(完整word版)贝雷架计算书
贝雷门架的设计及计算书
附件2:贝雷门架的设计及计算书一跨门洞贝雷梁按9米长计算,按简支梁布设。
门洞纵向分配梁采用1.7m高贝雷梁,贝雷梁规格为170 cm×300 cm×18cm,腹板下面用45花窗将3个贝雷梁连成一组,其余部分每2个用90花窗连成一组。
每组贝雷片对应端头采用贝雷框进行连接。
贝雷梁上面每90cm 铺设工字钢,工字钢上搭设支架,支架上搭设方木,方木上直接铺设箱梁底模。
数据采集:312型贝雷梁:单排单层加强型①弯曲应力:[δϖ]=245 Mpa.②桁片最大弯矩:[Mmax]=1687.5 KN.m.③桁片最大剪力:[Qmax]=245 KN.④截面抵弯矩:[Wx]=7699 cm3⑤截面惯性矩:[ Ix]=577434 cm4.Q235钢材①轴向应力:[δ]=245 Mpa.②弯曲应力:[δϖ]= 181 Mpa.③弹性模量:[E]=2.1×105 Mpa.④挠度:[f]=l/400.6.1.1、的混凝土重左幅5900 KN,右幅4500KN。
6.1.2、模板重以混凝土自重的5%计左幅295KN,右幅225KN6.1.3、上述荷载合计G左=6195KN,G右=4725KN均布荷载线处最大荷载在腹板处:q=(1.7×1.2×12×2.5+1.7×1.2×12×2.5×0.05)÷12×10=53.55KN/m6.1.4、弯矩检算M=ql²/8 =53.55×12²/8=963.9KN*m需要贝雷梁片数n=963.9/1687.5=0.57片,下面配置3片,满足要求。
6.1.5、挠度验算【f】=L∕400=30mmf=5qL4∕384EI=5×53.55×120004÷(384×2.1×105×577434×104)=12.48mm需要贝雷梁片数n=12.48/30=0.42片,下面配置3片,满足要求。
贝雷架钢便桥计算书30米跨
30m贝雷架钢便桥计算书1.工程概况本桥适用于30m下承式贝雷架钢便桥。
桥梁主体结构为321型三排单层加强贝雷架。
便桥净宽4.2m,行车道净宽4m,人行道宽净宽1m。
桥面铺设8mm厚Q235钢板,面板上沿桥向横向焊接φ12的圆钢,间距15cm,面板下设加强肋10#工字钢,间距25cm,工字钢底部铺设横向分配梁28b#工字钢,横穿贝雷架,纵向间距为1.5m。
2.设计参数2.1设计荷载设计荷载按照公路I级,考虑到贝雷架钢便桥长30m,采用车道荷载进行桥梁结构设计计算。
贝雷架钢便桥结构图见图1,立面图见图2。
图1 贝雷架钢便桥结构图(单位:mm)图2 贝雷架钢便桥立面图(单位:mm)2.2受力模型建立受力模型,如图3。
图3 桥梁受力模型(单位:mm)对桥梁受力模型进行简化,简化为简支梁受力模型(偏于安全),见图4。
图4 简化后的受力模型(单位:mm)3.加强肋10#工字钢受力验算3.1工字钢及面板参数构件参数:理论重量11.261kg/m(0.11261kN/m),d=4.5mm,Ix:Sx=8.59,Wx= 49cm3,[σ]=145Mpa/1.2=120.8 Mpa,[τ]=85Mpa/1.2=70.8Mpa,安全系数取1.2,E=206GPa,Ix=245cm4,8mm厚钢板0.628kN/m2。
3.2荷载组成根据公路I级车道荷载的均布荷载标准值qk=10.5kN/m,桥涵计算跨径小于或等于5m时,Pk=180kN;桥涵计算跨径等于或大于50m时,Pk=360kN,桥涵计算跨径大于5m,小于50m时,Pk值采用插法求得。
因计算跨径为1.5m,故集中力Pk=180kN。
荷载组合采用1.2恒载+1.4活载。
3.3受力计算以简支梁模型计算,以跨中1.5m最不利位置进行受力分析,以单根工字钢进行受力计算。
截取单元见图5。
图5 截取单元的断面图3.3.1恒载计算(1)面板重力0.628×4×1.5=3.768kN(2)10#工字钢重力(0.11261kN/m)0.11261×1.5×(4/0.25+1)=2.87kN则单根工字钢每延米重力q1=(3.768+2.87)/((4/0.25)+1)=0.26kN/m(3)恒载弯矩M1(组合系数1.2)M1=1.2×0.125×0.26×1.5×1.5=0.09kN·m图6 恒载作用下均布力、剪力及弯矩图3.3.2活载计算根据公路I级车道荷载的均布荷载标准值qk=10.5kN/m,桥涵计算跨径小于或等于5m时,Pk=180kN;桥涵计算跨径等于或大于50m时,Pk=360kN,桥涵计算跨径大于5m,小于50m时,Pk值采用直线插求得,计算跨径为1.5m,故Pk=180kN。
贝雷架结构计算(Word)
一、结构计算根据一般原则,结构计算从上向下逐层进行。
A、木板计算参照施工经验,5cm松木板一般控制其跨距,即次梁间的净间距小于80cm,木板的各向强得以均衡发挥,初步设计次梁间距1.0m,梁宽大于20cm。
计算省略。
B、次梁计算计算跨距考虑钢套筒的沉桩偏位最大为0.5m,如出现特殊情况再行计算,暂不计主梁的宽度。
计算跨距:L=10+0.5×2-2.2=8.8 m为方便计算,次梁作为两端简支梁。
取计算宽度为1.0m,即一根次梁的作用宽度。
初步选择HK400b型钢作为次梁,高400mm,宽慰300mm,材质为A3钢,自重155.3kg/m。
其截面特性参数为:Wx=2883cm3,Ix=57678cm4;材料性能参数取:[σ]=170MPa,E=2.1×105MPa。
验算型钢的强度及跨中挠度。
1)堆载状态:依据经验及估算平台上的杂物堆载作均布荷载考虑,局部综合取值:30kN/m2,单宽均布荷载q1=30kN/m2×1.0m=30 kN/m。
型钢自重q2=155.3 kg/m。
跨中弯矩M=(q1+q2)L2/8=305 kN·m2)钻机行走:以QJ250—1型钻机为计算对象,行走状态自重w=50t,底座支点间距为 4.65m×4.35m。
考虑钻机行走时前后支点受力不均,受力偏心系数k=1.2,单点荷载:F=k·w/4=150 kN最不利位置为钻机单侧移至排架中间,即单侧支点处于次梁跨中,跨中弯矩M1=F·L/4=330 kN·m型钢自重产生的跨中弯矩:M2=q2·L2/8=15.0 kN·mM=M1+M2=345 kN·m>305 kN·m则跨中弯矩以M=345 kN·m作为验算弯矩,计算次梁所需的抗弯截面模量,W=M/[σ]=345/0.17=2191 cm3<Wx=2883 cm3即选取的型钢强度能满足施工要求。
贝雷梁计算书1.19-426
新建铁路青岛至荣城城际铁路工程蒙沙河施工便桥计算书计算:复核:审核:中铁一局青荣城际铁路工程项目经理部一分部2010年12月青荣项目跨蒙沙河施工便桥计算书一、工程概况青荣城际铁路五沽河特大桥位于即墨市境内,起讫里程为DK64+004.20~DK73+706.80,全长9702.6米。
五沽河特大桥跨域五沽河和蒙沙河两条河流。
蒙沙河系五沽河的支流,属季节性河流,平时流水量较小,最大流速约为1米/秒。
正桥桥址处河道宽132米,正常时节最大水深3~4m,两侧河堤比正常水位高1.5~2m,河两岸边地势平坦,均为耕地。
根据设计和图纸资料显示,桥位河床表面为0.5~1m厚的淤积层,下为2~3m厚的粉质粘土覆盖层;其次为泥质砂岩,强度在400KPa。
由于蒙沙河是一条季节性河流,为此充分考虑到雨季的防洪需求,在穿越此河时采用高架桥形式。
为不缩窄行洪断面,设计桥长不小于现有两堤堤距,桥梁底高程不低于现有堤顶高程,采用贝雷梁组合的钢架梁结构形式(详见附图)。
桥跨布置为“11-12m+1-9m”十跨贝雷梁组合的简支梁。
基础采用υ426×10mm钢管桩,为加强基础整体性,每排桥墩的钢管均采用[16b号槽钢设置剪刀支撑连接成整体,每个墩采用双排钢管每排2根钢管,形成板凳桩,增加便桥的稳定性;墩顶横梁采用双Ⅰ40b工字作为钢支撑,钢支撑上横向布置4组贝雷片做纵梁,每组两片,横向每1.5m间距采用10号槽钢加工支撑架连成整体;贝雷梁上铺设Ⅰ20a工字钢分配梁,间距0.3m,桥面系铺10mm花纹防滑钢板,桥面净宽4.5m。
根据现实需要,栈桥承载力满足:50t履带吊吊重20t在桥面行走和40t混凝土搅拌运输车、60t满载施工车辆行走,按100t荷载检算。
车辆通行时计算采用荷载冲击系数1.2及偏载系数1.2。
钢管桩按承压桩和摩擦桩组合设计。
计算采用跨度12m计算。
二.钢便桥设计验算钢便桥长度141m,设置11孔-12m+1孔-9m,6孔一联,钢便桥总宽5.5m,桥面净宽4.5m,计算跨径为12m。
贝雷梁支架计算书91744
西山漾大桥贝雷梁支架计算书1.设计依据设计图纸及相关设计文件《贝雷梁设计参数》《钢结构设计规范》《公路桥涵设计规范》《装配式公路钢桥多用途使用手册》《路桥施工计算手册》《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130—2011)2.支架布置图在承台外侧设置钢管桩φ609×14mm,每侧承台2根,布置形式如下:钢管桩与承台上方设置400*200*21*13的双拼H型钢连成整体。
下横梁上方设置贝雷梁,贝雷梁采用33排单层321标准型贝雷片,贝雷片横向布置间距为450mm。
贝雷梁上设置上横梁,采用20#槽钢@600mm。
于上横梁上设置满堂支架.支架采用钢管式支架,箱梁两端实心部分采用100×100方木支撑,立杆为450×450mm;并在立杆底部设二个倒拔塞便于拆模。
箱梁腹板下立杆采用600(横向)×300mm (纵向)布置。
横杆步距为1。
2m,(其它空心部位立杆采用600(横向)×600mm(纵向)布置)。
内模板支架立杆为750(横向)×750mm(纵向)布置.横杆步距为≤1。
5m。
箱梁的模板采用方木与夹板组合;两端实心及腹板部位下设100*100mm方木间距为250mm.翼板及其它空心部位设50*100mm方木间距为250mm。
内模板采用50*100mm方木间距为250mm。
夹板均采用1220*2440*15mm的竹夹板.具体布置见下图:3.材料设计参数3.1.竹胶板:规格1220×2440×15mm根据《竹编胶合板国家标准》(GB/T13123—2003),现场采用15mm厚光面竹胶板为ρ。
Ⅱ类一等品,静弯曲强度≥50MPa,弹性模量E≥5×103MPa;密度取310m=/KN3.2.木材100×100mm的方木为针叶材,A—2类,方木的力学性能指标按”公路桥涵钢结构及木结构设计规范"中的A-2类木材并按湿材乘0。
某渡槽贝雷梁支架法计算书
(型钢立柱)计算书一、基本参数二、荷载参数均布荷载:三、立柱搭设参数正立面图侧立面图四、横梁计算均布荷载标准值q’=0.9+68.7=69.6kN/m均布荷载设计值q=1.2×0.9+82.4=83.48kN/m由于横梁为贝雷梁,抗弯抗剪验算用标准值计算,计算简图如下:1、抗弯验算横梁弯矩图(kN·m) M max=378.972kN·m≤[M]=788.2kN·m满足要求!2、抗剪验算横梁剪力图(kN) V max=229.68kN≤[V]=245.2kN满足要求!3、支座反力计算承载能力极限状态R1=275.484kN,R2=275.484kN正常使用极限状态R'1=229.68kN,R'2=229.68kN五、纵向转换梁计算纵向转换梁自重:q=1.2×0.381=0.457kN/m纵向转换梁所受集中荷载标准值:F’=k2max(R’1,R’2)=0.6×max(229.68,229.68)=137.808kN 纵向转换梁所受集中荷载设计值:F=k2max(R1,R2)=0.6×max(275.484,275.484)=165.29kN 计算简图如下:1、抗弯验算纵向转换梁弯矩图(kN·m)σ=M max/W=79.643×106/401880=198.177N/mm2≤[f]=265N/mm2满足要求!2、抗剪验算纵向转换梁剪力图(kN)V max=242.983kNτmax=V max/(8I zδ)[bh02-(b-δ)h2]=242.983×1000×[116×2502-(116-8)×2242]/(8×50235400×8)=138.38N/mm2≤[τ]=155N/mm2满足要求!3、挠度验算纵向转换梁变形图(mm)跨中νmax=2.603mm≤[ν]=1/250=2500/250=10mm悬挑端νmax=1.513mm≤[ν]=21/250=2×400/250=3.2mm 满足要求!4、支座反力计算承载能力极限状态R max=314.065kN正常使用极限状态R'max=261.847kN六、立柱验算立柱长细比λ=h/i=14000/207.9=67.34≤[λ]=150满足要求!查表得φ=0.789立柱所受横梁传递荷载N=R max/k2=314.065/0.6=523.442kN立柱所受轴力F=N+1.2gk×H=523.442+1.2×1.74×14=552.674kN强度验算:σ=F/A=552.674×103/22167=24.932N/mm2≤[f]=205N/mm2满足要求!稳定性验算:σ=F/(φA)=552.674×103/(0.789×22167)=31.6N/mm2≤[f]=205N/mm2满足要求!立柱连接焊缝验算:焊缝所受压力N=523.442kNN/(h e l w)=N/(0.7h f l w)=523.442×103/(0.7×18×300)=138.477N/mm2≤βf f f w=1.22×180=2 19.6N/mm2满足要求!七、立柱基础验算立柱传给基础荷载F=552.674kN混凝土基础抗压强度验算σ=F/A=552.674×103/(3.5×106)=0.158N/mm2≤f c=14.3N/mm2满足要求!立柱底面平均压力p=F/(m f A)=552.674/(0.9×3.5)=175.452kPa≤f ak=300kPa 满足要求!。
盖梁贝雷支架计算书
盖梁贝雷支架计算书盖梁贝雷支架计算书一、贝雷梁支架整体受力计算共计4排贝雷梁,每排由4片贝雷标准节组成,共16片贝雷标准节段组成。
上部荷载、模板、钢管、施工、贝雷梁自重均视为均布荷载考虑。
1、荷载分析混凝土按高配筋计算,容重取26KN/m3,贝雷梁按3KN/片,钢管(φ48×3.5)按3.84kg/m ,混凝土设计方量为11.1m 3。
a .混凝土自重)/(05.24121.1126m KN =? b .贝雷梁自重 )/(412163m KN =? c .钢管:3m 管50根, 6m 管48根,1m 管30根,钢管共长468m 。
钢管自重 )/(498.11001284.3468m KN =??d .模板自重模板采用组合钢模,按40kg/m 2计,约计40m 2,则有:)/(333.1100124040m KN =??e .施工荷载(人员、设备、机具等):2.5KN/ m 2 ,即为:1.47KN/mf .振捣砼时产生的荷载:2KN/ m 2,即为:1.18KN/mg .倾倒砼时产生的冲击荷载:2KN/m 2即为:1.18KN/m 综合以上计算,取均布荷载为:35KN/m (计算值为34.711) 2、贝雷梁内力计算贝雷梁为悬臂梁,其计算简图如下所示:弯矩图:剪力图:由内力图可知:贝雷梁承受的最大弯矩M max 、最大剪力Q max 、最大支座反力R 1,2分别为:M max =157.5KN ·m Q max =105KN R 1,2=210KN则单排贝雷梁受力情况为:M max =157.5/4=39.375KN ·m <[M 0]=975 KN ·mQ max =105/4=26.25KN <[Q]=245.2KN 贝雷梁抗弯、抗剪均满足使用要求。
每组贝雷梁对支座(牛腿)的作用力N= R 1,2/4=52.5KN 3、贝雷梁位移计算:单层4片贝雷梁的抗弯刚度为2104200KN ·m 2 位移图:由位移图有:悬臂端位移最大,为:f max =0.39mm<="">二、牛腿强度及刚度计算 1、牛腿受力分析由贝雷片传来的荷载N1=N2=52.5KN ,间距为45cm 。
(完整word版)贝雷架计算书(word文档良心出品)
贝雷架计算书1、计算荷载①自重(33m桁架)其中1为2I8截面、2为3I8截面、3为I8截面、4为4[10截面、5为I16截面、6为I4截面;3包括斜撑、横撑、竖杆、斜杆。
桁架自重123.5t;43根分配梁(I16_3.75m)3.24t;2条钢轨(I14_31.5m)1.04t;(21m桁架)其中1为2I8截面、2为3I8截面、3为I8截面、4为4[10截面、5为I16截面、6为I4截面;3包括斜撑、横撑、竖杆、斜杆。
桁架自重52.3t;27根分配梁(I16_2.35m)1.28t;2条钢轨(I14_19.5m)0.6t;②风荷载(由于对贝雷架本身作用很小,故忽略,具体数值见桥墩计算)③箱梁荷载以125t/12m为荷载级度做纵向加载,33米贝雷架的每根钢轨上的均布荷载为54.5kN/m;21米贝雷架的每根钢轨上的均布荷载为56.1kN/m;④施工荷载0.3t/m,由于33m长的贝雷架还不到10t重,所以计算中假定自重荷载中包括了施工荷载,不做另计。
2、计算模型(以33米贝雷架为例、21米贝雷架类似)33米贝雷架立面图33米贝雷架平面图33米贝雷架侧面图3、计算结果①33米贝雷架反力:荷载组合类型荷载组合内容应力:桁架应力:可以看到,在端部及跨中应力较大,最大的端斜杆,跨中上下弦杆87.4Mpa,端柱应力为72Mpa。
梁应力:(分配梁及轨道)可见,轨道的应力大于分配梁的应力,轨道上最大应力81.2Mpa, 分配梁上最大应力63Mpa。
位移: 桁架位移:在承压钢梁和自重下,桁架竖向挠度2.713cm 。
贝雷梁非弹性挠度 ()()cm n f m 105.02-= n 为奇数;所以,cm f m 6120*05.0==;总位移为6+2.713=8.713cm cm L 5.560033600==>。
需设置预拱度来调整梁底标高。
在承压钢梁和自重下,升温21度时,桁架纵桥向位移+1.442cm。
贝雷架施工便桥计算书
贝雷架施工便桥计算书一、工程简介本桥位于沿江高速公路铜陵连接线K2+005处,距离顺安河入江口约18KM,该段为部通航河流。
桥位处地质为亚粘土、角砾石及弱风化砾岩。
河底标高为5.8米,大堤标高为13.45米 , 堤顶宽6米,堤顶距离约为105米,两侧为耕地及水塘,高程为8~9米,场地微地貌单元为河流冲积地貌,地下水相对稳定。
二、桥位选址及布置根据施工便道旳位置和桥位通航条件,保证与施工便道贯穿。
根据两岸接线位置、地形、高差和地质等状况,测定最合适旳桥梁中线;测量河流宽度,测定推出桥梁跨径。
三、贝雷架桥面构造1、桁架及销子桁架构造由上下弦杆、竖杆及斜杆焊接而成。
上下弦杆旳一端为阴头,另一端为阳头。
阴阳头均有销栓孔。
两节桁架连接时,将一节旳阳头插入另一节旳阴头内,对准销子孔,插上销子。
弦杆焊有多块带圆孔旳钢板,其中有:弦杆螺栓孔,在拼装双层或加强桥梁时,在此孔插桁架螺栓或弦杆螺栓,使双层桁架或桁架与加强弦杆结合起来;支撑架孔,用于安装支撑架。
当桁架用在桥梁上部时,使用中间两个孔;当桁架用作桥墩时,用端部旳一对孔,以加固上下节桁架。
下弦杆两端钢板上旳圆孔及弦杆槽钢腹板上旳长圆孔叫做风构孔,用以连接抗风拉杆。
下弦杆设有4 块横梁垫板,上有栓钉,以固定横梁位置。
端竖杆有支撑架孔,为安装支撑架、斜撑与联板用。
端竖杆及中竖杆旳矩形孔叫做横梁夹具孔,用来安装横梁夹具。
2、加强弦杆加强弦杆是为了提高桥梁旳抗弯能力,发挥桁架腹杆旳抗剪作用。
桥梁端部弯矩小,故首尾节桁架均不设加强弦杆。
加强弦杆,两端设有阴阳头,中部设有支撑架孔与弦杆螺栓孔。
弦杆螺栓孔板反焊于杆件旳一面,使连接加强弦杆与桁架旳弦杆螺帽不致外露,保证桥梁推出时顺利通过滚轴。
加强弦杆与桁架连接。
斜撑旳作用在于增长桥梁旳横向稳定,其两端各有一空心圆锥形套筒,上端连于桁架端竖杆支撑架孔,下端则连在横梁短柱上。
每节桥梁在桁架后端竖杆(以桥梁推出方向为前方)上各装一对斜撑,桥头端柱上另加一根。
连续箱梁贝雷架计算
连续箱梁贝雷梁支架施工计算书桥梁施工2008-10-29 15:52:40 阅读314 评论4 字号:大中小连续箱梁贝雷梁支架施工计算书一、工程概况机场二期**合同段共有连续箱梁319孔,梁高1.8米,宽度9-22米不等。
箱梁顶、底厚均为25厘米,腹板厚度45厘米。
桥位处地面填有一层约1.1米厚水稳性建筑材料,经处理后承载力可达200Kpa/m2以上。
我部采用贝雷片拼装桁架主施工承重结构进行施工。
纵梁跨度最大15米,支墩顶安装2根40a工字梁作为分配梁,分配梁上铺设贝雷梁;每组贝雷片采用标准支撑架进行连接。
支墩采用Ф60mm×10mm钢管立柱,搁置在扩大基础和承台顶面上,立柱顶、底部均与钢板焊接,为提高支墩的稳定性,在各排支墩钢管之间纵向横向均设置槽钢连接。
贝雷纵梁顶面设置10cm×12cm木方做横向分配梁、6m×8cm木方纵向分配梁;模板系统由侧模、底模、内模、端模等组成。
10cm×12cm木方分配梁沿横桥向布置,箱梁底模板采用定型大块竹胶模板,直接铺装在6cm×8cm木方分配梁上进行连接固定。
该桥侧模、底模均采用高强度防水竹胶板制作。
二、受力验算依据1、《机场二期两阶段设计施工图》2、《路桥施工计算手册》3、《公路施工计册:桥涵》4、《公路桥涵设计通用规范》(JTG D60-2004)5、《公路桥涵施工技术规范》(JTJ041-2000)6、《公路桥涵钢结构及木结构设计规范》(JTJ025)三、荷载分析1、钢筋混凝土重量横梁:q1=46.8KN/m2腹板:q2=46.8KN/m2上下底板(考虑加厚): q3=18.2KN/m2内模支撑和模板、枋木荷载:q4 =1.5KN/m2`设备及人工荷载:q5=2.5KN/m2砼浇注冲击荷载:q6 =2kN/m2砼振捣荷载:q7=2kN/m2四、模板受力计算底模板为受弯结构,需要验算其抗弯强度和刚度,通过对比, 梁高为1.8米时横梁下底模板受力最大,仅验算该处模板,按照三跨连续梁计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贝雷架计算书
1、计算荷载
①自重
(33m桁架)
其中1为2I8截面、2为3I8截面、3为I8截面、4为4[10截面、5为I16截面、6为I4截面;3包括斜撑、横撑、竖杆、斜杆。
桁架自重123.5t;
43根分配梁(I16_3.75m)3.24t;
2条钢轨(I14_31.5m)1.04t;
(21m桁架)
其中1为2I8截面、2为3I8截面、3为I8截面、4为4[10截面、5为I16截面、6为I4截面;3包括斜撑、横撑、竖杆、斜杆。
桁架自重52.3t;
27根分配梁(I16_2.35m)1.28t;
2条钢轨(I14_19.5m)0.6t;
②风荷载(由于对贝雷架本身作用很小,故忽略,具体数值见桥墩计算)
③箱梁荷载
以125t/12m为荷载级度做纵向加载,33米贝雷架的每根钢轨上的均布荷载为54.5kN/m;21米贝雷架的每根钢轨上的均布荷载为56.1kN/m;
④施工荷载
0.3t/m,由于33m长的贝雷架还不到10t重,所以计算中假定自重荷载中包括了施工荷载,不做另计。
2、计算模型
(以33米贝雷架为例、21米贝雷架类似)
33米贝雷架立面图
33米贝雷架平面图
33米贝雷架侧面图
3、计算结果
①33米贝雷架
反力:
荷载组合类型荷载组合内容
应力:桁架应力:
可以看到,在端部及跨中应力较大,最大的端斜杆,跨中上下弦杆87.4Mpa,端柱应力为72Mpa。
梁应力:(分配梁及轨道)
可见,轨道的应力大于分配梁的应力,轨道上最大应力81.2Mpa, 分配梁上最大应力63Mpa。
位移: 桁架位移:
在承压钢梁和自重下,桁架竖向挠度2.713cm 。
贝雷梁非弹性挠度 ()
()cm n f m 105.02
-= n 为奇数;
所以,cm f m 6120*05.0==;总位移为6+2.713=8.713cm cm L 5.5600
33600==>。
需设置预拱度来调整梁底标高。
在承压钢梁和自重下,升温21度时,桁架纵桥向位移+1.442cm。
在承压钢梁和自重下,降温30度时,桁架纵桥向位移-1.18cm。
考虑到温度产生的位移,梁端间距不得小于3cm,暂定为5cm。
②21米贝雷架
反力:
荷载组合类型荷载组合内容
注:FX为顺桥向、FY为横桥向、Fz为竖向,单位Kn。
应力:
桁架应力:
可以看到,应力在端部较大,最大的端斜杆应力73Mpa。
,端柱应力为48Mpa。
梁应力:(分配梁及轨道)
可见,轨道的应力大于分配梁的应力,轨道上最大应力60.7Mpa, 分配梁上最大应力42Mpa 。
位移: 桁架位移:
在承压钢梁和自重下,桁架竖向挠度8.852mm 。
贝雷梁非弹性挠度 ()
()cm n f m 105.02
-= n 为奇数;
所以,cm f m 448*05.0==;总位移为4+0.885=4.885cm cm L 5.3600
21600==>。
需设置预拱度来调整梁底标高。
在承压钢梁和自重下,升温21度时,桁架纵桥向位移+7.483mm 。
在承压钢梁和自重下,降温30度时,桁架纵桥向位移-7.491mm 。
考虑到温度产生的位移,梁端间距不得小于2cm ,暂定为5cm 。
4、总结
庆丰桥栈桥的贝雷架结构为16Mn的钢结构,采用韩国的Midas软件计算,贝雷架本身采用桁架单元,分配梁及钢轨采用梁单元;分配梁和贝雷架之间采用焊接,采用自由度耦合,分配梁及钢轨之间亦采用自由度耦合。
33m和21m贝雷架设计合理,钢结构应力较富裕,但是其刚度较小,须采取适当措施以调整梁底线形以符合设计要求。