【备战2014】高考数学 高频考点归类分析 导数的几何意义和应用导数求曲线的切线(真题为例)

合集下载

高考复习-导数的概念及几何意义

高考复习-导数的概念及几何意义

导数的概念及几何意义知识集结知识元导数及其几何意义知识讲解1.导数及其几何意义【知识点的知识】1、导数的定义如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f (x)的导函数,简称导数,记为f′(x);如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f′(x)为区间[a,b]上的导函数,简称导数.2、导数的几何意义函数f(x)在x=x0处的导数就是切线的斜率k.例如:函数f(x)在x0处的导数的几何意义:k切线=f′(x0)=.【典型例题分析】题型一:根据切线方程求斜率典例1:已知曲线的一条切线的斜率为,则切点的横坐标为()A.3 B.2 C.1 D.解:设切点的横坐标为(x0,y0)∵曲线的一条切线的斜率为,∴y′=﹣=,解得x0=3或x0=﹣2(舍去,不符合题意),即切点的横坐标为3故选A.题型二:求切线方程典例2:已知函数其图象在点(1,f(1))处的切线方程为y=2x+1,则它在点(﹣3,f(﹣3))处的切线方程为()A.y=﹣2x﹣3 B.y=﹣2x+3 C.y=2x﹣3 D.y=2x+3解:∵图象在点(1,f(1))处的切线方程为y=2x+1∴f(1)=2+1=3∵f(﹣3)=f(3﹣2)=f(1)=3∴(﹣3,f(﹣3))即为(﹣3,3)∴在点(﹣3,f(﹣3))处的切线过(﹣3,3)将(﹣3,3)代入选项通过排除法得到点(﹣3,3)只满足A故选A.【解题方法点拨】(1)利用导数求曲线的切线方程.求出y=f(x)在x0处的导数f′(x);利用直线方程的点斜式写出切线方程为y﹣y0=f′(x0)(x﹣x0).(2)若函数在x=x0处可导,则图象在(x0,f(x0))处一定有切线,但若函数在x=x0处不可导,则图象在(x0,f(x0))处也可能有切线,即若曲线y=f(x)在点(x0,f(x0))处的导数不存在,但有切线,则切线与x轴垂直.(3)注意区分曲线在P点处的切线和曲线过P点的切线,前者P点为切点;后者P点不一定为切点,P点可以是切点也可以不是,一般曲线的切线与曲线可以有两个以上的公共点,(4)显然f′(x0)>0,切线与x轴正向的夹角为锐角;f′(x0)<0,切线与x轴正向的夹角为钝角;f(x0)=0,切线与x轴平行;f′(x0)不存在,切线与y轴平行.例题精讲导数及其几何意义例1.'已知函数,其中a>0.(1)讨论f(x)的单调性;(2)若f(x)有两个极值点x1,x2,证明:-3<f(x1)+f(x2)<-2.'例2.'求下列函数的导数(1)y=2x3-3x2-4;(2)y=xlnx;(3).'例3.'已知函数f(x)=ax3-x2(a>0),x∈[0,+∞).(1)若a=1,求函数f(x)在[0,1]上的最值;(2)若函数y=f'(x)的递减区间为A,试探究函数y=f(x)在区间A上的单调性.'导数的计算知识讲解1.导数的运算【知识点的知识】1、基本函数的导函数①C′=0(C为常数)②(x n)′=nx n﹣1(n∈R)③(sin x)′=cos x④(cos x)′=﹣sin x⑤(e x)′=e x⑥(a x)′=(a x)*lna(a>0且a≠1)⑦[log a x)]′=*(log a e)=(a>0且a≠1)⑧[lnx]′=.2、和差积商的导数①[f(x)+g(x)]′=f′(x)+g′(x)②[f(x)﹣g(x)]′=f′(x)﹣g′(x)③[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)④[]′=.3、复合函数的导数设y=u(t),t=v(x),则y′(x)=u′(t)v′(x)=u′[v(x)]v′(x)【解题方法点拨】1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.2.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.例题精讲导数的计算例1.已知函数f(x)=2lnx+x,则f'(1)的值为___.例2.已知函数f(x)的导函数为f′(x),且满足f(x)=e x f′(1)+3lnx,则f′(1)=___.例3.函数f(x)=sin x+e x(e为自然对数的底数),则f′(π)的值为______。

导数的几何意义及运用解密

导数的几何意义及运用解密

导数的几何意义及运用解密导数作为高等数学中的一个重要概念,在数学、物理、工程等领域都有着广泛的应用。

它既是一个数学工具,也是一种具有丰富几何意义的概念。

本文将从导数的几何意义和运用两个方面对导数进行深入解析,以便更好地理解这一重要概念。

一、导数的几何意义导数在几何学中有着直观的几何意义,可以反映出函数曲线在某一点的切线斜率。

以二次函数y=x^2为例,在任意一点(x0,y0)处的切线斜率为y'=2x0。

因此,当x0=1时,切线斜率为2,当x0=-2时,切线斜率为-4。

从几何意义上来说,导数就是函数曲线在某一点的切线斜率。

通过导数这个工具,我们可以更好地理解各种函数曲线的特征。

例如,曲线函数y=x^3呈现上升趋势,斜率也在不断增长,因此导数y'=3x^2也在不断增长,说明曲线的增长速度在逐渐加快。

而曲线函数y=sin(x)的导数y'=cos(x)呈现周期性变化,反映出曲线函数的特殊周期性。

此外,导数还可以告诉我们函数曲线的局部凸凹性质。

在导数为正的区域里,函数曲线呈现向上凸的形态;反之在导数为负的区域里,函数曲线呈现向下凸的形态;而切线斜率为0时,则表示函数曲线处于转折点上。

由此可见,导数的几何意义在分析函数曲线的形态和特点方面有着重要的作用。

二、导数的运用解密导数在实际应用中被广泛运用,尤其在物理、工程等领域中有着广泛应用。

例如,通过导数我们可以求出物理系统中的速度和加速度,以及电路中的电流和电压。

以下将介绍导数在实际应用中的几个典型案例。

1. 物理中的速度和加速度物理中的运动,通常需要用速度和加速度来描述。

而这些运动的变化可以通过计算导数的方式来进行描述。

例如,当对于绕圆心旋转的物体而言,它的速度在变化的同时也在改变方向。

此时,我们可以通过计算该物体的速度矢量在时间上的导数来求取该物体的加速度。

2. 经济中的边际效用经济学中,经济学家会关注某一特定产量水平下的增益变化。

由于边际效用是一种导数,因此可以通过计算导数的方式来描述增益变化的相关性质。

导数的几何意义是什么

导数的几何意义是什么

导数的几何意义是什么导数作为微积分中的重要概念,不仅在数学理论研究中有着重要地位,还在实际问题的求解中起到了至关重要的作用。

导数的几何意义是指在几何上,导数代表了函数曲线在某一点处的切线斜率。

它使我们能够通过函数图像来理解函数的变化规律及其在特定点的切线性质。

本文将重点论述导数的几何意义以及相应的应用。

一、导数的定义及计算在开始讨论导数的几何意义之前,我们首先来回顾一下导数的定义及计算方法。

对于函数y=f(x),在点x处的导数可以通过下式计算得出:f'(x) = lim(h->0) [(f(x+h) - f(x))/h]根据这一定义,我们可以求得函数在任意一点处的导数值。

导数的计算可以采用一些常用的方法,如基本函数求导法则、链式法则、乘积法则和商法则等。

二、导数的几何意义1. 切线斜率导数的最直观的几何意义就是切线斜率。

当我们计算出函数在某一点的导数后,这个导数值便代表了函数曲线在该点处的切线斜率。

对于一个凸函数而言,导数可以告诉我们曲线在该点是上升还是下降,以及上升或下降的速度有多快。

2. 极值点导数在几何中还有一个重要的意义是寻找函数的极值点。

当函数在某一点的导数为0时,这一点可能是函数的极大值点或极小值点。

通过求导,我们可以找到函数在哪些点处可能存在极值,并进一步帮助我们寻找函数图像上的极值点,从而得出函数的极值。

3. 凹凸性函数图像的凹凸性也可以通过导数来判断。

当函数的导数在某一区间内始终大于0时,函数图像在该区间内是上凸的;而当导数在某一区间内始终小于0时,函数图像在该区间内是下凸的。

这种通过导数判断凹凸性的方法在优化问题中具有重要应用。

三、导数的应用导数的几何意义不仅在数学理论研究中起到关键作用,也在实际问题的求解中发挥了巨大的作用。

1. 最优化问题在经济学、物理学等领域中,最优化问题是非常常见的。

通过求解函数的导数,我们可以确定函数的最大值和最小值,从而帮助解决各种最优化问题。

导数的几何意义与应用

导数的几何意义与应用

导数的几何意义与应用导数是微积分中的重要概念,它具有丰富的几何意义和广泛的应用。

本文将详细阐述导数的几何意义以及在实际问题中的应用。

一、导数的几何意义导数的几何意义是切线的斜率。

考虑函数f(x)在点x=a处的导数f'(a),这个导数值代表函数曲线在该点处的斜率。

换言之,导数告诉我们曲线在特定点的变化速率。

如果导数为正,表示曲线在该点处是上升的;如果导数为负,表示曲线在该点处是下降的;如果导数为零,表示曲线在该点处有极值(最大值或最小值)。

基于这个几何意义,我们可以通过导数来研究曲线的特性。

例如,我们可以通过导数的正负来确定函数的增减性,也可以通过导数的零点来确定函数的极值点。

此外,导数还可以帮助我们理解曲线的弯曲程度。

曲线的弯曲程度与导数的变化率有关,较大的导数变化率表示曲线弯曲较陡峭,较小的导数变化率表示曲线弯曲相对平缓。

二、导数的应用1. 线性逼近导数的几何意义使得它在线性逼近问题中非常有用。

我们可以利用导数来构造一个称为切线的线性函数,用来近似曲线在该点的行为。

这种线性逼近方法在很多实际问题中被广泛应用。

例如,当我们需要确定一条曲线在某点的近似切线时,可以使用导数来计算该点处的切线斜率,并进一步确定切线方程。

2. 最优化问题导数在最优化问题中有重要的应用。

最优化问题涉及如何找到一个函数的最大值或最小值。

通过对函数求导,我们可以找到导数为零的点,即函数的极值点。

进一步分析导数的符号,可以确定函数的最大值或最小值。

这一方法在经济学、物理学和工程学等领域都有广泛的应用。

3. 运动学问题导数在运动学中也有广泛的应用。

例如,我们可以通过对位移函数求导来得到速度函数,通过对速度函数再次求导得到加速度函数。

这种将导数应用于运动学问题的方法使得我们能够研究物体的速度和加速度变化。

这在物理学和工程学中对于研究物体的运动非常有用。

4. 统计学在统计学中,导数被用于估计和分析数据。

例如,在回归分析中,我们可以通过对观测数据进行拟合来得到一个最佳的函数。

导数的几何意义是什么

导数的几何意义是什么

导数的几何意义是什么还不清楚导数的几何意义是什么的小伙伴赶紧来瞧瞧吧!下面由小编为你精心准备了“导数的几何意义是什么”,本文仅供参考,持续关注本站将可以持续获取更多的知识点!导数的几何意义是什么导数的几何意义指的就是在曲线上点的切线的斜率。

对于一元函数,某一点的导数就是平面图形上某一点的切线斜率;对于二元函数而言,某一点的导数就是空间图形上某一点的切线斜率。

拓展阅读:导数意义1、导数可以用来求单调性;2、导数可以用来求极值;3、导数可以用来求切线的解析式等。

常见的导数公式有:y=f(x)=c(c为常数),则f'(x)=0;f(x)=x^n(n不等于0),f'(x)=nx^(n-1)(x^n表示x的n次方);f(x)=sinxf'(x)=cosx;f(x)=cosxf'(x)=-sinx;f(x)=a^x,f'(x)=a^xlna(a>0且a不等于1,x>0);f(x)=e^x,f'(x)=e^x;f(x)=logaX,f'(x)=1/xlna(a>0且a不等于1,x>0);f(x)=lnx,f'(x)=1/x(x>0);f(x)=tanx,f'(x)=1/cos^2x;f(x)=cotx,f'(x)=-1/sin^2x;不是所有的函数都可以求导;可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。

导数是微积分中的重要基础概念。

当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数与微分的区别导数用来表示f(x)在某点的斜率,而微分表示的是在切线上的增量。

导数的四则运算法则(1)[u(x)±v(x)]'=u'(x)±v'(x);(2)[u(x)*v(x)]'=u'(x)v(x)+u(x)v'(x);(3)[Cu(x)]'=Cu'(x)(C为常数);(4)[u(x)/v(x)]'=[u'(x)v(x)-u(x)v'(x)]/v 平方(x)(v(x)≠0)。

高考数学一轮复习考点知识专题讲解14---导数的概念及其意义、导数的运算

高考数学一轮复习考点知识专题讲解14---导数的概念及其意义、导数的运算

高考数学一轮复习考点知识专题讲解 导数的概念及其意义、导数的运算考点要求1.了解导数的概念、掌握基本初等函数的导数.2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数.知识梳理 1.导数的概念(1)函数y =f (x )在x =x 0处的导数记作f ′(x 0)或y ′|0x x =. f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx .(2)函数y =f (x )的导函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx.2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数) f ′(x )=0f (x )=x α(α∈Q ,且α≠0)f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln a f (x )=ln xf ′(x )=1x4.导数的运算法则若f ′(x ),g ′(x )存在,则有 [f (x )±g (x )]′=f ′(x )±g ′(x ); [f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); [cf (x )]′=cf ′(x ). 常用结论1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条. (2)过点处的切线,该点不一定是切点,切线至少有一条. 2.⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.(×)(2)与曲线只有一个公共点的直线一定是曲线的切线.(×)(3)f′(x0)=[f(x0)]′.(×)教材改编题1.若f(x)=1x,则f′(x)=________.答案-x 2x2解析f(x)=1x=12x-,∴f′(x)=3212x--=-x2x2.2.函数f(x)=e x+1x在x=1处的切线方程为.答案y=(e-1)x+2解析f′(x)=e x-1x2,∴f′(1)=e-1,又f(1)=e+1,∴切点为(1,e+1),切线斜率k=f′(1)=e-1,即切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.3.已知函数f(x)=x ln x+ax2+2,若f′(e)=0,则a=.答案-1e解析f ′(x )=1+ln x +2ax , ∴f ′(e)=2a e +2=0,∴a =-1e.题型一 导数的运算例1(1)(2022·济南质检)下列求导运算正确的是________.(填序号) ①⎝ ⎛⎭⎪⎫1ln x ′=-1x (ln x )2;②(x 2e x )′=2x +e x ; ③(tan x )′=1cos 2x; ④⎝ ⎛⎭⎪⎫x -1x ′=1+1x 2.答案①③④解析⎝ ⎛⎭⎪⎫1ln x ′=-1(ln x )2·(ln x )′=-1x (ln x )2,故①正确;(x 2e x )′=(x 2+2x )e x ,故②错误;(tan x )′=⎝ ⎛⎭⎪⎫sin x cos x ′=cos 2x +sin 2x cos 2x =1cos 2x ,故③正确;⎝⎛⎭⎪⎫x -1x ′=1+1x 2,故④正确.(2)函数f (x )的导函数为f ′(x ),若f (x )=x 2+f ′⎝ ⎛⎭⎪⎫π3sin x ,则f ⎝ ⎛⎭⎪⎫π6=.答案π236+2π3解析f ′(x )=2x +f ′⎝ ⎛⎭⎪⎫π3cos x ,∴f ′⎝ ⎛⎭⎪⎫π3=2π3+12f ′⎝ ⎛⎭⎪⎫π3,∴f ′⎝ ⎛⎭⎪⎫π3=4π3,∴f ⎝ ⎛⎭⎪⎫π6=π236+2π3.教师备选在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)等于()A .26B .29C .212D .215 答案C解析因为在等比数列{a n }中,a 1=2,a 8=4, 所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=2×4=8. 因为函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),所以f ′(x )=(x -a 1)(x -a 2)…(x -a 8)+x [(x -a 1)(x -a 2)…(x -a 8)]′, 所以f ′(0)=a 1a 2…a 8=(a 1a 8)4=84=212.思维升华 (1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解.跟踪训练1(1)函数y =sin2x 的导数y ′等于()A .2B .cos2C .2cos2xD .2sin2x 答案C解析y =sin2x =2sin x ·cos x ,y ′=2cos x ·cos x +2sin x ·(-sin x ) =2cos 2x -2sin 2x =2cos2x .(2)若函数f (x ),g (x )满足f (x )+xg (x )=x 2-1,且f (1)=1,则f ′(1)+g ′(1)等于() A .1 B .2 C .3 D .4 答案C解析当x =1时,f (1)+g (1)=0, ∵f (1)=1,得g (1)=-1,原式两边求导,得f ′(x )+g (x )+xg ′(x )=2x , 当x =1时,f ′(1)+g (1)+g ′(1)=2, 得f ′(1)+g ′(1)=2-g (1)=2-(-1)=3. 题型二 导数的几何意义 命题点1求切线方程例2(1)(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为. 答案5x -y +2=0解析y ′=⎝ ⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l的方程为. 答案x -y -1=0解析∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x . ∴由⎩⎨⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 命题点2求参数的值(范围)例3(1)(2022·西安模拟)直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2),则2a +b 等于()A .4B .3C .2D .1 答案A解析∵直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2), 将P (1,2)代入y =kx +1, 可得k +1=2,解得k =1, ∵f (x )=a ln x +b ,∴f ′(x )=a x,由f ′(1)=a1=1,解得a =1,可得f (x )=ln x +b , ∵P (1,2)在曲线f (x )=ln x +b 上, ∴f (1)=ln1+b =2,解得b=2,故2a+b=2+2=4.(2)已知曲线f(x)=13x3-x2-ax+1存在两条斜率为3的切线,则实数a的取值范围是________.答案(-4,+∞)解析f′(x)=x2-2x-a,依题意知x2-2x-a=3有两个实数解,即a=x2-2x-3=(x-1)2-4有两个实数解,∴y=a与y=(x-1)2-4的图象有两个交点,∴a>-4.教师备选1.已知曲线f(x)=x3-x+3在点P处的切线与直线x+2y-1=0垂直,则P点的坐标为()A.(1,3) B.(-1,3)C.(1,3)或(-1,3) D.(1,-3)答案C解析设切点P(x0,y0),f′(x)=3x2-1,又直线x+2y-1=0的斜率为-1 2,∴f′(x0)=3x20-1=2,∴x20=1,∴x0=±1,又切点P(x0,y0)在y=f(x)上,∴y0=x30-x0+3,∴当x0=1时,y0=3;当x0=-1时,y0=3.∴切点P为(1,3)或(-1,3).2.(2022·哈尔滨模拟)已知M是曲线y=ln x+12x2+(1-a)x上的任一点,若曲线在M点处的切线的倾斜角均是不小于π4的锐角,则实数a的取值范围是()A.[2,+∞) B.[4,+∞) C.(-∞,2] D.(-∞,4] 答案C解析因为y=ln x+12x2+(1-a)x,所以y′=1x+x+1-a,因为曲线在M点处的切线的倾斜角均是不小于π4的锐角,所以y′≥tan π4=1对于任意的x>0恒成立,即1x+x+1-a≥1对任意x>0恒成立,所以x+1x≥a,又x+1x≥2,当且仅当x=1 x ,即x=1时,等号成立,故a≤2,所以a的取值范围是(-∞,2].思维升华(1)处理与切线有关的参数问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上. (2)注意区分“在点P 处的切线”与“过点P 处的切线”.跟踪训练2(1)(2022·南平模拟)若直线y =x +m 与曲线y =e xe 2n 相切,则()A .m +n 为定值B.12m +n 为定值C .m +12n 为定值D .m +13n 为定值答案B解析设直线y =x +m 与曲线y =e x e 2n 切于点002e (,)e x n x ,因为y ′=e x e 2n ,所以02e e x n =1,所以x 0=2n ,所以切点为(2n ,1),代入直线方程得1=2n +m ,即12m +n =12.(2)若函数f (x )=ln x +2x 2-ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是. 答案[2,+∞)解析直线2x -y =0的斜率k =2,又曲线f (x )上存在与直线2x -y =0平行的切线, ∴f ′(x )=1x+4x -a =2在(0,+∞)内有解,则a =4x +1x-2,x >0.又4x +1x≥24x ·1x=4,当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞). 题型三 两曲线的公切线例4(1)(2022·驻马店模拟)已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于() A .0B .-1C .3D .-1或3 答案D解析由f (x )=x ln x 求导得f ′(x )=1+ln x ,则f ′(1)=1+ln1=1,于是得函数f (x )在点A (1,0)处的切线l 的方程为y =x -1, 因为直线l 与g (x )的图象也相切,则方程组⎩⎨⎧y =x -1,g (x )=x 2+ax ,有唯一解,即关于x 的一元二次方程x 2+(a -1)x +1=0有两个相等的实数根, 因此Δ=(a -1)2-4=0,解得a =-1或a =3, 所以a =-1或a =3.(2)若函数f (x )=x 2-1与函数g (x )=a ln x -1的图象存在公切线,则正实数a 的取值范围是()A .(0,e)B .(0,e]C .(0,2e)D .(0,2e] 答案D解析f (x )=x 2-1的导函数f ′(x )=2x ,g (x )=a ln x -1的导函数为g ′(x )=a x. 设切线与f (x )相切的切点为(n ,n 2-1),与g (x )相切的切点为(m ,a ln m -1), 所以切线方程为y -(n 2-1)=2n (x -n ),y -(a ln m -1)=am(x -m ),即y =2nx -n 2-1,y =a mx -a +a ln m -1.所以⎩⎨⎧2n =a m ,n 2+1=a +1-a ln m ,所以a 24m 2=a -a ln m ,由于a >0,所以a4m 2=1-ln m , 即a4=m 2(1-ln m )有解即可. 令h (x )=x 2(1-ln x )(x >0),h ′(x )=x (1-2ln x ),所以h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,最大值为h (e)=e2,当0<x <e 时,h (x )>0, 当x >e 时,h (x )<0, 所以0<a 4≤e2,所以0<a ≤2e.所以正实数a 的取值范围是(0,2e].教师备选1.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于()A .1B .2C .3D .3或-1 答案D解析设在函数f (x )=ln x 处的切点为(x ,y ),根据导数的几何意义得到k =1x=1,解得x =1,故切点为(1,0),可求出切线方程为y =x -1,此切线和g (x )=x 2+ax 也相切, 故x 2+ax =x -1,化简得到x 2+(a -1)x +1=0,只需要满足Δ=(a -1)2-4=0,解得a =-1或a =3. 2.已知曲线y =e x 在点(x 1,1e x )处的切线与曲线y =ln x 在点(x 2,ln x 2)处的切线相同,则(x 1+1)(x 2-1)等于()A .-1B .-2C .1D .2 答案B解析已知曲线y =e x 在点(x 1,1e x )处的切线方程为y -1e x =1e x (x -x 1), 即y =1e x x -1e x x 1+1e x ,曲线y =ln x 在点(x 2,ln x 2)处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2x -1+ln x 2,由题意得⎩⎨⎧1ex =1x 2,1ex -1e x x 1=-1+ln x 2,得x 2=11ex , 1e x -1e x x 1=-1+ln x 2=-1+ln11e x =-1-x 1,则1e x =x 1+1x 1-1.又x 2=11ex , 所以x 2=x 1-1x 1+1, 所以x 2-1=x 1-1x 1+1-1=-2x 1+1, 所以(x 1+1)(x 2-1)=-2.思维升华 公切线问题,应根据两个函数在切点处的斜率相等,且切点既在切线上又在曲线上,列出有关切点横坐标的方程组,通过解方程组求解.或者分别求出两函数的切线,利用两切线重合列方程组求解.跟踪训练3(1)(2022·雅安模拟)已知定义在区间(0,+∞)上的函数f (x )=-2x 2+m ,g (x )=-3ln x -x ,若以上两函数的图象有公共点,且在公共点处切线相同,则m 的值为() A .2 B .5 C .1 D .0 答案C解析根据题意,设两曲线y =f (x )与y =g (x )的公共点为(a ,b ),其中a >0, 由f (x )=-2x 2+m ,可得f ′(x )=-4x ,则切线的斜率为k =f ′(a )=-4a , 由g (x )=-3ln x -x ,可得g ′(x )=-3x -1,则切线的斜率为k =g ′(a )=-3a-1,因为两函数的图象有公共点,且在公共点处切线相同,所以-4a =-3a-1,解得a =1或a =-34(舍去),又由g (1)=-1,即公共点的坐标为(1,-1), 将点(1,-1)代入f (x )=-2x 2+m , 可得m =1.(2)不与x 轴重合的直线l 与曲线f (x )=x 3和y =x 2均相切,则l 的斜率为________. 答案6427解析设直线l 与曲线f (x )=x 3相切的切点坐标为(x 0,x 30),f ′(x )=3x 2,则f ′(x 0)=3x 20,则切线方程为y =3x 20x -2x 30,因为不与x 轴重合的直线l 与曲线y =x 3和y =x 2均相切, 则⎩⎨⎧y =3x 20x -2x 30,y =x 2,得x 2-3x 20x +2x 30=0,Δ=9x 40-8x 30=0,得x 0=0(舍去)或x 0=89,所以l 的斜率为3x 20=6427. 课时精练1.(2022·阳江模拟)下列函数的求导正确的是()A .(x -2)′=-2xB .(x cos x )′=cos x -x sin xC .(ln10)′=110D .(3x )′=3x 答案B解析(x -2)′=-2x -3,∴A 错; (x cos x )′=cos x -x sin x ,∴B 对;(ln10)′=0,∴C错;(3x)′=3x·ln3,∴D错.2.已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()答案B解析由y=f′(x)的图象是先上升后下降可知,函数y=f(x)图象的切线的斜率先增大后减小.3.(2022·黑龙江哈师大附中月考)曲线y=2cos x+sin x在(π,-2)处的切线方程为() A.x-y+π-2=0 B.x-y-π+2=0C.x+y+π-2=0 D.x+y-π+2=0答案D解析y′=-2sin x+cos x,当x=π时,k=-2sinπ+cosπ=-1,所以在点(π,-2)处的切线方程,由点斜式可得y+2=-1×(x-π),化简可得x+y-π+2=0.4.(2022·兴义模拟)已知y=f(x)是可导函数,如图,直线y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)等于()A .-1B .0C .2D .4 答案B解析由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.5.设曲线f (x )=a e x +b 和曲线g (x )=cos x +c 在它们的公共点M (0,2)处有相同的切线,则b +c -a 的值为() A .0B .πC.-2D .3 答案D解析∵f ′(x )=a e x ,g ′(x )=-sin x , ∴f ′(0)=a ,g ′(0)=0,∴a =0, 又M (0,2)为f (x )与g (x )的公共点, ∴f (0)=b =2,g (0)=1+c =2,解得c =1, ∴b +c -a =2+1-0=3.6.已知点A是函数f(x)=x2-ln x+2图象上的点,点B是直线y=x上的点,则|AB|的最小值为()A. 2 B.2 C.433D.163答案A解析当与直线y=x平行的直线与f(x)的图象相切时,切点到直线y=x的距离为|AB|的最小值.f′(x)=2x-1x=1,解得x=1或x=-12(舍去),又f(1)=3,所以切点C(1,3)到直线y=x的距离即为|AB|的最小值,即|AB|min=|1-3|12+12= 2.7.已知函数f(x)的图象如图,f′(x)是f(x)的导函数,设a=f(3)-f(2),则下列结论正确的是()A.f′(2)<f′(3)<aB.f′(2)<a<f′(3)C.f′(3)<a<f′(2)D.a<f′(3)<f′(2)答案C解析a=f(3)-f(2)=f(3)-f(2)3-2,∴a 表示曲线上两点A (2,f (2)),B (3,f (3))连线的斜率, 由图知,曲线切线的斜率越来越小, ∴f ′(3)<a <f ′(2).8.(2022·固原模拟)设点P 是函数f (x )=2e x -f ′(0)x +f ′(1)图象上的任意一点,点P 处切线的倾斜角为α,则角α的取值范围是() A.⎣⎢⎡⎭⎪⎫0,3π4 B.⎣⎢⎡⎭⎪⎫0,π2∪⎝⎛⎭⎪⎫3π4,π C.⎝ ⎛⎭⎪⎫π2,3π4 D.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π 答案B解析∵f (x )=2e x -f ′(0)x +f ′(1), ∴f ′(x )=2e x -f ′(0),∴f ′(0)=2-f ′(0),f ′(0)=1, ∴f (x )=2e x -x +f ′(1), ∴f ′(x )=2e x -1>-1.∵点P 是曲线上的任意一点,点P 处切线的倾斜角为α, ∴tan α>-1. ∵α∈[0,π),∴α∈⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫3π4,π. 9.已知函数y =f (x )的图象在x =2处的切线方程是y =3x +1,则f (2)+f ′(2)=________. 答案10解析切点坐标为(2,f (2)),∵切点在切线上,∴f (2)=3×2+1=7, 又k =f ′(2)=3,∴f (2)+f ′(2)=10.10.(2022·四川天府名校联考)若曲线f (x )=x cos x 在x =π处的切线与直线ax -y +1=0平行,则实数a =. 答案-1解析因为f (x )=x cos x , 所以f ′(x )=cos x -x sin x ,f ′(π)=cosπ-π·sinπ=-1,因为函数在x =π处的切线与直线ax -y +1=0平行,所以a =f ′(π)=-1. 11.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a =. 答案2解析f ′(x )=-(ax -1)′(ax -1)2+e x cos x -e x sin x =-a (ax -1)2+e x cos x -e xsin x ,∴f ′(0)=-a +1=-1,则a =2.12.已知函数f (x )=x 3-ax 2+⎝ ⎛⎭⎪⎫23a +1x (a ∈R ),若曲线y =f (x )存在两条垂直于y 轴的切线,则a 的取值范围为. 答案(-∞,-1)∪(3,+∞)解析因为f (x )=x 3-ax 2+⎝ ⎛⎭⎪⎫23a +1x (a ∈R ),所以f ′(x )=3x 2-2ax +23a +1,因为曲线y =f (x )存在两条垂直于y 轴的切线, 所以关于x 的方程f ′(x )=3x 2-2ax +23a +1=0有两个不等的实根, 则Δ=4a 2-12⎝ ⎛⎭⎪⎫23a +1>0,即a 2-2a -3>0,解得a >3或a <-1,所以a 的取值范围是(-∞,-1)∪(3,+∞).13.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2023(x )等于()A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x答案A解析∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )的解析式以4为周期重复出现,∵2023=4×505+3,∴f 2023(x )=f 3(x )=-sin x -cos x .14.(2021·新高考全国Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则()A .e b <aB .e a <bC .0<a <e bD .0<b <e a答案D解析方法一设切点(x 0,y 0),y 0>0,则切线方程为y -b =0e x (x -a ),由⎩⎨⎧ y 0-b =0e x (x 0-a ),y 0=0e x ,得0e x (1-x 0+a )=b ,则由题意知关于x 0的方程0e x (1-x 0+a )=b 有两个不同的解.设f (x )=e x (1-x +a ),则f ′(x )=e x (1-x +a )-e x =-e x (x -a ),由f ′(x )=0得x =a ,所以当x <a 时,f ′(x )>0,f (x )单调递增,当x >a 时,f ′(x )<0,f (x )单调递减,所以f (x )max =f (a )=e a (1-a +a )=e a ,当x <a 时,a -x >0,所以f (x )>0,当x →-∞时,f (x )→0,当x →+∞时,f (x )→-∞,函数f (x )=e x (1-x +a )的大致图象如图所示,因为f (x )的图象与直线y =b 有两个交点,所以0<b <e a .方法二(用图估算法)过点(a ,b )可以作曲线y =e x 的两条切线,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方,得0<b <e a .15.(2022·重庆沙坪坝区模拟)若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=[f ′(x )]′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎪⎫0,3π4上是凸函数的是________.(填序号)①f (x )=-x 3+3x +4;②f (x )=ln x +2x ;③f (x )=sin x +cos x ;④f (x )=x e x .答案①②③解析对①,f (x )=-x 3+3x +4, f ′(x )=-3x 2+3,f ″(x )=-6x ,当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )<0,故①为凸函数; 对②,f (x )=ln x +2x ,f ′(x )=1x+2, f ″(x )=-1x 2, 当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )<0,故②为凸函数; 对③,f (x )=sin x +cos x , f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x =-2sin ⎝ ⎛⎭⎪⎫x +π4,当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )<0,故③为凸函数; 对④,f (x )=x e x ,f ′(x )=(x +1)e x , f ″(x )=(x +2)e x ,当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )>0,故④不是凸函数. 16.已知f (x )=e x (e 为自然对数的底数),g (x )=ln x +2,直线l 是f (x )与g (x )的公切线,则直线l 的方程为____________________.答案y =e x 或y =x +1解析设直线l 与f (x )=e x 的切点为(x 1,y 1),则y 1=1e x ,f ′(x )=e x ,∴f ′(x 1)=1e x ,∴切点为(x 1,1e x ),切线斜率k =1e x ,∴切线方程为y -1e x =1e x (x -x 1),即y =1e x ·x -x 11e x +1e x , ①同理设直线l 与g (x )=ln x +2的切点为(x 2,y 2),∴y 2=ln x 2+2,g ′(x )=1x, ∴g ′(x 2)=1x 2, 切点为(x 2,ln x 2+2),切线斜率k =1x 2, ∴切线方程为y -(ln x 2+2)=1x 2(x -x 2),即y =1x 2·x +ln x 2+1, ②由题意知,①与②相同,∴⎩⎨⎧ 1e x =1x 2⇒x 2=1e x -,③-x 11e x +1e x =ln x 2+1,④把③代入④有-x 11e x +1e x =-x 1+1, 即(1-x 1)(1e x -1)=0,解得x 1=1或x 1=0,当x 1=1时,切线方程为y =e x ;当x 1=0时,切线方程为y =x +1,综上,直线l 的方程为y =e x 或y =x +1.。

导数的几何意义及应用

导数的几何意义及应用

1
2
3
4
5
6
变式2:若曲线上一点P处的 切线恰好平行于直
线y=11x-1,则P点坐标为 ____________,
切线方程为 _____________________.
y=11x-14或 y=11x+18
变式4:若曲线C: y=x3-ax+2求在点 x=3处的切线方程为 y=11x-b ,求切点 坐标及a、b。
解:f/(x)=3x2-1, ∴所求的切线方程为: 即 y=2x 处的切线方程?
∴k= f/(1)=2
y-2=2(x-1),
同样题:已知曲线C:y=x3 -x+2,求在点x=1
变式1:求过 点A的切线方
程?
例1.曲线y=x3-x+2,求在点A(1,2) 处的切线方程?
解:设切点为P(x0,x03-x0+2), k= f/(x0)= 3 x02-1,
一.求切线方程的步骤: 1. 设切点P(x0,y0) 2. 求k=f/(x0) 3. 写出切线方程 y-y0= f/(x0)(x-x0)
求曲线上点到-1,2)且与y=x2+ 2在点M(1,3)
处的切线垂直的直线方程是__________.
在曲线y=x3+x2+x-1的切线斜率中斜率最小的
例2:已知曲线C:y=x2-x+3,直线L:x- y-4=0,在曲线C上求一点P,使P到直线L 的距离最短,并求出最短距离。
|134| 3 2 2
解:设P(x0,y0),
∵f/(x)=2x-1, ∴2 x0-1=1, 解得x0= 1, ∴ y0=3,得 P(1,3)
∴P到直线的最短距离 d=
小结
切线方程是 __________ .

导数的几何意义解析与归纳

导数的几何意义解析与归纳

导数的几何意义解析与归纳导数是微积分中的重要概念,它描述了函数在某一点的变化率。

导数不仅在数学领域有着广泛的应用,而且在几何学中也有着重要的几何意义。

本文将对导数的几何意义进行解析与归纳,以帮助读者更好地理解这一概念。

1. 导数的定义与几何意义首先,我们来回顾一下导数的定义。

对于函数f(x),在点x处的导数可以通过以下极限来定义:f'(x) = lim(h->0) [f(x+h)-f(x)]/h直观上,这个定义可以理解为函数f(x)在点x处的切线的斜率。

这意味着导数可以描述函数在某一点的变化趋势。

2. 导数与函数的递增与递减性根据导数的定义,我们可以得出以下结论:如果函数f(x)在某个区间内的导数大于零,那么函数在该区间内是递增的;如果导数小于零,那么函数是递减的。

这是因为导数描述了函数的变化率,正值表示函数在该点上升,负值表示函数在该点下降。

3. 导数与函数的极值点导数还可以帮助我们找到函数的极值点。

如果函数f(x)在某一点x处的导数为零,那么这个点可能是一个极值点。

具体而言,如果导数由正变负,那么这个点是极大值点;如果导数由负变正,那么这个点是极小值点。

这是因为导数为零表示函数的变化率为零,也就是函数在该点存在水平切线,可能对应着极值点。

4. 导数与函数的拐点除了极值点,导数还能帮助我们找到函数的拐点。

拐点是函数曲线由凸变凹或由凹变凸的点。

我们可以通过导数的变化来判断函数的拐点。

如果函数f(x)在某一点x处的导数由正变负或由负变正,那么这个点可能是一个拐点。

5. 导数与函数的图像在坐标平面上,函数的导数可以帮助我们画出函数的图像。

我们可以通过导数的正负性来确定函数曲线的大致形状。

例如,如果导数在某一区间内始终为正,则函数在该区间上是递增的,曲线会向上凸起;如果导数在某一区间内始终为负,则函数在该区间上是递减的,曲线会向下凸起。

同样地,我们还可以根据导数为零或无定义的点来确定函数图像的特殊点,如极值点、拐点等。

2014高考数学迎考重要锦囊导数应用篇

2014高考数学迎考重要锦囊导数应用篇

2014高考数学迎考重要锦囊:导数应用篇
专题综述
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

知识整合
1.导数概念的理解。

2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。

复合函数的求导法则是微积分中的重点与难点内容。

课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

3.要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

导数的几何意义与应用

导数的几何意义与应用

导数的几何意义与应用导数是微积分中的重要概念,它有着广泛的几何意义和应用。

在本文中,我们将探讨导数的几何意义,并介绍一些导数在几何中和实际应用中的具体应用。

导数的几何意义可以通过对函数图像的观察得到。

对于一个函数f(x),它的导数可以表示为f'(x),代表了函数曲线在某一点处的斜率。

具体来说,导数可以解释为函数图像在某一点上的瞬时变化率。

这意味着我们可以通过导数来描述函数图像的“陡峭程度”。

如果导数的值比较大,表示函数图像在该点的变化比较快,曲线比较陡峭;相反,如果导数的值比较小,表示函数图像在该点的变化比较慢,曲线比较平缓。

举个例子来说明导数的几何意义。

考虑一个简单的函数f(x) = x^2,它的导数可以表示为f'(x) = 2x。

我们可以观察到,在函数图像上,导数f'(x)的值代表了曲线在不同点上的斜率。

当x的值较小时,导数f'(x)的值也较小,表示函数图像变化较慢,曲线较平缓;而当x的值较大时,导数f'(x)的值也较大,表示函数图像变化较快,曲线较陡峭。

导数不仅在几何中有着重要意义,而且在实际生活中也有广泛的应用。

其中一个常见的应用是在物理学中的位置-时间关系中。

根据经典物理学的定义,速度可以看作是位置关于时间的导数。

具体来说,如果我们有一个物体在某一时刻的位置函数x(t),那么它的导数dx/dt就表示了该物体在该时刻的瞬时速度。

同样地,加速度可以看作是速度关于时间的导数,即dv/dt。

这种通过导数来描述位置、速度和加速度之间的关系,能够帮助我们更好地理解物体在空间中的运动规律。

在经济学和金融学领域中,导数也有着广泛的应用。

例如,利润函数关于产量的导数可以告诉我们,当产量变化时,利润的瞬时变化率是多少。

这有助于公司和企业在制定生产策略和销售计划时进行决策。

此外,在金融学中,导数可以帮助我们理解和分析股票和债券价格的波动趋势,以及利率和汇率的变化对经济的影响。

导数的几何意义是什么呢

导数的几何意义是什么呢

导数的几何意义是什么呢导数的几何意义是什么呢,出社会的同学还记得吗,如果没印象了,请来小编这里瞧瞧。

下面是由小编为大家整理的“导数的几何意义是什么呢”,仅供参考,欢迎大家阅读。

导数的几何意义是什么呢导数的几何意义指的就是在曲线上点的切线的斜率。

对于一元函数,某一点的导数就是平面图形上某一点的切线斜率;对于二元函数而言,某一点的导数就是空间图形上某一点的切线斜率。

导数意义:1、导数可以用来求单调性;2、导数可以用来求极值;3、导数可以用来求切线的解析式等。

拓展阅读:导数的概念及其几何意义导数的概念是函数增量的极限,导数的几何意义是函数所有切线的斜率所构成的函数。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。

若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。

然而,可导的函数一定连续;不连续的函数一定不可导。

高中数学导数公式1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2。

导数的几何意义和物理意义

导数的几何意义和物理意义

导数的几何意义和物理意义导数是微积分学中的重要概念,它具有丰富的几何意义和物理意义。

本文将分别从几何和物理两个角度,详细探讨导数的几何意义和物理意义。

一、导数的几何意义导数在几何中有着重要的意义。

在几何上,导数表示了函数曲线在某一点上的切线斜率。

具体来说,对于函数f(x),如果在点x=a处存在导数,那么导数f'(a)就是函数曲线在该点上的切线的斜率。

切线斜率的意义在于它反映了函数曲线的变化速率。

当函数的导数为正时,表示函数在该点上递增;当函数的导数为负时,表示函数在该点上递减;而导数等于零时,表示函数在该点上取得极值。

利用导数,我们可以精确地描述函数曲线的变化趋势。

此外,导数还可以用来计算函数曲线在某一点的局部变化率。

例如,当我们求解速度函数的导数时,得到的导数表示了物体在该时刻的瞬时加速度。

这就引出了导数在物理意义方面的应用。

二、导数的物理意义导数在物理学中有着广泛的应用,其中最为常见的是它对位移、速度和加速度的描述。

1. 位移:对于一维运动而言,物体在某一时刻的位移可以表示为位移函数的导数。

例如,当我们求解位移函数的导数时,得到的导数就表示了物体在该时刻的瞬时速度。

2. 速度:速度是指物体在单位时间内所改变的位移,它是位移关于时间的导数。

具体而言,速度函数的导数表示了物体在某一时刻的瞬时加速度。

3. 加速度:加速度是指物体在单位时间内所改变的速度,它是速度关于时间的导数。

当我们求解速度函数的导数时,得到的导数表示了物体在该时刻的瞬时加速度。

通过上述例子可以看出,导数在物理学中的应用十分广泛。

它不仅可以描述物体的运动状态,还可以帮助我们分析运动规律,解决各种与运动相关的问题。

结论综上所述,导数具有重要的几何意义和物理意义。

从几何上看,导数表示了函数曲线在某一点上的切线斜率,反映了函数曲线的变化速率;从物理上看,导数用于描述位移、速度和加速度等与运动相关的概念。

通过对导数的研究和应用,我们可以深入理解函数的特性和物体的运动规律,为实际问题的解决提供了有力的工具和方法。

导数的几何意义与应用

导数的几何意义与应用

导数的几何意义与应用导数是微积分中的重要概念之一,它不仅有着深刻的几何意义,还在数学和实际问题的求解中有着广泛的应用。

本文将深入探讨导数的几何意义以及其在实际问题中的应用。

导数的几何意义导数的几何意义可以从两个方面来理解,即斜率和切线。

首先,导数可以被解释为函数图像上某一点的切线斜率。

具体而言,对于函数y=f(x),如果在某一点x=a处的导数存在,则导数f’(a)即为函数图像在该点的切线的斜率。

这意味着,通过求导,我们能够得到函数图像上每一点处的切线斜率,从而更加准确地描述函数的变化趋势。

其次,导数还可以被解释为函数的变化率。

导数可以帮助我们理解函数在不同点上的变化速率,进而揭示函数的增减性和凸凹性质。

具体而言,如果导数f’(a)在某一点x=a处为正,那么函数在该点上是递增的;如果导数f’(a)在某一点x=a处为负,那么函数在该点上是递减的;如果导数f’(a)在某一点x=a处等于零,那么函数在该点上可能存在极值点。

导数的应用导数作为微积分的基本工具,在数学和实际问题的求解中有着广泛的应用。

以下将介绍导数在不同领域的具体应用。

1. 极值问题导数在求解函数的极值问题中起着重要作用。

对于一个可导函数,可以通过求导将极值问题转化为寻找导数为零的点或者导数不存在的点。

通过求解导数为零或导数不存在的方程,可以找到函数的可能极值点,进而得到函数的最大值或最小值。

2. 凸凹性分析凸凹性分析是导数在物理学、经济学等领域中的重要应用之一。

通过函数的二阶导数信息,可以判断函数的凸凹性质。

具体而言,如果函数的二阶导数大于零,那么函数是凸函数;如果函数的二阶导数小于零,那么函数是凹函数。

3. 曲线绘制与图像分析导数在曲线绘制与图像分析中也扮演着关键的角色。

通过求导,可以得到函数图像上每一点处的切线斜率,从而帮助我们绘制更加准确的曲线。

同时,导数还可以帮助我们分析函数的拐点、极值点和最值点,进而对函数的整体形态进行深入理解。

导数的几何意义是什么

导数的几何意义是什么

导数的几何意义是什么导数是微积分中的一个重要概念,它不仅在数学中有着重要的作用,同时也具有丰富的几何意义。

本文将探讨导数的几何意义,并从几何的角度解释导数的概念及其应用。

一、导数的定义及其几何意义导数可以用极限的方法定义为函数在某一点处的斜率。

具体来说,对于函数f(x),如果在点x处的导数存在,则导数可以表示为:f'(x) = lim (h→0) [f(x+h) - f(x)] / h从几何的角度来解释,导数代表了函数在该点处的切线斜率。

函数的图像在任意一点处的斜率可以用导数来计算。

二、导数与函数图像之间的关系1. 导数与函数的增减性给定一个函数f(x),如果在某一区间内导数为正,说明函数在该区间内是递增的;若导数为负,则函数在该区间内是递减的。

当导数为零时,函数存在极值点。

2. 导数与函数的凸凹性函数的图像在某一点处凸起(开口向上)时,该点的导数为正;反之,函数在某一点处凹陷(开口向下),该点的导数为负。

3. 导数与函数的位置和曲线的切线通过导数的值和符号,可以确定函数图像在某一点的位置和该点处的切线的斜率。

当导数为零时,函数图像相对于x轴达到极值,切线斜率为零;当导数不存在时,函数图像在该点处出现尖点或间断,不存在切线。

三、导数的应用场景1. 切线方程导数可以帮助我们确定函数图像上任意一点处的切线方程。

通过求解导数,可以得到切线的斜率,再结合给定点的坐标,可以得到切线的方程。

2. 曲线的拐点导数的零点可以帮助我们找到函数图像上的拐点。

当导数在某一点处从正变为负或者从负变为正时,说明函数图像在该点存在拐点。

3. 函数的极值问题通过求导数,我们可以得到函数的极值点。

导数为零的点可能是函数的极大值点或者极小值点,通过二阶导数的符号可以帮助我们判断。

四、总结导数在几何中的意义非常重要,它不仅可以帮助我们理解函数图像的性质,还可以应用于求解切线方程、拐点和极值等问题。

通过几何的角度理解导数,我们可以更深入地掌握微积分知识,并将其应用于实际问题解决中。

导数的概念几何意义与运算

导数的概念几何意义与运算

导数的概念几何意义与运算一、导数的概念导数是微积分的重要概念之一,是描述函数变化速度的衡量工具。

对于一条曲线上的任意一点,其导数值表示了该点处的切线斜率。

导数的定义为:若函数f(x)在点x0处有定义,那么函数在该点的导数为:f'(x0) = lim(h→0) [f(x0+h) - f(x0)] / h其中 lim 表示极限,h 表示的是 x 的增加量。

导数的概念可以推广到函数的各种高阶导数,分别表示函数变化的速率、加速度、变化的变化率等。

二、导数的几何意义1.切线斜率:导数可以看作是函数曲线在其中一点处切线的斜率。

特定点处的切线斜率表示了函数在该点的变化速度。

2.函数的增减性:若函数在其中一区间内的导数恒大于0,则函数在该区间上是递增的;若导数恒小于0,则函数在该区间上是递减的。

导数的正负性能够直观地反映函数的增减趋势。

3.极值点:若函数在其中一点的导数为0,那么这个点称为函数的极值点。

导数为0相当于切线水平,函数在这一点上由增转为减或由减转为增。

三、导数的运算法则1.常数乘法:对于常数k,(k*f(x))'=k*f'(x)。

2.求和与差:(f(x)±g(x))'=f'(x)±g'(x)。

3.乘法法则:(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。

4.商法则:(f(x)/g(x))'=[f'(x)*g(x)-f(x)*g'(x)]/[g(x)]^25.复合函数求导:对于复合函数y=f(g(x)),若g(x)在点x处可导,而f在g(x)处可导,则y也在点x处可导,且y'=f'(g(x))*g'(x)。

四、应用举例1.速度和加速度:对于一个物体的位移函数s(t),其导数s'(t)表示在时间t的瞬时速度。

二次导数s''(t)则表示在时间t的瞬时加速度。

导数的几何意义

导数的几何意义

导数的几何意义导数是微积分中重要的概念之一,它在数学和物理领域中有着广泛的应用。

导数的几何意义是指导数在几何学中的解释和应用。

本文将从几何的角度解释导数的意义,并探讨它在几何领域中的应用。

一、导数的定义在探讨导数的几何意义之前,我们首先来回顾一下导数的定义。

在微积分中,导数代表了函数在某一点上的变化率。

对于函数 f(x),它的导数可以表示为 f'(x)或者 dy/dx。

导数的定义是函数在某一点上的极限值,即:f'(x) = lim(h->0) [f(x+h)-f(x)] / h这个定义告诉我们,导数是函数在某一点上的瞬时变化率。

接下来,我们将从几何的角度来解释导数的几何意义。

二、几何上,导数可以理解为函数曲线在某一点上的切线斜率。

具体来说,如果函数 f(x) 在点 P 上的导数为 f'(x),那么这意味着函数曲线在点 P 上的切线的斜率为 f'(x)。

根据这一几何意义,我们可以得出一些结论。

首先,如果函数在某一点上导数为正,那么函数曲线在该点上是向上的;如果导数为负,曲线则向下。

其次,导数为零的点则代表函数曲线上的极值点,可能是极大值或者极小值。

最后,如果导数不存在,意味着函数曲线在该点上有垂直切线。

三、导数的应用导数的几何意义不仅仅是理论上的解释,它在几何领域中有着广泛的应用。

以下是一些导数的具体应用示例:1. 曲线的切线和法线:通过导数可以得出函数曲线在某点上的切线斜率,从而求得切线方程。

同时,切线的斜率的相反数就是法线的斜率,可以进一步求得法线方程。

2. 极值点与拐点:导数为零的点代表函数曲线上的可能极值点,通过求解导函数为零的方程可以找到极值点。

同时,通过导数的变化情况可以判断函数曲线上的拐点。

3. 函数图形的草图绘制:通过分析导数的正负和零点,可以画出函数图形的大致形态,包括增减性、极值和拐点等信息。

4. 空间曲面的切平面:对于二元函数,通过求偏导数可以得到切平面的方程,从而进一步研究空间曲面的性质。

导数的几何意义

导数的几何意义

导数的几何意义导数是微积分中的重要概念之一,它代表了函数在某一点上的局部变化率。

在实际问题中,导数可以用于描述曲线的斜率、速度、加速度等。

本文将探讨导数的几何意义,并分析一些实际问题中导数的应用。

首先,我们来了解导数的定义。

设函数y=f(x)在点x0处有定义,当自变量x在该点附近取值时,函数值也随之变化。

导数可以表示函数在该点附近的平均变化率。

具体来说,导数可以用斜率的概念来解释。

取函数f(x)上两点(x0, f(x0))和(x, f(x)),其中x接近x0。

通过两点间的斜率可以近似描述函数在该点附近的变化情况。

随着x越接近x0,两点间的距离也越短,从而得到了该点的切线斜率。

而这个切线斜率就是导数的值。

可以用数学公式来表示:f'(x0) = lim (x→x0) [(f(x) -f(x0))/(x - x0)]。

导数的几何意义主要体现在曲线的切线斜率和凸凹性方面。

首先,导数可以表示函数在某一点的切线斜率。

曲线上每个点的切线斜率都因该点而异。

导数可以通过求斜率的极限得到,即导数就是极限情况下的切线斜率值。

对于凸函数,切线会位于曲线的上方;而对于凹函数,切线会位于曲线的下方。

此外,导数还可以用于判断函数在某一点的增减性。

当导数大于0时,函数在该点附近是单调递增的;当导数小于0时,函数在该点附近是单调递减的。

导数的几何意义在实际问题中有着广泛的应用。

以物理学为例,导数在描述速度和加速度方面发挥了重要作用。

设物体的位移函数为s(t),则速度函数v(t)是位移函数的导数:v(t) = s'(t)。

物理学中著名的一维运动问题可以通过导数来解答。

当速度函数v(t)为正时,说明物体在该时刻向正方向运动;当速度函数v(t)为负时,则物体在该时刻向负方向运动。

同时,加速度a(t)是速度函数v(t)的导数:a(t)=v'(t)。

根据导数的几何意义,可以确定运动物体在不同时刻的速度和加速度。

导数的几何意义还可以帮助我们通过函数图像对函数进行定性分析。

导数的几何意义切线曲率极值等概念的解释

导数的几何意义切线曲率极值等概念的解释

导数的几何意义切线曲率极值等概念的解释导数的几何意义、切线、曲率和极值是微积分中重要的概念,它们在解决实际问题以及研究函数特性时起着关键的作用。

本文将分别介绍导数的几何意义、切线、曲率和极值的概念以及它们在数学和实际中的应用。

导数的几何意义:导数是函数在某点的瞬时变化率,也可以理解为函数在该点的斜率。

几何上,导数表示函数图像在某点的切线斜率。

当函数在某点的导数存在时,该点的切线即为导数值所表示的斜率。

切线的概念:切线是曲线与其上某一点的切触线。

切线始于曲线上的某一点,且与曲线相切于该点。

切线在该点与曲线的切点重合。

曲率的概念:曲率是曲线弯曲程度的度量,表示曲线上某一点的弯曲程度大小。

在数学上,曲率可以通过导数来计算。

曲率的绝对值越大,说明曲线的弯曲程度越大。

极值的概念:极值是函数在某一区间内取得的最大或最小值。

极大值是函数在局部范围内取得的最大值,而极小值则是函数在局部范围内取得的最小值。

导数、切线、曲率和极值的关系:导数不仅可以用来计算切线的斜率,还可以帮助理解曲率和极值。

对于一个函数,当导数为零时,其对应的点可能是函数的极值点。

通过求导数还可以得到曲线的曲率。

具体而言,曲线凸起时曲率为正,凹陷时曲率为负。

导数、切线、曲率和极值在实际中的应用:导数、切线、曲率和极值不仅在数学理论中有着重要的应用,也在实际问题的求解中发挥着重要作用。

例如,在物理学中,通过导数可以计算速度和加速度,切线可以表示物体的运动方向。

在经济学中,导数可以用来计算边际效应,切线代表成本或利润的变化率。

在工程学中,曲率可用于设计曲线表面。

结论:导数的几何意义、切线、曲率和极值是微积分中重要的概念。

导数反映函数图像的切线斜率,切线在某点与曲线相切,曲率描述曲线的弯曲程度,极值表示函数的最大或最小值。

它们在数学理论和实际问题求解中具有广泛的应用价值。

通过研究和理解这些概念,我们能够更好地解决问题和揭示函数的特性。

导数的几何意义与应用

导数的几何意义与应用

导数的几何意义与应用在微积分中,导数是一个重要的概念,它不仅有着深刻的几何意义,还在各个科学领域中有着广泛的应用。

导数可以帮助我们理解函数的变化率,进而揭示函数的本质特征,为实际问题的求解提供强有力的工具。

本文将从导数的几何意义和应用两个方面进行论述。

一、导数的几何意义导数的几何意义表现在函数图像的切线和曲线斜率的计算上。

对于函数f(x)来说,它在x点的导数f'(x)代表了函数图像在x点处的切线斜率。

具体来说,可以通过将切线近似看作曲线在这一点的局部性质,通过求出曲线上两点间的斜率的极限来表示切线的斜率,即导数。

这样一来,导数的几何意义就被转化为切线的斜率。

导数的几何意义和切线紧密相关。

对于函数图像上每一个点,都存在唯一的切线与之对应。

切线具有两个重要的性质,一是切线与函数图像相切于给定点,二是切线与函数图像在给定点处具有相同的斜率。

因此,通过计算导数,我们可以得到函数图像上任意一点的切线斜率。

二、导数的应用导数的应用十分广泛,在自然科学、工程技术、社会经济等领域都有着重要的作用。

以下将介绍导数在几个典型应用中的具体运用。

1. 最优化问题:导数可以帮助我们求解最优问题,如最大最小值问题。

通过求取函数的导数,并令其等于零,我们可以找到函数取得最大或最小值的点。

这在经济学中的成本最小化、收益最大化问题中有重要的应用。

2. 物理学中的速度和加速度:在物理学中,导数被广泛应用于描述物体的运动状态。

速度是位移对时间的导数,而加速度是速度对时间的导数。

通过求导,我们可以计算出物体的速度和加速度,进而揭示物体运动的规律。

3. 金融学中的利率和风险:在金融学中,导数被用来描述利率和风险。

例如,在借贷中,利率的变化可以通过利率的导数来表示。

而金融衍生品的风险可以通过导数来衡量,从而帮助投资者做出明智的决策。

4. 统计学中的回归分析:回归分析是统计学中常见的分析方法,它基于导数和线性关系的原理。

通过对数据进行回归分析,我们可以建立数据之间的数学模型,并通过导数计算模型参数的变化率,从而了解变量之间的关系。

【备战】高考数学 高频考点归类分析 导数的几何意义和应用导数求曲线的切线(真题为例)

【备战】高考数学 高频考点归类分析 导数的几何意义和应用导数求曲线的切线(真题为例)

导数的几何意义和应用导数求曲线的切线典型例题:例1. (2012年全国课标卷文5分)曲线()y x 3lnx 1=+在点(1,1)处的切线方程为 ▲ 【答案】y=4x 3-。

【考点】导数的应用,曲线的切线方程。

【解析】∵()y x 3lnx 1=+,∴3y 3lnx 1x =3lnx 4x'=++⋅+。

∴x=1y 4'=。

∴曲线()y x 3lnx 1=+在点(1,1)处的切线方程为()y 14x 1-=-,即y=4x 3-。

例2. (2012年广东省理5分)曲线33y x x =-+在点(1,3)处的切线方程为 ▲ 。

【答案】210x y -+=。

【考点】曲线的切线方程,导数的应用。

【解析】∵32'(3)'31y x x x =-+=-,1'|2x y ==,∴由点斜式得所求的切线方程为32(1)y x -=- ,即210x y -+=。

例3. (2012年辽宁省理5分)已知P ,Q 为抛物线22x y =上两点,点P ,Q 的横坐标分别为4,-2,过P 、Q 分别作抛物线的切线,两切线交于A ,则点A 的纵坐标为 ▲ 。

【答案】-4。

【考点】利用导数求切线方程的方法,直线的方程、两条直线的交点的求法。

【解析】∵点P ,Q 的横坐标分别为4,-2,∴代人抛物线方程得P ,Q 的纵坐标分别为8,2。

由22x y =得212y x =,∴y x '=。

∴过点P ,Q 的抛物线的切线的斜率分别为4,-2。

∴过点P ,Q 的抛物线的切线方程分别为48,22y x y x =-=-- 。

[ 联立方程组解得1,4x y ==- 。

∴点A 的纵坐标为-4。

例 4. (2012年陕西省理5分)设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为▲ . 【答案】2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数的几何意义和应用导数求曲线的切线典型例题:例1. (2012年全国课标卷文5分)曲线()y x 3lnx 1=+在点(1,1)处的切线方程为 ▲ 【答案】y=4x 3-。

【考点】导数的应用,曲线的切线方程。

【解析】∵()y x 3lnx 1=+,∴3y 3lnx 1x =3lnx 4x'=++⋅+。

∴x=1y 4'=。

∴曲线()y x 3lnx 1=+在点(1,1)处的切线方程为()y 14x 1-=-,即y=4x 3-。

例2. (2012年广东省理5分)曲线33y x x =-+在点(1,3)处的切线方程为 ▲ 。

【答案】210x y -+=。

【考点】曲线的切线方程,导数的应用。

【解析】∵32'(3)'31y x x x =-+=-,1'|2x y ==,∴由点斜式得所求的切线方程为32(1)y x -=- ,即210x y -+=。

例3. (2012年辽宁省理5分)已知P ,Q 为抛物线22x y =上两点,点P ,Q 的横坐标分别为4,-2,过P 、Q 分别作抛物线的切线,两切线交于A ,则点A 的纵坐标为 ▲ 。

【答案】-4。

【考点】利用导数求切线方程的方法,直线的方程、两条直线的交点的求法。

【解析】∵点P ,Q 的横坐标分别为4,-2,∴代人抛物线方程得P ,Q 的纵坐标分别为8,2。

由22x y =得212y x =,∴y x '=。

∴过点P ,Q 的抛物线的切线的斜率分别为4,-2。

∴过点P ,Q 的抛物线的切线方程分别为48,22y x y x =-=-- 。

[ 联立方程组解得1,4x y ==- 。

∴点A 的纵坐标为-4。

例4. (2012年陕西省理5分)设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为 ▲ . 【答案】2。

【考点】利用导数研究曲线上某点切线方程,简单线性规划。

【解析】先求出曲线在点(1,0)处的切线,然后画出区域D ,利用线性规划的方法求出目标函数z的最大值即可:∵1,0()2,0x y f x x x ⎧>⎪'==⎨⎪-≤⎩,(1)1f '=,∴曲线()y f x =及该曲线在点(1,0)处的切线方程为1y x =-。

∴由x 轴和曲线()y f x =及1y x =-围成的封闭区域为三角形。

2z x y =-在点(0,1)-处取得最大值2。

例5. (2012年北京市理13分)已知函数()()()23f x ax 1a 0,g x x bx =>=++ (1)若曲线()f x 与曲线()g x 在它们的交点(1,c )处具有公共切线,求a 、b 的值; (2)当2a 4b =时,求函数()()f x g x +的单调区间,并求其在区间(-∞,-1)上的最大值。

【答案】解:(1)∵(1,c )为公共切点,∴()()f 1a 1=c, g 11b=c ==++。

∴a 11b =++,即a b =①。

又∵()()2f x 2ax,g x 3x b ''== +,∴()()f 12a,g 13b ''== +。

又∵曲线()f x 与曲线()g x 在它们的交点(1,c )处具有公共切线, ∴2a 3b =+②。

解①②,得a b=3=。

(2)∵2a 4b =,∴设()()()3221h x =f x g x =x ax a x+14+++。

则()221h x =3x 2ax a 4'++。

令()221h x =3x 2ax a =04'++,解得12a ax =x =26--,。

∵a 0>,∴a a26<--。

又∵()h x '在各区间的情况如下:∴()()f x g x +在a 2⎛⎫-∞- ⎪⎝⎭,单调递增,在a a 26⎛⎫-- ⎪⎝⎭,单调递减,在a 6⎛⎫-+∞ ⎪⎝⎭,上单调递增。

①若a12-≤-,即a 2≤时,()()f x g x +最大值为()()2a f 1g 1=a 4-+--;②若aa 126<<---,即2a 6<<时,()()f x g x +最大值为a a f g =122⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭。

③若a 16-≥-时,即a 6≥时,()()f x g x +最大值为a a f g =122⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭。

综上所述:当a 2≤时,()()f x g x +最大值为2a a 4-;当a 2>时,()()f x g x +最大值为1。

【考点】函数的单调区间和最大值,切线的斜率,导数的应用。

【解析】(1)由曲线()f x 与曲线()g x 有公共点(1,c )可得()()f 1 g 1=;由曲线()f x 与曲线()g x 在它们的交点(1,c )处具有公共切线可得两切线的斜率相等,即()()f 1 g 1''=。

联立两式即可求出a 、b 的值。

(2)由 2a 4b =得到()()f x g x +只含一个参数的方程,求导可得()()f x g x +的单调区间;根据 a 12-≤-,a a 126<<---和a16-≥-三种情况讨论()()f x g x +的最大值。

例6. (2012年四川省理14分) 已知a 为正实数,n 为自然数,抛物线22na y x =-+与x 轴正半轴相交于点A ,设()f n 为该抛物线在点A 处的切线在y 轴上的截距。

(Ⅰ)用a 和n 表示()f n ;(Ⅱ)求对所有n 都有33()1()11f n n f n n -≥++成立的a 的最小值; (Ⅲ)当01a <<时,比较11()(2)nk f k f k =-∑与27(1)()4(0)(1)f f n f f -- 的大小,并说明理由。

【答案】解:(Ⅰ)由已知得,交点A的坐标为0⎫⎪⎪⎭,对22n a y x =-+求导得2y'x =-。

∴抛物线在点A处的切线方程为y x =⎝,即+n y a =。

∴()=nf n a 。

(Ⅱ)由(1)知()=nf n a ,则33()1()11f n n f n n -≥++成立的充要条件是321n a n ≥+。

即知,321n a n ≥+对于所有的n 成立,特别地,取n =2时,得到a 。

当3a n ==时,()122334=1+3=13+3+3+nn n n n n a C C C >+⋅⋅⋅⋅⋅⋅1223313+3+3nn n C C C ≥+⋅⋅⋅ ()()233112+52+252+12n n n n >n ⎡⎤⎣⎦-=+-。

当n =0,1,2时,显然321nn ≥+。

∴当a 时,33()1()11f n n f n n -≥++对所有自然数都成立。

∴满足条件的a。

(Ⅲ)由(1)知()=nf n a ,则21111=()(2)nnk kk k f k f k a a ==--∑∑,(1)()(0)(1)1nf f n a a f f a --=--。

下面证明:1127(1)()()(2)4(0)(1)nk f f n f k f k f f =->⋅--∑。

首先证明:当0<x <1时,31274x x x ≥-, 设函数227()()1,014g x x x x x =-+<<,则812'()()43g x x x =-。

∵当203x <<时,'x 0g <();当213x <<时,'()0g x >, ∴()g x 在区间(0,1)上的最小值()g x min =g 0)32(=。

∴当0<x <1时,()g x ≥0,即得31274x x x ≥-。

由0<a <1知0<a k<1(k N *∈),∴21274k k k a a a ≥-。

从而21111()(2)nnk k k k f k f k a a ===--∑∑+1127272727(1)()441414(0)(1)n n n k k a a a a f f n a a a f f =---≥=⋅>⋅=⋅---∑。

【考点】导数的应用、不等式、数列。

【解析】(Ⅰ)根据抛物线22n a y x =-+与x 轴正半轴相交于点A ,可得A 0⎫⎪⎪⎭,进一步可求抛物线在点A 处的切线方程,从而可得()=n f n a(Ⅱ)由(Ⅰ)知()=nf n a ,则 33()1()11f n n f n n -≥++成立的充要条件是321n a n ≥+,即知,321n a n ≥+对所有n成立。

当3a n =时,()34=1+32+1nn n a >n >;当n =0,1,2时,321nn ≥+,由此可得a 的最小值。

(Ⅲ)由(Ⅰ)知()=nf n a ,证明当0<x <1时,31274x x x ≥-即可证明: 1127(1)()()(2)4(0)(1)nk f f n f k f k f f =->⋅--∑。

例7. (2012年安徽省文12分)设定义在(0,+∞)上的函数1()(0)f x ax b a ax=++> (Ⅰ)求()f x 的最小值;(II )若曲线()y f x =在点(1,(1))f 处的切线方程为32y x =,求,a b 的值。

【答案】解:(I)∵1()2f x ax b b b ax =++≥=+, ∴当且仅当11()ax x a==时,()f x 的最小值为2b +。

(II )∵曲线()y f x =在点(1,(1))f 处的切线方程为32y x =,∴3(1)2f =。

∴132a b a ++= ①。

又∵21()f x a ax '=-,∴13(1)2f a a '=-= ②。

解①②得:2,1a b ==-。

【考点】基本不等式的应用,导数的应用。

【解析】(I )应用基本不等式222a b ab +≥即可求得()f x 的最小值。

(II )由3(1)2f =和3(1)2f '=联立方程组,求解即可求得,a b 的值。

例8. (2012年湖北省文14分)设函数f (x )=ax n(1-x )+b (x >0),n 为整数,a ,b 为常数.曲线y =f (x )在(1,f (1))处的切线方程为x +y =1.(Ⅰ)求a ,b 的值; (II )求函数f (x )的最大值; (III )证明:f (x )<1n e.【答案】解:(Ⅰ)∵f (1)=b ,由点(1,b )在x +y =1上,可得1+b =1,即b =0。

相关文档
最新文档