6材料现代研究方法(衍射理论)

合集下载

材料现代分析测试方法-rietveld

材料现代分析测试方法-rietveld

材料A的Rietveld分析
通过Rietveld分析确定了材料 A的晶格参数和晶体结构。对定量 分析,确定了多相材料的不 同相的含量。
应力分析中的Rietveld 分析
利用Rietveld分析和细致的晶 格参数测定,研究了材料内 部应力分布的变化。
材料现代分析测试方法rietveld
欢迎来到本次演讲,我们将介绍材料现代分析测试方法中的一种重要技术— —Rietveld分析。让我们一起探索这个引人入胜的领域。
什么是Rietveld分析
Rietveld分析是一种用于材料结构精确测定和相对定量分析的X射线衍射技术。它通过模拟实验光 谱与理论衍射谱之间的匹配,获得材料中的晶格参数、晶体结构和物相信息。
高分子材料
用于聚合物晶体结构、配位化合物和疏水 材料的分析。
Rietveld分析的优势和局限性
优势
• 高精度的结构测定 • 广泛适用于不同材料和结构类型 • 非破坏性分析
局限性
• 对样品质量和衍射数据的要求较高 • 无法解析非晶态或非结晶态样品 • 需要对实验结果进行仔细解释
Rietveld分析的实例和案例研究
总结和展望
Rietveld分析作为一种先进的材料现代分析测试方法,在材料科学和许多其他领域具有广泛应用前 景。希望本次演讲能为大家提供了对Rietveld分析的全面了解和启发。
3 模型优化
4 结构分析
通过最小二乘法将实验和计算的衍射谱 拟合。
从拟合结果中提取材料的晶格参数和晶 体结构信息。
Rietveld分析的应用领域
材料科学
用于研究材料的晶体结构、相变以及材料 表征。
地球科学
用于研究岩石、矿石和地质样品的晶体结 构和相组成。
药物化学

《材料现代分析方法》总结

《材料现代分析方法》总结

《材料现代分析方法》总结《材料现代分析方法》是一门综合性的学科,研究材料的组成、结构、性能和相互作用等方面的分析方法。

它涉及到物理、化学、材料科学等多个学科领域,对于提高材料的质量、性能和稳定性具有重要的意义。

本课程的学习,对于培养学生的综合素质和动手能力有着重要的作用。

通过本课程的学习,我对材料的分析方法有了更深入的了解,对于材料科学研究有着更为全面的认识。

材料现代分析方法涵盖了各种物理、化学、电子显微镜、X射线衍射、质谱、光谱等各种详细的分析方法,这些方法可以全面了解材料的成分、结构和性能等特征。

例如,通过使用电子显微镜可以观察材料的微观形貌和晶体结构,通过X射线衍射可以确定材料的晶体结构,通过光谱分析可以确定材料的化学成分等。

在课程学习中,我对于材料分析方法的基本原理有了更深刻的理解。

例如,质谱分析是利用质谱仪将物质分离、检测、鉴定和分析的技术方法,原理是将原子或分子加速至高速,然后经由离子源加入其中,使样品中的原子或分子电离形成离子,接着通过外界的电场、磁场和电场等仪器来对离子进行分析和测量。

通过质谱分析,可以准确了解材料的成分和结构。

另外,在课程学习中,我还学习了许多实际应用的例子,例如用于铁路轨道的材料分析方法。

铁路轨道是国民经济中重要的基础设施之一,材料分析方法在轨道的材料研究和质量检测中起着关键作用。

通过电子显微镜和X射线衍射等技术,可以对轨道材料的晶体结构、硬度和耐磨性等性能进行分析,从而保证轨道的质量和安全。

此外,材料现代分析方法在材料科学研究领域的应用也具有广泛的前景。

通过使用各种分析方法,可以对材料的特性、性能和结构等进行全面的了解。

例如,在材料研究领域,可以利用X射线衍射技术来确定材料的晶体结构,通过质谱分析技术来分析材料的成分,通过光谱分析技术来研究材料的电学性质等。

这些分析方法的应用,将进一步推动材料科学的发展和进步。

总之,《材料现代分析方法》是一门非常重要的学科,它涵盖了各种分析方法和技术,使我们能够全面了解和研究材料的组成、结构和性能等特征。

现代材料分析方法

现代材料分析方法

现代材料分析方法现代材料分析方法包括物理、化学、电子、光学、表面和结构等多个方面的技术手段,具有快速、准确、非破坏性的特点。

下面将针对常用的材料分析技术进行详细介绍。

一、物理分析方法1. 微观结构分析:包括金相显微镜分析、扫描电镜、透射电镜等技术。

通过观察材料的显微结构、晶粒尺寸、相组成等参数,揭示材料的内在性质和形貌特征。

2. 热分析:如热重分析、差示扫描量热仪等。

利用材料在高温下的重量、热容变化,分析材料的热行为和热稳定性。

3. 电学性能测试:包括电导率、介电常数、介电损耗等测试,用于了解材料的电导性和电介质性能。

4. 磁性测试:如霍尔效应测试、磁滞回线测试等,用于研究材料的磁性行为和磁性特性。

二、化学分析方法1. 光谱分析:包括紫外可见光谱、红外光谱、核磁共振等。

通过检测材料对不同波长的光谱的吸收、散射等现象,分析材料的组分和结构。

2. 质谱分析:如质子质谱、电喷雾质谱等。

通过挥发、电离和分离等过程,分析材料中不同元素的存在及其相对含量。

3. 电化学分析:包括电化学阻抗谱、循环伏安法等。

通过测量材料在电场作用下的电流、电压响应,研究材料的电化学性能和反应过程。

4. 色谱分析:如气相色谱、高效液相色谱等。

利用材料在色谱柱上的分离和吸附效果,分析材料中组分的种类、含量和分布。

三、电子分析方法1. 扫描电子显微镜(SEM):通过照射电子束,利用电子和物质的相互作用,获得样品表面的详细形貌和成分信息。

2. 透射电子显微镜(TEM):通过透射电子束,观察材料的细观结构,揭示原子尺度的微观细节。

3. 能谱分析:如能量色散X射线谱(EDX)、电子能量损失谱(EELS)等。

通过分析材料与电子束相互作用时,产生的X射线和能量损失,来确定样品的元素组成和化学状态。

四、光学分析方法1. X射线衍射:通过物质对入射的X射线束的衍射现象,分析材料的晶体结构和晶格参数。

2. 红外光谱:通过对材料在红外辐射下的吸收和散射特性进行分析,确定材料的分子结构和化学键。

材料现代分析方法

材料现代分析方法

材料现代分析方法现代分析方法是指在化学、物理、生物等科学领域中广泛应用的一种分析技术。

它通过使用先进的仪器设备和相关的算法,能够快速、准确地对物质的成分、结构以及性质进行分析和表征。

本文将介绍几种常见的材料现代分析方法。

一、质谱分析法质谱分析法是一种非常重要的现代分析方法,广泛应用于有机化学、生物化学和环境科学等领域。

它通过将物质分子离子化,并在一个磁场中进行偏转,最后将其质量进行测定,从而确定物质的分子组成和结构。

质谱分析法具有高灵敏度、高分辨率、多组分分析的能力,可以用于确定物质的组成、确认化合物的结构、鉴定杂质等。

二、红外光谱分析法红外光谱分析法是一种基于不同分子振动产生的红外吸收谱谱图,进行物质分析和表征的方法。

该方法的原理是物质在特定波长的红外光照射下,吸收特定的波长,产生特定的振动谱带。

通过对红外光谱的测定和比对,可以确定物质的功能基团、官能团以及化学键的类型和位置,从而研究物质的组成、结构和化学性质。

三、扫描电子显微镜(SEM)扫描电子显微镜(SEM)是一种基于电子束显微技术的分析仪器。

其工作原理是在真空环境中,用电子束扫描样品表面,通过检测扫描电子的反射、散射或透射等信号,来获取样品表面的形貌、成分以及晶体结构等信息。

与光学显微镜相比,SEM具有更高的放大倍数、更高的分辨率和更大的深度。

四、X射线衍射(XRD)X射线衍射(XRD)是一种非常常用的材料分析技术,主要用于分析固体材料的结晶结构和晶体学性质。

该方法的原理是通过将物质置于X射线束中,当X射线与样品中的晶体结构相互作用时,会发生衍射现象。

通过测量样品衍射的位置、强度和形状等信息,可以确定样品的晶体结构、晶格参数和晶体定向等。

五、核磁共振(NMR)核磁共振(NMR)是一种通过检测原子核在磁场中的共振信号来进行物质分析的方法。

其工作原理是利用样品中特定原子核的性质,将其置于强大的磁场中,然后通过外加的射频电磁场来激发核自旋共振。

材料现代分析技术整理

材料现代分析技术整理

第一部份 X 射线衍射分析(XRD )1. K 系特点谱线特点:由L 、M 、N 等壳层的电子跃迁到K 壳层的空位时发出的X 射线,别离称为K α、K β、K γ谱线,一起组成K 线系特点谱线。

K α特点谱线最强,比相邻谱线强90倍,是最经常使用的谱线。

2. 特点X 射线的产生:在原子内固定壳层上的电子具有特定能量,当外加能量足够大时,可将内层电子激发出去,形成一个内层空位,外壳层的电子跃迁到内层,多余的能量以X 射线形式放出。

3. X 射线的本质为电磁波。

4. 滤光片的目的和材料:用来过滤或降低X 射线光谱中的持续X 射线和K β线的金属薄片,K β大部份被吸收,K α损失较小,滤波片材料的原子表达一样比X 射线管靶材的原子序数低1。

5. CuK α的含义:以Cu 作为靶材,高速电子轰击在铜靶上,使铜K 层产生了空位,L 层电子跃迁到K 层,产生K 系特点辐射。

6. X 射线的衍射方向是依照布拉格方程理论推导出的。

7. 布拉格方程的推导:含义:线照射晶体时,只有相邻面网之间散射的X 射线光程差为波长的整数倍时,才能产生干与增强,形成衍射线,反之不能形成衍射线。

λθn d hkl =sin 2讨论:(1) 当λ必然,d 相同的晶面,必然在θ相同的情形下才能取得反射。

(2) 当λ必然,d 减小,θ就要增大,这说明间距小的晶面,其掠过角必需是较大的,不然它们的反射线无法增强,在考察多晶体衍射时,这点由为重要。

(3) 在任何可观测的衍射角下,产生衍射的条件为:d 2≤λ,但波长太短致使衍射角过小,使衍射现象难以观测,经常使用X 射线的波长范围是0.25~0.05nm 。

(4) 波长一按时,只有2/λ≥d 的晶面才能发生衍射—衍射的极限条件。

8. X 射线的强度(严格概念)单位时刻内通过衍射方向垂直单位面积上X 射线光量子数量。

表示方式:衍射峰高度或衍射峰积分面积。

理论计算)(2θφPF I =(P-多重性因数,F-结构因子,)(θφ-因数)。

材料现代测试方法-XRD

材料现代测试方法-XRD
You should know something misunderstood by many students: 布拉格公式用反射的模型解 释了衍射的方向性问题,晶 面并不反射X射线。
布拉格定律
hkl
h1 k1 l1
h2 k2 l2
h3 k3 l3
h4 k4 l4
h5 k5 l5
.
.
.
dhkl dh1k1l1 dh2k2l2 dh3k3l3 dh4k4l4 dh5k5l5 .
X射线的产生
• 封闭式X射线管
X射线的产生
• 旋转阳极靶X射线管
其他X射线源
• 放射源 • 同步辐射
X射线与物质的相互作用
• X射线与物质相互作用时,就其能量转换而 言,可分为三部分:1)一部分被散射;2) 一部分被吸收;3)一部分透过物质继续沿 原来的方向传播。
散射
相干散射(瑞利散射) 非相干散射 (康普顿散射)
1913年,英国Bragg(布喇格父子)导出X射线 晶体结构分析的基本公式,即著名的布拉格公式。 并测定了NaCl的晶体结构。(1915年获得诺贝尔 奖)
1
X射线的本质
X射线和可见光 一样属于电磁 辐射,但其波 长比可见光短 得多,介于紫 外线与γ射线之 间,约为10-2 到102埃的范围。 与晶体中的键 长相当。
c
d 21 3
b
o
a
晶面(213)及d213
c
d300
b
o
a
晶面(300)及d300
晶面指标hkl及晶面间距dhkl
思考1:对于给定的晶胞,对于任意三个整数hkl(000除外), 我们可以画出这个(hkl)晶面吗?相邻晶面的距离可知吗?

材料现代分析方法

材料现代分析方法

材料现代分析方法材料现代分析方法是指利用现代科学技术手段对材料进行分析和研究的方法。

随着科学技术的不断发展,材料分析方法也在不断更新和完善。

现代材料分析方法的发展,为材料科学研究提供了更加精准、快速和全面的手段,对于材料的研究和应用具有重要的意义。

首先,光谱分析是材料现代分析方法中的重要手段之一。

光谱分析是利用物质对电磁波的吸收、发射、散射等现象进行分析的方法。

常见的光谱分析方法包括紫外可见吸收光谱、红外光谱、拉曼光谱等。

通过光谱分析,可以对材料的结构、成分、性质等进行研究和分析,为材料的研究和应用提供重要的信息。

其次,电子显微镜分析也是材料现代分析方法中的重要手段之一。

电子显微镜是利用电子束来照射样品,通过电子与样品相互作用产生的信号来获取样品的显微结构和成分信息的一种显微镜。

通过电子显微镜分析,可以对材料的微观形貌、晶体结构、成分分布等进行研究和分析,为材料的结构性能和应用提供重要的参考。

此外,质谱分析也是材料现代分析方法中的重要手段之一。

质谱分析是利用质谱仪对物质进行分析的方法,通过对物质中离子的质量和相对丰度进行检测和分析,来确定物质的分子结构和成分。

质谱分析可以对材料的组成、纯度、分子量等进行研究和分析,为材料的质量控制和应用提供重要的支持。

综上所述,材料现代分析方法是利用现代科学技术手段对材料进行分析和研究的方法。

光谱分析、电子显微镜分析、质谱分析等都是材料现代分析方法中的重要手段,通过这些方法可以对材料的结构、成分、性能等进行全面的研究和分析,为材料的研究和应用提供重要的支持。

随着科学技术的不断发展,相信材料现代分析方法将会更加完善和精准,为材料科学研究和应用带来更多的新突破。

材料分析方法总结

材料分析方法总结

材料分析方法总结材料是现代工业中不可缺少的一环,而材料的质量也直接影响着产品的性能和品质。

为了保证材料的质量,科学家们在不断探索新的材料分析方法。

本文将对几种常用的材料分析方法进行总结。

1. X射线衍射法X射线衍射法是一种广泛应用于材料分析的非破坏性测试方法。

它通过将X射线投射到材料上,并记录反射和散射的X射线来分析材料的晶体结构和化学成分。

这种方法适用于分析晶体,陶瓷、金属、粉末、涂料等材料的结构。

2. 扫描电子显微镜(SEM)扫描电子显微镜(SEM)是一种通过扫描专用电子束来实现高分辨率成像的仪器。

它主要用于表面形貌和微观结构的分析。

这种方法适用于分析金属、陶瓷、高分子材料、纳米颗粒等材料。

3. 原子力显微镜(AFM)原子力显微镜(AFM)是一种利用扫描探针进行表面成像的技术。

探针末端的尖端可以感知为表面提供足够的分辨率和精度。

这种方法适用于对纳米颗粒、表面形貌、物性、焊点和电性进行研究。

AFM在纳米领域的研究中应用广泛。

4. 操作模态分析(OMA)操作模态分析(OMA)是一种实验模态分析技术,通过对振动信号的处理和分析来实现材料的动态特性分析。

这种方法适用于设计振动器件、安装大型机器及其分析结构和疲劳寿命。

在固体、液体、气体中的物理情况下可以应用到OMA分析中。

5. 热重分析(TGA)热重分析(TGA)是一种非常有用的方法,可以在微观和宏观水平上实现对材料特性的分析。

它利用热重量差法分析在升温和等温条件下,材料的重量以及重量变化和热学性质。

这种方法适用于材料的分解、氧化和变化温度的测定。

同时还可以提供实际应用中需要的材料密度、表面面积、孔隙度及扰动过程参数等信息。

在工程领域中,材料分析是非常重要的一环,实现高质量,健康和可持续的生产会更加有挑战和漫长。

因此,科学家们一直在不断寻找新的材料分析方法,并不断完善现有的方法。

综合以上几种方法的优缺点,选择合适的方法来分析材料,可以有效提高材料质量,减少生产成本,提升产品品质。

材料与化工现代研究方法

材料与化工现代研究方法

材料与化工现代研究方法近几十年来,材料学和化学工程专业取得了巨大的进步,在技术领域有了许多发现和成果。

此外,许多科学家也探索了材料与化工行业的现代研究方法。

现代研究方法的一个重要特点在于,它们建立在既有的基础理论和技术之上,以更有效的方式处理和应用材料与化工行业的问题。

为了有效的指导和推动科学研究,现代材料科学和化学工程学科几乎都以现代研究方法为基础。

其中,生物材料和生物化工是关心获取和使用生物分子和特性,并将其用于材料和化学品制造的新兴产业。

生物材料技术和生物化工技术一起为新材料和化工产品的研究和开发提供了可行的现代研究方法。

此外,现代数据处理技术也在材料与化工领域更有效的指导科学研究。

如模拟技术和计算方法,可以帮助研究人员预测、分析和解释材料与化工产品的特性和性能,以及它们在各种环境下的反应。

在这些现代数据处理技术的辅助下,科学家可以获得更准确、更快速的科学研究成果,也可以更快的开发高性能成型体系。

除了上述现代研究方法,相对成熟的材料科学技术也在材料与化工研究中发挥着重要作用。

如微结构分析技术,可以用于分析材料的基本结构和特性,从而发现材料的缺陷和弱点,并为未来的设计做准备。

此外,激光辅助技术和X射线衍射仪也是现今材料与化工行业常用的技术手段之一,它们可以帮助研究人员更好地探索和分析物质的结构和性质。

总之,现代研究方法对材料与化工科学和技术的发展起到了至关重要的作用。

它们不仅使研究人员得以获得更多精准的结果,还可以改善研究成果的速度和质量,并有效地应用于工程实践中。

因此,在进行材料与化工研究时,研究人员应该熟悉并准确地应用现代研究方法,以获得更好的科学研究成果。

材料现代研究方法(衍射强度)

材料现代研究方法(衍射强度)
A(θ)——吸收因数。
通常影响强度的因素主要为如下五个: (1)结构因数 (2)多重性因数 (3)罗伦兹-偏振因数 (4)吸收因数 (5)温度因数
1、多重性因数P0: 反映(hkl)晶面处于有利取向几率的因数 如:立方晶体的{100}面多重性因数为6,{111}为8
2、罗伦兹-偏振因数(角因数) 定义:衍射角对积分强度的影响,归纳为角因数
解决这个问题的最简单办法就是求出位于原点上的一 个原子与阵胞内的另一个原子散射波的周相差。
上图表示一个晶胞内两个原子散射波相干的情况。其中s0表示入射 波方向的单位矢量,s表示所讨论的(hkl)面的衍射波方向的单位矢 量,rj为第J个原子的位置矢量,很明显,
现在求原子散射波2′和第j个原子A散射波1′之 间的光程差δj
原子对电子波的散射仍使用原子散射这一概念,用fa表示。 fa与fx关系如下:
一个晶胞的散射
晶体对X射线的衍射:方向与强度 衍射束方向:布拉格方程;
衍射束强度:原子位置的函数。
在满足布拉格定律条件下,各个单位晶胞之间没有周相 差。讨论一个晶胞则可以代表整个晶体。
确定了周相差和原子排列之间的关系,则可以 获得衍射束强度与原子位置的函数关系。
在单晶中涉及的角因数为
其中
由小单晶体旋转时导出
当假定晶粒取向无规则,在可觉察角范围Δθ内,如图:
取向有利于反射的晶粒数与cosθB成正比 同时,如右图所示
任一衍射线条长度均为2πRsin2θB,则单位长度的相对强度与 成正比 以上三者相结合(相乘),即
3、吸收因数 为试样本身对衍射强度的影响
4、温度因数 原子的振动所造成的X射线程差,与温度有关。
波的解析式为: 由欧拉公式及强度与振幅平方成正比,

材料现代分析方法

材料现代分析方法

材料现代分析方法
现代分析方法是指在分析过程中所采用的一系列科学技术和方法,以获得对于材料组成、结构、性质以及处理质量等方面的准确评估和分析。

现代分析方法是材料科学和工程技术领域中的一个重要研究方向,其涉及的技术和方法包括光学显微镜、扫描电子显微镜、X射线衍射、电子能谱、紫外-可见光谱、
红外光谱、质谱等。

光学显微镜是一种常用的现代分析方法,通过观察和记录材料样本的显微结构,可以了解材料的组成、形貌以及微观缺陷等信息。

扫描电子显微镜能够以非常高的分辨率观察到材料表面的微观形貌,通过扫描电子显微镜还可以进行能谱分析,得到材料的元素组成信息。

X射线衍射是一种常用的结构表征方法,通过射线在材料中的衍射现象,可以确定材料的晶体结构和晶格常数。

通过X射
线衍射还可以对材料的晶体缺陷和残余应力进行表征。

电子能谱是用来分析材料表面化学元素和化学结构的方法,通过测量材料在电子束照射下,产生的电子能量损失的谱线,可以获取材料的元素组成和化学结构信息。

紫外-可见光谱和红外光谱是用来分析材料的光学性质的方法,通过测量材料对于不同波长的紫外-可见光和红外光的吸收和
反射,可以了解材料的能带结构、能级布局以及化学键的类型和强度等。

质谱是分析材料中存在的各种离子和分子的方法,通过将材料样品分子或离子化,然后用质谱仪测量其质量-荷质比,可以确定材料中存在的化合物的分子量和组成。

综上所述,现代分析方法为材料科学的发展和应用提供了强大的工具和技术支持。

通过这些方法,科学家们可以深入了解材料的组成、结构和性质,为新材料的合成和应用提供指导和参考,并促进材料科学的发展和创新。

材料现代研究方法 PPT

材料现代研究方法 PPT

2.2 X射线的本质、能量
X射线本质上和无线电波、可见光、射线一样,也是 一种电磁波,具有波粒二象性。其波长在0.01~10nm之 间,介于紫外线和射线之间,但没有明显的界限。其 短波段与射线长波段相重叠,其长波段则与紫外线的 短波段相重叠。
γ射线
X射线
UV
IR
可见光
微波
无线电波
10-15
10-10
材料现代研究方法
第1章 绪论
1.1 材料研究的意义和内容
什么是材料?
材料是指将原料通过物理或者化学的方法加工制成的金属、 无机非金属、有机高分子和复合材料的固体物质。
金属材料:导电性、塑性和韧性好。 无机非金属材料:硬度高,韧性差。
高分子材料:强度、弹性模量低。 造成这些材料不同性能的原因就是因为材料的物质组成和 结构不同。从原子结构来讲,就是化学键不同。比如金属材 料是由金属键结合的,无机非金属材料主要是由离子键和共 Hale Waihona Puke 键结合的。2.3 X射线的产生
目前,衍射实验使用的X射线,都是以阴极射线 (即高速度的电子流轰击金属靶)的方式获得的,所 以要获得X射线必须具备如下条件: 1.电子源(阴极): 产生自由电子,加热钨丝发射热电子。 2.靶材(阳极): 设置自由电子撞击的靶子,如阳极靶, 用以产生X射线。 3.高压发生器: 用以加速自由电子朝阳极靶方向加速运 动。 4.真空: 将阴阳极封闭于小于133.310-6 Pa的高真空中, 保持两极洁净,促使加速电子无阻挡地撞击到阳极靶 上。
X射线管-产生X射线的核心装置
(1)阴极 阴极的功能是发射电子。它由钨丝制成,在 通以一定的电流加热后便能释放出热辐射电子。
为使电子束集中,在阴极灯丝外加上聚焦罩,并使灯 丝与聚焦罩之间始终保持100-400V的电位差。

现代材料研究方法知识点总结

现代材料研究方法知识点总结

现代材料研究方法知识点总结一、X 射线谱(连续和特征)X 射线与物质相互作用 1、吸收限及其应用定义:吸收系数发生突变的波长激发K 系荧光辐射,光子的能量至少等于激出一个K 层电子所作的功W k h νk = Wk= hc/λk 只有ν > νk 才能产生光电效应。

所以:λk 从激发荧光辐射角度称为激发限。

从吸收角度看称为吸收限。

吸收限λk 的应用(1)滤波片的选择主要目的去除k β原理:选择滤波片物质的λk 介于λ k α 和λk β之间。

即Z 滤=Z 靶-1(Z 靶<40)Z 滤=Z 靶-2 (Z 靶>40) (2)阳极靶的选择 (1) Z 靶< Z 试样(2) 自动滤波 Z 靶= Z 试样+1 或+2(3) Z 靶>> Z 试样最忌Z 靶+1或+2=Z 试样2、X 射线与物质相互作用产生那些信息。

X 射线通过物质,一部分被散射,一部分被吸收,一部分透射。

3、衰减公式I=I 0e -μm ρH1、衰减公式相对衰减:μ:线衰减系数负号厚度↑ I ↓积分:为穿透系数2、衰减系数1) 线衰减系数I :单位时间通过单位面积的能量μ的物理意义:通过单位体积的相对衰减。

2) 质量衰减系数X 射线的衰减与物质的密度有关,因此每克物质引起的相对衰减为μ/ρ= μm HH m eI I ρμ-=03) 复杂物质的衰减系数 w :重量百分比μm = w 1μm1+ w 2 μm2 + w 3 μm3 +….+ w n μmn 4) μm 与λ、Z 的关系μm ≈k λ3Z 3 λ<λk 时k=0.007λ>λk 时 k=0.009 二、晶体学内容7种晶系、倒易点阵。

晶系点阵常数间的关系和特点实例三斜单斜斜方(正交) 正方立方六方菱方a ≠b ≠c,α≠β≠γ≠90°a ≠b ≠c,α=β=90°≠γ(第一种) α=γ=90°≠β二种a ≠b ≠c,α=β=γ=90°a=b ≠c α=β=γ=90° a=b=c α=β=γ=90° a=b ≠c α=β=90γ=120 a=b=c α=β=γ≠ 90°K2CrO7 β-S CaSO 42H 2O Fe 3C TiO 2 NaCl Ni-As Sb,Bi倒易点阵的定义若正点阵的基矢为a 、b 、c 。

材料的现代研究方法

材料的现代研究方法

材料的现代研究方法
现代材料研究方法包括以下几个方面:
1. 材料表征方法:包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X 射线衍射(XRD)、原子力显微镜(AFM)等表征手段,用于分析材料的形貌、结构、晶体学等特征。

2. 热分析方法:包括差示扫描量热法(DSC)、热重分析法(TGA)、热导率测量、热膨胀测量等,用于研究材料的热性质和相变过程。

3. 光谱学方法:包括红外光谱(IR)、拉曼光谱、紫外可见光谱(UV-Vis)、核磁共振(NMR)等方法,用于分析材料的化学组成和分子结构。

4. 表面分析方法:包括X射线光电子能谱(XPS)、扫描隧道显微镜(STM)、原子力显微镜(AFM)等技术,用于表征材料表面的化学组成和形貌。

5. 电化学方法:包括循环伏安法(CV)、电化学阻抗谱(EIS)等,用于研究材料的电化学性质和电化学反应过程。

6. 计算模拟方法:包括分子动力学模拟(MD)、密度泛函理论(DFT)等计算方法,用于预测材料的性质、模拟材料的结构和动力学过程。

这些现代研究方法互相结合,可以全面了解材料的结构、性质和功能,为材料科学的发展提供重要的支持。

材料科学研究与测试方法

材料科学研究与测试方法

材料科学研究与测试方法
材料科学是研究材料结构、性能和制备的学科,是现代工业和科技发展的重要基础。

为了深入了解材料的性质和特点,研究人员需要使用各种测试方法和工具来对材料进行分析和评估。

本文将介绍一些常见的材料科学研究和测试方法,包括电子显微镜、X射线衍射、拉伸试验、硬度测试等。

电子显微镜是一种用于观察材料微观结构的强大工具。

它可以通过聚焦电子束来放大样品的图像,以纳米级别的分辨率显示材料的详细结构。

这种技术在材料科学中的应用广泛,包括研究材料的晶体结构、纳米颗粒、表面形貌和化学成分等。

X射线衍射是一种用于研究材料结构的分析方法。

通过将X射线照射到样品上,然后观察反射和散射的X射线,可以确定材料的晶体结构、晶胞参数和晶体缺陷等信息。

这种方法广泛应用于研究晶体材料、催化剂、陶瓷等。

拉伸试验是一种用于评估材料强度和刚度的测试方法。

在此测试中,样品通常被拉伸到破裂,测量其应力和应变,然后计算出其杨氏模量和屈服强度等参数。

这种方法广泛应用于研究金属、塑料、玻璃等材料的机械性能。

硬度测试是一种用于评估材料抗压强度和耐磨性的测试方法。

这种方法通常涉及将一个硬度针或球压入样品表面,然后测量针或球的深度,以确定样品的硬度。

这种方法广泛应用于研究金属、陶瓷、塑料等材料的耐磨性和切削性能。

综上所述,材料科学研究和测试方法是深入了解材料结构和性能的重要手段。

通过使用各种测试方法和工具,研究人员可以获得有关材料微观结构、晶体结构、力学性能和耐磨性等方面的重要信息。

这些信息对于材料的制备和应用具有重要意义。

材料现代分析方法试试题库.docx

材料现代分析方法试试题库.docx

材料现代分析方法试题库一、填空1、第一个发现X射线的科学家是,第一个进行X射线衍射实验的科学家是 02、X射线的本质是 ,其波长为 o3、X射线本质上是一种,它既具有性,又具有性,X射线衍射分析是利用了它的 o4、特征X射线的波长与和无关。

而与有关。

5、X射线一方面具有波动性,表现为具有一定的,另一方面又具有粒子性,体现为具有一定的,二者之间的关系为。

6、莫塞来定律反映了材料产生的与其的关系。

7、从X射线管射出的X射线谱通常包括和 o8、当高速的电子束轰击金属靶会产生两类X射线,它们是和,其中在X射线粉末衍射中采用的是。

9、特征X射线是由元素原子中引起的,因此各元素都有特定的和电压,特征谱与原子序数之间服从定律。

10、同一元素的入入Kq、入邓的相对大小依次为;能量从小到大的顺序是。

(注:用不等式标出)11、 X射线通过物质时,部分X射线将改变它们前进的方向,即发生散射现象。

X 射线的散射包括两种:和 o12、hu+kv+lw=0关系式称为,若晶面(hkl)和晶向[uvw]满足该关系式,表明°15、倒易点阵是由晶体点阵按照次」一.''。

j)式中,为倒易点阵基矢,可为正点阵基矢的对应关系建立的空间点阵。

在这个倒易点阵中,倒易矢量「加的坐标表达式为,其基本性质为14、X射线在晶体中产生衍射时,其衍射方向与晶体结构、入射线波长和入射线方位间的关系可用、、和四种方法来表达。

15、当波长为A的X射线照射到晶体并出现衍射线时,相邻两个(hkl)反射线的波程差是,相邻两个(HKL)反射线的波程差是 o16、布拉格公式X=2dsin0中X表示, d表示,0表示。

17、获得晶体衍射花样的三种基本方法是、、18、获得晶体衍射花样三种基本的方法中,劳埃法是通过改变来获得衍射花样的,主要用于判断;旋转单晶法是旋转晶体,改变_______________________ 来获得衍射花样的,主要用于研究;粉末法是通过单色X射线照射多晶体样品,改变__________________ 来产生衍射的,测定样品的 o19、当X射线照射在一个晶体时,产生衍射的必要条件是,而产生衍射的充要条件是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、衍射面(或称干涉面)和衍射指数
2d sin n 2(dhkl / n)sin
2dHKL sin
H、K、L:衍射指数; (HKL):衍射面
材料现代研究方法讲义
Байду номын сангаас
用MoKα辐射Ag晶体试样
(111)晶面的1级、2级和3级衍射线的布拉格角分别为:
15.13°,31.46°,51.52° (222)晶面的1级衍射线的布拉格角为:31.46°
整个原子面上所有 原子的散射线产生 干涉加强的条件
材料现代研究方法讲义
劳埃方程
(3) X射线受三维点阵(空间点阵)衍射的条件
a(cos 1 cos 1 ) H
b(cos 2 cos 2 ) K
c(cos 3 cos 3 ) L
整个三维点阵中所 有原子的散射波产 生相长干涉的条件
a(cos cos ) H
H cos cos a
材料现代研究方法讲义
0级衍射
1级衍射
X射线传播方向
材料现代研究方法讲义
材料现代研究方法讲义
劳埃方程
(2) X射线受二维点阵 (原子面)衍射的条件
a(cos 1 cos 1 ) H b(cos 2 cos 2 ) K
材料现代研究方法讲义
劳埃方程
(1) X射线受一维点阵(原子列)衍射的条件
-2级衍射 -1级衍射 0级衍射 1级衍射 2级衍射
X射线传播方向
材料现代研究方法讲义
劳埃方程
(1) X射线受一维点阵(原子列)衍射的条件
OQ PR H
OQ OR cos PR OR cos
材料现代研究方法讲义
布拉格方程
QA ' Q ' PAP ' SA ' A ' T n n 0, 1, 2,......, 衍射级数
SA ' A ' T d sin
2d sin n
材料现代研究方法讲义
布拉格方程的讨论
1、选择反射
与可见光的反射相同,某一晶面的入射线、反射线和 晶面法线必须位于同一平面内,且入射线和反射线分居在 晶面法线二侧。 与可见光的反射不同,必须满足布拉格方程时,才有 可能发生反射。(选择反射)
S s s0
aS H b S K c S L
材料现代研究方法讲义
劳埃方程的讨论:
H ) 1 soc 1 soc(a
-如何确定 1 , 2 , 3
2 2
K ) 2 soc 2 soc(b
L ) 3 soc 3 soc(c
1 ,2 ,3 , 是定值;
对于某一条衍射线,H,K,L 也是定值。
但是:1 , 2 , 3 相互关联。
2
cos 1 cos 2 cos 3 1
如何确定?
材料现代研究方法讲义
布拉格方程
PAD QBD RCD P ' AE Q ' BE R ' CE
θ 不变化 变化 变化
材料现代研究方法讲义
材料现代研究方法讲义
材料现代研究方法讲义
材料现代研究方法讲义
劳埃方程
(3) X射线受三维点阵(空间点阵)衍射的条件
劳埃方程可以用矢量表示。设s0为入射线方向的单 位矢量,s为衍射线方向的单位矢量,令:
a(cos 1 cos 1 ) a s a s0 a S
劳埃方程的矢量表达式:
(333)晶面的1级衍射线的布拉格角为:51.52°
材料现代研究方法讲义
布拉格方程的讨论
3、产生反射的极限条件
2d HKL sin d HKL / 2
4、衍射花样与晶体结构的关系 5、衍射实验方法
劳埃法: 转晶法: 粉末法:
试样 单晶体 单晶体 粉末、多晶体
λ 变化 不变化 不变化
晶体的衍射效应与衍射几何
材料现代研究方法讲义
可见光的光栅衍射现象
(a b) sin
k
K: 0,1,2,… …,增强
k

2
K: 1,2,3,… …,相消
材料现代研究方法讲义
X射线衍射的基本原理

晶体结构、点阵常数已知,测定波长。--X射线光谱分析; 已知波长,测定晶体的点阵常数。
相关文档
最新文档