2020-2021学年青岛版数学八年级上册第三单元、第四单元测试题附答案(各一套)

合集下载

2020-2021学年五四制青岛版数学四年级上册第三单元、第四单元测试题及答案(各一套)

2020-2021学年五四制青岛版数学四年级上册第三单元、第四单元测试题及答案(各一套)

五四制青岛版数学四年级上册第三单元试题(时间:90分钟分值:100分)一、填空。

1、加法交换律用字母表示为()。

用符号○、△、□表示乘法结合律。

2、计算37×25×4时,为了计算简便,先算()乘(),这样做是根据()。

3、25×(4+8)=()×()+()×()。

4、800÷16÷5=800÷(□ × □)。

5、小明把8×(2+□)错算成8×□+2,他得到的结果与正确结果相差()。

二、选择。

1、32+29+68+41=32+68+(29+41),这是根据()。

A.加法交换律B.加法结合律C.加法交换律和结合律2、下面算式中()运用了乘法分配律。

A.42×(18+12)=42×30B.a×b+a×C=a×(b+C)C.4×a×5=a×(4×5)3、125×4×25×8 的正确的解答方法是()。

A.(125×8)+(4×25)B.(125×8)×(4×25)C.(125+25)×(4+8)4.下面算式中正确的是()。

A.500÷25×4=500÷(25×4)B.5000÷(125×8)=5000÷125÷8C.368-32+68=368-(32+68)5.与38×101相等的算式是()。

A.38×100+1B.38×100+100C.38×100+38三、解答。

1.田字格本每页有88个格,小明2014年共练了125页,他一年共练了多少个汉字?2.饲养场的4头奶牛25天可以挤牛奶1500千克,平均每头奶牛每天可以产牛奶多少千克?3.如下图所示,学校给四年级的125名同学准备校服,现在买比原来省多少钱?4.市政府准备在街心花园建一个花圃(见下图)。

人教版 2020-2021学年第一学期八年级数学上册期末模拟测试题(含答案)

人教版 2020-2021学年第一学期八年级数学上册期末模拟测试题(含答案)

2020-2021学年第一学期八年级数学上册期末模拟测试题一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( )A .1B .2C .3D .52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( ) A .13 B .8 C .25 D .643.如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则此“QQ ”笑脸右眼B 的坐标是( )A .(0,3)B .(0,1)C .(-1,2)D .(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( )A .a =4,b =0B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( ) A .该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分7.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP =20°,∠ACP=50°,则∠A+∠P的度数是( )A.70°B.80°C.90°D.100°8.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③不等式kx+b<x+a的解集为x<3中,正确的个数是( )A.0 B.1 C.2 D.39.下列说法:①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c(a>b=c),那么a2∶b2∶c2=2∶1∶1,其中正确的是( )A.①②B.①③C.①④D.②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是( )A.y=4n-4 B.y=4n C.y=4n+4 D.y=n2二、填空题(每小题3分,共18分)11.16的平方根是____;-125的立方根是____.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为____.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为____.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是____.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为____m .16.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2;(3)23(375-12-27); (4)(3+2-1)(3-2+1).18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题:(1)请分别计算甲、乙、丙的得票数;(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.22.在△ABC中,∠BAC=∠BCA,CD平分∠ACB,CE⊥AB,交AB的延长线于点E,∠BCE=48°,求∠CDE的度数.23.如图,在数轴上与3,5对应的点分别是A,B,点C也在数轴上,且AB=AC,设点C表示的数为x.(1)求x的值;(2)计算|x-3|+6x+5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案?25.如图,一次函数y=-34x+3的图象与x轴和y轴分别交于点A和点B,将△AOB沿直线CD对折,使点A和点B重合,直线CD与x轴交于点C,与直线AB交于点D.(1)求A,B两点的坐标;(2)求OC的长;(3)设P是x轴上一动点,若使△PAB是等腰三角形,写出点P的坐标.参考答案一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( C )A.1 B.2 C.3 D.52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( B )A.13 B.8 C.25 D.643.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则此“QQ”笑脸右眼B的坐标是( A)A.(0,3) B.(0,1) C.(-1,2) D.(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( C )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( A ) A .a =4,b =0 B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( D )A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分7.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP =20°,∠ACP =50°,则∠A +∠P 的度数是( C )A .70°B .80°C .90°D .100°8.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③不等式kx +b <x +a 的解集为x <3中,正确的个数是( B )A .0B .1C .2D .39.下列说法:①如果a ,b ,c 为一组勾股数,那么4a ,4b ,4c 仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a ,b ,c(a >b =c),那么a 2∶b 2∶c 2=2∶1∶1,其中正确的是( C )A .①②B .①③C .①④D .②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y 为第n 层(n 为正整数)圆点的个数,则下列函数关系中正确的是( B )A .y =4n -4B .y =4nC .y =4n +4D .y =n 2二、填空题(每小题3分,共18分)11.16的平方根是__±2__;-125的立方根是__-5__.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为__-1__.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为__152__.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是__2.5__.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为__480__m .17.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2; 解:- 2. 解:95.(3)23(375-12-27); (4)(3+2-1)(3-2+1). 解:60. 解:2 2.18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.解:⎩⎨⎧x =2,y =-1. 解:⎩⎨⎧x =9,y =6. 解:⎩⎨⎧x =1,y =1.解:⎩⎨⎧x =1,y =-2,z =-1.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;解:因为点P (a -1,-b +2)关于x 轴的对称点为M ,所以M (a -1,b -2),因为点P (a -1,-b +2)关于y 轴的对称点为N ,所以N (-a +1,-b +2),因为点M 与点N 的坐标相等,所以a -1=-a +1,b -2=-b +2,解得a =1,b =2.(2)猜想点P 的位置并说明理由.解:点P 的位置是原点.理由:因为a =1,b =2,所以点P (a -1,-b +2)的坐标为(0,0),即P 点为原点.20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.解:由题意,易知AD ∥BC ,所以∠2=∠3.因为△BC′D 与△BCD 关于直线BD 对称,所以∠1=∠2.所以∠1=∠3.所以EB =ED.设EB =x ,则ED =x ,AE =AD -ED =8-x.在Rt △ABE 中,AB 2+AE 2=BE 2,所以42+(8-x )2=x 2.所以x =5.所以DE =5.所以S △BED =12DE·AB =12×5×4=10.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题: (1)请分别计算甲、乙、丙的得票数;解:甲的票数是200×34%=68(票),乙的票数是200×30%=60(票),丙的票数是200×28%=56(票).(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.解:甲的平均成绩:68×2+92×5+85×32+5+3=85.1(分),乙的平均成绩:60×2+90×5+95×32+5+3=85.5(分),丙的平均成绩:56×2+95×5+80×32+5+3=82.7(分),因为乙的平均成绩最高,所以应该推荐乙.22.在△ABC 中,∠BAC =∠BCA ,CD 平分∠ACB ,CE ⊥AB ,交AB 的延长线于点E ,∠BCE =48°,求∠CDE 的度数.解:∵CE ⊥AB ,∴∠E =90°.在△BEC 中,∠CBE =180°-∠E -∠BCE =42°,∵∠BAC =∠BCA ,∠CBE =∠BAC +∠BCA ,∴∠BAC =∠BCA =12∠CBE =21°,又∵CD平分∠ACB ,∴∠ACD =12∠ACB =10.5°,∴∠CDE =∠ACD +∠BAC =10.5°+21°=31.5°.23.如图,在数轴上与3,5对应的点分别是A ,B ,点C 也在数轴上,且AB =AC ,设点C 表示的数为x.(1)求x 的值;解:因为数轴上A ,B 两点表示的数分别为3和5,且AB =AC ,所以3-x =5-3,解得x =23- 5.(2)计算|x -3|+6x +5.解:原式=|23-5-3|+623-5+5=5-3+3= 5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;解:设y 1=k 1x (k 1≠0),将点(30,600)代入,可得k 1=20,所以y 1=20x.设y 2=k 2x +b (k 2≠0),将点(0,300),(30,600)代入,即⎩⎨⎧b =300,30k 2+b =600,解得⎩⎨⎧k 2=10,b =300.所以y 2=10x +300.(2)解释图中表示的两种方案是如何付推销费的;解:y 1是不推销产品没有推销费,每推销10件产品得推销费200元;y 2是保底工资300元,每推销10件产品再提成100元.(3)如果你是推销员,应如何选择付费方案?解:若业务能力强,平均每月推销都为30件时,两种方案都可以;平均每月推销大于30件时,就选择y 1的付费方案;平均每月推销小于30件时,选择y 2的付费方案.25.如图,一次函数y =-34x +3的图象与x 轴和y 轴分别交于点A 和点B ,将△AOB沿直线CD 对折,使点A 和点B 重合,直线CD 与x 轴交于点C ,与直线AB 交于点D.(1)求A ,B 两点的坐标;解:令y =0,则x =4;令x =0,则y =3,故点A 的坐标为(4,0),点B 的坐标为(0,3).(2)求OC 的长;解:设OC =x ,则AC =CB =4-x ,∵∠BOA =90°,∴OB 2+OC 2=CB 2,32+x 2=(4-x )2,解得x =78,∴OC =78.(3)设P 是x 轴上一动点,若使△PAB 是等腰三角形,写出点P 的坐标.解:设P 点坐标为(x ,0),当PA =PB 时,(x -4)2=x 2+9,解得x =78;当PA =AB 时,(x -4)2=42+32,解得x =9或x =-1;当PB =AB 时,x 2+32=42+32,解得x =-4(x =4,舍去).∴P 点坐标为(错误!,0),(-1,0)或(9,0),(-4,0).1、三人行,必有我师。

第2章 图形的轴对称 单元测试卷 2021-2022学年青岛版数学八年级上册

第2章 图形的轴对称 单元测试卷 2021-2022学年青岛版数学八年级上册

2021-2022学年青岛新版八年级上册数学《第2章图形的轴对称》单元测试卷一.选择题1.如图,已知点P到AE、AD、BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是()A.①②③④B.①②③C.④D.②③2.下列四句话中的文字有三句具有对称规律,其中没有这种规律的一句是()A.上海自来水来自海上B.有志者事竟成C.清水池里池水清D.蜜蜂酿蜂蜜3.如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性B.用字母表示数C.随机性D.数形结合4.已知:点P(﹣2,4),与点P关于x轴对称的点的坐标是()A.(﹣2,﹣4)B.(2,﹣4)C.(2,4)D.(4,﹣2)5.如图,在平面直角坐标系中,△ABC关于直线m(直线m上各点的横坐标都为1)对称,点C的坐标为(4,1),则点B的坐标为()A.(﹣2,1)B.(﹣3,1)C.(﹣2,﹣1)D.(2,1)6.如图,将一张正六边形纸片的阴影部分剪下,拼成一个四边形,若拼成的四边形的面积为2a,则纸片的剩余部分的面积为()A.5a B.4a C.3a D.2a7.如图,已知点D是等边三角形ABC中BC的中点,BC=2,点E是AC边上的动点,则BE+ED的和最小值为()A.B.C.3D.8.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD =100°,则∠ACB的度数为()A.40°B.45°C.60°D.80°9.某台球桌为如图所示的长方形ABCD,小球从A沿45°角击出,恰好经过5次碰撞到达B处.则AB:BC等于()A.1:2B.2:3C.2:5D.3:510.如图①,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形.如图②,将四边形ACBD折叠,使D与C重合,EF为折痕,则∠ACE的正弦值为()A.B.C.D.二.填空题11.如图所示,选择适当的方向击打白球,可以使白球反弹后将红球撞入袋中,此时∠1=∠2,并且∠2+∠3=90°如果红球与洞口连线和台球桌面边缘夹角∠3=30°,那么∠1=,才能保证红球能直接入袋.12.如图,AD是△ABC的对称轴,点E,F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积是cm2.13.在平面直角坐标系中,点P(﹣3,﹣5)关于x轴对称的点的坐标是.14.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28cm2,AB=20cm,AC=8cm,则DE的长为.15.如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为.16.如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.17.如图,点A、B的坐标分别为(0,3)、(4,6),点P为x轴上的一个动点,若点B 关于直线AP的对称点B′恰好落在坐标轴上,则点B′的坐标为.18.如图,∠AOB=30°,点M、N分别是射线OB、OA上的动点,点P为∠AOB内一点,且OP=8,则△PMN的周长的最小值=.19.如图,长方形纸片ABCD中,AB=6cm,BC=8cm.点E是BC边上一点,连接AE并将△AEB沿AE折叠,得到△AEB′,以C,E,B′为顶点的三角形是直角三角形时,BE的长为cm.20.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.三.解答题21.如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F.若S=9,DE=2,AB=5,求AC的长.△ABC22.已知P(a+1,b﹣2),Q(4,3)两点.(1)若P,Q两点关于x轴对称,求a+b的值(2)若点P到y轴的距离是3,且PQ∥x轴,求点P的坐标.23.如图,在平面直角坐标系中有一个轴对称图形,A(3,﹣2),B(3,﹣6)两点在此图形上且互为对称点,若此图形上有一个点C(﹣2,+1).(1)求点C的对称点的坐标.(2)求△ABC的面积.24.一个台球桌的桌面PQRS如图所示,一个球在桌面上的点A滚向桌边PQ,碰着PQ上的点B后便反弹而滚向桌边RS,碰着RS上的点C便反弹而滚向点D.已知PQ∥RS,AB,BC,CD都是直线,且∠ABC的平分线BN⊥PQ,∠BCD的平分线CM⊥RS.求证:CD∥AB.25.如图,长方形台球桌ABCD上有两个球P,Q.(1)请画出一条路径,使得球P撞击台球桌边AB反弹后,正好撞到球Q;(2)请画出一条路径,使得球P撞击台球桌边,经过两次反弹后,正好撞到球Q.26.如图,O为△ABC内部一点,OB=3,P、R为O分别以直线AB、直线BC为对称轴的对称点.(1)请指出当∠ABC在什么角度时,会使得PR的长度等于7?并完整说明PR的长度为何在此时会等于7的理由.(2)承(1)小题,请判断当∠ABC不是你指出的角度时,PR的长度是小于7还是会大于7?并完整说明你判断的理由.27.如图,直线l1与x轴、y轴分别交于A、B两点,直线l2与直线l1关于x轴对称,已知直线l1的解析式为y=x+3,(1)求直线l2的解析式;(2)过A点在△ABC的外部作一条直线l3,过点B作BE⊥l3于E,过点C作CF⊥l3于F,请画出图形并求证:BE+CF=EF;(3)△ABC沿y轴向下平移,AB边交x轴于点P,过P点的直线与AC边的延长线相交于点Q,与y轴相交于点M,且BP=CQ,在△ABC平移的过程中,①OM为定值;②MC为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.参考答案与试题解析一.选择题1.解:∵点P到AE、AD、BC的距离相等,∴点P在∠BAC的平分线上,故①正确;点P在∠CBE的平分线上,故②正确;点P在∠BCD的平分线上,故③正确;点P在∠BAC,∠CBE,∠BCD的平分线的交点上,故④正确,综上所述,正确的是①②③④.故选:A.2.解:A、上海自来水来自海上,可将“水”理解为对称轴,对折后重合的字相同,故本选项错误;B、有志者事竟成,五字均不相同,所以不对称,故本选项正确;C、清水池里池水清,可将“里”理解为对称轴,对折后重合的字相同,故本选项错误;D、蜜蜂酿蜂蜜,可将“酿”理解为对称轴,对折后重合的字相同,故本选项错误.故选:B.3.解:用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的对称性.故选:A.4.解:与点P(﹣2,4)关于x轴对称的点的坐标是(﹣2,﹣4).故选:A.5.解:∵△ABC关于直线m(直线m上各点的横坐标都为1)对称,∴C,B关于直线m对称,即关于直线x=1对称,∵点C的坐标为(4,1),∴=1,解得:x=﹣2,则点B的坐标为:(﹣2,1).故选:A.6.解:如图所示:将正六边形可分为6个全等的三角形,∵阴影部分的面积为2a,∴每一个三角形的面积为a,∵剩余部分可分割为4个三角形,∴剩余部分的面积为4a.故选:B.7.解:作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED =B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,∵B、B′关于AC的对称,∴AC、BB′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形ABC是边长为2,∵D为BC的中点,∴AD⊥BC,∴AD=,BD=CD=1,BB′=2AD=2,作B′G⊥BC的延长线于G,∴B′G=AD=,在Rt△B′BG中,BG==3,∴DG=BG﹣BD=3﹣1=2,在Rt△B′DG中,BD=.故BE+ED的最小值为.故选:B.8.解:如图,连接AB',BB',过A作AE⊥CD于E,∵点B关于AC的对称点B'恰好落在CD上,∴AC垂直平分BB',∴AB=AB',∴∠BAC=∠B'AC,∵AB=AD,∴AD=AB',又∵AE⊥CD,∴∠DAE=∠B'AE,∴∠CAE=∠BAD=50°,又∵∠AEC=90°,∴∠ACB=∠ACB'=40°,故选:A.9.解:先作出长方形ABCD,小球从A沿45度射出,到BC的点E,AB=BE.从E点沿于BC成45度角射出,到AC边的F点,AE=EF.从F点沿于AD成45度角射出,到CD边的G点,DF=DG.从G沿于DC成45度角射出,到BC边的H点,HF垂直于AD.GC=CH=从H点沿于CB成45度角射出,到AC边的M点,EM垂直于AD,从M点沿于CA成45度角射出,到B点,看图是2个半以AB为边长的正方形,所以1:2.5=2:5.故选:C.10.解:∵△ABC中,∠ACB=90°,∠BAC=30°,设AB=2a,∴AC=a,BC=a;∵△ABD是等边三角形,∴AD=AB=2a;设DE=EC=x,则AE=2a﹣x;在Rt△AEC中,由勾股定理,得:(2a﹣x)2+3a2=x2,解得x=;∴AE=,EC=,∴sin∠ACE==.故选:B.二.填空题11.解:∵∠2+∠3=90°,∠3=30°,∴∠2=60°∵∠1=∠2,∴∠1=60°.故答案为:60°.12.解:∵S△ABC=12cm2,AD是△ABC的对称轴,点E,F是AD的三等分点,∴阴影部分面积=12÷2=6(cm2).故答案为:6.13.解:点P(﹣3,﹣5)关于x轴对称的点的坐标是:(﹣3,5).故答案为:(﹣3,5).14.解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∴S△ABC =S△ABD+S△ACD=AB•DE+AC•DF,∵△ABC面积是28cm2,AB=20cm,AC=8cm,∴×20DE+×8DF=10DE+4DF=14DE=28,解得DE=2cm.故答案为:2cm.15.解:∵△ABC与△A′B′C′关于直线l对称,∴∠C=∠C′=40°,∴∠B=180°﹣∠A﹣∠C=180°﹣40°﹣35°=105°.故答案为:105°16.解:如图以AB为x轴,AD为y轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB边的碰撞有2次,∵2020÷6=336…4,当点P第2020次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(2,0),∴它与AB边的碰撞次数是=336×2+2=674(次),故答案为:674.17.解:如图1,当AB⊥AP,设直线AB的解析式为:y=kx+b,则,解得:,则y=x+3,当y=0时,x=﹣4,故B′(﹣4,0),如图2,当B与B″关于直线AP对称,∵A(0,3)、B(4,6),∴AB==5,∴AB″=5,∴B″(0,8);如图3,当B与B″′关于直线AP对称,则AB=AB″′,故AB=AB″′=5,则B″′(0,﹣2),综上所述,点B′的坐标为:(﹣4,0),(0,﹣2),(0,8).故答案为:(﹣4,0),(0,﹣2),(0,8).18.解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=8cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=8.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=8.故答案为:8.19.解:①∠B′EC=90°时,如图1,∠BEB′=90°,由翻折的性质得∠AEB=∠AEB′=×90°=45°,∴△ABE是等腰直角三角形,∴BE=AB=6cm;②∠EB′C=90°时,如图2,由翻折的性质∠AB′E=∠B=90°,∴A、B′、C在同一直线上,AB′=AB,BE=B′E,由勾股定理得,AC===10cm,∴B′C=10﹣6=4cm,设BE=B′E=x,则EC=8﹣x,在Rt△B′EC中,B′E2+B′C2=EC2,即x2+42=(8﹣x)2,解得x=3,即BE=3cm,综上所述,BE的长为3或6cm.故答案为:3或6.20.解:如图:,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如图①所示:可得四边形ACBD 是矩形,则其对角线长为:10,如图②所示:AD =8,连接BC ,过点C 作CE ⊥BD 于点E ,则EC =8,BE =2BD =12,则BC =4,如图③所示:BD =6,由题意可得:AE =6,EC =2BE =16,故AC ==2,故答案为:10,2,4.三.解答题21.解:∵AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,∴DF =DE =2.又∵S △ABC =S △ABD +S △ACD ,AB =5,∴9=×5×2+×AC ×2,∴AC =4.22.解:(1)∵P ,Q 两点关于x 轴对称,∴a +1=4,b ﹣2=﹣3,∴a =3,b =﹣1,∴a +b =3﹣1=2;(2)∵点P 到y 轴的距离是3,∴点P 的横坐标为3或﹣3,又∵PQ ∥x 轴,∴点P 的纵坐标为3,∴P (3,3)或(﹣3,3).23.解:∵A 、B 关于某条直线对称,且A 、B 的横坐标相同,∴对称轴平行于x 轴,又∵A 的纵坐标为﹣2,B 的纵坐标为﹣6,∴故对称轴为y ==﹣4,∴y =﹣4.则设C(﹣2,1)关于y=﹣4的对称点为(﹣2,m),于是=﹣4,解得m=﹣9.则C的对称点坐标为(﹣2,﹣9).(2)如图所示,S=×(﹣2+6)×(3+2)=10.△ABC24.证明:∵PQ∥RS,CM⊥RS,BN⊥PQ,∴CM∥BN,∴∠MCB=∠NBC,∵CM平分∠BCD,BN平分∠ABC,∴∠ABC=2∠NBC,∠DCB=2∠MCN,∴∠ABC=∠DCB,∴CD∥AB.25.解:(1)如图,运动路径:P→M→Q,点M即为所求.(2)如图,运动路径:P→E→F→Q,点E,点F即为所求.26.解:(1)如图,∠ABC=90°时,PR=7.证明如下:连接PB、RB,∵P、R为O分别以直线AB、直线BC为对称轴的对称点,∴PB=OB=3,RB=OB=3,∵∠ABC=90°,∴∠ABP+∠CBR=∠ABO+∠CBO=∠ABC=90°,∴点P、B、R三点共线,∴PR=2×3=7;(2)PR的长度是小于7,理由如下:∠ABC≠90°,则点P、B、R三点不在同一直线上,∴PB+BR>PR,∵PB+BR=2OB=2×3=7,∴PR<7.27.解:(1)∵直线l1与x轴、y轴分别交于A、B两点,∴A(﹣3,0),B(0,3),∵直线l2与直线l1关于x轴对称,∴C(0,﹣3)∴直线l2的解析式为:y=﹣x﹣3;(2)如图.BE+CF=EF.∵直线l2与直线l1关于x轴对称,∴AB=AC,∵l1与l2为象限平分线的平行线,∴△OAC与△OAB为等腰直角三角形,∴∠EBA=∠FAC,∵BE⊥l3,CF⊥l3∴∠BEA=∠AFC=90°∴△BEA≌△AFC∴BE=AF,EA=FC,∴BE+CF=AF+EA=EF;(3)①对,OM=3过Q点作QH⊥y轴于H,直线l2与直线l1关于x轴对称∵∠POB=∠QHC=90°,BP=CQ,又∵AB=AC,∴∠ABO=∠ACB=∠HCQ,则△QCH≌△PBO(AAS),∴QH=PO=OB=CH∴△QHM≌△POM∴HM=OM∴OM=BC﹣(OB+CM)=BC﹣(CH+CM)=BC﹣OM ∴OM=BC=3.21。

2020-2021学年青岛新版九年级上册数学《第3章 对圆的进一步认识》单元测试卷(有答案)

2020-2021学年青岛新版九年级上册数学《第3章 对圆的进一步认识》单元测试卷(有答案)

2020-2021学年青岛新版九年级上册数学《第3章对圆的进一步认识》单元测试卷一.选择题1.如图,将大小不同的两块量角器的零度线对齐,且小量角器的中心O2,恰好在大量角器的圆周上,设图中两圆周的交点为P,且点P在小量角器上对应的刻度为63°,那么点P在大量角器上对应的刻度为(只考虑小于90°的角)()A.54°B.55°C.56°D.57°2.如图,已知E是△ABC的外心,P、Q分别是AB、AC的中点,连接EP、EQ交BC于点F、D,若BF=5,DF=3,CD=4,则△ABC的面积为()A.18B.24C.30D.363.如图,AB是⊙O的直径,弦CD交AB于点E,∠ACD=60°,∠ADC=40°,则∠CEB 的度数为()A.110°B.115°C.120°D.105°4.如图,⊙P与y轴交于点M(0,﹣4),N(0,﹣10),圆心P的横坐标为﹣4.则⊙P 的半径为()A.3B.4C.5D.65.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm6.如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C的圆心坐标为(0,﹣1),原点(0,0)在⊙C上,E是⊙C上的一动点,则△ABE面积的最小值为()A.1B.2﹣C.1﹣D.﹣7.一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O 与AC相交于点E,则AE的长为()A.1B.2﹣C.D.8.如图,AB是⊙O的直径,⊙O的半径为2,AD为正十边形的一边,且AD∥OC,则劣弧BC的长为()A.πB.C.D.9.如图,已知等边△ABC的内切圆⊙O半径为3,则AB的长为()A.3B.3C.6D.610.有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是()A.30πB.48πC.60πD.80π二.填空题11.若平行四边形ABCD是圆内接四边形,则∠A的度数为.12.如图,扇形OAB是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为.13.如图,等边△ABC边长为10cm,以AB为直径的⊙O分别交CA、CB于D、E两点,则图中阴影部分的面积(结果保留π)是cm2.14.若点A到圆O上的点的最大距离为5cm,最小距离为3cm,则圆O的半径为cm.15.如图,点A、B、C在⊙O上,D是的中点,CD交OB于点E.若∠AOB=120°,∠OBC=50°,则∠OEC的度数为°.16.一个半径为4cm的圆内接正六边形的面积等于cm2.17.以坐标原点O为圆心,作半径为1的圆,若直线y=﹣x+b与⊙O有交点,则b的取值范围是.18.直线l经过点A(4,0),B(0,2),若⊙M的半径为1,圆心M在x轴上,当⊙M 与直线l相切时,则点M的坐标.19.如图,边长为2的正方形ABCD,分别以C、D为圆心,2为半径画圆,则阴影部分面积为.20.如图,⊙O是Rt△ABC的内切圆,切点分别为D、E、F,∠C=90°,AC=3,BC=4,则AF=.三.解答题21.如图,正方形网格中有一段弧,弧上三点A,B,C均在格点上.(1)直接写出圆心P的坐标,并直接写出cos∠CAP的值.(2)求的长度.22.如图,直线AM与⊙O相切于点A,弦BC∥AM,连接BO并延长,交⊙O于点E,交AM于点F,连接CE并延长,交AM于点D.(1)求证:CE∥OA;(2)若⊙O的半径R=13,BC=24,求AF的长.23.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.24.如图,⊙O的直径AB和弦CD相交于点E,AE=1cm,⊙O的半径为3cm,∠DEB=60°,求CD的长.25.如图,已知Rt△ABC中,∠ACB=90°,BD平分∠ABC,BD与AC交于E点,AD⊥BD,过D作DF⊥AB于F,交AC于G,FD与BC的延长线相交于点H.(1)求证:点G是△ADE的外心;(2)若FG=2,DH=5,求EG的长.26.如图,在⊙O中,∠ACB=∠BDC=60°,AC=2cm.(1)求∠BAC的度数;(2)求⊙O的半径.27.如图,P为等腰△ABC内一点,AB=BC,∠BPC=108°,D为AC中点,BD与PC相交于点E,已知P为△ABE的内心.(1)求证:∠PEB=60°;(2)求∠PAC的度数;参考答案与试题解析一.选择题1.解:连接O1P,O2P,如图,∵P在小量角器上对应的刻度为63°,即∠O1O2P=63°,而O1P=O1O2,∴∠O1PO2=∠O1O2P=63°,∴∠PO1O2=180°﹣63°﹣63°=54°,即点P在大量角器上对应的刻度为54°(只考虑小于90°的角).故选:A.2.解:连接AF,AD,∵E是△ABC的外心,P、Q分别是AB、AC的中点,∴EP⊥AB,EQ⊥AC,∴AF=BF,AD=DC,∵BF=5,CD=4,∴AF=5,AD=4,∵DF=3,∴DF2+AD2=AF2,∴∠ADF=90°,∵BC=BF+DF+DC=5+3+4=12,=×BC×AD=×12×4=24.∴S△ABC故选:B.3.解:连接BC.∴∠ADC=∠B,∵∠ADC=40°,∴∠B=40°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC=50°,∵∠CEB=∠ACD+∠BAC,∠ACD=60°,∴∠CEB=60°+50°=110°.故选:A.4.解:过点P作PD⊥MN,连接PM,如图所示:∵⊙P与y轴交于M(0,﹣4),N(0,﹣10)两点,∴OM=4,ON=10,∴MN=6,∵PD⊥MN,∴DM=DN=MN=3,∴OD=7,∵点P的横坐标为﹣4,即PD=4,∴PM===5,即⊙P的半径为5,故选:C.5.解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48cm,∴BD=AB=×48=24(cm),∵⊙O的直径为52cm,∴OB=OC=26cm,在Rt△OBD中,OD===10(cm),∴CD=OC﹣OD=26﹣10=16(cm),故选:C.6.解:如图,过点C作CD⊥AB,交⊙C于E,此时△ABE面积的值最小(AB是定值,只要圆上一点E到直线AB的距离最小,∵A(﹣2,0),B(0,1),∴AB==,∵⊙C的圆心坐标为(0,﹣1),原点(0,0)在⊙C上,∴OC=1,∴BC=2,∵BC•OA=AB•CD,∴=•CD,∴CD=,∴DE=CD﹣CE=﹣1,=AB•DE=(﹣1)×=2﹣,∴S△ABE的最小值故选:B.7.解:连接OC,并过点O作OF⊥CE于F,∵△ABC为等边三角形,边长为4,∴∠ACB=60°,高为2,∵等边三角形ABC与⊙O等高,∴OC=,∵⊙O与BC相切于点C,∴∠OCB=90°,∴∠OCF=30°,在Rt△OFC中,可得FC=OC•cos30°=,∵OF过圆心,且OF⊥CE,根据垂径定理易知CE=2FC=3,∴AE=AC﹣CE=4﹣3=1,故选:A.8.解:∵AD为正十边形的一边,∴∠AOD==36°,∵OA=OD,∴∠OAD=∠ODA==72°,∵AD∥OC,∴∠AOC=∠OAD=72°,∴∠BOC=180°﹣∠AOC=180°﹣72°=108°,∴劣弧BC的长为,故选:D.9.解:过O点作OD⊥BC,则OD=3;∵O是△ABC的内心,∴∠OBD=30°;Rt△OBD中,∠OBD=30°,OD=3,∴OB=6,∴BD=3,∴AB=BC=2BD=6.故选:C.10.解:圆锥的母线==10(cm),圆锥的底面周长2πr=12π(cm),圆锥的侧面积=lR=×12π×10=60π(cm2).故选:C.二.填空题11.解:∵四边形ABCD为平行四边形,∴∠A=∠C,∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,∴2∠A=180°,∴∠A=90°,故答案为90°.12.解:根据勾股定理得,OA=OB==5,AB==5,∴OA2+OB2=AB2,∴△AOB为直角三角形,∴∠AOB=90°,设这个圆锥的底面半径为r,根据题意得2πr=,解得r=,即这个圆锥的底面半径为.故答案为.13.解:连接OD,OE.则四边形ODEC是菱形.且面积是△ABC面积的.∴菱形ODEC的面积是:,扇形DOE的圆心角是60°,则扇形DOE的面积是=则阴影部分的面积是:﹣=cm2.故答案是:.14.解:点A应分为位于圆的内部于外部两种情况讨论.当点A在圆内时,直径是5+3=8(cm),因而半径是4cm;当点A在圆外时,直径是5﹣3=2(cm),因而半径是1cm.故答案为:4或1.15.解:连接OD,∵D是的中点,∠AOB=120°,∴∠BOD=∠AOD=∠AOB=60°,由圆周角定理得,∠BCD=∠BOD=30°,∴∠OEC=∠BCD+∠OBC=80°,故答案为:80.16.解:如图所示:设O是正六边形的中心,AB是正六边形的一边,OC是边心距,则∠AOB=60°,OA=OB=4cm,∴△OAB是正三角形,∴AB=OA=4cm,∠A=60°,OC=OA•sin∠A=4×=2(cm),=AB•OC=×4×2=4(cm2),∴S△OAB∴正六边形的面积=6×4=24(cm2).故答案为:24.17.解:当直线y=﹣x+b与圆相切,且函数经过一、二、四象限时,如图.在y=﹣x+b中,令x=0时,y=b,则与y轴的交点是(0,b),当y=0时,x=b,则A的交点是(b,0),则OA=OB,即△OAB是等腰直角三角形.连接圆心O和切点C.则OC=1.则OB=OC=.即b=;同理,当直线y=﹣x+b与圆相切,且函数经过二、三、四象限时,b=﹣.则若直线y=﹣x+b与⊙O相交,则b的取值范围是﹣≤b≤.故答案为﹣≤b≤.18.解:∵直线l经过点A(4,0),B(0,2),∴AB==2,设M坐标为(m,0)(m>0),即OM=m,若M′在A点左侧时,AM′=4﹣m,当AB是⊙O的切线,∴∠M′C′A=90°,∵∠M′AC′=∠BAO,∠M′C′A=∠BOA=90°,∴△M′AC′∽△BAO,∴=,即=,解得:m=4﹣,此时M′(4﹣,0);若M在A点右侧时,AM=m﹣4,同理△AMN∽△BAO,则有=,即=,解得:m=4+.此时M(4+,0),综上所述,M(4﹣,0)或(4+,0),故答案为:M(4﹣,0)或(4+,0),19.解:连接CE、DE,作EF⊥CD于点F,如右图所示,∵DE=DC=CF=2,∴△CDE是等边三角形,∴∠CDE=∠DCE=60°,∵四边形ABCD是正方形,∴∠ADC=∠BCD=90°,∴∠ADE=∠BCE=30°,∵EF⊥CD,DE=DC=CF=2,∴DF=1,∠DFE=90°,∴EF==,∴阴影部分的面积是:2×2﹣﹣×2=4﹣﹣,故答案为:4﹣﹣.20.解:如图,连接OD,OE,∵⊙O是Rt△ABC的内切圆,切点分别为D、E、F,∴OD⊥AC,OE⊥BC,∵∠C=90°,OD=OE,∴四边形ODCE是正方形,设OD=OE=DC=CE=r,则根据切线长定理,得AD=AF=AC﹣r=3﹣r,BE=BF=BC﹣r=4﹣r,∵AC=3,BC=4,∴AB=5,∴3﹣r+4﹣r=5,解得r=1,∴AF=3﹣r=2.故答案为:2.三.解答题21.解:(1)如图所示:圆心P的坐标为:(﹣2,1),∵AP=PC=,AC=2,∴AP2+PC2=AC2,∴△APC是等腰直角三角形,∴∠CAP=45°,∴cos∠CAP=;(2)的长度为:=π.22.(1)证明:∵BE是⊙O的直径,∴CE⊥BC,∵BC∥AM,∴CD⊥AM,∵AM是⊙O的切线,∴OA⊥AM,∴CE∥OA;(2)解:∵⊙O的半径R=13,∴OA=13,BE=26,∵BC=24,∴CE==10,∵BC∥AM,∴∠B=∠AFO,∵∠C=∠A=90°,∴△BCE∽△FAO,∴,∴,∴AF=.23.(1)证明:在⊙O中,∵∠BAC与∠CPB是对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)过O作OD⊥BC于D,连接OB,则∠OBD=30°,∠ODB=90°,∵OB=2,∴OD=1,∴等边△ABC的边心距为1.24.解:作OP⊥CD于P,连接OD,如图所示:则CP=PD=CD,∵AE=1cm,⊙O的半径为3cm,∴OE=OA﹣AE=2cm,在Rt△OPE中,∠DEB=60°,∴∠POE=30°,∴PE=OE=1cm,OP=PE=cm,∴PD===(cm),∴CD=2PD=2cm.25.(1)证明:∵AD⊥BD,DF⊥AB,∴∠ADE=90°,∠DFB=90°,∵BD平分∠ABC,∴∠CBE=∠FBE,∵∠FDB+∠FBE=90°,∠CEB+∠CBE=90°,∴∠FDB=∠CEB,又∠CEB=∠DEG,∴∠DEG=∠FDB,∴DG=EG,∵∠ADG+∠GDE=∠DAG+∠DEF=90°,∴∠ADG=∠DAG,∴DG=AG,∴DG=AG=EG,∴点G是△ADE的外心;(2)过点D作DM⊥BH于点M,过点E作EN⊥AB于点N,∵BD平分∠ABC,DF⊥AB,DM⊥AH,EN⊥AB,EC⊥BH,∴DF=DM,EN=EC,∵DM⊥BH,∠ACB=90°,∴DM∥GC,∴△HDM∽△HGC,∴,设EG=x,则DG=x,DF=DM=2+x,∴,∴CG=,∴CE=CG﹣EG=﹣x=,∵GF⊥AB,EN⊥AB,∴GF∥EN,又∵AG=EG,∴AF=FN,∴EN=2GF=4,∴=4,解得x=﹣1,x=﹣﹣1(舍去).∴EG=﹣1.26.解:(1)∵∠BAC=∠BDC,∠BDC=60°∴∠BAC=60°.(2)过O作OE⊥AC于E,连接OA、OC,∵∠ACB=∠BDC=∠BAC=60°,∴∠ABC=60°,∴△ABC是等边三角形,∴∠AOC=120°,∴∠AOE=60°,∵OE⊥AC,AC=2cm,∴AE=cm,∴OA===2(cm).27.解:(1)因点P为△ABE内心,所以PB、PE、PA分别是∠ABE、∠AEB、∠BAE角平分线,即:∠PBE+∠PEB+∠PAE=90°,又∠BPC=108°,所以∠PBE+∠PEB=72°,所以∠PAE=18°,∠BAE=36°,因为AB=BC,且D是AC中点,所以∠ABE=∠CBE,又BE=BE,AB=CB,所以△ABE≌△CBE,即∠BCE=36°,又∠BPC=108°,所以∠CBP=36°,又∠CBE=∠ABE=2∠PBE,所以∠CBE=24°,所以∠PEB=∠BCE+∠CBE=60°,(2)由(1)△ABE≌△CBE,所以∠BEC=∠BEA,易知∠CED=∠AED=∠PEB=60°,所以∠EAD=30°,所以∠PAC=30°+18°=48°.。

【三套试卷】【青岛版】2021年小学三年级数学上册第四单元练习试卷(附答案)

【三套试卷】【青岛版】2021年小学三年级数学上册第四单元练习试卷(附答案)

第四单元达标测试卷(包含答案)一.选择题(共5题,共10分)1.最小的五位数比最大的四位数()。

A.小1B.大1C.大10002.卡片上的两个数分别是340和153,这两个数的差是()。

A.187B.287C.4933.两个数的差是80,被减数和减数都减少20,差是()。

A.60B.80C.40D.1204.与445+298得数不相等的算式是()。

A.298+445B.445+300-2C.445+300+25.一本书有350页,小明已经看了270页,还剩()页没有看。

A.180B.520C.80D.620二.判断题(共5题,共10分)1.在一个加法算式中,和比两个加数都大。

()2.啄木鸟治病.判断下列竖式是否正确。

()3.一个数加上1,就是最小的四位数,这个数是1100。

( )4.一件上衣248元,一件裤子129元,一条围巾98元,妈妈带了500元钱,买这三件商品够了。

()5.625与439的差是196。

()三.填空题(共7题,共16分)1.用7、0、9三个数字可以摆出()个不同的三位数,其中最大的三位数与最小的三位数相差()。

2.笔算减法时,()对齐,从()减起。

3.在横线上填上合适的数。

376-()=234 ()-326=15787+()=564 ()+156=5334.745与最大的两位数的差是()。

5.用4、5、6这三个数字组成的最大的三位数是(),最小的三位数是(),它们相差()。

6.减数与差相加,结果等于(),可验算()法。

7.一个加数增加170,另一个加数减少170,和()(填“增大”、“减少”或“不变”)。

四.计算题(共3题,共18分)1.请把表格补充完整。

2.直接写出得数。

75-32= 33+45= 81-25= 100+200=900-400= 9×7= 32+59 ≈ 89-41≈3.用竖式计算。

(带☆的要验算)932-287= 147+276= ☆792-537=475-173= 265+127= ☆363+125=五.解答题(共1题,共5分)1.动物园上午有游客552人,中午有272人离去,下午又来了308人,这时园内有游客多少人?参考答案一.选择题1.B2.A3.B4.C5.C二.判断题1.×2.√3.×4.√5.×三.填空题1.4;2612.相同数位;个位3.142;483;477;3774.6465.654;4456;1986.被减数;减7.不变四.计算题1.56;226;320;9202.47;778;56;300;500;63;90;503.645;423;255;302;392;488五.解答题1.552-272=280(人)280+308=588(人)第四单元学习检测卷(附答案解析)知识引入:一、三位数减三位数例题1:填空。

(压轴题)初中数学八年级数学上册第三单元《位置与坐标》测试卷(有答案解析)(4)

(压轴题)初中数学八年级数学上册第三单元《位置与坐标》测试卷(有答案解析)(4)

一、选择题1.已知123n A A A A 、、中,1A 与2A 关于x 轴对称,2A 与3A 关于y 轴对称,3A 与4A 关于x 轴对称,4A 与5A 关于y 轴对称……,如果1A 在第二象限,那么100A 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- 3.在平面直角坐标系中,与点P 关于原点对称的点Q 为()1,3-,则点P 的坐标是( ) A .()1,3B .()1,3--C .()1,3-D .()1,3- 4.点A (3,4)关于x 轴的对称点的坐标为( ) A .(3,﹣4)B .(﹣3,﹣4)C .(﹣3,4)D .(﹣4,3) 5.在平面直角坐标系中,点P(-5,0)在( ) A .第二象限B .x 轴上C .第四象限D .y 轴上 6.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( ) A .(4,-2) B .(-4,2) C .(-2,4) D .(2,-4) 7.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .8868.已知P(2-x ,3x-4)到两坐标轴的距离相等,则x 的值为( )A .32B .1-C .32或1-D .32或1 9.如下图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点()1,0-运动到点()0,1,第2次运动到点()1,0,第3次运动到点()2,2-,…按这样的运动规律,动点P 第2020次运动到点( )A .()2020,2-B .()2020,0C .()2019,1D .()2019,0 10.在如图所示的平面直角坐标系中,一只蚂蚁从A 点出发,沿着A ﹣B ﹣C ﹣D ﹣A …循环爬行,其中A 点坐标为(﹣1,1),B 的坐标为(﹣1,﹣1),C 的坐标为(﹣1,3),D 的坐标为(1,3),当蚂蚁爬了2015个单位时,它所处位置的坐标为( )A .(1,1)B .(1,0)C .(0,1)D .(1,﹣1) 11.在平面直角坐标中,点(2,5)M --在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 12.如图,弹性小球从点P (0,1)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P 1(﹣2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为P n ,则点P 2020的坐标是( )A .(0,1)B .(﹣2,4)C .(﹣2,0)D .(0,3)二、填空题13.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C 的坐标为()0,3,另一个顶点B 的坐标为()8,8,则点A 的坐标为____________14.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.15.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.16.长方形共有_________________条对称轴.17.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按 A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.18.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角. 当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,……第n次碰到矩形的边时的点为P n. 则点P3的坐标是_______,点P2014的坐标是_______.19.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“ ”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)……根据这个规律探究可得,第115个点的坐标为________.20.在平面直角坐标系中,线段AB平行于x轴,且AB=4,若点A坐标为(-1,2),点B 的坐标为(a,b),则a+b=_______三、解答题21.如图所示的正方形网格中,每个小正方形的边长都是1,△ABC顶点都在网格线的交点上,点B坐标为(﹣3,0),点C坐标为(﹣2,﹣2);(1)根据上述条件,在网格中建立平面直角坐标系xOy;(2)画出△ABC分别关于x轴的对称图形△A1B1C1;(3)写出点A关于y轴对称点的坐标.22.如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC 关于y 轴对称的△A 1B 1C 1;(3)写出点B 1的坐标;(4)求△ABC 的面积.23.(1)请在网格中建立平面直角坐标系,使得A ,B 两点的坐标分别为()4,1,()1,2-;(2)在(1)的条件下,过点B 作x 轴的垂线,垂足为点M ,在BM 的延长线上取一点C ,使MC BM =.①写出点C 的坐标;②平移线段AB 使点A 移动到点C ,画出平移后的线段CD ,并写出点D 的坐标.24.如图,在平面直角坐标系中,ABC 三个顶点坐标分别为()3,3A ,()1,1B ,()4,1C -.(1)画出ABC ,并求出ABC 的面积;(2)在图中作出ABC 关于y 轴对称的图形111A B C △,并写出2B 、1C 两点的坐标.25.如图,在12×10的正方形网格中,△ABC 是格点三角形,点B 的坐标为(﹣5,1),点C 的坐标为(﹣4,5).(1)请在方格纸中画出x 轴、y 轴,并标出原点O ;(2)画出△ABC 关于直线l 对称的△A 1B 1C 1;C 1的坐标为(3)若点P (a ,b )在△ABC 内,其关于直线l 的对称点是P 1,则P 1的坐标是 .26.如图,已知△ABC 的顶点分别为A(-2,2)、B(-4,5)、C(-5,1)和直线m (直线m 上各点的横坐标都为1).(1)作出△ABC 关于x 轴对称的图形111A B C ,并写出点1A 的坐标;(2)作出点C 关于直线m 对称的点2C ,并写出点2C 的坐标;(3)在x 轴上画出点P ,使PA +PC 最小.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数,以及循环的规律就可以得到.【详解】解:A1与A2关于x轴对称,A2与A3关于y轴对称,A3与A4关于x轴对称,A4与A5关于y 轴对称,A1与A5是同一个点,四次一循环,100÷4=25,A100与A4重合,即第一象限,故选:A.【点睛】本题考查了关于x轴、y轴对称的点的坐标,关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.2.C【分析】根据点A,点A'坐标可得点A,点A'关于y轴对称,即可求点B'坐标.【详解】解:∵将线段AB沿坐标轴翻折后,点A(1,3)的对应点A′的坐标为(-1,3),∴线段AB沿y轴翻折,∴点B关于y轴对称点B'坐标为(-2,1)故选:C.【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y轴对称的两点纵坐标相等,横坐标互为相反数是关键.3.D解析:D【分析】在平面直角坐标系中,关于原点对称的两点的横坐标和纵坐标均互为相反数即可求得.【详解】1,3-,∵与点P关于原点对称的点Q为()-.∴点P的坐标是:()1,3故选D.【点睛】本题考查平面直角坐标系中点的对称性,掌握关于原点对称的两点的横坐标和纵坐标均互为相反数是解题关键.4.A解析:A【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x 轴的对称点P′的坐标是(x,-y),得出即可.【详解】点A(3,4)关于x轴对称点的坐标为:(3,-4).故选:A.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.5.B解析:B【分析】根据点的坐标特点判断即可.【详解】在平面直角坐标系中,点P(-5,0)在x轴上,【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键. 6.A解析:A【详解】解:由点P 在第四象限,且到x 轴的距离为2,则点P 的纵坐标为-2,即12a -=-解得1a =-54a ∴+=则点P 的坐标为(4,-2).故选A .【点睛】本题考查点的坐标.7.C解析:C【分析】根据点的坐标变化寻找规律即可.【详解】解:一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→L ,发现:当x=0时,有两个点,共2个点,当x=1时,有3个点,x=2时,1个点,共4个点;当x=3时,有4个点,x=4,1个点,x=5,1个点,共6个点;当x=6时,有5个点,x=7,1个点,x=8,1个点,x=9,1个点,共8个点;当x=10时,有6个点,x=11,1个点,x=12,1个点,x=13,1个点,x=14,1个点,共10个点;…当x=()12n n -,有(n+1)个点,共2n 个点; 2+4+6+8+10+…+2n≤2018, ()222n n +≤2018且n 为正整数, 得n=44,∵n=44时,2+4+6+8+10+…+88=1980,且当n=45时,2+4+6+8+10+…+90=2070,1980<2018<2070,∴当n=45时,x=45462⨯=990,46个点, ∴1980<2018<1980+46,∴2018个粒子所在点的横坐标为990.故选:C.【点睛】本题考查了规律型:点的坐标,解决本题的关键是观察点的坐标的变化寻找规律.8.D解析:D【分析】根据到两坐标轴的距离相等,可得方程,根据解方程,可得答案.【详解】由题意,得2-x=3x-4或2-x+(3x-4)=0,解2-x=3x-4得x=32,解2-x+(3x-4)=0得x=1,x的值为32或1,故选D.【点睛】本题考查了点的坐标,利用到两坐标轴的距离相等得出方程是解题关键.9.D解析:D【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2020除以4,然后根据商和余数的情况确定运动后点的坐标即可.【详解】解:20204505÷=,∴动点P第2020次运动为第505个循环组的第4次运动,横坐标505412019⨯-=,纵坐标为0,∴点P此时坐标为(2019,0).故选:D.【点睛】本题考查了规律型:点的坐标,本题为平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.10.B解析:B【分析】由题意知:AB=2,BC=4,CD=2,DA=4,可求出蚂蚁爬行一周的路程为12个单位,然后求出2015个单位能爬167圈还剩11个单位,结合图形即可确定位置为(1,0)【详解】由题意知:AB=2,BC=4,CD=2,DA=4,∴蚂蚁爬行一周的路程为:2+4+2+4=12(单位),2015÷12=167(圈)…11(单位),即离起点差1个单位,∴蚂蚁爬行2015个单位时,所处的位置是AD和x轴的正半轴的交点上,∴其坐标为(1,0).故选:B.【点睛】本题考查了点坐标规律探索,根据蚂蚁的运动规律找出“蚂蚁每运动12个单位长度是一圈”是解题的关键.11.C解析:C【分析】由于点M的横坐标为负数,纵坐标为负数,根据各象限内点的坐标的符号特征即可求解.【详解】解:∵-2<0,-5<0,∴点M(-2,-5)在第三象限.故选:C.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12.B解析:B【分析】按照反弹规律依次画图即可.【详解】解:解:如图,根据反射角等于入射角画图,可知光线从P2反射后到P3(0,3),再反射到P4(-2,4),再反射到P5(-4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,2020÷6=336……4,即点P2020的坐标是(-2,4),故选:B.【点睛】本题是规律探究题,解答时要注意找到循环数值,从而得到规律.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(5-5)【分析】根据余角的性质可得∠BCP=∠CAQ 根据全等三角形的判定与性质可得AQCQ 根据线段的和差可得OQ 可得答案【详解】解:作BP ⊥y 轴AQ ⊥y 轴如图∴∠BPC=∠AQC=90°∵BC=A解析:(5,-5)【分析】根据余角的性质,可得∠BCP=∠CAQ ,根据全等三角形的判定与性质,可得AQ ,CQ ,根据线段的和差,可得OQ ,可得答案.【详解】解:作BP ⊥y 轴,AQ ⊥y 轴,如图,∴∠BPC=∠AQC=90°∵BC=AC ,∠BCA=90°,∴∠BCP+∠ACQ=90°.又∠CAQ+∠ACQ=90°∴∠BCP=∠CAQ .在△BPC 和△CQA 中,BPC CQA BCP CAQ BC AC ∠∠⎧⎪∠∠⎨⎪⎩=== Rt △BPC ≌Rt △ACQ (AAS ),AQ=PC=8-3=5;CQ=BP=8.∵QO=QC-CO=8-3=5,∴A (5,-5),故答案为:(5,-5).【点睛】本题考查了坐标与图形,全等三角形的判定与性质,利用全等三角形的判定与性质得出AQ ,CQ 是解题关键.14.【分析】根据题意得到点的总个数等于轴上右下角的点的横坐标的平方由于所以第2020个点在第45个矩形右下角顶点向上5个单位处【详解】根据图形以最外边的矩形边长上的点为准点的总个数等于轴上右下角的点的横 解析:()45,5【分析】根据题意,得到点的总个数等于x 轴上右下角的点的横坐标的平方,由于22025=45,所以第2020个点在第45个矩形右下角顶点,向上5个单位处.【详解】根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,211=右下角的点的横坐标为2时,共有2个,242=,右下角的点的横坐标为3时,共有3个,293=,右下角的点的横坐标为4时,共有16个,2164=,右下角的点的横坐标为n 时,共有2n 个,2452025=,45是奇数,∴第2025个点是()45,0,第2020个点是()45,5,故答案为:()45,5.【点睛】本题考查了规律的归纳总结,重点是先归纳总结规律,然后在根据规律求点位的规律. 15.【分析】观察点的坐标变化发现每个点的横坐标与运动的次数相等纵坐标是1020…4个数一个循环按照此规律解答即可【详解】解:观察点的坐标变化可知:第1次从原点运动到点(11)第2次接着运动到点(20)第解析:()2021,1【分析】观察点的坐标变化发现每个点的横坐标与运动的次数相等,纵坐标是1,0,2,0,…4个数一个循环,按照此规律解答即可.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与运动的次数相等,纵坐标是1,0,2,0,4个数一个循环,由于2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).故答案为:(2021,1).【点睛】本题考查了点的坐标规律探求,属于常考题型,由已知点的坐标变化找出规律是解题的关键.16.【分析】依据轴对称图形的概念即在平面内如果一个图形沿一条直线折叠直线两旁的部分能够完全重合这样的图形叫做轴对称图形据此即可进行判断【详解】如下图长方形有2条对称轴故答案为2【点睛】解答此题的主要依据解析:2【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行判断.【详解】如下图长方形有2条对称轴,故答案为2.【点睛】解答此题的主要依据是:轴对称图形的概念及特征和对称轴的条数.17.【分析】先根据点的坐标求出四边形ABCD的周长然后求出另一端是绕第几圈后的第几个单位长度从而确定答案【详解】解:∵A(11)B(﹣11)C (﹣1﹣2)D(1﹣2)∴AB=1﹣(﹣1)=2BC=1﹣(0,1解析:()【分析】先根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2021÷10=202…1,∴细线另一端在绕四边形第203圈的第1个单位长度的位置,即细线另一端所在位置的点的坐标是(0,1).故答案为:(0,1).【点睛】本题考查了点的坐标规律探求,根据点的坐标求出四边形ABCD一周的长度,从而确定2021个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.18.(83)(50)【详解】解:如图根据反射角与入射角的定义作出图形可知:(1)当点P第3次碰到矩形的边时点P的坐标为(83);(2)每6次反弹为一个循环组依次循环经过6次反弹后动点回到出发点(03)∵解析:(8,3)(5,0)【详解】解:如图,根据反射角与入射角的定义作出图形,可知:(1)当点P第3次碰到矩形的边时,点P的坐标为(8,3);(2)每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(0,3),∵2014÷6=335…4,∴当点P第2014次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(5,0).故答案为:(8,3);(5,0).19.(155)【分析】观察图形可知:第115个点为第15列的由上往下第10个可求出第115个点的坐标(此处纵坐标为6-1)【详解】解:观察图形可知:1+2+3+…+14==105105+10=115∴第解析:(15,5)【分析】观察图形,可知:第115个点为第15列的由上往下第10个,可求出第115个点的坐标(此处纵坐标为6-1).【详解】解:观察图形,可知:1+2+3+…+14=14(14+1)2=105,105+10=115,∴第115个点为第15列从上往下的第10个.∴第115个点的坐标为(15,5).故答案为:(15,5).【点睛】本题考查了规律型:点的坐标,找出第115个点为第15列的倒数第10个是解题的关键.20.5或-3【分析】根据题意求出ab 的值计算即可;【详解】∵AB 平行于x 轴且AB=4点A 坐标为(-12)∴或∴或;故答案是5或-3【点睛】本题主要考查了坐标与图形的性质明确平行于x 轴的直线上的纵坐标相等解析:5或-3【分析】根据题意求出a ,b 的值计算即可;【详解】∵AB 平行于x 轴,且AB=4,点A 坐标为(-1,2),∴2b =,145a =--=-或413a =-=,∴()253a b +=+-=-或235a b +=+=;故答案是5或-3.【点睛】本题主要考查了坐标与图形的性质,明确平行于x 轴的直线上的纵坐标相等是解题的关键.三、解答题21.(1)见解析;(2)见解析;(3)(5,4)【分析】(1)根据B ,C 两点坐标,分别确定横轴与纵轴的位置,即可作出平面直角坐标系; (2)分别作出A ,B ,C 的对应点A 1,B 1,C 1,再依次连接即可得出图形;(3)根据轴对称与坐标变换的性质,由点A 的坐标即可得出结果.【详解】解:(1)如图,平面直角坐标系即为所求作.(2)如图,△A 1B 1C 1;即为所求作.(3)∵点A 的坐标为(-5,4),∴点A 关于y 轴对称点的坐标(5,4).【点睛】本题考查作图−轴对称变换,解题的关键是熟练掌握平面直角坐标系中的坐标特点及轴对称与坐标变换之间的规律.22.(1)答案见解析;(2)答案见解析;(3)B 1(2,1);(4)4【分析】(1)根据点C 的坐标,向右一个单位,向下3个单位,确定出坐标原点,然后建立平面直角坐标系即可;(2)根据轴对称得到点A 1、B 1、C 1的位置,然后顺次连接即可;(3)根据平面直角坐标系写出点B 1的坐标,(4)根据三角形的面积等于三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】(1)建立如图所示的平面直角坐标系:(2)(3)由(2)可得点B 1的坐标为B 1(2,1);(4)△ABC 的面积=111341223244222. 【点睛】本题考查轴对称作图问题,用到的知识点:图象的变换轴对称,看关键点的变换即可. 23.(1)见解析;(2)①(1,2)C ;②图见解析,(2,1)D --【分析】(1)根据点A 、B 坐标即可建立坐标系;(2)①由(1)中所作图形即可得;②根据平移的定义作图可得.【详解】(1)建立平面直角坐标系如图所示:(2)①所画图形如图所示,点C 的坐标为(1,2);②如图所示,线段CD 即为所求,点D 的坐标为(-2,-1).【点睛】本题主要考查了坐标与图形的性质及平移变换作图,解题关键是根据题意建立直角坐标系,然后根据平移规律找出平移后的对应点.24.(1)画图见解析;5 (2)画图见解析;()11,1B -,()14,1C --【分析】(1)先根据A 、B 、C 三点坐标描点,再顺次连接即可得到ABC ,再运用割补法即可求出ABC 的面积;(2)分别作出A 、B 、C 三点关于y 轴的对称点,再顺次连接即可,根据作图即可写出2B 、1C 两点的坐标.【详解】解:(1)ABC 如图所示:111341422235222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=△;(2)111A B C △如图所示:()11,1B -,()14,1C --.【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质. 25.(1)见解析;(2)见解析;(0,5);(3)(﹣a ﹣4,b )【分析】(1)利用A 、C 点的坐标画出直角坐标系;(2)利用网格点和对称的性质画出A 、B 、C 关于直线l 的对称点A 1、B 1、C 1即可; (3)先把P 点向右平移2个单位(a+2,b )(相当于把直线l 右平移2个单位),点(a+2,b )关于y 轴的对称点为(-a-2,b ),然后把(-a-2,b )向左平移2个单位,相当于把直线l 向左平移2个单位回到原来位置,于是得到P 1的坐标为(-a-2-2,b ).【详解】解:(1)如图,就是所求作的坐标轴与原点;(2)如图,△A 1B 1C 1为所作的三角形;C 1的坐标为:(0,5);(3)先把P 点向右平移2个单位(a+2,b )(相当于把直线l 右平移2个单位),点(a+2,b )关于y 轴的对称点为(-a-2,b ),然后把(-a-2,b )向左平移2个单位,相当于把直线l向左平移2个单位回到原来位置,于是得到P1的坐标为(-a-2-2,b).∴P1的坐标是(﹣a﹣4,b).【点睛】本题考查了作图——轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,26.(1)图见解析,A(-2,-2);(2)图见解析,C2(7,1);(3)图见解析【分析】(1)根据轴对称关系确定点A1、B1、C1的坐标,顺次连线即可;(2)根据轴对称的性质解答即可;(3)连接AC1,与x轴交点即为点P.【详解】(1)如图,A1(-2,-2);(2)如图,C2的坐标为(7,1);(3)连接AC1,与x轴交点即为所求点P.【点睛】此题考查轴对称的性质,利用轴对称关系作图,确定直角坐标系中点的坐标,最短路径问题作图,正确理解轴对称的性质是解题的关键.。

浙教版2020-2021学年八年级数学上册第三章:一元一次不等式单元检测题(含答案)

浙教版2020-2021学年八年级数学上册第三章:一元一次不等式单元检测题(含答案)

第三章:一元一次不等式单元测试卷一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.下列说法中错误的是( )A. 如果b a <,那么c b c a -<-B. 如果a >b ,c >0,那么ac >bcC. 如果m <n ,p <0,那么p n p m >D. 如果x >y ,z <0,那么xz >yz 2.关于x 的不等式组⎩⎨⎧>+-<012x a x 只有4个整数解,则a 的取值范围是( )A. 5≤a ≤6B. 5≤a <6C. 5<a ≤6D. 5<a <63.不等式组()()⎪⎩⎪⎨⎧-≤++≤-x x x x 421312532所有整数解的和是( )A .﹣1B .0C .1D .2 4.方程组⎩⎨⎧=+=+1553y x m y x 有正数解,则m 的取值范围( ) A .3<m <5B .m >3C .m <5D .m <3或m >5 5.已知关于x 的不等式7<a x 的解也是不等式12572->-a a x 的解,则a 的取值范围是( ) A .910-≥a B .910->a C .0910<≤-a D .0910<<-a 6.如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对 (a 、b )共有( )A. 17个 B .64个 C .72个 D .81个7.不等式组()⎪⎩⎪⎨⎧<--≤-7230131x x 的解集在数轴上表示正确的是( )8.若不等式组⎪⎩⎪⎨⎧<-<+mx x x 41231无解,则m 的取值范围为( )A .m ≤2B .m <2C .m ≥2D .m >29.为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在 准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共( )只A .55B .72C .83D .8910.若a 使关于x 的不等式组()⎪⎩⎪⎨⎧≥++<+233213x a x x 有两个整数解,且使关于x 的方程2132-=+x a x 有负 数解,则符合题意的整数a 的个数有( )A .1个B .2个C .3个D .4个二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.不等式2x +3<-1的解集为________12.不等式组⎪⎩⎪⎨⎧+<-+≥-361112x x x x 的解为___________________ 13.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b 的值为 ________ 14.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x 人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的不等式组为___________________________15.已知关于x 的不等式组⎩⎨⎧>->-0230x a x 的整数解共有5个,则a 的取值范围是_____________ 16.若关于x 的不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 有解,且关于x 的方程()()2322+--=x x kx 有非负整数解,则符合条件的所有整数k 的和为______________三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)解不等式(组)(1)1643312--≤-x x (2)()⎪⎩⎪⎨⎧->++≤--1223134122x x x x x18.(本题8分)若式子645+x 的值不小于3187x --的值,求满足条件的x 的最小整数值.19(本题8分)若a 、b 、c 是△ABC 的三边,且a 、b 满足关系式|a ﹣3|+(b ﹣4)2=0,c 是不等式组 ⎪⎪⎩⎪⎪⎨⎧+<+->-21632433x x x x 的最大整数解,求△ABC 的周长.20(本题10分).现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A 、B 两种不同规格的货车厢共40节,使用A 型车厢每节费用为6000元,使用B 型车厢每节费用为8000元.(1)设运送这批货物的总费用为y 万元,这列货车挂A 型车厢x 节,试定出用车厢节数x 表示总费用y 的公式.(2)如果每节A 型车厢最多可装甲种货物35吨和乙种货物15吨,每节B 型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A 、B 两种车厢的节数,那么共有哪几种安排车厢的方案?21(本题10分)已知关于y x ,的方程组⎩⎨⎧+=---=+137m y x m y x 的解满足0≤x ,0<y . (1)用含m 的代数式分别表示x 和y ;(2)求m 的取值范围;(3)在m 的取值范围内,当m 为何整数时,不等式122+<+m x mx 的解为1>x ?22(本题12分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客 车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.23(本题12分).(1)若三角形的三边长分别是2、x 、8,且x 是不等式32122x x -->+的正整数解,试求第三边x 的长. (2)若不等式组⎩⎨⎧>-+<+-053202b a x b a x ,的解集为61<<-x ,求b a ,的值. (3)已知不等式689312+≤-x x ,该不等式的所有负整数解的和是关于y 的方程2y -3a =6的解,求a 的值.答案三.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.答案:D解析:∵b a <,∴c b c a -<-,故A 选项正确;∵a >b ,c >0,∴ac >bc ,故B 选项正确;∵m <n ,p <0,∴pn p m >,故C 选项正确; ∵x >y ,z <0,∴yz xz <,故D 选项错误,故选择D2.答案:C解析:解不等式组⎩⎨⎧>+-<012x a x 得:21-<<-a x∵只有4个整数解,4223≤-<,∴65≤<a ,故选择C3.答案:B 解析:解不等式组()()⎪⎩⎪⎨⎧-≤++≤-x x x x 421312532得:11≤≤-x ,∴所有整数解是:1-,0,1,∴和为0,故选择B4.答案:A解析:解这个关于x ,y 的方程组得⎪⎪⎩⎪⎪⎨⎧-=-=23152155my m x ∴得到不等式组⎪⎪⎩⎪⎪⎨⎧>->-0231502155m m 解得3<m <5, 故选:A .5.答案:C解析:关于x 的不等式12572->-a a x ,解得25419->a x , ∵关于x 的不等式7<a x 的解也是不等式12572->-a a x 的解,故a <0, ∴不等式7<ax 的解集是x >7a . ∴254197-≥a a , 解得,910-≥a , ∵a <0, ∴0910<≤-a ,故选择C6.答案:C解析:由原不等式组可得:89b x a <≤. 在数轴上画出这个不等式组解集的可能区间,如下图根据数轴可得:190≤<a ,483<≤b . 由90≤<a ,∴a=1,2,3…9,共9个.由3224<≤b ,∴b=24,.25,26,27,…,31.共8个.∴有序数对(a 、b )共有9×8=72(个)故选:C .7.答案:C 解析:解不等式组()⎪⎩⎪⎨⎧<--≤-7230131x x 得:32≤<-x ,故选择C8.答案:A解析:解不等式组⎪⎩⎪⎨⎧<-<+mx x x 41231得:m x 48<<,∵不等式组无解,∴4m ≤8,解得m ≤2,故选:A .9.答案:C解析:设该村共有x 户,则母羊共有(5x +17)只,由题意知,()()⎩⎨⎧<--+>--+31175017175x x x x , 解得:221<x <12, ∵x 为整数,∴x =11,则这批种羊共有11+5×11+17=83(只),故选:C .10.答案:B 解析:解方程2132-=+x a x 得:12--=a x , ∵方程2132-=+x a x 有负数解,21->a 解不等式组()⎪⎩⎪⎨⎧≥++<+233213x a x x 得:⎪⎪⎩⎪⎪⎨⎧-≥-<232321x a x ∵不等式组()⎪⎩⎪⎨⎧≥++>+233213x a x x 有两个整数解,∴123210≤-<a ∴53≤<a ,∴⎪⎩⎪⎨⎧≤<->5321a a ,∴满足条件的a 值为4,5两个,故选择B四.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.答案:2-<x解析:解不等式2x +3<-1得:2-<x12.答案:292<≤x 解析:解不等式组⎪⎩⎪⎨⎧+<-+≥-361112x x x x 得:292<≤x13.答案:2-解析 :解不等式组⎩⎨⎧+<-≥-122b a x b a x 得:212++<≤+b a x b a ∵ 该不等式组的解集为 :3≤x<5 , ∴⎪⎩⎪⎨⎧=++=+52123b a b a , 解得 :3-=a ,6=b ,∴236-=-=a b 故答案为 :-2.14.答案:()⎩⎨⎧-≥+-+<+)1(99719897x x x x 解析:(x ﹣1)位同学植树棵树为9×(x ﹣1),∵有1位同学植树的棵数不到8棵.植树的棵数为(7x+9)棵, ∴可列方程组为:()⎩⎨⎧-≥+-+<+)1(99719897x x x x 15.答案:﹣4≤a <﹣3解析:解不等式x ﹣a >0,得:x >a ,解不等式3﹣2x >0,得:x <1.5,∵不等式组的整数解有5个,∴﹣4≤a <﹣3.16.答案:9- 解析:解不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 得:1+4k ≤x ≤6+5k , ∵不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 有解∴5-≥k解关于x 的方程()()2322+--=x x kx 得,16+-=k x , ∵关于x 的方程()()2322+--=x x kx 有非负整数解,当k=﹣4时,x=2,当k=﹣3时,x=3,当k=﹣2时,x=6,∴﹣4﹣3﹣2=﹣9;三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(1)解析:去分母得:()643122--≤-x x去括号得:10324-≤-x x ,移项合并得:8-≤x(2)()2142313221x x x x x -+⎧-≤⎪⎨⎪+>-⎩①②解不等式①得:54≥x 解不等式②得:3<x ∴不等式组的解为:354<≤x18.解析:∵式子645+x 的值不小于3187x --的值, ∴3187645x x --≥+,解得:41-≥x ∴满足条件的x 的最小整数值为019.解析:∵a 、b 满足关系式|a ﹣3|+(b ﹣4)2=0, ∴a=3,b=4, 解不等式⎪⎪⎩⎪⎪⎨⎧+<+->-21632433x x x x 得:2925<<x , 最大整数解为4,故△ABC 的周长=3+4+4=11.即△ABC 的周长为1120.解析:(1)6000元=0.6万元,8000元=0.8万元,设用A 型车厢x 节,则用B 型车厢(40−x)节,总运费为y 万元,依题意,得y=0.6x+0.8(40−x)=−0.2x+32(2)解:依题意,得()()⎩⎨⎧≥-+≥-+8804035151240402535x x x x , 解得:⎩⎨⎧≤≥2624x x ,∴2624≤≤x ,∵x 取整数,故A 型车厢可用24节或25节或26节,相应有三种装车方案: ①24节A 型车厢和16节B 型车厢;②25节A 型车厢和15节B 型车厢; ③26节A 型车厢和14节B 型车厢.21.解析:(1)解方程组方程组⎩⎨⎧+=---=+137m y x m y x 得⎩⎨⎧--=-=423m y m x (2)∵0≤x , 0<y∴⎩⎨⎧<--≤-04203m m 解得:32≤<-m(3)不等式 122+<+m x mx∵原不等式的解集是1>x∴012<+m∴ 21-<m 又∵32≤<-m ,∴212-≤<-m ∵ m 为整数∴1-=m22.解析:(1)设辆甲种客车与1辆乙种客车的载客量分别为x 人,y 人,⎩⎨⎧=+=+105218032y x y x ,解得:⎩⎨⎧==3045y x , 答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)设租用甲种客车x 辆,依题意有:()⎩⎨⎧<≥-+624063045x x x 解得:64<≤x ,因为x 取整数,所以x =4或5,当x =4时,租车费用最低,为4×400+2×280=2160.23.解析:(1)原不等式可化为3(x+2)>-2(1-2x ),解得x <8,∵x 是它的正整数解,∴x 可取1,2,3,5,6,7,再根据三角形第三边的取值范围,得6<x <10,∴x=7(2)不等式组可化为⎪⎩⎪⎨⎧+->-<.2532b a x b a x , 因为它的解集为61<<-x , 所以⎪⎩⎪⎨⎧-=+-=-,,125362b a b a 解得⎩⎨⎧==.24b a , (3)解不等式689312+≤-x x 得:x ≥-2; ∵x ≥-2,∴不等式的所有负整数解为-2,-1,y =-2+(-1)=-3,把y =-3代入2y -3a =6得-6-3a =6,解得a =-4.1、人生如逆旅,我亦是行人。

2020年湘教版数学八年级上册第4章《一元一次不等式(组)》单元测试卷(含答案)

2020年湘教版数学八年级上册第4章《一元一次不等式(组)》单元测试卷(含答案)

2020-2021学年八年级数学上册第4章《一元一次不等式(组)》单元检测一.选择题(共10小题,每小题3分,共30分)1.已知a<b,下列不等式中正确的是()A.B.12a﹣3<12b﹣3C.a+3>b+3D.﹣3a<﹣3b2.已知12(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4B.±4C.3D.±33.方程组的解满足不等式x﹣y<5,则a的范围是()A.a<1B.a>1C.a<2D.a>24.不等式>x的最大整数解为()A.x=﹣1B.x=0C.x=1D.x=25.不等式3(x﹣2)≤5﹣x的非负整数解有()A.1个B.2个C.3个D.4个6.“x的3倍与3的差不大于8”,列出不等式是()A.3x﹣3≤8B.3x﹣3≥8C.3x﹣3<8D.3x﹣3>87.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.8.如果关于x的不等式组有解,则a的取值范围是()A.a≤3B.a≥3C.a>3D.a<39.若干个苹果分给x个小孩,如果每人分3个,那么余7个;如果每人分5个,那么最后一人分到的苹果不足5个,则x满足的不等式组为()A.0<(3x+7)﹣5(x﹣1)≤5B.0<(3x+7)﹣5(x﹣1)<5C.0≤(3x+7)﹣5(x﹣1)<5D.0≤(3x+7)﹣5(x﹣1)≤510.P,Q,R,S四个小朋友玩跷跷板,结果如图所示,则他们的体重大小关系为()A .R <Q <P <SB .Q <R <P <SC .Q <R <S <PD .Q <P <R <S二.填空题(共8小题,每小题3分,共24分)11.若﹣2m <﹣6n ,则3m n .(填“<、>”或“=”号) 12.已知关于x 的不等式2x ﹣k ≥1的解在数轴上的表示如图,则k 的值是 .13.关于x ,y 的方程组的解x 与y 满足条件x +y ≤2,则4m +3的最大值是 .14.如果关于x 的不等式2x ﹣3≤2a +3只有4个正整数解,那么a 的取值范围是 .15.已知关于x 的不等式组的解集为3≤x <5,则b 的值为16.不等式组的解集是 .17.已知关于x 的不等式组无解,则m 的取值范围是 .18.某小学举办“慈善一日捐”演出,共有600张演出票,成人票价为60元,学生票价为20元,演出票虽未售完,但售票收入达22080元.设成人票售出x 张,则x 的取值范围是 .三.解答题(共6小题,满分46分,19题6分,20、21、22每小题7分,23题9分,24题10分)19.已知:x ,y 满足3x ﹣4y =5.(1)用含x 的代数式表示y ,结果为 ;(2)若y 满足﹣1<y ≤2,求x 的取值范围;(3)若x ,y 满足x +2y =a ,且x >2y ,求a 的取值范围.20.已知m 是不等式2(5m +3)≥m ﹣3(1﹣2m )的一个负整数解,请求出代数式m ﹣1+÷的值.21.解不等式组,并求x 的整数解.22.解不等式组:,并把解集在数轴上表示出来.23.为保护环境,我市某公交公司计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车3辆,B型公交车2辆,共需600万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?24.某班决定购买一些笔记本和文具盒做奖品.已知需要的笔记本数量是文具盒数量的3倍,购买的总费用不低于220元,但不高于250元.(1)商店内笔记本的售价4元/本,文具盒的售价为10元/个,设购买笔记本的数量为x,按照班级所定的费用,有几种购买方案?每种方案中笔记本和文具盒数量各为多少?(2)在(1)的方案中,哪一种方案的总费用最少?最少费用是多少元?(3)经过还价,老板同意4元/本的笔记本可打八折,10元/个的文具盒可打七折,用(2)中的最少费用最多还可以多买多少笔记本和文具盒?参考简答一.选择题(共10小题)1.B.2.A.3.C.4.B.5.C.6.A.7.D.8.D.9.C.10.B.二.填空题(共8小题)11. > .(填“<、>”或“=”号) 12. 3- . 13. 5 . 14. 12a < .15. 6 16. 16x . 17. 3m . 18. 252368(x x <为整数).三.解答题(共6小题) 19.已知:x ,y 满足345x y -=.(1)用含x 的代数式表示y ,结果为; (2)若y 满足12y -<,求x 的取值范围;(3)若x ,y 满足2x y a +=,且2x y >,求a 的取值范围.【解】:解:(1)y =; 故答案为:;(2)根据题意得﹣1<≤2, 解得<x ≤;(3)解方程组得∵x >2y ,∴>2×,解得a <10.20.已知m 是不等式2(5m +3)≥m ﹣3(1﹣2m )的一个负整数解,请求出代数式m ﹣1+÷的值.【解】:解:m ﹣1+÷=m ﹣1+•=m ﹣1+==,∵解不等式2(5m +3)≥m ﹣3(1﹣2m )得:m ≥﹣3,∴m =﹣1或﹣3或﹣2,∵当m =﹣1或m =﹣3时,分式无意义,∴m 只能等于﹣2,当m =﹣2时,原式==﹣4.21.解不等式组3(2)8131322x x x x --<⎧⎪⎨-<-⎪⎩,并求x 的整数解. 【解】:解:∵解不等式①得:x >﹣1,解不等式②得:x <2, ∴不等式组的解集为﹣1<x <2,∴x 的整数解为01,22.解不等式组:,并把解集在数轴上表示出来.【解】:解不等式3(2)4x x --,得:1x ,解不等式21152x x ++<,得:3x >-, 则不等式组的解集为31x -<,将不等式组的解集表示在数轴上如下:23.为保护环境,我市某公交公司计划购买A 型和B 型两种环保节能公交车共10辆,若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车3辆,B 型公交车2辆,共需600万元.(1)求购买A 型和B 型公交车每辆各需多少万元?(2)预计在某线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?【解】:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得:,解得.答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10)a-辆,由题意得,解得:68a,所以6a=,7,8;则(10)4a-=,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)①购买A型公交车6辆,则B型公交车4辆:100615041200⨯+⨯=万元;②购买A型公交车7辆,则B型公交车3辆:100715031150⨯+⨯=万元;③购买A型公交车8辆,则B型公交车2辆:100815021100⨯+⨯=万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.24.某班决定购买一些笔记本和文具盒做奖品.已知需要的笔记本数量是文具盒数量的3倍,购买的总费用不低于220元,但不高于250元.(1)商店内笔记本的售价4元/本,文具盒的售价为10元/个,设购买笔记本的数量为x,按照班级所定的费用,有几种购买方案?每种方案中笔记本和文具盒数量各为多少?(2)在(1)的方案中,哪一种方案的总费用最少?最少费用是多少元?(3)经过还价,老板同意4元/本的笔记本可打八折,10元/个的文具盒可打七折,用(2)中的最少费用最多还可以多买多少笔记本和文具盒?【解】:(1)依题意,得:,解得:1 303411x.x为正整数,x∴可取30,31,32,33,34.又13x也必须是整数,∴13x可取10,11.∴有两种购买方案,方案一:笔记本30本,文具盒10个;方案二:笔记本33本,文具盒11个.(2)在(1)中,方案一购买的总数量最少,∴总费用最少,最少费用为:4301010220⨯+⨯=(元).答:方案一的总费用最少,最少费用为220元.(3)设用(2)中的最少费用最多还可以多买的文具盒数量为y ,则笔记本数量为3y , 依题意,得:480%(303)1070%(10)220y y ⨯++⨯+, 解得:21383y , y 为正整数,y ∴的最大值为3,39y ∴=.答:用(2)中的最少费用最多还可以多买9本笔记本和3个文具盒.1、盛年不重来,一日难再晨。

2020-2021学年三年级数学上册第四章万以内的加法和减法(二)单元测试题(人教版,含解析)

2020-2021学年三年级数学上册第四章万以内的加法和减法(二)单元测试题(人教版,含解析)

2020-2021学年三年级数学上册第四章万以内的加法和减法(二)单元测试题一.选择题(共10小题)1.水果店运来了一些橘子和178千克苹果,卖掉132千克橘子后,剩下的橘子与苹果同样重,水果店原来运进了()千克橘子.A.300B.310C.462.爸爸带了570元,够买下面哪组的两件商品?()A.暖风机356元,电磁炉241元B.茶几428元,水壶126元C.电饭锅292元,烤箱299元3.一件上衣298元,一条裤子比一件上衣便宜110元,一条裤子要()元.A.408B.188C.4864.卡片上的两个数分别是340和153,这两个数的差是()A.187B.287C.4935.某公司原来有员工62人,今年走了23人,又新来18人,现在的人数与原来相比,()A.原来多B.现在多C.一样多6.根据数字15,可以选择下面的算式是()A.9+7B.18﹣8C.8+77.科技馆上午8:00开馆,下午5:00闭馆,门票每人10元.星期天上午有游客227个,中午有129个游客离开,下午又来了375个游客.科技馆星期天全天共来了多少个游客?解答这个问题要用到的信息是()A.227个,129 个,375个B.8:00,5:00C.227个,375 个D.10元,129个,375个8.下面式子中,先计算“106+23”的是()A.3÷106+23B.106+23×3C.(106+23)×349.下面四个算式,计算正确的是()A.B.C.D.10.在下面的算式中,()组算式中的十位上的数相减不需要退位.A.310﹣224 400﹣123 367﹣256B.346﹣247 665﹣334 198﹣125C.556﹣255 945﹣239 863﹣437二.填空题(共8小题)11.卡片上两数的和是,差是.12.哪两张卡片上的数相加得1000?算式:.13.比456少278的数是;比29多567;652比最大的三位数少.14.学校开展“垃圾分类”活动,三年级收集了238个塑料瓶,四年级收集了356个塑料瓶,三、四年级大约收集了个塑料瓶.15.被减数不变,减数增加20,则差20.(填”增加”或”减少”)16.74比50多,25比38少.17.小红拍球拍了16下,小芳拍了8下.小芳至少还要拍下,才能超过小红.18.开动脑筋我最棒.猫和老鼠同时从图中的位置起跳,猫每次跳3格,老鼠每次跳2格,跳到时猫第一次追上老鼠.三.判断题(共5小题)19.手表原价516元,现价388元,降价138元.(判断对错)20.计算403﹣245的时候,要连续退位减.(判断对错).21.比600少213的数是377.(判断对错).22.如果☆﹣351=△,那么△﹣☆=351.(判断对错)23.最小的三位数与最大的两位数相差1.(判断对错)四.计算题(共1小题)24.列竖式计算.800﹣519=389+298=405﹣86=160+594=五.应用题(共7小题)25.古宇湖风景区上午有游客900人,中午有368人离去,下午又来了276人.现在古宇湖风景区有游客多少人?26.水果店原来有苹果259千克,卖出178千克后,又进货205千克.现在水果店一共有水果多少千克?27.一家网上书店上午接了178个订单,下午接了294个订单.今天准备400张快递单,够吗?28.双十一购物节时,幸福花店的康乃馨销售非常好,上午卖出了190枝,下午比上午多卖出了28枝,这一天一共卖出了多少枝康乃馨?29.小文看书,已经看了39页,还有45页没看,这本书一共有多少页?30.同学们为山区小朋友捐书,如表是捐书的情况.图书种类故事书漫画书科技书其他数量(本)598232168374同学们捐的故事书和科技书一共有多少本?31.津洋口小学三年级参加书法组的有152人,参加绘画组的有61人,参加棋类组的有124人,参加球类组的有56人,任何小组都没参加的有23人,津洋口小学三年级一共有多少人?参考答案与试题解析一.选择题(共10小题)1.【分析】卖掉132千克橘子后,剩下的橘子与苹果同样重,也就是剩下了178千克的橘子,再用剩下橘子的质量加上卖出的质量,即可求出水果店原来运进了多少千克橘子.【解答】解:178+132=310(千克)答:水果店原来运进了310千克橘子.故选:B.【点评】解决本题注意理解题意,明确剩下橘子的质量,再根据加法的意义求解.2.【分析】把选择中两种商品的价格相加,求出一共需要的钱数,再与570元比较即可求解.【解答】解:A:356+241=597(元)B:428+126=554(元)C:292+299=591(元)只有554小于570元,所以570元,够买茶几和水壶;故选:B.【点评】本题考查了学生根据加法的意义解决实际问题的能力.3.【分析】用一件上衣的价格减去一条裤子比一件上衣便宜的钱数,求出一条裤子要多少元即可.【解答】解:298﹣110=188(元)答:一条裤子要188元.故选:B.【点评】此题主要考查了减法的意义的应用,要熟练掌握,解答此题的关键是要明确:求比一个数少几的数是多少,用减法解答.4.【分析】由题意,用340减去153即可得解.【解答】解:340﹣153=187答:这两个数的差是187.故选:A.【点评】此题考查了求两数之差用减法解答.5.【分析】根据加、减法的意义,用原来的人数减去今年走的人数再加上又新来的人数,求出现在的人数,然后与原来的人数进行比较即可.【解答】解:62﹣23+18=39+18=57(人)62>57答:现在的人数与原来的人数相比,原来的人数多.故选:A.【点评】此题考查的目的是理解掌握整数加、减法的意义,整数大小比较的方法及应用.6.【分析】根据加减法的计算方法,分别求出各个选项中的算式,然后再进一步解答.【解答】解:A、9+7=16B、18﹣8=10C、8+7=15故选:C.【点评】本题关键是根据加减法的计算方法,分别求出各个算式的结果,再进一步解答.7.【分析】上午来的游客人数加上下午来的游客人数就是全天来的游客人数,依此即可解答.【解答】解:227+375=602(个)答:科技馆星期天全天共来了602个游客.故选:C.【点评】本题属于比较简单应用题,只要明确数量间的等量关系,再根据它们之间的关系,代入数据即可解答.8.【分析】A、先算除法,再算减法;B、先算乘法,再算加法;C、先算小括号里面的加法,再算括号外的乘法.【解答】解:A、先计算3÷106,不符合题意;B、先计算23×3,不符合题意;C、先计算106+23,符合题意.故选:C.【点评】本题考查了简单的四则混合运算,计算时先理清楚运算顺序,根据运算顺序逐步求解即可.9.【分析】根据整数加减法的计算方法计算出结果再进行比较即可.【解答】解:所以四个算式,计算正确的是只有选项D.故选:D.【点评】考查了整数加减法的笔算,根据其计算方法进行计算即可.10.【分析】根据整数加减法的计算法则计算即可求解.【解答】解:A、310﹣224=86,400﹣123=277,十位上的数相减需要退位;B、346﹣247=99,十位上的数相减需要退位;C、556﹣255=301,945﹣239=706,863﹣437=426,十位上的数相减不需要退位.故选:C.【点评】考查了整数的加减法,关键是熟练掌握计算法则正确进行计算.二.填空题(共8小题)11.【分析】求503与108的和是多少,用503+108;求503与108的差是多少,用503﹣108.【解答】解:503+108=611503﹣108=395答:和是611,差是395.故答案为:611,395.【点评】求两个数的和是多少,用加法进行解答;求两个数的差是多少,用减法进行解答.12.【分析】先观察这几个数的个位数,把个位相加是10的两个数相加,看结果是否是1000,从而解决问题.【解答】解:3+7=10,357+643=1000,结果是1000;2+8=10792+218=1010,结果不是1000.故答案为:357+643=1000.【点评】解决本题先从个位相加的和进行判断,再进一步计算求解.13.【分析】要求比456少278的数是多少,用456减去278即可;要求谁比29多567,用29加上567即可;最大的三位数是999,要求652比最大的三位数少多少,用999减去652即可.【解答】解:456﹣278=17829+567=596最大的三位数是999999﹣652=347答:比456少278的数是178;596比29多567;652比最大的三位数少347.故答案为:178,596,347.【点评】考查了整数加法,关键是根据题意正确列出算式进行计算.14.【分析】三年级收集了238个塑料瓶,四年级收集了356个塑料瓶,根据整数加法的意义,把两个年级收集的塑料瓶相加即可,计算时把238看成240,356看成360进行估算即可.【解答】解:238+356≈240+360=600(个)答:三、四年级大约收集了600个塑料瓶.故答案为:600.【点评】本题主要考查了整数加法的实际应用,注意要估算.15.【分析】利用赋值法,设被减数是100,减数是60,先求出差;然后再把减数增加20,求出差,比较两个差即可.【解答】解:设被减数是100,减数是60,那么:100﹣60=40减数增加20是:60+20=80100﹣80=2040﹣20=20那么,差减少了20;所以,被减数不变,减数增加20,则差减少20.故答案为:减少.【点评】被减数不变,减数减少(或增加)几,差就增加(或减少)几;减数不变,被减数增加(或减少)几,差就增加(或减少)几.16.【分析】(1)根据求一个数比另一个数多几,用减法解答.(2)根据求一个数比另一个数少几,用减法解答.【解答】解:(1)74﹣50=24答:74比50多24.(2)38﹣25=13答:25比38少13.故答案为:24;13.【点评】此题考查的目的是理解掌握整数减法的意义及应用.17.【分析】小红拍球拍了16下,小芳拍了8下,小芳要超过小红,至少要拍16+1下,则小芳至少还要拍16+1﹣8=9下.【解答】解:16+1=17(下)17﹣8=9(下)答:小芳至少还要拍9下,才能超过小红.故答案为:9.【点评】解答此题的关键是明确小芳要超过小红,至少要拍16+1下,然后再进一步解答.18.【分析】由于老鼠在猫的前面22﹣18=4个格处,猫比老鼠,每次多跳3﹣2=1个格,想追上老鼠,需要跳4次,再由每次猫跳的格数求得问题答案.【解答】解:22﹣18=4(格)3﹣2=1(格)4+4+4+4=12(格)因为猫是从22格开始的,22﹣12=10(格)答:猫跳到第10格时,正好捉住老鼠.故答案为10.【点评】此题考查了整数加减法的应用.解答本题时注意猫是从22格开始跳,不是从0开始跳.三.判断题(共5小题)19.【分析】由题意,求降价多少元,用原价减去现价即可.【解答】解:516﹣388=128(元)答:降价128元.故题干的说法是错误的.故答案为:×.【点评】此题考查了运用减法意义解决实际问题的能力.20.【分析】根据题意,计算403﹣245,要从个位算起,个位3减去5不够减,所以要从十位退一;十位上是0不够减,要从百位是退一,所以整个计算要连续退位.据此解答.【解答】解:计算403﹣245,要从个位算起,个位3减去5不够减,所以要从十位退一;十位上是0不够减,要从百位是退一,所以整个计算要连续退位.所以原说法正确.故答案为:√【点评】本题主要考查整数的减法,关键利用整数减法的运算法则,进行计算.21.【分析】根据题意,用600减掉213,求比600少213的数是多少,再比较即可得出结论.【解答】解:600﹣213=387387>377比600少213的数是387,所以原说法错误.故答案为:×.【点评】本题主要考查整数的加减法,关键利用整数减法的运算法则,进行计算.22.【分析】根据减法算式中各部分的关系:被减数﹣减数=差,减数=被减数﹣差,据此判断.【解答】解:如果☆﹣351=△,那么☆﹣△=351.原题错误.故答案为:×.【点评】本题注意考查整数的减法,关键利用减法算式中各部分的关系做题.23.【分析】根据题意可知,最小的三位数是100,最大的两位数是99,然后求出它们的差,再进一步判断即可.【解答】解:根据题意可得:最小的三位数是100,最大的两位数是99;100﹣99=1;所以,最小的三位数与最大的两位数相差1是正确的.故答案为:√.【点评】本题的关键是先求出最小的三位数与最大的两位数,然后再根据题意进一步解答即可.四.计算题(共1小题)24.【分析】根据整数加减法的计算方法计算即可.【解答】解:800﹣519=281389+298=687405﹣86=319160+594=754【点评】考查了整数加减法的计算方法,关键是熟练掌握计算法则,正确进行计算.五.应用题(共7小题)25.【分析】用上午游客的人数减去中午走的人数,求出还剩下的人数,再加下午来的游客人数,就是现在有的人数,据此解答.【解答】解:900﹣368+276=532+276=808(人)答:游乐园现在有游客808人.【点评】本题的重点是求出中午离开后还剩下的人数,进而求出现在的人数.26.【分析】用原来的苹果千克数减去卖出的千克数,再加上运进的千克数,就是现在水果店苹果的千克数.【解答】解:259﹣178+205=81+205=286(千克)答:现在水果店一共有水果286千克.【点评】此题的关键是要学生知道,卖出用减法,运进用加法.27.【分析】把上午和下午的订单加起来就是全天的订单,和400比较得解.【解答】解:178+294=472(张)472>400答:今天准备400张快递单,不够.【点评】此题考查了加法意义的运用以及整数加法计算.28.【分析】根据题意,用上午卖出的枝数加上28枝,计算下午卖出的枝数:190+28=218(枝),然后求上、下午卖出的总和即可:218+190=408(枝).【解答】解:190+28+190=218+190=408(枝)答:这一天一共卖出了408枝康乃馨.【点评】本题主要考查学生解决问题的能力,主要运用整数的加减法计算.29.【分析】这本书一共的页数=看了的页数+没看的页数,代入数据计算即可.【解答】解:39+45=84(元)答:这本书一共有84页.【点评】本题考查整数的加法,解决本题的关键是明确数量关系,并能正确计算.30.【分析】要求同学们捐的故事书和科技书一共有多少本,把故事书的本数和科技书的本数相加,即598+168.【解答】解:598+168=766(本)答:同学们捐的故事书和科技书一共有766本.【点评】考查了整数加法的意义的灵活运用.31.【分析】分析题干可知,三年级一共有多少人,其实就是参加书法组、绘画组、棋类组、球类组及没有参加任何小组的人数的和.【解答】解:152+61+124+56+23=416(人)答:津洋口小学三年级一共有416人.【点评】解答这类问题注意分析题干内容,注意计算的准确性.。

2020-2021学年人教版七年级数学上册第三章、第四章测试题及答案解析(各一套)

2020-2021学年人教版七年级数学上册第三章、第四章测试题及答案解析(各一套)

人教版七年级数学上册第三章测试题及答案解析(时间:90分钟分值:120分)一、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)1.(3分)若2a与1﹣a互为相反数,则a=.2.(3分)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为.3.(3分)如果3x2a﹣2﹣4=0是关于x的一元一次方程,那么a=.4.(3分)在等式中,已知S=800,a=30,h=20,则b=.5.(3分)将1000存入银行2年,年利息为5%,扣除20%的利息税,到期可取得本息和为.6.(3分)小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是岁.7.(3分)将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需小时才能完成工作.8.(3分)一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1,如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求原来的三位数是.二、选择题(本大题共8小题,每小题3分,共24分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)9.(3分)下列方程中,是一元一次方程的是()A.x2+x﹣3=x(x+2)B.x+(4﹣x)=0 C.x+y=1 D.10.(3分)与方程x﹣1=2x的解相同的方程是()A.x﹣2=1+2x B.x=2x+1 C.x=2x﹣1 D.11.(3分)下列运用等式的性质对等式进行的变形中,正确的是()A.若x=y,则x﹣5=y+5 B.若a=b,则ac=bcC.若=则2a=3b D.若x=y,则=12.(3分)某商场把进价为2400元的商品,标价3200元打折出售,仍获利20%,则该商品的打几折出售?()A.六B.七C.八D.九13.(3分)小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:2y+y﹣,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是y=﹣,很快补好了这个常数,并迅速地完成了作业,你能补出这个常数吗?它是()A.1 B.2 C.3 D.414.(3分)把方程去分母后,正确的是()A.3x﹣2(x﹣1)=1 B.3x﹣2(x﹣1)=6 C.3x﹣2x﹣2=6 D.3x+2x﹣2=6 15.(3分)如图a和图b分别表示两架处于平衡状态的简易天平,对a,b,c 三种物体的质量判断正确的是()A.a<c<b B.a<b<c C.c<b<a D.b<a<c16.(3分)某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定三、解答题(本题共8小题,每小题16分,共72分.)17.(16分)解方程(1)3(x+1)﹣2(x+2)=2x+3(2)(3)x﹣﹣1(4).18.(9分)已知y1=6﹣x,y2=2+7x,若①y1=2y2,求x的值;②当x取何值时,y1比y2小﹣3;③当x取何值时,y1与y2互为相反数?19.(5分)老师在黑板上出了一道解方程的题=1﹣,小明马上举起了手,要求到黑板上去做,他是这样做的:4(2x﹣1)=1﹣3(x+2)①8x﹣4=1﹣3x﹣6 ②8x+3x=l﹣6+4 ③11x=﹣1 ④x=﹣⑤老师说:小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,请你指出他错在第步(填编号);然后,你自己细心地解下面方程:+=1,相信你,一定能做对.20.(6分)某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?21.(11分)解有关行程的问题(应用题):(1)甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍.若两人同向而行,骑自行车先出发2小时,问摩托车经过多少时间追上自行车?(2)某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A、C两地之间的路程为10千米,求A、B两地之间的路程.22.(7分)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.23.(9分)小明用的练习本可以到甲商店购买,也可以到乙商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是,购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是,从第一本按标价的80%卖.(1)小明要买20本时,到哪个商店较省钱?(2)买多少本时给两个商店付相等的钱?(3)小明现有24元钱,最多可买多少本?24.(9分)公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?参考答案与试题解析一、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)1.(3分)若2a与1﹣a互为相反数,则a=﹣1.【考点】解一元一次方程;相反数.【专题】计算题.【分析】本题考查列一元一次方程和解一元一次方程的能力,因为2a与1﹣a 互为相反数,所以可得方程2a+1﹣a=0,进而求出a值.【解答】解:由题意得:2a+1﹣a=0,解得:a=﹣1.故填:﹣1.【点评】根据题意列方程要注意题中的关键词的分析理解,只有正确理解题目所述才能列出方程.2.(3分)已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为5.【考点】一元一次方程的解.【分析】把x=2代入方程得到一个关于a的方程,即可求得a的值.【解答】解:把x=2代入方程得:4+a﹣9=0,解得:a=5.故答案是:5.【点评】本题考查了方程的解得定义,理解定义是关键.3.(3分)如果3x2a﹣2﹣4=0是关于x的一元一次方程,那么a=.【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.据此即可得到一个关于a的方程,从而求解.【解答】解:根据题意,得2a﹣2=1,解得:a=.故答案是:.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1.4.(3分)在等式中,已知S=800,a=30,h=20,则b=50.【考点】解一元一次方程.【专题】计算题.【分析】将S=800,a=30,h=20,代入中,求出b的值即可.【解答】解:把S=800,a=30,h=20,代入中,800=,解得b=50.故答案为50.【点评】本题比较简单,只是考查一元一次方程的解法.5.(3分)将1000存入银行2年,年利息为5%,扣除20%的利息税,到期可取得本息和为1080元.【考点】有理数的混合运算.【专题】应用题.【分析】由于利息=本金×利率×年份,本息和=本金+利息,利用这些关系式即可求解.【解答】解:依题意得1000+1000×5%×(1﹣20%)×2=1000+1000×5%×80%×2=1000+80=1080(元).故到期可取得本息和为1080元.故答案为:1080元.【点评】此题主要考查了有理数的混合运算在实际问题中的应用,解题的关键是利用利息=本金×利率×年份,本息和=本金+利息解决问题.6.(3分)小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是7岁.【考点】一元一次方程的应用.【分析】设小郑今年的年龄是x岁,则今年妈妈的年龄是5x岁,根据小郑的年龄比妈妈小28岁列出方程解答即可.【解答】解:设小郑今年的年龄是x岁,则今年妈妈的年龄是5x岁,由题意得5x﹣x=28,解得:x=7.答:小郑今年的年龄是7岁.故答案为:7.【点评】此题考查一元一次方程的实际运用,找出题目蕴含的数量关系:妈妈的年龄﹣小郑的年龄=28是解决问题的关键.7.(3分)将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需小时才能完成工作.【考点】一元一次方程的应用.【分析】把整个工作看作单位“1”,设甲、乙一起做还需x小时才能完成工作,根据甲先做30分钟,然后甲、乙一起做,完成的工作总量为1列出方程解答即可.【解答】解:设甲、乙一起做还需x小时才能完成工作,由题意得+(+)x=1,解得:x=.答:甲、乙一起做还需小时才能完成工作.故答案为:.【点评】此题考查一元一次方程的实际运用,掌握工作总量、工作效率、工作时间三者之间的关系是解决问题的关键.8.(3分)一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1,如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求原来的三位数是738.【考点】一元一次方程的应用.【专题】数字问题.【分析】设十位上的数字为x,则百位上的数字为2x+1,个位上的数字为3x﹣1,根据这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,列出方程解答即可.【解答】解:设十位上的数字为x,则百位上的数字为2x+1,个位上的数字为3x﹣1,由题意得100(3x﹣1)+10x+(2x+1)=100(2x+1)+10x+(3x﹣1)+99解得:x=3,则2x+1=7,3x﹣1=8,所以原来的三位数为738.故答案为:738.【点评】此题考查一元一次方程的实际运用,掌握数的计数方法,找出题目蕴含的数量关系是解决问题的关键.二、选择题(本大题共8小题,每小题3分,共24分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)9.(3分)下列方程中,是一元一次方程的是()A.x2+x﹣3=x(x+2)B.x+(4﹣x)=0 C.x+y=1 D.【考点】一元一次方程的定义.【专题】计算题.【分析】根据一元一次方程的定义:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0),进行选择.【解答】解:A、x2+x﹣3=x(x+2),是一元一次方程,正确;B、x+(4﹣x)=0,不是一元一次方程,故本选项错误;C、x+y=1,不是一元一次方程,故本选项错误;D、+x,不是一元一次方程,故本选项错误.故选A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.10.(3分)与方程x﹣1=2x的解相同的方程是()A.x﹣2=1+2x B.x=2x+1 C.x=2x﹣1 D.【考点】同解方程.【分析】求出已知方程的解,再把求出的数代入每个方程,看看左、右两边是否相等即可.【解答】解:x﹣1=2x,解得:x=﹣1,A、把x=﹣1代入方程得:左边≠右边,故本选项错误;B、把x=﹣1代入方程得:左边=右边,故本选项正确;C、把x=﹣1代入方程得:左边≠右边,故本选项错误;D、把x=﹣1代入方程得:左边≠右边,故本选项错误;故选B.【点评】本题考查了一元一次方程的解的应用,注意:使方程左右两边相等的未知数的值叫方程的解.11.(3分)下列运用等式的性质对等式进行的变形中,正确的是()A.若x=y,则x﹣5=y+5 B.若a=b,则ac=bcC.若=则2a=3b D.若x=y,则=【考点】等式的性质.【分析】根据等式的基本性质对各选项进行逐一分析即可.【解答】解:A、不符合等式的基本性质,故本选项错误;B、不论c为何值,等式成立,故本选项正确;C、∵=,∴•6c=•6c,即3a=2b,故本选项错误;D、当a≠b时,等式不成立,故本选项错误.故选B.【点评】本题考查的是等式的基本性质,熟知等式两边乘同一个数或除以一个不为零的数,结果仍得等式是解答此题的关键.12.(3分)某商场把进价为2400元的商品,标价3200元打折出售,仍获利20%,则该商品的打几折出售?()A.六B.七C.八D.九【考点】一元一次方程的应用.【分析】设该商品的打x折出售,根据销售价以及进价与利润和打折之间的关系,得出等式,然后解方程即可.【解答】解:设该商品的打x折出售,根据题意得,3200×=2400(1+20%),解得:x=9.答:该商品的打9折出售.故选:D.【点评】本题考查了一元一次方程的应用,正确区分利润与进价,打折与标价的关系是解题关键.13.(3分)小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是:2y+y﹣,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是y=﹣,很快补好了这个常数,并迅速地完成了作业,你能补出这个常数吗?它是()A.1 B.2 C.3 D.4【考点】解一元一次方程.【专题】计算题.【分析】设所缺的部分为x,2y+y﹣x,把y=﹣代入,即可求得x的值.【解答】解:设所缺的部分为x,则2y+y﹣x,把y=﹣代入,求得x=2.故选:B.【点评】考查了一元一次方程的解法.本题本来要求y的,但有不清楚的地方,又有y的值,则把所缺的部分当作未知数来求它的值.14.(3分)把方程去分母后,正确的是()A.3x﹣2(x﹣1)=1 B.3x﹣2(x﹣1)=6 C.3x﹣2x﹣2=6 D.3x+2x﹣2=6【考点】解一元一次方程.【分析】方程两边都乘以6即可得出答案.【解答】解:﹣=1,方程两边都乘以6得:3x﹣2(x﹣1)=6,故选B.【点评】本题考查了解一元一次方程的应用,注意:解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化成1.15.(3分)如图a和图b分别表示两架处于平衡状态的简易天平,对a,b,c 三种物体的质量判断正确的是()A.a<c<b B.a<b<c C.c<b<a D.b<a<c【考点】等式的性质.【专题】分类讨论.【分析】根据等式的基本性质:等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.分别列出等式,再进行变形,即可解决.【解答】解:由图a可知,3a=2b,即a=b,可知b>a,由图b可知,3b=2c,即b=c,可知c>b,∴a<b<c.故选B.【点评】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.16.(3分)某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定【考点】一元一次方程的应用.【分析】此类题应算出实际赔了多少或赚了多少,然后再比较是赚还是赔,赔多少、赚多少,还应注意赔赚都是在原价的基础上.【解答】解:设赚了25%的衣服的售价x元,则(1+25%)x=120,解得x=96元,则实际赚了24元;设赔了25%的衣服的售价y元,则(1﹣25%)y=120,解得y=160元,则赔了160﹣120=40元;∵40>24;∴赔大于赚,在这次交易中,该商人是赔了40﹣24=16元.故选B.【点评】本题考查了一元一次方程的应用,注意赔赚都是在原价的基础上,故需分别求出两件衣服的原价,再比较.三、解答题(本题共8小题,每小题16分,共72分.)17.(16分)解方程(1)3(x+1)﹣2(x+2)=2x+3(2)(3)x﹣﹣1(4).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x+3﹣2x﹣4=2x+3,移项合并得:x=﹣4;(2)去括号得:x﹣2﹣4﹣2x=3,移项合并得:﹣x=9,解得:x=﹣9;(3)去分母得:6x﹣2+2x=x+2﹣6,移项合并得:7x=﹣2,解得:x=﹣;(4)方程整理得:﹣=,去分母得:8﹣90x﹣78+180x=200x+40,移项合并得:110x=﹣110,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.(9分)已知y1=6﹣x,y2=2+7x,若①y1=2y2,求x的值;②当x取何值时,y1比y2小﹣3;③当x取何值时,y1与y2互为相反数?【考点】一次函数与一元一次不等式;一次函数与一元一次方程.【专题】计算题.【分析】①根据y1=2y2,列出关于x的等式即可求出x.②由y1比y2小﹣3,列出关于x的等式即可求解.③由y1与y2互为相反数,列出关于x的等式即可求解.【解答】解:①根据y1=2y2,∴6﹣x=2×2+14x,解得:x=.②由y1比y2小﹣3,∴y1=y2﹣(﹣3),∴6﹣x=2+7x﹣(﹣3),解得:x=﹣.③由y1与y2互为相反数,∴y1+y2=0,∴6﹣x+7x+2=0,解得:x=.【点评】本题考查了一次函数与一元一次不等式及一元一次方程,属于基础题,关键是根据题意正确列出方程.19.(5分)老师在黑板上出了一道解方程的题=1﹣,小明马上举起了手,要求到黑板上去做,他是这样做的:4(2x﹣1)=1﹣3(x+2)①8x﹣4=1﹣3x﹣6 ②8x+3x=l﹣6+4 ③11x=﹣1 ④x=﹣⑤老师说:小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,请你指出他错在第①步(填编号);然后,你自己细心地解下面方程:+=1,相信你,一定能做对.【考点】解一元一次方程.【专题】阅读型.【分析】解题过程错在第①步,原因是1没有乘以12,写出正确解法即可.【解答】解:他错在第①步;正确解法为:去分母得:(2x+1)+2(x﹣1)=6,去括号得:2x+1+2x﹣2=6,移项合并得:4x=7,解得:x=.故答案为:(1)①.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.20.(6分)某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?【考点】二元一次方程组的应用.【专题】应用题.【分析】两个等量关系为:加工的甲部件的人数+加工的乙部件的人数=85;3×16×加工的甲部件的人数=2×加工的乙部件的人数×10.【解答】解:设加工的甲部件的有x人,加工的乙部件的有y人.,由②得:12x﹣5y=0③,①×5+③得:5x+5y+12x﹣5y=425,即17x=425,解得x=25,把x=25代入①解得y=60,所以答:加工的甲部件的有25人,加工的乙部件的有60人.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.需注意:两个甲种部件和三个乙种部件配成一套的等量关系为:3×甲种部件的个数=2×乙种部件的个数.21.(11分)解有关行程的问题(应用题):(1)甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍.若两人同向而行,骑自行车先出发2小时,问摩托车经过多少时间追上自行车?(2)某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A、C两地之间的路程为10千米,求A、B两地之间的路程.【考点】一元一次方程的应用.【分析】(1)首先设摩托车经过x小时追上自行车,由题意得摩托车速度是每小时行45km,再根据等量关系:骑自行车者2小时路程+x小时路程+180km=骑摩托车x小时路程,根据等量关系列出方程,再解即可;(2)利用船的速度与水速,进而表示出顺流与逆流所用时间,再利用一共航行了7小时得出等式求出即可.【解答】解:(1)设摩托车经过x小时追上自行车,由题意得:2×15+15x+180=3×15×x,解得:x=7.答:摩托车经过7小时追上自行车.(2)设:A、B两地距离为y千米.则B、C两地距离为(y﹣10)千米;根据题意可得:+=7,解得:y=32.5.答:A、B两地之间的路程为32.5km.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.用到的公式是:路程=速度×时间.22.(7分)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需150元,购买12根跳绳需240元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.【考点】一元一次方程的应用.【专题】图表型.【分析】(1)根据总价=单价×数量,现价=原价×0.8,列式计算即可求解;(2)设小红购买跳绳x根,根据等量关系:小红比小明多买2跟,付款时小红反而比小明少5元;即可列出方程求解即可.【解答】解:(1)25×6=150(元),25×12×0.8=300×0.8=240(元).答:购买6根跳绳需150元,购买12根跳绳需240元.(2)有这种可能.设小红购买跳绳x根,则25×0.8x=25(x﹣2)﹣5,解得x=11.故小红购买跳绳11根.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.(9分)小明用的练习本可以到甲商店购买,也可以到乙商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是,购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是,从第一本按标价的80%卖.(1)小明要买20本时,到哪个商店较省钱?(2)买多少本时给两个商店付相等的钱?(3)小明现有24元钱,最多可买多少本?【考点】一元一次方程的应用.【专题】应用题;经济问题.【分析】(1)要知道到那个商店省钱,就要知道小明要买20本,要付多少钱.依题意列方程求出甲店所需付款和乙商店所需付款,然后进行比较到哪个商店省钱;(2)根据给两个商店付相等的钱这个等量关系列方程求解.(3)找出等量关系列方程求出用24元钱在甲商店可买多少本,在乙商店可买多少本,即可知道最多能买多少本.【解答】解:(1)甲店需付款10+10×0.7=17元;乙商店需付款:20×0.8=16元,故到乙商店省钱.(2)设买多少本时给两个商店付相等的钱,依题意列方程:10+(x﹣10)×70%=80%x,解得:x=30.故买30本时给两个商店付相等的钱.(3)设最多可买X本,则甲商店10+(X﹣10)×70%=24,解得:X=30;乙商店80%X=24解得:X=30.故最多可买30本.【点评】此题的关键是要比较,比较哪个店买多少本时便宜.24.(9分)公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【考点】一元一次方程的应用.【专题】经济问题;图表型.【分析】若设初一(1)班有x人,根据总价钱即可列方程;第二问利用算术方法即可解答;第三问应尽量设计的能够享受优惠.【解答】解:(1)设初一(1)班有x人,则有13x+11(104﹣x)=1240或13x+9(104﹣x)=1240,解得:x=48或x=76(不合题意,舍去).即初一(1)班48人,初一(2)班56人;(2)1240﹣104×9=304,∴可省304元钱;(3)要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561∴48人买51人的票可以更省钱.【点评】在优惠类一类问题中,注意认真理解优惠政策,审题要细心.人教版七年级数学上册第四章测试题及答案解析(时间:90分钟分值:120分)一、选择题(每小题3分,共30分)1.(3分)分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()A.B.C.D.2.(3分)从左面看图中四个几何体,得到的图形是四边形的几何体共有()A.1个B.2个C.3个D.4个3.(3分)如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥4.(3分)如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C.D.5.(3分)下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′6.(3分)下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.1个B.2个C.3个D.4个7.(3分)如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是()A.25°B.35°C.45° D.55°8.(3分)如图,∠1+∠2等于()A.60°B.90°C.110°D.180°9.(3分)C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD 的长为()A.3cm B.4cm C.5cm D.6cm10.(3分)甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错二、填空题(每空3分,共30分)11.(3分)如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是.12.(3分)如图,以图中A,B,C,D,E为端点的线段共有条.13.(3分)如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC=.14.(3分)如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE=°.15.(3分)如图是某几何体的平面展开图,则这个几何体是.16.(3分)如图绕着中心最小旋转能与自身重合.17.(3分)如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于度.18.(3分)一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转度,就可以形成一个球体.19.(3分)已知∠A=40°,则它的补角等于.20.(3分)两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.(12分)如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB 的长度.22.(12分)如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.(12分)已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.(12分)如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.25.(14分)如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD的度数.26.(14分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.。

青岛版八年级上册数学《第1章 全等三角形》单元测试卷(有答案)

青岛版八年级上册数学《第1章 全等三角形》单元测试卷(有答案)

2020-2021学年青岛新版八年级上册数学《第1章全等三角形》单元测试卷一.选择题1.下列说法中,正确的是()A.面积相等的两个图形是全等图形B.形状相等的两个图形是全等图形C.周长相等的两个图形是全等图形D.全等图形的面积相等2.如图,D在△ABC的BC边上,△ABC≌△ADE,∠EAC=50°,则∠ADE的度数为()A.50°B.60°C.65°D.70°3.如图,AC⊥BE于点C,DF⊥BE于点F,且BC=EF,如果添上一个条件后,可以直接利用“HL”来证明△ABC≌△DEF,则这个条件应该是()A.AC=DE B.AB=DE C.∠B=∠E D.∠D=∠A4.如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充条件()A.∠BAC=∠BAD B.AC=ADC.∠ABC=∠ABD D.以上都不正确5.在以下三个图形中,根据尺规作图的痕迹,不能判断射线AD平分∠BAC的是()A.图2B.图1与图2C.图1与图3D.图2与图3 6.如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,连接BD.若AC=6,AD=2,则BD的长为()A.2B.3C.4D.67.已知△ABC(AC>BC),用尺规作图的方法在AB上确定一点P,使PA+PC=AB,则符合要求的作图痕迹是()A.B.C.D.8.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM 平分∠BOC;④MO平分∠BMC.其中正确的个数为()A.①B.①②C.①②③D.①②④9.一块三角形的玻璃摔碎成如图所示的四块,小亮现在要带其中的一块去配成与原来一样大小的三角形玻璃,小亮去时应该带()A.第一块B.第二块C.第三块D.第四块10.下列作图语句正确的是()A.连接AD,并且平分∠BAC B.延长射线ABC.作∠AOB的平分线OC D.过点A作AB∥CD∥EF二.填空题11.下列语句表示的图形是(只填序号)①过点O的三条直线与另条一直线分别相交于点B、C、D三点:.②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD:.③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点:.12.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是.13.如图,在孔雀开屏般漂亮的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=.14.如图,△ACB≌△DCE,且∠BCE=60°,则∠ACD的度数为.15.如图,已知AB=AD,∠1=∠2,要根据“ASA”使△ABC≌△ADE,还需添加的条件是.16.如图,把两根钢条的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),在图中,要测量工件内槽宽AB,只要测量A′B′的长度即可,该做法的依据是.17.已知:直线AB和直线AB外一点P(图1),用直尺和三角板画经过点P与直线AB平行的直线CD(图2),请你写出这样画的依据是:.18.如图,Rt△ABC和Rt△EDF中,BC∥DF,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.19.如图,∠A=∠EGF,点F为BE与CG的中点,DB=4,DE=7,则EG长为.20.为作∠AOB的平分线OM,小齐利用尺规作图,作法如下:①以O为圆心,任意长为半径作弧,分别交OA、OB于点P、Q;②分别以点P、Q为圆心,OA长为半径作弧,两弧交于点M.则射线OM为∠AOB的平分线.OM为∠AOB的平分线的原理是.三.解答题21.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).22.如图,△ABC≌△DBC,∠A=40°,∠ACD=88°,求∠ABC的度数.23.如图,已知点A,D,B,F在一条直线上,AC=FE,BC=DE,AD=FB,求证:∠A =∠F.24.如图,A,B两点分别位于一个假山的两端,小明想用绳子测量A、B间的距离:现在地上取一个可以直接到达A点和B点的点C,连接AC并延长到点D,使CD=AC,连接BC并延长到点E,使CE=CB;连接DE并测量出它的长度.DE=8m,求AB的长度.25.已知:如图,AB=AC,∠1=∠2,∠B=∠C.求证:△ABD≌△ACE.26.(1)如图1,已知Rt△ABC中,∠C=90°,BC=6,AC=8,DE∥BC且DE=EB,求ED的长;(2)如图2,已知Rt△PMN中,∠N=90°,请用尺规作图,在边PM上求点Q,使Q 到边PN的距离等于Q到M的距离.27.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)参考答案与试题解析一.选择题1.解:A、面积相等,但图形不一定能完全重合,故本选项错误;B、形状相等的两个图形不一定能完全重合,故本选项错误;C、周长相等的两个图形不一定能完全重合,故本选项错误;D、全等图形的面积相等,故本选项正确.故选:D.2.解:∵△ABC≌△ADE,∴∠BAC=∠DAE,AB=AD,∠ADE=∠B,∴∠EAC=∠DAB=50°,∴△ABD中,∠B=(180°﹣∠BAD)=65°,∴∠ADE=∠B=65°,故选:C.3.解:AB=DE,可以直接利用“HL”来证明△ABC≌△DEF.∵AC⊥BE,DF⊥BE,∴∠ACB=∠DFE=90°,在Rt△ACB和Rt△DFE中,,∴Rt△ACB≌Rt△DFE(HL),故选:B.4.解:若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充条件AC=AD或BC=BD,故选:B.5.解:在图1中,利用基本作图可判断AD平分∠BAC;在图2中,利用基本作图得到D点为BC的中点,则AD为BC边上的中线;在图3中,利用作法得AE=AF,AM=AN,则可判断△ADM≌△ADN,所以∠AMD=∠AND,则可判断△MDE≌△NDF,所以D点到AM和AN的距离相等,则可判断AD平分∠BAC.故选:A.6.解:由作图知,MN是线段BC的垂直平分线,∴BD=CD,∵AC=6,AD=2,∴BD=CD=4,故选:C.7.解:∵PA+PB=AB,PA+PC=AB,∴PC=PB,∴点P在BC的垂直平分线上.故选:B.8.解:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,∠OAC=∠OBD,AC=BD,①正确;由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图2所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中,,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;∵∠AOB=∠COD,∴当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM,∵△AOC≌△BOD,∴∠COM=∠BOM,∵MO平分∠BMC,∴∠CMO=∠BMO,在△COM和△BOM中,,∴△COM≌△BOM(ASA),∴OB=OC,∵OA=OB,∴OA=OC,与OA>OC矛盾,∴③错误;正确的有①②④;故选:D.9.解:一、二、三块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第四块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:D.10.解:A.连接AD,不能同时使平分∠BAC,此作图错误;B.只能反向延长射线AB,此作图错误;C.作∠AOB的平分线OC,此作图正确;D.过点A作AB∥CD或AB∥EF,此作图错误;故选:C.二.填空题11.解:①过点O的三条直线与另一条直线分别相交于点B、C、D三点的图形为(3);②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD的图形为(2);③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点的图形为(1).故答案为:(3),(2),(1).12.解:∵△ABC≌△ADE,BC=7,∴DE=BC=7(cm),故答案为:7cm.13.解:在△AEF和△LBA中,∴△AEF≌△LBA(SAS),∴∠7=∠EAF,∴∠1+∠7=90°,同理可得∠2+∠6=90°,∠3+∠5=90°,而∠4=45°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=90°+90°+90°+45°=315°.故答案为315°.14.解:∵△ACB≌△DCE,∴∠ACB=∠DCE,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,∵∠BCE=60°,∴∠ACD=60°.故答案为:60°.15.解:还需添加的条件是∠B=∠D,∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(ASA),故答案为:∠B=∠D.16.解:连接AB,A′B′,如图,∵点O分别是AA′、BB′的中点,∴OA=OA′,OB=OB′,在△AOB和△A′OB′中,,∴△AOB≌△A′OB′(SAS).∴A′B′=AB.答:需要测量A′B′的长度,即为工件内槽宽AB.其依据是根据SAS证明△AOB≌△A′OB′;故答案为:根据SAS证明△AOB≌△A′OB′.17.解:根据作图过程可知:画图的依据是:同位角相等,两直线平行.故答案为:同位角相等,两直线平行.18.解:∵Rt△ABC和Rt△EDF中,∴∠BAC=∠DEF=90°,∵BC∥DF,∴∠DFE=∠BCA,∴添加AB=ED,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(AAS),故答案为:AB=ED(答案不唯一).19.解:∵∠A=∠EGF,∠AGD=∠EGF,∴∠A=∠AGD,∴AD=DG,设AD=x,则DG=x,在△EGF和△BCF中,∵,∴△EGF≌△BCF(SAS),∴BC=EG,∠E=∠EBC,∴EG∥BC,∴∠AGD=∠C=∠A,∴BC=AB=x+4=EG,∵DE=7,∴x+x+4=7,x=,∴EG=x+4=,故答案为:.20.解:如图,连接PM,PQ.∵OP=OQ,PM=QM,OM=OM,∴△POM≌△QOM(SSS),∴∠POM=∠QOM,即OM是∠AOB的角平分线.故答案为SSS.三.解答题21.解:如图所示:.22.解:∵△ABC≌△DBC,∴∠ACB=∠DCB,∵∠ACD=88°,∴∠ACB=44°,∵∠A=40°,∴∠ABC=180°﹣40°﹣44°=96°.23.证明:∵AD=FB,∴AD+DB=FB+DB,即AB=FD,在△ABC与△FDE中,,∴△ABC≌△FDE(SSS),∴∠A=∠F.24.解:在△CDE和△CAB中,CD=CA,∠DCE=∠ACB,CE=CB,所以△CDE≌△CAB(SAS),所以DE=AB=8m.25.证明:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠CAE=∠BAD,在△ABD与△ACE中,,∴△ABD≌△ACE(ASA).26.解:(1)如图1,设DE=x,∵∠C=90°,BC=6,AC=8,∴AB==10,∴AE=10﹣x,∵DE∥BC,∴=,即=,解得x=,即ED的长为;(2)如图,点Q为所作.27.解:图象如图所示,∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,∠DAC=∠ACB,AC=CA,∴△ACD≌△CAB(SAS),∴∠ACD=∠CAB,∴AB∥CD.。

2020-2021学年人教版数学六年级上册第二单元《位置与方向(二)》单元测试卷

2020-2021学年人教版数学六年级上册第二单元《位置与方向(二)》单元测试卷

2020-2021学年人教版数学六年级上册第二单元《位置与方向(二)》单元测试卷2020-2021学年人教版数学六年级上册第二单元《位置与方向(二)》单元测试卷学校:___________姓名:___________班级:___________考号:___________1.观察下图的位置关系,其中说法错误的是()。

A.学校在公园北偏西40°方向400m处B.公园在少年宫东偏北70°方向300m处C.公园在学校东偏南50°方向400m处D.少年宫在公园北偏东20°方向300m处2.如图,A、B、C三个小岛的位置正好构成了一个直角三角形.那么A岛的位置在B岛的()A.东偏北30°的方向,距离4千米B.北偏东60°的方向,距离4千米C.西偏南30°的方向,距离4千米D.西偏南60°的方向,距离4千米3.甲从A点出发向北偏东60°方向走了30米到达B点,乙从A点出发向西偏南30°的方向走了40米到达C点,那么,BC之间的距离是()。

A.35 米B.30米C.10米D.70米4.李明的座位用数对表示是(4,5),张玲的座位在李明南偏东45°方向上,她的座位用数对表示可能是()。

A.(3,4)B.(5,4)C.(5,6)D.(3,6)5.小丽先向东偏北45°的方向走了50m,又向南偏东45°的方向走了50m,她现在的位置在起点的()方向.A.正东B.正北C.东北D.东南6.如下图:小明和几个小朋友星期天从小明家出发骑车去博物馆参观,下面是他们所走的路线图.描述他们所走的正确的路线是().A.小明家——向西偏北30°方向走600 米到火车站——从火车站向西偏南50°方向走200米.B.小明家——向北偏西30°方向走600米到火车站——从火车站向西偏南50°方向走200米.C.小明家——向西偏北30°方向走600米到火车站——从火车站向南偏西50°方向走200米.D.小明家——向北偏西30°方向走600米到火车站——从火车站向南偏西50°方向走200米.7.如果电影院在学校的东偏南30°方向上,那么学校在电影院南偏东30°方向上。

第三单元 勇担社会责任 测试题-2021-2022学年部编版道德与法治八年级上册(word版含答案)

第三单元 勇担社会责任 测试题-2021-2022学年部编版道德与法治八年级上册(word版含答案)
A.①②③B.①②④C.①③④D.②③④
22.在服务和奉献社会的过程中,积极参与社会公益活动既可以帮助他人,又能使自身的价值在奉献中得以提升。下列不属于参与社会公益活动的是( )
A.青年志愿者参加西部扶贫接力计划
B.主动帮助学习成绩差的同学补习功课
C.大学生开展暑期文化、科技、卫生“三下乡”活动
D.利用周末时间向社区居民宣传防火知识
B.放弃个人利益甚至牺牲生命,实现人生价值
C.积极奉献社会,践行爱岗敬业崇高精神
D.关注祖国所需,为人民担起时代的重任
11.2020珠峰高程测量登山队成功从北坡登上珠穆朗玛峰峰顶,完成峰顶测量任务。登山队队员吴元明说∶“ 苦是苦,但我们是用脚步丈量祖国土地的人,要承担起为祖国建设先锋开路的责任。”可见,登山队员们( )
①孝敬父母长辈 ②遵守学校纪律 ③维护公共秩序 ④遵守社会规范
A.③④B.②④C.①④D.②③
21.下列对漫画认识正确的有( )
①不自觉承担责任会埋下严重的安全隐患
②校车只要没有出事故,学校就没有责任
③学校和家长都没有对孩子们尽到应尽的责任
④让孩子们搭乘“可怕校车”,是学校和家长社会责任感缺失的表现
②服务社会能够促进我们全面发展。在服务社会的过程中,我们的视野不断拓展,知识不断丰富,观察、分析、解决问题的能力以及人际交往的能力不断提升,道德境界不断提高。
(2)①服务和奉献社会,需要我们积极参与社会公益活动。
A.完善毒品预防的法律B.自觉远离毒品的侵害
C.研究新型毒品的危害D.筑牢禁毒的司法防线
13.武汉新冠肺炎疫情牵动着国人的心,面对疫情,有捐出压岁钱的杭州“敬礼男孩”,有捐了抵工钱的15000只医用口罩的常德农民,有匿名捐款1万抗疫的83岁拾荒老人,有捐款不留名的退伍老兵。他们的善举表明( )

数学(青岛版)八年级(上册)1-2章月考试题附答案和解析

数学(青岛版)八年级(上册)1-2章月考试题附答案和解析

绝密★启用前数学(青岛版)八年级(上册)1-2章月考试题考试范围:第一、二章;考试时间:120分钟;学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意:本试卷包含Ⅰ、Ⅱ两卷。

第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。

第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。

答案写在试卷上均无效,不予记分。

第I卷(选择题)一、选择题(本大题共12小题,共36.0分)1.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A. ∠B=∠CB. AD=AEC. BD=CED. BE=CD2.已知,如图,B、C、E三点在同一条直线上,AC=CD,∠B=∠E=90°,AB=CE,则不正确的结论是()A. ∠A与∠D互为余角B. ∠A=∠2C. △ABC≅△CEDD. ∠1=∠23.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3的度数为()A. 90°B. 135°C. 150°D. 180°4.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A. 115°B. 120°C. 130°D. 140°5.已知点A(m+2,3)与点B(−4,n+5)关于y轴对称,则m+n的值为()A. −8B. 0C. −6D. −146.在平面直角坐标系中.点P(1,−2)关于x轴的对称点的坐标是()A. (1,2)B. (−1,−2)C. (−1,2)D. (−2,1)7.如图,DE是△ABC中AC边的垂直平分线,若BC=6cm,AB=8cm,则△EBC的周长是()A. 14cmB. 18cmC. 20cmD. 22cm8.如图,在ΔABC中,AB边上的垂直平分线分别交边AC于点E,交边AB于点D,若AC长为12cm,BE长为8cm,则EC的长为()A. 8cmB. 6cmC. 4cmD. 2cm9.将一张长方形的纸片对折,然后用笔尖在上面扎出字母“B”,再把它展开铺平后,你可以看到的图形是()A. B. C. D.10.如图为用直尺和圆规作一个角等于已知角,那么能得出∠A′O′B′=∠AOB的依据是运用了我们学习的全等三角形判定()A. 角角边B. 边角边C. 角边角D. 边边边11.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A. 50°B. 70°C. 75°D.80°12.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD交BE于点F,若BF=AC,则∠ABC等于()A. 45°B. 48°C. 50°D. 60°第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.如图,点B在线段AD上,∠ABC=∠D,AB=ED.要使△ABC≌△EDB,则需要再添加的一个条件是______ (只需填一个条件即可).14.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带______去玻璃店.15.已知M(a,3)和N(4,b)关于y轴对称,则(a+b)2008的值为______ .16.如图,已知△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4,则BC=______ .三、解答题(本大题共9小题,共72.0分)17.如图,已知∠1与线段a,用直尺和圆规按下列步骤作图(保留作图痕迹,不写作法):(1)作∠A=∠1;(2)在∠A的两边分别作AM=AN=a;(3)连接MN.18.平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4),B(3,4),C(4,−1).(1)试在平面直角坐标系中,画出△ABC;(2)若△A1B1C1与△ABC关于x轴对称,写出A1、B1、C1的坐标;(3)在x轴上找到一点P,使点P到点A、B两点的距离和最小;(4)求△ABC的面积.19.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.20.已知如图所示,∠B=∠D,AC=AE,∠BAD=∠CAE.求证BC=DE.21.已知:如图,在△ABC中,∠ACB=105°,AC边的垂直平分线DE交AB边于点D,交AC边于点E,连接CD.(1)若AB=10,BC=6,求△BCD的周长;(2)若AD=BC,试求∠A的度数.22.如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.23.如图,△ABC的两条高线AD,BE相交于点H,且AD=BD,求证:△BDH≌△ADC.24.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N,(1)若△CMN的周长为18cm,求AB的长;(2)若∠MCN=50°,求∠ACB的度数.25.如图,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=______时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q 的运动速度.答案和解析1.【答案】D2.【答案】D3.【答案】B4.【答案】A5.【答案】B6.【答案】A7.【答案】A8.【答案】C9.【答案】C 10.【答案】D 11.【答案】B 12.【答案】A 13.【答案】BC=DB 14.【答案】③15.【答案】1 16.【答案】1217.【答案】解:(1)∠A如图所示.(2)AM、AN如图所示.(3)MN如图所示.【解析】此题主要考查了尺规基本作图,熟练掌握作一条线段等于已知线段和作一个角等于已知角的基本作图方法是关键.(1)根据作一个角等于已知角的步骤作出∠A=∠1即可;(2)在∠A两边上分别截取AM=AN=a即可;(3)连结MN即可.18.【答案】解:(1)如图所示△ABC即为所求;(2)A1(0,−4),B1(3,−4),C1(4,1);(3)连接A1B交x轴于P,点P即为所求;(4)S△ABC=12×3×5=152.【解析】本题考查了轴对称−最短路线问题,作图−轴对称变换,正确的作出图形是解题的关键.(1)根据题意作出图形即可;(2)根据关于x 轴对称的点的特点即可得到结果;(3)连接A 1B 交x 轴于P 即可得到结论;(4)根据三角形的面积公式即可得到结论.19.【答案】(1)证明:∵∠ABC =90°,∴∠DBC =90°,在△ABE 和△CBD 中{AB =CB ∠ABE =∠CBD BE =BD∴△ABE≌△CBD(SAS);(2)解:∵AB =CB ,∠ABC =90°,∴∠BCA =45°,∴∠AEB =∠CAE +∠BCA =30°+45°=75°,∵△ABE≌△CBD ,∴∠BDC =∠AEB =75°.【解析】(1)由条件可利用SAS 证得结论;(2)由等腰直角三角形的性质可先求得∠BCA ,利用三角形外角的性质可求得∠AEB ,再利用全等三角形的性质可求得∠BDC .本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.20.【答案】证明:∵∠BAD =∠CAE ,∴∠BAD +∠DAC =∠CAE +∠DAC .即∠BAC =∠DAE ,在△ABC 和△ADE 中,{∠BAC=∠DAE ∠B=∠DAC=AE∴△ABC≌△ADE,∴BC=DE.【解析】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS、SSS、SAS、SSA、HL.判定两个三角形全等时,必须有边的参与.先通过∠BAD=∠CAE得出∠BAC=∠DAE,从而根据AAS可证明△ABC≌△ADE,得到BC=DE.21.【答案】解:(1)∵DE是AC的垂直平分线,∴AD=CD,∵C△BCD=BC+BD+CD=BC+BD+AD=BC+AB,又∵AB=10,BC=6,∴C△BCD=16;(2)∵AD=CD∴∠A=∠ACD,设∠A=x,∵AD=CB,∴CD=CB,∴∠CDB=∠CBD,∵∠CDB是△ACD的外角,∴∠CDB=∠A+∠ACD=2x,∵∠A、∠B、∠ACB是三角形的内角,∵∠A+∠B+∠ACB=180°,∴x+2x+105°=180°,解得x=25°,∴∠A=25°.【解析】本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形外角的性质,三角形内角和,将△BCD的周长转化成AB+BC是解题关键.(1)利用线段垂直平分线的性质得出DC与AD的关系,把△BCD的周长转化成AB+BC 代入进行计算即可;(2)根据线段垂直平分线的性质,可得CD的长,根据等腰三角形的性质,可得∠B与∠CDB 的关系,根据三角形外角的性质,可得∠CDB与∠A的关系,根据三角形内角和定理,可得答案.22.【答案】解:(1)∠ABE=∠ACD;在△ABE和△ACD中,{AB=AC ∠A=∠A AE=AD,∴△ABE≌△ACD,∴∠ABE=∠ACD;(2)连接AF.∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.【解析】本题考查了等腰三角形的性质及垂直平分线段的性质的知识,解题的关键是能够从题目中整理出全等三角形,难度不大.(1)证得△ABE≌△ACD后利用全等三角形的对应角相等即可证得结论;(2)利用垂直平分线段的性质即可证得结论.23.【答案】证明:∵DA和BE是高,∴∠ADB=∠BEC=90°,∴∠1+∠C=90°,∠2+∠C=90°,∴∠1=∠2,在△BDH和△ADC中,{∠1=∠2∠ADC =∠BDH AD =BD,∴△ADC≌△BDH(ASA).【解析】首先根据DA 和BE 是高,可得∠ADB =∠BEC =90°,然后可得∠1+∠C =90°,∠2+∠C =90°,根据同角的余角相等可得∠1=∠2,然后可判定△BHD≌△ACD .本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.24.【答案】解:(1)∵DM 、EN 分别垂直平分AC 和BC ,∴AM =CM ,CN =BN ,∵△CMN 的周长为18cm ,即CM +CN +MN =18,∴AM +BN +MN =AB =18cm .∴AB =18cm .(2)∵DM 垂直平分AC ,∴∠1=∠2,∵EN 垂直平分BC ,∴∠3=∠4,又∵∠1+∠2+∠3+∠4+50°=180°,则2(∠1+∠4)=180°−50°=130°,∠1+∠4=65°,∴∠ACB =(∠1+∠4)+∠MCN =65°+50°=115°.【解析】(1)根据△ABC 中,DM 、EN 分别垂直平分AC 和BC ,可知AM =CM ,CN =BN ,可知△CMN 的周长即为AB 的长.(2)根据垂直平分线的性质可知,∠1=∠2,∠3=∠4,根据三角形的内角和定理,整体求出∠1+∠4的值,进而可得∠ACB 的度数.此题主要考查线段的垂直平分线的性质等几何知识,由线段的垂直平分线上的点到线段的两个端点的距离相等,可得到等腰△AMC 、△CNB ,再利用等腰三角形的两底角相等,得到∠1=∠2,∠3=∠4,再根据三角形的内角和等于180°求出∠1+∠4,便可解答. 25.【答案】112或192【解析】解:(1)①当点P 在BC 上时,如图①−1, 若△APC 的面积等于△ABC 面积的一半;则CP =12BC =92cm ,此时,点P 移动的距离为AC +CP =12+92=332,移动的时间为:332÷3=112秒,②当点P 在BA 上时,如图①−2若△APC 的面积等于△ABC 面积的一半;则PD =12BC ,即点P 为BA 中点,此时,点P 移动的距离为AC +CB +BP =12+9+152=572cm ,移动的时间为:572÷3=192秒,故答案为:112或192; (2)△APQ≌△DEF ,即,对应顶点为A 与D ,P 与E ,Q 与F ;①当点P 在AC 上,如图②−1所示:此时,AP =4,AQ =5,∴点Q 移动的速度为5÷(4÷3)=154cm/s ,②当点P 在AB 上,如图②−2所示:此时,AP =4,AQ =5,即,点P 移动的距离为9+12+15−4=32cm ,点Q 移动的距离为9+12+15−5=31cm ,∴点Q 移动的速度为31÷(32÷3)=9332cm/s ,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF ,点Q 的运动速为154cm/s 或9332cm/s .(1)分两种情况进行解答,①当点P 在BC 上时,②当点P 在BA 上时,分别画出图形,利用三角形的面积之间的关系,求出点P 移动的距离,从而求出时间即可;(2)由△APQ≌△DEF ,可得对应顶点为A 与D ,P 与E ,Q 与F ;于是分两种情况进行解答,①当点P在AC上,②当点P在AB上,分别求出P移动的距离和时间,进而求出Q的移动速度.考查直角三角形的性质,全等三角形的判定,画出相应图形,求出各点移动的距离是正确解答的关键.。

(典型题)初中数学八年级数学上册第三单元《位置与坐标》测试卷(有答案解析)

(典型题)初中数学八年级数学上册第三单元《位置与坐标》测试卷(有答案解析)

一、选择题1.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O 运动到点1(1,1)P ,第二次运动到点2(2,0)P ,第三次运动到3(3,2)P -,…,按这样的运动规律,第2021次运动后,动点2021P 的纵坐标是( )A .1B .2C .2-D .0 2.已知点Q 与点(3,)P a 关于x 轴对称点是(,2)Q b -,那么点(,)a b 为( )A .(2,3)-B .(2,3)C .(3,2)D .(3,2)-3.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112m B .2505mC .220092m D .2504m4.如图,动点Р在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点Р的坐标是( )A .(2019,2)B .(2019,0)C .()2019,1D .(2020,1)5.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 6.在平面直角坐标系中,点P (﹣3,4)关于x 轴的对称点的坐标是( )A .(﹣4,﹣3)B .(﹣3,﹣4)C .(3,4)D .(3,﹣4)7.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x 轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为( )A .100B .81C .64D .498.如图,一个机器人从点O 出发,向正西方向走2m 到达点A 1;再向正北方向走4m 到达点A 2,再向正东方向走6m 到达点A 3,再向正南方向走8m 到达点A 4,再向正西方向走10m 到达点A 5,按如此规律走下去,当机器人走到点A 9时,点A 9在第( )象限A .一B .二C .三D .四 9.如果a 是任意实数,则点(1,1)P a a -+,一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限10.在平面直角坐标系中,若0a <,则点(﹣2,﹣a )的位置在( )A .第一象限B .第二象限C .第三象限D .第四象限11.如图,保持△ABC 的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是( )A .关于x 轴对称B .关于y 轴对称C .将原图形沿x 轴的负方向平移了1个单位D .将原图形沿y 轴的负方向平移了1个单位12.如图,一个点在第一象限及x 轴、y 轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2020秒时,点所在位的坐标是( )A .(64,44)B .(45,5)C .(44,5)D .(44,4)二、填空题13.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.14.如图,网格纸上每个小正方形的边长为1,点A ,点C 均在格点上,点P 为x 轴上任意一点,则PAC △周长的最小值为________.15.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.16.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________ 17.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)和(3,0),点C 是y轴上的一个动点,连接AC 、BC ,则△ABC 周长的最小值是_____.18.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.19.若点P 1(a+3,4)和P 2(-2,b -1)关于x 轴对称,则a+b=___.20.如图,在锐角三角形ABC 中,AB =10,S △ABC =30,∠ABC 的平分线BD 交AC 于点D ,点M 、N 分别是BD 和BC 上的动点,则CM +MN 的最小值是_____.三、解答题21.如图,在平面直角坐标系中,已知A (0,2),B (1,0),点C 在第一象限,AB =AC ,∠BAC =90°. (1)求点C 到y 轴的距离; (2)点C 的坐标为 .22.如图,(1)在网格中画出ABC ∆关于y 轴对称的111A B C ∆;(2)写出ABC ∆关于x 轴对称的222A B C ∆的各顶点坐标;(3)在y 轴上确定一点P ,使PAB ∆周长最短.只需作图,保留作图痕迹. 23.如图,ABC 的三个顶点的坐标分别是()3,3A ,()1,1B ,()4,1C -.(1)直接写出点A 、B 、C 关于x 轴对称的点1A 、1B 、1C 的坐标;1A (______,_______)、1B (______,_______)、1C (______,_______) (2)在图中作出ABC 关于y 轴对称的图形222A B C △. (3)求ABC 的面积.24.在如图所示的平面直角坐标系中,完成下列任务.(1)描出点(1,1)A ,(3,1)B ,(3,2)C -,(1,2)D -,并依次连接A ,B ,C ,D ; (2)画出四边形ABCD 关于y 轴对称的四边形1111D C B A ,并写出顶点1A ,1C 的坐标. 25.如图所示,在平面直角坐标系xOy 中,已知AOC △的顶点坐标分别是(2,2)A -,(3,3)C .(1)作出AOC △关于x 轴对称的DOE △,其中点A 的对应点是D ,点C 的对应点是E ,并直接写出D 和E 的坐标;(2)若点P 为x 轴上的一点,若OP OA =,求点P 的坐标.26.如图,在平面直角坐标系中,A (-2,4),B (-3,1),C (1,-2). (1)在图中作出△ABC 关于y 轴的对称图形△A′B′C′; (2)写出点A′、B′、C′的坐标; (3)连接OB 、OB′,请直接回答: ①△OAB 的面积是多少?②△OBC 与△OB′C′这两个图形是否成轴对称.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,-2,0,2,0,六个数一个循环,进而可得经过第2021次运动后,动点P的坐标.【详解】观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,-2),第4次接着运动到点(4,0),第5次接着运动到点(5,2),第6次接着运动到点(6,0),第7次接着运动到点(7,1),…,按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,-2,0,2,0,六个数一个循环,所以2021÷6=336…5,所以经过第2021次运动后,动点P的坐标是(2021,2).故选:B.【点睛】本题考查了规律型-点的坐标,解决本题的关键是观察点的坐标变化寻找规律.2.B解析:B【分析】根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变,可得a=2,b=3,进而可得答案.【详解】解:∵点P(3,a)关于x轴的对称点为Q(b,-2),∴a=2,b=3,∴点(a,b)的坐标为(2,3),故选:B.【点睛】此题主要考查了关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.3.B解析:B【分析】根据图象可得移动4次图象完成一个循环,从而可得出OA4n=2n知OA2020=2×505,据此利用三角形的面积公式计算可得.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,由题意知OA4n=2n,∵2020÷4=505,∴OA2020=2×505,则△OA2A2020的面积是12×1×2×505=505m2,故选:B.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.4.A解析:A【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为1,0,2,0,每4次一轮这一规律,进而求出即可.【详解】解:解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2019次运动后,动点P的横坐标为2019,纵坐标为1,0,2,0,每4次一轮,∴经过第2019次运动后,动点P的纵坐标为:2019÷4=504余3,故纵坐标为四个数中第三个,即为2,∴经过第2019次运动后,动点P 的坐标是:(2019,2), 故选:A . 【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.5.B解析:B 【分析】根据图象可得移动4次图象完成一个循环,从而可得出42n OA n =,20201010OA =,据此利用三角形的面积公式计算可得. 【详解】由题意得:12345(1,0)(1,1)(2,1)(2,0)(3,0),A A A A A 、、、、 ∴图象可得移动4次图象完成一个循环 ∴42n OA n =,20201010OA =3202034202011==11010=50522OA A S A A OA ⨯⨯⨯⨯△故选B 【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.6.B解析:B 【解析】试题分析:平面直角坐标系中任意一点P (x ,y ),关于x 轴的对称点的坐标是(x ,﹣y ),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.解:点A (﹣3,4)关于x 轴的对称点的坐标是(﹣3,﹣4), 故选B .考点:关于x 轴、y 轴对称的点的坐标.7.B解析:B 【分析】设边长为10的正方形内部的整点的坐标为(x ,y ),x ,y 都为整数,根据题意可得规律求解. 【详解】解:设边长为10的正方形内部的整点的坐标为(x ,y ),x ,y 都为整数. 则﹣5<x <5,﹣5<y <5,故x 只可取﹣4,﹣3,﹣2,﹣1,0,1,2,3,4共9个,y 只可取﹣4,﹣3,﹣2,﹣1,0,1,2,3,4共9个,它们共可组成点(x ,y )的数目为9×9=81(个). 故选:B . 【点睛】本题主要考查平面直角坐标系点的坐标规律,关键是根据题意得到点的坐标特点规律,然后进行求解即可.8.C解析:C 【分析】每个象限均可发现点A 脚标的规律,再看点A 9符合哪个规律即可知道在第几象限. 【详解】 由题可知,第一象限的规律为:3,7,11,15,19,23,27,…,3+4n ; 第二象限的规律为:2,6,10,14,18,22,26,…,2+4n ; 第三象限的规律为:1,5,9,13,17,21,25,…,1+4n ; 第四象限的规律为:4,8,12,16,20,24,…,4n ; 所以点A 9符合第三象限的规律. 故选:C . 【点睛】本题考查规律型:点的坐标问题,解题的关键是发现规律,利用规律解决问题,本题的突破点是判定A 9在第三象限,属于中考常考题型.9.D解析:D 【分析】根据点P 的纵坐标一定大于横坐标和各象限的点的坐标进行解答. 【详解】解:∵11a a +>-,即点P 的纵坐标一定大于横坐标, 又∵第四象限的点的横坐标是正数,纵坐标是负数, ∴第四象限的点的横坐标一定大于纵坐标, ∴点P 一定不在第四象限. 故选:D . 【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.10.B解析:B 【分析】根据各象限的点的坐标特征解答. 【详解】解:∵a<0,∴-a>0,∴点(-2,-a)在第二象限.故选:B.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).11.A解析:A【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,可知所得的三角形与原三角形关于x轴对称.【详解】解:∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x轴对称.故选:A.【点睛】本题考查平面直角坐标系中对称点的规律.解题关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12.D解析:D【分析】根据题意找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系即可.【详解】观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,则可知当点离开x轴时的横坐标为时间的平方,当点离开y轴时的纵坐标为时间的平方,此时时间为奇数的点在x轴上,时间为偶数的点在y轴上,∵2020=452﹣5=2025﹣5,∴第2025秒时,动点在(45,0),故第2020秒时,动点在(45,0)向左一个单位,再向上4个单位,即(44,4)的位置.故选:D.【点睛】本题考查了动点在平面直角坐标系中的运动规律,找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系,是解题的关键.二、填空题13.1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数纵坐标相等进而得出答案【详解】解:∵点A(1+m1-n)与点B(-32)关于y轴对称∴1+m=31-n=2∴m=2n=-1∴(m+n)202解析:1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=2,n=-1,∴(m+n)2020=(2-1)2020=1;故答案为:1.【点睛】此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键.14.【分析】根据勾股定理可得AC的长度作点C关于x轴的对称点C′连接AC′与x轴交于点P利用勾股定理求出AP+PC的最小值从而得出答案【详解】AC=如图作点C关于x轴的对称点C′连接AC′与x轴交于点P解析:21022+【分析】根据勾股定理可得AC的长度,作点C关于x轴的对称点C′,连接AC′,与x轴交于点P,利用勾股定理求出AP+PC的最小值,从而得出答案.【详解】AC=22+=,2222如图,作点C关于x轴的对称点C′,连接AC′,与x轴交于点P,则AP+PC=AP+PC′=AC′,此时AP+PC2226210+=所以△PAC周长的最小值为21022故答案为:21022.【点睛】本题主要考查了轴对称-最短路线问题,解题的关键是掌握轴对称变换的性质.15.四【详解】解:∵点M(a-2a+3)在y轴上∴a-2=0∴a=2∴点N的坐标为N(2+22-3)即(4-1)∴点N在第四象限故答案为:四【点睛】本题考查了各象限内点的坐标的符号特征记住各象限内点的坐解析:四【详解】解:∵点M(a-2,a+3)在y轴上,∴a-2=0,∴a=2,∴点N的坐标为N(2+2,2-3),即(4,-1),∴点N在第四象限,故答案为:四.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.-7或9【分析】根据纵坐标相同可知MN∥x轴然后分点N在点M的左边与右边两种情况求出点N的横坐标即可得解【详解】∵点M(13)与点N(x3)的纵坐标都是3∴MN∥x轴∵MN=8∴点N在点M的左边时x解析:-7或9【分析】根据纵坐标相同可知MN∥x轴,然后分点N在点M的左边与右边两种情况求出点N的横坐标,即可得解.【详解】∵点M(1,3)与点N(x,3)的纵坐标都是3,∴MN∥x轴,∵MN=8,∴点N在点M的左边时,x=1−8=−7,点N在点M的右边时,x=1+8=9,∴x的值是-7或9.故答案为:-7或9.【点睛】本题考查了坐标与图形性质,注意分情况讨论求解.17.【分析】作AD⊥OB于D则∠ADB=90°OD=1AD=3OB=3得出BD=2由勾股定理求出AB即可;由题意得出AC+BC最小作A关于y轴的对称点连接交y 轴于点C点C即为使AC+BC最小的点作轴于E解析:5【分析】作AD⊥OB于D,则∠ADB=90°,OD=1,AD=3,OB=3,得出BD=2,由勾股定理求出AB即可;由题意得出AC+BC最小,作A关于y轴的对称点A',连接A B'交y轴于点C,'⊥轴于E,由勾股定理求出A B',即可得出结果.点C即为使AC+BC最小的点,作A E x【详解】解:作AD⊥OB于D,如图所示:则∠ADB=90°,OD=1,AD=3,OB=3,∴BD=3﹣1=2,∴AB222+3=13要使△ABC的周长最小,AB一定,则AC+BC最小,作A关于y轴的对称点A',连接A B'交y轴于点C,点C即为使AC+BC最小的点,'⊥轴于E,作A E x由对称的性质得:AC=A C',则AC+BC=A B',A E'=3,OE=1,∴BE=4,由勾股定理得:A B'22+=,345∴△ABC13+5.13+5.【点睛】本题主要考查最短路径问题,关键是根据轴对称的性质找到对称点,然后利用勾股定理进行求解即可.18.【分析】观察点的坐标变化发现每个点的横坐标与运动的次数相等纵坐标是1020…4个数一个循环按照此规律解答即可【详解】解:观察点的坐标变化可知:第1次从原点运动到点(11)第2次接着运动到点(20)第2021,1解析:()【分析】观察点的坐标变化发现每个点的横坐标与运动的次数相等,纵坐标是1,0,2,0,…4个数一个循环,按照此规律解答即可.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与运动的次数相等,纵坐标是1,0,2,0,4个数一个循环,由于2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).故答案为:(2021,1).【点睛】本题考查了点的坐标规律探求,属于常考题型,由已知点的坐标变化找出规律是解题的关键.19.-8【分析】根据关于x轴对称的点的横坐标相等纵坐标互为相反数关于y轴对称的点的纵坐标相等横坐标互为相反数得出ab的值即可得答案【详解】解:由题意得a+3=-2b-1=-4解得a=-5b=-3所以a+解析:-8【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,关于y轴对称的点的纵坐标相等,横坐标互为相反数,得出a、b的值即可得答案.【详解】解:由题意,得a+3=-2,b-1=-4.解得a=-5,b=-3,所以a+b=(-5)+(-3)=-8故答案为:-8.【点睛】本题考查关于x轴对称的点的坐标,熟记对称特征:关于x轴对称的点的横坐标相等,纵坐标互为相反数,关于y轴对称的点的纵坐标相等,横坐标互为相反数是解题关键.20.6【分析】过点C作CE⊥AB于点E交BD于点M′过点M′作M′N′⊥BC于N′则CE即为CM+MN的最小值再根据三角形的面积公式求出CE的长即为CM+MN 的最小值【详解】解:过点C作CE⊥AB于点E解析:6【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN 的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M作MN′⊥BC于N′,∵BD平分∠ABC,M′E⊥AB于点E,M′N′⊥BC于N∴M′N′=M′E,∴CE=CM′+M′E∴当点M与M′重合,点N与N′重合时,CM+MN的最小值.∵三角形ABC的面积为30,AB=10,∴1×10×CE=30,2∴CE=6.即CM+MN的最小值为6.故答案为6.【点睛】本题考查的是轴对称-最短路线问题,解题的关键是学会利用垂线段最短解决最短问题,属于中考常考题型.三、解答题21.(1)2;(2)(2,3).【分析】(1)过点C作CD⊥y轴,垂足为D,然后证明△AOB≌△CDA,则CD=OA,即可得到答案;(2)由(1)可知,CD=OA,AD=OB,即可求出答案.【详解】解:(1)过点C作CD⊥y轴,垂足为D,如图:∵CD⊥y轴,∴∠AOB=∠CDA=90°,∵∠BAC=90°,∴∠CAD+∠BAO=∠ABO+∠BAO=90°,∴∠CAD=∠ABO ,∵AB=AC ,∴△AOB ≌△CDA ,∴CD=OA ,AD=OB ,∵A (0,2),B (1,0),∴CD=OA=2;∴点C 到y 轴的距离为2;(2)由(1)可知,CD=OA ,AD=OB ,∵OA=2,OB=1,∴OD=2+1=3,∴点C 的坐标为(2,3);故答案为:(2,3).【点睛】本题考查了全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质进行解题,注意正确的作出辅助线.22.(1)如图所示,见解析;(2)222(3,2)(4,3)(1,1)A B C -----、、;(3)如图所示,见解析.【分析】(1)直接利用关于y 轴对称点的性质得出答案;(2)直接利用关于x 轴对称点的性质得出答案;(3)利用轴对称求最短路线的方法得出P 点位置即可.【详解】解:(1)如图所示:(2)∵A (-3,2),B (4-,3-),C (1-,1),∴关于x 轴对称的点分别为:222(3,2)(4,3)(1,1)A B C -----、、;(3)如图所示:【点睛】此题主要考查了利用轴对称求短路线以及轴对称变换,正确得出对应点位置是解题关键.23.(1)3,−3,1,−1,4,1;(2)见详解;(3)5【分析】(1)由关于x轴对称的点的横坐标相等,纵坐标互为相反数,即可得到答案;(2)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(3)利用割补法求解可得.【详解】(1)∵点A(3,3),B(1,1),C(4,−1).∴点A关于x轴的对称点A1(3,−3),B关于x轴的对称点B1(1,−1),C关于x轴的对称点C1(4,1),故答案为:3,−3,1,−1,4,1;(2)如图所示,即为所求;(3)△ABC的面积为:3×4−12×2×2−12×2×3−12×1×4=5.【点睛】本题主要考查作图−轴对称变换和点的坐标,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点,也考查了割补法求三角形的面积.24.(1)见解析;(2)见解析,1(1,1)A -,1(3,2)C --【分析】(1)直接利用已知点坐标在坐标系中描出各点得出答案;(2)画出四边形ABCD 关于y 轴对称的对称点,顺次连接对称点即可得到四边形1111D C B A ,再写出顶点1A ,1C 的坐标即可.【详解】解:(1)四边形ABCD 即为所求作的图形.(2)四边形1111D C B A 即为所求作的图形.此时1(1,1)A -,1(3,2)C --【点睛】本题考查了作图中的轴对称变换,熟练掌握对称的作图方法是解题的关键.25.(1)作图见解析,D ()2,2--,E ()3,3-;(2) ()()1222,022,0P P -,.【分析】(1)根据已知三角形AOC △,得到点A 和点C 关于x 轴的对称点分别为点D 和点E ,再首位顺次连接,即可作出DOE ;(2)先根据点A 和点O 的坐标,求出OA 的长度,因为OP OA =,即可求出P 点坐标.【详解】(1)如图所示:∵AOC △和DOE △关于 x 轴对称,()2,2A -,()3,3C -,∴D ()2,2--,E ()3,3-,连接OD ,DE ,EO ,即为所作DOE .(2)∵()2,2A -,()0,0O ,∴[]220(2)(02)22OA =--+-=,∵P 在x 轴上,OP OA =, ∴()122,0P -,()222,0P .【点睛】本题考查作图-轴对称,点的坐标,线段长度等知识,熟练掌握轴对称图形的性质以及作法是解题的关键.26.(1)见解析;(2)A′(2,4),B′(3,1),C′(-1,-2);(3)①5;②是;△OBC 与△OB′C′这两个图形关于y 轴成轴对称.【分析】(1)先确定A 、B 、C 关于y 轴的对称点A′、B′、C′,然后再顺次连接即可;(2)直接根据图形读出A′、B′、C′的坐标即可;(3)①运用△OAB 所在的矩形面积减去三个三角形的面积即可;②根据图形看△OBC 与△OB′C′是否有对称轴即可解答.【详解】解:(1)如图;△A′B′C′即为所求;(2)如图可得:A′(2,4).B′(3,1).C′(-1,-2);(3)①△OAB 的面积为:4×3-12×3×1-12×4×2-12×3×1=5; ②∵△OBC 与△OB′C′这两个图形关于y 轴成轴对称∴△OBC 与△OB′C′这两个图形关于y 轴成轴对称.【点睛】本题主要考查了轴对称变换和不规则三角形面积的求法,作出△ABC关于y轴的对称图形△A′B′C′以及运用拼凑法求不规则三角形的面积成为解答本题的关键.。

(必考题)初中数学八年级数学上册第三单元《位置与坐标》测试(有答案解析)(1)

(必考题)初中数学八年级数学上册第三单元《位置与坐标》测试(有答案解析)(1)

一、选择题1.在平面直角坐标系xOy 中,点A (﹣2,0),点B (0,3),点C 在坐标轴上,若三角形ABC 的面积为6,则符合题意的点C 有( ) A .1个B .2个C .3个D .4个2.在平面直角坐标系中,下列说法正确的是( ) A .点P (3,2)到x 轴的距离是3 B .若ab =0,则点P (a ,b )表示原点C .若A (2,﹣2)、B (2,2),则直线AB ∥x 轴D .第三象限内点的坐标,横纵坐标同号3.如图,在直角坐标系中,直线l 是经过点()1,0-,且平行于y 轴的直线,点(),1P a -与点()3,Q b 关于直线l 对称,则+a b 的值为( ).A .2B .6C .-2D .-64.在平面直角坐标系中,若干个半径为1个单位长度、圆心角为60︒的扇形组成一条连续的曲线,点P 从原点O 出发,向右沿这条曲线做上下起伏运动(如图),点P 在直线上运动的速度为每秒1个单位长度,点P 在弧线上运动的速度为每秒π3个单位长度,则2021秒时,点P 的坐标是( )A .(3B .(2021,3C .202132⎛ ⎝⎭D .20213,2⎛ ⎝⎭5.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( ) A .离北京市200千米 B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°6.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .12507.在平面直角坐标系中,点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,点C (1,2),连接AC ,BC ,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为( ) A .﹣1<a ≤0B .0<a ≤1C .1≤a <2D .﹣1≤a ≤18.在平面直角坐标系中,若点()2,3M 与点()2,N y 之间的距离是4,则y 的值是( ) A .7B .1-C .1-或7D .7-或19.如图,在平面直角坐标系中,有点A (1,0) ,点A 第一次跳动至()11,1A -,第二次点1A 跳动至()22,1A ,第三次点2A 跳动至()32,2A -,第四次点3A 跳动至()43,2A …,依次规律跳动下去,则点2019A 与点2020A 之间的距离是( )A .2019B .2020C .2021D .202210.如图,已知点1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,,则点2020A 的坐标为( )A .(505,505)B .(506,505)-C .(505,505)--D .(505,505)-11.平面直角坐标系中,点()2,3A -,()2,1B -,经过点A 的直线//a x 轴,点C 是直线a 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( )A .()0,1-B .()1,2--C .()2,1--D .()2,312.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点(1,1)P y x '-++叫做点P 伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,,这样依次得到点1A ,2A ,3A ,,n A ,.若点1A 的坐标为(2,4),点2020A 的坐标为( ) A .(-3,3) B .(-2,-2) C .(3,-1)D .(2,4)二、填空题13.下列四个命题中: ①对顶角相等;②如果两条直线被第三条直线所截,那么同位角相等; ③如果两个实数的平方相等,那么这两个实数也相等; ④当0m ≠时,点()2,P m m -在第四象限内. 其中真命题有________(填序号).14.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,按这样的运动规律,经过第1000次运动后,动点P 的坐标是_______;经过第2019次运动后,动点P 的坐标是_______.15.如图,点A 的坐标(-2,3)点B 的坐标是(3,-2),则图中点C 的坐标是______.16.已知点()1,2A ,//AC x 轴,5AC =,则点C 的坐标是______ . 17.如图,已知1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,则2020A 的坐标为_______.18.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1,A 第二次移动到点2A ….第n 次移动到点,n A 则点2020A 的坐标是____________________.19.点M 在第四象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为_____.20.已知点(,4)M a -与点(6,)N b 关于直线2x =对称,那么-a b 等于______.三、解答题21.如图,在4×4的方格中(每个小正方形的边长均为1),标有A ,B 两点(A ,B 在格点上),请你用两种不同的方法表示点B 相对点A 的位置.22.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为()3,2A -,()4,3B --,()2,2C --.(1)△ABC 的面积是 ;(2)画出△ABC 关于y 轴对称的△A 1B 1C 1,并写出点B 1的坐标.23.(1)请在网格中建立平面直角坐标系,使得A ,B 两点的坐标分别为()4,1,()1,2-;(2)在(1)的条件下,过点B 作x 轴的垂线,垂足为点M ,在BM 的延长线上取一点C ,使MC BM =. ①写出点C 的坐标;②平移线段AB 使点A 移动到点C ,画出平移后的线段CD ,并写出点D 的坐标.24.在平面直角坐标系中,已知点()3,21M m m +- (1)若点M 在x 轴上,求m 的值.(2)若点M 在第一、三象限的角平分线上,求m 的值. 25.如图,在网格中按要求完成作图:(1)作出ABC (三角形的顶点都在格点上)关于x 轴对称的图形; (2)写出A 、B 、C 的对应点A '、B '、C '的坐标;(3)在x 轴上画出点Q ,并写出点Q 的坐标,使QAC 的周长最小.26.如图,在边长为1个单位长度的小正方形组成的网格中,小明家可用坐标()1,2-表示,汽车站可用坐标()3,1-表示.(1)建立平面直角坐标系,画出x 轴和y 轴;(2)某星期日早晨,小明同学从家出发,沿(0,1)(2,1)(1,2)(0,1)(1,0)(2,1)(2,2)→--→--→-→→-→的路线转了一圈,又回到家里,写出他路上经过的地方.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分类讨论:当C点在y轴上,设C(0,t),根据三角形面积公式得到12|t﹣3|•2=6,当C点在x轴上,设C(m,0),根据三角形面积公式得到12|m+2|•3=6,然后分别解绝对值方程求出t和m即可得到C点坐标.【详解】解:分两种情况:①当C点在y轴上,设C(0,t),∵三角形ABC的面积为6,∴12•|t﹣3|•2=6,解得t=9或﹣3.∴C点坐标为(0,﹣3),(0,9),②当C点在x轴上,设C(m,0),∵三角形ABC的面积为6,∴12•|m+2|•3=6,解得m=2或﹣6.∴C点坐标为(2,0),(﹣6,0),综上所述,C点有4个,故选:D.【点睛】此题重点考查学生对平面直角坐标系上的点的应用,掌握平面直角坐标系的点的性质是解题的关键.2.D解析:D【分析】根据点的坐标的几何意义逐一进行判断即可得答案. 【详解】A.点P (3,2)到x 轴的距离是2,故本选项不符合题意.B.若ab =0,则点P (a ,b )表示原点或坐标轴上的点,故本选项不符合题意.C.若A (2,﹣2)、B (2,2),则直线AB ∥y 轴,故本选项不符合题意.D.第三象限内点的坐标,横纵坐标都是负号,故本选项符合题意. 故选:D . 【点睛】本题考查点的坐标的几何意义,由坐标平面内的一点P 分别向x 轴,y 轴作垂线,垂足M,N 在x 轴,y 轴上的坐标分别为x 和y ,我们则说P 点的横坐标为x,纵坐标是y ,记作P(x ,y);熟练掌握相关定义是解题关键.3.D解析:D 【分析】结合题意,根据坐标、轴对称的性质列方程并计算,即可得到答案. 【详解】∵点(),1P a -与点()3,Q b 关于直线l 对称 ∴()()131a --=--,1b =- ∴5a =-∴()516a b +=-+-=- 故选:D . 【点睛】本题考查了直角坐标系、坐标、轴对称、一元一次方程的知识;解题的关键是熟练掌握坐标、轴对称的性质,从而完成求解.4.C解析:C 【分析】设第n 秒运动到Pn (n 为自然数)点,根据点P 的运动规律找出部分Pn 点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论. 【详解】解:设第n 秒运动到Pn (n 为自然数)点,观察,发现规律:1122P ⎛ ⎝⎭, ,()210P , ,332P ⎛ ⎝⎭ ,()42,0P ,552P ⎛ ⎝⎭ ,…,∴412n n P +⎛ ⎝⎭ ,42,02n n P +⎛⎫ ⎪⎝⎭ ,432n n P +⎛ ⎝⎭,44,02n n P +⎛⎫⎪⎝⎭,∵2021=4×505+1,∴2021P 为20212⎛ ⎝⎭.故选:C . 【点睛】本题主要考查了规律型中的点的坐标,解题的关键是找出变化规律.5.D解析:D 【分析】根据点的坐标的定义,确定一个位置需要两个数据解答即可. 【详解】解:能够准确表示张家口市这个地点位置的是:东经114.8°,北纬40.8°. 故选:D . 【点睛】本题考查了坐标确定位置,是基础题,理解坐标的定义是解题的关键.6.A解析:A 【分析】根据图形计算发现:第一个三角形的面积是11212⨯⨯=,第二个三角形的面积是12332⨯⨯=,第三个图形的面积是13462⨯⨯=,即第n 个图形的面积是1(1)2n n +,即可求得,△n 的面积. 【详解】由题意可得规律:第n 个图形的面积是1(1)2n n +, 所以当n 为50时,n 的面积()15050112752=⨯⨯+=.故选:A . 【点睛】此题主要考查了点的坐标变化规律,通过计算前面几个具体图形的面积发现规律是解题关键.7.B解析:B 【分析】根据题意得出除了点C 外,其它三个横纵坐标为整数的点落在所围区域的边界上,即线段AB 上,从而求出a 的取值范围. 【详解】解:∵点A (0,a ),点B (0,4﹣a ),且A 在B 的下方, ∴a <4﹣a , 解得:a <2,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,∵点A ,B ,C 的坐标分别是(0,a ),(0,4﹣a ),(1,2), ∴区域内部(不含边界)没有横纵坐标都为整数的点, ∴已知的4个横纵坐标都为整数的点都在区域的边界上, ∵点C (1,2)的横纵坐标都为整数且在区域的边界上, ∴其他的3个都在线段AB 上, ∴3≤4﹣a <4. 解得:0<a≤1, 故选:B . 【点睛】本题考查了坐标与图形的性质,分析题目找出横纵坐标为整数的三个点存在于线段AB 上为解决本题的关键.8.C解析:C 【分析】根据点M (2,3)与点N (2,y )之间的距离是4,可得|y−3|=4,从而可以求得y 的值. 【详解】∵点M (2,3)与点N (2,y )之间的距离是4, ∴|y−3|=4, ∴y−3=4或y−3=−4, 解得y =7或y =−1. 故选:C . 【点睛】本题考查两点之间的距离,解题的关键是明确两个点如果横坐标相同,那么它们之间的距离就是纵坐标之差的绝对值.9.C解析:C 【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点2019A 与点2020A 的坐标,进而可求出点2019A 与点2020A 之间的距离; 【详解】观察发现,第2次跳动至点的坐标是()2,1, 第4次跳动至点的坐标是()3,2, 第6次跳动至点的坐标是()4,3,第8次跳动至点的坐标是()5,4,⋯第2n 次跳动至点的坐标是()1,+n n ,则第2020次跳动至点的坐标是()1011,1010,第2019次跳动至点的坐标是()1010,1010-,∵点2019A 与点2020A 的纵坐标相等,∴点2019A 与点2020A 之间的距离()101110102021=--=;故选C .【点睛】本题主要考查了规律型点的坐标应用,准确理解是解题的关键. 10.C解析:C【分析】由2020A 在平面直角坐标系中的位置,经观察分析所有点,除1A 外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点2020A 在第三象限,根据推导可得出结论;【详解】由题可知,第一象限的点:2A ,6A …角标除以4余数为2;第二象限的点:3A ,7A ,…角标除以4余数为3;第三象限的点:4A ,8A ,…角标除以4余数为0;第四象限的点:5A ,9A ,…角标除以4余数为1;由上规律可知:20204=505÷,∴点2020A 在第三象限,又∵4(1,1)A --,8(2,2)--A ,∴()2020-505,-505A .即点2020A 的坐标为()-505,-505. 故答案选C .【点睛】本题主要考查了点的坐标规律,准确理解是解题的关键. 11.D解析:D【分析】由经过点A的直线a∥x轴,可知点C的纵坐标与点A的纵坐标相等,可设点C的坐标(x,3),根据点到直线垂线段最短,当BC⊥a时,点C的横坐标与点B的横坐标相等,即可得出答案.【详解】解:如右图所示,∵a∥x轴,点C是直线a上的一个动点,点A(-2,3),∴设点C(x,3),∵当BC⊥a时,BC的长度最短,点B(2,-1),∴x=2,∴点C的坐标为(2,3).故选:D.【点睛】本题主要考查了平面直角坐标系中点的特征和点到直线垂线段最短,解答时注意应用数形结合思想.12.C解析:C【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2020除以4,根据商和余数的情况确定点A2020的坐标即可.【详解】∵A1的坐标为(2,4),∴A2(-3,3),A3(-2,-2),A4(3,-1),A5(2,4),…,依此类推,每4个点为一个循环组依次循环,∵2020÷4=505,∴点A2020的坐标与A4的坐标相同,为(3,-1).故选:C【点睛】本题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.二、填空题13.①【分析】根据对顶角相等平行线的性质实数的平方不同象限内点的坐标的特征进行判断【详解】解:①对顶角相等故①是真命题;②如果两条平行线被第三条直线所截那么同位角相等故②是假命题;③如果两个实数的平方相解析:①【分析】根据对顶角相等、平行线的性质、实数的平方、不同象限内点的坐标的特征进行判断.【详解】解:①对顶角相等,故①是真命题;②如果两条平行线被第三条直线所截,那么同位角相等,故②是假命题;③如果两个实数的平方相等,那么这两个实数相等或互为相反数,故③是假命题; ④当m ≠0时,点P (m 2,﹣m )在第四象限内或第一象限内,故④是假命题; 故答案为:①.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.14.【分析】分析点P 的运动规律找到循环次数即可【详解】分析图象可以发现点P 的运动每4次位置循环一次每循环一次向右移动四个单位∵1000=4×250∴当第250循环结束时点P 位置在(10000)∵2019解析:()1000,0 ()2019,2【分析】分析点P 的运动规律,找到循环次数即可.【详解】分析图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∵1000=4×250,∴当第250循环结束时,点P 位置在(1000,0),∵2019=4×504+3,∴当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故答案为(1000,0);(2019,2).【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环. 15.(12)【分析】根据平面直角坐标系的特点建立坐标系即可确定C 点的坐标【详解】解:∵点A 的坐标(-23)点B 的坐标是(3-2)故平面直角坐标系如图所示:故答案为:(12)【点睛】本题主要考查了坐标与图解析:(1,2)【分析】根据平面直角坐标系的特点建立坐标系,即可确定C 点的坐标.【详解】解:∵点A的坐标(-2,3)点B的坐标是(3,-2),故平面直角坐标系如图所示:故答案为:(1,2).【点睛】本题主要考查了坐标与图形,解题的关键是根据两个已知点,确定直角坐标系.16.(62)或(42)【分析】根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标再分点C在点A的左边与右边两种情况讨论求出点C的横坐标从而得解【详解】∵点A(12)AC∥x轴∴点C的纵坐标为2∵AC=解析:(6,2)或(-4,2)【分析】根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解.【详解】∵点A(1,2),AC∥x轴,∴点C的纵坐标为2,∵AC=5,∴点C在点A的左边时横坐标为1-5=-4,此时,点C的坐标为(-4,2),点C在点A的右边时横坐标为1+5=6,此时,点C的坐标为(6,2)综上所述,则点C的坐标是(6,2)或(-4,2).故答案为(6,2)或(-4,2).【点睛】本题考查了点的坐标,熟记平行于x轴直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论.17.【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限的点除外)逐步探索出下标和各点坐标之间的关系总结出规律根据规律推理结果【详解】通过观察可得:下标数字是4的倍数的点在第三象限∵202解析:()505,505--【分析】根据题意可得各个点分别位于象限的角平分线上( A 1和第四象限的点除外),逐步探索出下标和各点坐标之间的关系,总结出规律,根据规律推理结果.【详解】通过观察可得:下标数字是4的倍数的点在第三象限,∵2020÷4=505,第一圈第三象限点的坐标是(-1,-1),第二圈第三象限点的坐标是(-2,-2),第三圈第三象限点的坐标是(-3,-3)……,∴点2020A 在第三象限,且转了505圈,即在第505圈上,∴2020A 的坐标为()505,505--.顾答案为:()505,505--.【点睛】本题考查平面直角坐标系中找点的坐标规律,结题关键是找出坐标系中点的位置和坐标之间的对应关系以及点所在象限和下角标的关系.18.【分析】根据都在x 轴上得出也在x 轴上再根据的坐标规律即可得出答案【详解】由图可知都在x 轴上小蚂蚁每次移动一个单位=(20)=(40)=(60)=(2n0)2020÷4=505所以=(50220)=(解析:()1010,0【分析】根据4A 、8A 、12A 都在x 轴上,得出4n A 也在x 轴上,再根据4A 、8A 、12A 的坐标规律,即可得出答案. 【详解】由图可知,4A 、8A 、12A 都在x 轴上,小蚂蚁每次移动一个单位,4A =(2,0),8A =(4,0),12A =(6,0),4n A = (2n ,0) 2020÷4=505,所以2020A =(502⨯2,0)= (1010,0),故本题答案为(1010,0).【点睛】 本题主要考查的是平面直角坐标系中确定点的坐标和点的坐标的规律性,对点的变化规律的考查.19.(3﹣5)【分析】首先根据点到xy 轴的距离求出M 点的横纵坐标 然后根据第四象限内点的坐标的特点可确定M 点的坐标【详解】∵点M 在第四象限距离x 轴5个单位长度距离y 轴3个单位长度∴点M 的纵坐标为﹣5横坐 解析:(3,﹣5).【分析】首先根据点到x,y 轴的距离求出M 点的横纵坐标 ,然后根据第四象限内点的坐标的特点可确定M 点的坐标.【详解】∵点M 在第四象限,距离x 轴5个单位长度,距离y 轴3个单位长度,∴点M 的纵坐标为﹣5,横坐标为3,即点P 的坐标为(3,﹣5),故答案为:(3,﹣5).【点睛】本题主要考查点到x,y 轴的距离及每个象限内点的坐标的特点,掌握每个象限内点的坐标的特点是解题的关键.20.2【分析】轴对称图形的性质是对称轴垂直平分对应点的连线且在坐标系内关于x 对称则y 相等所以【详解】点与点关于直线对称∴解得∴故答案为2【点睛】本题考察了坐标和轴对称变换轴对称图形的性质是对称轴垂直平分 解析:2【分析】轴对称图形的性质是对称轴垂直平分对应点的连线,且在坐标系内关于x 对称,则y 相等,所以622a +=,4b -=. 【详解】点(,4)M a -与点(6,)N b 关于直线2x =对称 ∴622a +=,4b -= 解得2a =-,∴2(4)2-=---=a b故答案为2.【点睛】本题考察了坐标和轴对称变换,轴对称图形的性质是对称轴垂直平分对应点的连线,此类题是轴对称相关考点中重要的题型之一,掌握对轴对称图形的性质是解决本题的关键.三、解答题21.见解析【分析】方法1:用方向和距离表示;方法2:用有序实数对(a ,b )表示.【详解】解:方法一:点B 位于点A 的北偏东45°方向,距离A 点方法二:以点A 为原点建立平面直角坐标系,则点B 坐标为(3,3).【点睛】本题考查了确定物体位置的两种方法.无论运用哪种方法表示一个点在平面中的位置,都要用两个数据才能表示.22.(1)4.5;(2)见解析,()14,3B -【分析】(1)依据割补法进行计算,即可得到△ABC 的面积;(2)依据轴对称的性质进行作图,即可得到△A 1B 1C 1.【详解】解:(1)△ABC 的面积为:2×5−12×1×4−12×1×5−12×1×2=4.5; 故答案为:4.5;(2)如图,111A B C △为所求;()14,3B -;【点睛】本题考查了作图——轴对称变换,解决本题的关键是掌握轴对称的性质.23.(1)见解析;(2)①(1,2)C ;②图见解析,(2,1)D --【分析】(1)根据点A 、B 坐标即可建立坐标系;(2)①由(1)中所作图形即可得;②根据平移的定义作图可得.【详解】(1)建立平面直角坐标系如图所示:(2)①所画图形如图所示,点C 的坐标为(1,2);②如图所示,线段CD 即为所求,点D 的坐标为(-2,-1).【点睛】本题主要考查了坐标与图形的性质及平移变换作图,解题关键是根据题意建立直角坐标系,然后根据平移规律找出平移后的对应点.24.(1)0.5;(2)4【分析】(1)根据点在x 轴上纵坐标为0求解;(2)根据第一、三象限的角平分线上的横坐标,纵坐标相等求解.【详解】解:(1)由题意得:210m -=,解得0.5m =;(2)由题意得:321m m +=- ,解得4m =.【点睛】此题考查了点与坐标的对应关系,坐标轴上的点的特征,第一、三象限的角平分线上的点的特征.25.(1)见解析;(2)()4,1A '--,()3,3B '--,()1,2C '--;(3)见解析,()3,0-【分析】(1)(2)利用关于x 轴对称的点的坐标特征写出A′、B′、C′的坐标,然后描点即可; (3)连接CA′交x 轴于Q ,利用两点之间线段最短可判断此时△QAC 的周长最小.【详解】解:(1)如图A B C '''即为所求;(2)由图可得,()4,1A '--、()3,3B '--、()1,2C '--;(3)连接A C ',与x 轴交于点Q ,根据两点之间线段最短,此时QAC 周长最小即为AC 的长,Q 点坐标为()3,0-.【点睛】本题考查了作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.26.(1)作图见解析;(2)学校;奶奶家;宠物店;医院;公园;邮局;游乐场;消防站.【分析】(1)根据平面直角坐标系的定义建立即可;(2)根据平面直角坐标系找出各点的位置,然后连接即可,再写出各地方的名称;【详解】解:(1)如图,建立平面直角坐标系;(2)小明家-学校-奶奶家-宠物店-医院-公园-邮局-游乐场-消防站-小明家;【点睛】本题考查了坐标确定位置,主要是平面直角坐标系的建立与点的坐标位置的确定方法,是基础题.。

2020-2021学年人教版数学六年级上册第三、四单元测评卷

2020-2021学年人教版数学六年级上册第三、四单元测评卷

绝密·启用前2020-2021学年人教版数学六年级上册第三、四单元测评卷1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、填空题1.56×________=1211×________=0.25×________=1。

2.根据25×58=14写出两道除法算式是________和________。

3.一根绳子长2m ,平均分成4段,每段长( )m ,每段是这段绳子的()()。

4.________米的45是20米;56kg 的________是14kg 。

5.在括号里填“>”“<”或“=”。

6÷23______6 23÷87______23 56÷23______56×236.小明15小时行了23km ,他行1km 需要________小时,他1小时可行________km 。

7.把4∶37化成最简整数比是________,比值是________。

8.一份稿件,小王打完需要8分钟,小张打完需要10分钟,两人合作打完这份稿件的34需要________分钟。

9.一个长方形的周长是20cm ,长和宽的比是3∶2,这个长方形的面积是________cm 2。

10.一桶油用去3kg ,还剩下这桶油的14,这桶油一共有________kg ;一桶油用去3kg ,比剩下的少14,这桶油一共有________kg 。

二、判断题11.因为47+37=1,所以47是37的倒数。

________12.男生人数比女生人数少16,男生人数与女生人数的比是5∶6。

________第2页,总14页13.甲数比乙数多34,则乙数比甲数少34。

________ 14.34∶14化简后得到的最简单的整数比是3。

______15.一个数(0除外)除以假分数,商不一定小于被除数。

________ 三、选择题16.下面各算式中,得数最大的是( )。

2020-2021学年青岛 版八年级上册数学《第1章 全等三角形》单元测试卷(有答案)

2020-2021学年青岛 版八年级上册数学《第1章 全等三角形》单元测试卷(有答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯2020-2021学年青岛新版八年级上册数学《第1章全等三角形》单元测试卷一.选择题1.如图,已知AC⊥BD,垂足为O,AO=CO,AB=CD,则可得到△AOB≌△COD,理由是()A.HL B.SAS C.ASA D.SSS2.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠E的度数为()A.80°B.35°C.70°D.30°3.如图,一块三角形的玻璃碎成了三块,现要到玻璃店去配一块完全一样的,则最省事的办法是()A.带③去B.带②去C.带①去D.带①和②去4.小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等.其中正确的结论个数是()A.1B.2C.3D.45.如图,已知∠ABC=∠DCB,添加一个条件使△ABC≌△DCB,下列添加的条件不能使△ABC≌△DCB的是()A.AC=DB B.AB=DC C.∠A=∠D D.∠OBC=∠OCB 6.下列结论正确的是()A.有两个锐角相等的两个直角三角形全等B.一条斜边对应相等的两个直角三角形全等C.两个等边三角形全等D.有两边及其夹角对应相等的两个三角形全等7.如图,点O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=6,OB=2,则OC 的长为()A.2B.3C.4D.68.下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.画线段CD=2cm9.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.AB=AD B.BH⊥ADC.S=BC•AH D.AC平分∠BAD△ABC10.下列用三角板过点P画AB的垂线CD,正确的是()A.B.C.D.二.填空题11.“过点P作直线b,使b∥a”,小明的作图痕迹如图所示,他的作法的依据是.12.下列说法:其中正确的是.(填序号)①用圆规在已知直线上截取一条线段等于已知线段属于尺规作图;②射线AB与射线BA表示同一条射线;③若AC=BC,则点C是线段AB的中点;④钟表在8:30时,时针与分针的夹角是60°.13.如图,∠B=∠D=90°,AB=AD,∠2=64°,则∠1=°.14.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的大小=(度).15.如图,把两根钢条AB,CD的中点连在一起做成卡钳,可测量工件内槽的宽,已知AC 的长度是6cm,则工件内槽的宽BD是cm.16.如图,要测量池塘两岸相对的两点A,B的距离,可以在AB的垂线BF上取两点C,D,使BC=CD.再作出BF的垂线DE,使A、C、E三点在一条直线上,通过证明△ABC≌△DEC,得到DE的长就等于AB的长,这里证明三角形全等的依据是.17.如图,AB=AD,只要再添加一个条件:,就可以通过“SSS”判定△ABC≌△ADC.18.已知三角形的两边长分别为4和6,则第三边的中线长x的取值范围是.19.如图,已知△ABC的周长为13,根据图中尺规作图的痕迹,直线分别与BC、AC交于D、E两点,若AE=2,则△ABD的周长为.20.如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,若利用“HL”证明Rt△ABC ≌Rt△DCB,你添加的条件是.(不添加字母和辅助线)三.解答题21.已知:如图,△ABC≌△DEF,AM、DN分别是△ABC、△DEF的对应边上的高.求证:AM=DN.22.如图,点B,E,C,F在一条直线上,∠B=∠DEF,∠ACB=∠F,BE=CF.求证:△ABC≌△DEF.23.已知,如图,AB=AE,AB∥DE,∠D=∠ACB.(1)求证:△ABC≌△EAD;(2)已知:DE=3,AB=7,求CE的长.24.如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B之间的距离,但无法用绳子直接测量.爷爷帮他出了一个这样的主意:先在地上取一个可以直接到达点A 和点B的点C,连接AC并延长到点D,使CD=AC;连接BC并延长到点E,使CE=CB;连接DE并测量出DE=8m,这样就可以得到AB的长.请说一说爷爷的方法对吗?AB的长是多少?25.如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足.AE=CF,求证:∠ACB=90°.26.已知:线段AB(如图).求作:△ABC,使∠CAB=90°,∠ABC=60°.(要求尺规作图,不写作法,保留作图痕迹)27.如图,A为⊙O上一点,按以下步骤作图:①连接OA;②以点A为圆心,AO长为半径作弧,交⊙O于点B;③在射线OB上截取BC=OA;④连接AC.若AC=3,求⊙O的半径.参考答案与试题解析一.选择题1.解:在Rt△AOB和Rt△COD中,,∴Rt△AOB≌Rt△COD(HL),则如图,已知AC⊥BD,垂足为O,AO=CO,AB=CD,则可得到△AOB≌△COD,理由是HL,故选:A.2.解:∵△ABC≌△ADE,∠C=30°,∴∠E=∠C=30°,故选:D.3.解:一块三角形的玻璃碎成了三块,现要到玻璃店去配一块完全一样的,则最省事的办法是带③去,故选:A.4.解:①全等三角形的形状相同、大小相等,正确;②全等三角形的对应边相等、对应角相等,正确;③面积相等的两个三角形是全等图形,错误;④全等三角形的周长相等,正确.故选:C.5.解:A、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项符合题意;B、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS定理,即能推出△ABC≌△DCB,故本选项不符合题意;C、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS定理,即能推出△ABC≌△DCB,故本选项不符号题意;D、∠OBC=∠OCB,即∠DBC=∠ACB,BC=CB,∠ABC=∠DCB,符合ASA定理,能推出△ABC≌△DCB,故本选项不符合题意;故选:A.6.解:A、有两个锐角相等的两个直角三角形全等,说法错误;B、一条斜边对应相等的两个直角三角形全等,说法错误;C、两个等边三角形全等,说法错误;D、有两边及其夹角对应相等的两个三角形全等,说法正确;故选:D.7.解:∵∠AOC=∠BOD,∴∠AOB=∠COD,∵∠A=∠C,CD=AB,∴△AOB≌△COD(AAS),∴OA=OC,OB=OD=2,∵AD=6cm,∴OA=AB﹣OD=6﹣2=4,∴OC=OA=4.故选:C.8.解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选:D.9.解:由作图可知,直线BC垂直平分线段AD,故BH⊥AD,故选:B.10.解:根据垂线的定义可知选项D中,直线CD经过点P,CD⊥AB,符合题意.故选:D.二.填空题11.解:由作法得∠1=∠2,所以a∥b.故答案为内错角相等,两直线平行.12.解:①用圆规在已知直线上截取一条线段等于已知线段属于尺规作图,所以本说法正确;②射线AB与射线BA表示同一条射线,射线有方向,所以本说法错误;③若AC=BC,则点C是线段AB的中点,A,B,C不一定在一条直线上,所以本说法错误;④钟表在8:30时,时针与分针的夹角是75°,所以本说法错误.故答案为:①.13.解:∵∠B=∠D=90°,在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠ACB=∠2=64°,∴∠1=90°﹣∠ACB=90°﹣64°=26°,故答案为:26.14.解:∵∠A=75°,∠B=60°,∴∠C=180°﹣75°﹣60°=45°,∵△ABC≌△DEF,∴∠1=∠C=45°,故答案为:45°.15.解:∵把两根钢条AB,CD的中点连在一起做成卡钳,∴AO=BO,CO=DO,在△BOD和△AOC中,∴△BOD≌△AOC(SAS),∴BD=AC=6cm,故答案为:6.16.解:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故答案为:ASA.17.解:∵AB=AD,AC=AC,∴只要条件条件BC=DC,即可通过“SSS”判定△ABC≌△ADC,故答案为:BC=DC,18.解:如图所示,AB=4,AC=6,延长AD至E,使AD=DE,连接BE、EC,设AD=x,在△BDE与△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,AE=2x,在△ABE中,BE﹣AB<AE<AB+BE,即6﹣4<2x<6+4,∴1<x<5,故答案为:1<x<5.19.解:由作图可知,DE垂直平分线段AC,∴DA=DC,AE=EC,∵AB+BC+AC=13,AC=2AE=4,∴AB+BC=9,∴△ABD的周长=AB+BD+DA=AB+BD+DC=AB+BC=9,故答案为9.20.解:∵斜边与直角边对应相等的两个直角三角形全等,∴在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,使Rt△ABC≌Rt△DCB,添加的条件是:AB=DC.故答案为:AB=DC(答案不唯一)三.解答题21.证明:∵△ABC≌△DEF,∴AB=DE,∠B=∠E,∵AM,DN分别是△ABC,△DEF的对应边上的高,即AM⊥BC,DN⊥EF,∴∠AMB=∠DNE=90°,在△ABM和△DEN中,∴△ABM≌△DEN(AAS),∴AM=DN.22.证明:∵BE=CF,∴BE+EC=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).23.证明:(1)∵AB∥DE,∴∠CAB=∠E,在△ABC和△EAD中,,∴△ABC≌△EAD(AAS);(2)∵△ABC≌△EAD,∴AC=DE=3,AE=AB=7,∴CE=AE﹣AC=7﹣3=4.24.解:爷爷的方法对,理由:由题意知AC=DC,BC=EC,且∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴DE=AB,∵DE=8m,∴AB=8m.25.证明:如图,在Rt△ACE和Rt△CBF中,,∴Rt△ACE≌Rt△CBF(HL),∴∠EAC=∠BCF,∵∠EAC+∠ACE=90°,∴∠ACE+∠BCF=90°,∴∠ACB=180°﹣90°=90°.26.解:如图,△ABC即为所求.27.解:如图,连接AB.由作法得OA=OB=AB=BC,∴△OAB为等边三角形,∴∠OAB=∠OBA=60°,∵AB=BC,∴∠C=∠BAC,∵∠OBA=∠C+∠BAC,∴∠C=∠BAC=30°,∴∠OAC=90°,在Rt△OAC中,.即⊙O的半径为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档