248224C A=个;所以共有168224392+=个.10.(2021·江西·横峰中学高二期中(理))1.如图,已知图形ABCDEF ,内部连有线段.(用数字作答)(1)由点A 沿着图中的线段到达点E 的最近路线有多少条?(2)由点A 沿着图中的线段到达点C 的最近路线有多少条?(3)求出图中总计有多少个矩形?【答案】(1)20(2)175(3)102【分析】(1)由题意转化条件为点A 需向右移动3次、向上移动3次,结合组合的知识即可得解;(2)设出直线DE 上其它格点为G 、H 、P ,按照A E C →→、A G C →→、A H C →→、A P C →→分类,结合分步乘法、组合的知识即可得解;(3)由题意转化条件为从竖线中选出两条、横线中选出两条组成图形,按照矩形的边在不在CD 上分类,利用分步乘法、组合的知识即可得解.(1)由题意点A 沿着图中的线段到达点E 的最近路线需要移动6次:向右移动3次,向上移动3次,故点A 到达点E 的最近路线的条数为336320C C ⋅=;(2)设点G 、H 、P 的位置如图所示:则点A 沿着图中的线段到达点C 的最近路线可分为4种情况:①沿着A E C →→,共有33263360C C C ⋅⋅=条最近路线;②沿着A G C →→,共有3222524260C C C C ⋅⋅⋅=条最近路线;③沿着A H C →→,共有32345340C C C ⋅⋅=条最近路线;④沿着A P C →→,共有246415C C ⋅=条最近路线;故由点A 沿着图中的线段到达点C 的最近路线有60604015175+++=条;(3)由题意,要组成矩形则应从竖线中选出两条、横线中选出两条,可分为两种情况:①矩形的边不在CD 上,共有224690C C ⋅=个矩形;②矩形的一条边在CD 上,共有124312C C ⋅=个矩形;故图中共有9012102+=个矩形.1.(2020·海南省高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种【答案】C【解析】首先从6名同学中选1名去甲场馆,方法数有16C ;然后从其余5名同学中选2名去乙场馆,方法数有25C ;最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C2.(2021·全国·高考真题(理))将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A .60种B .120种C .240种D .480种【答案】C【分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志练真题愿者中任选2人,组成一个小组,有25C 种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有254!240C ⨯=种不同的分配方案,故选:C.3.(2018·浙江高考真题)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)【答案】1260.【解析】若不取零,则排列数为224534C C A ,若取零,则排列数为21135333C C A A ,因此一共有22421135345333C C A C C A A 1260+=个没有重复数字的四位数.4.(2017·天津高考真题(理))用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)【答案】1080【解析】41345454A C C A 1080+= 5.(2015·上海高考真题(理))在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示).【答案】120【解析】①1男4女,1436C C 45=种;②2男3女,2336C C 60=种;③3男2女,3236C C 15=种;∴一共有456015120++=种.故答案为:120.6.(2020·全国高考真题(理))4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】36【解析】 4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学∴先取2名同学看作一组,选法有:246C =现在可看成是3组同学分配到3个小区,分法有:336A =⨯=种根据分步乘法原理,可得不同的安排方法6636故答案为:36.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则此时有 24 种不同的着舰方法; ②、丙机不是最先着舰, 此时需要在出甲、乙、丙之外的 2 架飞机中任选 1 架,作为最先着舰的飞 机, 将剩下的 4 架飞机全排列,丙机在甲机之前和丙机在甲机之后的数目相同,
则此时有 ×C21A44=24 种情况, 则此时有 24 种不同的着舰方法; 则一共有 24+24=48 种不同的着舰方法; 故选:C. 6.某学校需要把 6 名实习老师安排到 A,B,C 三个班级去听课,每个班级 安排 2 名老师,已知甲不能安排到 A 班,乙和丙不能安排到同一班级,则 安排方案的种数有( ) A.24 B.36 C.48 D.72 【解答】解:根据题意,分 2 种情况讨论: ①、甲、乙、丙三人分在三个不同的班级, 甲可以分在 B、C 班,有 2 种安排方法,将乙、丙全排列,分在其他 2 个班 级,有 A22=2 种安排方法, 剩余的 3 人,全排列,安排在三个班级,有 A33=6 种安排方法, 则此时有 2×2×6=24 种安排方法; ②,甲和乙、丙中的 1 人,分在同一个班级, 在乙、丙中选出 1 人,和甲一起分在 B 班或 C 班,有 2×2=4 种情况, 剩余 4 人,平均分成 2 组,有 C42=3 种分组方法, 再将 2 组全排列,对应剩下的 2 个班级,有 A22=2 种安排方法, 则此时有 4×3×2=24 种安排方法; 则一共有 24+24=48 种安排方法; 故选:C. 7.上海某小学组织 6 个年级的学生外出参观包括甲博物馆在内的 6 个博物 馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的
8.从 7 名男队员和 5 名女队员中选出 4 人进行乒乓球男女混合双打,不同 的组队种数是( )
A.
B.
C.
D.
【解答】解:根据题意,分 2 步分析: 首先从 7 名男队员中选出 2 名男队员,5 名女队员中 2 名女队员,有 C72•C52 种; 再对选出的 4 人进行分组,进行混双比赛,有 2 种方法; 则不同的组队种数有 2C72•C52 种; 故选:C. 9.甲、乙、丙等 6 个人排成一排照相,且甲、乙不在丙的同侧,则不同的 排法共有( ) A.480 B.240 C.120 D.360 【解答】解:根据题意,设 6 人中除甲乙丙之外的三人为 A、B、C, 甲、乙、丙等 6 个人排成一排照相,若甲、乙不在丙的同侧,则甲乙在丙 的两侧, 先排甲、乙、丙三人,丙在中间,甲乙在两边,有 A22=2 种排法, 3 人排好后,有 4 个空位可用,在 4 个空位中任选 1 个,安排 A,有 C41=4 种情况, 4 人排好后,有 5 个空位可用,在 5 个空位中任选 1 个,安排 B,有 C51=5
有
×A22=6 种情况,
则一共有 6×5×6=180 种不同的安排方案; 故选:B. 4.若有 5 本不同的书,分给三位同学,每人至少一本,则不同的分法数是 ( ) A.120 B.150 C.240 D.300 【解答】解:根据题意,分 2 步进行分析: ①,将 5 本不同的书分成 3 组,
3
Байду номын сангаас 本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
方案有( ) A.A ×A 种 B.A ×54 种
C.C ×A 种 D.C ×54 种
【解答】解:根据题意,分 2 步进行分析: ①,在 6 个年级中任选 2 个,去参观甲博物馆,有 C62 种选法, ②,剩下 4 个年级中每个年级都可以在剩下的 5 个博物馆中任选 1 个参观, 都有 5 种选法, 则剩下 4 个年级有 5×5×5×5=54 种选法, 则一共有 C62×54 种方案; 故选:D.
若分成 1、1、3 的三组,有
=10 种分组方法;
若分成 1、2、2 的三组,有
=15 种分组方法;
则有 15+10=25 种分组方法; ②,将分好的三组全排列,对应三人,有 A33=6 种情况, 则有 25×6=150 种不同的分法; 故选:B. 5.我国的第一艘航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有 5 架
C.C ×A 种 D.C ×54 种
8.从 7 名男队员和 5 名女队员中选出 4 人进行乒乓球男女混合双打,不同 的组队种数是( )
A.
B.
C.
D.
9.甲、乙、丙等 6 个人排成一排照相,且甲、乙不在丙的同侧,则不同的 排法共有( ) A.480 B.240 C.120 D.360 10.用数字 0,1,2,3,4,5 组成没有重复数字的五位数,其中比 40000 大的偶数共有( ) A.144 个 B.120 个 C.96 个 D.72 个
“歼﹣15”飞机准备着舰,如果乙机不能最先着舰,而丙机必须在甲机之前着 舰(不一定相邻),那么不同的着舰方法种数为( ) A.24 B.36 C.48 D.96 【解答】解:根据题意,分 2 种情况讨论: ①、丙机最先着舰,此时只需将剩下的 4 架飞机全排列,有 A44=24 种情况,
2
本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
试卷第 2 页,总 2 页
本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
2018 年 04 月 14 日 910****3285 的高中数学组卷
参考答案与试题解析
一.选择题(共 10 小题) 1.在航天员进行一项太空实验中,要先后实施 6 个程序,其中程序 A 只能 出现在第一或最后一步,程序 B 和 C 在实施时必须相邻,问实验顺序的编 排方法共有( ) A.34 种 B.48 种 C.96 种 D.144 种 【解答】解:根据题意,程序 A 只能出现在第一步或最后一步, 则从第一个位置和最后一个位置选一个位置把 A 排列,有 A21=2 种结果, 又由程序 B 和 C 实施时必须相邻,把 B 和 C 看做一个元素, 同除 A 外的 3 个元素排列,注意 B 和 C 之间还有一个排列, 共有 A44A22=48 种结果, 根据分步计数原理知共有 2×48=96 种结果, 故选:C. 2.要排出某理科班一天中语文、数学、物理、英语、生物、化学 6 堂课的 课程表,要求语文课排在上午(前 4 节),生物课排在下午(后 2 节),不 同排法种数为( ) A.144 B.192 C.360 D.720 【解答】解:根据题意,分 2 步进行分析: ①,要求语文课排在上午(前 4 节),生物课排在下午(后 2 节), 则语文课有 4 种排法,生物课有 2 种排法, 故这两门课有 4×2=8 种排法; ②,将剩下的 4 门课全排列,安排在其他四节课位置,有 A44=24 种排法, 则共有 8×24=192 种排法, 故选:B. 3.福州西湖公园花展期间,安排 6 位志愿者到 4 个展区提供服务,要求 甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排 方案共有( )
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:________班级:________考号:________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
一.选择题(共 10 小题) 1.在航天员进行一项太空实验中,要先后实施 6 个程序,其中程序 A 只能 出现在第一或最后一步,程序 B 和 C 在实施时必须相邻,问实验顺序的编 排方法共有( ) A.34 种 B.48 种 C.96 种 D.144 种 2.要排出某理科班一天中语文、数学、物理、英语、生物、化学 6 堂课的 课程表,要求语文课排在上午(前 4 节),生物课排在下午(后 2 节),不 同排法种数为( ) A.144 B.192 C.360 D.720 3.福州西湖公园花展期间,安排 6 位志愿者到 4 个展区提供服务,要求 甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排 方案共有( ) A.90 种 B.180 种 C.270 种 D.360 种 4.若有 5 本不同的书,分给三位同学,每人至少一本,则不同的分法数是 ( ) A.120 B.150 C.240 D.300
1
本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
A.90 种 B.180 种 C.270 种 D.360 种 【解答】解:根据题意,分 3 步进行分析: ①,在 6 位志愿者中任选 1 个,安排到甲展区,有 C61=6 种情况, ②,在剩下的 5 个志愿者中任选 1 个,安排到乙展区,有 C51=5 种情况, ③,将剩下的 4 个志愿者平均分成 2 组,全排列后安排到剩下的 2 个展区,
绝密★启用前
2018 年 04 月 14 日 910****3285 的高中数学组卷
试卷副标题
考试范围:xxx;考试时间:100 分钟;命题人:xxx
题号
一
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
请点击修改第 I 卷的文字说明
评卷人 得 分
试卷第 1 页,总 2 页
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
5.我国的第一艘航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有 5 架 “歼﹣15”飞机准备着舰,如果乙机不能最先着舰,而丙机必须在甲机之前着 舰(不一定相邻),那么不同的着舰方法种数为( ) A.24 B.36 C.48 D.96 6.某学校需要把 6 名实习老师安排到 A,B,C 三个班级去听课,每个班级 安排 2 名老师,已知甲不能安排到 A 班,乙和丙不能安排到同一班级,则 安排方案的种数有( ) A.24 B.36 C.48 D.72 7.上海某小学组织 6 个年级的学生外出参观包括甲博物馆在内的 6 个博物 馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的 方案有( ) A.A ×A 种 B.A ×54 种