水闸过流能力及稳定计算

合集下载

水闸过流计算

水闸过流计算

水闸过流计算①开敞式水闸过流计算a.当hs ≤ 0.72H 0时,过闸水流为自由出流,流量公式Q =εmB 2gH 03/2;b.当0.72H 0<hs≤0.9H 0时,过闸水流为淹没出流, 流量公式2/3002H g mB Q σε= 单孔闸:s s b b b b 0401171.01⎪⎪⎭⎫ ⎝⎛--=σ 多孔闸,闸墩墩头为圆弧形时:()b z b z b zz b zb d b b b d b b d b b d b b NN ++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++--=+⎪⎪⎭⎫ ⎝⎛+--=+-=221171.011171.0110040000400εεεεε 4.000131.2⎪⎪⎭⎫ ⎝⎛-=H h H h s sσ式中:B 0---闸孔总净宽(m);Q---过闸流量(m 3/s);H 0---计入行近流速水头的堰上水头(m);g---重力加速度,可采用9.81(m/s 2);m---堰流侧收缩系数;b 0---闸孔净宽(m);b s ---上游河道一半水深处的宽度(m);N---闸孔数;εz ---中闸孔侧收缩系数;d z ---中闸墩厚度(m);εb ---边闸孔侧收缩系数;b b ---边闸墩顺水流向边缘线至上游河道水边线之间的距离(m);σ---堰流淹没系数;h s ---由堰顶算起的下游水深(m)。

c.9.0/0≥H h s 当时,为高淹没出流,其流量计算公式: ()20000065.0877.02⎪⎪⎭⎫ ⎝⎛-+=-=H h h H g h B Q s s s μμ 式中:μ0---淹没堰流的综合流量系数;其它符号意义同前。

对于平底闸,当设有胸墙时为孔流,流量计算公式: ee e e h r H h H h gH h B Q 16200718.24.0111112=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+='+'-'='=λλεεεφμμσ 式中:h e ---孔口高度(m);μ---孔流流量系数;φ---孔流流速系数,采用1.0;ε′---孔流垂直收缩系数;λ---计算系数,适用于25.00<<eh r 范围; r---胸墙底圆弧半径(m);σ′---孔流淹没系数,由规范表中查得。

水闸过流能力及稳固计算[整理版]

水闸过流能力及稳固计算[整理版]

水闸过流能力及结构计算计算说明书审查校核计算***市水利电力勘测设计院2011 年 08 月 29日1、水闸过流能力复核计算水闸的过流能力计算对于平底闸,当为堰流时,根据《水闸设计规范》(SL265-2001)附录A.0.1规定的水力计算公式:2302H g b m Q s εσ=22'02ϕg bh Q h H c c ⎪⎪⎭⎫⎝⎛+=4001171.01ss b b b b ⎪⎪⎭⎫ ⎝⎛--=ε 式中:B 0—— 闸孔总净宽,(m );Q ——过闸流量,(m 3/s );H 0——计入行进流速水头的堰上水深,(m );h s ——由堰顶算起的下游水深,(m );g ——重力加速度,采用9.81,(m/s 2);m ——堰流流量系数,采用0.385;ε——堰流侧收缩系数;b 0——闸孔净宽,(m );b s ——上游河道一半水深处的深度,(m );b ——箱涵过水断面的宽度,m ;h c 进口断面处的水深,m ;s σ——淹没系数,按自由出流考虑,采用1.0;ϕ——流速系数,采用0.95;已知过闸流量Q=5.2(m 3/s )先假设箱涵过流断面净宽确定箱涵过流断面高度,经试算得:综上,过流断面尺寸为2.5m ×2.0m (宽×高),设计下泄流量Q 为5.2m 3/s ,过流能力满足要求。

2、结构计算**堤防洪闸均为钢筋砼箱涵结构,对防洪闸进行抗滑稳定、抗倾覆稳定和墙基应力计算。

(1)抗滑稳定计1)计算工况及荷载组合工况一:施工完建期,荷载组合为自重+土压力工况二:外河设计洪水位,荷载组合为自重+土压力+扬压力+相应的闸前闸后静水压力+风浪压力2)荷载计算计算中砼强度等级为C20,钢筋采用Ⅰ、Ⅱ级,保护层厚度梁25mm、板20mm,符号规定:力向下为正,向上为负,力矩逆时针为正,顺时针为负。

闸门重 2.352×9.81=23.07 KN;闸底板重25×4.0×0.7×4.1=287 KN;闸墩重25×0.8×4×2*2=320 KN;平台板,梁25×(0.25×0.45×2+1.05×0.15)×2.5=23.91 KN;柱25×2.82×0.4×0.4×4=45.12 KN;启闭力-100 KN;启闭机重0.56×9.81=5.49 KN;启闭梁25×(0.3×0.5+0.25×0.4+1.35×0.12)×2×3.5=72.1 KN;工作桥25×(5.9×0.12+0.2×0.25×3)×2.0=42.9 KN;25×(6.28×0.13×2×0.13+1.2×0.15×5×0.15)×2=34.73 KN;启闭房砖墙22×0.864×4.1×4=311.73 KN;∑自重=23.07+287+320+23.91+45.12-100+5.49+72.1+38.815+340=1016.98KN ;水重 10×2.0×2.0×2.5=100 KN ;由表可知浪压力为2.35 KN ;有表可知土压力为38.49 KN ;闸前静水压力 (27.7+47.7)×2/2×2.5=188.5 KN ;离截面形心距离 e=()()377.477.277.477.222⨯++⨯⨯=0.91扬压力 0.5×2×10×2×2.5=-50KN ;计算工况荷载汇总(对闸室基底面形心求矩)3)抗滑稳定计算公式[]c c K HGf K ≥⋅=∑∑式中:Kc ——为抗滑稳定安全系数;[]c K ——规范要求的抗滑稳定安全系数最小值;∑G ——作用在防洪闸上的全部垂直力总和 ;∑H ——作用在防洪闸上的全部水平力总和;f ——闸室基底面与地基之间的摩擦系数,取0.44)计算结果工况一:∑G =951.5 KN ;∑H =33.33 KN ; K c =33.335.9514.0⨯=11.41>1.2 满足要求;工况二:∑G =1001.5 KN ;∑H =224.18 KNK c =18.2245.10014.0⨯=1.78>1.2 满足要求。

水闸设计及闸室稳定计算

水闸设计及闸室稳定计算

[附录一:泄洪冲砂闸及溢流堰的水力计算1.1设计资料:根据设计任务书中提供的资料和该枢纽布置段的基本地形资料本工程中的河流属于山溪性河流天然来水量多集中在洪水季节,平时来水量仅占全年来水量的10%;河水中泥沙含量较大尤其是伴随洪水中的泥沙较多;再根据其地形资料来看本工程布置段的地形坡度比较合适,因此在选择泄洪冲砂闸地板高程1852.40m。

根据上述本工程中的泄洪冲砂闸为宽顶堰,堰顶高程1852.40m,过闸水流流态为堰流。

汛期通过闸室的设计洪水流量Q设=1088m3/s,校核洪水流Q校=1368m3/s。

因为泄洪冲砂闸为宽顶堰所以尺寸拟定用堰流公式:δ- 为淹没系数,取为1.0;m---为流量系数,因为是前面无坎的宽顶堰所以m=0.385;ε--为侧收缩系数,先假定为1.0;H--- 位总水头,初设阶段不考虑行进流速,即假设的堰上水头;b—闸门净宽;来洪水时洪水将由溢流堰和泄洪冲砂闸两部分共同承担,这样可减去一部分闸孔的净宽并设置溢流侧堰初步拟定溢流堰为折线形实用堰。

初步拟定溢流堰堰顶高程=进水闸设计流量的堰顶水头对应的水位+(0.2—0.3m)=进水闸闸底高程1853.60m +闸前水位1.40m +超高0.2m =1856.4m 采用共同水位法和堰流公式计算两种工作情况下的特征洪水位:先假设一个水位,用堰流公式分别计算过堰流量和过闸流量,二者相加等于实际流接近计算工作情况下的洪水流量时,该水位就为所求。

因为泄洪冲砂闸为宽顶堰所以尺寸拟定用堰流公式:δ- 为淹没系数,取为1.0m---为流量系数,因为是前面无坎的宽顶堰所以m=0.385;计算溢流堰时因为溢流堰为折线形实用堰m=0.3.ε--为侧收缩系数,先假定为1.0;H--- 位总水头,初设阶段不考虑行进流速,即假设的堰上水头。

b—闸门净宽计算结果如附表1-1,1-2(a)设计洪水情况下:洪水流量Q=1018 m3/s。

(b)校核洪水情况下:洪水流量Q=1368 m3/s经过计算泄洪冲砂闸净宽96m,溢流堰长度95m,设计洪水位1855.8m校核洪水位1856.30m。

水闸闸室稳定计算方法与重力坝

水闸闸室稳定计算方法与重力坝

水闸闸室稳定计算方法与重力坝水闸是一种常见的水利工程设施,主要用于调节水流量,控制水位,保护农田和城市。

而水闸的关键部分就是闸室,它不仅要能够稳定地承受水压力,还要具备一定的防洪能力。

本文将介绍水闸闸室稳定计算方法,并比较其与重力坝的异同。

1.水闸闸室稳定计算方法水闸闸室的稳定性分析是水利工程设计的重要环节之一。

根据力学原理,当水位上升时,水闸闸室所受到的水压力也会增大,如果不加以控制,就会导致闸室的破坏或倒塌。

因此,需要对闸室的稳定性进行计算和分析,以确定其承载能力和防洪能力。

水闸闸室的稳定性分析主要包括以下几个方面:(1)闸室的基础承载力闸室的基础承载力是指闸室基础抵抗地基承载力的能力。

在计算基础承载力时,需要考虑闸室的几何形状、材料强度和地基的承载能力等因素。

可以采用现场勘探和试验、数值模拟等方法进行计算。

(2)闸室的水压力闸室的水压力是指闸室所受到的水力作用力。

可以通过测量水位、流量和闸室尺寸等参数来计算。

水压力的大小与水位高度、流量大小和闸室的几何形状等因素有关。

(3)闸室的自重力闸室的自重力是指闸室本身的重力。

计算闸室的自重力需要考虑闸室的几何形状和材料密度等因素。

(4)其他荷载闸室还可能承受其他荷载,如风荷载、温度荷载等。

这些荷载的大小和作用方式需要根据具体情况进行分析和计算。

通过综合考虑以上因素,可以计算出闸室的稳定系数和安全系数。

当稳定系数小于1或安全系数小于1时,说明闸室的稳定性存在问题,需要进行加固或改进。

2.水闸闸室与重力坝的异同虽然水闸闸室和重力坝都是水利工程中常见的建筑物,但二者在结构形式和稳定性分析上存在着一些异同。

(1)结构形式水闸闸室和重力坝的结构形式存在显著差异。

闸室一般是一个矩形或梯形的建筑物,其上部设有闸门,下部通常为水泄孔或底洞。

而重力坝则是一种大型的混凝土结构,其主要作用是防洪和蓄水。

(2)稳定性分析闸室和重力坝的稳定性分析方法也有所不同。

闸室的稳定性分析需要考虑水压力、自重力、基础承载力和其他荷载等因素,而重力坝的稳定性分析则需要考虑水压力、地震力、温度变化等多种荷载。

水闸过流能力及稳定计算

水闸过流能力及稳定计算

水闸过流能力计算水闸是一种常见的水利工程设施,用于控制和调节河流、水渠等水体的水位和流量。

水闸的过流能力计算是设计和运行水闸的重要环节,它能帮助工程师了解水闸的性能和能否满足流量要求。

本文将介绍水闸过流能力计算的基本原理和方法。

一、水闸过流能力的定义水闸的过流能力是指水闸在特定的流量条件下能够承受的水流量。

水闸的过流能力通常由设计流量来确定,该设计流量是根据该水闸所在水体的流量特征以及相关工程需求来确定的。

二、水闸过流能力计算的基本原理水闸的过流能力计算一般采用流量方程来进行,该方程描述了水流通过水闸的流动情况。

根据连续性方程和水力学基本原理,可以得到如下方程:Q=CHH^b其中,Q表示流量,C表示局部阻力系数,H表示水头,b表示方程中的指数。

该方程根据实际情况和经验关系,可以选择不同的局部阻力系数和方程指数,从而适应不同的水闸类型和工程要求。

三、水闸过流能力计算的方法1.经验公式法经验公式法是一种常用的水闸过流能力计算方法,根据水闸的类型和结构特点,选择相应的经验公式进行计算。

这些经验公式的形式多种多样,如:勒库泽公式、鲁多尔夫公式等。

这些公式一般是基于实际水利工程的试验数据得出的,因此在一些情况下可以提供相对准确的结果。

2.物理模型试验法物理模型试验法是通过建立具有相似关系的模型,对水闸的过流能力进行试验来计算。

该方法需要进行大量的试验和测量工作,因此在实际工程中一般用于对特殊或关键水闸的过流能力进行验证和确认。

3.数值模拟法数值模拟法是通过使用计算机模拟水流在水闸中的运动过程,来计算水闸的过流能力。

该方法基于数学模型和流体力学原理,通过对水流进行网格离散和边界条件设定,采用数值方法求解流动方程,从而得到相应的流量计算结果。

数值模拟法在计算精度和计算效率方面较高,因此在现代水利工程计算中得到了广泛应用。

四、水闸过流能力计算的影响因素水闸的过流能力计算受到多种因素的影响,如:水闸的几何形状、槽型、过水坡降、阻力系数、运行状况等。

水闸稳定计算

水闸稳定计算

四、闸室稳定计算(1)闸室基底应力计算依据“规范”当结构布置及受力情况对称时按第29页(7.3.4-1)计算。

P max=∑G/A+∑M/WP min=∑G/A-∑M/W式中:P max--闸室基底应力的最大值;P min--闸室基底应力的最小值;∑G--作用在闸室上的全部竖向荷载(KN);∑M--作用在闸室上的全部竖向和水平向荷载对于基础底面垂直水流方向的形心轴的力矩(KN·m);A--闸室基底面的面积(m2);W--闸室基底面对于该底面垂直水流方向的形心轴的截面矩(m3)。

在各种情况下,平均基底应力不大于地基允许承载力,最大基底应力不大于地基允许承载力的1.2倍。

(2)沿基底面的抗滑稳定计算依据“规范”抗滑稳定安全系数计算按第30页(7.3.6-1)计算。

K c=(f∑G)/∑H式中:K c--沿闸室基底面的抗滑稳定安全系数;f--闸室基底面与地基之间的摩擦系数,可按第32页表7.3.10规定采用;∑G--作用在闸室上的全部竖向荷载(KN);∑H--作用在闸室上的全部水平向荷载(KN);PmPmax=η=1/2(Pmax Kcφ项目12345678910111213B12 Pmin= Pmax=η=1/2(Pmax注作项24567891011121314B12 Pmin= Pmax=η=1/2(Pmax Kcφ基本资料:B AGM 偏心距e=M/G1222824827-8609.6638-0.34678631Pmin=G/A (1+6e/B )=90.00950921Pmax=G/A (1-6e/B )=127.7711925<500η=Pmax/Pmin= 1.419529933<1.51/2(Pmax+Pmin)=108.8903509满足稳定要求设计钢筋砼容重为25KN/m3,地基允许承载力为0.5mpaB AGM偏心距e=M/Gφ1222822541.6-7767.7857-0.344597830Pmin=G/A (1+6e/B )=81.8320489Pmax=G/A (1-6e/B )=115.9012844<500η=Pmax/Pmin= 1.416331205<1.51/2(Pmax+Pmin)=98.86666667Kc=(Tan φ∑G+Co*A)/∑H=5.852273911>1.2满足稳定要求B AGM 偏心距e=M/G1222820877.8-12234.5848-0.58600929Pmin=G/A (1+6e/B )=64.73906842Pmax=G/A (1-6e/B )=118.3995281<500η=Pmax/Pmin= 1.828872904<2.01/2(Pmax+Pmin)=91.56929825满足稳定要求注:由于本闸的正常挡水位为1625.6m ,当水位上涨时将分级开闸泄水冲沙,所以当水位在校核洪水位时作用在闸室上的水平力很小,所以只需对此工况的地基承载力进行复核。

水闸设计及闸室稳定计算

水闸设计及闸室稳定计算

.1.1 设计资料:根据设计任务书中提供的资料和该枢纽布置段的基本地形资料本工程中的河流属于山溪性河流天然来水量多集中在洪水季节,平时来水量仅占全年来水量的10%;河水中泥沙含量较大特别是伴有洪水中的泥沙较多;再根据其地形资料来看本工程布置段的地形坡度比较合适, 因此在选择泄洪冲砂闸地板高程1852.40m.根据上述本工程中的泄洪冲砂闸为宽顶堰,堰顶高程1852.40m,过闸水流流态为堰流. 汛期通过闸室的设计洪水流量Q =1088m3/s,校核洪水流Q =1368设校m3/s.因为泄洪冲砂闸为宽顶堰所以尺寸拟定用堰流公式:δ- 为淹没系数,取为1.0;m ---为流量系数, 因为是前面无坎的宽顶堰所以m=0.385;ε--为侧收缩系数,先假定为1.0;H--- 位总水头,初设阶段不考虑行进流速, 即假设的堰上水头;b—闸门净宽;来洪水时洪水将由溢流堰和泄洪冲砂闸两部份共同承担,这样可减去一部份闸孔的净宽并设置溢流侧堰初步拟定溢流堰为折线形实用堰.初步拟定溢流堰堰顶高程=进水闸设计流量的堰顶水头对应的水位+ 〔0.2—0.3m〕=进水闸闸底高程1853.60m +闸前水位1.40m +超高0.2m =1856.4m 采用共同水位法和堰流公式计算两种工作情况下的特征洪水位:先假设一个水位,用堰流公式分别计算过堰流量和过闸流量,二者相加等于实际流接近计算工作情况下的洪水流量时,该水位就为所求. 因为泄洪冲砂闸为宽顶堰所以尺寸拟定用堰流公式:δ- 为淹没系数,取为 1.0m ---为流量系数, 因为是前面无坎的宽顶堰所以 m=0.385;计算溢流堰时因为溢流堰为折线形实用堰 m=0.3.ε--为侧收缩系数,先假定为 1.0;H--- 位总水头,初设阶段不考虑行进流速, 即假设的堰上水头. b — 闸门净宽计算结果如附表 1-1,1-2〔a 〕设计洪水情况下:洪水流量 Q=1018m 3/s.附表 1- 1 设计洪水情况下泄洪冲砂闸水力计算表〔b 〕校核洪水情况下:洪水流量 Q=1368m 3/s附表 1-2 校核洪水情况下泄洪冲砂闸水力计算表经过计算泄洪冲砂闸净宽 96m,溢流堰长度 95m,设计洪水位 1855.8m 校核洪 水位 1856.30m.泄洪冲砂闸净宽为 96m,每孔取净宽 8m,边墩宽 0.8m , 中墩宽 1.0m 缝墩 1m.1.2 泄洪冲砂闸地板渗透稳定计算1〕地板渗流计算2 / 9过堰总流量 〔m 3/s 〕1856.3 1251.7 118.6 1370.3实际总流量 〔m 3/s 〕过闸总流量 〔m 3/s 〕 〔m 〕水位过堰总流量 〔m 3/s 〕1018.9 实际总流量 〔m 3/s 〕过闸总流量 〔m 3/s>水位 <m>1855.835.1 10541、确定地基计算深度〔1〕计算Te水平投影长度L =10m,铅直投影长度S =1.5m ;0 0因为L 0 =6.67>5;所以T = 0.5 L =0.5 10=5m ;e 0所以地基不透水层的有效计算深度为 5.0m.〔2〕计算各段 Aa 阻力系数1 :S=1.5m,T=5m ;2:L=0.75m,T=5m, S = S = 0 ;1 2L 0.7(S + S )= 1 2 = 0.15 X T3 :S=0.5m,T=5m, = 3.1416 ;4 :L=8.5m,S 1 =0.5m,T=5m, S 2= 0.5m ;L 0.7(S + S )= 1 2 = 1.36 X T5 :S=0.5m,T=5m, = 3.1416 ;6 :L=0.75m,T=5m, S = S = 0 ;1 2L 0.7(S + S )= 1 2 = 0.15 X T7 :S=1.5m,T=5m ;<3>计算各段水头损失h i :S.总水头损失编H =3.90m ;h = 飞 ; 在x 飞 = 3.234列表计算各段水头损失 h i ;附表 1-3 水头损失计算表:〔4〕进出口水头损失值的修正1 进口处修正系数B 1;1B = 1.21-112 (|( T T ' ))|2 + 2 T S+ 0.059;式中 S=1.5m,T=5m,T ' =5m;代入得B 1=1.01;B 1>1 所以不用进行修正;2 出口处修正系数 B2T ' =3.5m, T=5m, S=1.5m ;B =0.857〈1.0,所以出口处要修正. 2出口段水头损失减小值为: H =0.828 根 0.857=0.710m ;编h =0.828-0.710=0.118m ;H 6=0.181+0.118=0.299〔5〕计算各角隅点的渗压水头并列表:41.3601.64 30.1000.121 50.1000.121 10.6870.828 20.1500.181 60.1500.181 70.6870.828序 号飞ihi编H7i x 飞 i附表 1-5 各角隅点渗压水头h13.07 2 h22.8 91 h32.77 0 h41.13 0 h51.00 9 h60.71 0h7〔6〕绘制渗压水头分布图〔7〕闸底板水平段渗透坡降和渗流坡降的计算:1 闸底板水平段平均渗透坡降J :x闸底板的轮廓线由 6 点至 11 点,水平投影L = 8.50m .J =H H6 11 = 1.64= 0. 193 [0.22 ~ 0.28];xL 8.52 出口处得出逸坡降J :出口处既 11 点至 12 点,渗透距离为S ' = 1.50m .J = H H 11 12 = 0.71 = 0.47 <[0.50 ~ 0.55];0 S ' 1.5[J ] [J ]、 x 参见 SL265—2001 《水闸设计规 X 》所以满足允许渗透比降.1.3 泄洪冲砂闸地板抗滑稳定计算计算单元的确定根据 《水闸设计规 X 》SL265——2001 闸室稳定计算宜取相邻顺水流向永久 缝之间的闸段为计算单元,选取中间两孔闸室作为计算单元.附图 1-4 计算单元选取示意图:6 / 9承载力计算自重荷载:根据《水工钢筋混凝土结构学》中钢筋混凝土按线性分布荷载为25KN/m 3. 根据水闸的基本尺寸设计对其进行荷载计算.作用在水闸上的自重荷载有:底板: G = [10 根1.0 + 2 根 (0.5 根1.5 根 0.5)]根 25 = 268.75KN闸墩: G = [(0.5 根 5.4)+(0.5 根 4.5)]根10 根 25 = 1237.5KN闸门:根据《水闸》闸门为弧形露顶式 B 共 10m,所以G = K K B 0.33H H 0.42c b sHs ——设计水头;Kc ——材料系数,本工程取 1;Kb ——孔门宽度系数,本工程 Kb=0.472;H ——孔口高度;闸门: G = K K B 0.33H H 0.42 = 1.0 根 0.472 根 80.33 根 2.9 根 4. 10.42 = 4. 16(吨)c b sG=4.16×10=41.6KN工作桥,交通桥与其梁: G = 19 根 4 根 0.3根 25 + 5 根19 根 0.3根 0.5 根 25 = 926.25KN根据算 出的 闸门 的数据 参考《 闸 门与启闭设 备 》采用双 吊 点卷扬式6 根 37 +1 - 0 24 - 160 型启闭机,该启闭机的自重为 2.55 吨.启闭机: G=2.55*10=25.5KN根据 SL265—2001 《水闸设计规 X 》中应该选取不同的荷载组合作为不同的 工况对闸室的稳定进行验算看闸室是否安全.第一种工况选为完建无水的状况附表 1-6 泄洪闸荷载计算成果表〔完建无水期〕力矩 M <KN ·M>荷载名 称垂直力 M<KN>力臂 L<M>- 〔顺时针〕 5106.253712.5 2316.25926.2541.625.5 10738.35完建无水工况下的闸室稳定计算根据 SL265-2001 《水闸设计规 X 》中地基承载力公式:Pmax式中 min —完建无水期基底压力的最大和最小值,kPa ;G —作用在闸室上的全部竖向荷载, 〔包括基础底面的上的扬压力〕 KN ;M —作用在闸室上的竖向和水平荷载对于闸底板垂直于水流方向的形心轴的力矩〔kN.m 〕;A —闸室基底的面积〔m 2〕;W — 闸室基底面对于该底面垂直水流方向的形心轴的截面矩〔m 3〕;地基承载力不均匀性验算公式: ν = p max [ν]pmin根据计算结果,判断是否满足要求.根据 SL265-2001 《水闸设计规 X 》野云沟河床多是漂石、卵、碎石、角石、 砾砂与少量的粉土,粉砂胶结而成,所以属于中等坚实ν 取 2.0所以满足要求0.00 0.00 0.001852.50.000.00 1852.5底 板闸 墩 工作桥交通桥闸 门启闭机∑+ 〔逆时针〕0 0 ↑0.00 0.00 0.000.000.000.00 083.251 2450.450 0 2.5222 926.25 ↓第二种工况为上游为正常引水为下游无水的工况〔此工况为最不利工况〕 正常当水期荷载计算与抗滑稳定验算:附图 1—5 水闸稳定计算水重作用力意图:S = 2.7 3.9 + 0.8 2.3 0.5 = 11.45m 2水水重: G = 11.45 16 10 = 1832KN附图 1-6 水闸稳定计算水平压力作用力意图:水平压力:渗透压力: W = (3.07 + 0.71)10 / 2 19 10 = 3591KN浮托力: W = (10 1 + 2 0.375) 9.5 10 = 1045KN计算结果列于表:附表 1-7 泄洪闸闸室荷载计算成果表<正常挡水期>根据 SL265-2001 《水闸设计规 X 》中地基承载力公式:Pmax式中 min —完建无水期基底压力的最大和最小值,kPa ;G —作用在闸室上的全部竖向荷载, 〔包括基础底面的上的扬压力〕 KN ;水平力 P <kN>← →力臂 <m>力矩 M0 <kNm>+〔逆时针〕 - 〔顺时针〕27481581.8498.8652748 1680.711067.30垂直力 M 〔kN 〕 ↓10738.3518321045359112570.35 46367934.35 荷载名称闸室水重上游水压力浮托力渗透压力合计1216.876.051.51.3 1292.851292.851.3↑M —作用在闸室上的竖向和水平荷载对于闸底板垂直于水流方向的形心轴的力矩〔kN.m〕;A —闸室基底的面积〔m2〕;W —闸室基底面对于该底面垂直水流方向的形心轴的截面矩〔m3〕;地基承载力不均匀性验算公式:根据计算结果,判断是否满足要求.不均匀系数验算故满足要求.闸室基底面的抗滑稳定计算:根据SL265-2001 《水闸设计规X》中的闸室抗滑稳定计算公式:式中:f —闸室与地基的磨擦系数;由X 世儒《水闸》查表7-8.G —作用在闸室上的全部竖向荷载,kN;P —作用在闸室上的全部水平荷载,kN;根据喀拉沟渠首的不同运行工况选最不利工况〔上游为设计引水为时〕对闸室抗滑稳定进行验算.因为喀拉沟河床多是漂石、卵、碎石、角石、砾砂,再根据SL265-2001 《水闸设计规X》表f 取0.4.因为喀拉沟渠首工程水闸为3 级,根据SL265-2001 《水闸设计规X》在基本荷载工况下抗滑稳定安全系数为[K ]= 1.25 .cK = 2.45 >[K ]= 1.25 所以,满足抗滑稳定要求.c c。

水闸稳定计算案例

水闸稳定计算案例

水闸稳定计算案例一、工程概况。

咱们来看看这个水闸啊,它在一条挺重要的小河上。

这个水闸的任务可不小呢,要控制水位、调节流量,就像一个严格的交通警察在指挥着水流的来来去去。

水闸是混凝土结构的,闸室的长度有个20米,宽度呢,10米。

上下游的水位差有时候大,有时候小,最大的时候能到5米呢,就像水在上下游之间搭起了一个5米高的小瀑布(当然是被闸挡住流不过去的时候)。

二、荷载计算。

# (一)自重。

首先是水闸自身的重量,这就像它自己的体重一样,是个稳定的力量。

闸室的混凝土墙啊、底板啊,都是实打实的重量。

我们根据混凝土的体积和密度(混凝土密度大概是2500千克每立方米),算出闸室结构的自重是500吨。

这就好比一个超级大胖子稳稳地坐在那里,不容易被推倒。

# (二)水压力。

1. 上游水压力。

上游的水可是个有劲儿的家伙,它对闸室产生的压力可不能小看。

根据水力学的公式,水压力等于水的密度乘以重力加速度乘以水深。

这里上游水深4米,水的密度是1000千克每立方米,重力加速度按9.8米每二次方秒算。

那上游水压力在闸室垂直面上的分布就像一个三角形,底部压力最大,顶部压力为0。

算出来总的上游水压力就有800千牛呢,这感觉就像有一群大力水手在推着闸室的上游面。

2. 下游水压力。

下游也有水啊,不过水位低一点,水深2米。

同样按照上面的公式算下来,下游水压力在闸室垂直面上的分布也是个三角形,总的下游水压力是200千牛。

就好像下游也有几个小不点在推着,但是力量比上游的小多了。

# (三)扬压力。

扬压力这个东西有点狡猾,它是因为水在闸基下渗流产生的向上的压力。

咱们想象一下,水在闸基下面偷偷摸摸地往上顶,想要把闸室往上抬起来呢。

通过一些专业的计算方法(比如说渗透系数、地下水位等参数的分析),算出来扬压力的合力是300千牛。

这就像有个看不见的小恶魔在下面使坏,想把闸室给顶歪了。

三、稳定计算。

# (一)抗滑稳定计算。

1. 计算公式。

抗滑稳定就是看闸室能不能抵抗住水平方向的滑动。

水闸稳定计算书

水闸稳定计算书

第四章排水闸稳定及结构计算1.各排水闸概况1.1水文资料根据龙门县城堤防总体规划,县城河堤共有5个排水闸,西林河有两个排水闸:龙门中学排水闸和老干局排水闸,白沙河有三个排水闸:师范排水闸、石龙头排水闸、及罗江围排水闸。

河堤上的排水闸主要作用是:平时能正常排泄内积水,洪水到来时关闸挡水,不让洪水涌入。

根据水文资料,排水闸排涝标准按十年一遇(P=10%)洪水,24小时暴雨产生的洪水总量,24小时排干计算。

根据《龙门县城区防洪工程洪水计算书》可知各排水闸的水位资料,详见排水闸洪水成果表1.1-1。

表1.1-1 各排水闸洪水成果表1.2地质资料根据《龙门县城区防洪工程地质勘探可行性研究报告》,可知各排水闸地基主要物理指标表1.2-1。

表1.2-1 各排水闸地基土质主要物理指标表1.3等级与安全系数根据《龙门县城堤防加固工程可行性研究报告》西林河、白沙河大堤加固工程等级为三等,水闸为主要建筑物,其等级为三等,根据《水闸设计规范SL265-2001》,水闸整体抗滑稳定安全系数为:基本组合:1.25;特殊组合Ⅰ:1.10。

土基上闸室基底应力最大值与最小值之比的允许值为:基本组合:2.50;特殊组合3.0.闸基抗渗稳定性要求水平段和出口段的渗流坡降必须小于规范要求,见下表6.0.4。

表6.0.4 水平段和出口段允许渗流坡降值1.4地震烈度龙门县基本地震烈度为Ⅵ,按《水闸设计规范SL265-2001》,设计时不考虑地震作用。

2.主要计算公式及工况2.1闸孔净宽B 0计算公式根据《水闸设计规范SL265-2001》,水闸的闸孔净宽B 0可按公式(A.0.1-1)~(A.0.1-6)计算:2302Hg m QB σε=(A.0.1-1)单孔闸 4001171.01s s b b b b ⎪⎪⎭⎫ ⎝⎛--=ε (A.0.1-2)多孔闸,闸墩墩头为圆弧形时 NN bZ εεε+-=)1( (A.0.1-3)4001171.01Z ZZ d b b d b b +⎪⎪⎭⎫ ⎝⎛+--=ε (A.0.1-4)400000221171.01b d b b b d b b Z b Z b ++⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--=ε (A.0.1-5)4.000131.2⎪⎪⎭⎫⎝⎛-=H h H h s s σ (A.0.1-6) 式中 0B ——闸孔总宽度(m ); Q ——过闸流量(m 3/s );0H ——计入行近流速水头的堰上水深(m ),在此忽略不计; g ——重力加速度,可采用9.81(m/s 2); m ——堰流流量系数,可采用0.385;ε——堰流侧收系数,对于单孔闸可按公式(A.0.1-2)计算求得或由表A.0.1-1查得;对于多孔闸可按公式(A.0.1-3)计算求得;b 0——闸孔净宽(m );b s ——上游河道一半水深处的宽度(m ); N ——闸孔数;Z ε——中闸孔侧收系数,可按公式(A.0.1-4)计算求得或由表A.0.1-1查得,但表中b s 为b 0+d z ; d z ——中闸墩厚度(m );b ε——边闸孔侧收系数,可按公式(A.0.1-5)计算求得或由表A.0.1-1查得,但表中b s 为b Zb d b ++20; b b ——边闸墩顺水流向边缘线至上游河道水边线之间的距离(m );σ——堰流淹没系数,可按公式(A.0.1-6)计算求得或由表A.0.1-2查得;hs ——由堰顶算起的下游水深(m )。

闸室稳定计算

闸室稳定计算

闸室稳定计算(1)闸室基底应力计算依据“水闸规范”当结构布置及受力情况对称时按第29页(7.3.4-1)计算。

e=B/2-∑M/∑GP max =∑G/A*(1+6*e/B)P min =∑G/A*(1-6*e/B)式中:P max --闸室基底应力的最大值;P min --闸室基底应力的最小值;∑G--作用在闸室上的全部竖向荷载(t );∑M--作用在闸室上的全部竖向和水平向荷载对于基础底面垂直水流方向的形心轴的力矩(t ·m);A--闸室基底面的面积(m 2);B --底板沿水流方向的长度(m)。

e --偏心距设计水位273.58底板高程264.24基本资料:闸室的稳定计算钢筋砼容重为2.5t/m3,进口段底板座于强风化白垩系砂砾岩上,中等透水,承载征值300kPa,f'=1.1,C'=1.1MPa。

五级建筑物水闸稳定基本组合抗滑稳定系数不小于1.05,特殊组合不小于1.0;最大基底应力与最小基底应力之比基本组合不大于2.0,特殊组合不大于2.5。

22程264.24上游9.34备注体积计算12.5644.3*3.6*0.7+(0.4+0.8)*0.4*0.5*2*3.696.723*4*8.062.25927.06*0.4*0.80.5255*0.35*0.31.444*3*0.123.95520.4*0.4*12.36*21.97760.4*0.4*12.360.546*0.3*0.366.87.62121.8*0.27*7+0.3*0.3*0.3*8+1.98*0.12*12+0.18*0.8*83.66*5*0.1275.8160.5*18*3.6*3.6*0.65427.454441/2*9.8*9.34*9.343.1361/2*9.8*0.8*0.833.7129.8*0.8*4.3196.79380.5*9.8*9.34*4.3,承载力特滑稳定系数不小于组合不大于2.0,特47.86329.34*4.3*3.6-96.720.8*8。

水闸计算公式范文

水闸计算公式范文

水闸计算公式范文水闸是一种用于调节水流的结构物,它常用于水利工程中的水库、渠道等地方。

水闸的设计与计算是确保水闸正常工作的重要环节。

下面将介绍水闸的计算公式及其相关内容。

1.水闸开度计算公式:水闸的开度是指水闸门相对于水流的开启程度,常用于调节流量的大小。

水闸开度计算公式如下:开度=(Q×L)/(B×H)其中,Q为经过水闸的流量,L为水闸门的长度,B为水闸的宽度,H 为水闸门的高度。

2.过流水头计算公式:过流水头是指水流通过水闸时产生的动能损失,它与流量、水闸的形状和尺寸等参数有关。

过流水头计算公式如下:水头=(V^2)/(2g)其中,V为水流的流速,g为重力加速度。

3.水闸流量计算公式:水闸的流量是指单位时间内通过水闸的水量,它是水利工程设计和管理的关键参数。

水闸流量计算公式如下:流量=(C×B×H×(2g×H)^0.5)其中,C为流量系数,B为水闸的宽度,H为水闸门的高度,g为重力加速度。

4.水闸的阻力计算公式:水闸的阻力是指水流通过水闸时受到的阻碍力,它与水闸的形状和尺寸等因素有关。

水闸的阻力计算公式如下:阻力=(λ×ρ×L×(Q/A)^2)/(2g)其中,λ为摩擦系数,ρ为水的密度,L为水闸的长度,Q为经过水闸的流量,A为水闸门的有效面积,g为重力加速度。

5.水闸的槽底水流速度计算公式:水闸槽底水流速度是指水闸门下游水体的流速,它与水闸的流量和槽底坡度等有关。

水闸槽底水流速度计算公式如下:流速=(Q/(B×H))其中,Q为经过水闸的流量,B为水闸的宽度,H为水闸门的高度。

以上是水闸计算中常用的公式,根据实际情况和需要,可以选择合适的公式进行计算。

在水闸的设计和施工过程中,除了公式的应用外,还需要考虑水闸的材料选择、结构设计等问题,以确保水闸的安全可靠运行。

水闸稳定计算 excel

水闸稳定计算 excel

水闸稳定计算 excel水闸稳定计算是一项重要的工程计算,主要用于评估水闸的稳定性和安全性。

在水闸设计和运营过程中,进行稳定计算是必不可少的,它可以帮助工程师确定和优化水闸的结构和尺寸,保障水闸的正常运行和安全使用。

水闸的稳定计算主要涉及到水力计算和结构力学计算两个方面。

水力计算主要用于评估水流对水闸的压力和力的作用,而结构力学计算则用于评估水闸结构的抗力和承载能力。

这两个方面的计算相互关联,共同决定了水闸的稳定性。

在水力计算方面,需要考虑到水流对水闸的冲击力、水压力和水动力力的影响。

工程师可以借助流体力学的原理和公式来计算这些力的大小和分布情况,并进一步评估水闸结构的受力情况。

水压力和水动力力的大小主要取决于水流速度、水流方向和水流量等因素,而冲击力则取决于水流的流态和期间波动等因素。

结构力学计算主要用于评估水闸的抗力和承载能力,包括重力荷载、水压力荷载、冲击力荷载等因素的影响。

工程师需要使用结构力学的原理和公式,计算水闸的受力情况,并进一步评估水闸结构的安全性。

水闸结构的抗力主要取决于材料的力学性质和结构的形状和尺寸等因素,而承载能力则取决于水闸的结构设计和构造方式等因素。

为了保障水闸的稳定性和安全性,工程师需要进行全面而系统的计算和评估。

他们需要收集和分析大量的水力和结构参数,如水流速度、水流方向、水流量、水闸尺寸、水闸结构形状等。

然后,他们可以利用这些参数,借助相关的计算方法和工具,进行水闸稳定性的综合计算和评估。

在实际的工程设计和运营中,工程师通常会使用电子表格软件,如Excel,来进行水闸稳定计算。

Excel提供了强大的计算和数据处理功能,可以方便地进行各种计算和分析。

工程师可以使用Excel的公式和函数,建立相应的计算模型和工作表,输入相关的参数和数据,进行水闸稳定性的计算和分析。

在进行水闸稳定计算时,工程师通常需要进行多重计算和分析,以获得全面和可靠的结果。

他们可以使用Excel的排序、筛选和汇总功能,对水闸稳定性的计算结果进行统计和比较。

水闸设计及闸室稳定计算

水闸设计及闸室稳定计算

水闸设计及闸室稳定计算引言:水闸是一种用来控制水流的工程构筑物,供水、排水、防洪等工程都需要用到水闸。

在设计水闸时,需要考虑到水闸的稳定性,以确保其能够长时间稳定地承受水流的冲击力。

本文将介绍水闸设计及闸室稳定计算的相关内容。

一、水闸设计:1.水闸类型选择:根据工程的具体需求,选择合适的水闸类型,如引力闸、卧式闸、立式闸等。

2.水闸尺寸计算:根据工程的流量要求和水头要求,计算水闸的尺寸,包括设闸宽度、设闸高度等。

3.水闸结构设计:根据水闸类型和尺寸,设计水闸的结构,包括闸板、边墙、水封、导流堤以及启闭机构等。

4.材料选择:选择适合的材料,以确保水闸的耐久性和稳定性,如混凝土、钢材等。

二、闸室稳定计算:闸室稳定计算是水闸设计中的重要环节,可以通过计算闸室结构的稳定性,预测其在水流冲击力下的表现。

1.水流力计算:根据水闸的流量要求,计算水流的流速和冲击力等参数。

2.受力分析:根据水流的冲击力和闸室的结构,进行受力分析,计算闸室所受的水力力、重力力和土壤力等。

3.结构稳定性计算:根据受力分析结果,计算闸室的结构稳定性,包括抗倾覆力,抗滑动力和抗浮力等。

4.附加稳定性计算:考虑到现实工程中的其他因素,如地震力、温度变化等,进行附加稳定性计算。

5.结果评估:根据稳定性计算结果,评估闸室结构的稳定性,确定其能否满足设计要求。

结论:水闸设计及闸室稳定计算是水闸工程设计中的重要环节,能够保证水闸在长期使用中的稳定性和安全性。

设计师需要综合考虑水流力、结构受力以及其他因素,制定合理的设计方案。

未来,随着科技的发展,水闸设计及闸室稳定计算也将不断更新,以满足更高水平的设计需求。

水闸稳定计算

水闸稳定计算
(2)摩擦桩
当硬土层埋深较深时,桩只能插入到软土层的一定深 度,利用桩与周围土壤的摩擦力支承上部荷载,称为摩擦 桩。水闸多采用摩擦桩。
.
(四)其他方法 振冲砂桩法、强夯法、高压
旋喷法、真空预压法等等。
.
回答以下问题:
1、水闸稳定分析包括哪些内容?计算公式是 什么?
2、水闸地基处理有哪些方法? 3、换土垫层进行地基处理时,砂垫层的作用
1.作用
在软土层厚度较大的地基上,桩基础是解决地基 承载力不足的有效方法。设置桩基础后,能够提高 地基的承载力和抗滑稳定性,减少沉陷量。
2.桩基础型式(按施工方式分)
桩基础按施工方式分为:打入混凝土预制桩和钻 孔灌注混凝土桩两种。
(1)打入式预制桩
打入式预制桩一般采用钢筋混凝土桩,直径 d=0.25~0.55m。现场预制桩的长度在25~30m;工厂 预制桩一般长不超过12m,便于运输。
当闸室抗滑稳定安全系数不能满足规范规定的允许安 全系数时,可采取下列措施提高闸室稳定性。
(1) 适当将闸门向闸室下游一端移动布置,或将底板向上 游端适当加长,充分利用闸室水重。(增加G)
(2) 改变闸室结构尺寸,增加自身重量。
•增加底板厚度时,由于其位于水下,受到水的浮力,有 效重量小,不经济。
•增加闸墩厚度时,虽然增加了自重,但同时也增加了闸 室前缘宽度和挡水面积,因而也同时增加了水平推力。
(5-39)
式中 f’——闸室基底面与岩石地基之间的抗剪断摩擦系数, 查表5—17;
C’——闸室基底面与岩石地基之间的抗剪断粘结力, kPa,查表5—17
闸室稳定性的判断,要求 :
土基上: KC [K土] [K土]查表5-13 岩基上: KC [K岩] [K岩]查表5-14

水闸设计及闸室稳定计算

水闸设计及闸室稳定计算

[附录一: 泄洪冲砂闸及溢流堰的水力计算1.1设计资料:根据设计任务书中提供的资料和该枢纽布置段的基本地形资料本工程中的河流属于山溪性河流天然来水量多集中在洪水季节,平时来水量仅占全年来水量的10%;河水中泥沙含量较大尤其是伴随洪水中的泥沙较多;再根据其地形资料来看本工程布置段的地形坡度比较合适,因此在选择泄洪冲砂闸地板高程1852.40m 。

根据上述本工程中的泄洪冲砂闸为宽顶堰,堰顶高程1852.40m ,过闸水流流态为堰流。

汛期通过闸室的设计洪水流量Q 设=1088m 3/s,校核洪水流Q 校=1368 m 3/s 。

因为泄洪冲砂闸为宽顶堰所以尺寸拟定用堰流公式:232Hg mbQ δε=δ- 为淹没系数,取为1.0;m ---为流量系数,因为是前面无坎的宽顶堰所以m=0.385; ε--为侧收缩系数,先假定为1.0;H--- 位总水头,初设阶段不考虑行进流速,即假设的堰上水头; b —闸门净宽;来洪水时洪水将由溢流堰和泄洪冲砂闸两部分共同承担,这样可减去一部分闸孔的净宽并设置溢流侧堰初步拟定溢流堰为折线形实用堰。

初步拟定溢流堰堰顶高程=进水闸设计流量的堰顶水头对应的水位+(0.2—0.3m )=进水闸闸底高程1853.60m +闸前水位1.40m +超高0.2m =1856.4m采用共同水位法和堰流公式计算两种工作情况下的特征洪水位:先假设一个水位,用堰流公式分别计算过堰流量和过闸流量,二者相加等于实际流接近计算工作情况下的洪水流量时,该水位就为所求。

因为泄洪冲砂闸为宽顶堰所以尺寸拟定用堰流公式:232Hg mbQ δε=δ- 为淹没系数,取为1.0m ---为流量系数,因为是前面无坎的宽顶堰所以m=0.385;计算溢流堰时因为溢流堰为折线形实用堰m=0.3.ε--为侧收缩系数,先假定为1.0;H--- 位总水头,初设阶段不考虑行进流速,即假设的堰上水头。

b —闸门净宽计算结果如附表1-1,1-2(a )设计洪水情况下:洪水流量Q=1018 m 3/s 。

水闸设计及闸室稳定计算

水闸设计及闸室稳定计算

[附录一: 泄洪冲砂闸及溢流堰的水力计算设计资料:根据设计任务书中提供的资料和该枢纽布置段的基本地形资料本工程中的河流属于山溪性河流天然来水量多集中在洪水季节,平时来水量仅占全年来水量的10%;河水中泥沙含量较大尤其是伴随洪水中的泥沙较多;再根据其地形资料来看本工程布置段的地形坡度比较合适,因此在选择泄洪冲砂闸地板高程。

根据上述本工程中的泄洪冲砂闸为宽顶堰,堰顶高程,过闸水流流态为堰流。

汛期通过闸室的设计洪水流量Q 设=1088m 3/s,校核洪水流Q 校=1368 m 3/s 。

因为泄洪冲砂闸为宽顶堰所以尺寸拟定用堰流公式: 232Hg mb Q δε=δ- 为淹没系数,取为;m ---为流量系数,因为是前面无坎的宽顶堰所以m=; ε--为侧收缩系数,先假定为;H--- 位总水头,初设阶段不考虑行进流速,即假设的堰上水头; b —闸门净宽;来洪水时洪水将由溢流堰和泄洪冲砂闸两部分共同承担,这样可减去一部分闸孔的净宽并设置溢流侧堰初步拟定溢流堰为折线形实用堰。

初步拟定溢流堰堰顶高程=进水闸设计流量的堰顶水头对应的水位+(—0.3m )=进水闸闸底高程1853.60m +闸前水位1.40m +超高0.2m =1856.4m采用共同水位法和堰流公式计算两种工作情况下的特征洪水位:先假设一个水位,用堰流公式分别计算过堰流量和过闸流量,二者相加等于实际流接近计算工作情况下的洪水流量时,该水位就为所求。

因为泄洪冲砂闸为宽顶堰所以尺寸拟定用堰流公式: 232Hg mb Q δε=δ- 为淹没系数,取为m ---为流量系数,因为是前面无坎的宽顶堰所以m=;计算溢流堰时因为溢流堰为折线形实用堰m=.ε--为侧收缩系数,先假定为;H--- 位总水头,初设阶段不考虑行进流速,即假设的堰上水头。

b —闸门净宽计算结果如附表1-1,1-2(a )设计洪水情况下:洪水流量Q=1018 m 3/s 。

水位 (m)过闸总流量(m 3/s) 过堰总流量 (m 3/s ) 实际总流量(m 3/s )1054(b )校核洪水情况下:洪水流量Q=1368 m 3/s水位 (m )过闸总流量 (m 3/s ) 过堰总流量 (m 3/s ) 实际总流量 (m 3/s )经过计算泄洪冲砂闸净宽96m ,溢流堰长度95m ,设计洪水位校核洪水位。

水闸计算(防渗~稳定)

水闸计算(防渗~稳定)
构件名称 底板
算式 25× (16.0× 1.5+(1+2)× 1/2 × 2)× 28.5 25× (14.5× 1.5+3.14× (1.5/2)2/20.3× 0.3× 4-0.3 × 0.5× 2)× 13.0 25× (15× 1.0+3.14×
重力(kN) 19237.5
力臂 (m) 0.000
164 2
左(-)
水平力(KN) 右(+)
力臂(m) 6.35 3.40 2.00
11323.19
下游水压 P3 力 浮托力 渗透压力 浪压力 合计
23443.64 36625.64 8248.88 485.35 42726.77 -11635.10
2.48 0.00 0.71 10.22
稳定分析 pmax pmin p平均 97.67254 89.72558022 93.6990618 基底不均匀系数 1.088569649 Kc 1.468891801
14364.2
-0.142
-2039.7
1674.0 2248.7
-3.990 3.920
-6679.3 8814.7
381.75
-2.950
-1126.2
672
-2.950
-1982.4
267.9 705.6 207.972 46900.83
-6.000 -2.950 -2.950
-1607.4 -2081.5 -613.5 -7988.0
设计反向 42333.691 9956.571 0.235 0.389 0.623 0.619 7.941 11.854 22.254 0.775 1.112 1.112 40.000 1.050 1.050 217.097

水闸稳定计算

水闸稳定计算

闸室稳定计算(正常蓄水位情况)底板顺水流方向长……………B=22m系数……………A= 2.5 底板宽..................... b=18m抗剪摩擦系数折减系数 (1) 应力控制允许系数............ [η]=2抗剪断摩擦系数折减系数 (1)地基土的浮容重……………γ'=10kN/m3抗剪断粘聚力折减系数………0.33333抗剪摩擦系数……………f=0.4前齿墙底高程………1287.5抗剪断摩擦系数……………f'=0.4抗剪断粘聚力……………c'=0kPa完建情况下作用荷载和力矩计算表荷载名称垂直力(kN)水平力(kN)力臂(kN·m)力矩(kN·m)力矩(kN·m)↓↑→←↘↙闸室结构自重61072.8650172.12上游水压力P1111902.5 5.8369431.25P120 2.580.00P130 2.150.00P2669.6213.679154.83P300.430.00下游水压力P480 3.5280P500.2750P600.1830浮托力G u115475.511170230.5渗透压力G u2100.50G u2289107.3365340G u230 5.6250水重力W18806 3.732582.20W23533.69.633922.56合计73412.424385.512572.1280795262.96235850.50总计49026.912492.12559412.46偏心距e=B/2-∑M B/∑G=-0.41m偏下游应力P上= ∑G/A×(1+6×e/B)=109.95kN/m2应力P下= ∑G/A×(1-6×e/B)=137.66kN/m2应力控制系数η=P max/ P min= 1.25<[η]=2满足要求判断表层滑动或深层滑动Pkp=Aγ'B f'+2c(1+f')=220.00kN/m2因为Pk=220.00kN/m2>Pmax=137.66kN/m2所以不必验算地基深层滑动稳定性抗剪抗滑稳定安全系数Kc=f∑G/∑H= 1.5699。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水闸过流能力及结构计算计算说明书
审查
校核
计算
***市水利电力勘测设计院
2011 年 08 月 29日
1、水闸过流能力复核计算
水闸的过流能力计算对于平底闸,当为堰流时,根据《水闸设计规范》(SL265-2001)附录A.0.1规定的水力计算公式:
23
02H g b m Q s εσ=
22
'02ϕg bh Q h H c c ⎪
⎪⎭
⎫ ⎝⎛+=
40
01171.01s
s b b b b ⎪⎪⎭⎫ ⎝

-
-=ε 式中:B 0—— 闸孔总净宽,(m );
Q ——过闸流量,(m 3/s );
H 0——计入行进流速水头的堰上水深,(m ); h s ——由堰顶算起的下游水深,(m ); g ——重力加速度,采用9.81,(m/s 2); m ——堰流流量系数,采用0.385; ε——堰流侧收缩系数; b 0——闸孔净宽,(m );
b s ——上游河道一半水深处的深度,(m ); b ——箱涵过水断面的宽度,m ; h
c 进口断面处的水深,m ;
s σ——淹没系数,按自由出流考虑,采用1.0;
ϕ——流速系数,采用0.95;
已知过闸流量Q=5.2(m 3/s )先假设箱涵过流断面净宽确定箱涵过流断面高度,经试算得:
综上,过流断面尺寸为2.5m ×2.0m (宽×高),设计下泄流量Q 为5.2m 3/s ,过流能力满足要求。

2、结构计算
**堤防洪闸均为钢筋砼箱涵结构,对防洪闸进行抗滑稳定、抗倾覆稳定和墙基应力计算。

(1)抗滑稳定计
1)计算工况及荷载组合
工况一:施工完建期,荷载组合为自重+土压力
工况二:外河设计洪水位,荷载组合为自重+土压力+扬压力+相应的闸前闸后静水压力+风浪压力
2)荷载计算
计算中砼强度等级为C20,钢筋采用Ⅰ、Ⅱ级,保护层厚度梁25mm、板20mm,符号规定:力向下为正,向上为负,力矩逆时针为正,顺时针为负。

闸门重 2.352×9.81=23.07 KN;
闸底板重25×4.0×0.7×4.1=287 KN;
闸墩重25×0.8×4×2*2=320 KN;
平台板,梁25×(0.25×0.45×2+1.05×0.15)×2.5=23.91 KN;
柱25×2.82×0.4×0.4×4=45.12 KN;
启闭力-100 KN;
启闭机重0.56×9.81=5.49 KN;
启闭梁25×(0.3×0.5+0.25×0.4+1.35×0.12)×2×3.5=72.1 KN;
工作桥25×(5.9×0.12+0.2×0.25×3)×2.0=42.9 KN;
25×(6.28×0.13×2×0.13+1.2×0.15×5×0.15)×2=34.73 KN;
启闭房砖墙22×0.864×4.1×4=311.73 KN;
∑自重=23.07+287+320+23.91+45.12-100+5.49+72.1+38.815+340
=1016.98KN;
水重10×2.0×2.0×2.5=100 KN;
由表可知浪压力为2.35 KN ;
有表可知土压力为38.49 KN ;
闸前静水压力 (27.7+47.7)×2/2×2.5=188.5 KN ; 离截面形心距离 e=
()()3
77.477.277.477.222⨯++⨯⨯=0.91 扬压力 0.5×2×10×2×2.5=-50KN ;
计算工况荷载汇总(对闸室基底面形心求矩)
3)抗滑稳定计算公式 []c
c K H
G
f K ≥⋅=∑∑
式中:Kc ——为抗滑稳定安全系数;
[]c K ——规范要求的抗滑稳定安全系数最小值;
∑G ——作用在防洪闸上的全部垂直力总和 ;
∑H ——作用在防洪闸上的全部水平力总和;
f ——闸室基底面与地基之间的摩擦系数,取0.4 4)计算结果
工况一:∑G =951.5 KN ;
∑H =33.33 KN ; K c =
33
.335
.9514.0⨯=11.41>1.2 满足要求;
工况二:∑G =1001.5 KN ;
∑H =224.18 KN
K c =
18
.2245
.10014.0⨯=1.78>1.2 满足要求。

(2)闸基底应力计算
各防洪闸基础均坐落在砂卵石上,其闸基底压应力按下式计算
[]σ≤±=
∑∑W
M A
G P m a x
m i n
式中: P maxmin
——为闸室基底应力最大和最小压值;
[]σ——地质资料提供的基础允许承载力;
∑G ——作用在闸室上的全部竖直荷载(包括闸室基底上的扬压力在内,KN ); ∑M——作用在闸室上的全部竖向和水平向荷载对于基础底面垂直水流方向的形心轴的力矩(KN.m );
A ——闸室基底面的面积(m 2);
W ——闸室基底面对于该底面垂直水流方向的形心轴的截面矩(m 3) 工况一:∑G =951.5 KN
∑M =41.60 KN
A=4.1×4=16.4m 2 W=1/6×4.1×42=28.7 m 3
max p =
7.2860
.414.1655.951+=59.47 KN <400 KN ;满足要求 min p =7
.2860.414.165.951-=56.57 KN <400 KN ;满足要求
57
.5647.59m in m ax =P P =1.05<2.0 满足要求
工况二:∑G =1001.5 KN ∑M =151.47 KN
A=4.1×4=16.4 m 2 W=1/6×4.1×42=28.7m 3
max p =
7.2847
.1514.165.1001+
=66.35<300 满足要求 min p =7
.2847.1514.165.1001-
=55.79<300 满足要求 79
.5535.66max min =P P =1.19<2.0 满足要求。

相关文档
最新文档