2017年秋季学期新版新人教版九年级数学上学期24.2.1、点和圆的位置关系学案10

合集下载

24.2.1 点和圆的位置关系教学设计

24.2.1 点和圆的位置关系教学设计

24.2 点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系本节课主要学习点与圆的三种位置关系.点与圆的位置关系是在理解圆的定义的基础上展开的,通过圆的定义,我们知道:圆内点到圆心的距离都小于半径,圆上点到圆心的距离都等于半径,圆外点到圆心的距离都大于半径.由此可知,每一个圆都把平面上的点分成三部分:圆内的点、圆上的点和圆外的点.对于学生来讲,这样比较容易理解,并通过代数关系表述几何问题,使学生深化理解代数与几何之间的关系,为后面的学习(直线与圆、圆与圆的位置关系)有个很好的开端.在教学过程中要注意帮助学生结合过一点和过两点作圆的过程进行分析,提醒学生注意,过三点是否存在一个圆,要看这三点的位置关系,只有当这三点不在同一条直线上时,才能确定一个圆.【情景导入】我国射击运动员在奥运会上屡获金牌,为祖国赢得荣誉.下图是射击靶的示意图,它是由许多同心圆(圆心相同、半径不等的圆)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?发现问题:要解决上面的问题需要研究点和圆的位置关系.分析问题:由图可知点和圆有三种位置关系:点在圆内、点在圆上、点在圆外.解决问题:射击成绩用弹着点位置对应的环数表示.弹着点与靶心的距离决定了它在哪个圆内,弹着点离靶心越近,它所在的区域就越靠内,对应的环数也就越高,射击成绩越好.【说明与建议】说明:创设问题情景,激发学生的求知欲望,通过交流使学生对射击比赛规则及我国射击运动员所取得的成就有所了解,增强民族自豪感,也为运用数学知识解决实际问题提供了情景,培养学生对问题的钻研精神,提高学生分析问题、解决问题的能力以及归纳总结的能力.建议:探索点和圆的位置关系时,可通过画图来分析.【置疑导入】(1)如图,足球运动员踢出的球在球场上滚动,在其穿越中间圆形区域的过程中,足球与这个圆有怎样的位置关系?(2)将足球看成一个点,这个点和圆具有怎样的位置关系?(3)在同一平面内,点和圆有如下图所示的几种位置关系,请你来填写一下吧!点P在⊙O内点P在⊙O上点P在⊙O外【说明与建议】说明:通过踢足球的情景引入,激发学生的学习兴趣.建议:教师引导学生观察图形,然后小组内讨论、总结出判断点和圆的位置关系的方法.命题角度1 判断点和圆的位置关系1.若⊙O的半径是5,点P到圆心的距离为5,则点P与⊙O的位置关系是(C)A.点P在⊙O外 B.点P在⊙O内C.点P在⊙O上 D.点P在⊙O外或⊙O上2.如图,直角坐标系中以坐标原点为圆心,1为半径作⊙O,则此坐标系中点(12,12)与⊙O的位置关系是(A)A.在圆内B.在圆外C.在圆上 D.无法确定3.已知⊙O的直径为12,A,B,C为射线OP上的三个点,OA=7,OB=6,OC=5,则(B)A.点A在⊙O内B.点B在⊙O上C.点C在⊙O外D.点C 在⊙O上命题角度2 点和圆的位置关系的逆向应用4.已知点P在圆外,它到圆的最近距离是1 cm,到圆的最远距离是7 cm,则圆的半径为(A)A.3 cm B.4 cm C.5 cm D.6 cm 5.已知在△ABC中,∠C=90°,AC=3,BC=4,点P为边AB的中点,以点C为圆心,长度r为半径画圆,使得点A,P在⊙C内,点B在⊙C外,则半径r的取值范围是(C)A.52<x<4 B.52<x<3 C.3<r<4 D.r>3命题角度3 不在同一直线上的三个点确定一个圆6.已知M(1,2),N(3,-3),P(x,y)三点可以确定一个圆,则以下P点坐标不满足要求的是(C)A.(3,5) B.(-3,5) C.(-1,7) D.(1,-2)7.下列四边形的四个顶点,一定可在同一个圆上的是(B)A.平行四边形B.矩形C.菱形D.梯形命题角度4 三角形的外接圆与外心8.如图所示的正方形网格中,A,B,C三点均在格点上,那么△ABC的外接圆圆心是(C)A.点E B.点F C.点G D.点H 9.如图,⊙O是△ABC的外接圆,∠A=62°,E是BC的中点,连接OE并延长交⊙O于点D,连接BD,则∠D的度数为(B)A.58°B.59° C.60° D.61°命题角度5 反证法10.(舟山中考)用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是(D)A.点在圆内B.点在圆上C .点在圆心上D .点在圆上或圆内欧几里得喜爱的证法英国著名的数学家哈代说过:“欧几里得所喜爱的间接法(反证法)是数学最好的武器之一,它比象棋中任何的‘丢卒保车’走法都高明.因为一个棋手提供牺牲的只是一兵一卒,而一个数学家提供的是整个求证的目标.”反证法是一种间接证法,它可以分为两种:如果所要证明的结论,它的反面只有一种情况就叫归谬法;如果结论的反面有两种以上情况就叫穷举法.【课堂引入】我国射击运动员在奥运会等运动会上屡次取得佳绩.如图是射击靶的示意图,它是由许多同心圆组成的,你知道击中靶上不同位置的成绩如何计算吗?这一现象体现了平面上的点和圆的位置关系,如何判断点和圆的位置关系呢?师生活动:教师演示课件和图片,展示射击靶,指导学生说出各个成绩,继而引出点与靶心的距离,同时得到点和圆的位置关系.1.探究:点和圆的位置关系问题1:下图中点A,B,C与⊙O的位置关系是怎样的?问题2:设⊙O的半径为r,说出点A,B,C与圆心O的距离d与半径r的关系.问题3:反过来,已知点P到圆心O的距离d和圆的半径r,能否判断点P 和⊙O的位置关系?师生活动:学生进行口答,阐述自己的想法,教师引导全班同学发现、探究规律,继而进行总结归纳.教师板书:(1)点和圆的三种位置关系:点在圆上、点在圆外、点在圆内.(2)点到圆心的距离d与圆的半径r之间的数量关系有三种:d>r,d=r,d<r.(3)d>r⇔点在圆外;d=r⇔点在圆上;d<r⇔点在圆内.2.探究:不在同一条直线上的三个点确定一个圆活动一:问题1:经过已知点A作圆,这样的圆你能作出多少个?问题2:经过已知点A,B作圆,这样的圆你能作出多少个?圆心分布有什么特点?师生活动:学生动手操作,教师进行指导、帮助,讨论交流后统一结论:经过平面内一个点可以作无数个圆(如图1);经过平面内两个点可以作无数个圆,圆心都在线段AB的垂直平分线上(如图2).图1 图2活动二:教师提出问题:经过不在同一条直线上的三个点确定一个圆,如何确定这个圆的圆心?师生活动:教师引导学生进行分析:如图3,点A,B,C不在同一条直线上,因为所求作的圆要经过A,B,C三点,所以圆心到这三点的距离相等,因此这个点既要在线段AB的垂直平分线上,又要在线段BC的垂直平分线上.学生说明作图步骤:(1)连接AB,BC;(2)分别作出线段AB,BC的垂直平分线l1和l2,交于点O;(3)以点O为圆心,OA长为半径作圆,便可以作出经过点A,B,C的圆(如图3).图3教师引导学生总结结论,从而根据图形进行讲解与拓展,并板书:不在同一条直线上的三个点确定一个圆.概念:(1)经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆.(2)三角形外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三【典型例题】例1已知点P是线段OA的中点,P在半径为r的⊙O外,点A与点O的距离为8,则r的取值范围是(C)A.r>4 B.r>8 C.r<4 D.r<8例2小明不慎把家里的圆形镜子打碎了(如图),其中四块碎片如图所示,为了配到与原来大小一样的圆形镜子,小明带到商店去的碎片应该是(A)A.① B.② C.③ D.④例3如图,在平面直角坐标系中,点A,B,C的坐标为(1,3),(5,3),(1,-1),则△ABC外接圆的圆心坐标是(B)A.(1,3) B.(3,1) C.(2,3) D.(3,2)师生活动:学生自主思考、画图,并尝试写出解题过程,教师进行指导,并演示解答过程.【变式训练】1.已知⊙O的半径为5,点P到圆心O的距离为d.若点P在⊙O内,则(D) A.d<5 B.d=5 C.d>5 D.0≤d<52.如图,⊙O为△ABC的外接圆,且AB为⊙O的直径.若OC=AC=5,则BC的长为(D)A.10 B.9 C.8 D.5 33.(辽宁中考)过A,B,C三点,能否确定一个圆?如果能,请作出圆,并写出作法;如果不能,请用反证法加以证明.解:(1)如果A,B,C三点不在同一条直线上,就能确定一个圆.作法:如图1,①连接AB,作线段AB的垂直平分线DE;②连接BC,作线段BC的垂直平分线FG,交DE于点O;③以O为圆心,OB为半径作圆,⊙O就是过A,B,C三点的圆.(2)如果A,B,C三点在同一条直线上,就不能确定一个圆.如图2,假设过A,B,C三点可以作圆,设这个圆心为O,由点的轨迹可知,点O在线段AB的垂直平分线l′上,并且在线段BC的垂直平分线l″上,即点O为l′与l″的交点,这与“过一点只有一条直线与已知直线垂直”相矛盾,所以,过同一条直线上的三点A,B,C不能作圆.师生活动:先让学生自己动手作图,巡视课堂,查看几个学生的作图过程并指导.2.如图,点A,B,C在同一条直线上,点D在直线AB外,过这四个点中的任意3个,能画的圆有(C)A.1 个 B.2个 C.3个 D.4 个3.(内江中考)如图,⊙O是△ABC的外接圆,∠BAC=60°.若⊙O的半径OC为2,则弦BC的长为(B)A.4 B.2 3 C.3 D. 34.用反证法证明:“圆内接四边形对角相等”,首先应假设圆内接四边形对角不相等.师生活动:学生进行当堂检测,完成后,教师进行个别提问,并指导学生解释做题理由和做题方法,使学生在思考解答的基础上,共同交流,形成共识,确定答案.。

人教版数学九年级上册24.2.1 点和圆的位置关系教案

人教版数学九年级上册24.2.1 点和圆的位置关系教案

24.2点和圆的位置关系教材分析本节课选自于新人教版九年级数学上册第二十四章第二节。

在学生了解了平面内有无数个点和圆的概念的基础上学习点和圆的三种位置关系,同时从点到圆心的距离与半径之间的数量关系来认识点和圆的位置关系。

在线段垂直平分线相关内容的基础上了解在平面内经过已知一点、两点如何确定一个圆,掌握“不在同一直线上的三个点确定一个圆”;通过对“不在同一直线上的三个点确定一个圆”的证明认识反证法,并了解反证法的基本思路和一般步骤。

教学目标知识与技能:1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外:d>r;点P在圆上:d=r;点P在圆内:d<r及其运用.2.理解不在同一直线上的三个点确定一个圆并掌握它的运用.了解三角形的外接圆和三角形外心的概念.了解反证法的证明思想.方法与过程:在探索点与圆的三种位置关系时体会数学分类讨论思考问题的方法情感态度与价值观:1.培养学生数形转化的能力。

2.树立学生学数学、用数学的思想意识。

3.培养学生善于观察培养学生善于观察,学会归纳,勇于动脑动手的良好习惯。

重、难点重点:1.点和圆的三种位置关系2.不在同一直线上的三个点确定一个圆难点:反证法及其数学思想方法学情分析初三的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。

学法复习圆的两种定理和形成过程,并经历探究一个点、两个点、三个点能作圆的结论及作图方法,得出不在同一直线上的三个点确定一个圆.接下去从这三点到圆心的距离逐渐引入点P到圆心的距离与点和圆位置关系的结论并运用它们解决一些实际问题.教学方法根据本节课的内容,结合九年级学生的认知特点,从学生已有的生活经验和知识出发,为学生提供充分的从事数学活动和交流的机会,促使他们在自主探索的过程中,真正理解和掌握基本的数学知识、数学思想和数学方法,同时获得广泛的数学经验。

人教版数学九年级上册24.2《点和圆、直线和圆的位置关系》知识点+例题+练习(精品)

人教版数学九年级上册24.2《点和圆、直线和圆的位置关系》知识点+例题+练习(精品)

点、直线、圆与圆的位置关系_知识点+例题+练习1.点和圆的位置关系2.(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:3.①点P在圆外⇔d>r4.②点P在圆上⇔d=r5.①点P在圆内⇔d<r6.(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)(3)概念说明:(4)①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.(5)②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.(6)③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)(2)反证法的一般步骤是:(3)①假设命题的结论不成立;(4)②从这个假设出发,经过推理论证,得出矛盾;(5)③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质(2)①圆的切线垂直于经过切点的半径.(3)②经过圆心且垂直于切线的直线必经过切点.(4)③经过切点且垂直于切线的直线必经过圆心.(5)(2)切线的性质可总结如下:(6)如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(7)(3)切线性质的运用(8)由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定8.(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.9.(2)在应用判定定理时注意:10.①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.11.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.12.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)(4)切线长定理包含着一些隐含结论:(5)①垂直关系三处;(6)②全等关系三对;(7)③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:(2)相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.(3)注意:在习题中常常通过公共弦在两圆之间建立联系.(4)(2)两圆的公切线性质:(5)两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.(6)两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB 的延长线上,且有∠BAP=∠BDA.求证:AP 是半圆O 的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 60O O2O14. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长. 【中考连接】 一、选择题 1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.3 2.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335 B. 635 C. 10 D. 54. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 265.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外O D C B ABPA OC 第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题 6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________.8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x =图象上,则阴影部分面积等于 .14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______.15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由. 第3题图 第6题图 第7题图 第8题图 第10题图 第11题图 第12题图 第13题图19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=. (1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S =△△时,求动点M 所经过的弧长.第18题图。

新人教版九上24.2.2(1)直线和圆的位置关系

新人教版九上24.2.2(1)直线和圆的位置关系
.O r d ┐ .o d r ┐ . l .O d r ┐
l
A
. B
lC
.
相离 0 d>r
相切 1 d=r
相交 2 d< r
公共点的个数
圆心到直线的距离 d 与半径 r的关系
公共点的名称 直线名称
切点
切线
交点
割线
思考:
在⊙O中,经过半径OA的 外端点A作直线l⊥OA, 直线l和⊙O有什么位置 关系?
3.在Rt△ABC中,∠B=90°,∠A的平分线交BC于 D,以D为圆心,DB长为半径作⊙D.试说明:AC A 是⊙D的切线.
F
E
B
D
C
1.定义法:和圆有且只有一个公共点的直线是圆的切线.
2.数量法(d=r):和圆心距离等于半径的直线是圆的切线.
3.判定定理:经过半径外端且垂直于这条半径的直线是
解决问题4: 已知⊙A的直径为6,点A的坐标为 相离 (-3,-4),则x轴与⊙A的位置关系是______, y轴 与⊙A的位置关系是______. y 相切
思考:
求圆心A到x轴、 y轴的距离各是多少?
4
B O x
A.(-3,-4) 3
C
小结: 直线与圆的位置关系判定方法:
图形 直线与圆的 位置关系
点击页面即可演示
回忆旧知
1.点和圆的位置关系有几种? (1)d<r (2)d=r (3)d>r 点在圆内 点在圆上 点 在圆外
2.“大漠孤烟直,________” 是唐朝诗人王维的 长河落日圆 诗句.它描述了黄昏日落时分塞外特有的景象. 如果我们把太阳看成一个圆,地平线看成一条 直线,那你能根据直线与圆的公共点的个数想 象一下,直线和圆的位置关系有几种?

24.2.1点和圆的位置关系教案

24.2.1点和圆的位置关系教案

人教版数学九年级上24.2.1 点和圆的位置关系教学设计讲授新课、探究新知学生认通过活动1,自主学习:1.认真阅读课本92 页内容,自学完毕,要做到:(1)知道点与圆有几种位置关系?(2)会用点到圆心的距离d与圆的半径r 的大小判断点与圆的位置以及由点与圆的位置比较点到圆心的距离d 与圆的半径r 的大小。

(展示点与圆的三种位置关系,以及这三种位置关系对应的数量关系。

)自主练习:1.已知圆的半径等于5 厘米,点到圆心的距离是:A、8 厘米B、4厘米C、5 厘米。

请你分别说出点与圆的位置关系。

2.如图已知矩形ABCD 的边AB=3 厘米,AD=4 厘米.1)以点A 为圆心,3 厘米为半径作圆A ,则点B、C、D 与圆A 的位置关系如何?真阅读课本,独立思考,并根据问题梳理自学知识。

观看ppt 展示,核对自己梳理的知识是否有误,引导学生归纳总结出点与圆的位置关以及相应的数学生自主思考后,回答老师提出的问题。

学习环节,培养学生的自学能力,简单的数学知识通过自学能够掌握。

通过自主练习帮助学生将知识内化、通过独立练习消化吸收,抢答的形式(2)以点A 为圆心,4 厘米为半径作圆A,则点B、C、D 与圆A 的位置关系如何?(3)以点A 为圆心,5 厘米为半径作圆A,则点B、C、D 与圆A 的位置关系如何?活动2:探究讨论如何解决“破镜重圆”的问题?解决问题的关键是什么?(找圆心)思考:我们知道圆上有无数个点,那么多少个点就可以确定一个圆呢?我们知道,已知圆心和半径,可以作一个圆。

①经过一个已知点A 能不能作圆,可以做出多少个?②经过两个已知点A,B 能不能作圆,若能,能作出多少个圆?圆心在哪?③经过不在同一条直线上的三个点A ,B,C 能不能作圆?如果能,如何确定所作圆的圆心?更能锻炼学生的思维能力.学生讨通论解决“破过“破镜镜重圆”问重圆”问题的思路。

题,激发教师出示问学生好题,引导学奇心,产生作图,分生探究步骤引导学问题的生思考“破欲望,合镜重圆”问作寻找题与圆的关解决问系。

人教版数学九年级上册24.2.1点和圆的位置关系(第一课时)优秀教学案例

人教版数学九年级上册24.2.1点和圆的位置关系(第一课时)优秀教学案例
(二)问题导向
1.教师可以通过提出引导性的问题,引导学生思考和探究点与圆的位置关系。例如,可以提问:“点在圆内、点在圆上、点在圆外分别意味着什么?如何判断一个点与圆的位置关系?”
2.教师可以设计一系列递进式的问题,让学生逐步深入思考和理解点与圆的位置关系。例如,可以先提问:“点与圆的位置关系有哪些?”,然后逐步引导学生思考:“如何用数学方法描述和解释点与圆的位置关系?”、“如何运用点与圆的位置关系解决实际问题?”
3.教师可以通过提问引导学生反思和评价自己的学习过程和结果。例如,可以提问:“你在解题过程中遇到了哪些困难?如何克服的?”、“你认为自己的解题方法是否合理?还有没有更好的解决方式?”
(三)小组合作
1.教师可以组织学生进行小组合作,鼓励学生之间的交流和合作,培养学生的团队协作能力和沟通能力。例如,可以让学生分组讨论和探究点与圆的位置关系,每个小组共同完成一个实际问题的解题过程和结果展示。
2.教师可以利用多媒体课件展示各种实际场景,如学校平面图、城市地图等,让学生在直观的情境中理解点和圆的位置关系,增强学生的实际应用能力。
3.教师可以通过创设互动性的情景,让学生参与其中,提高学生的参与度和积极性。例如,可以组织学生分组讨论,每组设计一个实际问题,并展示解题过程和结果,促进学生之间的交流和合作。
五、案例亮点
1.情境创设贴近生活:通过设计一个学校计划在新学期开始前,在校内找一个合适的位置设立一个圆形报亭的实际问题,让学生思考如何确定报亭的最佳位置,从而引发学生的兴趣和好奇心,激发学生主动探究的欲望。这样的情境创设不仅贴近学生的生活实际,而且能够让学生感受到数学与现实生活的紧密联系,增强学生对数学学科的兴趣和认同感。
2.问题导向引导学生思考:通过提出引导性的问题,如点在圆内、点在圆上、点在圆外分别意味着什么?如何判断一个点与圆的位置关系?引导学生思考和探究点与圆的位置关系。通过设计一系列递进式的问题,让学生逐步深入思考和理解点与圆的位置关系,从而培养学生的问题解决能力和思维能力。

人教版数学九年级上册说课稿24.2.1《点和圆的位置关系》

人教版数学九年级上册说课稿24.2.1《点和圆的位置关系》

人教版数学九年级上册说课稿24.2.1《点和圆的位置关系》一. 教材分析《点和圆的位置关系》是人教版数学九年级上册第24章《圆》的第二节内容。

本节主要介绍点和圆之间的位置关系,包括点在圆内、点在圆上、点在圆外三种情况。

通过学习,使学生能够理解并掌握点和圆的位置关系,为后续学习圆的性质和应用打下基础。

二. 学情分析九年级的学生已经掌握了平面几何的基本知识,对图形的性质和概念有一定的理解。

但对于点和圆的位置关系,可能还存在一定的模糊认识。

因此,在教学过程中,要注重引导学生通过观察、思考、交流等方式,自主探索点和圆的位置关系,提高他们的空间想象能力和思维能力。

三. 说教学目标1.知识与技能:使学生掌握点和圆的位置关系,能够判断一个点在圆内、圆上还是圆外。

2.过程与方法:通过观察、思考、交流等,培养学生自主探索和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于尝试、积极思考的良好学习习惯。

四. 说教学重难点1.重点:点和圆的位置关系的判断。

2.难点:理解和掌握点和圆位置关系的内在联系。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、引导发现法等。

2.教学手段:多媒体课件、黑板、粉笔、几何模型等。

六. 说教学过程1.导入新课:通过展示一些生活中的圆形象,如硬币、篮球等,引导学生关注圆的特点,激发学生学习兴趣。

2.自主探索:让学生观察和思考,通过动手画图、讨论等方式,探索点和圆的位置关系。

3.引导发现:教师引导学生发现点和圆位置关系的规律,总结出点和圆的判断方法。

4.巩固练习:设计一些具有针对性的练习题,让学生运用所学知识解决问题。

5.课堂小结:教师和学生一起总结本节课的主要内容和收获。

6.布置作业:设计一些拓展性的作业,让学生课后继续思考和探索。

七. 说板书设计板书设计要简洁明了,突出重点。

可以采用流程图、图示、列表等形式,展示点和圆的位置关系。

八. 说教学评价教学评价可以从学生的学习态度、课堂表现、练习成绩等方面进行。

九年级.数学 第二十四章 圆 24.2 点和圆、直线和圆的位置关系 24.2.1 点和圆的位置关系

九年级.数学 第二十四章 圆 24.2 点和圆、直线和圆的位置关系 24.2.1 点和圆的位置关系

100°
B
CE
F
(2)三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求
证明).
【解】 锐角三角形(和直角三角形)的最小覆盖圆是其外接圆;钝角(dùnjiǎo)三角形
的最小覆盖圆是以其最长边为直径的圆.
12/6/2021
第十三页,共十四页。
内容(nèiróng)总结
24.2 点和圆、直线和圆的位置关系。24.2 点和圆、直线和圆的位置关系。(1)平面 内的点和圆有三种位置关系:①点在__________。(2)设⊙O半径为r,点P到O的距离OP=d,
12/6/2021
第四页,共十四页。
知识点二:三角形的外接圆
例2 小明家的房前有一块矩形(jǔxíng)的空地,空地上有三棵树A,B,C,小明想建 一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图, 不写作法,保留作图痕迹).
在△ABC中,AB=AC=10,BC=12,则△ABC的外接圆的半径(bànjìng)
12/为6/2021

第五页,共十四页。
知识点三:反证法
例3 在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于H,求证(qiúzhèng):AD与 BE不能被点H互相平分.
12/6/2021
第六页,共十四页。
求证:在一个三角形中,如果(rúguǒ)两个角不等,(
A.点M在⊙O上
)
A B.点M在⊙O内
C.点M在⊙O外 D.点M在⊙O右上方
*4.用反证法证明“△ABC中,若∠A>∠B>∠C,则∠A>60°”,第一步应假设(
)
A.∠A=60° B.∠A<60°
C.∠A≠6D0°
D.∠A≤60°

24.2.1点和圆的位置关系(教案)

24.2.1点和圆的位置关系(教案)

24.2点和圆、直线和圆的位置关系24.2.1点和圆的位置关系【知识与技能】1•掌握点与圆的三种位置关系及数量间的关系.2.探求过点画圆的过程,掌握过不在同一直线上三点画圆的方法.3.了解运用“反证法〃证明命题的思想方法.【过程与方法】通过生活中的实例探求点和圆的三种位置关系,并提炼出数量关系,从而渗透数形结合,分类讨论等数学思想.【情感态度】形成解决问题的一些根本策略,体验解决问题策略的多样性,开展实践能力与创新精神.【教学重点】〔1〕点与圆的三种位置关系.〔2〕过三点作圆.【教学难点】点与圆的三种位置关系及其数量关系反证法一、情境导入,初步认识射击是奥运会的一个正式体育工程,我国运发动在奥运会上屡获金牌,为我国赢得了荣誉,如下图是射击靶的示意图,它是由假设干个同心圆组成的,射击成绩是由击中靶子不同位置所决定的•图中是一位运发动射击10发子弹在靶上留下的痕迹.你知道如何计算运发动的成绩吗?点在圆外.解*.*OB=4cm, 从数学的角度来看,这是平面上的点与圆的位置关系,我们今天这节课就来研究这一问题,引出课题.【教学说明】随着现在经济科技的开展,奥运会越来越被人们所重视.本节通过学生熟悉的射击比赛成绩的算法,使学生在开拓知识视野的同时,感知点与圆的几种位置关系,体会数学在生活中应用.二、思考探究,获取新知1•点与圆的位置关系我们取刚刚射击靶上的一局部图形来研究点与圆存在的几种位置关系. 议一议如下列图,O O 的半径为4cm,0A=2cm,0B=4cm,0C=5cm ,那么,点A 、B 、C 与©O 有怎样的位置关系?°・°OA=2cm V 4cm ,・°・点A 在©O 内.•・・OC=5cm >4cm ,・・・点C 在©O 夕卜.【教学说明】由前面所学的“圆上的点到圆心的距离都等于半径〃,反之“到圆心的距离都等于半径的点都在圆上〃可知点B 一定在©O 上.然后引导学生看图形,初步体会并认识到点与圆的位置关系可以转化为数量关系•为下面得出结论作铺垫.点在圆【归纳结论】点与圆的三种位置关系及其数量间的关系:设©0的半径为r,点P到圆心0的距离为d.则有:点P在©0外d>r点P在©0上d=r点P在©0内d V r注:①“〃表示可以由左边推出右边的结论,也可由右边推出左边结论.读作“等价于〃.②要明确“d〃表示的意义,是点P到圆心0的距离.2•圆确实定探究〔1〕如图〔1〕,作经过点的圆,这样的圆你能作出多少个?〔2〕如图〔2〕,作经过点A、B的圆,这样的圆能作多少个?它们的圆心分布有什么特点?学生动手探究,作图,交流,得出结论,教师点评并总结.解:〔1〕过点A画圆,可作无数个圆.这些圆的圆心分布于平面的任意一点,半径是任意长的线段〔仅过点A,既不能确定圆心,也不能确定半径.〕〔2〕过的两点A、B也可作无数个圆.这些圆的圆心分布在线段AB的垂直平分线上•因为线段垂直平分线上的点到线段两端点的距离相等.〔注:仅过点A、B,同样不能确定圆心,也不能确定半径.〕思考在平面上有不共线的三点A、B、C,过这三个点能画多少个圆?圆心在哪里?解:经过A、B两点的圆,圆心在线段AB的垂直平分线上.经过A、C两点的圆,圆心在线段AC的垂直平分线上,那么这两条垂直平分线一定相交,设交点为0,则OA=OB=OC,于是以O为圆心,以OA为半径的圆,必过B、C两点,所以过不在同一直线上的A、B、C三点有且仅有一个圆.【归纳结论】不在同一直线上的三点确定一个圆.由此结论要延伸到:经过三角形三个顶点可以作一个圆,并且只能作一个,这个圆叫做三角形的外接圆.三角形的外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心一一三角形三边垂直平分线的交点.它到三角形三个顶点的距离相等.【教学说明】这段中心问题是过点作圆,在帮助学生分析这一问题时,紧紧抓住圆心和半径来研究.在三点共圆的问题上,一定要强调“不共线的三点〃.这里学生实际动手作图的内容很多,可以充分调动学生学习的主动性和积极性,通过学生的动手操作和动脑思考,增强学生对知识的理解和领悟.议一议如果A、B、C三点在同一直线上,能画出经过这三点的圆吗?为什么?f\1 1.4B(:解:如图,假设过同一直线l上的三点A、B、C能作一个圆,圆心为P,则点P既在线段AB的垂直平分线11上,又在线段BC的垂直平分线12上,即点P 是直线11与直线12的交点,由此可得:过直线l外一点P作直线l的垂线有两条1]和12,这与以前学的“过一点有且仅有一条直线与直线垂直〃相矛盾,•:过同一直线上的三点不能作圆.【教学说明】所有学生都会看出这问题一定不能作圆,但如何证明呢这是一个事实,直接证明有些困难,于是引入了反证法.反证法是间接证明问题的一种方法.它不是直接从命题的得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,从矛盾断定所作的假设不成立,从而得出原命题成立,这种方法叫做反证法•阶段接触的较为简单.三、典例精析,掌握新知例1©0的半径为10cm,根据点P到圆心的距离:⑴8cm,⑵10cm,⑶13cm,判断点P与©O的位置关系?并说明理由.解:由题意可知:r=10cm.(1)d=8cm V10cm,d V r点P在©O内;(2)d=10cm,d=r点P在©O上;(3)d=13cm>10cm,d>r点P在©O夕卜.例2如图,在A地往北90m处的B处,有一栋民房,东120m的C处有一变电设施,在BC的中点D处有一古建筑.因施工需要必须在A处进行一次爆破,为使民房,变电设施,古建筑都不遭破坏,问爆破影响的半径应控制在什么范围之内?解:由题设可知:AB=90m,AC=120m,Z BAC=90°,由勾股定理可得:BC=JAB2+AC2^.'902+1202=150〔m〕.又T D是BC的中点,・・・AD=1/2BC=75〔m〕.・•・民房B,变电设施C,古建筑D到爆破中心的距离分别为:AB=90m,AC=120m,AD=75m.要使B、C、D三点不受到破坏,即B、C、D三点都在©A 外,•:©A的半径要小于75m.即:爆破影响的半径控制在小于75m的范围,民房、变电设施,古建筑才能不遭破坏.【教学说明】例1可让学生独立思考,尝试写出过程;教师点评,并标准书写格式•例2是对本节知识的实际应用,教师引导学生分析问题,使学生学会将实际问题转化为数学问题,从而认识到问题的本质,也让学生体会到数学是与实际生活紧密相连的.四、运用新知,深化理解1.如图,在Rt A ABC中,Z C=90°,AC=4,BC=3,D、E分别为AB、AC的中点,现以点B为圆心,BC的长为半径作©B,试问A、C、D、E四点分别与©B的位置关系?2.如图,①0是厶ABC的外接圆,且AB=AC=13,BC=24,求©0的半径.3.如图,有一个三角形鱼塘,在它的3个顶点A、B、C三处均有一棵大白杨树,现设想把三角形鱼塘扩建成圆形养鱼场,但必须保持白杨树不动,请问能否实现这一设想?假设能,请设计画出示意图;假设不能,说明理由.【教学说明】上述三道题,教师可先给出提示,再让学生自主探究,或分组讨论,最后加以评析.题1是有关点和圆的位置关系,意在帮助学生加深理解新知,题2是外接圆的知识,题3是确定圆的知识的实际应用.【答案】1.解:连接EB.VZ C=90°,AC=4,BC=3,A AB=5.V E>D分别为AC、AB的中点,・・・DB=1/2AB=2.5,EC=1/2AC=2,EB=.EC2+BC2•・・AB=5>3,・・・点A在©B夕卜;•・・CB=3,・・・点C在©B上;V DB=2.5<3,・••点D在©B内;・.・EB=33>3,・・・点E在©B夕卜.2.解:・.・AB=AC,・•・AB二AC,即A是BC的中点.故连接OB,0A,则0A丄BC,设垂足为D.在Rt A ABD中,AD=\;'AB2-BD2=032-122=5.设©O的半径为r,则在Rt^OBD中,r2=(r-5)2+122,解得r=16.9.3.只要作厶ABC的外接圆即可.五、师生互动,课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流•【教学说明】学生自主发言,教师进行点评和补充,要向学生强调反证法和数形结合的数学思想.1.布置作业:从教材“习题24.2〃中选取.2.完成练习册中本课时练习的“课后作业〃局部.本节课通过复习圆的定义入手,通过学生操作,总结出了点与圆的三种位置关系,其中渗透着分类讨论的思想,经过探讨过一点、两点、三点作圆,得出了不在同一直线上三点确定一个圆,从而自然引出三角形外接圆、外心及圆内接三角形的定义,此外还学习了用反证法证明命题的方法和步骤•这些定理都是从学生实践中得出的,培养了学生动手的能力.。

九年级数学上册 24.2.1 点和圆的位置关系课件 (新版)新人教版

九年级数学上册 24.2.1 点和圆的位置关系课件 (新版)新人教版

新课讲解
无数个
2. 过A、B两点可以作几个圆?
●O ●O
●A
●O ●B
●O
圆心:线段AB的垂直平分线上 半径: 这点到A或B的距离
新课讲解
3. 过不在同一条直线上的三点可 以作几个圆?
A
B
C
新课讲解
1.分别连接AB、BC、AC;
2. 分别作出线段AB的垂直平分线l1和线段BC的垂直平 分线l2,设它们的交点为O ,则OA=OB=OC;
假设:经过同一直线的三点能作出一个圆. 矛盾:过一点有两条直线垂直于已知直线.
定理:过一点有且只有一条直线垂直于已知直线
新课讲解
分别画锐角三角形、直角三角形和钝角三角形,再画 出它们的外接圆,各三角形与它的外心有什么位置关系?
A
A
A
●O
●O
●O
B

CB
C
B
C
锐角三角形的外心位于三角形内. 直角三角形的外心位于直角三角形斜边中点. 钝角三角形的外心位于三角形外.
点P在圆上 d = r;
P
点P在圆外 d > r .
P
符号 读
作“等价于”,它
表示从符号
的左端可以得到右 端从右端也可以得
到左端.
P

r
A
新课讲解
回顾
画圆的关键是什么?
确定圆心 确定半径的大小
新课讲解
无数个
1. 过一点A可以作几个圆?

●O
● ●A O O
●O

O
圆心: 点A以外任意一点 半径: 这点与点A的距离
新课讲解
外接圆、外心
A
外接圆的圆心是三 角形三边垂直平分线的 交点,叫做三角形的外 心(circumcenter).

秋九年级数学上册 24.2.1 点和圆的位置关系教案1 新人教版(2021年整理)

秋九年级数学上册 24.2.1 点和圆的位置关系教案1 新人教版(2021年整理)

2017年秋九年级数学上册24.2.1 点和圆的位置关系教案1 (新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年秋九年级数学上册24.2.1 点和圆的位置关系教案1 (新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年秋九年级数学上册24.2.1 点和圆的位置关系教案1 (新版)新人教版的全部内容。

24.2。

1 点和圆的位置关系1.能从点和圆的位置关系,判断点和圆心的距离与半径的大小关系.2.学会用已知点到圆心的距离与半径的大小关系,判断点与圆的位置关系.3.认识三角形的外接圆,三角形的外心的概念,会画三角形的外接圆.一、情境导入同学们看过奥运会的射击比赛吗?射击的靶子是由许多圆组成的,射击的成绩是由击中靶子不同位置所决定的;如图是一位运动员射击6发子弹在靶上留下的痕迹.你知道这个运动员的成绩吗?请同学们算一算.(击中最里面的圆的成绩为10环,依次为9、8、…、1环)二、合作探究探究点一:点和圆的位置关系【类型一】判断点和圆的位置关系如图,已知矩形ABCD的边AB=3cm,AD=4c m。

(1)以点A为圆心,4cm为半径作⊙A,则点B,C,D与⊙A的位置关系如何?(2)若以点A为圆心作⊙A,使B,C,D三点中至少有一点在圆内且至少有一点在圆外,则⊙A的半径r的取值范围是什么?解:(1)∵AB=3cm<4cm,∴点B在⊙A内;∵AD=4cm,∴点D在⊙A 上;∵AC=错误!=5cm>4cm,∴点C 在⊙A外.(2)由题意得,点B一定在圆内,点C一定在圆外.∴3cm<r<5cm。

【类型二】点和圆的位置关系的应用如图,点O处有一灯塔,警示⊙O内部为危险区,一渔船误入危险区点P处,该渔船应该按什么方向航行才能尽快离开危险区?试说明理由.解:渔船应沿着灯塔O过点P的射线OP方向航行才能尽快离开危险区.理由如下:设射线OP交⊙O与点A,过点P任意作一条弦CD,连接OD,在△ODP中,OD-OP<PD,又∵OD=OA,∴OA-OP<PD,∴PA<PD,即渔船沿射线OP方向航行才能尽快离开危险区.探究点二:确定圆的条件【类型一】经过不在同一直线上的三个点作一个圆已知:不在同一直线上的三个已知点A,B,C(如图),求作:⊙O,使它经过点A,B,C.解析:根据线段垂直平分线上的点到线段两端点的距离相等,作出边AB、BC的垂直平分线相交于点O,以O 为圆心,以OA为半径,作出圆即可.解:(1)连接AB、BC;(2)分别作出线段AB、BC的垂直平分线DE、GF,两垂直平分线相交于点O,则点O就是所求作的⊙O的圆心;(3)以点O为圆心,OC长为半径作圆.则⊙O就是所求作的圆.方法总结:线段垂直平分线的作法,需熟练掌握.探究点三:三角形的外接圆【类型一】与圆的内接三角形有关的角的计算如图,△ABC内接于⊙O,∠OAB=20°,则∠C的度数是________.解析:由OA=OB,知∠OAB=∠OBA=20°,所以∠AOB=140°,根据圆周角定理,得∠C=错误!∠AOB=70°。

人教版数学九年级上册24.2.1 点和圆的位置关系教案

人教版数学九年级上册24.2.1 点和圆的位置关系教案

24.2点和圆的位置关系教材分析本节课选自于新人教版九年级数学上册第二十四章第二节。

在学生了解了平面内有无数个点和圆的概念的基础上学习点和圆的三种位置关系,同时从点到圆心的距离与半径之间的数量关系来认识点和圆的位置关系。

在线段垂直平分线相关内容的基础上了解在平面内经过已知一点、两点如何确定一个圆,掌握“不在同一直线上的三个点确定一个圆”;通过对“不在同一直线上的三个点确定一个圆”的证明认识反证法,并了解反证法的基本思路和一般步骤。

教学目标知识与技能:1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外:d>r;点P在圆上:d=r;点P在圆内:d<r及其运用.2.理解不在同一直线上的三个点确定一个圆并掌握它的运用.了解三角形的外接圆和三角形外心的概念.了解反证法的证明思想.方法与过程:在探索点与圆的三种位置关系时体会数学分类讨论思考问题的方法情感态度与价值观:1.培养学生数形转化的能力。

2.树立学生学数学、用数学的思想意识。

3.培养学生善于观察培养学生善于观察,学会归纳,勇于动脑动手的良好习惯。

重、难点重点:1.点和圆的三种位置关系2.不在同一直线上的三个点确定一个圆难点:反证法及其数学思想方法学情分析初三的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。

学法复习圆的两种定理和形成过程,并经历探究一个点、两个点、三个点能作圆的结论及作图方法,得出不在同一直线上的三个点确定一个圆.接下去从这三点到圆心的距离逐渐引入点P到圆心的距离与点和圆位置关系的结论并运用它们解决一些实际问题.教学方法根据本节课的内容,结合九年级学生的认知特点,从学生已有的生活经验和知识出发,为学生提供充分的从事数学活动和交流的机会,促使他们在自主探索的过程中,真正理解和掌握基本的数学知识、数学思想和数学方法,同时获得广泛的数学经验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A ·A
·
B
·
点和圆的位置关系
自主学习、课前诊断
一、温故知新:
1.叙述圆的两种定义.
2.确定圆的两个元素是什么?它们的作用分别是什么?
3.线段垂直平分线的性质定理和判定定理分别是什么?
二、设问导读:
阅读课本P90-92完成下列问题:
1.问题解决:
(1)在平面内,点与圆的位置关系有:
①点在____;②点在____;③点在_____;
(2)判断点和圆的位置关系的方法:
设⊙O的半径为r,点P到圆心的距离为OP=d,则有
点P在圆外⇔_______;
点P在圆上⇔_______;
点P在圆内⇔_______;
符号“⇔”读作“___________”,它表示的是什么?
2.自主探究:
(1)平面上有一点A,经过点A的圆有几个?圆心在哪里?怎样确定半径?
(2)平面上有两点A,B,经过点A,B的圆有几个?它们的圆心分布有什么特点?怎样确定半径?
3.(1)经过不在同一直线上的三点为什么可以确定一个圆?圆心和半径是如何确定的?
(2)什么是三角形的外接圆?什么是三角形的外心?它是如何确定的?
4.(1)经过同一直线上的三点为什么不能作出一个圆?说明理由.
(2)什么叫做反证法?一般有哪几个步骤?
三、自学检测:
1.判断下列说法是否正确:
(1)任意的一个三角形一定有一个外接圆. ( )
(2)任意一个圆有且只有一个内接三角形. ( )
(3)经过三点一定可以确定一个圆.( )
(4)三角形的外心到三角形各顶点的距离相等. ( )
(5)到圆心的距离大于半径的点,一定在这个圆的外部. ()
2.在平面内,⊙O的半径为5cm,点P到圆心O的距离为3cm,则点P与⊙O的位置关系是 .
互动学习、问题解决
导入新课
二、交流展示
学用结合、提高能力
一、巩固训练:
1.如图,在 Rt△ABC中,∠C=90°,AC=2,BC=4,如果以点A为圆心,AC为半径作⊙A,那么斜边
3题图 4题图
中点D 与⊙O 的位置关系是( )
A .点D 在⊙A 外
B .点D 在⊙A 上
C .点
D 在⊙A 内 D .无法确定
2.若⊙A 的半径为5,圆心A 的坐标是(3,4),点P 的坐标是(5,8),你认为点P 的位置为( )
A.在⊙A 内
B.在⊙A 上
C.在⊙A 外
D.不能确定
3.如图,在△ABC 中,点O 是它的外心,BC=24㎝,点O 到BC 的距离是5㎝,则△ABC 外接圆的半径________.
4. 如图,在矩形ABCD 中,AB=3,BC=4,现以A 为圆心,使B ,C ,D 三点至少有一个在圆内,至少
有一个在圆外,则⊙A 的半径r 的取值范围是________.
5.在如图中作出锐角三角形、直角三角形、钝角三角形的外接圆,你发现什么规律?
二、当堂检测:
1.如图,A ,B ,C••要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址.
B
A C
2.如图,在△ABC 中,AC =3,BC =4,∠C
=90°,以点C 为圆心作⊙C ,半径为r .
(1)当r 取什么值时,点A 、B 在⊙C 外.
(2)当r 在什么范围时,点A 在⊙C 内,点B 在⊙C 外. A
B C
三、拓展延伸:
1.已知线段AB =3厘米.画半径为2厘米、1.5厘米、1厘米的圆,使它都经过A 、B 两点,这样的圆分别能画几个?
2.如图,P (x ,y )是以坐标原点为圆心,5为半径的圆周上的点,
若x 、y 都是整数,猜想这
样的P 点一共有( ) A.4个 B.8个
C.12个
D.16个
课堂小结、形成网络
______________________________________________________________________________________ ______________________________________________。

相关文档
最新文档