六年级数学下册《圆柱的认识》PPT课件之二(人教版)
合集下载
数学人教版六年级下册《圆柱的认识》课件
一个圆柱的体积是157立方厘米,底 面半径是2厘米,求它的高。
解析
根据圆柱体积计算公式V = πr²h, 将已知条件代入公式进行求解即可 。
04
圆柱在日常生活中的应用
建筑领域:柱子、桥梁结构等
圆柱形的柱子在建筑中起到支撑和传递荷载的作用,常见于古希腊和罗马建筑风格 中,如帕特农神庙的石柱。
桥梁结构中的圆柱,如桥墩,用于支撑桥梁并分散荷载到地基上,保证桥梁的稳定 性和安全性。
圆锥体积
圆锥体积 = (1/3) × π × 底面半径 ^2 × 高。
圆锥与圆柱关系探讨
形状关系
圆柱和圆锥都是旋转体,圆柱可以看作是由矩形绕一边旋转而成 ,而圆锥可以看作是由直角三角形绕一直角边旋转而成。
面积关系
在底面积和高相等的情况下,圆柱的侧面积是圆锥侧面积的2倍; 圆柱的全面积也是圆锥全面积的2倍。
数学人教版六年级下册《圆柱的 认识》课件
目录
• 圆柱基本概念与性质 • 圆柱表面积计算方法 • 圆柱体积计算方法 • 圆柱在日常生活中的应用 • 拓展延伸:圆锥相关知识介绍 • 课程总结与回顾
01
圆柱基本概念与性质
圆柱定义及组成要素
圆柱定义
由两个平行且相等的圆面和一个 侧面围成的立体图形叫做圆柱。
准确的传动比和高效的传动效率。
圆柱形的机械零件还包括轴、销、套筒 等,它们在机械设备中起到连接、定位
和传递动力的作用。
其他领域:艺术品、容器等
圆柱形的艺术品,如雕塑、摆件等,具有独特的造型和审美价值。艺术 家们常利用圆柱体的形态和比例创造出富有动感和张力的作品。
容器类的圆柱形物体在生活中随处可见,如圆柱形的水杯、花瓶、罐头 盒等。这些容器不仅方便使用和携带,而且符合人们的审美习惯。
解析
根据圆柱体积计算公式V = πr²h, 将已知条件代入公式进行求解即可 。
04
圆柱在日常生活中的应用
建筑领域:柱子、桥梁结构等
圆柱形的柱子在建筑中起到支撑和传递荷载的作用,常见于古希腊和罗马建筑风格 中,如帕特农神庙的石柱。
桥梁结构中的圆柱,如桥墩,用于支撑桥梁并分散荷载到地基上,保证桥梁的稳定 性和安全性。
圆锥体积
圆锥体积 = (1/3) × π × 底面半径 ^2 × 高。
圆锥与圆柱关系探讨
形状关系
圆柱和圆锥都是旋转体,圆柱可以看作是由矩形绕一边旋转而成 ,而圆锥可以看作是由直角三角形绕一直角边旋转而成。
面积关系
在底面积和高相等的情况下,圆柱的侧面积是圆锥侧面积的2倍; 圆柱的全面积也是圆锥全面积的2倍。
数学人教版六年级下册《圆柱的 认识》课件
目录
• 圆柱基本概念与性质 • 圆柱表面积计算方法 • 圆柱体积计算方法 • 圆柱在日常生活中的应用 • 拓展延伸:圆锥相关知识介绍 • 课程总结与回顾
01
圆柱基本概念与性质
圆柱定义及组成要素
圆柱定义
由两个平行且相等的圆面和一个 侧面围成的立体图形叫做圆柱。
准确的传动比和高效的传动效率。
圆柱形的机械零件还包括轴、销、套筒 等,它们在机械设备中起到连接、定位
和传递动力的作用。
其他领域:艺术品、容器等
圆柱形的艺术品,如雕塑、摆件等,具有独特的造型和审美价值。艺术 家们常利用圆柱体的形态和比例创造出富有动感和张力的作品。
容器类的圆柱形物体在生活中随处可见,如圆柱形的水杯、花瓶、罐头 盒等。这些容器不仅方便使用和携带,而且符合人们的审美习惯。
数学人教版六年级下册《圆柱的认识》课件
因此,圆柱侧面积的 计算公式为:侧面积 = 底面周长 × 高。
将底面周长代入侧面 积公式,得到:侧面 积 = 2 × π × 半径 × 高。
底面周长可以通过圆 的周长公式计算:底 面周长 = 2 × π × 半径。
底面积计算公式推导
01
圆柱的底面积是指圆柱底面的面 积,即一个圆的面积。
02
圆的面积计算公式为:底面积 = π × 半径²。
机械领域
在机械制造中,圆柱形的零件非 常常见,如轴承、齿轮等。这些 零件的形状和尺寸精度对机器的
性能和使用寿命有很大影响。
日常生活
在日常生活中,我们也经常接触 到圆柱形的物体,如罐头、水杯 、笔筒等。了解圆柱的性质和特 点有助于我们更好地理解和使用
这些物品。
02
圆柱表面积计算方法
侧面积计算公式推导
典型例题解析
例题1
一个圆柱的底面半径是3厘米,高 是5厘米,求它的体积。
解析
根据圆柱体积计算公式V = πr²h, 将已知条件代入公式进行计算即可 。
例题2
一个圆柱的侧面积是100平方厘米, 底面半径是5厘米,求它的体积。
解析
首先根据侧面积和底面半径求出圆柱 的高,然后再利用体积公式进行计算 。
例题3
面积公式,总表面积 = 2 × π × 3² + 94.2 = 150.72平方厘米。
03
例题2
一个圆柱的侧面积是150.72平方厘米,高是4厘米,求它的底面半径。
03
圆柱体积计算方法
体积计算公式推导过程
圆柱体积计算公式的推导基于长方体 体积的计算方法。
当切割的小长方体的数量足够多时, 可以准确地得到圆柱的体积计算公式 :V = πr²h。
将底面周长代入侧面 积公式,得到:侧面 积 = 2 × π × 半径 × 高。
底面周长可以通过圆 的周长公式计算:底 面周长 = 2 × π × 半径。
底面积计算公式推导
01
圆柱的底面积是指圆柱底面的面 积,即一个圆的面积。
02
圆的面积计算公式为:底面积 = π × 半径²。
机械领域
在机械制造中,圆柱形的零件非 常常见,如轴承、齿轮等。这些 零件的形状和尺寸精度对机器的
性能和使用寿命有很大影响。
日常生活
在日常生活中,我们也经常接触 到圆柱形的物体,如罐头、水杯 、笔筒等。了解圆柱的性质和特 点有助于我们更好地理解和使用
这些物品。
02
圆柱表面积计算方法
侧面积计算公式推导
典型例题解析
例题1
一个圆柱的底面半径是3厘米,高 是5厘米,求它的体积。
解析
根据圆柱体积计算公式V = πr²h, 将已知条件代入公式进行计算即可 。
例题2
一个圆柱的侧面积是100平方厘米, 底面半径是5厘米,求它的体积。
解析
首先根据侧面积和底面半径求出圆柱 的高,然后再利用体积公式进行计算 。
例题3
面积公式,总表面积 = 2 × π × 3² + 94.2 = 150.72平方厘米。
03
例题2
一个圆柱的侧面积是150.72平方厘米,高是4厘米,求它的底面半径。
03
圆柱体积计算方法
体积计算公式推导过程
圆柱体积计算公式的推导基于长方体 体积的计算方法。
当切割的小长方体的数量足够多时, 可以准确地得到圆柱的体积计算公式 :V = πr²h。
数学人教版六年级下册《圆柱的认识》课件
计算表面积
根据圆柱的表面积公式(2个底 面积+侧面积),先计算底面积 和侧面积,然后相加得到圆柱的
表面积。
计算体积
根据圆柱的体积公式(底面积× 高),将测量得到的底面半径代 入公式计算底面积,再乘以高得
到圆柱的体积。
探究不同条件下圆柱形状变化规律
改变底面半径
01
保持圆柱的高不变,逐渐增大或减小底面半径,观察圆柱形状
圆锥是一个有一个面是圆形,另一个面为曲面的几何 体。它也有表面积和体积的计算公式,可以与圆柱进
行对比学习。
输入 标球体题
球体是一个所有点都与球心等距的几何体,它在现实 生活中有着广泛的应用,如篮球、足球等。
圆锥
立方体
除了上述几种常见的几何体之外,还有许多其他的几 何体,如三棱锥、四棱台等。了解这些几何体的概念
在化学实验中,圆柱形容器被广泛用于盛放液体或固体试剂。 了解圆柱的几何性质,有助于更好地理解和进行化学实验操 作。
工程技术中的圆柱应用
在工程技术领域,圆柱被广泛应用于各种机械零件、建筑结 构等的设计和制造中。了解圆柱的几何性质和力学特性,对 于工程师来说具有重要意义。
04
圆柱的图形变换与空间观念培养
根据圆柱的体积公式,可以列出方程$pi times 5^2 times h = 157$,解这个方程得到高$h = 2$ 厘米。
03
圆柱与圆锥、球体的关系
圆柱与圆锥的相互转化
圆柱与圆锥的几何特性对比 圆柱有两个平行的圆形底面,侧面为曲面;圆锥有一个圆 形底面和一个侧面为曲面的顶点。
圆柱与圆锥的相互转化方法 通过切割、旋转等操作,圆柱可以转化为圆锥,圆锥也可 以转化为圆柱。例如,将圆柱的一个底面逐渐缩小至一个 点,即可得到圆锥。
六年级数学下册《圆柱的认识》PPT课件之二(人教版)
把圆柱体的侧面沿着它的一条高展开,得到 一个长方形,这个长方形的长等于圆柱底面的 高 。也可能会得到一个 周长 。宽等于圆柱的____ ____ 高 。 正方形,这时圆柱底面的周长等于圆柱的____
动一动手:
制作一个圆柱体
再见
平安小学
许云崖
底面
.o
.o’
圆柱体(粗细相同)
它们是完全相等的两个圆
圆柱的曲面叫做侧面 两底之间的距离叫做高 高有无数条 长度都相等
高
底面
圆柱体的侧面展开图
展开过程动画图
圆柱体的侧面展开图
高 底面周长
展开后平面图
长方形的长=圆柱体的长
长方形的宽=圆柱体的高
课堂练习
1、说说你见过哪些物体是圆柱形的。
2、指出下列圆柱的底面、侧面和高。
3、指出下面图形中哪些是圆柱。
图1
图2
图3Leabharlann 图4图5图6
4、判断题。对的打“√”,错的打“×”。
(1)圆柱体的高只有一条。( ×) (2)上下两个底面相等的圆柱形物 体一定是圆柱体。(× ) (3)圆柱体底面周长和高相等时, 沿着它的一条高侧面展开是个正方形。(
)
5、填空。
动一动手:
制作一个圆柱体
再见
平安小学
许云崖
底面
.o
.o’
圆柱体(粗细相同)
它们是完全相等的两个圆
圆柱的曲面叫做侧面 两底之间的距离叫做高 高有无数条 长度都相等
高
底面
圆柱体的侧面展开图
展开过程动画图
圆柱体的侧面展开图
高 底面周长
展开后平面图
长方形的长=圆柱体的长
长方形的宽=圆柱体的高
课堂练习
1、说说你见过哪些物体是圆柱形的。
2、指出下列圆柱的底面、侧面和高。
3、指出下面图形中哪些是圆柱。
图1
图2
图3Leabharlann 图4图5图6
4、判断题。对的打“√”,错的打“×”。
(1)圆柱体的高只有一条。( ×) (2)上下两个底面相等的圆柱形物 体一定是圆柱体。(× ) (3)圆柱体底面周长和高相等时, 沿着它的一条高侧面展开是个正方形。(
)
5、填空。
人教版六年级数学下册《圆柱的认识》课件
联系
在某些特定条件下,圆柱可以近似 地看作长方体。例如,当圆柱的高 远大于底面半径时,其形状接近于 长方体。
圆柱表面积计算
02
表面积公式推导
圆柱侧面积计算
通过展开圆柱侧面,得到一个长方形 ,其长等于圆柱底面周长,宽等于圆 柱高,从而推导出侧面积公式。
圆柱底面积计算
圆柱表面积计算
将圆柱侧面积与两个底面积相加,得 到圆柱表面积公式。
和优劣。
圆柱在日常生活中
04
的应用
ห้องสมุดไป่ตู้
建筑领域:柱子、管道等
柱子
在建筑中,圆柱常被用作支撑结构, 如桥梁的墩柱、建筑物的立柱等。它 们能够承受垂直荷载并传递至基础。
管道
圆柱形的管道在建筑领域中也十分常 见,用于输送液体、气体等。例如, 水管、暖气管、排水管等都是圆柱形 的。
机械制造:轴承、齿轮等
轴承
结合其他知识点,如 比例、百分数等,进 行复杂问题的分析和 解决。
解决实际问题,如计 算圆柱形水桶的容积 、圆柱形粮仓的粮食 储量等。
与其他图形体积比较
与长方体、正方体体积公式的比 较,分析异同点及适用范围。
与圆锥体积公式的比较,探讨二 者之间的联系与区别。
与球体、长方体的交叉比较,理 解不同图形体积计算方法的特点
玩具
圆柱形的玩具也十分常见,如圆柱形积木、滚筒等。这些玩具不仅形状简单、 易于制造,而且能够激发孩子们的创造力和想象力。
练习题与课堂互动
05
环节
判断题
01
02
03
04
圆柱的侧面展开后一定是一个 长方形。
圆柱的两个底面是相等的圆。
圆柱的高有无数条,且长度都 相等。
圆柱的侧面是一个曲面,无法 展开。
在某些特定条件下,圆柱可以近似 地看作长方体。例如,当圆柱的高 远大于底面半径时,其形状接近于 长方体。
圆柱表面积计算
02
表面积公式推导
圆柱侧面积计算
通过展开圆柱侧面,得到一个长方形 ,其长等于圆柱底面周长,宽等于圆 柱高,从而推导出侧面积公式。
圆柱底面积计算
圆柱表面积计算
将圆柱侧面积与两个底面积相加,得 到圆柱表面积公式。
和优劣。
圆柱在日常生活中
04
的应用
ห้องสมุดไป่ตู้
建筑领域:柱子、管道等
柱子
在建筑中,圆柱常被用作支撑结构, 如桥梁的墩柱、建筑物的立柱等。它 们能够承受垂直荷载并传递至基础。
管道
圆柱形的管道在建筑领域中也十分常 见,用于输送液体、气体等。例如, 水管、暖气管、排水管等都是圆柱形 的。
机械制造:轴承、齿轮等
轴承
结合其他知识点,如 比例、百分数等,进 行复杂问题的分析和 解决。
解决实际问题,如计 算圆柱形水桶的容积 、圆柱形粮仓的粮食 储量等。
与其他图形体积比较
与长方体、正方体体积公式的比 较,分析异同点及适用范围。
与圆锥体积公式的比较,探讨二 者之间的联系与区别。
与球体、长方体的交叉比较,理 解不同图形体积计算方法的特点
玩具
圆柱形的玩具也十分常见,如圆柱形积木、滚筒等。这些玩具不仅形状简单、 易于制造,而且能够激发孩子们的创造力和想象力。
练习题与课堂互动
05
环节
判断题
01
02
03
04
圆柱的侧面展开后一定是一个 长方形。
圆柱的两个底面是相等的圆。
圆柱的高有无数条,且长度都 相等。
圆柱的侧面是一个曲面,无法 展开。
六年级数学(人教版)-圆柱的认识-2PPT课件
高 底面周长
宽 长
答:长方形的长是31.4cm,宽是20cm。
3.下面哪个图形是圆柱的展开图(单位:cm)?
3.下面哪个图形是圆柱的展开图(单位:cm)?
√
底面直径是2cm 底面周长:2×3.14=6.28(cm)
答:这个图形是圆柱的展开图。
3.下面哪个图形是圆柱的展开图(单位:cm)?
底面直径是4cm 底面周长:4×3.14=12.56(cm)
×
答:这个图形不是圆柱的展开图。
3.下面哪个图形是圆柱的展开图(单位:cm)?
×
底面直径是3cm 底面周长:3×3.14=9.42(cm)
答:这个图形不是圆柱的展开图。
课后作业
1.数学书20页练习三 第1题
课后作业
2.数学书20页练习三 第2题
课后作业
3.数学书20页练习三 第4题
课后作业
的哪条边为轴旋转而成的,底面半径和高分别是多少。 1cm
B
A
A 1cm
B
D
A
D
2cm
1cm
2cm
C
B 2cm C
(1)
C
D
(2)
答:图(2)是以长方形AD边为轴旋转而成的;
底面半径是1cm,高2cm。
2.一个圆柱形茶叶筒的侧面贴着商标纸,圆柱底面半径是5cm,高是 20cm。这张商标纸展开后是一个长方形,它的长和宽各是多少厘米?
圆柱的侧面展开后是什么形状? 把罐头盒的商标纸如下图所示那样剪开,再展开。
这个长方形的长、宽与圆柱有什么关系?把这个长方形重新包在圆柱 上,你能发现什么?
小明
这个长方形的长、宽与圆柱有什么关系?把这个长方形重新包在圆柱 上,你能发现什么?
人教版六年级数学下册《圆柱的认识》学习课件.ppt
圆柱体
这节课我们认识了圆柱这种立体图形,
回忆一下: 1.圆柱是由几部分组成的? 2.它们各有什么特征? 3.侧面沿高展开是什么图形? 4.长方形的长和宽与圆柱有什么关系?
小结:
圆柱的认识
圆柱有三个面,上下两个底面是两个 完全相同的圆,有一个曲面叫做侧面,两 个底面之间的距离叫做高,圆柱有无数条 高,每条高长度都相等。
圆柱的认识
学习目标
1. 认识圆柱的底面、侧面和高,掌握圆柱的基 本特征,掌握圆柱的侧面积计算方法,发展 同学们的空间观念。
2. 经历探索圆柱基本特征的过程,提高同学们 观察、操作、分析和概括的能力。
你认识这些图形吗?
上面这些物体是什么?
茶 叶
它们都是圆柱体!
仔细观察,边看书边思考:
(图中单位:厘米)
12
16 5 20
18 15
小组合作,动手动脑:
①将圆柱两底面分别画在纸上,剪下重叠 比较大小,你发现什么?
②把罐头盒或饮料罐等的商标纸用小刀沿 着它们的一条高切开,再打开,看看商 标纸是什么形状?
③用直尺量一量罐头盒的高,你发现什么? ④玩一玩你手中的圆柱体,你还发现了什
么?或还有什么疑问?
S侧=( ch )
算一算:
1.已知圆柱的底面直径是4厘米,高是2厘米。
侧面展开的长方形的长(12.56)厘米,宽是 ( 2 )厘米。
2.把一个圆柱的侧面展开得到一个正方形, 这个圆柱体底面半径是3厘米,圆柱的高
是( 28.26 )厘米。
指出下列圆柱的底面、侧面和高
指出下列圆柱的底面、侧面和高
3、读出下面各圆柱的有关数据。
? 底面,周宽长
圆柱的侧面积=底面周长×高
侧面
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)圆柱体的高只有一条。( ×) (2)上下两个底面相等的圆柱形物 体一定是圆柱体。(× ) (3)圆柱体底面周长和高相等时, 沿着它的一条高侧面展开是个正方形。(
)
5、填空。
把圆柱体的侧面沿着它的一条高展开,得到 一个长方形,这个长方形的长等于圆柱底面的 高 。也可能会得到一个 周长 。宽等于圆柱的____ ____ 高 。 正方形,这时圆柱底面的周长等于圆柱的____
高
底面
圆柱体的侧面展开图
展开过程动画图
圆柱体的侧面展开图
高 底面周长
展开后平面图
长方形的长=圆柱体的长
长方形的宽=圆柱体的高
课堂练习
1、说说你见过哪些物体是圆柱形的。
2、指出下列圆柱的底面、侧面和高。
3、指出下面图形中哪些是圆柱。
图1
图2
图3
图4
图5Leabharlann 图64、判断题。对的打“√”,错的打“×”。
教学目标
1、认识圆柱,并掌握圆柱体的特 征; 2、认识圆柱的侧面展开图。培养 学生的空间观念和发现问题,分析问 题,解决问题的能力。
教学重点、难点
理解并掌握圆柱体的特征,认识 圆柱体的侧面展开图。
底面
.o
.o ’
圆柱体(粗细相同)
它们是完全相等的两个圆
圆柱的曲面叫做侧面 两底之间的距离叫做高 高有无数条 长度都相等
)
5、填空。
把圆柱体的侧面沿着它的一条高展开,得到 一个长方形,这个长方形的长等于圆柱底面的 高 。也可能会得到一个 周长 。宽等于圆柱的____ ____ 高 。 正方形,这时圆柱底面的周长等于圆柱的____
高
底面
圆柱体的侧面展开图
展开过程动画图
圆柱体的侧面展开图
高 底面周长
展开后平面图
长方形的长=圆柱体的长
长方形的宽=圆柱体的高
课堂练习
1、说说你见过哪些物体是圆柱形的。
2、指出下列圆柱的底面、侧面和高。
3、指出下面图形中哪些是圆柱。
图1
图2
图3
图4
图5Leabharlann 图64、判断题。对的打“√”,错的打“×”。
教学目标
1、认识圆柱,并掌握圆柱体的特 征; 2、认识圆柱的侧面展开图。培养 学生的空间观念和发现问题,分析问 题,解决问题的能力。
教学重点、难点
理解并掌握圆柱体的特征,认识 圆柱体的侧面展开图。
底面
.o
.o ’
圆柱体(粗细相同)
它们是完全相等的两个圆
圆柱的曲面叫做侧面 两底之间的距离叫做高 高有无数条 长度都相等