概率统计期末试卷分类

合集下载

《概率论与数理统计》期末考试试题B卷答案

《概率论与数理统计》期末考试试题B卷答案

华中农业大学本科课程考试参考答案与评分标准考试课程:概率论与数理统计 学年学期: 试卷类型:B 考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。

答案错选或未选者,该题不得分。

每小题2分,共10分。

)1. 设随机变量X 的概率密度)1(1)(2x x p +=π,则X Y 2=的分布密度为 . 【 b 】 (a))41(12x +π; (b) )4(22x +π; (c) )1(12x +π; (d) x arctan 1π.2. 设随机变量序列x 1, x 2,…, x n …相互独立,并且都服从参数为1/2的指数分布,则当n 充分大时,随机变量Y n =∑=ni i x n 11的概率分布近似服从 . 【 b 】(a) N(2,4) (b) N(2,4/n) (c) N(1/2,1/4n) (d) N(2n,4n) 3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个 简单随机样本,则下列表达式中不是统计量的是 . 【 C 】(a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4.在假设检验问题中,检验水平α意义是 . 【 a 】 (a )原假设H 0成立,经检验被拒绝的概率; (b )原假设H 0成立,经检验不能拒绝的概率; (c )原假设H 0不成立,经检验被拒绝的概率; (d )原假设H 0不成立,经检验不能拒绝的概率.5.在线性回归分析中,以下命题中,错误的是 . 【 d 】(a )SSR 越大,SSE 越小; (b )SSE 越小,回归效果越好; (c )r 越大,回归效果越好; (d )r 越小,SSR 越大.二、填空题(将答案写在该题横线上。

答案错选或未选者,该题不得分。

每小题2分,共10分。

概率统计期末试卷(含答案)

概率统计期末试卷(含答案)

2009/2010学年第二学期考试试卷(A)一、单项选择题(每小题3分,共15分,要求将每小题的选项填在下表中。

)1、设C , ,B A 表示3个事件,则C B A 表示( )。

(A) C , ,B A 中有一个发生(B) C , ,B A 中不多于一个发生(C) C , ,B A 都不发生 (D) C , ,B A 中恰有两个发生2、若事件B A ,相互独立,且0)(,0)(>>B P A P ,则下列正确的是( )。

(A) =)|(A B P )|(B A P(B) )|(A B P )(A P = (C) )|(B A P )(B P =(D) =)|(B A P )(1A P -3、设随机变量Y X ,相互独立且分布相同,则Y X +与X 2的关系是( )。

(A) 有相同的分布 (B) 数学期望相等 (C) 方差相等 (D) 以上均不成立4、若随机变量X 的概率密度为)( e21)(4)1(2+∞<<-∞=+-x x f x π,则=Y ( ))1,0(~N 。

(A) 21+X (B)21+X (C)21-X (D)21-X 5、简单样本n X X X ,,,21 )3(≥n 取自总体X ,则下列估计量中,( )不是总体期望μ的无偏估计量。

(A) ∑=ni i X 1(B) X(C) )46(1.01n X X +(D) 321X X X -+二、填空题(每空2分,共16分,要求将每小题的答题填在下表中。

)1、若事件B A ,相互独立,且4.0)(=A P ,7.0)(=B A P ,则=)(B P 。

2、若随机变量321,,X X X 相互独立,且服从两点分布2.08.010p X i,则∑==31i i X X 服从 。

3、设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则=+)(Y X D 。

4、设10件产品中有4件不合格品,从中任取2件,已知所取2件中有1件是不合格品,则另外1件也是不合格品的概率为____ ____。

概率论期末考试试卷

概率论期末考试试卷

概率论期末考试试卷一、选择题(每题2分,共20分)1. 某事件A的概率为0.4,事件B的概率为0.6,且事件A和B互斥,那么事件A和B至少有一个发生的概率是:A. 0.2B. 0.4C. 0.8D. 0.62. 抛一枚均匀硬币两次,求两次都是正面的概率是:A. 0.25B. 0.5C. 0.75D. 1.03. 随机变量X服从正态分布N(0, σ²),那么P(X > 0)的概率是:A. 0.5B. 0.3C. 0.7D. 不能确定4. 某工厂的零件合格率为90%,求生产10个零件中至少有8个合格的概率:A. 0.3487B. 0.3828C. 0.4307D. 0.55. 从1到100的整数中随机抽取一个数,求该数是3的倍数的概率:A. 0.1B. 0.3C. 0.333D. 0.5...(此处省略其他选择题)二、填空题(每题2分,共10分)6. 如果事件A和B是相互独立事件,且P(A)=0.3,P(B)=0.5,则P(A∩B)=______。

7. 随机变量X的期望值E(X)是______。

8. 已知随机变量X服从二项分布B(n, p),求X的方差Var(X)=______。

9. 某事件的发生与否对另一个事件的发生概率没有影响,这两个事件被称为______。

10. 随机变量X服从泊松分布,其参数λ=2,则P(X=1)=______。

三、简答题(每题10分,共20分)11. 解释什么是大数定律,并给出一个实际应用的例子。

12. 描述什么是中心极限定理,并解释它为什么在统计学中非常重要。

四、计算题(每题15分,共30分)13. 一个袋子里有5个红球和3个蓝球,随机抽取3个球,求以下事件的概率:(1) 抽到的3个球都是红球;(2) 至少抽到1个蓝球。

14. 某工厂生产的产品中,每个产品是次品的概率为0.01。

求生产100个产品中恰好有5个次品的概率。

五、论述题(每题20分,共20分)15. 论述条件概率和全概率公式在实际问题中的应用,并给出一个具体的例子。

概率统计期末考试试题及答案

概率统计期末考试试题及答案

概率统计期末考试试题及答案试题一:随机变量的概率分布某工厂生产的产品合格率为0.9,不合格率为0.1。

假设每天生产的产品数量为100件,求下列事件的概率:1. 至少有80件产品是合格的。

2. 至多有5件产品是不合格的。

试题二:连续型随机变量的概率密度函数设随机变量X的概率密度函数为f(x) = 2x,0 ≤ x ≤ 1,0 其他,求:1. X的期望E(X)。

2. X的方差Var(X)。

试题三:大数定律与中心极限定理假设某银行每天的交易量服从均值为100万元,标准差为20万元的正态分布。

求:1. 该银行连续5天的总交易量超过500万元的概率。

2. 根据中心极限定理,该银行连续20天的总交易量的平均值落在90万元至110万元之间的概率。

试题四:统计推断某工厂生产的零件长度服从正态分布,样本数据如下:95, 96, 97, 98, 99, 100, 101, 102, 103, 104求:1. 零件长度的平均值和标准差。

2. 零件长度的95%置信区间。

试题五:假设检验某公司对两种不同品牌的打印机进行了效率测试,测试结果如下:品牌A:平均打印速度为每分钟60页,标准差为5页。

品牌B:平均打印速度为每分钟55页,标准差为4页。

样本量均为30台打印机。

假设两种打印机的平均打印速度没有显著差异,检验假设是否成立。

答案一:1. 至少有80件产品是合格的,即不合格的产品数少于或等于20件。

根据二项分布,P(X ≤ 20) = Σ[C(100, k) * (0.1)^k *(0.9)^(100-k)],k=0至20。

2. 至多有5件产品是不合格的,即不合格的产品数不超过5件。

根据二项分布,P(X ≤ 5) = Σ[C(100, k) * (0.1)^k * (0.9)^(100-k)],k=0至5。

答案二:1. E(X) = ∫[2x * x dx],从0到1,计算得 E(X) = 2/3。

2. Var(X) = E(X^2) - [E(X)]^2 = ∫[2x^2 * x dx] - (2/3)^2,从0到1,计算得 Var(X) = 1/18。

概率统计随机过程-期末试卷-参考答案

概率统计随机过程-期末试卷-参考答案

7. 1
8. 1 1
4. ,
2
数理统计
57 33 e 30 154 e 15 9. , 8 24
2 2 2
又由
15 S 2
2
4

152
2 15 S 2 (15) 知 D 2 2 15

D S 2 2 15
2

得 D S

2 15
4
五、解:
数理统计
1 2 3 (1) 先求二步转移概率矩阵 1 1/ 2 1/ 4 1/ 4 2 P (2) [ P (1)] 2 1/ 4 1/ 2 1/ 4 3 1/ 4 1/ 4 1/ 2 3 P{ X 2 2} P X 0 iP X 2 2 | X 0 i
数理统计
《概率统计与随机过程》期末试卷二 参考答案 一、填空题
1. F (1, n)
2. P X 1 x1 ,..., X n xn p i 1 (1 p) 其中xi 0或1;
1 n 3. X , Xi X n i 1
xi
n
n
xi
i 1
n
,
E ( S 2 ) p(1 - p)
六、解:
a2 (3) 因 RX ( t , t ) cos 0 , 2 i 故 S X R e d X
2 a i cos( ) e d 0 2 2 a cos(0 )e i d 2 a2 0 0 2
p1 (0) P12 (2) p2 (0) P22 (2) p3 (0) P32 (2) 1 1 1 1 1 ( ) 3 4 2 4 3 (2) P{ X 2 2, X 3 2 | X 0 1}

概率论与数理统计期末试题与详细解答

概率论与数理统计期末试题与详细解答

《概率论与数理统计》期末试卷一、填空题(每题4分,共20分)1、假设事件A 和B 满足1)(=A B P ,则A 和B 的关系是_______________。

2、设随机变量)(~λπX ,且{}{},21===X P X P 则{}==k X P _____________。

3、设X 服从参数为1的指数分布,则=)(2X E ___________。

4、设),1,0(~),2,0(~N Y N X 且X 与Y 相互独立,则~Y X Z -=___________。

5、),16,1(~),5,1(~N Y N X 且X 与Y 相互独立,令12--=Y X Z ,则=YZ ρ____。

二、选择题(每题4分,共20分)1、将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )A 、323B 、83C 、161D 、812、随机变量X 和Y 的,0=XY ρ则下列结论不正确的是( ) A 、)()()(Y D X D Y X D +=- B 、a X +与b Y -必相互独立 C 、X 与Y 可能服从二维均匀分布 D 、)()()(Y E X E XY E =3、样本nX X X ,,,21 来自总体X ,,)(,)(2σμ==X D X E 则有( )A 、2i X )1(n i ≤≤都是μ的无偏估计 B 、X 是μ的无偏估计C 、)1(2n i X i ≤≤是2σ的无偏估计D 、2X 是2σ的无偏估计 4、设nX X X ,,,21 来自正态总体),(2σμN 的样本,其中μ已知,2σ未知,则下列不是统计量的是( ) A 、ini X ≤≤1min B 、μ-X C 、∑=ni iX 1σ D 、1X X n -5、在假设检验中,检验水平α的意义是( ) A 、原假设0H 成立,经检验被拒绝的概率 B 、原假设0H 不成立,经检验被拒绝的概率 C 、原假设0H 成立,经检验不能拒绝的概率D 、原假设0H 不成立,经检验不能拒绝的概率三、计算题(共28分)1、已知离散型随机变量的分布律为求:X 的分布函数,(2))(X D 。

2020-2021大学《概率论与数理统计》期末课程考试试卷A(含答案)

2020-2021大学《概率论与数理统计》期末课程考试试卷A(含答案)

2020-2021大学《概率论与数理统计》期末课程考试试卷A适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一.填空题(每题2分,共10分)1设事件A,B 互不相容,若P (A )=0.3,P (B )=0.7,则P (AB )为_________。

设事件A,B 相互独立,若P (A )=0.3,P (B )=0.7,则P (AB )为______.3.设母体X 服从正态分布N (μ,σ2),X 1,X 2⋯,X n 为取自母体的子样,X̄为子样均值,则X ̄服从的分布为__________.4.设X 1,X 2⋯,X n 相互独立,且都服从正态分布N (0,1),则∑X i 2n i=1服从的分布为_____________.5. 将一枚硬币重复掷N 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于__________.二、选择题(每小题2分共10分)1.设A,B 为互不相容事件,且P (A )>0,P (B )>0,则结论正确的有( )(A )P (A |B )>0 (B )P (A |B )>P(A) (C) P (A |B )=0 (D) P (A |B )=P (A )P (B ) 2、设随机变量ξ,η相互独立,且有Dξ=6,Dη=3.则D (2ξ+η)为( ) (A )9 (B )15 (C)21 (D)27 3、设随机变量X 服从正态分布N (μ,σ2),则随着σ的增大,P (|X −μ|<σ)( )(A )单调增大 (B )单调减少 (C )保持不变 (D )增减不定4、任一连续型随机变量的概率密度函数ϕ(x )一定满足( )(A )0≤ϕ(x )≤1;(B )定义域内单调不减;(C )∫ϕ(x )+∞−∞dx =1;(D )lim x→+∞ϕ(x )=1。

5、设随机变量ξ,η满足条件D (ξ+η)=D (ξ−η),则有( )事实上 (A ) Dη=0 (B )ξ,η不相关 (C )ξ,η相互独立 (D )Dξ⋅Dη=0三、综合题(每小题5分共30分)1.某射击小组共有20名射手,其中一级射手4名,二级射手8名,三级射手7名,四级射手1名,一、二、三、四级射手能通过选拔进入决赛的概率分别是0.9,0.7,0.5,0.2,求在小组内任选一名射手,该射手能通过选拔进入决赛的概率。

《概率论与数理统计》课程期末考试试卷A(试)

《概率论与数理统计》课程期末考试试卷A(试)

(3)正态分布 (4)泊松分布布 12、t 分布的极限分布是【 】。

(1))1,0(N (2))(2n χ (3)),(2σμN (4)),1(n F13、如果样本观测值为60,70,80,那么总体均值μ的无偏估计是【 】。

(1)70 (2)10 (3)60 (4)80 14、以下关于矩估计法的叙述中正确的是【 】。

(1)充分利用总体分布 (2)理论依据是k Pk A μ−→−(3)利用样本分布信息 (4)一定是有偏估计15、总体均值μ置信度为99%的置信区间为(1ˆμ,2ˆμ),置信度的意义为【 】 (1)μ落入(1ˆμ,2ˆμ)的概率为0.99 (2) (1ˆμ,2ˆμ)不包含μ的概率为0.99 (3)(1ˆμ,2ˆμ)包含μ的概率为0.99 (4)μ落出(1ˆμ,2ˆμ)的概率为0.99 二、多项选择题(从每题后所备的5个选项中,选择至少2个正确的并将代码填 题后的括号内,每题1分,本题共5分)。

16、如果随机事件、A B 互斥,且30.0)B (P ,40.0)A (P ==,那么【 】。

(1)0.40)B -A (P = (2)0.70)B A (P = (3)0B)/P(A = (4)0)AB (P = (5)1)B /A (P =17、设随机变量X~e (10),那么【 】。

(1)10.0)X (E = (2)10)X (E = (3)2e 1)0.2X (P --=≤ (4)0.01)X (D = (5))100X (P )100X |220X (P >=>>18、设总体是样本。

,,未知,已知,),,(n X X X N X ,~2122 μσσμ下列不是统计量的有【 】。

(1)n Xni i/1∑= (2)221/)(σX X ni i -∑= (3) σμ/)(-i X(4)n X ni i /)(21μ-∑= (5)∑=-ni i n X X 12/)(19、以下关于最大似然估计方法的说法中正确有【 】。

大学概率论与数理统计期末考试试卷

大学概率论与数理统计期末考试试卷

大学概率论与数理统计期末考试试卷一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A,B,C为随机事件,则事件“A,B,C都不发生”可表示为(A) A. B.BCC.ABC D.2.设随机事件A与B相互独立,且P(A)=,P(B)=,则P(A B)=(B) A. B.C. D.3.设随机变量X~B(3,0.4),则P{X≥1}=(C)A.0.352B.0.432C.0.784D.0.936A.0.2B.0.35C.0.55D.0.85.设随机变量X的概率密度为f(x)=,则E(X),D(X)分别为(B)A.-3,B.-3,2C.3,D.3,26.设二维随机变量(X,Y)的概率密度为f(x,y)=则常数c=(A)A.B.C.2 D.47.设随机变量X~N(-1,22),Y~N(-2,32),且X与Y相互独立,则X-Y~(B )A.N(-3,-5)B.N(-3,13)C.N(1,)D.N(1,13)8.设X,Y 为随机变量,D(X)=4,D(Y)=16,Cov(X,Y)=2,则XY =(D ) A. B. C. D.9.设随机变量X~2(2),Y~2(3),且X 与Y 相互独立,则(C )A.2(5)B.t(5)C.F(2,3) D.F(3,2)10.在假设检验中,H 0为原假设,则显著性水平的意义是(A ) A.P{拒绝H 0|H 0为真}B.P{接受H 0|H 0为真}C.P{接受H 0|H 0不真} D.P{拒绝H 0|H 0不真}二、填空题(本大题共15小题,每小题2分,共30分)11.设A,B 为随机事件,P(A)=0.6,P(B|A)=0.3,则P(AB)=_0.18_____. 12.设随机事件A 与B 互不相容,P()=0.6,P(A B)=0.8,则P(B)=_0.4_____.13.设随机变量X 服从参数为3的泊松分布,则P{X=2}=_____.14.设随机变量X~N(0,42),且P{X>1}=0.4013,(x)为标准正态分布函数,则(0.25)=_0.5987____. 15.设二维随机变量(X,Y)的分布律为392e则P{X=0,Y=1}=_0.1_____.16.设二维随机变量(X,Y)的概率密度为f(x,y)=则P{X+Y>1}=____0.5__.17.设随机变量X 与Y 相互独立,X 在区间[0,3]上服从均匀分布,Y 服从参数为4的指数分布,则D (X+Y )=__13/16____.18.设X 为随机变量,E (X+3)=5,D (2X )=4,则E (X 2)=__5____. 19.设随机变量X 1,X 2,…,X n ,…相互独立同分布,且E (X i )=则___0.5_______. 20.设随机变量X-2(n),(n)是自由度为n 的2分布的分位数,则P{x}=_1-a_____. 21.设总体X~N(),x 1,x 2,…,x 8为来自总体X 的一个样本,为样本均值,则D ()=__8____. 22.设总体X~N(),x 1,x 2,…,x n 为来自总体X 的一个样本,为样本均值,s 2为样本方差,则~__t(n-1)___.23.设总体X 的概率密度为f(x;),其中(X)=,x 1,x 2,…,x n 为来自总体X 的一个样本,为样本均值.若c 为的无偏估计,则常数c=__0.5____. 24.设总体X~N(),已知,x 1,x 2,…,x n 为来自总体X 的一个样本,为样本均值,则参数的置信度为1-的置信区间为__=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-∑=∞→0lim 1σμn n X P n i i n 22(a ax x nn-+____. 25.设总体X~N(,x 1,x 2,…,x 16为来自总体X 的一个样本,为样本均值,则检验假设H 0:时应采用的检验统计量为______.三、计算题(本大题共2小题,每小题8分,共16分)26.盒中有3个新球、1个旧球,第一次使用时从中随机取一个,用后放回,第二次使用时从中随机取两个,事件A 表示“第二次取到的全是新球”,求P(A).解:27.设总体X 的概率密度为,其中未知参数x 1,x 2,…,x n 为来自总体X 的一个样本.求的极大似然估计.解:四、综合题(本大题共2小题,每小题12分,共24分) 28.设随机变量x 的概率密度为求:(1)常数a,b ;(2)X 的分布函数F(x);(3)E(X).(0,1)416x u N =22322244311()444C C p A C C =+=2121111111(,,;)2(2)ln ln 2(21)ln ln 2ln 02ln nnnn iii i nii ni i nii L X X xx L n x Lnx n x θθθθθθθθθθ--========+-∂=+=∂∴=-∏∏∑∑∑解:(1)(2)(3) 29.设二维随机变量(X ,Y)的分布律为求:(1)(X ,Y)分别关于X,Y 的边缘分布律;(2)D(X),D(Y),Cov(X ,Y). 解:(1)2021()1()1ax b dx ax b dx ⎧+=⎪⎨+=⎪⎩⎰⎰121a b ⎧=-⎪⇒⎨⎪=⎩1102()20x x f x ⎧-+<<⎪=⎨⎪⎩其他20212F x x x x x ⎧⎪⎪+≤<⎨⎪≥⎪⎩0x<01()=-4212()(1)23E X x x dx =-+=⎰(2)XY 的分布列为五、应用题(10分)30.某种装置中有两个相互独立工作的电子元件,其中一个电子元件的使用寿命X(单位:小时)服从参数的指数分布,另一个电子元件的使用寿命Y(单位:小时)服从参数的指数分布.试求:(1)(X ,Y)的概率密度;(2)E(X),E(Y);(3)两个电子元件的使用寿命均大于1200小时的概率.解:由于xy 相互独立得:2222()()03.6()()() 3.6(,)()()()E X E Y EX EY D X D Y EX EX Cov x y E XY E X E Y ======-==-()0(,)0E XY Cov x y ==110001200010()1000010()20000x x e x f x e y f y --⎧>⎪=⎨⎪⎩⎧>⎪=⎨⎪⎩x<0y<011100020001191000200051200120010,0(,)()()20000000()1000()200011{1200,1200}10002000x y x y e x y f x y f x f y E x E y p x y e dxe dy e -----+∞+∞⎧>>⎪==⎨⎪⎩==>>==⎰⎰其他。

大学《概率论与数理统计》期末考试试卷含答案

大学《概率论与数理统计》期末考试试卷含答案

大学《概率论与数理统计》期末考试试卷含答案一、填空题(每空 3 分,共 30分)在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加 样本容量 .设随机变量具有数学期望与方差,则有切比雪夫不等式 .设为连续型随机变量,为实常数,则概率= 0 . 设的分布律为,,若绝对收敛(为正整数),则=.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为. 设服从参数为的分布,则=. 设,则数学期望= 7 .为二维随机变量, 概率密度为, 与的协方差的积分表达式为 .设为总体中抽取的样本的均值,则= . (计算结果用标准正态分布的分布函数表X ()E X μ=2()D X σ={}2P X μσ-≥≤14X a {}P X a =X ,{}1,2,k k P X x p k ===2Y X =1n k k k x p ∞=∑n()E Y 21k k k x p ∞=∑17X λpoisson (2)E X 2λ(2,3)YN 2()E Y (,)X Y (,)f x y X Y (,)Cov X Y (())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰X N (3,4)14,,X X {}15P X ≤≤2(2)1Φ-()x Φ示)10. 随机变量,为总体的一个样本,,则常数=.A 卷第1页共4页 概率论试题(45分) 1、(8分)题略解:用,分别表示三人译出该份密码,所求概率为 (2分)由概率公式 (4分)(2分) 2、(8分) 设随机变量,求数学期望与方差.解:(1) = (3分) (2) (3分) (2分)(8分) 某种电器元件的寿命服从均值为的指数分布,现随机地取16只,它们的寿命相互独立,记,用中心极限定理计算的近似值(计算结果用标准正态分布的分布函数表示).2(0,)XN σn X X X ,,,21 X221()(1)ni i Y k X χ==∑k 21n σA B C 、、P A B C ()P A B C P ABC P A P B P C ()=1-()=1-()()()1-1-1-p q r =1-()()()()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====()E X Y +(23)D X Y -()E X Y +E X E Y ()+()=1+3=4(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-8361244XYρ=+-=-100h i T 161ii T T ==∑{1920}P T ≥()x Φ解: (3分) (5分)(4分)(10分)设随机变量具有概率密度,.(1)求的概率密度; (2) 求概率.解: (1) (1分)A 卷第2页共4页(2分)(2分)概率密度函数 (2分)(2) . (3分) (11分) 设随机变量具有概率分布如下,且.i i ET D T E T D T 2()=100,()=100,()=1600,()=160000{1920}0.8}1P T P ≥=≥≈-Φ(0.8)X 11()0x x f x ⎧-≤≤=⎨⎩,,其它21Y X =+Y ()Y f y 312P Y ⎧⎫-<<⎨⎬⎩⎭12Y Y y F y y F y≤>时()=0,时()=1212,{}{1}()d Y y F yP Y y P X y f x x <≤≤=+≤=()=02d 1x y ==-2()=Y Y y f y F y≤⎧'⎨⎩1,1<()=0,其它3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222(,)X Y {}110P X Y X +===(1)求常数; (2)求与的协方差,并问与是否独立?解: (1) (2分)由(2分) 可得 (1分)(2), , (3分) (2分) 由可知与不独立 (1分) 三、数理统计试题(25分)1、(8分) 题略. A 卷第3页共4页 证明:,相互独立(4分) ,(4分),p q X Y (,)Cov X Y X Y 1111134123p q p q ++++=+=,即{}{}{}{}{}101011010033P X Y X P Y X p P X Y X P X P X p +====+========+,,1p q ==EX 1()=2E Y 1()=-3E XY 1()=-6,-CovX Y E XY E X E Y ()=()()()=0..ij i j P P P ≠X Y 222(1)(0,1),(1)X n S N n χσ--22(1)X n S σ-2(1)X t n -(1)X t n -(10分) 题略解:似然函数 (4分)由 可得为的最大似然估计 (2分)由可知为的无偏估计量,为的有偏估计量 (4分) 、(7分) 题略 解: (2分)检验统计量,拒绝域 (2分)而 (1分)因而拒绝域,即不认为总体的均值仍为4.55 (2分)A 卷第4页共4页2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑2,μσ221ˆˆ(),()n nE E μμσσ-==11ˆn i i x n μ==∑μ2211ˆ()ni i x n σμ==-∑2σ01: 4.55: 4.55H H μμ=≠x z =0.025 1.96z z ≥=0.185 1.960.036z ==>0H。

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案

《概率论与数理统计》试卷A(考试时间:90分钟; 考试形式:闭卷)(注意:请将答案填写在答题专用纸上,并注明题号。

答案填写在试卷和草稿纸上无效)一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则AB =()A 、AB B 、A BC 、A BD 、A B2、设A ,B ,C 表示三个事件,则A B C 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P AB =,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P AB P A P B =+C 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15 B 、14C 、4D 、58、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 C、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX == D 、1,93EX DX ==10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14 D 、14- 13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EX DX =。

概率论与数理统计期末考试试卷及答案

概率论与数理统计期末考试试卷及答案

概率论与数理统计期末考试试卷及答案专业概率论与数理统计课程期末试卷A卷1.设随机事件A、B互不相容,p(A)=0.4,p(B)=0.2,则p(AB)=0.A。

2B。

4C。

0D。

62.将两封信随机地投入四个邮筒中,则未向前两个邮筒中投信的概率为3/16.A。

2B。

2/3C。

3/16D。

13/163.填空题(每空2分,共30分)1)设A、B是两个随机变量,p(A)=0.8,p(B)=。

则p(AB)=0.3.2)甲、乙两门彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.3、0.4,则飞机至少被击中一次的概率为0.58.3)设随机变量X的分布列如右表,记X的分布函数为F(x),则F(2)=0.6.X。

1.2.3p(X) 0.2.0.4.0.44)把三个不同的球随机地放入三个不同的盒中,则出现两个空盒的概率为3/5.5)设X为连续型随机变量,c是一个常数,则p(X=c)=0.6)设随机变量X~N(μ,1),Φ(x)为其分布函数,则Φ(x)+Φ(-x)=1.7)设随机变量X、Y相互独立,且p(X≤1)=1/2,p(Y≤1)=1/3,则p(X≤1,Y≤1)=1/6.8)已知P(X=0)=1/2,P(X=1)=1/4,P(X=2)=1/8,则E(X^2)=1/2.9)设随机变量X~U[0,1],由切比雪夫不等式可得P(|X-1/2|≥1/4)≤1/4.4.答案解析1)p(B)=0.375由乘法公式p(AB)=p(A)p(B)可得,0.3=0.8p(B),解得p(B)=0.375.2)P(未击中)=0.3×0.6+0.4×0.7=0.58由概率加法公式可得,P(未击中)=P(甲未击中且乙未击中)=P(甲未击中)×P(乙未击中)=0.3×0.6+0.4×0.7=0.58.3)F(2)=P(X≤2)=0.2+0.4=0.6由分布函数的定义可得,F(2)=P(X≤2)=P(X=1)+P(X=2)=0.2+0.4=0.6.4)P(两个空盒)=3/5将三个球分别放入三个盒子中,共有3×2×1=6种方案。

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案一、选择题(每题5分,共25分)1. 下列事件中,不可能事件是()A. 抛掷一枚硬币,正面朝上B. 抛掷一枚硬币,正面和反面同时朝上C. 抛掷一枚骰子,出现7点D. 抛掷一枚骰子,出现1点答案:C2. 设A、B为两个事件,若P(A-B)=0,则下列选项正确的是()A. P(A) = P(B)B. P(A) ≤ P(B)C. P(A) ≥ P(B)D. P(A) = 0答案:B3. 设随机变量X服从二项分布B(n, p),则下列结论正确的是()A. 当n增加时,X的期望值增加B. 当p增加时,X的期望值增加C. 当n增加时,X的方差增加D. 当p增加时,X的方差减少答案:B4. 设X~N(μ, σ^2),下列选项中错误的是()A. X的期望值E(X) = μB. X的方差D(X) = σ^2C. X的概率密度函数关于X = μ对称D. 当σ增大时,X的概率密度函数的峰值减小答案:D5. 在假设检验中,显著性水平α表示()A. 原假设为真的情况下,接受原假设的概率B. 原假设为假的情况下,接受原假设的概率C. 原假设为真的情况下,拒绝原假设的概率D. 原假设为假的情况下,拒绝原假设的概率答案:C二、填空题(每题5分,共25分)6. 设A、B为两个事件,P(A) = 0.5,P(B) = 0.6,P(A∩B) = 0.3,则P(A-B) = _______。

答案:0.27. 设随机变量X服从泊松分布,已知P(X=1) = 0.2,P(X=2) = 0.3,则λ = _______。

答案:1.58. 设随机变量X~N(μ, σ^2),若P(X<10) = 0.2,P(X<15) = 0.8,则μ = _______。

答案:12.59. 在假设检验中,若原假设H0为μ=10,备择假设H1为μ≠10,显著性水平α=0.05,则接受原假设的临界值是_______。

答案:9.5或10.510. 设X、Y为两个随机变量,若X与Y相互独立,则下列选项正确的是()A. E(XY) = E(X)E(Y)B. D(X+Y) = D(X) + D(Y)C. D(XY) = D(X)D(Y)D. 上述选项都正确答案:D三、解答题(每题25分,共100分)11. 设某班有50名学生,其中有20名男生,30名女生。

概率论期末试题(带答案)

概率论期末试题(带答案)

草纸:
试卷纸
共4页
第1页
试题要求:1、试题后标注本题得分;2、试卷应附有评卷用标准答案,并有每题每步得分标准;3、试卷必须装订,拆散无效;4、试卷必须
用碳素笔楷书,以便誉印;5、考试前到指定地点领取试卷。
学号:
姓名:
班级:
..........................................................密.......................................................封..........................................................线..........................................................
..
27

19
8
设每次试验成功的概率为 p, 由题意知至少成功一次的概率是 ,那么一次都没有成功的概率是
. 即 (1 − p)3 =
8
,故
p=1.
27
27
27
3
4. 设随机变量 X, Y 的相关系数为 0.5 , E(X ) = E(Y ) = 0, E= (X 2) E= (Y 2) 2 , 则 E[( X + Y )2 ] =(空 4)
8. 设 zα , χα2 (n), tα (n) , Fα (n1, n2 ) 分别是标准正态分布 N(0,1)、χ 2 (n)分布、t 分布和 F 分布的上α 分位点, 在
下列结论中错误的是(
).
(A) zα = −z1−α .
(B)
χ
2 α
(n)=-
χ2 1−α

概率统计期末考试试题附答案

概率统计期末考试试题附答案

中国计量学院2011 ~ 2012 学年第 1 学期 《 概率论与数理统计(A) 》课程考试试卷B开课二级学院: 理学院 ,考试时间: 2011 年 12_月26 日 14 时 考试形式:闭卷√、开卷□,允许带 计算器 入场 考生姓名: 学号: 专业: 班级:1.某人射击时,中靶的概率为43,若射击直到中靶为止,则射击次数为3的概率为( ). (A) 43412⨯)( (B) 343)( (C) 41432⨯)( (D) 341)( 2.n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布并且a X E i =)(,b X Var i =)(,则这些随机变量的算术平均值∑==ni i X n X 11的数学期望和方差分别为( ). (A ) a ,2n b (B )a ,n b (C)a ,n b 2 (D )n a,b3.若100张奖券中有5张中奖,100个人分别抽取1张,则第100个人能中奖的概率为( ). (A) 01.0 (B) 03.0 (C) 05.0 (D) 0 4. 设)(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是( ). (A) )()(21x f x f (B))()(212x F x f (C))()(21x F x f (D) )()()()(1221x F x f x F x f +5.已知随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤>=-0,00,)(2222x x e a x x f a x ,则随机变量X Y 1= 的期望=)(Y E ( ).(A)a 22π (B) π (C) a 21(D) aπ2 6.设)(),(x f x F 分别为某随机变量的分布函数和密度函数,则必有( ).(A) )(x f 单调不减 (B) 0)(=-∞F (C)⎰+∞∞=-1)(F dx x (D) ⎰+∞∞=-)(f )(dx x x F7.设二维离散型随机变量),(Y X 的联合分布律为则==}{Y X P ( ).(A) 0.8 (B) 0.7 (C) 0.3 (D) 0.58.设两个独立的随机变量Y X ,分别服从正态分布)1,0(N 和)1,1(N ,则( ).(A) 21}0{=≤-Y X P (B) 21}0{=≤+Y X P (C) 21}1{=≤-Y X P (D) 21}1{=≤+Y X P9.设二维连续型随机变量),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其它,,01,1)(22y x y x f π, 则X 和Y 为( )的随机变量.(A) 独立同分布 (B) 独立不同分布 (C) 不独立同分布 (D) 不独立不同分布10.设总体X 服从正态分布),(2σμN ,其中2σ已知,μ为未知参数,则μ的等尾双侧置信区间长度L 与置信度α-1的关系是( ).(A) 当α-1减少时,L 变小 (B) 当α-1减少时,L 增大 (C) 当α-1减少时,L 不变 (D) 当α-1减少时,L 增减不定二、填空题(每空2分,共20分)1. 已知5.0)(=A P , 3.0)(=AB P ,则=-)(B A P .2. 设123,,X X X 是来自正态总体X ~(),1N μ的样本,则当=k 时,3213141ˆkX X X ++=μ是总体均值μ的无偏估计. 3. 设]6,1[~X U ,则方程012=++Xt t 有实根的概率为 .4. 袋内有3个白球与2个黑球,从其中任取两个球,求取出的两个球都是白球的概率 . 5. 设,4.0,36)(,25)(===XY Y Var X Var ρ则.)(=-Y X Var6. 设总体X 的概率密度为:⎪⎩⎪⎨⎧≤≤=-其它,010,)(1x xx f θθ, 是未知参数,0>θX X X X n 为,,,21 的一个样本,则θ的矩估计量=θˆ7. 设XeY N X -=),1,0(~,则Y 的密度函数=)(y f Y .8.设Y X ,为两个随机变量,且74}0{}0{,73}0,0{=≥=≥=≥≥Y P X P Y X P ,则=≥}0),{max(Y X P .9. 设Y X ,相互独立,且概率密度分别为: ⎩⎨⎧≤≤=其它,010,1)(x x f X ,⎩⎨⎧≤>=-0,00,)(y y e y f y Y ,则Y X Z +=的概率密度=)(z f Z .10.将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球,若一只球装入与球同号的盒子中,称为一个配对,记X 为总的配对数,则=)(X E . 三、(本小题10分)设A 和B 是两个事件,8.0)(,6.0)(==B P A P ,试问:(1)在什么条件下)(AB P 取到最大值,最大值是多少; (2) 在什么条件下)(AB P 取到最小值,最小值是多少.装 订 线四、(本小题10分)已知随机变量X 的概率分布如右表, 求随机变量:(1)X 的分布函数)(x F . (2)X Y 2-=的概率分布.五、(本小题10分)设连续型随机变量X 的分布函数为 ⎪⎩⎪⎨⎧≥<≤<=e x e x x x x F ,11,ln 1,0)(求:(1) 随机变量的概率密度函数)(x f ; (2) )5.20(≤<X P ;(3) 期望)(X E .六、(本小题10分)某产品主要由三个厂家供货,甲、乙、丙三个厂家的产品分别占总数的15%,80%和5%,其次品率分别为0.02,0.01和0.03.试计算: (1) 从这批产品中任取一件,是不合格品的概率为多大?(2) 已知从这批产品中随机地抽取一件是不合格品,问这件产品是甲厂生产的概率?装七、(本小题6分)设总体X 密度函数为⎩⎨⎧≤≤=-其它,010,),(1x x x f θθθ,其中0>θ为未知参数,如果取得样本观测值为n x x x ,,,21 ,求参数θ的极大似然估计值.八、(本小题4分)设随机变量X 的分布函数)(x F 连续且严格单调增加,求)(X F Y =的概率密度.九、(本小题10分)设随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-,其它,,00,0),()43(y x ke y x f y x (1)求常数k ; (2)}20,10{≤<≤<Y X P ;(3)求),(Y X 的联合分布函数),(y x F ;(4)判断Y X ,的独立性.中国计量学院2011 ~ 2012 学年第 1 学期《 概率论与数理统计(A ) 》课程 试卷 B 参考答案及评分标准开课二级学院:理学院,学生班级:10 测控1,2,3,4,5等 教师: 邹海雷等一、选择题(20分)1 A2 B3 C4 D5 A6 B 7C 8 D 9 C 10 A 二、填空题(20分)1 0.2,2 5/12 ,3 0.8 ,4 0.3,5. 37 6 2-1X )(X , 7 ⎪⎩⎪⎨⎧≤>=-,00,21)(2)(ln 2y y e yy f y π , 8 5/7 , 9 ⎪⎪⎩⎪⎪⎨⎧<<-≤≥-=--10,10,01),1()(z e z z e e z f z z , 10, 1三、(10分)1)B A ⊂ 时,取得最大值6.0)(=AB P ………………………5分 2)Ω=⋃B A 时,取得最小值4.0)(=AB P ………………………10分 四、(10分)⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤-<=4 1429.020 5.0 012.0-1x 0 )(x x x x x F ………………………5分………………………10分五、(10分) 解:(1)⎩⎨⎧<≤=elseex x x f ,01,1)( …………………4分 (2)5.2ln )0()5.2()5.20(=-=≤<F F X P …………………7分 (3)11)()(1-===⎰⎰+∞∞-e dx xx dx x xf X E e…………………10分六、(10分)设 B 表示取得不合格品事件,)3,2,1(=i A i 表示取得的产品是甲、乙、丙次厂家的1)0125.003.005.001.080.002.015.0)/()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P………………………5分 2)24.0)/()()/()()/(31111==∑=i iiA B P A P A B P A P B A P (10)分七、(6分)1-11-1)(θθθθθi ni n i ni x xL ==∏=∏= ……2分∑=+=ni ix n L 1ln 1-ln )(ln )(θθθ ……3分令:0ln )(ln 1=+=∑=ni i x n d L d θθθ ……5分解得极大似然估计值为:∑=∧-=ni ixn1ln θ ……………… 6分八、(本小题4分)当,10时<<yy y F X P y X F P y Y P y F Y =≤=≤=≤=-)}({})({}{)(1 ……………2分,0)(0=≤y F y 时,,1)(1=≥y F y 时, …………………3分综上,,1,110,0,0)(⎪⎩⎪⎨⎧≥<<≤=y y y y y F故:⎩⎨⎧<<=others y y f ,010,1)(……………4分九、(10分)1)由1),(0403==⎰⎰⎰⎰∞+-∞+-+∞∞-+∞∞-dy e dx e k dxdy y x f y x k=12 (3)分2))1)(1(12),(}20,10{83201)43(--+---===≤<≤<⎰⎰⎰⎰e e dxdy e dxdyy x f Y X P y x ……………5分3)⎩⎨⎧>>--=--其它00,0)1)(1(),(43y x e e y x F y x ………………………7 分4)由),(y x f 可分离变量,故X 与Y 独立。

概率统计期末考试试卷及参考答案1

概率统计期末考试试卷及参考答案1

3.1概率统计期末考试试卷及参考答案1一、单项选择题1、在一个班级同学中选出一个班长,一个团支书;则事件“选出的班长是男生,选出的团支书是女生”的对立事件是(B )A.“选出的班长是女生,选出的团支书是男生”;B.“选出的班长是女生或选出的团支书是男生”;C.“选出的班长是女生,选出的团支书是女生”;D.“选出的班长是男生,选出的团支书是男生”.2、随机变量2~(3,)XN σ,且有{36}0.4P X <<=,则{0}P X <=(A).A.0.1B.0.2C.0.3D.0.43、随机变量,X Y 独立同分布,且{1}{1}0.5P XP X ===-=,则有(B ).A.{}1P X Y ==.B.{}0.5P X Y ==.C.{0}0.25P X Y +== D.{0}0.25P XY ⋅==.4、设~()X P λ(泊松分布)且{2}2{1}P X P X ===,则()E X =(D ).A.1B.2C.3D.45、设连续型随机变量的分布函数和密度函数分别为(), ()F x f x ,则下列选项中正确的是(A )A.0()1F x ≤≤ B.0()1f x ≤≤C.{}()P X x F x ==D.{}()P Xx f x ==.6、设2~(,)XN μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本.下列各项不是统计量的是(C)A.4114ii X X ==∑B.142X X μ+-C.42211()ii K XX σ==-∑D.42211()3i i S X X ==-∑二、填空题1、某生做四题作业,设i A 表示该生第i 题做对,则事件“他前两题都没有做对而后两题没有都做错”可表示为4123()A A A A .2、设A,B 为随机事件,A 与B 互不相容,{}0.2P B =,则()P AB =0.2.3、袋中有50个球,其中20个黄球、30个白球,今有2人依次随机地从袋中各取一球,取后不放回,则第2个人取得黄球的概率为0.44、设随机变量~(12,0.5),~(18,0.4),XB Y B 且X 与Y 相互独立,则:()D X Y -=0.95、设随机变量X 的分布函数为20, 0(), 011 1x F x Ax x x <⎧⎪=⎨⎪<⎩≤≤,,则A =1;6、设22~()n χχ,则有2()E χ=n7、设12,,,n X X X 是来自[2,]θθ-上的均匀分布总体的一个样本,则θ的矩估计量是1X +三、计算题(一)1、甲乙丙三人同时对飞机进行射击,三人击中的概率分别为0.4,0.5,0.7,飞机被一人击中而被击落的概率为0.2,被两人击中而被击落的概率为0.6,若三人都击中,飞机必定被击落,求飞机被击落的概率.解:设i A 表示i 人击中飞机,i=1,2,3.B 表示飞机被击落。

概率统计期末考试试题讲解

概率统计期末考试试题讲解

概率统计期末考试试题讲解# 概率统计期末考试试题讲解概率统计作为数学的一个重要分支,不仅在理论层面具有深刻的意义,而且在实际应用中也极为广泛。

期末考试是对一学期学习成果的检验,下面我们将对一些典型的概率统计试题进行讲解。

### 一、基本概念题例题1:某随机事件A的概率为0.3,求事件A不发生的条件概率。

解答:根据条件概率的定义,事件A不发生的概率P(A')等于1减去事件A发生的概率,即P(A') = 1 - P(A) = 1 - 0.3 = 0.7。

### 二、离散型随机变量例题2:某工厂生产的产品中,有10%是次品。

求生产5件产品中恰好有2件次品的概率。

解答:这是一个典型的二项分布问题。

设X为5件产品中次品的数量,X服从参数为n=5,p=0.1的二项分布。

根据二项分布的概率公式,P(X=k) = C(n, k) * p^k * (1-p)^(n-k),其中C(n, k)是组合数。

代入k=2,计算得P(X=2) = C(5, 2) * 0.1^2 * 0.9^3。

### 三、连续型随机变量例题3:某零件的长度服从正态分布N(50, 25),求长度在45到55之间的零件所占的比例。

解答:正态分布具有对称性,我们可以通过标准正态分布表来求解。

首先将问题转化为标准正态分布问题,即求Z值。

Z = (X - μ) / σ,其中X是随机变量,μ是均值,σ是标准差。

代入数值,计算Z值对应的两个边界点,然后查表得到相应的概率。

### 四、大数定律与中心极限定理例题4:根据中心极限定理,说明为什么样本均值的分布随着样本容量的增大而趋近于正态分布。

解答:中心极限定理指出,即使原始总体分布不是正态的,只要样本容量足够大,样本均值的分布将趋近于正态分布。

这是因为样本均值的分布是由所有样本点的分布叠加而成的,随着样本量的增加,这种叠加效应使得分布趋于稳定,最终接近正态分布。

### 五、统计推断例题5:某公司员工的月工资服从正态分布N(μ, σ^2),已知样本均值为4500元,样本标准差为500元,样本容量为100。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.设 A,B 互不相容,且 P( A)P(B) > 0 ,则下列结论正确的是
(A) P( A | B) = P( A)
(B) P( AB) = P( A)P(B)
(C) P(B | A) > 0
(D) P( A | B) = 0
4.设有四张卡片分别标以数字 1,2,3,4. 今任取一张,设事件 A 表示取到 1 或 2,事件 B 表示
能正常工作的概率为这个系统的可靠性.设有 4 个元件按照以下两种连接方式构成两个系
统,若构成每个系统的每个元件的可靠性均为 r (0 < r < 1) ,且各元件能否正常工作是相互
独立的,求各个系统的可靠性. (1)
(2)
2.已知 P(A) = 0.7 , P(A − B) = 0.3 ,则 P(AB) = _________ . 3.若 P(A) > 0 , P(B) > 0 , P(A B) = P(A) ,则下列结论不正确的是( )
(1)求主人回来树还活着的概率;
(2)主人回来树还活着,求邻居记得浇水的概率.
2. 将一枚硬币重复掷 n 次,以 X 和Y 分别表示正面朝上和反面朝上的次数,则 X 和Y 的相关
系数等于
.
3. 设 A, B 为随机事件, P= ( A) 0.8, P( A −= B) 0.3 ,则 P( AB) =
C. X ,Y 独立。
D. X ,Y 不独立。
2011 年(2009 级)
A
1.(12 分)
设随机变量 X
的密度函数为
f
(x)
=

1− x2
0
x <1 其他
求:(1)系数 A ; (2) X 的分布函数;(3) X 落在 (− 3 , 3 ) 内的概率; (4) E( X 3) . 22
2e −2 x 2.(10 分)已知随机变量 X 的密度函数为 f (x) =
m (1)求该考生将该题答对的概率; (2)若已知他答对了,求他确实知道该题正确答案的概率。
2011 年(2009 级)
1.(8 分)已知 8 支步枪中有 5 支已校准过,3 支未校准过.一名射手用校准过的枪射击时, 中靶的概率为 0.8;用未校准的枪射击时,中靶的概率为 0.3.现从 8 支枪中任取一支用于射击, 求:(1) 射手中靶的概率;(2) 已知射手中靶,求他所用的枪是校准过的概率. 2.= 设 P( A) 0= .5, P(B) 0.6,= P( A B) 0.8, 则 P( A ∪ B) = _____ .
x>0 ,求 Y
=
3
X
的密度函数.
0 x ≤ 0
3.(12 分)已知二维连续型随机变量 ( X ,Y ) 的联合密度函数为
2e−(x+ y) 0 < y < x < +∞
f (x, y) =
0
其他
求:(1) X 与Y 的边缘密度函数;(2) X 与Y 是否相互独立?为什么?
(3) P{X ≤ 1} .
其他
求:(1)常数 a ; (2) X , Y 的边缘密度函数;
(3) E ( XY ) ; (4) Z= X + Y 的概率密度函数。
0.5e−0.5x , x > 0
4.设随机变量 X 的密度函数为 f (x) =
,= 则 E( X ) _= _, D( X ) _
0, x ≤ 0
共 12 页,第 3 页
2012 年(2010 级)
1. (10 分) 人们为了解一支股票未来一定时期内价格的变化, 往往会去分析影响股票价格的 基本因素, 比如利率的变化. 现假设人们经分析估计利率下调的概率为 60%, 利率不变的概 率为 40%. 根据经验, 人们估计, 在利率下调的情况下, 该支股票价格上涨的概率为 80%,而 在利率不变的情况下, 其价格上涨的概率为 40%, 求该支股票将上涨的概率.若已知该支股票 上涨,求利率下调的概率. 2.对于事件 A, B ,下列结论不正确的有( ) (A)若 A, B 对立,则 p( A ∪ B) = 0 ; (B)若 A, B 对立,则 A, B 也对立; (C)若 A, B 独立,则 p( A B) = 1− p( A) − p(B) + p( A) p(B) ; (D)若 A, B 互斥,则 p( A ∪ B)= p( A) + p(B) − p( A) p(B) .
取到 1 或 3,事件 C 表示取到 1 或 4,则下列结论不.正.确.的是
(A) P( AB) = P( A)P(B)
(B) P( AC) = P( A)P(C)
(C) P(BC) = P(B)P(C)
(D) P( ABC) = P( A)P(B)P(C)
5.设某光学仪器厂制造的透镜,第一次落下时打破的概率为 0.5,若第一次落下未打破,第
4.(8 分)设 X 与Y 相互独立且 X 服从参数为 1 的指数分布,Y 服从参数为 2 的指数分布,
求 Z= X + Y 的密度函数.
5.设随机变量 X N (µ, σ 2 ) ,Y =aX + b (a > 0) ,则 ρX Y = _______ .
6.已知 X P(λ1), Y P(λ2 ) ,且 X 与Y 相互独立,则 X + Y _______ .
共 12 页,第 1 页
3.已知 P(A) = 0.3,
P(B) = 0.4 , P( A | B) = 0.5, 则
P( A B | A B) = _________ .
2013 年(2011 级)
1. (10 分)称一个元件能正常工作的概率 p 为这个元件的可靠性,称由元件组成的一个系统
.
4. 设 A , B 是任意两个概率不为 0 的互不相容事件,则下列结论中肯定不正确的是
.
(A) P ( AB) = P ( A) P ( B) ;
(B) A 与 B 相容;
(C) A 与 B 互不相容;
(D) P ( A − B) = P ( A) .
二、随机变量及其数字特征
2010 年(2008 级)
次品记为事件 B,产品为甲、乙、丙车间生产分别记为 A1, A2, A3 ,求 P(B) 和 P( A1 | B) 2.一口袋装有 6 只球(4 只白球、2 只红球),从袋中取球两次,每次随机地取一只,令 A
表示有放回抽样时第二次抽到白球,B 表示不放回抽样时第二次抽到白球,则下列结论正
确的是
(A) P( A) > P(B) (B) P( A) < P(B) (C) P( A) = P(B)
共 12 页,第 5 页
(C)不相关的充要条件;(D)独立的充要条件. 7.设 X 是一个离散型的随机变量,则( )可成为 X 的分布律.
(A)
X 01
p 为任意实数; P 1− p p
(B)
X
x1
x2 x3 x4 x5
P 0.1 0.3 0.3 0.2 0.2
(C) p{X= n=} e−33n , =n 1, 2, ;(D) p{X= n=} e−33n , =n 0,1, 2, .
∫ (B) 1 2x2dx ; 0
∫ ∫ (C)
1 x2dx +
+∞
dx ;
0
1
∫ (D) +∞ 2x2dx . 0
6.设随机变量 X ,Y 的方差存在且为正,则 D( X + Y=) D( X ) + D(Y ) 是 X 和Y ( )
(A)不相关的充分条件,但不是必要条件;(B)独立的必要条件,但不是充 的指数分布,则数学期望 E( X + e−2X ) = ____ .
2012 年(2010 级)
1.(10 分)假设随机变量 X 在区间 (0,1) 上服从均匀分布, (1)求 X 的分布函数;(2)求随机变量Y = eX 的概率密度函数.
共 12 页,第 4 页
2.(10 分) 设 X 与 Y 的联合概率分布律为:
1(12 分)已知 R.V . X 的概率密度函数为
= f ( x)
A 1+ x2
,
− ∞ < x < +∞, .
求:(1)常数 A ;(2) X 的分布函数;(3)若令Y 表示对 X 的 5 次独立重复观察中事件
{−1 < X < 1} 出现的次数,试写出Y 的分布律。
2 ( 10 分 ) 设 R.V .ξ ,η 独 立 同 分 布 , 其 分 布 律 为 P{ξ= i}= 1/ 3, i= 1, 2,3. ,
5.已知 X N (µ,σ 2 ) ,则 aX + b ~ _________________ .
6.设 R.V .X ,Y 满足 E( XY ) = E ( X ) E (Y ), 则 ________ .
A. D ( XY ) = D ( X ) D (Y )
B. D ( X + Y=) D ( X ) + D (Y )
(A) P(B A) = P(B) ;(B) P(A B) = P(A) ;(C) A , B 相容;(D) A , B 不相容.
2014 年(2012 级)
1.(10 分)设某工厂有甲、乙、丙三个车间,生产同一种产品,每个车间的产量分别占总产
量的 25%、35%、40%,次品率分别为 5%、4%、2%,如果从全厂产品中任取一件,取得
n!

n!

8.设随机变量 X1, X 2 , X3 相互独立,且 X1 服从 (0, 6) 上的均匀分布, X 2 N (1,3) , X3 服从参
数为 3 的指数分布,则Y =X1 − 2X 2 + 3X3 −1 的数学期望为 _________ ,方差为 _________ .
相关文档
最新文档