中考数学题型专题【中考必备,超级好】
【中考数学必备专题】几何辅助线大揭秘 之角平分线问题(含答案)
【中考数学必备专题】几何辅助线大揭秘之角
平分线问题
一、证明题(共3道,每道40分)
1.已知,如图,△ABC的外角∠CBD和∠BCE的平分线相交于点F.求证:点F在∠DAE的平分线上.
答案:∵BF是∠CBD的平分线∴FG=FI ∵CF是∠BCE的平分线∴FH=FI ∴FG=FH ∴点F在∠DAE的平分线上
解题思路:过F作FG⊥AD于点G,FH⊥AE于点H,FI⊥BC于点I,如图只要证明FG=FH即可
试题难度:三颗星知识点:三角形角平分线
2.如图,在△ABC中,AD为∠BAC的平分线,∠B=2∠C.求证:AC=AB+BD.
答案:∵AD是∠BAC的平分线∴∠BAD=∠EAD 在△ABD和△AED中AB=AE ∠BAD=∠EAD AD=AD ∴△ABD≌△AED(SAS)∴BD=ED,∠B=∠AED ∵∠AED=∠B=2∠C ∴∠CDE=∠AED ﹣∠C=∠C ∴DE=CE ∴BD=CE ∵AC=AE+CE ∴AC=AB+BD
解题思路:在AC上截取AE=AB,连接DE,如图只要证明BD=CE即可
试题难度:三颗星知识点:三角形角平分线
3.已知:如图,在△ABC中,BE平分∠ABC,AD⊥BE,垂足为点D.求证:∠BAD=∠DAE+∠C.
答案:∵BE平分∠ABC,AD⊥BE ∴△ABF为等腰三角形(三线合一)∴∠BAD=∠BFD ∵∠BFD 为△ACF的外角∴∠BFD=∠DAE+∠C ∴∠BAD=∠DAE+∠C
解题思路:延长AD与BC交于点F,如图只要证明∠BFD=∠BAD即可
试题难度:三颗星知识点:三角形角平分线。
九年级数学必考题型与技巧题
九年级数学的必考题型与技巧题主要包括以下几类:
1. 代数题:主要考察一元二次方程、不等式、分式方程等知识。
解决这类题目的关键是掌握好代数的基本运算法则,如合并同类项、消元法等。
2. 几何题:主要考察三角形、四边形、圆等几何图形的性质与计算。
解决这类题目的关键是灵活运用几何定理和公式,如勾股定理、面积公式等,并注意图形的变换,如平移、旋转等。
3. 统计与概率题:主要考察数据的处理、分析及概率计算。
解决这类题目的关键是理解统计与概率的基本概念,如平均数、中位数、众数、概率等,并能运用这些知识解决实际问题。
4. 方程与不等式题:主要考察一元一次方程、一元二次方程、分式方程以及不等式的解法。
解决这类题目的关键是掌握各种方程与不等式的解法,如公式法、因式分解法、图像法等。
5. 函数题:主要考察一次函数、二次函数、反比例函数等函数的性质与计算。
解决这类题目的关键是理解函数的概念,掌握各种函数的性质和图像,并能运用这些知识解决实际问题。
在解题过程中,可以运用以下技巧:
1. 理解题意:认真阅读题目,理解题目所考察的知识点,明确解题思路。
2. 善于画图:对于几何题和函数题,画出图形有助于直观地理解问题,找到解题的关键点。
3. 运用公式和定理:熟练掌握数学公式和定理,能快速解题。
4. 分类讨论:对于一些题目,需要进行分类讨论,不遗漏任何一种情况。
5. 整理与检查:解题过程中注意整理步骤,解完后进行检查,确保答案正确。
初三数学经典总结题型
初三数学经典总结题型包括但不限于以下几种:
1. 线段、角的计算与证明:包括线段长度的计算、角的度数计算、线段与角的综合问题等。
2. 函数问题:包括一次函数、二次函数等,涉及到函数的性质、图像、最值等问题。
3. 方程与不等式问题:包括一元一次方程、一元二次方程、不等式的解法及实际应用等。
4. 三角形问题:包括三角形的性质、全等三角形、相似三角形等,涉及到三角形的边长、角度、面积等问题。
5. 四边形问题:包括平行四边形、矩形、菱形、正方形等,涉及到四边形的性质、判定条件及面积计算等。
6. 圆的问题:包括圆的性质、圆与直线的位置关系、圆与圆的位置关系等,涉及到圆的半径、直径、周长、面积等问题。
7. 统计与概率问题:包括数据的收集与整理、概率初步知识与事件的概率等,涉及到数据的分析、预测及概率的计算等。
8. 综合题:包括多个知识点的综合应用,如函数与三角形、四边形、圆的综合应用等,需要学生综合运用所学知识进行分析和解答。
中考数学专题复习《整式方程(组)的应用》经典题型讲解
中考数学专题复习《整式方程(组)的应用》经典题型讲解类型之一一元一次方程的应用【经典母题】汽车队运送一批货物.若每辆车装4 t,还剩下8 t未装;若每辆车装4.5 t,恰好装完.这个车队有多少辆车?解:设这个车队有x辆车,依题意,得4x+8=4.5x,解得x=16.答:这个车队有16辆车.【思想方法】利用一元一次方程解决实际问题是学习二元一次方程组、分式方程、一元二次方程、一元一次不等式(组)等的基础,是课标要求,也是热门考点.【中考变形】1.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是(C) A.25台B.50台C.75台D.100台【解析】设今年购置计算机的数量是x台,去年购置计算机的数量是(100-x)台,根据题意可得x=3(100-x),解得x=75.2.[2016·盐城校级期中]小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元”.爸爸说:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”.小明说:爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?请你通过列一元一次方程求解这天萝卜、排骨的单价(单位:元/斤).解:设上月萝卜的单价是x 元/斤,则排骨的单价36-3x 2元/斤,根据题意,得3(1+50%)x +2(1+20%)⎝ ⎛⎭⎪⎫36-3x 2=45, 解得x =2,则36-3x 2=36-3×22=15. ∴这天萝卜的单价是(1+50%)×2=3(元/斤),这天排骨的单价是(1+20%)×15=18(元/斤).答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.【中考预测】[2016·株洲模拟]根据如图Z4-1的对话,分别求小红所买的笔和笔记本的价格.图Z4-1解:设笔的价格为x 元/支,则笔记本的价格为3x 元/本,由题意,得10x +5×3x =30,解得x =1.2,∴3x =3.6.答:笔的价格为1.2元/支,笔记本的价格为3.6元/本.类型之二 二元一次方程组的应用【经典母题】用如图Z4-2①中的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式两种无盖纸盒.现在仓库里有1 000张正方形纸板和2 000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?图Z4-2解:设做竖式纸盒x 个,横式纸盒y 个,可恰好将库存的纸板用完.根据题意,得⎩⎪⎨⎪⎧4x +3y =2 000,x +2y =1 000,解得⎩⎪⎨⎪⎧x =200,y =400.答:竖式纸盒做200个,横式纸盒做400个,恰好将库存的纸板用完.【思想方法】 利用方程(组)解决几何计算问题,是较好的方法,体现了数形结合思想.【中考变形】1.小华写信给老家的爷爷,问候“八·一”建军节.折叠长方形信纸,装入标准信封时发现:若将信纸按图Z4-3①连续两次对折后,沿着信封口边线装入时宽绰3.8 cm ;若将信纸按图②三等分折叠后,同样方法装入时宽绰1.4 cm.试求出信纸的纸长与信封的口宽.①②图Z4-3解:设信纸的纸长为x cm ,信封口的宽为y cm.由题意,得⎩⎪⎨⎪⎧y =x 4+3.8,y =x 3+1.4,解得⎩⎪⎨⎪⎧x =28.8,y =11. 答:信纸的纸长为28.8 cm ,信封的口宽为11 cm.2.某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2 min 内可以通过560名学生;当同时开启一个正门和一个侧门时,4 min 内可以通过800名学生.(1)求平均每分钟一个正门和一个侧门各可以通过多少名学生?(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5 min 内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.解:(1)设一个正门平均每分钟通过x 名学生,一个侧门平均每分钟通过y 名学生,由题意,得⎩⎪⎨⎪⎧2x +4y =560,4x +4y =800,解得⎩⎪⎨⎪⎧x =120,y =80.答:一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生;(2)由题意得共有学生45×10×4=1 800(人),学生通过的时间为1 800÷[(120+80)×0.8×2]=458(min).∵5<458,∴该教学楼建造的这4个门不符合安全规定.【中考预测】随着“互联网+”时代的到来,一种新型的手机打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/km 计算,耗时费按q 元/min 计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如下表:(1)求p ,q 的值; (2)如果小华也用该打车方式,车速55 km/h ,行驶了11 km ,那么小华的打车总费用为多少?解:(1)小明的里程数是8 km ,时间为8 min ;小刚的里程数为10 km ,时间为12 min.由题意得⎩⎪⎨⎪⎧8p +8q =12,10p +12q =16,解得⎩⎨⎧p =1,q =12;(2)小华的里程数是11 km ,时间为12 min.则总费用是11p +12q =17(元).类型之三 一元二次方程的应用【经典母题】某租赁公司拥有汽车100辆,据统计,当每辆车的月租金为3 000元时,可全部租出,每辆车的月租金每增加50元,未租出的车将会增加1辆.租出的车每辆每月需要维护费为150元,未租出的车每辆每月只需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆?(2)当每辆车的月租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到306 600元?解:(1)100-3 600-3 00050=88(辆). 答:当每辆车的月租金定为3 600元时,能租出88辆.(2)设每辆车的月租金定为(3 000+x )元,则⎝ ⎛⎭⎪⎫100-x 50[(3 000+x )-150]-x 50×50=306 600, 解得x 1=900,x 2=1 200,∴3 000+900=3 900(元),3 000+1 200=4 200(元).答:当每辆车的月租金为3 900元或4 200元时,月收益可达到306 600元.【思想方法】利润=收入-支出,即利润=租出去车辆的租金-租出去车辆的维护费-未租出去车辆的维护费.【中考变形】1.[2017·眉山]东坡某烘焙店生产的蛋糕礼盒分为6个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?解:(1)设此批次蛋糕属第a 档次产品,则10+2(a -1)=14,解得a =3. 答:此批次蛋糕属第3档次产品.⎝⎛⎭⎪⎫或:∵14-102+1=3,∴此批蛋糕属第3档次产品. (2)设该烘焙店生产的是第x 档次的产品,根据题意,得[10+2(x -1)][76-4(x -1)]=1 080,解得x 1=5,x 2=11(舍去).答:该烘焙店生产的是第5档次的产品.2.[2017·重庆B 卷]某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400 kg ,其中枇杷的产量不超过樱桃的产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售.该果农去年樱桃的市场销售量为100 kg,销售均价为30元/kg,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200 kg,销售均价为20元/kg,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%.该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【解析】(1)根据“枇杷的产量不超过樱桃的产量的7倍”即可列出不等式求得今年收获樱桃的质量;(2)抓住关键语句,仔细梳理,根据去年、今年樱桃销售量、销售均价,求出各自的销售额,可以用一张表格概括其中数量关系:然后根据“今年樱桃和枇杷的销售总金额与去年樱桃和枇杷的市场销售总金额相同”可列方程求解.解:(1)设该果农今年收获樱桃至少x kg,今年收获枇杷(400-x)kg,依题意,得400-x≤7x,解得x≥50.答:该果农今年收获樱桃至少50 kg.(2)由题意,得3 000×(1-m %)+4 000×(1 +2m%)×(1-m%)=7 000,解得m1=0(不合题意,舍去),m2=12.5.答:m的值为12.5.【中考预测】某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400 kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20 kg.(1)当每千克涨价多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4 420元,同时又可使顾客得到实惠,每千克应涨价多少元?解:(1)设每千克涨价x元,总利润为y元.则y=(10+x)(400-20x)=-20x2+200x+4 000=-20(x-5)2+4 500.当x=5时,y取得最大值,最大值为4 500元.答:当每千克涨价5元时,每天的盈利最多,最多为4 500元;(2)设每千克应涨价a元,则(10+a)(400-20a)=4 420.解得a=3或a=7,为了使顾客得到实惠,∴a=3.答:每千克应涨价3元.。
2024年中考 数学总复习 题型训练四 几何最值问题
题型四几何最值问题类型一利用“垂线段最短”解决最值问题1. 如图,在△ABC中,AC=BC=6,AB=8,点D在AC边上,连接BD,以AD,BD为邻边作▱ADBE,连接DE,则DE的最小值为________.第1题图2. 如图,在△ABC中,AC=BC=6,S△ABC=12,点D为AB的中点,点M,N分别是CD 和BC上的动点,则BM+MN的最小值是________.第2题图3. 如图,四边形ABCD是菱形,对角线AC,BD相交于点O,点P是BD上一动点,点E 是BC上一动点,若AC=6,BD=63,则PC+PE的最小值为________.第3题图4. 如图,在△OAB中,已知∠AOB=35°,点P是边AB上一点,点M,N分别是射线OA,OB上异于点O的动点,连接PO,PM,MN,若∠BOP=10°,OP=6,则PM+MN的最小值为________.第4题图类型二 利用“两点之间线段最短”解决最值问题1. 如图,在矩形ABCD 中,AB =6,AD =8,点P 是矩形ABCD 内一点,记a =S △APB +S △CPD ,b =P A +PB +PC +PD ,则a +b 的最小值为________.第1题图2. 如图,在四边形ABCD 中,∠BAD =120°,∠B =∠D =90°,AB =1,AD =2,M ,N 分别为BC ,CD 边上的动点,则△AMN 周长的最小值为________.第2题图3. 如图,在Rt △ABC 中,∠C =90°,∠ABC =30°,BC =43 ,点D 为边BC 上的动点,点E 为边AB 的中点,连接DE ,DA ,则线段DE +DA 的最小值为________.第3题图4. 如图,在等腰Rt △ABC 中,AB =AC =22 ,∠A =90°,点P 是△ABC 内部一点,且满足S △BCP =12S △ABC ,则PB +PC 的最小值为________.第4题图5. 如图,二次函数y =-23 x 2-43x +2的图象与x 轴分别交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,点P 是其对称轴上一点,连接PB ,PC ,BC ,则△PBC 的周长最小为________.第5题图类型三 利用“二次函数性质”解决最值问题(2021.9)1. 我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c, 记p =a +b +c 2,则其面积S =p (p -a )(p -b )(p -c ) .这个公式也被称为海伦-秦九韶公式.若p =5,c =4,则此三角形面积的最大值为( )A. 5B. 4C. 25D. 52. 如图,在矩形ABCD 中,AB =2,AD =3,P 是BC 上的任意一点(P 与B ,C 不重合),过点P 作AP ⊥PE ,垂足为P ,PE 交CD 于点E ,连接AE ,在点P 的运动过程中,线段CE 的最大值为________.第2题图3. 如图,在等腰△ABC 中,AC =BC =4,∠C =120°,点P 是AC 上一动点,PD ∥AB ,交BC 于点D ,连接AD ,则点P 在运动过程中,△APD 的面积的最大值为________.第3题图4. 如图,矩形ABCD中,AB=6,BC=4,点E,F分别为边AB,CD上的动点,且AE=CF,将线段EF绕点F逆时针旋转90°得到线段FG,连接DG.(1)当点E为AB的中点时,线段DG的长是________;(2)当点E在边AB上运动时,线段DG的最小值是________.第4题图类型四利用“辅助圆”解决最值问题(8年3考:2021.10、17,2020.17)1. 如图,在矩形ABCD中,AB=6,AD=25,E是边CD上一点,将△ADE沿直线AE 折叠得到△AFE,BF的延长线交边CD于点G,则DG长的最大值为________.第1题图2. 如图,在正方形ABCD中,E,F分别是AB,BC边上的动点(不与正方形的顶点重合),且AE=BF,CE,DF交于点M,连接BM,若AB=2,则BM的最小值为________.第2题图3.如图,在Rt△ABC中,∠C=90°,AB=10,BC=8,E,F分别是AC,BC边上的动点,且EF=AC,P是EF的中点,连接AP,BP,则△APB面积的最小值为________.第3题图4. 如图,已知△ABC为等边三角形,AB=6,将边AB绕点A顺时针旋转a(0°<a<120°),得到线段AD,连接CD,点E为CD上一点,且DE=2CE.连接BE,则BE的最小值为________.第4题图5. 如图,在△ABC中,∠C=45°,∠B=60°,BC=3+1,P为边AB上一动点,过点P 作PD⊥BC于点D,PE⊥AC于点E,连接DE,则DE的最小值为________.第5题图题型四 几何最值问题类型一 利用“垂线段最短”解决最值问题 1. 853【解析】如解图,设DE 与AB 交于点O ,∵四边形ADBE 是平行四边形,∴OB =OA ,DE =2OD ,∴当OD ⊥AC 时,DO 的值最小,即DE 的值最小,过点B 作BH ⊥AC 于点H ,则∠BHD =∠EDH =90°,易知AD ∥BE ,即AC ∥BE ,∴∠EBH =90°,∴四边形BHDE 是矩形,∴DE =BH ,∵AC =BC =6,AB =8,∴设CH =x ,则AH =6-x ,∵BA 2-AH 2=BH 2=BC 2-CH 2,即82-(6-x )2=62-x 2,解得x =23 ,∴CH =23,∴DE =BH =BC 2-CH 2 =853 .∴DE 的最小值为853.第1题解图2. 4 【解析】如解图,作点N 关于DC 的对称点N ′.∵AC =BC ,点D 为AB 的中点,∴点N ′在AC 上,连接MN ′,BN ′,∴BM +MN =BM +MN ′≥BN ′,∴当B ,M ,N ′三点共线,且BN ′⊥AC 时,BM +MN 取得最小值.∵AC =6,S △ABC =12,∴△ABC 中AC 边上的高为4,∴BM +MN 的最小值是4.第2题解图3. 33 【解析】如解图,作点E 关于BD 的对称点E ′,连接PE ′,∵四边形ABCD 是菱形,∴BA 与BC 关于BD 对称,∴点E ′位于BA 上,由对称的性质可知,PE =PE ′,∴当C ,P ,E ′三点重合,且CE ′⊥BA 时,PC +PE 的值最小,即为CE ′的长,∵四边形ABCD 是菱形,∴AO =CO =12 AC =3,BO =DO =12BD =33 ,AC ⊥BD ,AB =BC ,∴在Rt △BOC 中,BC =BO 2+CO 2 =6,tan ∠BCO =BO CO=3 ,∴∠BCO =60°,∴△ABC 是等边三角形,∴CE ′=BC ·sin 60°=33 ,∴PC +PE 的最小值为33 .第3题解图 4. 33 【解析】如解图,作点P 关于OA 的对称点P ′,连接OP ′,过点P ′作OB 的垂线交OA 于点M ,交OB 于点N ,此时PM +MN 的值最小,最小值为线段P ′N 的长.∵∠AOB =35°,∠BOP =10°,点P ′与点P 关于OA 对称,∴∠POA =∠P ′OA =25°,∴∠BOP ′=60°,OP ′=OP =6,在Rt △P ′ON 中,P ′N =OP ′·sin 60°=6×32=33 ,∴PM +MN 的最小值为33 .第4题解图类型二 利用“两点之间线段最短”解决最值问题1. 44 【解析】如解图,过点P 作EF ⊥AB ,分别交AB ,CD 于点E ,F ,连接AC ,BD ,则EF =AD =8,∵四边形ABCD 是矩形,∴∠ABC =90°,AB =CD =6,AD =BC =8,∴AC=AB 2+BC 2 =62+82 =10,∴BD =AC =10,∵S △APB +S △CPD =12 AB ·PE +12 CD ·PF =12AB ·EF =12×6×8=24,P A +PC ≥AC ,PB +PD ≥BD ,∴当A ,P ,C 三点共线,B ,P ,D 三点也共线时,P A +PB +PC +PD 有最小值,最小值为AC +BD =20,∴a +b 的最小值为24+20=44.第1题解图2. 27 【解析】如解图,分别作A 关于BC 和CD 的对称点A ′,A ″,连接A ′A ″,交BC 于点M ,交CD 于点N ,则A ′A ″即为△AMN 的周长最小值,作A ′H ⊥DA 交DA 的延长线于点H ,∴AA ′=2AB =2,AA ″=2AD =4,∵∠BAD =120°,∴∠HAA ′=60°,∴在Rt △A ′HA 中,AH =12 AA ′=1,∴A ′H =22-12 =3 ,A ″H =AH +AA ″=1+4=5,∴A ′A ″=A ′H 2+A ″H 2 =27 ,∴△AMN 的周长最小值为27 .第2题解图3. 43 【解析】如解图,作点E 关于BC 的对称点E ′,连接EE ′,交BC 于点F ,连接DE ′,AE ′,过点E ′作E ′G ⊥AC 交AC 的延长线于点G ,则DE =DE ′,EF =E ′F ,DE +DA =DE ′+DA ≥AE ′,∴当A ,D ,E ′在同一直线上时,DE +DA 的值最小,最小值为AE ′的长,∵∠ACB =90°,∠ABC =30°,BC =43 ,∴AC =33 BC =33×43 =4,∵点E 为边AB 的中点,∴EF 为△ABC 的中位线,∴EF =12 AC =2,CF =12BC =23 ,∴E ′F =EF =2=CG ,E ′G =CF =23 ,∴AG =AC +CG =4+2=6,∴AE ′=E ′G 2+AG 2 =(23)2+62 =43 ,∴DE +DA 的最小值为43 .第3题解图4. 25 【解析】如解图,过点A 作AD ⊥BC 于点D ,∵AB =AC =22 ,∠BAC =90°,∴AD =2,BC =4,∵S △BCP =12S △ABC ,∴点P 到BC 的距离为1,即点P 在AD 的垂直平分线l 上运动,作点B 关于直线l 的对称点B ′,连接B ′C 交直线l 于点P ′,连接BP ′,B ′P ,则BB ′⊥BC ,BP ′=B ′P ′,BP =B ′P ,∴BP +PC =B ′P +PC ≥B ′C ,当B ′,P ,C 三点共线,即点P 与点P ′重合时,BP +PC 的值最小,为B ′C 的长.在Rt △B ′BC 中,BB ′=2,BC =4,∴B ′C =BB ′2+BC 2 =25 ,∴PB +PC 的最小值为25 .第4题解图5. 13 +5 【解析】如解图,连接AC ,AP ,令y =0,得x =-3或1,∴点A (-3,0),点B (1,0),∴抛物线的对称轴是直线x =-1,OA =3,OB =1,令x =0,得y =2,∴点C (0,2),∴OC =2,∴BC =OB 2+OC 2 =5 ,AC =OA 2+OC 2 =13 ,∵△PBC 的周长为PB +PC +BC ,BC 为定值,∴要使△PBC 的周长最小,则PB +PC 最小即可,∵点A 与点B 关于对称轴对称,∴P A =PB ,∴PB +PC =P A +PC ≥AC ,∴PB +PC 的最小值为AC 的长,∴△PBC 的周长最小值=AC +BC =13 +5 .第5题解图类型三 利用“二次函数性质”解决最值问题1. C 【解析】∵p =5,c =4,∴S =5(5-a )(5-b )(5-4) =5(5-a )(5-b ) ,∵p =a +b +c 2 ,∴a +b =2p -c =6,∴b =6-a ,∴S =5(5-a )[5-(6-a )] =5(5-a )(a -1) =-5(a -3)2+20 ,∵-5<0,∴当a =3时,S 有最大值为20 =25 .2. 98【解析】∵四边形ABCD 是矩形,∴∠B =∠C =90°,∵AP ⊥PE ,∴∠APB +∠CPE =∠CPE +∠PEC =90°,∴∠APB =∠PEC ,∴△ABP ∽△PCE ,∴AB PC =BP CE,设BP =x ,CE =y ,则PC =3-x ,即23-x =x y,∴y =-12 x 2+32 x =-12 (x -32 )2+98 ,∵-12 <0,∴当x =32 时,y 有最大值,最大值是98 ,∴线段CE 的最大值为98 . 3. 3 【解析】如解图,过点C 作CE ⊥AB 于点E ,过点P 作PF ⊥AB 于点F ,设AP =x ,则CP =4-x ,∵AC =BC ,∠C =120°,∴∠BAC =∠B =30°,AE =BE ,∴CE =12AC =2,PF =12 AP =12x ,在Rt △AEC 中,由勾股定理得AE =42-22 =23 ,∴AB =2AE =43 ,∵PD ∥AB ,∴△PCD ∽△ACB ,∴PC AC =PD AB ,∴4-x 4 =PD 43,解得PD =3 (4-x ),∴S △APD =12 PD ·PF =12 ×3 (4-x )×12 x =-34 (x -2)2+3 ,∵-34<0,∴当x =2时,S △APD 有最大值,最大值为3 .第3题解图4. (1)1 【解析】∵点E 为AB 的中点,AE =CF ,∴点F 为CD 的中点,∴EF =FG =4,此时F ,D ,G 三点共线,∴DG =FG -FD =1; (2)255 【解析】如解图,过点F 作FH ⊥AB 于点H ,过点G 作IG ⊥CD 于点I ,则∠EHF =∠GIF =90°,由题意可知∠EFG =90°,EF =GF ,∴∠EFH +∠EFI =∠EFI +∠GFI =90°,∴∠EFH =∠GFI ,∴△EFH ≌△GFI (AAS),∴EH =GI ,设AE =a ,①当0<a <3时,如解图①,GI =EH =6-2a ,ID =FD -FI =FD -FH =6-a -4=2-a ,∴DG 2=ID 2+IG 2=(2-a )2+(6-2a )2=5a 2-28a +40=5(a -145 )2+45 ,∵5>0,∴当a =145 时,DG 2取最小值45,∴DG =255;②当3≤a <6时,如解图②,GI =EH =2a -6,ID =FI -FD =FH -AE +EH =4-a +2a -6=a -2,∴DG 2=ID 2+IG 2=(a -2)2+(2a -6)2=5a 2-28a +40=5(a -145)2+45 ,∵5>0,3≤a <6,∴当a =3时,DG 2取最小值1,∴DG =1,∵1>255,∴DG 的最小值为255.第4题解图类型四 利用“辅助圆”解决最值问题1. 2 【解析】如解图,以点A 为圆心,AD 长为半径画弧,过点B 作弧的切线交CD 于点G ,切点为F ,此时点E 和点G 重合,DG 的最大值即为DE 的长,∵四边形ABCD 是矩形,∴BC =AD =25 ,AB =CD =6,由折叠的性质可知,DE =EF ,AF =AD =25 ,设DE =EF =x ,则CE =CD -DE =6-x ,在Rt △ABF 中,由勾股定理得BF =AB 2-AF 2 =4,则BE =BF +EF =4+x ,在Rt △BEC 中,由勾股定理得BE 2=CE 2+BC 2,即(4+x )2=(6-x )2+(25 )2 ,解得x =2,即DG 的最大值为2.第1题解图 2. 5 -1 【解析】如解图,取CD 的中点O ,连接BO ,∵四边形ABCD 为正方形,∴AB =BC =CD =AD ,∠EBC =∠FCD =90°,∵AE =BF ,∴AE +BE =BF +CF ,∴BE =CF ,∴△EBC ≌△FCD (SAS),∴∠BCE =∠CDF ,∵∠BCE +∠DCE =∠BCD =90°,∴∠CDF +∠ECD =90°,∴∠CMD =90°,当点E ,F 分别在AB 和BC 上移动时,点M 在以CD 的中点O 为圆心,OC 长为半径的半圆上运动,要使BM 取得最小值,则需点B ,M ,O 在同一条直线上.∵AB =2,∴CO =1,∴BO =5 ,∴此时BM =5 -1,即BM 的最小值为5 -1.第2题解图3. 9 【解析】如解图,过点P 作PH ⊥AB 于点H ,则S △ABP =12AB ·PH =5PH ,∴当PH 最小时,△ABP 的面积最小.∵∠ACB =90°,AB =10,BC =8,∴AC =AB 2-BC 2 =6.∴EF=AC =6.连接CP ,则CP =12EF =3.∴点P 在以点C 为圆心,3为半径的圆弧上,过点C 作CH ′⊥AB 于点H ′,交⊙C 于点P ′,∵P ′H ′=CH ′-CP ′=CH ′-CP ≤CP +PH -CP =PH ,∴当点P 与点P ′重合,点H 与点H ′重合时,PH 最小,最小值为P ′H ′的长.∵S △ABC =12AC ·BC =12 AB ·CH ′,∴CH ′=AC ·BC AB =245 ,∴P ′H ′=CH ′-CP ′=245 -3=95 ,∴PH 的最小值是95 ,此时S △ABP =5PH =9,即△ABP 面积的最小值为9.第3题解图4. 27 -2 【解析】如解图,过点E 作EH ∥AD ,交AC 于点H ,∵△ABC 为等边三角形,∴AB =AC =6,由旋转的性质得AD =AB ,∴AD =AC ,∴∠D =∠ACD ,∵DE =2CE ,∴CE CD =CH CA =13 ,∠CEH =∠D =∠ACD ,∴CH =EH ,∵AC =6,∴CH =EH =2,取AH 的中点P ,连接EP ,则PH =EH ,∴∠EPH =∠PEH ,∵∠EPH +∠CEP +∠ACD =180°,∴2∠PEH +2∠CEH =180°,∴∠CEP =90°,∴点E 在以点H 为圆心,CP 为直径的圆弧上运动,连接BH ,∵EH 为定值2,∴当B ,E ,H 三点共线时,BE 的长最小,过点B 作BQ ⊥AC 于点Q ,则CQ =12AC =3,∴QH =CQ -CH =1,BQ =BC 2-CQ 2 =62-32 =33 ,∴BH =BQ 2+QH 2 =(33)2+12 =27 ,∴BE 的最小值为27 -2.第4题解图5. 32+64【解析】如解图,连接CP ,∵∠PDC =∠PEC =90°,∴∠PDC +∠PEC =180°,∴C ,D ,P ,E 四点共圆,圆心为点O ,且直径为CP ,∵BC =3 +1,∠ACB =45°,∠B =60°是定值,∴直径CP 最小时,∠DCE 所对的弦DE 最小,即CP ⊥AB 时,DE 的值最小,连接OD ,OE ,∵∠B =60°,CP ⊥AB ,BC =3 +1,∴∠BCP =30°,∴BP =12BC =3+12 ,CP =3 BP =3+32 ,∴OD =OE =12 CP =3+34,∵∠ACB =45°,∴∠DOE =2∠ACB =90°,∴△ODE 是等腰直角三角形,∴DE =2 OD =32+64,即DE 的最小值为32+64.第5题解图。
(完整版)中考数学必考经典题型(最新整理)
中考数学必考经典题型题型一 先化简再求值命题趋势由河南近几年的中考题型可知,分式的化简求值是每年的考查重点,几乎都 以解答题的形式出现,其中以除法和减法形式为主,要求对分式化简的运算法则及分式有意义的条件熟练掌握。
例:先化简,再求值: ( 1 + x +1 1 ) ÷ x -1 x 2 - x x 2 - 2x +1, 其中 x =-1. 分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将 x 的值带入计算即可求值。
题型二阴影部分面积的相关计算命题趋势近年来的中考有关阴影面积的题目几乎每年都会考查到,而且不断翻新,精 彩纷呈.这类问题往往与变换、函数、相似等知识结合,涉及到转化、整体等数学思想方法,具有很强的综合性。
例如图 17,记抛物线 y =-x 2+1 的图象与 x 正半轴的交点为A ,将线段 OA 分成n 等份.设分点分别为 P 1,P 2,…,P n -1,过每个分点作 x 轴的垂线,分别与抛物线交于点 Q 1,Q 2,…,Q n -1,再记直角三角形 OP 1Q 1,P 1P 2Q 2,…的面积分别为 S 1,S 2,…,这样就有 S 1= n 2 -1 2n 3 ,S 2= n 2 - 42n 3…;记W=S 1+S 2+…+S n -1,当 n 越来越大时,你猜想 W 最接近的常数是()(A) 23 (B) 12(C) 13(D) 14分析 如图 17,抛物线 y =-x 2+1 的图象与 x 正半轴的交点为A(1,0),与 y 轴的交点为 8(0,1).设抛物线与 y 轴及 x 正半轴所围成的面积为 S ,M(x ,y )在图示抛物线上,则OM 2 = x 2 + y 223 3 2 从 而 = (1 - y ) + y 2⎛ 1 ⎫23 = y - ⎪ + . ⎝ ⎭ 4由 0≤y32≤1, 得 ≤OM ≤1.4这段图象在图示半径为 11个圆 面积之间,即4 、1 的两个 圆所夹的圆环内,所以 S 在图示两 243 1<S < π.164显然,当 n 的值越大时,W 的值就越来越接近抛物线与 y 轴和 x 正半轴所围成的面积的一半,所以3 1<W < π.328与其最接近的值是,故本题应选 C .题型三 解直角三角形的实际应用命题趋势解直角三角形的应用是中考的必考内容之一,它通常以实际生活为背景,考 查学生运用直角三角形知识建立数学模型的能力,解答这类问题的方法是运用 “遇斜化直”的数学思想,即通过作辅助线(斜三角形的高线)把它转化为直角三角形问题,然后根据已知条件与未知元素之间的关系,利用解直角三角形的知识, 列出方程来求解。
初三数学考试题型及答案
初三数学考试题型及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式的基本性质?A. 不等式两边同时乘以一个负数,不等号方向不变B. 不等式两边同时乘以一个正数,不等号方向不变C. 不等式两边同时加上同一个数,不等号方向不变D. 不等式两边同时除以一个正数,不等号方向不变答案:B2. 一个数的平方是9,那么这个数是:A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 函数y=2x+1的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 一个圆的直径是10cm,那么这个圆的半径是:A. 5cmB. 10cmC. 15cmD. 20cm答案:A5. 一个等腰三角形的两个底角相等,那么这个三角形的顶角是:A. 90度B. 60度C. 30度D. 无法确定答案:D6. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 10D. -10答案:A7. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么这个长方体的体积是:A. 24cm³B. 12cm³C. 8cm³D. 6cm³答案:A8. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不对答案:C9. 一个二次函数y=ax²+bx+c的图象开口向上,那么a的值是:A. 正数B. 负数C. 0D. 无法确定答案:A10. 一个等差数列的前三项是2,5,8,那么这个数列的公差是:A. 3B. 2C. 1D. 4答案:A二、填空题(每题3分,共30分)1. 一个数的立方是27,那么这个数是________。
答案:32. 一个直角三角形的两条直角边长分别是3cm和4cm,那么这个三角形的斜边长是________。
答案:5cm3. 一个数的倒数是1/2,那么这个数是________。
答案:24. 一个三角形的内角和是________度。
初三中考数学必考题型
初三中考数学必考题型
中考数学必考题型有很多,不同的考试和难度都会有所侧重。
以下是常见的一些题型和知识点,仅供您参考:
1. 选择题:考察基础概念和计算能力,包括代数式化简、方程求解、几何性质等。
2. 填空题:考察计算和推理能力,包括几何作图、代数变形、函数性质等。
3. 解答题:考察综合运用知识的能力,包括函数与方程、几何证明与计算、概率与统计等。
4. 综合题:考察知识整合和问题解决能力,包括函数与几何、方程与不等式、几何变换等。
无论考试形式如何变化,关键是要掌握数学基础知识和基本技能,同时提高自己的思维能力和问题解决能力。
如果您需要更详细的备考指导,建议查阅中考数学备考资料或咨询数学老师。
初中数学计算题复习大全附答案【中考必备】
..初中数学计算题大全(一)计算下列各题1 .36)21(60tan 1)2(100+-----π 2. 431417)539(524----3.)4(31)5.01(14-÷⨯+-- 4.5.++ 6.7112238. (1)03220113)21(++-- (2)23991012322⨯-⨯10.11.(1)- (2)÷(3)1---+42338-()232812564.0-⨯⨯⎪⎭⎫ ⎝⎛-÷⎪⎭⎫⎝⎛-+601651274312.418123+-13.⎛ ⎝14..x x x x 3)1246(÷- 15.61)2131()3(2÷-+-;16.20)21()25(2936318-+-+-+-17.(1))3127(12+- (2)()()6618332÷-+-18.()24335274158.0--+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛---1911()|2|4-- 20.())120131124π-⎛⎫---+ ⎪⎝⎭。
21.. 22.112812623-+23.2+参考答案1.解=1-|1-3|-2+23 =1+1-3-2+23 =3【解析】略2.5【解析】原式=14-9=53.87-【解析】解:)4(31)5.01(14-÷⨯+--⎪⎭⎫⎝⎛-⨯⨯--=4131231811+-=87-=先算乘方,再算乘除,最后算加减,有括号的先算括号里面的。
注意:41-底数是4,有小数又有分数时,一般都化成分数再进行计算。
4.==.【解析】略5.3 6.4【解析】主要考查实数的运算,考查基本知识和基本的计算能力,题目简单,但易出错,计算需细心。
1、+ +=232=3+-252=42⨯⨯ 722【解析】试题分析:先化简,再合并同类二次根式即可计算出结果.11223432223232332考点: 二次根式的运算.8.(1)32(2)9200 【解析】(1)原式=4+27+1 =32(2)原式=23(1012-992) (1分)=23(101+99)(101-99)(2分)=232200⨯⨯=9200 (1分) 利用幂的性质求值。
初中数学中考必考题型
初中数学中考必考题型
题型一
运用同三角函数关系、诱导公式、和、差、倍、半等公式进行化简求
值类。
题型二
运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。
题型三
解三角函数问题、判断三角形形状、正余弦定理的应用。
题型四
数列的通向公式得求法。
题型五
数列的前n项求和的求法。
题型六
利用导数研究函数的极值、最值。
题型七
利用导数几何意义求切线方程。
题型八
利用导数研究函数的单调性,极值、最值
题型九
利用导数研究函数的图像。
题型十
求参数取值范围、恒成立及存在性问题。
题型十一
数形结合确定直线和圆锥曲线的位置关系。
题型十二
焦点三角函数、焦半径、焦点弦问题。
题型十三
动点轨迹方程问题。
人教中考数学重难点题型分类必刷题 人教版七年级下学期数学
人教中考数学重难点题型分类必刷题人教版七年级下学期数学在人教版七年级下学期数学教材中,有一些题型被认为是重难点题型,考生需要特别关注和重点复习。
本文将对这些题型进行分类,并介绍一些必刷题,帮助同学们更好地备考。
一、整数的加减法运算整数的加减法运算是初中数学中的基础知识,也是中考中相对较为简单的题型之一。
但是,加减法题目中常常融合了其他知识点,比如小数、分数等,需要同学们运用多种知识进行联想和综合运算。
在此我们推荐一道必刷题:例题:已知a=-3,b=5,则a-(-4)-b+(2-a)的值是多少?解析:根据运算符的优先级,先计算括号中的式子,再依次进行减法、加法运算。
将a、b的值代入得:-3-(-4)-5+(2-(-3))=-7+6=-1。
二、平方根与立方根求平方根与立方根是数学中的重要知识点,也是中考中较为常见的题型之一。
在做这类题目时,同学们需要熟悉根号的运算规则,并且要注意约分化简。
以下是一道建议练习的必刷题:例题:将8的平方根与立方根分别化简。
解析:8的平方根为√8,化简为2√2。
8的立方根为∛8,化简为2。
三、比例与百分数比例和百分数在中考数学中也是常考题型之一。
同学们需要掌握比例的概念和计算方法,以及百分数与小数、分数之间的转化。
以下是一道必刷题:例题:某商店原价150元的商品现在打8折出售,小明买了5件,请问小明买这些商品的总价是多少?解析:由于打折是按照商品原价的比例进行的,打折后的价格为150×0.8=120元。
小明买了5件商品,所以总价为120×5=600元。
四、图形的周长与面积图形的周长和面积是中考数学中的重点知识,同学们需要熟悉各种图形的计算公式,并根据题目要求进行计算。
以下是一道必刷题:例题:长方形的长是7cm,宽是5cm,求其周长和面积。
解析:周长=2×(长+宽)=2×(7+5)=2×12=24cm,面积=长×宽=7×5=35cm²。
中考数学必背题型归纳总结
中考数学必背题型归纳总结在中考数学中,各种题型繁多,但是在备考过程中,有一些题型是必须要掌握的,因为它们经常出现。
本文将对中考数学中的必背题型进行归纳总结,并提供相应的解题思路和方法。
一、选择题选择题在中考数学中占据重要的比重,因此必须要熟练掌握解题技巧。
以下是几种常见的选择题题型及解题思路:1. 增减百分数题增减百分数题是一种常见的选择题题型,要求计算某个数值的增加或减少百分之多少。
解题时,根据题目给出的百分数,将要计算的数值乘以相应的百分数即可。
例如,计算120的60%是多少,可以直接将120乘以0.6得到72,因此答案为72。
2. 几何图形题几何图形题在中考数学中也经常出现,解题时需要根据题目给出的条件进行分析。
常见的几何图形题有平行四边形的性质、三角形的性质等。
解题时可以根据题目条件绘制几何图形,并运用相应的几何定理进行推理。
3. 坐标题坐标题是中考数学中的基础题型,要求对平面上的点进行坐标定位。
解题时需要根据题目给出的条件,确定点的坐标,并进行相应的计算。
在解答坐标题时,可以通过绘制坐标图、运用距离公式等方法进行求解。
二、填空题填空题在中考数学中也是常见的题型之一,考查学生对基础知识的掌握程度。
以下是几种常见的填空题题型及解题思路:1. 算式填空题算式填空题要求填写适当的数值,使得等式成立。
解题时需要分析等式中各个数值的关系,并利用已知的条件来求解。
例如,对于等式5 + □ = 10,可以通过计算得到□的数值为5。
2. 几何图形填空题几何图形填空题主要考查学生对几何图形性质的理解。
解题时可以根据已知条件对图形进行推理,并根据已有的线段长度、角度等信息填空。
在解答几何图形填空题时,需要灵活运用几何定理和计算方法。
三、解答题解答题是中考数学中较为复杂的题型,要求学生进行详细的计算和推理。
以下是几种常见的解答题题型及解题思路:1. 单方程解答题单方程解答题要求求解方程中的未知数。
解答此类题目时,需要运用一些解方程的方法,如等式相加减、等式相乘除等,将方程转换为较简单的形式,并求解出方程中的未知数。
中考数学核心母题36道
中考数学核心母题36道以下是36道中考数学核心母题,希望能帮助大家更好地备考中考。
1. 一个圆的直径是5cm,求它的周长和面积。
2. 已知正方形ABCD的边长为4cm,求它的对角线长度。
3. 一根长为12cm的木条,从中间剪开后,变成了两个三角形,它们的面积比为7:8,求较小的三角形的面积。
4. 已知一条线段的两端点为A(-3,2)和B(5,-4),求线段AB的长度。
5. 一个正方形的面积是36平方米,求它的边长。
6. 一条铁路上两列火车相向而行,第一列火车每小时行驶100公里,第二列火车每小时行驶120公里,它们相距600公里,问多长时间后相遇。
7. 已知一条边长为10cm的正方形,把它的四个顶点分别连接起来,得到四条线段,它们的长度分别是多少?8. 一个圆的半径是6cm,求它的周长和面积。
9. 一条长为20cm的直线段,在其中点处被垂直地分成两段,它们的长度分别是多少?10. 一个三角形的三条边长分别为3cm、4cm和5cm,这个三角形是什么类型的三角形?11. 一个正方形的周长是20cm,求它的面积。
12. 一根长为10cm的木条,从中间剪开后,变成了两个三角形,它们的面积比为3:4,求较小的三角形的面积。
13. 一条铁路上两列火车相向而行,第一列火车每小时行驶80公里,第二列火车每小时行驶100公里,它们相距800公里,问多长时间后相遇。
14. 已知一条线段的两端点为A(1,3)和B(4,6),求线段AB的长度。
15. 一个圆的直径是8cm,求它的周长和面积。
16. 一个正方形的对角线长度是10cm,求它的面积。
17. 一条铁路上两列火车相向而行,第一列火车每小时行驶60公里,第二列火车每小时行驶80公里,它们相距1000公里,问多长时间后相遇。
18. 一个正方形的面积是25平方米,求它的边长。
19. 一根长为8cm的木条,从中间剪开后,变成了两个三角形,它们的面积比为5:3,求较小的三角形的面积。
中考数学常见题型解析
中考数学常见题型解析数学作为中考必考科目之一,对于学生来说是一项不可忽视的重要考试内容。
而在数学中,各种题型也是我们必须熟练掌握的。
本文将对中考数学中常见的题型进行解析,帮助同学们更好地备考。
一、选择题选择题是中考数学中最常见的题型之一。
它的特点是给出若干个选项,只有一个选项是正确的,考生需要根据题目的要求选择正确答案。
下面以常见的三种选择题为例进行解析。
1. 单项选择题单项选择题是中考数学中最基础的题型,也是最容易的题型之一。
在这类题目中,通常有一个问题和四个选项。
【例题】若函数y=ax²+bx+c的图象与x轴交于两个点,且交点的横坐标之和等于3,纵坐标之和等于2,则a+b+c=?A. -2B. -1C. 0D. 1解析:由题意可知,函数图象与x轴交点的纵坐标之和等于零。
根据函数的定义可知,纵坐标为0时,横坐标为3。
因此,该函数的一个根为x=3。
另一个根为x=0。
根据二次函数性质可知,两根之和为-x₁/x₂。
所以,x₁+x₂=-3。
因此,a+b+c=0。
所以答案为C。
2. 判断题判断题是中考数学中常见的题型之一。
它的特点是给出一个命题,考生需要判断该命题的正确性。
【例题】对于任意的实数a,有a^2≥0。
解析:根据平方的性质可知,任意实数的平方都大于等于零,因此该命题为真。
3. 完形填空完形填空是一种较为复杂的选择题类型。
它通常给出一篇文章,文章中有若干个空格,考生需要根据上下文的意思选择正确的答案来填充空格。
【例题】阅读下面的短文,从每题所给的A、B、C、D四个选项中选出可以填入空白处的最佳选项。
Life is like a marathon. We may start at the ____1____ time, but we have to run our own race on our own course. We can't go too fast, or we may die before reaching __2__ finish. We can't go too slow, or everyone may__3__ us and make fun of us.Along the way, we will make many friends. Some will __4__ with us for a while, and some will stay with us for the long run. Friends are like running shoes----they help ________ (5) the journey much better. They may ____6__ us or encourage us when we're feeling ____7__. The most important thing is they __8__ us for who we are.Along the way, there will be a lot of _______ (9). We may lose the race, feel pain and want to give up. But we __10__ give up. We have to keeprunning. After all, life is not about __11__, it's about how __12__ we can get up and keep ____13____.【例题】1. A. same B. different C. right D. wrong 解析:根据上下文可知,该句意为"人生就像一场马拉松,我们可能在不同时间开始,但必须按照自己的路线去跑",因此填入不同。
数学中考常见题型选择题汇总
数学中考常见题型选择题汇总1. 选择题:已知一个等差数列的前三项分别是a、b、c,且a+b+c=9,a+b=11,a+c=8,求a、b、c的值。
2. 选择题:如果一个三角形的两个内角分别是120度和30度,那么第三个内角的度数是多少?3. 选择题:一个长方形的长是8厘米,宽是3厘米,求这个长方形的周长和面积。
4. 选择题:一个正方体的棱长是4厘米,求这个正方体的表面积和体积。
5. 选择题:一个圆的半径是5厘米,求这个圆的周长和面积。
6. 选择题:已知两个正方体的体积分别是16立方厘米和8立方厘米,求这两个正方体的棱长。
7. 选择题:一个长方体的长是8厘米,宽是3厘米,高是2厘米,求这个长方体的对角线长度。
8. 选择题:一个等差数列的前两项分别是3和7,公差是2,求这个等差数列的第10项。
9. 选择题:一个圆锥的底面半径是3厘米,高是4厘米,求这个圆锥的体积和表面积。
10. 选择题:已知一个三角形的两个内角分别是60度和90度,求第三个内角的度数。
11. 选择题:一个长方体的长是6厘米,宽是4厘米,高是2厘米,求这个长方体的对角线长度。
12. 选择题:一个正方体的棱长是6厘米,求这个正方体的表面积和体积。
13. 选择题:一个圆的半径是8厘米,求这个圆的周长和面积。
14. 选择题:已知一个等差数列的前两项分别是1和4,公差是3,求这个等差数列的第10项。
15. 选择题:一个圆锥的底面半径是4厘米,高是6厘米,求这个圆锥的体积和表面积。
16. 选择题:已知一个三角形的两个内角分别是45度和45度,求第三个内角的度数。
17. 选择题:一个长方体的长是5厘米,宽是3厘米,高是2厘米,求这个长方体的对角线长度。
18. 选择题:一个正方体的棱长是5厘米,求这个正方体的表面积和体积。
19. 选择题:一个圆的半径是10厘米,求这个圆的周长和面积。
20. 选择题:已知一个等差数列的前两项分别是2和7,公差是3,求这个等差数列的第10项。
初三数学重点题型
初三数学重点题型
初三数学重点题型
1. 几何:
这是初中数学中比较重要的题型之一,主要涉及三角形、梯形、菱形、圆形以及空间图形的各种性质以及证明问题,以及图形变换、分段函
数中斜率变化特点等概念,如:求三角形的角、边相互关系式;梯形、菱形斜边和平行边的关系;三边中两边之和大于第三边的充分必要条件;关于圆的切线、弦与圆心连线的关系等。
几何中的等腰三角形、
等边三角形、矩形等也是初三学生应该牢固掌握的基础知识。
2. 集合运算:
运用集合运算可以解决很多数学问题,如空集和全集、并集与交集的
概念,以及在它们的概念上的运算问题等,初三学生需要学习的内容
包括在不同的集合上的交集,补集的概念,以及相关的三角公式,如
交并补公式等。
3. 分式运算:
分式运算也是初三学生必须掌握的内容,它包括多项式的分式加、减、乘、除,以及分数的加减法计算问题,还分析多项式分式的真值问题,以及分式绝对值问题等,此外还有关于分式的比较,分式均分等等,
都是解决分式问题的基础,初三学生应当掌握。
4. 比例:
比例是初中数学中比较重要的题型之一,主要涉及比例的等式和不等式、比例的计算等,如等比数列的求和,物品中的比例变化计算,比例的性质及其证明,定比例、绝对比例不等式等,初三学生需要学会运用比例表达式进行计算,以及比例的性质来考虑实际问题。
5. 概率:
概率是初中数学中需要掌握的重要内容,其中重点是概率的定义、不等式以及意义,概率的运算以及条件概率问题,概率的函数以及概率的计算,如抛硬币、骰子概率计算,遗传和频率的概率计算等。
学习概率的初三学生在解决实际问题时,需要根据实际情况设定变量,从而运用概率的性质测定各种可能发生的结果。
初三数学必考题48题
初三数学必考题48题
初三数学的必考题通常涵盖了各个知识点,包括代数、几何、
数学应用题等。
在这里,我将列举一些可能出现的题目类型,以便
全面回答你的问题。
1. 代数题,可能包括一元一次方程、一元二次方程、分式方程等。
例如,“已知方程2x + 3 = 7,求x的值。
”。
2. 几何题,可能涉及到直角三角形、相似三角形、平行四边形
等内容。
例如,“已知直角三角形的两条直角边分别为3cm和4cm,求斜边长。
”。
3. 数学应用题,可能包括利润、利息、速度、工时等实际问题
的数学建模。
例如,“甲、乙两人同时从A、B两地相向而行,相遇
后甲行至B地还需2小时,乙行至A地还需3小时,求甲、乙两地
的距离。
”。
4. 综合题,可能结合多个知识点,考察学生的综合运用能力。
例如,“某商店举行促销活动,原价500元的商品打8折,再打9折,求促销后的价格。
”。
以上只是一些可能的题目类型,初三数学必考题还可能包括其他知识点。
学生在备考时,除了熟练掌握基础知识外,还需要注重综合运用能力和解题技巧的培养。
希望这些信息能够帮助你更好地准备初三数学考试。
中考数学必考题型
中考数学必考题型中考数学考查的不只是一些知识点和方法技巧,更加考查考生的知识应用能力。
下面整理了中考数学重点题型,供参考。
分式的化简与求值分式的运算分式的个数不超过三个,所以中考试题多以三个或两个分式为主,考察分式的通分,整式的因式分解,分式的约分等。
通常的解题程序是:先把分子与分母能分解因式的进行因式分解,同时把小括号内的分式通分合并;再把除法转化为乘法运算,最后准确约分即可。
一元二次方程与函数在这一类问题当中,尤以涉及的动态几何问题为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。
动态几何与函数问题整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。
而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。
但是这两种侧重也没有很严格的分野,很多题型都很类似。
列方程(组)解应用题在中考中,方程可以说是初中数学当中最重要的部分,从近年来的中考来看,结合时事热点考的比较多,所以还需要考生有一些生活经验。
实际考试中,这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。
几何图形的归纳、猜想问题中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。
对于这类归纳总结问题来说,思考的方法是最重要的。
初中数学中考解题大招试卷
一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 3/5B. -2/3C. √2D. 1/22. 下列方程中,解为x=2的是()A. 2x-3=5B. 3x+1=7C. x-2=4D. 2x+3=73. 一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的面积是()A. 24cm²B. 28cm²C. 32cm²D. 36cm²4. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A. (2,-3)B. (-2,3)C. (2,-3)D. (-2,-3)5. 若m,n是方程x²-2mx+1=0的两实数根,则m+n的值是()A. 2B. -2C. 0D. 16. 下列函数中,是反比例函数的是()A. y=x²B. y=2x-3C. y=3/xD. y=x+27. 下列各式中,能化为完全平方公式的是()A. x²-6x+9B. x²-5x+6C. x²+5x+6D. x²-4x-58. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 平行四边形D. 矩形9. 若等差数列{an}的首项为a₁,公差为d,则第n项an=()A. a₁+(n-1)dB. a₁+(n+1)dC. a₁+(n-2)dD. a₁+(n-3)d10. 在直角坐标系中,点P(-3,4)到直线x+y=0的距离是()A. 5B. 3C. 4D. 2二、填空题(每题3分,共30分)1. 若a=3,b=-2,则a²+b²的值为______。
2. 若x²-4x+4=0,则x的值为______。
3. 等边三角形的边长为a,则其面积为______。
4. 若m+n=10,m-n=2,则m和n的值分别为______。
5. 在直角坐标系中,点A(2,3)到原点的距离是______。