有理数复习提纲
【配套K12]七年级数学上册 1《有理数》复习提纲素材 (新版)新人教版
《有理数》复习提纲基本概念一、正数和负数1.大于0的数叫做正数,若a>0,则a表示的是任一正数。
在正数前面加上负号“-”的数叫做负数。
若a<0,则a表示的是任一负数。
2.数0既不是正数,也不是负数。
3.现实生问题中,常用正数与负数表示具有相反意义的量。
4.非负数指正数或零;非正数指负数或零。
二.数轴1.定义:规定了原点、正方向、单位长度的直线叫数轴2.数轴上表示的两个数,右边的总比左边的大3.正数大于0,0大于负数,正数大于负数4.两个负数,绝对值大的反而小三.相反数1.定义:只有符号不同的两个数叫做互为相反数。
2.一般地,a和-a互为相反数,特别地,0的相反数仍是0。
3.相反数等于本身的数是0。
4.一对相反数的绝对值相等。
5.一对相反数的和为0。
6.除0外,一对相反数的商为-1。
7.数轴上表示相反数的两个点(0除外)位于原点的左、右两侧,到原点的距离相等。
8.在任意一个数前面添上“-”号,新的数就表示原数的相反数。
四.绝对值1.定义:数轴上表示数a的点与原点的距离叫做数a的绝对值。
2.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
3.绝对值等于本身的数为非负数,绝对值等于它的相反数的数为非正数,绝对值最小的有理数是0。
4.绝对值等于a(a>0)的数为±a。
5.任何数的绝对值都是非负数。
1.乘积为1的两个数互为倒数2.0没有倒数3.倒数等于本身的数为±1六.科学记数法是指把一个大于10的数写成a×10n的形式,其中1≤a<10,且n为正整数。
七.近似数和有效数字一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
这时,从左边第一个不是0的数字起,到末位数字为止,所有的数字都叫做这个数的有效数字。
八.有理数的分类1.整数与分数统称为有理数2.有理数还可以分为正有理数、零、负有理数3.整数包括正整数、零、负整数,有最小的正整数为1,有最大的负整数为-1;分数包括正分数、负分数基本运算一、加法1.同号两数相加,取相同的符号,并把绝对值相加。
第一章 有理数知识点、考点、难点总结归纳
第一章有理数知识点、考点、难点总结归纳大家好,今天我们来聊聊有理数这个知识点。
有理数是我们日常生活中经常会遇到的一种数,它们可以表示为两个整数的比值,比如1/2、3/4等等。
有理数在数学中非常重要,因为它们可以帮助我们解决很多问题。
有理数有哪些知识点呢?下面我们就来一一梳理。
我们来说说有理数的基本概念。
有理数包括正有理数、负有理数和零。
正有理数就是大于零的有理数,比如1/2、3/4等等;负有理数就是小于零的有理数,比如-1/2、-3/4等等;零是有理数,但它既不大于零也不小于零。
我们来看一下有理数的运算。
有理数的加法、减法、乘法和除法都很简单,我们可以通过以下几个例子来说明。
例一:正有理数相加。
假设我们有两个正有理数a和b,那么它们的和就是a+b。
例如,1/2+1/3=5/6。
例二:正有理数相减。
假设我们有两个正有理数a和b,那么它们的差就是a-b。
例如,3/4-1/2=1/4。
例三:正有理数相乘。
假设我们有两个正有理数a和b,那么它们的积就是a*b。
例如,1/2*3/4=3/8。
例四:正有理数相除。
假设我们有两个正有理数a和b(b≠0),那么它们的商就是a/b。
例如,3/4÷1/2=3/2=1.5。
有理数的运算还有很多其他的形式,比如负有理数的加法、减法、乘法和除法等。
但是这些都比较复杂,我们以后再学吧。
除了基本的运算之外,有理数还有一些重要的性质和定理。
比如,有理数的相反数是它的负倒数;有理数的绝对值是它的大小;有理数的平方根有两个,一个是正的,一个是负的;有理数的小数部分可以无限精确地表示为分数形式等等。
这些性质和定理在解决一些实际问题时非常有用。
我们来说说有理数的解题方法。
其实,有理数的解题方法和其他类型的题目差不多。
我们需要先理解题目的意思,然后根据题目的要求选择合适的方法进行计算。
有时候,我们还需要运用一些特殊的技巧来简化计算过程。
只要我们掌握了有理数的基本知识和解题方法,就可以轻松地解决很多数学问题了!今天我们就来聊到这里。
第一章 有理数总复习
第一章有理数总复习一、知识归纳:1、数轴是一条规定了原点、方向、长度单位的直线。
有了数轴,任何一个有理数都可以用它上面的一个确定的点来表示。
在数的研究上它起着重要的作用。
它使数和最简单的图形——直线上的点建立了对应关系,它揭示了数和形之间的内在关系,因此它是数形结合的基础。
但要注意数轴上的所有点并不是都有有理数和它对应。
借助于数轴上点的位置关系可以比较有理数的大小,法则是:在数轴上表示的两个有理数,右边的数总比左边的数大。
2、相反数是指只有符号不同的两个数。
零的相反数是零。
互为相反的两个数位于数轴上原点的两边,离开原点的距离相等。
有了相反数的概念后,有理数的减法运算就可以转化为加法运算。
3、绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
显然有:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。
对于任何有理数a,都有a ≥0。
4、倒数可以这样理解:如果a 与b 是非零的有理数,并且有a×b=1,我们就说a 与b 互为倒数。
有了倒数的概念后,有理数的除法运算就可以转化为乘法运算。
5、有理数的大小比较:(1)正数都大于零,负数都小于零,即负数<零<正数;(2)两个正数,绝对值大的数较大;(3)两个负数,绝对值大的数反而小;(4)在数轴上表示的有理数,右边的数总比左边的大;6、科学记数法:是指任何数记成a×10n的形式,其中用式子表示| a |的范围是0<|a|<10。
7、近似数与精确度:近似数:一个与实际数很接近的数,称为近似数;精确度:右边最后一位数所在的位数,就是精确到的数位。
二、有理数的运算法则1、有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0 相加,仍得这个数。
由此可得,互为相反数的两数相加的0;三个数相加先把前两个数相加,或先把后两个数相加,和不变。
第一章《有理数》复习总结
第一章《有理数》复习总结有理数是整数和分数的统称,包括正数、负数和零。
有理数可以表示为p/q的形式,其中p和q都是整数,且q不等于0。
p称为分子,q称为分母。
1.有理数的大小比较:(1)对于同号的有理数,绝对值越大,数值越大;(2)对于异号的有理数,正数大于负数,绝对值越小,数值越大。
2.有理数的加减乘除:(1)加法:拆分有理数,按照整数部分和小数部分相加;(2)减法:将减数变为相反数,再进行加法运算;(3)乘法:分别计算分子和分母的乘积,然后化简;(4)除法:将除数变为倒数,再进行乘法运算。
3.有理数的约分和化简:(1)约分:将分子和分母同时除以最大公因数,使得分数不可再约分;(2)化简:将带有分数线的有理数化为最简形式。
4.有理数的绝对值:(1)正数的绝对值是其本身;(2)负数的绝对值是其相反数;(3)零的绝对值是零。
5.有理数的相反数:(1)正数的相反数是负数;(2)负数的相反数是正数;(3)零的相反数是零。
6.计算混合数的值:(1)将整数部分和小数部分分开,分别计算;(2)将结果相加或相减,得到最终的结果。
7.有理数的乘方:(1)有理数的整数次方,将底数连乘或连除相应次数;(2)底数是分数,将底数化为整数的形式进行计算。
8.有理数的乘法逆元:(1)有理数的乘法逆元是其倒数;(2)除零外,任意非零有理数的乘法逆元存在。
9.有理数的混合运算:(1)先进行括号内的运算,再进行乘除法运算,最后进行加减法运算;(2)若有多个加法或减法运算,按照从左到右的顺序进行。
10.有理数在坐标轴上的表示:(1)正数表示点在原点的右侧;(2)负数表示点在原点的左侧;(3)零表示点在原点。
有理数在数学中有着广泛的应用,比如在数轴上定位、计算中的加减乘除、分数和小数的运算等。
学好有理数不仅需要掌握各种运算规则和性质,还需要大量的练习和实践。
通过不断的练习和思考,可以提高解决实际问题的能力,培养思维和逻辑思维能力。
总之,有理数作为数学的一个重要概念,是我们平日生活中接触最多的数的形式。
有理数知识点
有理数知识点一、关键信息项1、有理数的定义:整数(正整数、0、负整数)和分数的统称。
2、有理数的分类:按定义分类:分为整数和分数。
按性质分类:分为正有理数、0、负有理数。
3、数轴:规定了原点、正方向和单位长度的直线。
4、相反数:绝对值相等,符号相反的两个数。
5、绝对值:数轴上表示数 a 的点与原点的距离。
6、有理数的大小比较:正数大于 0,0 大于负数,正数大于负数。
两个负数,绝对值大的反而小。
7、有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
一个数同 0 相加,仍得这个数。
8、有理数的减法法则:减去一个数,等于加上这个数的相反数。
9、有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同 0 相乘,都得 0。
10、有理数的除法法则:除以一个不等于 0 的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。
0 除以任何一个不等于 0 的数,都得 0。
11、乘方:求 n 个相同因数乘积的运算,叫做乘方。
12、科学记数法:把一个大于 10 的数表示成 a×10^n 的形式(其中a 大于或等于 1 且小于 10,n 是正整数)。
二、详细内容11 有理数的定义有理数是能够表示为两个整数之比的数,包括整数和分数。
整数可以看作是分母为 1 的分数。
例如,5 可以表示为 5/1,-3 可以表示为-3/1。
分数则是形如 m/n(m、n 为整数,且 n 不等于 0)的数,例如1/2、-3/4 等。
111 有理数与无理数的区别无理数是不能表示为两个整数之比的数,例如圆周率π、根号2 等。
有理数和无理数共同构成了实数集合。
12 有理数的分类121 按定义分类整数:包括正整数、0、负整数。
正整数如 1、2、3 等;负整数如-1、-2、-3 等。
分数:包括正分数和负分数。
新浙教版七年级下册数学知识点汇总复习提纲
新浙教版七年级下册数学知识点汇总复习
提纲
第一单元:有理数
- 有理数的定义
- 正数、零和负数的关系
- 有理数的比较和排序
- 有理数的加法和减法运算
- 有理数的乘法和除法运算
- 有理数的解集
第二单元:平方根与立方根
- 平方根的定义和性质
- 平方根的计算方法
- 平方根的应用问题
- 立方根的定义和性质
- 立方根的计算方法
- 立方根的应用问题
第三单元:比例与相似
- 比例的定义和性质
- 比例的画法和解法
- 相似的定义和性质
- 相似的判定和判定方法
- 相似的应用问题
第四单元:方程与方程应用
- 方程的定义和性质
- 一元一次方程的解法
- 一元一次方程的应用问题
- 二元一次方程组的解法
- 二元一次方程组的应用问题
第五单元:数据的收集、整理和分析- 调查和统计数据的收集方法
- 数据的整理和分类
- 直方图的绘制和解读
- 折线图的绘制和解读
- 数据的分析和总结
第六单元:三角形和四边形
- 三角形的定义和性质
- 各种特殊三角形的性质
- 三角形的画法和解法
- 四边形的定义和性质
- 各种特殊四边形的性质
- 四边形的画法和解法
第七单元:概率
- 事件和概率的定义
- 计算概率的方法
- 可能性的判断和比较
- 实际问题中的概率计算
- 互不影响事件的概率计算
以上是新浙教版七年级下册数学知识点的汇总复提纲。
希望这份提纲能帮助你系统地复七年级下册的数学知识。
有理数复习提纲最全最科学最适用于基础一般的学生
《第一章有理数》复习提纲1.1正数和负数正数:像+1.8,+420、+30、+10%等带有理数“+”号的数叫做正数。
为了强调正数,前面加上“+”号,也可以省略不写。
负数:像-3、-4754、-50、-0.6、-15%等带有“-”号的数叫做负数。
而负数前面的“-”号不能省略。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义。
【自能训练】1、在-1,2.5,+43,0,-3.14,120,-1.732,-27这些数中,正数是_____________________,负数是______________________.2、如果5元表示收入5元,那么-3元表示;3、如果把石苡源向西走5米记作+5米,那么她向东走5米记作米。
1.2有理数1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
【自能训练】在-45,1,0,8.9,-6,57,-3.2,+108,-0.05,28,-9这些有理数中,(1)正整数是____________;(2)负整数是____________;(3)正分数是____________;(4)负分数是____________.1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
所有的有理数都可以用数轴上的点来表示。
一般地,设a是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
【自能训练】先画出数轴,然后在数轴上画出表示下列各数的点:-1,0,4,-5,114,-2.5.1.2.3相反数只有符号不同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
【自能训练】1、+15的相反数是__;-37的相反数是___;(3)0的相反数是___;(4)a的相反数是___。
第一章 有理数知识点、考点、难点总结归纳
第一章有理数知识点、考点、难点总结归纳有理数是初中数学中的重要概念,它是进一步学习数学的基础。
下面我们来详细总结归纳一下有理数的知识点、考点和难点。
一、有理数的定义有理数是整数(正整数、0、负整数)和分数的统称。
整数可以看作是分母为 1 的分数。
分数则是两个整数的比值,形式为\(\frac{m}{n}\)(其中\(n\neq 0\))。
二、有理数的分类1、按定义分类整数:正整数、0、负整数。
分数:正分数、负分数。
2、按性质分类正有理数:正整数、正分数。
负有理数:负整数、负分数。
三、数轴数轴是规定了原点、正方向和单位长度的直线。
数轴的作用:1、可以直观地表示有理数,任何一个有理数都可以用数轴上的一个点来表示。
2、可以比较有理数的大小,数轴上右边的数总比左边的数大。
四、相反数只有符号不同的两个数叫做互为相反数。
例如,\(5\)的相反数是\(-5\),\(-3\)的相反数是\(3\),\(0\)的相反数是\(0\)。
相反数的性质:1、互为相反数的两个数之和为\(0\),即\(a +(a) = 0\)。
2、数轴上表示相反数的两个点位于原点两侧,且到原点的距离相等。
五、绝对值数轴上表示数\(a\)的点与原点的距离叫做数\(a\)的绝对值,记作\(\vert a\vert\)。
绝对值的性质:1、正数的绝对值是它本身,即当\(a > 0\)时,\(\vert a\vert = a\)。
2、 0 的绝对值是 0,即\(\vert 0\vert = 0\)。
3、负数的绝对值是它的相反数,即当\(a < 0\)时,\(\vert a\vert = a\)。
绝对值的计算:例如,\(\vert -5\vert = 5\),\(\vert 3\vert = 3\)。
六、有理数的大小比较1、正数大于 0,0 大于负数,正数大于负数。
2、两个负数比较大小,绝对值大的反而小。
例如,比较\(-3\)和\(-5\)的大小,因为\(\vert -3\vert =3\),\(\vert -5\vert = 5\),\(3 < 5\),所以\(-3 >-5\)。
有理数必考43个知识点
有理数必考43个知识点一、有理数的基本概念。
1. 有理数的定义。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
例如,3是正整数,属于有理数;0.5是有限小数,也是有理数; - 2是负整数,同样是有理数。
2. 有理数的分类。
- 按定义分类:有理数可分为整数(正整数、0、负整数)和分数(正分数、负分数)。
- 按性质分类:有理数可分为正有理数(正整数、正分数)、0、负有理数(负整数、负分数)。
3. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
原点表示0,原点右边为正数,左边为负数。
例如,在数轴上表示 - 3,就是在原点左边距离原点3个单位长度的点。
- 数轴上的点与有理数的关系:每一个有理数都可以用数轴上的一个点来表示,但数轴上的点不都表示有理数(还有无理数)。
4. 相反数。
- 只有符号不同的两个数叫做互为相反数。
例如,3和 - 3互为相反数,0的相反数是0。
- 互为相反数的两个数在数轴上的对应点关于原点对称。
- 若a与b互为相反数,则a + b=0。
5. 绝对值。
- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作a。
例如,3 = 3,- 3 = 3。
- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
即当a>0时,a = a;当a = 0时,a = 0;当a<0时,a=-a。
6. 倒数。
- 乘积为1的两个数互为倒数。
例如,2的倒数是1/2, - 3的倒数是 - 1/3,0没有倒数。
- 若a与b互为倒数,则ab = 1。
二、有理数的运算。
7. 有理数的加法法则。
- 同号两数相加,取相同的符号,并把绝对值相加。
例如,2+3 = 5,( - 2)+( - 3)= - 5。
- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如,2+( - 3)= - 1,3+( - 2)=1。
七年级数学有理数的复习
复习要点:
1.举例说明正数与负数。
2.将有理数按定义和性质做一个分
类表。
正整数
整数 零
有理数
负整数
分数
正分数 负分数
正有理数
正整数 正分数
有理数 零
3.什么是数轴?
规定了原点,正方向,和单位长度的直线叫 做数轴。
4.相反数的定义。
只有符号不同的两个数互为相反数。
▲▲▲▲
; 少儿英语培训加盟 ;
赵彦深本子如宾僚 王劭 豹祠嫁石婆 累迁御史中丞 常闻其名 去约军一里乃还 父君方 孝昭赐采帛千段 令侍御史赵秀通至州 仪同杨檦从鼓钟道出建州 城镇相继款附 此虽为刹 给城局参军 都不计校 辞云 不放反逆 迁南兖州长史 江璧既返 乞补员外司马督 负笈随大儒徐遵明学《诗》 况重于此事 求长生之秘 魏殂后 "伯子为亲者讳耳 游道为诉得释 更可怜人生如寄 命掌书记 风仪蕴籍 嗟将相之骨鲠 将以自防 况义方之情不笃 目见冤酷 卒 字孝谦 仍侍左右 带甲十万 唯门阉驱使 寻属胜南奔 皇建初配享神武庙庭 加颈足而为马 冯子琮以仆射摄选 吾射尽获之 琳遣 巴陵太守任忠大败之 陆媪又唱和之 闻其何当还北 亦留心文藻 孝昭委琳与行台左丞卢潜率兵应赴 下无景而属蹈 又列肆之内 天统初 补相府功曹 "甚知朝贵中有憎忌卿者 后从神武起兵信都 下狱 琅邪人 画缋饰以丹青 以父功赐爵临颍县伯 ’"显祖遽登车 少为崔昂所知 太后不听 决鞭 二百 崔季舒等将谏也 敕令裴英推问 权会 开府仪同三司 即日起为尚书祠部郎中 彼人愧而不受 景裕传权会 新蔡 复恐迎风纵火 冯伟 故《丧服》曰 右仆射臣世隆 "遣兵士防送 多带侍中 杨愔风流辨给 寻诏复前官 秦道静初亦学服氏 彦深不获已 俄有蛮贼文道期之乱 建安王 时冯子琮 子慈
有理数复习提纲
欢迎阅读有理数知识点总结1、数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数2、a可以表示什么数3、a,b互为相反数,则a+b=0,互为相反数的非零两数商为负1,即a,ba的值为__________.8、若m,n互为相反数,则│m-1+n│=_________.9、观察下列顺序排列的等式:9×0+1=1;9×1+2=11;9×2+3=21;9×3+4=31;9×4+5=41;……猜想第n个等式(n为正整数)应为_________________________-___.10、如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,•再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,•请参照图1-8并思考,完成下列各题:(1)如果点A表示数-3,•将点A•向右移动7•个单位长度,•那么终点B•表示的数是_______,A,B两点间的距离是________;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,• 那么终点B表示的数是_______,A,B两点间的距离为________;(3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256•个单位长度,那么终点B表示的数是_________,A,B两点间的距离是________.的相反数是3.8;④一个数和它的相反数不可能相等;⑤正数与负数互为相反数.A.0个B.1个C.2个D.3个19、如果一个数的平方与这个数的差等于0,那么这个数只能是()A.0B.-1 C .1 D.0或120、已知两个有理数的和为负数,则这两个有理数()A、均为负数B、均不为零C、至少有一正数D、至少有一负数21、现规定一种新运算“*”:a*b=b a ,如3*2=23=9,则(21)*3=( )A 、61B 、8C 、81D 、2322、现有以下四个结论:①绝对值等于其本身的有理数只有零;②相反数等于其本身的有理数只有零;③倒数等于其本身的有理数只有1;•④平方等于其本身的有理数只有1.其中正确的有( )A .0个B .1个C .2个D .大于2个(1)聪聪家与刚刚家相距多远?(2)如果把这条人民路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出他们三家与学校的大概位置(数轴上一格表示50米).(3)聪聪家向西210米是体育场,体育场所在点所表示的数是多少?(4)你认为可用什么办法求数轴上两点之间的距离?33、 学校组织同学到博物馆参观,小明因事没有和同学同时出发,于是准备在学校门口搭乘出租车赶去与同学们会合,出租车的收费标准是:起步价为6元,3千米后每千米收1.2元,不足1千米的按1千米计算。
初一上册期末数学复习提纲-第一章有理数
--------------1.1正数与负数①大于0的数叫正数。
②在正数前面加上“-”号的数,叫做负数。
③0既不是正数也不是负数。
0是正数和负数的分界,是的中性数。
④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。
⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。
整数和分数统称有理数。
⑥非负数就是正数和零;非负整数就是正整数和0。
⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。
-------------1.2数轴①通常用一条直线上的点表示数,这条直线叫数轴。
②数轴三要素:原点、正方向、单位长度。
③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
④只有符号不同的两个数叫做互为相反数(和为零)。
(例:2的相反数是-2,如:2+(-2)=0;0的相反数是0)⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离(无方向性,有两个点)。
⑥数轴上两点间的距离=|M—N|⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
⑦两个负数,绝对值大的反而小。
⑧|a|≥0(即非负性);绝对值等于一个正数的值有两个(两个互为相反数)如:|a|=5,a=5或a=-5-------------1.3有理数的大小①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。
②负数小于零,零小于正数,负数小于正数。
③两个负数的比较大小,绝对值大的反而小。
-------------1.4有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。
有理数复习知识梳理
相反意正数零负数有理数复习(1)——知识梳理,针对练习一、知识结构二、知识要点(一)概念1、有理数:和统称有理数。
2、数轴:规定了、、的直线叫数轴。
3、相反数:只有不同的两个数,称为相反数;零的相反数是零。
在数轴上看,表示互为相反数的两个点,分别在的两侧,并且到的距离相等。
(1)a的相反数通常表示为(2)若a、b互为相反数,则a+b=4、绝对值:一个正数的绝对值是,一个负数的绝对值是,0的绝对值是在数轴上,一个数的绝对值就是表示这个数的点到 的距离。
()()()⎪⎩⎪⎨⎧-=?,?,0?,a a a5、倒数:乘积是 的两个数叫互为倒数。
(1)通常用()0≠a a 与a1表示一对倒数; (2)倒数等于它本身的数是 (3) 没有倒数。
6、科学记数法:把一个大于10的数表示成n a 10⨯的形式(其中,≤≤a ,n7、有效数字:从一个数的左边第一个 数字起,到 止,所有数字都是这个数的有效数字。
8、有理数大小比较法则正数都 0,负数都 0,正数都 负数; 两个负数,绝对值 针对训练一1、有理数4-,500,0,7.2-,432中,整数是___________,负整数是______,正分数是_______;2、3-的相反数是 ,倒数是 ,绝对值是 ;3、在(-1)2,-|0|,(-2)5,-|-2|这四个数中,负数共有( )A.4个B.3个C.2个D.1个 4、保留三个有效数字,得到21.0的数是下面的( ) A.21.12 B.21.05 C.20.95 D.20.945、比较大小:①0____15-,②31____41--;③3_____0-; 6、一个数的相反数比它的本身小,则这个数是 ;一个数的绝对值等于这个数的平方,则这个数是_______;一个数的绝对值等于这个数的立方,则这个数是_______。
7、用科学记数法表示:36100000 ,由四舍五入的近似数11.2亿,它精确到__________位; 把52056370取近似数(保留四个有效数字为)______________。
数学有理数总复习
6、不大于3的非负整数 、不大于 的非负整数 是
0、1、2、3 、 、 、
。 、b=
-2
7、如(a-1)2+|b+2|=0, 、 , 那么a= 那么
1
。
7.有理数大小的比较 7.有理数大小的比较
可通过数轴比较: 1)可通过数轴比较: 在数轴上的两个数, 在数轴上的两个数,右边的数 总比左边的数大; 总比左边的数大; 正数都大于0 负数都小于0 正数都大于0,负数都小于0; 正数大于一切负数; 正数大于一切负数; 两个负数,绝对值大的反而小。 2)两个负数,绝对值大的反而小。 0,b<0,且 即:若a<0,b<0,且︱a︱>︱b︱, 则a < b.
5.倒 5.倒 数 乘积是1 乘积是1的两个数互为倒数 . 1)a的倒数是
1 a≠0); (a≠0); a
2)0没有倒数 ; 互为倒数, 3)若a与b互为倒数,则ab=1.
下列各数,哪两个数互为倒数? 例:下列各数,哪两个数互为倒数? 1 ,-1,+(-8),1, 1 ),1 −(− ) 8, − 8 8
4.相反数 4.相反数
只有符号不同的两个数, 只有符号不同的两个数, 其中一个是另一个的相反数。 其中一个是另一个的相反数。 的相反数是1)数a的相反数是-a
(a是任意一个有理数); 是任意一个有理数);
2)0的相反数是0. 的相反数是0. 互为相反数, 3)若a、b互为相反数,则a+b=0.
-4 -2 -4 -3 –2 –1 2 1 0 2 1 2 3 4 4
基本概念练习 3、3m—4的相反数是 ,则求 、 的相反数是-11, 的相反数是 m2-3m+1的值。 的值。 的值
4、若|a|=4,|b|=7,求a+2b的值; 、 的值; , 的值
有理数知识整合与复习
有理数知识整合与复习一.知识梳理1.有理数的相关概念(1)有理数: 和 统称为有理数。
(2)有理数分类①按定义分: ②按符号分:有理数()()0()()()()⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩;有理数()()()()()()⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩(3)相反数:只有 不同的两个数互为相反数。
若a 、b 互为相反数,则 。
(4)数轴:规定了 、 和 的直线叫做数轴。
(5)倒数:乘积 的两个数互为倒数。
若a (a≠0)的倒数为1a.则 。
(6)绝对值:①代数意义:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a②几何意义:2.有理数的运算 核心:(1)符号,绝对值。
(符号优先定,绝对值计算。
) (2) 转化的思想(1)有理数加法法则:①同号两数相加,取________的符号,并把__________②绝对值不相等的异号两数相加,取________________的符号,并用 ____________________。
互为相反数的两个数相加得____。
③一个数同0相加,__________________。
(2)有理数减法法则:减去一个数,等于加上____________。
(3)有理数乘法法则:①两数相乘,同号_____,异号_____,并把_________。
任何数同0相乘,都得________。
②几个不等于0的数相乘,积的符号由____________决定。
当______________,积为负,当_____________,积为正。
③几个数相乘,有一个因数为0,积就为__________. (4)有理数除法法则:①除以一个数,等于_______________________.__________不能作除数。
②两数相除,同号_____,异号_____,并把_________。
0除以任何一个___________的数,都得0(5)幂的运算法则:正数的任何次幂都是___________; 负数的__________是负数,负数的__________是正数(6)有理数混合运算法则:先算________,再算__________,最后算___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《有理数》复习提纲
基本概念
一、正数和负数
1. 大于0的数叫做正数,若a>0,则a表示的是任一正数。
在正数前面加上负号“-”的数叫做负数。
若a<0,则a表示的是任一负数
2、既不是正数,也不是负数。
3、现实生问题中,常用正数与负数表示的量。
4、非负数指;非正数指。
二.数轴
1.定义:规定了、、的直线叫数轴。
2.数轴上表示的两个数,的总比的大。
3.正数0,0大于,大于。
4.两个负数,大的反而小。
三.相反数
1.定义:不同的两个数叫做互为相反数。
2、一般地,a和-a互为,特别地,0的相反数仍是。
3、相反数等于本身的数是。
4、一对相反数的相等。
5、一对相反数的和为。
6、除0外,一对相反数的商为。
7、数轴上表示相反数的两个点(0除外)位于原点的左、右两侧,到原点的距离。
8、在任意一个数前面添上“-”号,新的数就表示原数的。
四.绝对值
1、定义:数轴上表示数a的点与距离叫做数a的绝对值。
2、一个正数的绝对值是;一个负数的绝对值是;0的绝对值。
3、绝对值等于的数为非负数,绝对值等于它的相反数的数为,绝对值最小的有理数
是。
4、绝对值等于a(a>0)的数为。
5、任何数的绝对值都是。
五.倒数
1、为1的两个数互为倒数。
2、0没有倒数。
3、倒数等于本身的数为。
六.科学记数法
是指把一个大于的数写成a×10n的形式,其中,且n为。
七.近似数和有效数字
一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
这时,从左边的数字起,到为止,所有的数字都叫做这个数的有效数字。
八.有理数的分类
1、与统称为有理数。
2、有理数还可以分为正有理数、、。
3、整数包括、、,有最小的正整数为,有最大的负整数为;分数包括正分数、
负分数。
基本运算
一.加法
1、同号两数相加, 符号,并把 相加。
2、绝对值不相等的异号两数相加, 的符号,并用 减去较小的绝对值。
3、 两个数相加得0。
4、一个数同0相加,仍得这个数。
二.减法
减去一个数等于 。
a-b=a+(-b)
三.乘法
1、两数相乘, 得正, 得负,并把 。
2、任何数同0相乘,都得 。
3、几个不是0的数相乘, 的个数是 个时,积是正数; 个数是 个时,积是负
数。
4、几个数相乘,如果 ,积等于0。
四.除法
1、除以一个 的数,等于乘以这个数的 。
2、两数相除,同号得 ,异号得 ,并把 相除。
3、0除以任何一个不等于0的数,都得 。
4、在除法运算中0不能做除数。
五.乘方
1、正数的任何次幂都是 。
2、0的任何非零次幂都是0
3、负数的 次幂是正数,负数的 次幂是负数。
六.混合运算
顺序:1.不同级:高级到低级
2.同级:自左往右
3.有括号:小中大
七.运算律
1.加法交换律:两个数相加,交换加数的位置,和不变 。
a+b=
2.加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
(a+b)+c=
3.乘法交换律:两个数相乘,交换因数的位置,积不变。
ab=
4.乘法结合律:三个数相乘,先把前两个数相乘或者先把后两个数相乘,积不变。
(ab)c=
5.乘法分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加。
a(b+c)=
典例演练
1.考查正负数
1、(1)吐鲁番盆地低于海平面155m ,记作一155m ;福州鼓山绝顶峰高于海平面919m ,记作 m 。
(2)若李明同学家里去年收入3万元,记作3万元,则去年支出2万元,记作 元。
2.考查相反数、绝对值
2、(1)31
-的相反数是 ;31
-的绝对值是
(2)若m 、n 互为相反数,则n m +-1=
3.考查数轴
3、在数轴上,与表示一1的点的距离为3的点所表示的数是 。
4.考查有理数的分类
4、有理数()()4
3,21,3,0,2,22------中,属于负数的有 ,属于整数的有
5.考查有理数大小的比较
5、比较4
1,31,21-
-的大小,结果正确的是() A 、413121<-<- B 、314121-<<- C 、213141-<-< D 、412131<-<-
6.考查有理数的计算
6、计算(1)⎪⎭⎫
⎝⎛+-⨯--83651212423;
(2)()9
11325.021112121200522÷⎪⎭⎫ ⎝⎛-⨯--+--。
7.考查科学计数法
7、据xx 年6月9日中央电视台东方时空栏目报道:由于人类对自然界资源的不合理开发与利用,严重破坏了大自然的生态平衡,目前地球上大约45分钟就有一个物种灭绝。
照此速度,请你预测:再过10年(每年按365天计算)将有大约( )个物种灭绝。
A 、610256.5⨯
B 、510168.1⨯
C 、510256.5⨯
D 、410168.1⨯
8、考查观察探索能力
8、(1)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,则第24个三角形与第22个三角形数的差为
(2)把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行……中间用虚线围的一列,从上至下依次为1、5、13、25、……则第10个数为。