8高中数学知识点笔记_弧度制_西北工大附中理科学霸_2016高考状元笔记

合集下载

(完整word版)人教高中数学必修四 第一章 三角函数知识点归纳

(完整word版)人教高中数学必修四 第一章 三角函数知识点归纳

三角函数一、任意角、弧度制及任意角的三角函数1.任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角.⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角②按终边位置不同分为象限角和轴线角.角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z(2)终边与角α相同的角可写成α+k ·360°(k ∈Z ).终边与角α相同的角的集合为{}360,k k ββα=⋅+∈Z (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②弧度与角度的换算:360°=2π弧度;180°=π弧度.③半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα= ④若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为(r r =,那么角α的正弦、余弦、正切分别是:sin α=y r ,cos α=x r ,tan α=y x.(三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦)3.特殊角的三角函数值A.基础梳理1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号) (2)商数关系:sin αcos α=tan α. (3)倒数关系:1cot tan =⋅αα 2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos_α,απαtan )2tan(=+k 其中k ∈Z . 公式二:sin(π+α)=-sin_α,co s(π+α)=-cos_α,tan(π+α)=tan α. 公式三:sin(π-α)=sin α,cos(π-α)=-cos_α,()tan tan παα-=-. 公式四:sin(-α)=-sin_α,cos(-α)=cos_α,()tan tan αα-=-. 公式五:sin ⎝⎛⎭⎫π2-α=cos_α,cos ⎝⎛⎭⎫π2-α=sin α. 公式六:sin ⎝⎛⎭⎫π2+α=cos_α,cos ⎝⎛⎭⎫π2+α=-sin_α. 诱导公式可概括为k ·π2±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把α看成锐角....时,根据k ·π2±α在哪个象限判断原.三角..函数值的符号,最后作为结果符号.B.方法与要点 一个口诀1、诱导公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. (ααcos sin +、ααcos sin -、ααcos sin 三个式子知一可求二)(3)巧用“1”的变换:1=sin 2θ+cos 2θ= sin2π=tan π4 (4)齐次式化切法:已知k =αtan ,则nmk bak n m b a n m b a ++=++=++ααααααtan tan cos sin cos sin 三、三角函数的图像与性质学习目标:1会求三角函数的定义域、值域2会求三角函数的周期 :定义法,公式法,图像法(如x y sin =与x y cos =的周期是π)。

(完整word版)高考文科三角函数知识点总结,推荐文档

(完整word版)高考文科三角函数知识点总结,推荐文档

三角函数知识点1.角度制与弧度制的互化:,23600π= ,1800π=1rad =π180°≈57.30°=57°18ˊ. 1°=180π≈0.01745(rad ) 2.弧长及扇形面积公式弧长公式:r l .α= 扇形面积公式:S=r l .21α----是圆心角且为弧度制。

r-----是扇形半径3.任意角的三角函数设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α=r y 余弦cos α=r x 正切tan α=xy (2)各象限的符号:sin α cos α tan α4、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.5.同角三角函数的基本关系:(1)平方关系:s in 2α+ cos 2α=1。

(2)商数关系:ααcos sin =tan α(z k k ∈+≠,2ππα) 6.诱导公式:奇变偶不变,符号看象限()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.xy+O— —+x yO — ++— +y O— ++ —()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.注意:引入辅助角。

asin θ+bcos θ=22b a +sin (θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。

高中文科数学第三章 三角函数、解三角形

高中文科数学第三章  三角函数、解三角形

第三章⎪⎪⎪ 三角函数、解三角形第一节 任意角和弧度制及任意角的三角函数1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式3.1.若sin α<0且tan α>0,则α是( ) A .第一象限角 B.第二象限角 C .第三象限角 D .第四象限角答案:C2.(教材习题改编)3 900°是第________象限角,-1 000°是第________象限角. 答案:四 一3.(教材习题改编)已知半径为120 mm 的圆上,有一条弧的长是144 mm ,则该弧所对的圆心角的弧度数为________.答案:1.21.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况. 4.三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=yx ,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α =x r ,tan α=yx .[小题纠偏]1.下列说法正确的是( )A .三角形的内角必是第一、二象限角B .第一象限角必是锐角C .不相等的角终边一定不相同D .若β=α+k ·360°(k ∈Z),则α和β终边相同 答案:D2.若角α终边上有一点P (x,5),且cos α=x13(x ≠0),则sin α=________.答案:513考点一 角的集合表示及象限角的判定(基础送分型考点——自主练透)[题组练透]1.给出下列四个命题: ①-3π4是第二象限角;②4π3是第三角限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有( )A .1个B .2个C .3个D .4个解析:选C -3π4是第三象限角,故①错误;4π3=π+π3,从而4π3是第三象限角,故②正确;-400°=-360°-40°,从而③正确;-315°=-360°+45°,从而④正确.2.(易错题)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角解析:选C ∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z. 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.3.设集合M =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 4·180°+45°,k ∈Z ,那么( )A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅解析:选B 法一:由于M =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z ={…,-45°,45°,135°,225°,…},N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 4·180°+45°,k ∈Z ={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M ⊆N .法二:由于M 中,x =k2·180°+45°=k ·90°+45°=45°·(2k +1),2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N .4.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°有相同终边的角可表示为: β=45°+k ×360°(k ∈Z),则令-720°≤45°+k ×360°<0°,得-765°≤k ×360°<-45°,解得-765360≤k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°. 答案:-675°或-315°[谨记通法]1.终边在某直线上角的求法4步骤(1)数形结合,在平面直角坐标系中画出该直线; (2)按逆时针方向写出[0,2π)内的角;(3)再由终边相同角的表示方法写出满足条件角的集合; (4)求并集化简集合.2.确定kα,αk (k ∈N *)的终边位置3步骤(1)用终边相同角的形式表示出角α的范围; (2)再写出kα或αk 的范围;(3)然后根据k 的可能取值讨论确定kα或αk的终边所在位置,如“题组练透”第2题易错.考点二 扇形的弧长及面积公式(基础送分型考点——自主练透)[题组练透]1.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是( ) A .1 B .4 C .1或4 D .2或4解析:选C 设此扇形的半径为r ,弧长为l , 则⎩⎪⎨⎪⎧2r +l =6,12rl =2,解得⎩⎪⎨⎪⎧ r =1,l =4或⎩⎪⎨⎪⎧r =2,l =2. 从而α=l r =41=4或α=l r =22=1.2.(易错题)若扇形的圆心角是α=120°,弦长AB =12 cm ,则弧长l =________cm. 解析:设扇形的半径为r cm ,如图.由sin 60°=6r ,得r =4 3 cm , ∴l =|α|·r =2π3×43=833π cm. 答案:833π 3.已知扇形周长为40,当它的半径和圆心角分别取何值时,扇形的面积最大? 解:设圆心角是θ,半径是r ,则2r +rθ=40.又S =12θr 2=12r (40-2r )=r (20-r )=-(r -10)2+100≤100.当且仅当r =10时,S max =100,此时2×10+10θ=40,θ=2. 所以当r =10,θ=2时,扇形的面积最大.[谨记通法]弧度制下有关弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l =αr ,扇形的面积公式是S =12lr =12αr 2(其中l 是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量,如“题组练透”第2题.考点三 三角函数的定义(常考常新型考点——多角探明)[命题分析]任意角的三角函数(正弦、余弦、正切)的定义属于理解内容.在高考中多以选择题、填空题的形式出现.常见的命题角度有: (1)三角函数值的符号判定;(2)由角的终边上一点的P 的坐标求三角函数值; (3)由角的终边所在的直线方程求三角函数值.[题点全练]角度一: 三角函数值的符号判定 1.若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:选C 由sin αtan α<0可知sin α,tan α异号, 则α为第二或第三象限角. 由cos αtan α<0可知cos α,tan α异号, 则α为第三或第四象限角. 综上可知,α为第三象限角.角度二:由角的终边上一点P 的坐标求三角函数值2.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________.解析:因为A 点纵坐标y A =45,且A 点在第二象限,又因为圆O为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35.答案:-353.已知角α的终边上一点P (-3,m )(m ≠0),且sin α=2m4, 则m =________.解析:由题设知x =-3,y =m ,∴r 2=|OP |2=(-3)2+m 2(O 为原点),r =3+m 2. ∴sin α=m r =2m 4=m22,∴r =3+m 2=22, 即3+m 2=8,解得m =±5. 答案:±5角度三:由角的终边所在的直线方程求三角函数值4.已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值. 解:设α终边上任一点为P (-4a,3a ),当a >0时,r =5a ,sin α=35,cos α=-45,tan α=-34;当a <0时,r =-5a ,sin α=-35,cos α=45,tan α=-34.[方法归纳]应用三角函数定义的3种求法(1)已知角α终边上一点P 的坐标,可求角α的三角函数值.先求P 到原点的距离,再用三角函数的定义求解.(2)已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(3)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.一抓基础,多练小题做到眼疾手快1.若一扇形的圆心角为72°,半径为20 cm ,则扇形的面积为( ) A .40π cm 2 B .80π cm 2 C .40 cm 2D .80 cm 2解析:选B ∵72°=2π5,∴S 扇形=12αr 2=12×2π5×202=80π(c m 2). 2.已知点P (tan α,cos α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 因为点P 在第三象限,所以⎩⎪⎨⎪⎧tan α<0,cos α<0,所以角α的终边在第二象限.3.如图,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( )A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ)解析:选A 由三角函数定义知,点P 的横坐标x =cos θ,纵坐标y =sin θ.4.(2016·江西六校联考)点A (sin 2 015°,cos 2 015°)位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选C 因为sin 2 015°=sin(11×180°+35°) =-sin 35°<0,cos 2 015°=cos(11×180°+35°) =-cos 35°<0,所以点A (sin 2 015°,cos 2 015°)位于第三象限.5.(2016·福州一模)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tanα=( )A.43B.34C .-34D .-43解析:选D 因为α是第二象限角,所以cos α=15x <0,即x <0.又cos α=15x =x x 2+16.解得x =-3,所以tan α=4x =-43.二保高考,全练题型做到高考达标1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A.π3 B.π6 C .-π3D .-π6解析:选C 将表的分针拨快应按顺时针方向旋转,为负角. 故A ,B 不正确,又因为拨快10分钟,故应转过的角为圆周的16.即为-16×2π=-π3.2.(2016·南昌二中模拟)已知角α终边上一点P 的坐标是(2sin 2,-2cos 2),则sin α等于( )A .sin 2B .-sin 2C .cos 2D .-cos 2解析:选D 因为r =(2sin 2)2+(-2cos 2)2=2,由任意三角函数的定义,得sin α=y r =-cos 2.3.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α∈(0,π)的弧度数为( )A.π3B.π2C. 3D .2解析:选C 设圆半径为r ,则其内接正三角形的边长为3r ,所以3r =αr , ∴α= 3.4.(2015·潍坊二模)集合⎩⎨⎧⎭⎬⎫α⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选C 当k =2n (n ∈Z)时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z)时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样. 5.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35C.35D.45解析:选B 取终边上一点(a,2a )(a ≠0),根据任意角的三角函数定义,可得cos θ=±55,故 cos 2θ=2cos 2θ-1=-35.6.已知α是第二象限的角,则180°-α是第________象限的角.解析:由α是第二象限的角可得90°+k ·360°<α<180°+k ·360°(k ∈Z),则180°-(180°+k ·360°)<180°-α<180°-(90°+k ·360°),即-k ·360°<180°-α<90°-k ·360°(k ∈Z),所以180°-α是第一象限的角.答案:一7.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)8.已知角θ的顶点为坐标原点,始边为x 轴的非负半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________. 解析:因为sin θ=y 42+y 2=-255,所以y <0,且y 2=64,所以y =-8. 答案:-89.在(0,2π)内,使sin x >cos x 成立的x 的取值范围为____________________. 解析:如图所示,找出在(0,2π)内,使sin x =cos x 的x 值,sinπ4=cos π4=22,sin 5π4=cos 5π4=-22.根据三角函数线的变化规律标出满足题中条件的角x ∈⎝⎛⎭⎫π4,5π4.答案:⎝⎛⎭⎫π4,5π410.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB . 解:设扇形AOB 的半径为r ,弧长为l ,圆心角为α, (1)由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧ r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,∴α=l r =23或α=lr =6.(2)法一:∵2r +l =8, ∴S 扇=12lr =14l ·2r≤14⎝⎛⎭⎫l +2r 22=14×⎝⎛⎭⎫822=4, 当且仅当2r =l ,即α=lr =2时,扇形面积取得最大值4.∴圆心角α=2,弦长AB =2sin 1×2=4sin 1. 法二:∵2r +l =8,∴S 扇=12lr =12r (8-2r )=r (4-r )=-(r -2)2+4≤4,当且仅当r =2,即α=lr =2时,扇形面积取得最大值4.∴弦长AB =2sin 1×2=4sin 1. 三上台阶,自主选做志在冲刺名校1.若α是第三象限角,则下列各式中不成立的是( ) A .sin α+cos α<0 B .tan α-sin α<0 C .cos α-tan α<0D .tan αsin α<0解析:选B ∵α是第三象限角,∴sin α<0,cos α<0,tan α>0,则可排除 A ,C ,D.2.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B 由α=2k π-π5(k ∈Z)及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1. 3.已知sin α<0,tan α>0. (1)求α角的集合; (2)求α2终边所在的象限;(3)试判断 tan α2sin α2cos α2的符号.解:(1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0, 知α在第一、三象限,故α角在第三象限,其集合为⎩⎨⎧⎭⎬⎫α⎪⎪2k π+π<α<2k π+3π2,k ∈Z . (2)由2k π+π<α<2k π+3π2,k ∈Z ,得k π+π2<α2<k π+3π4,k ∈Z ,故α2终边在第二、四象限. (3)当α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2 sin α2 cos α2取正号;当α2在第四象限时, tan α2<0, sin α2<0, cos α2>0, 所以 tan α2sin α2cos α2也取正号.因此,tan α2sin α2cos α2取正号.第二节 同角三角函数的基本关系与诱导公式_1.同角三角函数的基本关系式 (1)平方关系 sin 2α+cos 2α=1; (2)商数关系 tan α=sin αcos α.2.诱导公式1.已知sin ⎝⎛⎭⎫5π2+α=15,那么cos α=( )A .-25B .-15C.15D.25解析:选C ∵sin ⎝⎛⎭⎫5π2+α=sin ⎝⎛⎭⎫π2+α=cos α, ∴cos α=15.2.若sin θcos θ=12,则tan θ+cos θsin θ的值是( )A .-2B .2C .±2D.12解析:选B tan θ+cos θsin θ=sin θcos θ+cos θsin θ=1cos θsin θ=2. 3.(教材习题改编)(1)sin ⎝⎛⎭⎫-31π4=________, (2)tan ⎝⎛⎭⎫-26π3=________. 答案:(1)22(2) 31.利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.2.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. 3.注意求值与化简后的结果一般要尽可能有理化、整式化. [小题纠偏]1.(2015·福建高考)若sin α=-513,且α为第四象限角,则tan α的值等于( ) A.125 B .-125 C.512D .-512解析:选D 因为α为第四象限的角, 故cos α=1-sin 2α=1-⎝⎛⎭⎫-5132=1213, 所以tan α=sin αcos α=-5131213=-512.2.若sin(3π+θ)=13,则sin θ=________.答案:-13考点一 三角函数的诱导公式(基础送分型考点——自主练透)[题组练透]1.sin 210°cos 120°的值为( ) A.14 B .-34C .-32D.34解析:选A sin 210°cos 120°=-sin 30°(-cos 60°)=12×12=14.2.已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}解析:选C 当k 为偶数时,A =sin αsin α+cos αcos α=2;k 为奇数时,A =-sin αsin α-cos αcos α=-2.3.已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫5π6+α=________. 解析:tan ⎝⎛⎭⎫5π6+α=tan ⎝⎛⎭⎫π-π6+α =tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α =-tan ⎝⎛⎭⎫π6-α=-33. 答案:-334.(易错题)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝⎛⎭⎫3π2+α-sin 2⎝⎛⎭⎫π2+α⎝⎛⎭⎫sin α≠-12,则f ⎝⎛⎭⎫-23π6=________.解析:∵f (α)=(-2sin α)(-cos α)+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α =cos α(1+2sin α)sin α(1+2sin α)=1tan α, ∴f ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-23π6=1tan ⎝⎛⎭⎫-4π+π6=1tan π6= 3. 答案: 3[谨记通法]1.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤也就是:“负化正,大化小,化到锐角就好了.” 2.利用诱导公式化简三角函数的要求 (1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值,如“题组练透”第4题.考点二 同角三角函数的基本关系(题点多变型考点——纵引横联)[典型母题]已知α是三角形的内角,且sin α+cos α=15.求tan α的值.[解] 法一: 联立方程⎩⎪⎨⎪⎧sin α+cos α=15,sin 2α+cos 2α=1,①②由①得cos α=15-sin α,将其代入②,整理得 25sin 2α-5sin α-12=0. ∵α是三角形的内角,∴⎩⎨⎧sin α=45,cos α=-35,同角三角函数基本关系式的应用技巧[越变越明][变式一] 保持母题条件不变, 求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值. 解:由母题可知: tan α=-43.(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2 =-43-45×⎝⎛⎭⎫-43+2=87.(2)sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan α1+tan 2α=169-831+169=-825. [变式二] 若母题条件变为“sin α+3cos α3cos α-sin α=5”, 求tan α的值.解:法一:由sin α+3cos α3cos α-sin α=5, 得tan α+33-tan α=5,即tan α=2.法二:由sin α+3cos α3cos α-sin α=5,得sin α+3cos α=15cos α-5sin α,∴6sin α=12cos α,即tan α=2.[变式三] 若母题中的条件和结论互换:已知α是三角形的内角,且tan α=-13, 求 sinα+cos α的值.解:由tan α=-13,得sin α= -13cos α,将其代入 sin 2α+cos 2α=1,得109cos 2α=1,∴cos 2α=910,易知cos α<0, ∴cos α=-31010, sin α=1010,故 sin α+cos α=-105.1.三角形中求值问题,首先明确角的范围,才能求出角的值或三角函数值.2.三角形中常用的角的变形有:A +B =π-C,2A +2B =2π-2C ,A 2+B 2+C 2=π2等,于是可得sin(A +B )=sin C ,cos ⎝⎛⎭⎫A +B 2=sin C2等.一抓基础,多练小题做到眼疾手快1.若α∈⎝⎛⎭⎫-π2,π2,sin α=-35,则cos(-α)=( ) A .-45B.45C.35D .-35解析:选B 因为α∈⎝⎛⎭⎫-π2,π2,sin α=-35,所以cos α=45,即cos(-α)=45. 2.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3C.π6D.π3解析:选D ∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ= 3.∵|θ|<π2,∴θ=π3.3.已知sin ⎝⎛⎭⎫α-π4=13,则cos ⎝⎛⎭⎫π4+α=( ) A.223B .-223C.13D .-13[破译玄机]解析:选D ∵cos ⎝⎛⎭⎫π4+α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α =sin ⎝⎛⎭⎫π4-α=-sin ⎝⎛⎭⎫α-π4=-13. 4.已知α∈⎝⎛⎭⎫π2,π,sin α=45,则tan α=________. 解析:∵α∈⎝⎛⎭⎫π2,π,∴cos α=-1-sin 2α=-35, ∴tan α=sin αcos α=-43.答案:-435.如果sin(π+A )=12,那么cos ⎝⎛⎭⎫3π2-A 的值是________. 解析:∵sin(π+A )=12,∴-sin A =12.∴cos ⎝⎛⎭⎫3π2-A =-sin A =12. 答案:12二保高考,全练题型做到高考达标1.已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中必定成立的是( ) A .sin θ<0,cos θ>0 B .sin θ>0,cos θ<0 C .sin θ>0,cos θ>0D .sin θ<0,cos θ<0解析:选B ∵sin(θ+π)<0,∴-sin θ<0,sin θ>0. ∵cos(θ-π)>0,∴-cos θ>0,cos θ<0.2.若sin(π-α)=-2sin ⎝⎛⎭⎫π2+α,则sin α·cos α的值等于( ) A .-25B .-15C.25或-25D.25解析:选A 由sin(π-α)=-2sin ⎝⎛⎭⎫π2+α,可得sin α=-2cos α,则tan α=-2,sin α·cos α=tan α1+tan 2α=-25. 3.(2016·江西五校联考)cos 350°-2sin 160°sin (-190°)=( )A .- 3B .-32C.32D. 3解析:选D 原式=cos (360°-10°)-2sin (180°-20°)-sin (180°+10°)=cos 10°-2sin (30°-10°)-(-sin 10°)=cos 10°-2⎝⎛⎭⎫12cos 10°-32sin 10°sin 10°= 3.4.已知f (α)=sin (π-α)cos (2π-α)cos (-π-α)tan α,则f ⎝⎛⎭⎫-31π3的值为( ) A.12 B .-13C .-12D.13解析:选C ∵f (α)=sin α·cos α-cos αtan α=-cos α,∴f ⎝⎛⎭⎫-31π3=-cos ⎝⎛⎭⎫-31π3=-cos ⎝⎛⎭⎫10π+π3 =-cos π3=-12.5.已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A .-32B.32C .-34D.34解析:选B ∵5π4<α<3π2,∴cos α<0,sin α<0且|cos α|<|sin α|, ∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32. 6.化简:sin ⎝⎛⎭⎫π2+α·cos ⎝⎛⎭⎫π2-αcos (π+α)+sin (π-α)·cos ⎝⎛⎭⎫π2+αsin (π+α)=________.解析:原式=cos α·sin α-cos α+sin α(-sin α)-sin α=-sin α+sin α=0. 答案:07.sin 4π3·cos 5π6·tan ⎝⎛⎭⎫-4π3的值是________. 解析:原式=sin ⎝⎛⎭⎫π+π3·cos ⎝⎛⎭⎫π-π6·tan ⎝⎛⎭⎫-π-π3 =⎝⎛⎭⎫-sin π3·⎝⎛⎭⎫-cos π6·⎝⎛⎭⎫-tan π3 =⎝⎛⎭⎫-32×⎝⎛⎭⎫-32×(-3)=-334.答案:-3348.已知cos ⎝⎛⎭⎫π6-θ=a (|a |≤1),则cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ的值是________. 解析:由题意知,cos ⎝⎛⎭⎫5π6+θ=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-θ =-cos ⎝⎛⎭⎫π6-θ=-a . sin ⎝⎛⎭⎫2π3-θ=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-θ=cos ⎝⎛⎭⎫π6-θ=a , ∴cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ=0. 答案:09.求值:sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°. 解:原式=-sin 1 200°·cos 1 290°+cos 1 020°·(-sin 1 050°)+tan 945° =-sin 120°·cos 210°+cos 300°·(-sin 330°)+tan 225° =(-sin 60°)·(-cos 30°)+cos 60°·sin 30°+tan 45° =32×32+12×12+1=2. 10.已知sin(3π+α)=2sin ⎝⎛⎭⎫3π2+α,求下列各式的值: (1)sin α-4cos α5sin α+2cos α; (2)sin 2α+sin 2α.解:由已知得sin α=2cos α. (1)原式=2cos α-4cos α5×2cos α+2cos α=-16.(2)原式=sin 2α+2sin αcos αsin 2α+cos 2α=sin 2α+sin 2αsin 2α+14sin 2α=85.三上台阶,自主选做志在冲刺名校1.sin 21°+sin 22°+…+sin 290°=________.解析:sin 21°+sin 22°+…+sin 290°=sin 21°+sin 22°+…+sin 244°+sin 245°+cos 244°+cos 243°+…+cos 21°+sin 290°=(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 244°+cos 244°)+sin 245°+sin 290°=44+12+1=912.答案:9122.已知f (x )=cos 2(n π+x )·sin 2(n π-x )cos 2[(2n +1)π-x ](n ∈Z).(1)化简f (x )的表达式;(2)求f ⎝⎛⎭⎫π2 014+f ⎝⎛⎭⎫503π1 007的值. 解:(1)当n 为偶数,即n =2k (k ∈Z)时, f (x )=cos 2(2k π+x )·sin 2(2k π-x )cos 2[(2×2k +1)π-x ]=cos 2x ·sin 2(-x )cos 2(π-x )=cos 2x ·(-sin x )2(-cos x )2=sin 2x ;当n 为奇数,即n =2k +1(k ∈Z)时, f (x )=cos 2[(2k +1)π+x ]·sin 2[(2k +1)π-x ]cos 2{[2×(2k +1)+1]π-x }=cos 2[2k π+(π+x )]·sin 2[2k π+(π-x )]cos 2[2×(2k +1)π+(π-x )]=cos 2(π+x )·sin 2(π-x )cos 2(π-x )=(-cos x )2sin 2x (-cos x )2=sin 2x , 综上得f (x )=sin 2x .(2)由(1)得f ⎝⎛⎭⎫π2 014+f ⎝⎛⎭⎫503π1 007 =sin 2π2 014+sin 21 006π2 014=sin 2π2 014+sin 2⎝⎛⎭⎫π2-π2 014 =sin 2π2 014+cos 2π2 014=1.第三节 三角函数的图象与性质1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z).[小题体验]1.下列函数中,最小正周期为π的奇函数是( ) A .y =cos 2x B .y =sin 2x C .y =tan 2x D .y =sin ⎝⎛⎭⎫2x -π2 答案:B2.(教材习题改编)函数y =4sin x ,x ∈[-π,π]的单调性是( ) A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎡⎦⎤-π2,π2上是增函数,在⎣⎡⎦⎤-π,-π2和⎣⎡⎦⎤π2,π上都是减函数 C .在[0,π]上是增函数,在[-π,0]上是减函数D .在⎣⎡⎦⎤π2,π和⎣⎡⎦⎤-π,-π2上是增函数,在⎣⎡⎦⎤-π2,π2上是减函数 答案:B3.(教材习题改编)函数y =-tan ⎝⎛⎭⎫x +π6+2的定义域为________________. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π+π3,k ∈Z1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,尽量化成ω>0时的情况. 3.三角函数存在多个单调区间时易错用“∪”联结. [小题纠偏]1.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22C.22D .0解析:选B 由已知x ∈⎣⎡⎦⎤0,π2, 得2x -π4∈⎣⎡⎦⎤-π4,3π4, 所以sin ⎝⎛⎭⎫2x -π4∈⎣⎡⎦⎤-22,1, 故函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π4上的最小值为-22.2.函数y =cos ⎝⎛⎭⎫π4-2x 的单调减区间为____________. 解析:由y =cos ⎝⎛⎭⎫π4-2x =cos ⎝⎛⎭⎫2x -π4得 2k π≤2x -π4≤2k π+π(k ∈Z),解得k π+π8≤x ≤k π+5π8(k ∈Z).所以函数的单调减区间为⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z). 答案:⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z)考点一 三角函数的定义域与值域(基础送分型考点——自主练透)[题组练透]1.函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( ) A .2-3 B .0 C .-1D .-1- 3解析:选A ∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴sin ⎝⎛⎭⎫π6x -π3∈⎣⎡⎦⎤-32,1. ∴y ∈[-3,2],∴y max +y min =2- 3. 2.(易错题)函数y =1tan x -1的定义域为__________________.解析:要使函数有意义,必须有⎩⎪⎨⎪⎧tan x -1≠0,x ≠π2+kx ,k ∈Z ,即⎩⎨⎧x ≠π4+k π,k ∈Z ,x ≠π2+k π,k ∈Z.故函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π4+k π且x ≠π2+k π,k ∈Z . 答案:⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠π4+k π且x ≠π2+k π,k ∈Z 3.函数y =lg(sin 2x )+9-x 2的定义域为______________.解析:由⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0,得⎩⎪⎨⎪⎧k π<x <k π+π2,k ∈Z ,-3≤x ≤3.∴-3≤x <-π2或0<x <π2.∴函数y =lg(sin 2x )+9-x 2的定义域为⎣⎡⎭⎫-3,-π2∪⎝⎛⎭⎫0,π2. 答案:⎣⎡⎭⎫-3,-π2∪⎝⎛⎭⎫0,π2 4.(易错题)求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. 解:令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22.∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54, ∴当t =12时,y max =54,当t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值为54,最小值为1-22. [谨记通法]1.三角函数定义域的2种求法(1)应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域,如“题组练透”第2题易忽视.(2)转化为求解简单的三角不等式求复杂函数的定义域. 2.三角函数最值或值域的3种求法(1)直接法:直接利用sin x 和cos x 的值域求解.(2)化一法:把所给三角函数化为y =A sin(ωx +φ)+k 的形式,由正弦函数单调性写出函数的值域.(3)换元法:把sin x 、cos x 、sin x cos x 或sin x ±cos x 换成t ,转化为二次函数,如“题组练透”第4题.考点二 三角函数的单调性(重点保分型考点——师生共研)[典例引领]写出下列函数的单调区间: (1)f (x )=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π]; (2)f (x )=|tan x |;(3)f (x )=cos ⎝⎛⎭⎫2x -π6,x ∈⎣⎡⎦⎤-π2,π2. 解:(1)由-π2+2k π≤x +π4≤π2+2k π,k ∈Z ,得-3π4+2k π≤x ≤π4+2k π,k ∈Z. 又x ∈[0,π],所以f (x )的单调递增区间为⎣⎡⎦⎤0,π4, 递减区间为⎣⎡⎦⎤π4,π. (2)观察图象可知,y =|tan x |的增区间是⎣⎡⎭⎫k π,k π+π2,k ∈Z ,减区间是⎝⎛⎦⎤k π-π2,k π, k ∈Z.(3)当2k π-π≤2x -π6≤2k π(k ∈Z),即k π-5π12≤x ≤k π+π12,k ∈Z ,函数f (x )是增函数.因此函数f (x )在⎣⎡⎦⎤-π2,π2上的单调递增区间是⎣⎡⎦⎤-5π12,π12,递减区间为⎣⎡⎦⎤-π2,-5π12,⎣⎡⎦⎤π12,π2.[由题悟法]求三角函数单调区间的2种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用基本三角函数的单调性列不等式求解.(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.[提醒] 求解三角函数的单调区间时若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域.[即时应用]1.函数f (x )=sin ⎝⎛⎭⎫-2x +π3的单调减区间为______. 解析:由已知函数为y =-sin ⎝⎛⎭⎫2x -π3,欲求函数的单调减区间,只需求y =sin ⎝⎛⎭⎫2x -π3的单调增区间即可.由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z.故所给函数的单调减区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z). 答案:⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z) 2.若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=________.解析:∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增, 在⎣⎡⎦⎤π3,π2上单调递减知,π2ω=π3,∴ω=32. 答案:32考点三 三角函数的奇偶性、周期性及对称性(常考常新型考点——多角探明)[命题分析]正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.常见的命题角度有: (1)三角函数的周期;(2)求三角函数的对称轴或对称中心; (3)三角函数对称性的应用.[题点全练]角度一:三角函数的周期1.函数y =1-2sin 2⎝⎛⎭⎫x -3π4是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数解析:选A y =1-2sin 2⎝⎛⎭⎫x -3π4=cos 2⎝⎛⎭⎫x -3π4=-sin 2x ,所以f (x )是最小正周期为π的奇函数.2.(2015·长沙一模)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.解析:由题意知,1<πk <2,即k <π<2k .又k ∈N ,所以k =2或k =3. 答案:2或3角度二:求三角函数的对称轴或对称中心3.(2015·太原模拟)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π,则函数f (x )的图象( )A .关于直线x =π4对称B .关于直线x =π8对称C .关于点⎝⎛⎭⎫π4,0对称D .关于点⎝⎛⎭⎫π8,0对称解析:选B ∵f (x )=sin ⎝⎛⎭⎫ωx +π4的最小正周期为π, ∴2πω=π,ω=2,∴f (x )=sin ⎝⎛⎭⎫2x +π4.当x =π4时,2x +π4=3π4, ∴A ,C 错误;当x =π8时,2x +π4=π2,∴B 正确,D 错误.角度三:三角函数对称性的应用4.(2015·西安八校联考)若函数y =cos ⎝⎛⎭⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为( )A .1B .2C .4D .8解析:选Bπω6+π6=k π+π2(k ∈Z)⇒ω=6k +2(k ∈Z)⇒ωmin =2.5.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝⎛⎭⎫16的值为( )A .-34B .-14C .-12D.34解析:选D 由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cos πx ,故f ⎝⎛⎭⎫16=12cos π6=34. [方法归纳]函数f (x )=A sin(ωx +φ)的奇偶性、周期性和对称性(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.一抓基础,多练小题做到眼疾手快 1.函数y = cos x -32的定义域为( ) A.⎣⎡⎦⎤-π6,π6 B.⎣⎡⎦⎤k π-π6,k π+π6(k ∈Z) C.⎣⎡⎦⎤2k π-π6,2k π+π6(k ∈Z) D .R解析:选C ∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z.2.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π,则f ⎝⎛⎭⎫π8=( )A .1 B.12C .-1D .-12解析:选A 由题设知2πω=π,所以ω=2,f (x )=sin ⎝⎛⎭⎫2x +π4,所以f ⎝⎛⎭⎫π8=sin ⎝⎛⎭⎫2×π8+π4=sin π2=1.3.(2016·石家庄一模)函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z) C.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z) D.⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z)得,k π2-π12<x <k π2+5π12(k ∈Z),所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z). 4.函数f (x )=sin(-2x )的单调增区间是____________. 解析:由f (x )=sin(-2x )=-sin 2x ,2k π+π2≤2x ≤2k π+3π2得k π+π4≤x ≤k π+3π4(k ∈Z).答案:⎣⎡⎦⎤k π+π4,k π+3π4(k ∈Z) 5.函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为______,此时x =______. 解析:函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为3+2=5,此时x +π4=π+2k π,即x =3π4+2k π(k ∈Z).答案:53π4+2k π(k ∈Z) 二保高考,全练题型做到高考达标1.若函数f (x )=-cos 2x ,则f (x )的一个递增区间为( )A.⎝⎛⎭⎫-π4,0 B.⎝⎛⎭⎫0,π2 C.⎝⎛⎭⎫π2,3π4 D.⎝⎛⎭⎫3π4,π解析:选B 由f (x )=-cos 2x 知递增区间为⎣⎡⎦⎤k π,k π+π2,k ∈Z ,故只有B 项满足. 2.(2015·河北五校联考)下列函数最小正周期为π且图象关于直线x =π3对称的函数是( )A .y =2sin ⎝⎛⎭⎫2x +π3B .y =2sin ⎝⎛⎭⎫2x -π6 C .y =2sin ⎝⎛⎭⎫x 2+π3D .y =2sin ⎝⎛⎭⎫2x -π3 解析:选B 由函数的最小正周期为π,可排除C.由函数图象关于直线x =π3对称知,该直线过函数图象的最高点或最低点,对于A ,因为sin ⎝⎛⎭⎫2×π3+π3=sin π=0,所以选项A 不正确.对于D ,sin ⎝⎛⎭⎫2×π3-π3=sin π3=32,所以选项D 不正确.对于B ,sin ⎝⎛⎭⎫2×π3-π6=sin π2=1,所以选项B 正确. 3.已知函数f (x )=-2sin(2x +φ)(|φ|<π), 若f ⎝⎛⎭⎫π8=-2,则f (x )的一个单调递增区间可以是( )A.⎣⎡⎦⎤-π8,3π8B.⎣⎡⎦⎤5π8,9π8 C.⎣⎡⎦⎤-3π8,π8 D.⎣⎡⎦⎤π8,5π8解析:选D ∵f ⎝⎛⎭⎫π8=-2, ∴-2sin ⎝⎛⎭⎫π4+φ=-2,sin ⎝⎛⎭⎫π4+φ=1. 又∵|φ|<π,∴φ=π4,∴f (x )=-2sin ⎝⎛⎭⎫2x +π4, 由2k π+π2≤2x +π4≤2k π+3π2,k ∈Z ,得k π+π8≤x ≤k π+5π8,k ∈Z.当k =0时,得π8≤x ≤5π8.4.若函数f (x )=sin ⎝⎛⎭⎫ωx +π6(ω>0)的图象的相邻两条对称轴之间的距离为π2,且该函数图象关于点(x 0,0)成中心对称,x 0∈⎣⎡⎦⎤0,π2,则x 0=( ) A.5π12 B.π4 C.π3D.π6解析:选A 由题意得T 2=π2,T =π,ω=2.又2x 0+π6=k π(k ∈Z),x 0=k π2-π12(k ∈Z),而x 0∈⎣⎡⎦⎤0,π2,所以x 0=5π12. 5.若函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,且|φ|<π2在区间⎣⎡⎦⎤π6,2π3上是单调减函数,且函数值从1减少到-1,则f ⎝⎛⎭⎫π4=( )A.12 B.22C.32D .1解析:选C 由题意得函数f (x )的周期T =2⎝⎛⎭⎫2π3-π6=π,所以ω=2,此时f (x )=sin(2x +φ),将点⎝⎛⎭⎫π6,1代入上式得sin ⎝⎛⎭⎫π3+φ=1⎝⎛⎭⎫|φ|<π2,所以φ=π6,所以f (x )=sin ⎝⎛⎭⎫2x +π6,于是f ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π2+π6=cos π6=32. 6.已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6的值为________. 解析:∵f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x , ∴x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴.∴f ⎝⎛⎭⎫π6=±2. 答案:2或-27.函数y =tan ⎝⎛⎭⎫2x +π4的图象与x 轴交点的坐标是________________. 解析:由2x +π4=k π(k ∈Z)得,x =k π2-π8(k ∈Z).∴函数y =tan ⎝⎛⎭⎫2x +π4的图象与x 轴交点的坐标是⎝⎛⎭⎫k π2-π8,0,k ∈Z. 答案:⎝⎛⎭⎫k π2-π8,0,k ∈Z8.已知x ∈(0,π],关于x 的方程2 sin ⎝⎛⎭⎫x +π3=a 有两个不同的实数解,则实数a 的取值范围为________.解析:令y 1=2sin ⎝⎛⎭⎫x +π3,x ∈(0,π],y 2=a ,作出y 1的图象如图所示.若2sin ⎝⎛⎭⎫x +π3=a 在(0,π]上有两个不同的实数解,则y 1与y 2应有两个不同的交点,所以3<a <2.答案:(3,2)9.已知f (x )=2sin ⎝⎛⎭⎫2x +π4. (1)求函数f (x )图象的对称轴方程; (2)求f (x )的单调增区间;(3)当x ∈⎣⎡⎦⎤π4,3π4时,求函数f (x )的最大值和最小值. 解:(1)f (x )=2sin ⎝⎛⎭⎫2x +π4, 令2x +π4=k π+π2,k ∈Z ,则x =k π2+π8,k ∈Z.∴函数f (x )图象的对称轴方程是x =k π2+π8,k ∈Z. (2)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,则k π-3π8≤x ≤k π+π8,k ∈Z.故f (x )的单调增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z. (3)当x ∈⎣⎡⎦⎤π4,3π4时,3π4≤2x +π4≤7π4, ∴-1≤sin ⎝⎛⎭⎫2x +π4≤22,∴-2≤f (x )≤1, ∴当x ∈⎣⎡⎦⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2. 10.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫0<φ<2π3的最小正周期为π.(1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝⎛⎭⎫π6,32,求f (x )的单调递增区间.解:∵f (x )的最小正周期为π,则T =2πω=π,∴ω=2. ∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ). ∴sin(2x +φ)=sin(-2x +φ), 将上式展开整理得sin 2x cos φ=0, 由已知上式对∀x ∈R 都成立, ∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点⎝⎛⎭⎫π6,32时,sin ⎝⎛⎭⎫2×π6+φ=32,即sin ⎝⎛⎭⎫π3+φ=32. 又∵0<φ<2π3,∴π3<π3+φ<π.∴π3+φ=2π3,φ=π3. ∴f (x )=sin ⎝⎛⎭⎫2x +π3. 令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z.∴f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12,k ∈Z. 三上台阶,自主选做志在冲刺名校1.已知函数f (x )=sin ⎝⎛⎭⎫2x +π6,其中x ∈⎣⎡⎦⎤-π6,α.当α=π3时,f (x )的值域是______;若f (x )的值域是⎣⎡⎦⎤-12,1,则a 的取值范围是______. 解析:若-π6≤x ≤π3,则-π6≤2x +π6≤5π6,此时-12≤sin ⎝⎛⎭⎫2x +π6≤1, 即f (x )的值域是⎣⎡⎦⎤-12,1. 若-π6≤x ≤α,则-π6≤2x +π6≤2α+π6.因为当2x +π6=-π6或2x +π6=7π6时,sin ⎝⎛⎭⎫2x +π6=-12,所以要使f (x )的值域是⎣⎡⎦⎤-12,1, 则π2≤2α+π6≤7π6,即π3≤2α≤π, 所以π6≤α≤π2,即α的取值范围是⎣⎡⎦⎤π6,π2. 答案:⎣⎡⎦⎤-12,1 ⎣⎡⎦⎤π6,π2 2.(2015·武汉调研)已知函数f (x )=a ⎝⎛⎭⎫2cos 2x2+sin x +b . (1)若a =-1,求函数f (x )的单调增区间;(2)若x ∈[0,π]时,函数f (x )的值域是[5,8],求a ,b 的值. 解:f (x )=a (1+cos x +sin x )+b =2a sin ⎝⎛⎭⎫x +π4+a +b . (1)当a =-1时,f (x )=-2sin ⎝⎛⎭⎫x +π4+b -1, 由2k π+π2≤x +π4≤2k π+3π2(k ∈Z),得2k π+π4≤x ≤2k π+5π4(k ∈Z),∴f (x )的单调增区间为⎣⎡⎦⎤2k π+π4,2k π+5π4,k ∈Z. (2)∵0≤x ≤π, ∴π4≤x +π4≤5π4, ∴-22≤sin ⎝⎛⎭⎫x +π4≤1,依题意知a ≠0. ①当a >0时,⎩⎨⎧ 2a +a +b =8,b =5,∴a =32-3,b =5.②当a <0时,⎩⎨⎧b =8,2a +a +b =5.∴a =3-32,b =8.综上所述,a =32-3,b =5或a =3-32,b =8.第四节函数y =A sin(ωx +φ)的图象及三角函数模型的简单应用1.y =A sin(ωx +φ)的有关概念用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示:[小题体验]1.若函数y =sin(ωx +φ)(ω>0)的部分图象如图,则ω=( ) A .5 B .4 C .3 D .2答案:B2.(教材习题改编)函数y =23sin ⎝⎛⎭⎫12x -π4的振幅为________,周期为________,初相为________.答案:23 4π -π4。

完整版高考三角函数总结复习笔记整理

完整版高考三角函数总结复习笔记整理

三角函数一随意角的观点与弧度制1、特别命名的角的定义:(1)正角,负角,零角:见上文。

(2)象限角:角的终边落在象限内的角,依据角终边所在的象限把象限角分为:第一象限角、第二象限角等(3)轴线角:角的终边落在座标轴上的角终边在 x 轴上的角的会合:| k 180 , k Z终边在 y 轴上的角的会合:| k 180 90 , k Z终边在座标轴上的角的会合:| k 90 , k Z(4) 终边相同的角:与终边相同的角x 2k(5) 与终边反向的角:x (2 k 1)终边在 y=x 轴上的角的会合:| k 180 45 , k Z终边在 y x 轴上的角的会合:| k 180 45 , k Z(6)若角与角的终边在一条直线上,则角与角的关系:180 k(7) 成特别关系的两角若角与角的终边对于 x 轴对称,则角与角的关系:360 k 若角与角的终边对于 y 轴对称,则角与角的关系:360 k 180若角与角的终边相互垂直,则角与角的关系:360 k 90注: (1)角的会合表示形式不独一.(2)终边相同的角不必定相等,相等的角终边必定相同.(二)弧度制l1、弧度制的定义:R2、角度与弧度的换算公式:360 °=2180 °=1° =0.01745 1=57.30 ° =57 ° 18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.一个式子中不可以角度,弧度混用 .二随意角三角函数(一)三角函数的定义1、随意角的三角函数定义正弦 sin y x,正切 tany x2、三角函数的定义域:, 余弦 cos ,余切 cotyr r x三角函数定义域f ( x) sinx x | x Rf ( x) cosx x | x Rf ( x) tanx x | xR且x k1Z, k2f ( x) cotx x | xR且x k , k Zf ( x) secx x | xR且x k1Z, k2f ( x) cscx x | xR且x k , k Z(二)单位圆与三角函数线1、单位圆的三角函数线定义如图 (1)PM 表示角的正弦值,叫做正弦线。

高中数学必修4三角函数知识点归纳总结【经典】

高中数学必修4三角函数知识点归纳总结【经典】

《三角函数》【知识网络】一、任意角的概念与弧度制1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角2、同终边的角可表示为{}()360k k Z ααβ︒=+∈gx 轴上角:{}()180k k Z αα=∈o gy 轴上角:{}()90180k k Z αα=+∈o o g3、第一象限角:{}()036090360k k k Z αα︒︒+<<+∈o g g第二象限角:{}()90360180360k k k Z αα︒︒+<<+∈o o g g第三象限角:{}()180360270360k k k Z αα︒︒+<<+∈oo g g第四象限角:{}()270360360360k k k Z αα︒︒+<<+∈oo g g4、区分第一象限角、锐角以及小于90o的角 第一象限角:{}()036090360k k k Z αα︒︒+<<+∈o g g锐角:{}090αα<<o小于90o的角:{}90αα<o5、若α为第二象限角,那么2α为第几象限角ππαππk k 222+≤≤+ππαππk k +≤≤+224,24,0παπ≤≤=k ,2345,1παπ≤≤=k所以2α在第一、三象限6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad .7、角度与弧度的转化:01745.01801≈=︒π815730.571801'︒=︒≈︒=π8、角度与弧度对应表:9、弧长与面积计算公式 弧长:l R α=⨯;面积:21122S l R R α=⨯=⨯,注意:这里的α均为弧度制.二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan yxα= 其中(),x y 为角α终边上任意点坐标,r =2、三角函数值对应表:3、三角函数在各象限中的符号口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”)sin α tan α cos α 第一象限:0,0.>>y x sin >0,cos >0,tan >0, 第二象限:0,0.><y x sin >0,cos <0,tan <0, 第三象限:0,0.<<y x sin <0,cos<0,tan>0,第四象限:0,0.<>y x sin <0,cos >0,tan <0,4、三角函数线设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与P (,)x y , 过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向 延长线交于点T.由四个图看出:o x yM TP Aox yM TP AxyoMTPAx yoMT PA (Ⅰ)(Ⅲ)当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====, cos 1x xx OM r α====,tan y MP AT AT x OM OAα====. 我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。

北师大高中数学必修二知识点汇总

北师大高中数学必修二知识点汇总

北师大高中数学必修二知识点汇总一•三角函数角度与弧度制一个圆,弧长和半径相等时所对应的角度是1弧度•弧度和角度的换算关系:弧度*180/(2*町=角度诱导公式常用的诱导公式有以下几组:公式一:设a为任意角,终边相同的角的同一三角函数的值相等:sin(2kn+a)=sinacos(2kn+a)=cosatan(2kn+a)=tanacot(2kn+a)=cota公式二:设a为任意角,n+a的三角函数值与a的三角函数值之间的关系:sin(n+a)=—sinacos(n+a)=—cosatan(n+a)=tanacot(n+a)=cota公式三:任意角a与-a的三角函数值之间的关系:sin(—a)=—sinacos(—a)=cosatan(—a)=—tanacot(—a)=—cota公式四:利用公式二和公式三可以得到n-a与a的三角函数值之间的关系:sin(n—a)=sinacos(n—a)=—cosatan(n—a)=—tanacot(n—a)=—cota公式五:利用公式一和公式三可以得到2n-a与a的三角函数值之间的关系:sin(2n—a)=—sin acos(2n—a)=cosatan(2n—a)=—tana3cot(2n—a)=—cota公式六:n/2士a及3n/2士a与a的三角函数值之间的关系:sin(n/2+a)=cosacos(n/2+a)=—sinatan(n/2+a)=—cotacot(n/2+a)=—tanasin(n/2—a)=cosa cos(n/2—a)=sina tan(n/2—a)=cota cot(n/2—a)=tanasin(3n/2+a)c os(3n/2+a)ta n(3n/2+a)cot (3n/2+a) =—cosa =s ina =—cota =—tanasin(3n/2—a) =—cosacos(3n/2—a) =—sinatan(3n/2—a) =cotacot(3n/2—a) =tana(以上k W Z)函数类型第一象限第二象限第三象限第四象限正弦++————余弦+————+正切+——+——余切+—+—三角函数的图像与性质1.正弦函数正弦函数的性质:解析式:y=sinx正弦函数的图像波形图像(由单位圆投影到坐标系得出)定义域:R(实数)值域:[-1,1]最值:①最大值:当x=(n/2)+2kn时,y(max)=l②最小值:当x=-(n/2)+2kn 时,y(min)=-l零值点:(kn,0)对称性:1)对称轴:关于直线x=(n/2)+kn对称2)中心对称:关于点(kn,O)对称周期:2n奇偶性:奇函数单调性:在[-(n/2)+2kn,(n/2)+2kn]上是增函数,在[(n/2)+2kn,(3n/2)+2kn]上是减函数2余弦函数余弦函数的性质:余弦函数图像:波形图像定义域:R值域:[-1,1]最值:1)当x=2kn时,y(max)=12)当x=2kn+n时,y(min)=-1零值点:(n/2+kn,0)对称性:1)对称轴:关于直线x=kn对称2)中心对称:关于点(n/2+kn,0)对称周期:2n奇偶性:偶函数单调性:在[2kn-n,2kn]上是增函数在[2kn,2kn+n]上是减函数3正切函数正切函数的性质:正切函数的图像:定义域:{x|x主(n/2)+kn,k^Z}值域:R最值:无最大值与最小值零值点:(kn,0)对称性:轴对称:无对称轴中心对称:关于点(kn,0)对称周期:n奇偶性:奇函数单调性:在(-n/2+kn,n/2+kn)上都是增函数二•平面向量向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。

北师大版 高考数学总复习 三角函数-弧度制 名师点悟+易错盘点

北师大版 高考数学总复习 三角函数-弧度制 名师点悟+易错盘点


预 习
-56π=-56π×18π0°=-150°;


315°=315×1π80=74π;
时 作 业

导 学
210°=210×1π80=76π.
第26页
第一章 §3
北师大版 ·数学 ·必修4
(2)①由于 α 的弧度为:
自 主 预 习
1π80×1 690=16198π=8π+2158π 2158π∈[0,2π,
第5页
第一章 §3
北师大版 ·数学 ·必修4
问题探究 1:(1)单位长度的弧长所对的圆心角是 1 弧度吗?
自 主
(2)弧度制与角度制有哪些区别与联系?


提示:(1)不是.只有在以单位长度为半径的圆中,单位长度
的弧所对的圆心角才是 1 弧度的角.
课 时






第6页
第一章 §3
北师大版 ·数学 ·必修4
课 时
要 点
的弧度数的绝对值满足 |α|=rl
.这里,α 的正负由角 α 的终边的
作 业

学 旋转方向决定.
第9页
第一章 §3
北师大版 ·数学 ·必修4
问题探究 2:对于任意角的弧度值与实数集之间存在怎样的
自 主
对应关系?


提示:正角的弧度数是一个正数,负角的弧度数是一个负数,
零角的弧度数是 0.这样在直角坐标系下,角与实数间就建立一种
1.了解任意角的弧度制,能正确


地进行弧度和角度的互化.
重点:理解弧度制的
2.结合角度与弧度的换算进行算法 意义,正确进行弧度与角

高考数学一轮复习任意角和弧度制及任意角的三角函数41页文档

高考数学一轮复习任意角和弧度制及任意角的三角函数41页文档
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·函数
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗

必修四_任意角与弧度制__知识点汇总

必修四_任意角与弧度制__知识点汇总

美博教育任意角与弧度制知识梳理:一、任意角和弧度制1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。

2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。

可以将角分为正角、零角和负角。

正角:按照逆时针方向转定的角。

零角:没有发生任何旋转的角。

负角:按照顺时针方向旋转的角。

3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。

角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。

4、常用的角的集合表示方法1、终边相同的角:(1)终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和。

(2)所有与?终边相同的角连同?在内可以构成一个集合{}Z k k S ∈⋅+==,360|οαββ即:任何一个与角?终边相同的角,都可以表示成角?与整数个周角的和注意:1、Z ∈k2、α是任意角3、终边相同的角不一定相等,但相等的角的终边一定相同。

终边相同的角有无数个,它们相差360°的整数倍。

4、一般的,终边相同的角的表达形式不唯一。

例1、(1)若θ角的终边与58π角的终边相同,则在[]π2,0上终边与4θ的角终边相同的角为 。

若θ角的终边与8π/5的终边相同则有:θ=2kπ+8π/5 (k 为整数)所以有:θ/4=(2kπ+8π/5)/4=kπ/2+2π/5当:0≤kπ/2+2π/5≤2π有:k=0 时,有2π/5 与θ/4角的终边相同的角k=1 时,有9π/10 与θ/4角的终边相同的角(2)若βα和是终边相同的角。

那么βα-在例2、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角:(1)ο210-; (2)731484'-ο.例3、求θ,使θ与ο900-角的终边相同,且[]οο1260180,-∈θ.2、终边在坐标轴上的点:终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|οββ终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|οοββ终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90|οββ3、终边共线且反向的角:终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180|οοββ终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180|οοββ4、终边互相对称的角:若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k 若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk例1、若θα+⋅=ο360k ,),(360Z m k m ∈-⋅=θβο则角α与角β的中变得位置关系是( )。

2019高二数学下册任意角和弧度制知识点总结语文

2019高二数学下册任意角和弧度制知识点总结语文

高二数学下册任意角和弧度制知识点总结在人类历史发展和社会生活中,数学也发挥着不可替代的作用,小编准备了高二数学下册任意角和弧度制知识点,具体请看以下内容。

一、任意角:初中我们研究过锐角(0~90)的三角函数值,了解钝角(大于90,小于180的角),平角(180)周角(360)的概念。

但实际生活中会遇到超过360的角,例如:体操转体720等,这需要把角的概念进行推广,而原来角的定义(从一点出发的两条射线所构成的图形)显然不能完成推广的任务,因此对角需要重新定义。

角:平面内一条射线绕着顶点(O),从开始位置(OA)旋到结束位置(OB)所构成的图形。

OA称为角的始边,OB称为角的终边。

规定:射线逆时针旋转而成的角为正角,顺时针旋转而成的角为负角,射线没有旋转时称为零角。

角进行重新定义后,角的分类也要重新进行,而这次分类是通过直角坐标系来完成的。

我们把角的顶点放在坐标原点,角的始边放在x轴的正半轴上,根据终边的位置,把角分成象限角与轴上角两类。

即终边落在象限内(四个)称为象限角;终边落在轴上(四个)称为轴上角。

因此今后我们考虑角的问题时,只考虑角的终边位置即可。

页 1 第终边相同角的表示方法:由于终边相同的角之间都相差360的整数倍,因此与角终边相同的角的集合为:{x|x=k360+, kZ}。

其中可以是与角终边相同的任意一个角;一般情况下,取0到360之间的角。

注意:0到360是指:0360。

二、弧度制:我们前面把角推广到任意角。

实际上是解决了三角函数中定义域的问题。

应该说我们所应用的角度数与实数是可以建立一一对应关系的。

但如果就用角度数作为自变量的取值,会有一些不方便的地方(尤其是作图中),因此引入了弧度制。

今后在表示角时,如无特殊规定,用角度制、用弧度制表示均可,但一定不要混用。

为了给三角函数的教学作准备,建议大家尽量用弧度制表示角。

高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高二数学下册任意角和弧度制知识点,希望大家喜欢。

北京高考理科状元高中数学笔记02

北京高考理科状元高中数学笔记02

导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君导辅君君。

高考数学任意角和弧度制及任意角的三角函数

高考数学任意角和弧度制及任意角的三角函数

高考数学任意角和弧度制及任意角的三角函数
2021高考各科温习资料
2021年高三开学曾经有一段时间了,高三的同窗们是不是曾经投入了紧张的高考一轮温习中,数学网高考频道从高三开学季末尾为大家系列预备了2021年高考温习,2021年高考一轮温习,2021年高考二轮温习,2021年高考三轮温习都将继续系统的为大家推出。

1. 角的概念
(1)恣意角:①定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.
(2)一切与角α终边相反的角,连同角α在内,构成的角的集合是S={β|β=k·360°+α,k∈Z}.
(3)象限角:①定义:使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;假设角的终边在坐标轴上,那么这个角不属于任何一个象限.②分类:角按终边位置不同分为象限角和轴线角.
2. 弧度制
(1)定义:把长度等于半径长的弧所对的圆心角叫作1弧度的角,正角的弧度数是正数,负角的弧度数是正数,零角的弧度数是零.
(2)用〝弧度〞做单位来度量角的制度叫做弧度制.|α|=,l 是以角α作为圆心角时所对圆弧的长,r为半径.比值与所取的r的大小有关,仅与角的大小有关.
(3)角度制和弧度制的互化:180°=π rad,1°= rad,1 rad=°.
(4)扇形的弧长公式:l=|α|·r,扇形的面积公式:
S=lr=|α|·r2.。

任意角与弧度制、三角函数的概念、诱导公式(知识精讲)-2019-2020高一数学(人教版必修)(解析版)

任意角与弧度制、三角函数的概念、诱导公式(知识精讲)-2019-2020高一数学(人教版必修)(解析版)

专题十四任意角与弧度制、三角函数的概念、诱导公式知识精讲一知识结构图二.学法指导1.象限角的判定方法:(1)在坐标系中画出相应的角,观察终边的位置,确定象限.(2)第一步,将α写成α=k·360°+β(k∈Z,0°≤β<360°)的形式;第二步,判断β的终边所在的象限;第三步,根据β的终边所在的象限,即可确定α的终边所在的象限.2. 所有与角α终边相同的角,连同角α在内可以用式子k·360°+α,k∈Z表示,在运用时需注意以下四点:(1)k是整数,这个条件不能漏掉.(2)α是任意角.(3)k·360°与α之间用“+”连接,如k·360°-30°应看成k·360°+(-30°),k∈Z.(4)终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无数个,它们相差周角的整数倍.3.角度制与弧度制互化的关键与方法(1)关键:抓住互化公式π rad =180°是关键;(2)方法:度数×π180=弧度数;弧度数×⎝⎛⎭⎫180π°=度数; (3)角度化弧度时,应先将分、秒化成度,再化成弧度. 4.弧度制下解决扇形相关问题的步骤:(1)明确弧长公式和扇形的面积公式:l =|α|r ,S =12αr 2和S =12lr .(这里α必须是弧度制下的角)(2)分析题目的已知量和待求量,灵活选择公式. (3)根据条件列方程(组)或建立目标函数求解. 5.由角α终边上任意一点的坐标求其三角函数值的步骤:(1)已知角α的终边在直线上时,常用的解题方法有以下两种:①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.②在α的终边上任选一点P (x ,y ),P 到原点的距离为r (r >0).则sin α=y r ,cos α=xr .已知α的终边求α的三角函数时,用这几个公式更方便.(2)当角α的终边上点的坐标以参数形式给出时,一定注意对字母正、负的辨别,若正、负未定,则需分类讨论.6.判断三角函数值在各象限符号的攻略:(1)基础:准确确定三角函数值中各角所在象限; (2)关键:准确记忆三角函数在各象限的符号;(3)注意:用弧度制给出的角常常不写单位,不要误认为角度导致象限判断错误. 7、利用诱导公式一进行化简求值的步骤(1)定形:将已知的任意角写成2k π+α的形式,其中α∈[0,2π),k ∈Z . (2)转化:根据诱导公式,转化为求角α的某个三角函数值. ()求值:若角为特殊角,可直接求出该角的三角函数值.8、利用同角三角函数的基本关系解决给值求值问题的方法:(1)已知角α的某一种三角函数值,求角α的其余三角函数值,要注意公式的合理选择,一般是先选用平方关系,再用商数关系.(2)若角α所在的象限已经确定,求另两种三角函数值时,只有一组结果;若角α所在的象限不确定,应分类讨论,一般有两组结果.9、sin α+cos α,sin α-cos α,sin αcos α三个式子中,已知其中一个,可以求其他两个,即“知一求二”,它们之间的关系是:(sin α±cos α)2=1±2sin αcos α.10.已知tan α=m,求关于sin α,cos α的齐次式的值解决这类问题需注意以下两点:(1)一定是关于sin α,cos α的齐次式(或能化为齐次式)的三角函数式;(2)因为cos α≠0,所以可除以cos α,这样可将被求式化为关于tan α的表示式,然后代入tan α=m的值,从而完成被求式的求值.11、三角函数式化简的常用方法(1)化切为弦,即把正切函数都化为正、余弦函数,从而减少函数名称,达到化简的目的.(2)对于含有根号的,常把根号里面的部分化成完全平方式,然后去根号达到化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解,或构造sin2α+cos2α=1,以降低函数次数,达到化简的目的.12.证明恒等式常用的思路是:(1)从一边证到另一边,一般由繁到简;(2)左右开弓,即证左边、右边都等于第三者;(3)比较法(作差,作比法).13.技巧感悟:朝目标奔.常用的技巧有:(1)巧用“1”的代换;(2)化切为弦;(3)多项式运算技巧的应用(分解因式).14.利用诱导公式求任意角三角函数值的步骤(1)“负化正”——用公式一或三来转化;(2)“大化小”——用公式一将角化为0°到360°间的角;(3)“小化锐”——用公式二或四将大于90°的角转化为锐角;(4)“锐求值”——得到锐角的三角函数后求值.15.解决条件求值问题的两技巧(1)寻找差异:解决条件求值问题,首先要仔细观察条件与所求式之间的角、函数名及有关运算之间的差异及联系.(2)转化:可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.三.知识点贯通知识点1 角的有关概念的判断任意角的分类(1)按旋转方向分(2)按角的终边位置分①前提:角的顶点与原点重合,角的始边与x轴的非负半轴重合.②分类:例1.(1)给出下列说法:①锐角都是第一象限角;②第一象限角一定不是负角;③小于180°的角是钝角、直角或锐角;④始边和终边重合的角是零角.其中正确说法的序号为________(把正确说法的序号都写上).(2)已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,作出下列各角,并指出它们是第几象限角.①420°.②855°.③-510°.(1)【答案】①【解析】①锐角是大于0°且小于90°的角,终边落在第一象限,是第一象限角,所以①正确;②-350°角是第一象限角,但它是负角,所以②错误;③0°角是小于180°的角,但它既不是钝角,也不是直角或锐角,所以③错误;④360°角的始边与终边重合,但它不是零角,所以④错误.](2)【解析】作出各角的终边,如图所示:由图可知:①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.知识点二终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.例题2:写出与α=-1 910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.【解析】与α=-1 910°终边相同的角的集合为{β|β=k·360°-1 910°,k∈Z}.∵-720°≤β<360°,即-720°≤k·360°-1 910°<360°(k∈Z),∴31136≤k<61136(k∈Z),故取k=4,5,6. k=4时,β=4×360°-1 910°=-470°;k=5时,β=5×360°-1 910°=-110°;k =6时,β=6×360°-1 910°=250°. 知识点三 角度制与弧度制的换算例题3 .(1)①将112°30′化为弧度为________.②将-5π12rad 化为角度为________.【答案】①5π8rad ②-75°【解析】(1)①因为1°=π180rad , 所以112°30′=π180×112.5 rad =5π8rad. 知识点四 扇形的弧长和面积公式设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则 (1)弧长公式:l =αR .(2)扇形面积公式:S =12lR =12αR 2.例题4.已知扇形OAB 的周长是60 cm ,面积是20 cm 2,求扇形OAB 的圆心角的弧度数.【解析】设扇形的弧长为l ,半径为r , 则⎩⎪⎨⎪⎧2r +l =60,12lr =20,∴⎩⎪⎨⎪⎧ r =15+205,l =4015+205或⎩⎪⎨⎪⎧r =15-205,l =4015-205,∴扇形的圆心角的弧度数为 lr=43-3205或43+3205. 知识点五 任意角的三角函数的定义 1、(1)条件在平面直角坐标系中,设α是一个任意角,α∈R 它的终边与单位圆交于点P (x ,y ),那么: (2)结论①y 叫做α的正弦函数,记作sin α,即sin α=y ; ②x 叫做α的余弦函数,记作cos_α,即cos α=x ; ③y x 叫做α的正切,记作tan_α,即tan α=yx(x ≠0). 2、一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则 sin α=y r ,cos α=x r ,tan α=yx(x ≠0).例题5 已知角θ的终边上有一点P (x,3)(x ≠0),且cos θ=1010x ,则sin θ+tan θ的值为________. 【答案】310+3010或310-3010【解析】因为r =x 2+9,cos θ=xr,所以1010x =x x 2+9. 又x ≠0,所以x =±1,所以r =10. 又y =3>0,所以θ是第一或第二象限角.当θ为第一象限角时,sin θ=31010,tan θ=3,则sin θ+tan θ=310+3010.当θ为第二象限角时,sin θ=31010,tan θ=-3,则sin θ+tan θ=310-3010.知识点六 三角函数值符号的运用正弦、余弦、正切函数值在各象限内的符号 (1)图示:(2)口诀:“一全正,二正弦,三正切,四余弦”. 例题6 判断下列各式的符号:①sin 145°cos(-210°);②sin 3·cos 4·tan 5. 【解析】①∵145°是第二象限角,∴sin 145°>0,∵-210°=-360°+150°,∴-210°是第二象限角,∴cos(-210°)<0, ∴sin 145°cos(-210°)<0.②∵π2<3<π,π<4<3π2,3π2<5<2π,∴sin 3>0,cos 4<0,tan 5<0,∴sin 3·cos 4·tan 5>0. 知识点七 诱导公式一的应用公式一例题7 求值:(1)tan 405°-sin 450°+cos 750°; (2)sin7π3cos ⎝⎛⎭⎫-23π6+tan ⎝⎛⎭⎫-15π4cos 13π3. 【解析】 (1)原式=tan(360°+45°)-sin(360°+90°)+cos(2×360°+30°)=tan 45°-sin 90°+cos 30°=1-1+32=32. (2)原式=sin ⎝⎛⎭⎫2π+π3cos ⎝⎛⎭⎫-4π+π6+tan ⎝⎛⎭⎫-4π+π4·cos ⎝⎛⎭⎫4π+π3 =sin π3cos π6+tan π4cos π3=32×32+1×12=54.知识点八 应用同角三角函数关系求值1.平方关系(1)公式:sin 2α+cos 2α=1.(2)语言叙述:同一个角α的正弦、余弦的平方和等于1. 2.商数关系 (1)公式:sin αcos α=tan α(α≠k π+π2,k ∈Z ). (2)语言叙述:同一个角α的正弦、余弦的商等于角α的正切.例题8(1) 已知cos α=-817,求sin α,tan α的值. 【解析】 ∵cos α=-817<0,∴α是第二或第三象限的角.如果α是第二象限角,那么sin α=1-cos 2α=1-⎝⎛⎭⎫-8172=1517,tan α=sin αcos α=1517-817=-158. 如果α是第三象限角,同理可得sin α=-1-cos 2α=-1517,tan α=158.(2)已知sin α+cos α=713,α∈(0,π),则tan α=________.(2)【答案】-125【解析】法一:(构建方程组)因为sin α+cos α=713,①所以sin 2α+cos 2α+2sin αcos α=49169,即2sin αcos α=-120169.因为α∈(0,π),所以sin α>0,cos α<0.所以sin α-cos α=(sin α-cos α)2=1-2sin αcos α=1713.②由①②解得sin α=1213,cos α=-513,所以tan α=sin αcos α=-125.法二:(弦化切)同法一求出sin αcos α=-60169,sin αcos αsin 2α+cos 2α=-60169,tan αtan 2α+1=-60169, 整理得60tan 2α+169tan α+60=0,解得tan α=-512或tan α=-125.由sin α+cos α=713>0知|sin α|>|cos α|,故tan α=-125.(3)已知sin α+cos αsin α-cos α=2,计算下列各式的值.①3sin α-cos α2sin α+3cos α;韩哥智慧之窗-精品文档 ②sin 2α-2sin αcos α+1. (3)【解析】 由sin α+cos αsin α-cos α=2,化简,得sin α=3cos α,所以tan α=3.①法一(换元)原式=3×3cos α-cos α2×3cos α+3cos α=8cos α9cos α=89.法二(弦化切)原式=3tan α-12tan α+3=3×3-12×3+3=89.②原式=sin 2α-2sin αcos αsin 2α+cos 2α+1=tan 2α-2tan αtan 2α+1+1=32-2×332+1+1=1310.知识点九 给角求值问题1.公式二(1)角π+α与角α的终边关于原点对称.如图所示.(2)公式:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tan_α.2.公式三(1)角-α与角α的终边关于x 轴对称.如图所示.(2)公式:sin(-α)=-sin_α,cos(-α)=cos_α,tan(-α)=-tan_α.3.公式四 (1)角π-α与角α的终边关于y 轴对称.如图所示. (2)公式:sin(π-α)=sin_α,cos(π-α)=-cos_α,tan(π-α)=-tan_α.4.公式五(1)角π2-α与角α的终边关于直线y =x 对称,如图所示. (2)公式:sin ⎝⎛⎭⎫π2-α=cos_α,cos ⎝⎛⎭⎫π2-α=sin_α.5.公式六(1)公式五与公式六中角的联系π2+α=π-⎝⎛⎭⎫π2-α. (2)公式:sin ⎝⎛⎭⎫π2+α=cos_α,cos ⎝⎛⎭⎫π2+α=-sin_α.例题9 求值:(1)sin 1 320°;(2)cos ⎝⎛⎭⎫-31π6;(3)已知sin ⎝⎛⎭⎫π3-α=12,则cos ⎝⎛⎭⎫π6+α的值为________. 【解析】(1)法一:sin 1 320°=sin(3×360°+240°)=sin 240°=sin(180°+60°)=-sin 60°=-32. 法二:sin 1 320°=sin(4×360°-120°)=sin(-120°)=-sin(180°-60°)=-sin 60°=-32. (2)法一:cos ⎝⎛⎭⎫-31π6=cos 31π6=cos ⎝⎛⎭⎫4π+7π6=cos ⎝⎛⎭⎫π+π6=-cos π6=-32. 法二:cos ⎝⎛⎭⎫-31π6=cos ⎝⎛⎭⎫-6π+5π6 =cos ⎝⎛⎭⎫π-π6=-cos π6=-32. (3)cos ⎝⎛⎭⎫π6+α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π3-α=sin ⎝⎛⎭⎫π3-α=12. 五 易错点分析易错一 区间角的表示例题10.已知,如图所示.①分别写出终边落在OA ,OB 位置上的角的集合;②写出终边落在阴影部分(包括边界)的角的集合.【解析】 ①终边落在OA 位置上的角的集合为{α|α=90°+45°+k ·360°,k ∈Z }={α|α=135°+k ·360°,k ∈Z };终边落在OB 位置上的角的集合为{α|α=-30°+k ·360°,k ∈Z }.②由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的与之终边相同的角组成的集合,故该区域可表示为{α|-30°+k ·360°≤α≤135°+k ·360°,k ∈Z }.误区警示 正角是按逆时针方向旋转,区间角的书写注意旋转方向,逆时针方向旋转,角变大,区间角是大于小角小于大角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档