MAX6313UK35D3-T中文资料

合集下载

DCM-631系列使用手册

DCM-631系列使用手册
● DCM-631系列低压备自投装置是针对低压配电系统设计,超小外型尺寸,适用于GCK、GCS、GGD、MNS等各种抽 出式(包括1/4抽屉)、固定式及混合式的柜型安装。具有方便安装、布局合理、维护方便、节约电缆、安全可 靠等多种优点;
● 全面采用嵌入式 SOC(System On Chip 片上系统)设计、32 位 DSP(Digital Signal Processing 数字信号处理 ) 技术和冗余现场总线技术,交流采样采用优化全波 FFT(Fast Fourier Transform 快速傅立叶变换)技术,软件 采用模块化、高抗干扰设计;
dcm631系列产品功能配置表dcm631系列产品硬件配置dcm631bdcm631zdcm631m功能比较型号功能dcm631bdcm631zdcm631mdcm631f分段自投i母电压测量三相三相三相三相ii母电压测量三相三相三相三相开关控制报警接点输出选配4路选配3路选配1路选配1路开入量输入显示模块选配选配选配选配dcm631系列产品技术参数表工作环境正常温度1050极限温度2060存储温度4085相对湿度590大气压力60kpa110kpa工作电源电压范围交直流60v265v频率范围40hz60hz正常功耗4w输入保险1a隔离耐压2000v交流电压回路额定电压380v100v功率消耗03va测量范围012un测量精度05级过载能力12un连续工作隔离耐压2000v开关量输入回路输入方式干接点输入电源方式装置内部提供电源隔离耐压2000v继电器输出回路分断电压10a250vac10a30vdc隔离耐压2000v绝缘性能各电气回路之间20m绝缘电阻各电气回路对地20m各电气回路之间2kv50hz1min工频耐压各电气回路对地2kv50hz1min各电气回路之间1250s5000v冲击电压各电气回路对地1250s5000v耐湿热遵循gbt242392001电磁兼容静电放电符合gbt14598141998严酷等级级符合gbt1459892002严酷等级级快速瞬变符合gbt14598101996严酷等级级脉冲群符合gbt14598131998严酷等级级浪涌冲击符合gbt1762651999严酷等级级机械性能振动试验符合gbt112872000严酷等级级冲击试验符合gbt145371993严酷等级级碰撞试验符合gbt1453793严酷等级级dcm631系列产品安装电源过流保护电源过流保护建议在装置电源处加入1a的保险丝或空开

MAX产品后缀说明

MAX产品后缀说明

MAX 产品后缀说明MAX 产品后缀说明三位后缀例: MAX1675E U A温度范围封装形式管脚数四位后缀另有一些MAXIM 产品后缀用四位表示,第一位表示产品精度等级;第二位表示温度范围:精度,后三位同三位后缀的IC.第三位表示封装形式;第四位表示产品管脚数。

例如:MAX631ACPA 第一个”A”表示5%的输出温度范围C 0°C - 70°C A -40°C - +125°CI -20°C - +85°C M -55 °C - +125°CE -40°C - +85°C封装形式A SSOP(密脚表面贴装)B CERQUAD(陶瓷方形封装)C TO220,TQFP(薄的四方表贴封装)D 陶瓷SB 封装E QSOP(四方表面贴封装)F 陶瓷Flat 封装H 模块SBGA 5*5TQFP J 陶瓷双列直插K SOT L LCCM MQFP(公制四方扁平封装) N 窄体陶瓷双列直插P 塑封DIP(双列直插) Q PLCCR 窄体陶瓷DIP S SO 表面贴封装T TO5,TO99,TO100 U TSSOP,uMAX,SOTV TO39 W 宽体SOX SC70 Y 窄SBZ TO92,MQUAD /D DICE(裸片)/PR 硬塑料/W 晶原管脚数A 8 N 18B 10,64 O 42C 12,192 P 20D 14 Q 2,100E 16 R 3,84F 22,256 S 4,80G 24 T 6,160H 44 U 38,60I 28 V 8(圆脚,隔离型)J 32 W 10(圆脚,隔离型)K 5,68 X 8L 40 Y 8(圆脚,隔离型)M 7,48 Z 10(圆脚,隔离型)。

MAX4173TEUT-T中文资料

MAX4173TEUT-T中文资料
Applications
Notebook Computers
Portable/Battery-Powered Systems
Smart Battery Packs/Chargers
Cell Phones
Power-Management Systems
General System/Board-Level Current Monitoring
The combination of three gain versions and a userselectable external sense resistor sets the full-scale current reading. This feature offers a high level of integration, resulting in a simple and compact currentsense solution.
+20V/V (MAX4173T) +50V/V (MAX4173F) +100V/V (MAX4173H) ♦ ±0.5% Full-Scale Accuracy ♦ ±0.3mV Input Offset Voltage (MAX4173T) ♦ 420µA Supply Current ♦ Wide 1.7MHz Bandwidth (MAX4173T) ♦ +3V to +28V Operating Supply ♦ Available in Space-Saving SOT23-6 Package
Typical Operating Circuit
0 TO +28V
VSENSE
+3V TO +28V 0.1µF

MAX4313EUA+T中文资料

MAX4313EUA+T中文资料

元器件交易网
MAX4310–MAX4315
High-Speed, Low-Power, Single-Supply Multichannel, Video Multiplexer-Amplifiers
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC to VEE) .................................................12V Input Voltage....................................(VEE - 0.3V) to (VCC + 0.3V) All Other Pins ...................................(VEE - 0.3V) to (VCC + 0.3V) Output Current................................................................±120mA Short-Circuit Duration (VOUT to GND, VCC or VEE)....Continuous Continuous Power Dissipation (TA = +70°C)
________________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at .

MAX320-MAX322中文资料

MAX320-MAX322中文资料

ELECTRICAL CHARACTERISTICS
(V+ = +5V ±10%, V- = -5V ±10%, VINH = 3.5V, VINL = 2.5V, TA = TMIN to TMAX, unless otherwise noted.)
PARAMETER ANALOG SWITCH Analog Signal Range
For equivalent devices specified for single-supply operation, see the MAX323/MAX324/MAX325 data sheet. For quad versions of these switches, see the MAX391/MAX392/MAX393 data sheet.
Plastic DIP (derate 9.09mW/°C above +70°C) .............727mW Narrow SO (derate 5.88mW/°C above +70°C) .............471mW
µMAX (derate 4.10mW/°C above +70°C) .....................330mW CERDIP (derate 8.00mW/°C above +70°C) ..................640mW Operating Temperature Ranges MAX32_C_ _ ........................................................0°C to +70°C MAX32_E_ _......................................................-40°C to +85°C MAX32_MJA ...................................................-55°C to +125°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10sec) .............................+300°C

集成温度控制器MAX6513及其应用

集成温度控制器MAX6513及其应用
l 6
外接的 晶体管 P N结温度传感 器将感知 的温度变 化, 送
入  ̄X 53 t 6 1 内部的温度变换器, A 经温度变换器产 生电压信号
U, 。加至 电压 比较器的 同相输人 端。内部带隙基准 电压源 的 电压 u 加至电压 比较器 的反相输入端 。然后与同相 输入 端
2 3
表一 M X 5 3引脚功 能 A61
引 脚序号 引_ 号 晰
L D

电源 桃端,电谭电压i + 咄

v. ^ 目 5 帅+v


0蛐 滞鼬 度选择端.使 时诖 用 T o & 篦悬空
教事暗号输出端.高电嘲 蛙.其输出电平娩与C OS M 电路、m 电路鼍 弃

要 :A( 1 H )5 3是美 国 M xm公司生产的集成温度 控制器 , 6 ai 被广泛应用 于温度控 制仪、 电信设 备、 复印机等办公设备和
家用 电子 产品领域 。文 中介绍 了它的基本特性、 引脚功能、 内部结构和应用 电路。 关键词 : 温度 控制器: A6 1 : H )5 3 应用 电路 (
外 蒯温晶体瞥i 嚷.接晶体管P N结的 N端
外 巍温晶件瞥连 . 晶件臂P } E 挂 端 N鲒的 P 端
1 2内部结构 . M X 53内部结构框 图如 图二所 示, A61 主要包括 内部温度 变换器、 带隙基 准电压源 、 电压 比较器 、 锁存器 等。
+2  ̄, 15 控温误差小于 ± "。具有 温度滞后特性 , 2 C 通过改变
22工作时序波形 . 随 着外 接 晶体 管 P N结温 度传 感 器感 知 的温 度变 化 , MX53 A6 1 数字 信号输出端输 出的 信号也将发生相应 的变化。 当感知温度大于设定的温度阈值时( T T , 即 > H 数字信号输 ) 出端 T 为高电平 ; 当感知温度小于设定的温度 阈值与滞后

MAX4130EUK+T,MAX4130EUK+T,MAX4132ESA+,MAX4132EUA+,MAX4131ESA,MAX4131EBT+T, 规格书,Datasheet 资料

MAX4130EUK+T,MAX4130EUK+T,MAX4132ESA+,MAX4132EUA+,MAX4131ESA,MAX4131EBT+T, 规格书,Datasheet 资料

MAX4130–MAX4134________________________________________________________________Maxim Integrated Products1For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .General DescriptionThe MAX4130–MAX4134 family of operational amplifiers combines 10MHz gain-bandwidth product and excellent DC accuracy with Rail-to-Rail ®operation at the inputs and outputs. These devices require only 900µA per amplifier, and operate from either a single supply (+2.7V to +6.5V) or dual supplies (±1.35V to ±3.25V) with a common-mode voltage range that extends 250mV beyond V EE and V CC . They are capable of driving 250Ωloads and are unity-gain stable. In addition, the MAX4131/ MAX4133 feature a shutdown mode in which the outputs are placed in a high-impedance state and the supply current is reduced to only 25µA per amplifier.With their rail-to-rail input common-mode range and output swing, the MAX4130–MAX4134 are ideal for low-voltage, single-supply operation. Although the minimum operating voltage is specified at 2.7V, the devices typically operate down to 1.8V. In addition, low offset voltage and high speed make them the ideal signal-conditioning stages for precision, low-voltage data-acquisition systems. The MAX4130 is offered in the space-saving 5-pin SOT23 package. The MAX4131 is offered in the ultra-small 6-bump, 1mm x 1.5mm chip-scale package (UCSP™).________________________ApplicationsBattery-Powered Instruments Portable Equipment Data-Acquisition Systems Signal ConditioningLow-Power, Low-Voltage ApplicationsFeatureso 6-Bump UCSP (MAX4131)o +2.7V to +6.5V Single-Supply Operationo Rail-to-Rail Input Common-Mode Voltage Rangeo Rail-to-Rail Output Voltage Swing o 10MHz Gain-Bandwidth Product o 900µA Quiescent Current per Amplifier o 25µA Shutdown Function (MAX4131/MAX4133)o 200µV Offset Voltageo No Phase Reversal for Overdriven Inputs o Drive 250ΩLoadso Stable with 160pF Capacitive Loads o Unity-Gain StableSingle/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps19-1089; Rev 3; 3/03*Dice are specified at T A = +25°C. DC parameters only.Ordering Information continued at end of data sheet.Pin Configurations appear at end of data sheet.Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.UCSP is a trademark of Maxim Integrated Products, Inc.M A X 4130–M A X 4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply Rail-to-Rail I/O Op Amps 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSDC ELECTRICAL CHARACTERISTICS(V CC = +2.7V to +6.5V, V EE = 0V, V CM = 0V, V OUT = V CC /2, R L tied to V CC /2, SHDN ≥2V (or open), T A = +25°C , unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V CC - V EE )...................................................7.5V IN+, IN-, SHDN Voltage...................(V CC + 0.3V) to (V EE - 0.3V)Output Short-Circuit Duration (Note 1).......................Continuous(short to either supply)Continuous Power Dissipation (T A = +70°C)5-Pin SOT23 (derate 7.1mW/°C above +70°C)............571mW 6-Bump UCSP (derate 2.9mW/°C above +70°C).........308mW 8-Pin SO (derate 5.88mW/°C above +70°C)................471mW8-Pin µMAX (derate 4.10mW/°C above +70°C)...........330mW 14-Pin SO (derate 8.00mW/°C above +70°C)..............640mW Operating Temperature RangeMAX413_E__...................................................-40°C to +85°C Maximum Junction Temperature.....................................+150°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10s).................................+300°C Bump Reflow Temperature .........................................+235°CNote 1:Provided that the maximum package power-dissipation rating is not exceeded.MAX4130–MAX4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply Rail-to-Rail I/O Op AmpsDC ELECTRICAL CHARACTERISTICS (continued)(V CC = +2.7V to +6.5V, V EE = 0V, V CM = 0V, V OUT = V CC /2, R L tied to V CC /2, SHDN ≥2V (or open), T A = +25°C , unless otherwise noted.)DC ELECTRICAL CHARACTERISTICS(V CC = +2.7V to +6.5V, V EE = 0V, V CM = 0V, V OUT = V CC /2, R L tied to V CC /2, SHDN ≥2V (or open), T A = -40°C to +85°C , unlessM A X 4130–M A X 4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply Rail-to-Rail I/O Op Amps 4_______________________________________________________________________________________DC ELECTRICAL CHARACTERISTICS(V CC = +2.7V to +6.5V, V EE = 0V, V CM = 0V, V OUT = V CC /2, R L tied to V CC /2, SHDN ≥2V (or open), T A = -40°C to +85°C , unlessMAX4130–MAX4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply Rail-to-Rail I/O Op Amps_______________________________________________________________________________________5DC ELECTRICAL CHARACTERISTICS (continued)(V CC = +2.7V to +6.5V, V EE = 0V, V CM = 0V, V OUT = V CC /2, R L tied to V CC /2, SHDN ≥2V (or open), T A = -40°C to +85°C , unless otherwise noted.) (Note 2)AC ELECTRICAL CHARACTERISTICSM A X 4130–M A X 4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps 6_______________________________________________________________________________________60-401001k 10k 1M 10M100k 100M GAIN AND PHASE vs. FREQUENCY-20FREQUENCY (Hz)G A I N (d B )02040P H A S E (D E G R E E S )180144720-72-144-180-108-363610860-401001k 10k 1M 10M100k 100MGAIN AND PHASEvs. FREQUENCY (WITH C)-20FREQUENCY (Hz)G A I N (d B )2040P H A S E (D E G R E E S )180144720-72-144-180-108-36361080-100101001k100k1M10M10k 100MPOWER-SUPPLY REJECTIONvs. FREQUENCY-80FREQUENCY (Hz)P S R (d B )-60-40-2001051520253530454050-40-25-105203550658095SHUTDOWN SUPPLY CURRENTvs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (µA )1000.100.011001k100k1M10M10k100MOUTPUT IMPEDANCE vs. FREQUENCYFREQUENCY (Hz)O U T P U T I M P E D A N C E (Ω)1101150800850900950105010001100-40-25-105203550658095SUPPLY CURRENT PER AMPLIFIERvs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (µA )-10-505101520-40-25-105203550658095OUTPUT LEAKAGE CURRENTvs. TEMPERATURETEMPERATURE (°C)L E A K A G E C U R R E N T (µA )Typical Operating Characteristics(V CC = +5V, V EE = 0V, VCM = V CC / 2, T A = +25°C, unless otherwise noted.)-600123456INPUT BIAS CURRENT vs. COMMON-MODE VOLTAGECOMMON-MODE VOLTAGE (V)I N P U T B I A S C U R R E N T (n A )-50-40-30-20-10010203040-60-40-40-25-105203550658095INPUT BIAS CURRENTvs. TEMPERATURETEMPERATURE (°C)I N P U T B I A S C U R R E N T (n A )-200204060MAX4130–MAX4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps_______________________________________________________________________________________712070750600110115OUTPUT VOLTAGE: EITHER SUPPLY (mV)G A I N (d B )30095859080100200500105100400LARGE-SIGNAL GAIN vs. OUTPUT VOLTAGE130-40-25-105203550658095LARGE-SIGNAL GAIN vs. TEMPERATURE90120TEMPERATURE (°C)G A I N (d B )11010085951251151051.21.31.51.41.61.71.81.9-40-25-105203550658095MINIMUM OPERATING VOLTAGEvs. TEMPERATUREM A X 4130/34-21TEMPERATURE (°C)M I N I M U M O P E R A T I N G V O L T A G E (V )Typical Operating Characteristics (continued)(V CC = +5V, V EE = 0V, V CM = V CC / 2, T A = +25°C, unless otherwise noted.)12080859095100105110115-40-25-105203550658095COMMON-MODE REJECTIONvs. TEMPERATURETEMPERATURE (°C)C O M M O N -M ODE R E J E C T I O N (d B )130700600120OUTPUT VOLTAGE: EITHER SUPPLY (mV)G A I N (dB )3001009080100200500110400LARGE-SIGNAL GAIN vs. OUTPUT VOLTAGE12060600110OUTPUT VOLTAGE: EITHER SUPPLY (mV)G A I N (d B )300908070100200500100400LARGE-SIGNAL GAIN vs. OUTPUT VOLTAGE12080-40-25-105203550658095LARGE-SIGNAL GAIN vs. TEMPERATURE90TEMPERATURE (°C)G A I N (d B )105859511511010012070750600110115OUTPUT VOLTAGE: EITHER SUPPLY (mV)G A I N (d B )30095859080100200500105100400LARGE-SIGNAL GAIN vs. OUTPUT VOLTAGE-3.00-2.25-0.75-1.5001.500.752.253.00-40-25-105203550658095INPUT OFFSET VOLTAGE vs. TEMPERATURETEMPERATURE (°C)V O L T A G E (m V )M A X 4130–M A X 4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps 8_______________________________________________________________________________________1408010k 1k 100k 10M 1M CHANNEL SEPARATION vs. FREQUENCYFREQUENCY (Hz)C H A N N E L S E P A R A T I O N (d B )1009013011012010100k10kFREQUENCY (Hz)1001k 0.03000.0050.0100.0150.0200.025 TOTAL HARMONIC DISTORTION AND NOISE vs. FREQUENCYT H D A N D N O I S E (%)0.10.0014.04.44.25.04.84.6TOTAL HARMONIC DISTORTION AND NOISE vs. PEAK-TO-PEAK SIGNAL AMPLITUDEPEAK-TO-PEAK SIGNAL AMPLITUDE (V)T H D + N O I S E (%)0.01INTIME (200ns/div)V O L T A G E (50m V /d i v )OUTMAX4131SMALL-SIGNAL TRANSIENT RESPONSE (NONINVERTING)IN TIME (200ns/div)V O L T A G E (50m V /d i v )OUT MAX4131SMALL-SIGNAL TRANSIENT RESPONSE (INVERTING)A V = -1IN TIME (2µs/div)V O L T A G E (2V/d i v )OUT MAX4131LARGE-SIGNAL TRANSIENT RESPONSE (NONINVERTING)A V = +1INTIME (2µs/div)V O L T A G E (2V /d i v )OUTMAX4131LARGE-SIGNAL TRANSIENT RESPONSE (INVERTING)Typical Operating Characteristics (continued)(V CC = +5V, V EE = 0V, V CM = V CC / 2, T A = +25°C, unless otherwise noted.)1600-40-25-105203550658095MINIMUM OUTPUT VOLTAGEvs. TEMPERATURE20140120TEMPERATURE (°C)V O U T - V E E (m V )100806040050100150200250300-40-25-105203550658095MAXIMUM OUTPUT VOLTAGEvs. TEMPERATURETEMPERATURE (°C)V C C - V O U T (m V )MAX4130–MAX4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps_______________________________________________________________________________________9Figure 1a. Reducing Offset Error Due to Bias Current (Noninverting)Figure 1b. Reducing Offset Error Due to Bias Current (Inverting)M A X 4130–M A X 4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps 10______________________________________________________________________________________Applications InformationRail-to-Rail Input StageDevices in the MAX4130–MAX4134 family of high-speed amplifiers have rail-to-rail input and output stages designed for low-voltage, single-supply opera-tion. The input stage consists of separate NPN and PNP differential stages that combine to provide an input common-mode range that extends 0.2V beyond the supply rails. The PNP stage is active for input volt-ages close to the negative rail, and the NPN stage is active for input voltages near the positive rail. The input offset voltage is typically below 200µV. The switchover transition region, which occurs near V CC / 2, has been extended to minimize the slight degradation in com-mon-mode rejection ratio caused by the mismatch of the input pairs. Their low offset voltage, high band-width, and rail-to-rail common-mode range make these op amps excellent choices for precision, low-voltage data-acquisition systems.Since the input stage switches between the NPN and PNP pairs, the input bias current changes polarity as the input voltage passes through the transition region.Reduce the offset error caused by input bias currents flowing through external source impedances by match-ing the effective impedance seen by each input (Figures 1a, 1b). High source impedances, together with input capacitance, can create a parasitic pole that produces an underdamped signal response. Reducing the input impedance or placing a small (2pF to 10pF)capacitor across the feedback resistor improves response.The MAX4130–MAX4134s ’ inputs are protected from large differential input voltages by 1k Ωseries resistors and back-to-back triple diodes across the inputs (Figure 2). For differential input voltages less than 1.8V,input resistance is typically 500k Ω. For differential input voltages greater than 1.8V, input resistance is approxi-mately 2k Ω. The input bias current is given by the fol-lowing equation:Figure 2. Input Protection CircuitMAX4130–MAX4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps______________________________________________________________________________________11Rail-to-Rail Output StageThe minimum output voltage is within millivolts of ground for single-supply operation where the load is referenced to ground (V EE ). Figure 3 shows the input voltage range and output voltage swing of a MAX4131connected as a voltage follower. With a +3V supply and the load tied to ground, the output swings from 0.00V to 2.90V. The maximum output voltage swing depends on the load, but will be within 150mV of a +3V supply, even with the maximum load (500Ωto ground).Driving a capacitive load can cause instability in most high-speed op amps, especially those with low quies-cent current. The MAX4130–MAX4134 have a high tol-erance for capacitive loads. They are stable with capacitive loads up to 160pF. Figure 4 gives the stable operating region for capacitive loads. Figures 5 and 6show the response with capacitive loads and the results of adding an isolation resistor in series with the output (Figure 7). The resistor improves the circuit ’s phase margin by isolating the load capacitor from the op amp ’s output.INTIME (1µs/div)V O L T A G E (1V /d i v )OUTV CC = 3V, R L = 10k Ω to V EEFigure 3. Rail-to-Rail Input/Output Voltage RangeFigure 4. Capacitive-Load StabilityINTIME (200ns/div)V O L T A G E (50m V /d i v )OUTV CC = 5V R L = 10k Ω C L = 130pFFigure 5. MAX4131 Small-Signal Transient Response with Capacitive Load Figure 6. MAX4131 Transient Response to Capacitive Load with Isolation ResistorINTIME (500ns/div)V O L T A G E (50m V /d i v )OUTV CC = 5V C L = 1000pF R S = 39ΩM A X 4130–M A X 4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps 12______________________________________________________________________________________Power-Up and Shutdown ModeThe MAX4130–MAX4134 amplifiers typically settle with-in 1µs after power-up. Figures 9 and 10 show the out-put voltage and supply current on power-up, using the test circuit of Figure 8.The MAX4131 and MAX4133 have a shutdown option.When the shutdown pin (SHDN ) is pulled low, the sup-ply current drops below 25µA per amplifier and theamplifiers are disabled with the outputs in a high-impedance state. Pulling SHDN high or leaving it float-ing enables the amplifier. In the dual-amplifier MAX4133, the shutdown functions operate indepen-dently. Figures 11 and 12 show the output voltage and supply current responses of the MAX4131 to a shut-down pulse, using the test circuit of Figure 8.Figure 7. Capacitive-Load Driving CircuitFigure 8. Power-Up/Shutdown Test CircuitV CC TIME (5µs/div)V O L T A G E (1V /d i v )OUTFigure 9. Power-Up Output Voltage V CC (1V/div)TIME (5µs/div)I EE(500µA/div)Figure 10. Power-Up Supply CurrentMAX4130–MAX4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps______________________________________________________________________________________13Power Supplies and LayoutThe MAX4130–MAX4134 operate from a single +2.7V to +6.5V power supply, or from dual supplies of ±1.35V to ±3.25V. For single-supply operation, bypass the power supply with a 0.1µF ceramic capacitor in parallel with at least 1µF. For dual supplies, bypass each sup-ply to ground.Good layout improves performance by decreasing the amount of stray capacitance at the op amp ’s inputs and outputs. Decrease stray capacitance by placing external components close to the op amp ’s pins, mini-mizing trace lengths and resistor leads.UCSP Applications InformationFor the latest application details on UCSP construction,dimensions, tape carrier information, PC board tech-niques, bump-pad layout, and the recommended reflow temperature profile, as well as the latest informa-tion on reliability testing results, go to Maxim ’s website at /ucsp and search for the Application Note: UCSP –A Wafer-Level Chip-Scale Package .TIME (1µs/div)OUTFigure 11. Shutdown Output Voltage TIME (1µs/div)Figure 12. Shutdown Enable/Disable Supply CurrentM A X 4130–M A X 4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps 14________________________________________________________________________________________________________________________________________________Pin ConfigurationsMAX4130–MAX4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps______________________________________________________________________________________15Chip InformationOrdering Information (continued)MAX4130 TRANSISTOR COUNT: 170MAX4131 TRANSISTOR COUNT: 170MAX4132 TRANSISTOR COUNT: 340MAX4134 TRANSISTOR COUNT: 680*Dice are specified at T A = +25°C, DC parameters only.Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)M A X 4130–M A X 4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps 16______________________________________________________________________________________Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)MAX4130–MAX4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps______________________________________________________________________________________17Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are M A X 4130–M A X 4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.18__________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600©2003 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。

max24033emy+t的规格书

max24033emy+t的规格书

max24033emy+t的规格书规格书:max24033emy+t一、产品介绍:max24033emy+t是一款高度集成的4通道电源管理IC,它主要用于工业控制系统、通信设备和数据中心等领域的电源管理。

该产品采用优质的半导体材料和先进的封装工艺,具有稳定可靠的性能和高效省电的特点。

二、产品特点:1.高度集成:max24033emy+t集成了4个高性能电源管理通道,包括电池充电管理、DC-DC转换器和电源监控等功能,可满足多种应用的需求。

2.宽输入电压范围:max24033emy+t支持广泛的输入电压范围,从3.5V到28V,能适应不同电源供应的要求。

3.高效节能:max24033emy+t采用了先进的能量管理技术,具有高效节能的特点,可以最大程度地减少能源浪费。

4.低功耗待机模式:max24033emy+t在待机模式下,功耗极低,能有效延长电池使用寿命。

5.温度保护:max24033emy+t具有自动温度保护功能,可在过热时自动停止工作,保护电路不受损坏。

6.电池管理:max24033emy+t支持电池充电和放电管理,能确保电池使用的安全和稳定性。

三、应用领域:max24033emy+t广泛应用于各种工业控制系统、通信设备和数据中心等领域,如智能家居、自动化控制、无线通信设备、数据存储等。

四、主要性能参数:1.输入电压范围:3.5V-28V2.输出电压范围:1.5V-16V3.输出电流范围:0A-3A4.工作温度范围:-40℃~85℃5.封装形式:QFN封装五、产品优势:1.优质材料:max24033emy+t采用优质的半导体材料和先进的封装工艺,保证了产品的稳定性和可靠性。

2.高效节能:max24033emy+t采用了先进的能量管理技术,具有高效节能的特点,能最大程度地减少能源浪费。

3.宽电压范围:max24033emy+t支持广泛的输入电压范围,能适应不同电源供应的要求。

4.多通道设计:max24033emy+t具有4个独立的电源管理通道,可满足多种应用的需求。

MAX713中文资料

MAX713中文资料

BATTERY MANAGEMENT Jul 09, 1998 Switch-Mode Battery Charger Delivers 5AThe fast-charge controller IC3 (Figure 1) normally directs current to the battery via an external pnp transistor. In this circuit, the transistor is replaced with a 5A switching regulator (IC1) that delivers equivalent power with higher efficiency.Figure 1. By controlling the PWM duty cycle of switching regulator IC1, the fast-charge controller (IC3) makes efficient delivery of the battery's charging current.IC1 is a 5A buck switching regulator whose output is configured as a current source. Its internal power switch (an npn transistor) is relatively efficient because V CE(SAT) is small in comparison with the 15V-to-40V inputs. (For applications that require 2A or less, the low-saturation, non-Darlington power switch of a MAX726 offers better efficiency.)R6 senses the battery-charging current and enables IC3 to generate an analog drive signal at DRV. The signal is first attenuated by the op amp to assure stability by reducing gain in the control loop. It then drives IC1's compensation pin (VC), which gives direct access to the internal PWM comparator. IC3 thus controls the charging current via the PWM duty cycle of IC1. The Q1 buffer provides current to the DRV input.Loop stability is also determined by the feedback loop's dominant pole, set by C4 at the CC terminal of IC3. If you increase the value of the battery filter capacitor (C5), you should make a proportional increase in the value of C4. Lower values, however, assure good transient response. If your application produces load transients during the fast-charge cycle, check the worst-case response to a load step. To assure proper termination of the charge, battery voltage should settle within 2msec to 5mV times N (where N is the number of battery cells). More InformationMAX713:QuickView-- Full (PDF) Data Sheet-- Free Samples。

MAX6315US30D3-T中文资料

MAX6315US30D3-T中文资料

________________General DescriptionThe MAX6315 low-power CMOS microprocessor (µP)supervisory circuit is designed to monitor power sup-plies in µP and digital systems. It provides excellent cir-cuit reliability and low cost by eliminating external components and adjustments. The MAX6315 also pro-vides a debounced manual reset input.This device performs a single function: it asserts a reset signal whenever the V CC supply voltage falls below a preset threshold or whenever manual reset is asserted.Reset remains asserted for an internally programmed interval (reset timeout period) after V CC has risen above the reset threshold or manual reset is deasserted. The MAX6315’s open-drain RESET output can be pulled up to a voltage higher than V CC .The MAX6315 comes with factory-trimmed reset thresh-old voltages in 100mV increments from 2.5V to 5V.Preset timeout periods of 1ms, 20ms, 140ms, and 1120ms (minimum) are also available. The device comes in a SOT143 package.For microcontrollers (µCs) and µPs with bidirectional reset pins, see the MAX6314 data sheet.________________________ApplicationsComputers ControllersIntelligent InstrumentsCritical µP and µC Power Monitoring Portable/Battery-Powered Equipment____________________________Featureso Small SOT143 Packageo Open-Drain RESET Output Can Exceed V CC o Precision, Factory-Set V CC Reset Thresholds:100mV Increments from 2.5V to 5V o ±1.8% Reset Threshold Accuracy at T A = +25°C o ±2.5% Reset Threshold Accuracy Over Temp.o Four Reset Timeout Periods Available: 1ms, 20ms, 140ms, or 1120ms (minimum) o Immune to Short V CC Transients o 5µA Supply Currento Pin-Compatible with MAX811MAX6315Open-Drain SOT µP Reset Circuit________________________________________________________________Maxim Integrated Products 1__________________Pin Configuration__________Typical Operating Circuit19-2000; Rev 1; 1/99Ordering and Marking Information appear at end of data sheet.For free samples & the latest literature: , or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.M A X 6315Open-Drain SOT µP Reset Circuit 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = +2.5V to +5.5V, T A = -40°C to +85°C, unless otherwise noted. Typical values are at T A = +25°C.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Note 1:The MAX6315 monitors V CC through an internal factory-trimmed voltage divider that programs the nominal reset threshold.Factory-trimmed reset thresholds are available in 100mV increments from 2.5V to 5V (see Ordering and Marking Information ).V CC ........................................................................-0.3V to +6.0V RESET ....................................................................-0.3V to +6.0V All Other Pins..............................................-0.3V to (V CC + 0.3V)Input Current (V CC ).............................................................20mA Output Current (RESET )......................................................20mA Rate of Rise (V CC )...........................................................100V/µsContinuous Power Dissipation (T A = +70°C)SOT143 (derate 4mW/°C above +70°C)........................320mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°CMAX6315Open-Drain SOT µP Reset Circuit_______________________________________________________________________________________360-50-303090SUPPLY CURRENT vs. TEMPERATURE215TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )-101050347060135SUPPLY CURRENT vs. SUPPLY VOLTAGE215SUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (µA )2344500-50-301090POWER-DOWN RESET DELAYvs. TEMPERATURE1040TEMPERATURE (°C)P O W E R -D O W N R E S E T D E L A Y (µs )-1020303050701.040.96-50-301090NORMALIZED RESET TIMEOUT PERIOD vs. TEMPERATURE (V CC RISING)0.970.981.021.001.03M A X 6315-04TEMPERATURE (°C)N O R M A L I Z E D R E S E T T I M E O U T P E R I O D-100.991.013050701.0060.994-50-301090NORMALIZED RESET THRESHOLD vs. TEMPERATURE (V CC FALLING)0.9960.9981.0041.000M A X 6315-05TEMPERATURE (°C)N O R M A L I Z E D R E S E T T H R E S H O L D-101.0023050701000101001000MAXIMUM TRANSIENT DURATION vs. RESET COMPARATOR OVERDRIVE20RESET COMP. OVERDRIVE, V TH - V CC (mV)M A X I M U M T R A N S I E N T D U R A T I O N (µs )406080__________________________________________Typical Operating Characteristics(T A= +25°C, unless otherwise noted.)______________________________________________________________Pin Description_______________Detailed DescriptionReset OutputA microprocessor’s (µP’s) reset input starts the µP in a known state. The MAX6315 asserts reset to prevent code-execution errors during power-up, power-down,or brownout conditions. RESET is guaranteed to be a logic low for V CC > 1V (see Electrical Characteristics ).Once V CC exceeds the reset threshold, the internal timer keeps reset asserted for the reset timeout period (t RP ); after this interval RESET goes high. If a brownout condition occurs (monitored voltage dips below its pro-grammed reset threshold), RESET goes low. Any time V CC dips below the reset threshold, the internal timer resets to zero and RESET goes low. The internal timer starts when V CC returns above the reset threshold, and RESET remains low for the reset timeout period.The MAX6315’s RESET output structure is a simple open-drain N-channel MOSFET switch. Connect a pull-up resistor to any supply in the 0V to +6V range. Select a resistor value large enough to register a logic low when RESET is asserted (see Electrical Characteristics ),and small enough to register a logic high while supply-ing all input current and leakage paths connected to the RESET line. A 10k Ωpull-up is sufficient in most applica-tions.Often, the pull-up connected to the MAX6315’s RESET output will connect to the supply voltage monitored at the IC’s V CC pin. However, some systems may use the open-drain output to level-shift from the monitored sup-ply to reset circuitry powered by some other supply (Figure 1). This is one useful feature of an open-drain output. Keep in mind that as the MAX6315’s V CC decreases below 1V, so does the IC’s ability to sink current at RESET . Finally, with any pull-up, RESET will be pulled high as V CC decays toward 0V. The voltage where this occurs depends on the pull-up resistor value and the voltage to which it connects (see Electrical Characteristics ).Manual-Reset InputMany µP-based products require manual-reset capabil-ity, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic low on MR asserts reset. Reset remains asserted while MR is low,and for the reset active timeout period after MR returns high.MR has an internal 63k Ωpull-up resistor, so it can be left open if not used. Connect a normally open momen-tary switch from MR to GND to create a manual reset function; external debounce circuitry is not required.If MR is driven from long cables or if the device is used in a noisy environment, connecting a 0.1µF capacitor from MR to ground provides additional noise immunity.__________Applications InformationNegative-Going V CC TransientsIn addition to issuing a reset to the µP during power-up,power-down, and brownout conditions, these devices are relatively immune to short-duration negative-going transients (glitches). The Typical Operating Character-istics show the Maximum Transient Duration vs. Reset Threshold Overdrive, for which reset pulses are not generated. The graph was produced using negative-going pulses, starting at V RST max and ending below the programmed reset threshold by the magnitude indi-cated (reset threshold overdrive). The graph shows the maximum pulse width that a negative-going V CC tran-sient may typically have without causing a reset pulse to be issued. As the transient amplitude increases (i.e.,goes farther below the reset threshold), the maximum allowable pulse width decreases. A 0.1µF bypass capacitor mounted close to V CC provides additional transient immunity.M A X 6315Open-Drain SOT µP Reset Circuit 4_______________________________________________________________________________________Figure 1. MAX6315 Open-Drain RESET Output Allows Use with Multiple SuppliesMAX6315Open-Drain SOT µP Reset Circuit_______________________________________________________________________________________5________________________________________________________Ordering Information†The MAX6315 is available in a SOT143 package, -40°C to +85°C temperature range.††The first two letters in the package top mark identify the part, while the remaining two letters are the lot tracking code.†††Sample stocks generally held on the bolded products; also, the bolded products have 2,500 piece minimum-order quantities.Non-bolded products have 10,000 piece minimum-order quantities. Contact factory for details.Note:All devices available in tape-and-reel only. Contact factory for availability.M A X 6315Open-Drain SOT µP Reset Circuit 6__________________________________________________________________________________________________________________________________Ordering Information (continued)†The MAX6315 is available in a SOT143 package, -40°C to +85°C temperature range.††The first two letters in the package top mark identify the part, while the remaining two letters are the lot tracking code.†††Sample stocks generally held on the bolded products; also, the bolded products have 2,500 piece minimum-order quantities.Non-bolded products have 10,000 piece minimum-order quantities. Contact factory for details.Note:All devices available in tape-and-reel only. Contact factory for availability.MAX6315Open-Drain SOT µP Reset Circuit_______________________________________________________________________________________7___________________Chip InformationTRANSISTOR COUNT: 519________________________________________________________Package InformationM A X 6315Open-Drain SOT µP Reset Circuit NOTESMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.8_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©1999 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.。

MAX6353LTUK中文资料

MAX6353LTUK中文资料

Dual/Triple-Voltage µP Supervisory Circuits MAX6351–MAX6360
ABSOLUTE MAXIMUM RATINGS
VCC1, VCC2 to GND .................................................-0.3V to +6V RST (MAX6352/MAX6355/MAX6358)...................... -0.3V to +6V RST, MR, WDI, RST1, RSTIN (MAX6351/MAX6353/ MAX6356/MAX6359) ..............................-0.3V to (VCC1 + 0.3V) RST, RST2 (MAX6351/MAX6354/ MAX6357/MAX6360) ..............................-0.3V to (VCC2 + 0.3V) Input/Output Current, All Pins .............................................20mA Continuous Power Dissipation (TA = +70°C) 5-Pin SOT23 (derate 7.1mW/°C above +70°C)............571mW 6-Pin SOT23 (derate 8.7mW/°C above +70°C)............695mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature .....................................................+150°C Storage Temperature Range .............................-65°C to +150°C

MAX9635中文资料

MAX9635中文资料

16-BIT ADC
Байду номын сангаас
6-BIT RANGE DIGITAL
CDR, TIM
SIGNAL
CONTROL PROCESSING
16-BIT ADC
方框图
VCC
SDA SCL I2C AO INT
N
GND
________________________________________________________________ Maxim Integrated Products 1 本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。如需进一步确认,请在您的设计中参考英文资料。
平板PC/笔记本电脑 TV/投影仪/显示器
数字照明管理 便携设备
蜂窝电话/智能电话
安全系统
应用
业内功耗最低的 环境光传感器,内置ADC
特性
♦♦0.045流明至188,000流明宽检测范围 ♦♦小尺寸、2mm x 2mm x 0.6mm UTDFN-Opto封装 ♦♦VCC = 1.7V至3.6V ♦♦工作电流ICC = 0.65µA ♦♦-40°C至+85°C工作温度范围
由于能够检测极其微弱的光线,非常适合光线较暗的工作 环境。
片上光电二极管的光谱响应针对人眼对环境光的响应进行优 化,集成红外及紫外线屏蔽功能。自适应增益电路可自动选
择正确的流明范围优化测试(计数值 / 流明)。
IC设计工作在1.7V至3.6V供电范围,满负荷工作时仅 消 耗0.65µA电流。器件采用小尺寸2mm x 2mm x 0.6mm UTDFN-Opto封装。
有关价格、供货及订购信息,请联络Maxim亚洲销售中心:10800 852 1249 (北中国区),10800 152 1249 (南中国区), 或访问Maxim的中文网站:。

631-632说明书

631-632说明书
通讯速率最高1MBPS/40M
19>。绝缘电阻符合IEC255-5标准100MΩ/500V
20>。耐压测试IEC255-5标准2.0KV/50Hz/1min
21>。脉冲电压测试IEC-255-5标准5KV/1.2/50μS/0.5J
22>。抗干扰
【1】共模干扰IEC255-22-1标准2.5KV/1MHz/2S
df/dt频率的变化率,df滑差整定值
U母线电压,DYD低电压闭锁定值,软件定义50V,无需整定
DL断路器状态
单相接地跳闸或选线
当中性点经电阻接地或零序电流较大时应直接作用于跳闸
I0I0D
TI0S
I0实测零序电流值,I0D零序电流动作整定值
T延时时间,I0S零序延时整定值
当中性点不接地或经消弧线圈接地,若零序电流较小不需跳闸时,装置自动识别线路零序电流5次谐波的功率方向为正且经CAN通讯网确认本线路零序电流值最大时发单相接地予报信号。(CAN总线为无主站系统,可实现任意装置间的通讯)
控制部分由遥控跳合闸、手动跳合闸及防跳回路组成。
测量部分由电流测量、电压测量、频率测量、功率测量、功率因数测量、电度测量组成。
监视部分配有装置故障报警、保护定值不合理报警、控制回路断线报警、PT断线报警及每种保护动作的独立信号空接点输出。
CAN总线网络控制部分实现装置同网络上其它设备间进行实时的数据交换。完成遥测、遥信、遥控、遥调及远方修改保护定值、远方信号复归等功能,直接构成发电厂、变电站综合自动化系统。
【2】电气测量
三相电流、电压、有功及无功功率、功率因数、频率、有功电度及无功电度。
开关事件记录
直接记录外部8个开关状态事件的时间及顺序并对脉冲计数,对不同的应用8个开关状态定义可以不同。

MAX4134ESD-T中文资料

MAX4134ESD-T中文资料

MAX4130–MAX4134________________________________________________________________Maxim Integrated Products1For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .General DescriptionThe MAX4130–MAX4134 family of operational amplifiers combines 10MHz gain-bandwidth product and excellent DC accuracy with Rail-to-Rail ®operation at the inputs and outputs. These devices require only 900µA per amplifier, and operate from either a single supply (+2.7V to +6.5V) or dual supplies (±1.35V to ±3.25V) with a common-mode voltage range that extends 250mV beyond V EE and V CC . They are capable of driving 250Ωloads and are unity-gain stable. In addition, the MAX4131/ MAX4133 feature a shutdown mode in which the outputs are placed in a high-impedance state and the supply current is reduced to only 25µA per amplifier.With their rail-to-rail input common-mode range and output swing, the MAX4130–MAX4134 are ideal for low-voltage, single-supply operation. Although the minimum operating voltage is specified at 2.7V, the devices typically operate down to 1.8V. In addition, low offset voltage and high speed make them the ideal signal-conditioning stages for precision, low-voltage data-acquisition systems. The MAX4130 is offered in the space-saving 5-pin SOT23 package. The MAX4131 is offered in the ultra-small 6-bump, 1mm x 1.5mm chip-scale package (UCSP™).________________________ApplicationsBattery-Powered Instruments Portable Equipment Data-Acquisition Systems Signal ConditioningLow-Power, Low-Voltage ApplicationsFeatureso 6-Bump UCSP (MAX4131)o +2.7V to +6.5V Single-Supply Operationo Rail-to-Rail Input Common-Mode Voltage Rangeo Rail-to-Rail Output Voltage Swing o 10MHz Gain-Bandwidth Product o 900µA Quiescent Current per Amplifier o 25µA Shutdown Function (MAX4131/MAX4133)o 200µV Offset Voltageo No Phase Reversal for Overdriven Inputs o Drive 250ΩLoadso Stable with 160pF Capacitive Loads o Unity-Gain StableSingle/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps19-1089; Rev 3; 3/03*Dice are specified at T A = +25°C. DC parameters only.Ordering Information continued at end of data sheet.Pin Configurations appear at end of data sheet.Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.UCSP is a trademark of Maxim Integrated Products, Inc.M A X 4130–M A X 4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply Rail-to-Rail I/O Op Amps 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSDC ELECTRICAL CHARACTERISTICS(V CC = +2.7V to +6.5V, V EE = 0V, V CM = 0V, V OUT = V CC /2, R L tied to V CC /2, SHDN ≥2V (or open), T A = +25°C , unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V CC - V EE )...................................................7.5V IN+, IN-, SHDN Voltage...................(V CC + 0.3V) to (V EE - 0.3V)Output Short-Circuit Duration (Note 1).......................Continuous(short to either supply)Continuous Power Dissipation (T A = +70°C)5-Pin SOT23 (derate 7.1mW/°C above +70°C)............571mW 6-Bump UCSP (derate 2.9mW/°C above +70°C).........308mW 8-Pin SO (derate 5.88mW/°C above +70°C)................471mW8-Pin µMAX (derate 4.10mW/°C above +70°C)...........330mW 14-Pin SO (derate 8.00mW/°C above +70°C)..............640mW Operating Temperature RangeMAX413_E__...................................................-40°C to +85°C Maximum Junction Temperature.....................................+150°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10s).................................+300°C Bump Reflow Temperature .........................................+235°CNote 1:Provided that the maximum package power-dissipation rating is not exceeded.MAX4130–MAX4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply Rail-to-Rail I/O Op AmpsDC ELECTRICAL CHARACTERISTICS (continued)(V CC = +2.7V to +6.5V, V EE = 0V, V CM = 0V, V OUT = V CC /2, R L tied to V CC /2, SHDN ≥2V (or open), T A = +25°C , unless otherwise noted.)DC ELECTRICAL CHARACTERISTICS(V CC = +2.7V to +6.5V, V EE = 0V, V CM = 0V, V OUT = V CC /2, R L tied to V CC /2, SHDN ≥2V (or open), T A = -40°C to +85°C , unlessM A X 4130–M A X 4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply Rail-to-Rail I/O Op Amps 4_______________________________________________________________________________________DC ELECTRICAL CHARACTERISTICS(V CC = +2.7V to +6.5V, V EE = 0V, V CM = 0V, V OUT = V CC /2, R L tied to V CC /2, SHDN ≥2V (or open), T A = -40°C to +85°C , unlessMAX4130–MAX4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply Rail-to-Rail I/O Op Amps_______________________________________________________________________________________5DC ELECTRICAL CHARACTERISTICS (continued)(V CC = +2.7V to +6.5V, V EE = 0V, V CM = 0V, V OUT = V CC /2, R L tied to V CC /2, SHDN ≥2V (or open), T A = -40°C to +85°C , unless otherwise noted.) (Note 2)AC ELECTRICAL CHARACTERISTICSM A X 4130–M A X 4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps 6_______________________________________________________________________________________60-401001k 10k 1M 10M100k 100M GAIN AND PHASE vs. FREQUENCY-20FREQUENCY (Hz)G A I N (d B )02040P H A S E (D E G R E E S )180144720-72-144-180-108-363610860-401001k 10k 1M 10M100k 100MGAIN AND PHASEvs. FREQUENCY (WITH C)-20FREQUENCY (Hz)G A I N (d B )2040P H A S E (D E G R E E S )180144720-72-144-180-108-36361080-100101001k100k1M10M10k 100MPOWER-SUPPLY REJECTIONvs. FREQUENCY-80FREQUENCY (Hz)P S R (d B )-60-40-2001051520253530454050-40-25-105203550658095SHUTDOWN SUPPLY CURRENTvs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (µA )1000.100.011001k100k1M10M10k100MOUTPUT IMPEDANCE vs. FREQUENCYFREQUENCY (Hz)O U T P U T I M P E D A N C E (Ω)1101150800850900950105010001100-40-25-105203550658095SUPPLY CURRENT PER AMPLIFIERvs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (µA )-10-505101520-40-25-105203550658095OUTPUT LEAKAGE CURRENTvs. TEMPERATURETEMPERATURE (°C)L E A K A G E C U R R E N T (µA )Typical Operating Characteristics(V CC = +5V, V EE = 0V, VCM = V CC / 2, T A = +25°C, unless otherwise noted.)-600123456INPUT BIAS CURRENT vs. COMMON-MODE VOLTAGECOMMON-MODE VOLTAGE (V)I N P U T B I A S C U R R E N T (n A )-50-40-30-20-10010203040-60-40-40-25-105203550658095INPUT BIAS CURRENTvs. TEMPERATURETEMPERATURE (°C)I N P U T B I A S C U R R E N T (n A )-200204060MAX4130–MAX4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps_______________________________________________________________________________________712070750600110115OUTPUT VOLTAGE: EITHER SUPPLY (mV)G A I N (d B )30095859080100200500105100400LARGE-SIGNAL GAIN vs. OUTPUT VOLTAGE130-40-25-105203550658095LARGE-SIGNAL GAIN vs. TEMPERATURE90120TEMPERATURE (°C)G A I N (d B )11010085951251151051.21.31.51.41.61.71.81.9-40-25-105203550658095MINIMUM OPERATING VOLTAGEvs. TEMPERATUREM A X 4130/34-21TEMPERATURE (°C)M I N I M U M O P E R A T I N G V O L T A G E (V )Typical Operating Characteristics (continued)(V CC = +5V, V EE = 0V, V CM = V CC / 2, T A = +25°C, unless otherwise noted.)12080859095100105110115-40-25-105203550658095COMMON-MODE REJECTIONvs. TEMPERATURETEMPERATURE (°C)C O M M O N -M ODE R E J E C T I O N (d B )130700600120OUTPUT VOLTAGE: EITHER SUPPLY (mV)G A I N (d B )3001009080100200500110400LARGE-SIGNAL GAIN vs. OUTPUT VOLTAGE12060600110OUTPUT VOLTAGE: EITHER SUPPLY (mV)G A I N (dB )300908070100200500100400LARGE-SIGNAL GAIN vs. OUTPUT VOLTAGE12080-40-25-105203550658095LARGE-SIGNAL GAIN vs. TEMPERATURE90TEMPERATURE (°C)G A I N (d B )105859511511010012070750600110115OUTPUT VOLTAGE: EITHER SUPPLY (mV)G A I N (d B )30095859080100200500105100400LARGE-SIGNAL GAIN vs. OUTPUT VOLTAGE-3.00-2.25-0.75-1.5001.500.752.253.00-40-25-105203550658095INPUT OFFSET VOLTAGE vs. TEMPERATURETEMPERATURE (°C)V O L T A G E (m V )M A X 4130–M A X 4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps 8_______________________________________________________________________________________1408010k 1k 100k 10M 1M CHANNEL SEPARATION vs. FREQUENCYFREQUENCY (Hz)C H A N N E L S E P A R A T I O N (d B )1009013011012010100k10kFREQUENCY (Hz)1001k 0.03000.0050.0100.0150.0200.025 TOTAL HARMONIC DISTORTION AND NOISE vs. FREQUENCYT H D A N D N O I S E (%)0.10.0014.04.44.25.04.84.6TOTAL HARMONIC DISTORTION AND NOISE vs. PEAK-TO-PEAK SIGNAL AMPLITUDEPEAK-TO-PEAK SIGNAL AMPLITUDE (V)T H D + N O I S E (%)0.01INTIME (200ns/div)V O L T A G E (50m V /d i v )OUTMAX4131SMALL-SIGNAL TRANSIENT RESPONSE (NONINVERTING)IN TIME (200ns/div)V O L T A G E (50m V /di v )OUT MAX4131SMALL-SIGNAL TRANSIENT RESPONSE (INVERTING)A V = -1IN TIME (2µs/div)V O L T A G E (2V /d i v )OUT MAX4131LARGE-SIGNAL TRANSIENT RESPONSE (NONINVERTING)A V = +1INTIME (2µs/div)V O L T A G E (2V /d i v )OUTMAX4131LARGE-SIGNAL TRANSIENT RESPONSE (INVERTING)Typical Operating Characteristics (continued)(V CC = +5V, V EE = 0V, V CM = V CC / 2, T A = +25°C, unless otherwise noted.)1600-40-25-105203550658095MINIMUM OUTPUT VOLTAGEvs. TEMPERATURE20140120TEMPERATURE (°C)V O U T - V E E (m V )100806040050100150200250300-40-25-105203550658095MAXIMUM OUTPUT VOLTAGEvs. TEMPERATURETEMPERATURE (°C)V C C - V O U T (m V )MAX4130–MAX4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps_______________________________________________________________________________________9Figure 1a. Reducing Offset Error Due to Bias Current (Noninverting)Figure 1b. Reducing Offset Error Due to Bias Current (Inverting)M A X 4130–M A X 4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps 10______________________________________________________________________________________Applications InformationRail-to-Rail Input StageDevices in the MAX4130–MAX4134 family of high-speed amplifiers have rail-to-rail input and output stages designed for low-voltage, single-supply opera-tion. The input stage consists of separate NPN and PNP differential stages that combine to provide an input common-mode range that extends 0.2V beyond the supply rails. The PNP stage is active for input volt-ages close to the negative rail, and the NPN stage is active for input voltages near the positive rail. The input offset voltage is typically below 200µV. The switchover transition region, which occurs near V CC / 2, has been extended to minimize the slight degradation in com-mon-mode rejection ratio caused by the mismatch of the input pairs. Their low offset voltage, high band-width, and rail-to-rail common-mode range make these op amps excellent choices for precision, low-voltage data-acquisition systems.Since the input stage switches between the NPN and PNP pairs, the input bias current changes polarity as the input voltage passes through the transition region.Reduce the offset error caused by input bias currents flowing through external source impedances by match-ing the effective impedance seen by each input (Figures 1a, 1b). High source impedances, together with input capacitance, can create a parasitic pole that produces an underdamped signal response. Reducing the input impedance or placing a small (2pF to 10pF)capacitor across the feedback resistor improves response.The MAX4130–MAX4134s ’ inputs are protected from large differential input voltages by 1k Ωseries resistors and back-to-back triple diodes across the inputs (Figure 2). For differential input voltages less than 1.8V,input resistance is typically 500k Ω. For differential input voltages greater than 1.8V, input resistance is approxi-mately 2k Ω. The input bias current is given by the fol-lowing equation:Figure 2. Input Protection CircuitMAX4130–MAX4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps______________________________________________________________________________________11Rail-to-Rail Output StageThe minimum output voltage is within millivolts of ground for single-supply operation where the load is referenced to ground (V EE ). Figure 3 shows the input voltage range and output voltage swing of a MAX4131connected as a voltage follower. With a +3V supply and the load tied to ground, the output swings from 0.00V to 2.90V. The maximum output voltage swing depends on the load, but will be within 150mV of a +3V supply, even with the maximum load (500Ωto ground).Driving a capacitive load can cause instability in most high-speed op amps, especially those with low quies-cent current. The MAX4130–MAX4134 have a high tol-erance for capacitive loads. They are stable with capacitive loads up to 160pF. Figure 4 gives the stable operating region for capacitive loads. Figures 5 and 6show the response with capacitive loads and the results of adding an isolation resistor in series with the output (Figure 7). The resistor improves the circuit ’s phase margin by isolating the load capacitor from the op amp ’s output.INTIME (1µs/div)V O L T A G E (1V /d i v )OUTV CC = 3V, R L = 10k Ω to V EEFigure 3. Rail-to-Rail Input/Output Voltage RangeFigure 4. Capacitive-Load StabilityINTIME (200ns/div)V O L T A G E (50m V /d i v )OUTV CC = 5V R L = 10k Ω C L = 130pFFigure 5. MAX4131 Small-Signal Transient Response with Capacitive Load Figure 6. MAX4131 Transient Response to Capacitive Load with Isolation ResistorINTIME (500ns/div)V O L T A G E (50m V /d i v )OUTV CC = 5V C L = 1000pF R S = 39ΩM A X 4130–M A X 4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps 12______________________________________________________________________________________Power-Up and Shutdown ModeThe MAX4130–MAX4134 amplifiers typically settle with-in 1µs after power-up. Figures 9 and 10 show the out-put voltage and supply current on power-up, using the test circuit of Figure 8.The MAX4131 and MAX4133 have a shutdown option.When the shutdown pin (SHDN ) is pulled low, the sup-ply current drops below 25µA per amplifier and theamplifiers are disabled with the outputs in a high-impedance state. Pulling SHDN high or leaving it float-ing enables the amplifier. In the dual-amplifier MAX4133, the shutdown functions operate indepen-dently. Figures 11 and 12 show the output voltage and supply current responses of the MAX4131 to a shut-down pulse, using the test circuit of Figure 8.Figure 7. Capacitive-Load Driving CircuitFigure 8. Power-Up/Shutdown Test CircuitV CC TIME (5µs/div)V O L T A G E (1V /d i v )OUTFigure 9. Power-Up Output Voltage V CC (1V/div)TIME (5µs/div)I EE(500µA/div)Figure 10. Power-Up Supply CurrentMAX4130–MAX4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps______________________________________________________________________________________13Power Supplies and LayoutThe MAX4130–MAX4134 operate from a single +2.7V to +6.5V power supply, or from dual supplies of ±1.35V to ±3.25V. For single-supply operation, bypass the power supply with a 0.1µF ceramic capacitor in parallel with at least 1µF. For dual supplies, bypass each sup-ply to ground.Good layout improves performance by decreasing the amount of stray capacitance at the op amp ’s inputs and outputs. Decrease stray capacitance by placing external components close to the op amp ’s pins, mini-mizing trace lengths and resistor leads.UCSP Applications InformationFor the latest application details on UCSP construction,dimensions, tape carrier information, PC board tech-niques, bump-pad layout, and the recommended reflow temperature profile, as well as the latest informa-tion on reliability testing results, go to Maxim ’s website at /ucsp and search for the Application Note: UCSP –A Wafer-Level Chip-Scale Package .TIME (1µs/div)OUTFigure 11. Shutdown Output Voltage TIME (1µs/div)Figure 12. Shutdown Enable/Disable Supply CurrentM A X 4130–M A X 4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps 14________________________________________________________________________________________________________________________________________________Pin ConfigurationsMAX4130–MAX4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps______________________________________________________________________________________15Chip InformationOrdering Information (continued)MAX4130 TRANSISTOR COUNT: 170MAX4131 TRANSISTOR COUNT: 170MAX4132 TRANSISTOR COUNT: 340MAX4134 TRANSISTOR COUNT: 680*Dice are specified at T A = +25°C, DC parameters only.Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)M A X 4130–M A X 4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps 16______________________________________________________________________________________Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)MAX4130–MAX4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps______________________________________________________________________________________17Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are M A X 4130–M A X 4134Single/Dual/Quad, Wide-Bandwidth, Low-Power,Single-Supply, Rail-to-Rail I/O Op Amps implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.18__________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600©2003 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。

MAX3051EKA-T中文资料

MAX3051EKA-T中文资料

General DescriptionThe MAX3051 interfaces between the CAN protocol controller and the physical wires of the bus lines in a controller area network (CAN). The MAX3051 provides differential transmit capability to the bus and differential receive capability to the CAN controller. The MAX3051is primarily intended for +3.3V single-supply applica-tions that do not require the stringent fault protection specified by the automotive industry (ISO 11898).The MAX3051 features four different modes of opera-tion: high-speed, slope-control, standby, and shutdown mode. High-speed mode allows data rates up to 1Mbps. The slope-control mode can be used to program the slew rate of the transmitter for data rates of up to 500kbps. This reduces the effects of EMI, thus allowing the use of unshielded twisted or parallel cable.In standby mode, the transmitter is shut off and the receiver is pulled high, placing the MAX3051 in low-current mode. In shutdown mode, the transmitter and receiver are switched off.The MAX3051 input common-mode range is from -7V to +12V, exceeding the ISO 11898 specification of -2V to +7V. These features, and the programmable slew-rate limiting, make the part ideal for nonautomotive, harsh environments. The MAX3051 is available in 8-pin SO and SOT23 packages and operates over the -40°C to +85°C extended temperature range.ApplicationsPrinters JetLinkIndustrial Control and Networks Telecom Backplane Consumer ApplicationsFeatures♦Low +3.3V Single-Supply Operation ♦Wide -7V to +12V Common-Mode Range ♦Small SOT23 Package♦Four Operating ModesHigh-Speed Operation Up to 1MbpsSlope-Control Mode to Reduce EMI (Up to 500kbps)Standby ModeLow-Current Shutdown Mode ♦Thermal Shutdown ♦Current LimitingMAX3051+3.3V , 1Mbps, Low-Supply-CurrentCAN Transceiver________________________________________________________________Maxim Integrated Products 1Pin ConfigurationOrdering Information19-3274; Rev 0; 5/04For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Typical Operating Circuit at end of data sheet.M A X 3051+3.3V , 1Mbps, Low-Supply-Current CAN Transceiver 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = +3.3V ±5%, R L = 60Ω, C L = 100pF, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +3.3V and T A =Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC to GND..............................................................-0.3V to +6V TXD, RS, SHDN to GND...........................................-0.3V to +6V RXD to GND .............................................................-0.3V to +6V CANH, CANL to GND..........................................-7.5V to +12.5V Continuous Power Dissipation (T A = +70°C)8-Pin SO (derate 5.9mW/°C above +70°C)...................470mW 8-Pin SOT23 (derate 9.7mW/°C above +70°C).............774mWOperating Temperature Range ...........................-40°C to +85°C Maximum Junction Temperature.....................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature Range (soldering, 10s)......................+300°CMAX3051+3.3V , 1Mbps, Low-Supply-CurrentCAN Transceiver_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V CC = +3.3V ±5%, R L = 60Ω, C L = 100pF, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +3.3V and T A =M A X 3051+3.3V , 1Mbps, Low-Supply-Current CAN Transceiver 4_______________________________________________________________________________________Note 2:No other devices on the BUS.Note 3:BUS externally driven.TIMING CHARACTERISTICS(V CC = +3.3V ±5%, R L = 60Ω, C L = 100pF, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +3.3V and T A =+25°C.)MAX3051+3.3V , 1Mbps, Low-Supply-CurrentCAN Transceiver_______________________________________________________________________________________5Figure 1. Timing Diagram Figure 2. Timing Diagram for Standby SignalFigure 3. Timing Diagram for Shutdown Signal Figure 4. Timing Diagram for Shutdown-to-Standby SignalTiming DiagramsSLEW RATE vs. R RS AT 100kbpsM A X 3051t o c 01R RS (k Ω)S L E W R A T E (V /µs )18016014012010080604020510152025303500200M A X 3051+3.3V , 1Mbps, Low-Supply-Current CAN Transceiver 6_______________________________________________________________________________________SUPPLY CURRENT vs. DATA RATEDATA RATE (kbps)S U P P L Y C U R R E N T (m A )8006004002001316192225101000SHUTDOWN SUPPLY CURRENT vs. TEMPERATURE (SHDN = V CC )M A X 3051t o c 03TEMPERATURE (°C)S H U T D O W N S U P P L Y C U R R E N T (n A )603510-15204060801001200-4085STANDBY SUPPLY CURRENT vs. TEMPERATURE (RS = V CC )M A X 3051t o c 04TEMPERATURE (°C)S T A N D B Y S U P P L Y C U R R E N T (µA )603510-158.59.09.510.010.511.08.0-4085RECEIVER PROPAGATION DELAY vs.TEMPERATURETEMPERATURE (°C)R E C E I V E R P R O P A G A T I O N D E L A Y (n s )603510-155101520253035404550-4085DRIVER PROPAGATION DELAY vs.TEMPERATURETEMPERATURE (°C)D R I VE R P R O P A G A T I O N D E L A Y (n s )603510-1510203040500-4085RECEIVER OUTPUT LOW vs.OUTPUT CURRENTOUTPUT CURRENT (mA)V O L T A G E R X D (V )4035510152520300.20.40.60.81.01.21.41.60045Typical Operating Characteristics(V CC = +3.3V, R L = 60Ω, C L = 100pF, T A = +25°C, unless otherwise specified.)MAX3051+3.3V , 1Mbps, Low-Supply-CurrentCAN Transceiver_______________________________________________________________________________________7RECEIVER PROPAGATION DELAYRXD 1v/divCAHN - CANL200ns/divRS = GNDDRIVER PROPAGATION DELAYM A X 3051t o c 11TXD 2V/divR RS = 24k ΩR RS = 75k ΩR RS = 100k Ω200ns/divDRIVER PROPAGATION DELAYTXD 1V/divCAHN - CANL200ns/divRS = GNDLOOPBACK PROPAGATION DELAYvs. R RSM A X 3051t o c 13R RS (k Ω)L O O P B A C K P R O P A G A T I O N D E L A Y (n s )180160140120100806040202004006008001000120000200Typical Operating Characteristics (continued)(V CC = +3.3V, R L = 60Ω, C L = 100pF, T A = +25°C, unless otherwise specified.)RECEIVER OUTPUT HIGH vs.OUTPUT CURRENTM A X 3051t o c 08OUTPUT CURRENT (mA)R E C E I V E R O U T P U T H I G H (V C C - R X D ) (V )71235460.20.40.60.81.01.21.41.61.8008DIFFERENTIAL VOLTAGE vs.DIFFERENTIAL LOADDIFFERENTIAL LOAD R L (Ω)D I F FE R E N T I A L V O L T A G E (V )2001000.51.01.52.02.53.03.50300M A X 3051+3.3V , 1Mbps, Low-Supply-Current CAN Transceiver 8_______________________________________________________________________________________Detailed DescriptionFigure 5. MAX3051 Functional DiagramMAX3051+3.3V , 1Mbps, Low-Supply-CurrentCAN TransceiverDetailed DescriptionThe MAX3051 interfaces between the CAN protocol controller and the physical wires of the bus lines in a CAN. It provides differential transmit capability to the bus and differential receive capability to the CAN con-troller. It is primarily intended for +3.3V single-supply applications that do not require the stringent fault pro-tection specified by the automotive industry (ISO 11898) The MAX3051 features four different modes of opera-tion: high-speed, slope-control, standby, and shutdown mode. High-speed mode allows data rates up to 1Mbps. The slope-control mode can be used to pro-gram the slew rate of the transmitter for data rates of up to 500kbps. This reduces the effects of EMI, thus allow-ing the use of unshielded twisted or parallel cable. In standby mode, the transmitter is shut off and the receiver is pulled high, placing the MAX3051 in low-current mode. In shutdown mode, the transmitter and receiver are switched off.The MAX3051 input common-mode range is from -7V to +12V, exceeding the ISO 11898 specification of -2V to +7V. These features, and the programmable slew-rate limiting, make the part ideal for nonautomotive, harsh environments.The transceivers operate from a single +3.3V supply and draw 35µA of supply current in dominant state and 2µA in recessive state. In standby mode, supply cur-rent is reduced to 8µA. In shutdown mode, supply cur-rent is less than 1µA.CANH and CANL are output short-circuit current limited and are protected against excessive power dissipation by thermal-shutdown circuitry that places the driver outputs into a high-impedance state.TransmitterThe transmitter converts a single-ended input (TXD)from the CAN controller to differential outputs for the bus lines (CANH, CANL). The truth table for the trans-mitter and receiver is given in Table 1.ReceiverThe receiver reads differential inputs from the bus lines (CANH, CANL) and transfers this data as a single-ended output (RXD) to the CAN controller. It consists of a comparator that senses the difference V DIFF = (CANH - CANL) with respect to an internal threshold of +0.75V.If this V DIFF is greater than 0.75, a logic-low is present at RXD. If V DIFF is less than 0.75V, a logic-high is present.The receiver always echoes the CAN BUS data.The CANH and CANL common-mode range is -7V to +12V. RXD is logic-high when CANH and CANL are shorted or terminated and undriven.Mode SelectionHigh-Speed ModeConnect RS to ground to set the MAX3051 to high-speed mode. When operating in high-speed mode, the MAX3051 can achieve transmission rates of up to 1Mbps. In high-speed mode, use shielded twisted pair cable to avoid EMI problems.Slope-Control ModeConnect a resistor from RS to ground to select slope-control mode (Table 2). In slope-control mode, CANH and CANL slew rates are controlled by the resistor con-nected to the RS pin. Maximum transmission speeds are controlled by R RS and range from 40kbps to 500kbps. Controlling the rise and fall slopes reduces EMI and allows the use of an unshielded twisted pair or a parallel pair of wires as bus lines. The equation for selecting the resistor value is given by:R RS (k Ω) ≈12000 / (maximum speed in kbps)See the Slew Rate vs. RRS graph in the Typical Operating Characteristics .Standby ModeIf a logic-high is applied to RS, the MAX3051 enters a low-current standby mode. In this mode, the transmitterM A X 3051+3.3V , 1Mbps, Low-Supply-Current CAN Transceiver10______________________________________________________________________________________is switched off and the receiver is switched to a low-current/low-speed state. If dominant bits are detected,RXD switches to low level. The microcontroller should react to this condition by switching the transceiver back to normal operation.When the MAX3051 enters standby mode, RXD goes high for 4µs (max) regardless of the BUS state.However, after 4µs, RXD goes low only when the BUS is dominant, otherwise RXD remains high (when the BUS is recessive). For proper measurement of standby-to-receiver active time (t SBRXDL ), the BUS should be in dominant state (see Figure 2).ShutdownDrive SHDN high to enter shutdown mode. Connect SHDN to ground or leave floating for normal operation.Thermal ShutdownIf the junction temperature exceeds +160°C, the device is switched off. The hysteresis is approximately 25°C,disabling thermal shutdown once the temperature drops below 135°C. In thermal shutdown, CANH and CANL go recessive and all IC functions are disabled.Applications InformationReduced EMI and ReflectionsIn slope-control mode, the CANH and CANL outputs are slew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables. In multidrop CAN applications, it is important to main-tain a direct point-to-point wiring scheme. A single pair of wires should connect each element of the CAN bus,and the two ends of the bus should be terminated with 120Ωresistors (Figure 6). A star configuration should never be used.Any deviation from the point-to-point wiring scheme creates a stub. The high-speed edge of the CAN data on a stub can create reflections back down the bus.These reflections can cause data errors by eroding the noise margin of the system.Although stubs are unavoidable in a multidrop system,care should be taken to keep these stubs as small as possible, especially in high-speed mode. In slope-con-trol mode, the requirements are not as rigorous, but stub length should still be minimized.Power Supply and BypassingThe MAX3051 requires no special layout considerations beyond common practices. Bypass V CC to GND with a 0.1µF ceramic capacitor mounted close to the IC with short lead lengths and wide trace widths.MAX3051+3.3V , 1Mbps, Low-Supply-CurrentCAN Transceiver______________________________________________________________________________________11Chip InformationTRANSISTOR COUNT: 1024PROCESS: BiCMOSTypical Operating CircuitM A X 3051+3.3V , 1Mbps, Low-Supply-Current CAN Transceiver 12______________________________________________________________________________________Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)MAX3051+3.3V , 1Mbps, Low-Supply-CurrentCAN TransceiverMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________13©2004 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)S O T 23, 8L .E P S。

MAX3483中文资料

MAX3483中文资料

_______________General Description ____________________________Features
The MAX3483, MAX3485, MAX3486, MAX3488, MAX3490, and MAX3491 are 3.3V, low-power transceivers for RS-485 and RS-422 communication. Each part contains one driver and one receiver. The MAX3483 and MAX3488 feature slew-rate-limited drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission at data rates up to 250kbps. The partially slew-rate-limited MAX3486 transmits up to 2.5Mbps. The MAX3485, MAX3490, and MAX3491 transmit at up to 10Mbps.
RL = 60Ω (RS-485), VCC = 3.3V, Figure 5
∆VOD RL = 54Ω or 100Ω, Figure 4
MIN TYP MAX UNITS
2.0
1.5
V
1.5
0.2
V
Driver Common-Mode Output Voltage
VOC RL = 54Ω or 100Ω, Figure 4

MAX4823ETP-T中文资料

MAX4823ETP-T中文资料

General DescriptionThe MAX4822–MAX4825 8-channel relay drivers offer built-in kickback protection and drive +3V/+5V non-latching or dual-coil-latching relays. Each independent open-drain output features a 2.7Ω(typ) on-resistance and is guaranteed to sink 70mA (min) of load current.These devices consume less than 300µA (max) quies-cent current and have 1µA output off-leakage current.A Zener-kickback-protection circuit significantly reduces recovery time in applications where switching speed is critical.The MAX4822/MAX4824 feature a unique power-save mode where the relay current, after activation, can be reduced to a level just above the relay hold-current threshold. This mode keeps the relay activated while significantly reducing the power consumption.The MAX4822/MAX4823 feature a 10MH z SPI™-/QSPI™-/MICROWIRE™-compatible serial interface.Input data is shifted into a shift register and latched to the outputs when CS transitions from low to high. Each data bit in the shift register corresponds to a specific output, allowing independent control of all outputs. The MAX4824/MAX4825 feature a 4-bit parallel-input interface. The first 3 bits (A0, A1, A2) determine the out-put address, and the fourth bit (LVL) determines whether the selected output is switched on or off. Data is latched to the outputs when CS transitions from low to high.The MAX4822–MAX4825 feature separate set and reset functions, allowing turn-on or turn-off of all outputs simultaneously with a single control line. Built-in hys-teresis (Schmidt trigger) on all digital inputs allows these devices to be used with slow-rising and falling signals, such as those from optocouplers or RC power-up initialization circuits. The MAX4822–MAX4825 are available in space-saving 4mm x 4mm, 20-pin thin QFN packages. They are specified over the -40°C to +85°C extended temperature range.ApplicationsATE EquipmentDSL Redundancy Protection (ADSL/VDSL/HDSL)T1/E1 Redundancy Protection T3/E3 Redundancy Protection Industrial EquipmentTest Equipment (Oscilloscopes, Spectrum Analyzers)Features♦Built-In Zener Kickback Protection for Fast Recovery ♦Programmable Power-Save Mode Reduces Relay Power Consumption (MAX4822/MAX4824)♦10MHz SPI-/QSPI-/MICROWIRE-Compatible Serial Interface ♦Eight Independent Output Channels ♦Drive +3V and +5V Relays♦Guaranteed 70mA (min) Coil Drive Current ♦Guaranteed 5Ω(max) R ON♦SET / RESET Functions to Turn On/Off All Outputs Simultaneously ♦Serial Digital Output for Daisy Chaining ♦Optional Parallel Interface (MAX4824/MAX4825)♦Low 300µA (max) Quiescent Supply Current ♦Space-Saving, 4mm x 4mm, 20-Pin TQFN PackageMAX4822–MAX4825+3.3V/+5V , 8-Channel Relay Drivers with FastRecovery Time and Power-Save Mode________________________________________________________________Maxim Integrated Products1Ordering Information19-3789; Rev 0; 8/05For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .*For maximum heat dissipation, packages have an exposed pad (EP) on the bottom. Solder exposed pad to GND.SPI is a trademark of Motorola, Inc.QSPI is a trademark of Motorola, Inc.MICROWIRE is a trademark of National Semiconductor Corp.M A X 4822–M A X 4825+3.3V/+5V , 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC ........................................................................-0.3V to +6.0V OUT_......................................................................-0.3V to +11V CS , SCLK, DIN, SET , RESET , A0, A1, A2, LVL......-0.3V to +6.0V DOUT..........................................................-0.3V to (V CC + 0.3V)PSAVE........................................................-0.3V to (V CC + 0.3V)Continuous OUT_ Current (all outputs turned on)............150mA Continuous OUT_ Current (single output turned on)........300mAContinuous Power Dissipation (T A = +70°C)20-Lead Thin QFN (derate 16.9mW/°C above +70°C)..1350mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Soldering Temperature (10s)...........................................+300°CELECTRICAL CHARACTERISTICSMAX4822–MAX4825+3.3V/+5V , 8-Channel Relay Drivers with FastRecovery Time and Power-Save Mode_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)M A X 4822–M A X 4825+3.3V/+5V , 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode 4_______________________________________________________________________________________Note 4:The circuit can set the output voltage in power-save mode only if I OUT x R ON < V OUTP .Note 5:After relay turn-off, inductive kickback can momentarily cause the OUT_ voltage to exceed V CC . This is considered part of normal operation and does not damage the device.Note 6:Guaranteed by design.Note 7:For other capacitance values, use the equation t PS = 32 x C.ELECTRICAL CHARACTERISTICS (continued)(V CC = +2.7V to +5.5V, T A = -40°C to +85°C, unless otherwise noted. Typical values are at V CC = 2.7V, T A = +25°C, unless otherwise noted.) (Note 1)MAX4822–MAX4825+3.3V/+5V , 8-Channel Relay Drivers with FastRecovery Time and Power-Save Mode_______________________________________________________________________________________5QUIESCENT SUPPLY CURRENTvs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (µA )5.14.72.73.13.53.94.31451501551601651701751801402.35.5QUIESCENT SUPPLY CURRENTvs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (µA )603510-15110120130140150160170180190200100-40850.200.600.401.201.000.801.601.801.402.0014523678910DYNAMIC SUPPLY CURRENTvs. FREQUENCYFREQUENCY (MHz)D Y N A M I C S U P P L Y C U R RE N T (m A )QUIESCENT SUPPLY CURRENT vs. LOGIC-INPUT VOLTAGELOGIC-INPUT VOLTAGE (V)S U P P L Y C U R R E N T (µA )432110020030040050060070080090010001100005ON-RESISTANCE vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)R O N (Ω)5.14.72.73.13.53.94.31.752.002.252.502.753.003.253.501.502.35.5ON-RESISTANCE vs. TEMPERATURETEMPERATURE (°C)R O N (Ω)603510-152.02.53.03.54.01.5-4085POWER-ON RESET VOLTAGEvs. TEMPERATUREM A X 4822-25 t o c 07TEMPERATURE (°C)P O W E R -O N R E S E T V O L T A G E (V )603510-151.051.101.151.201.251.301.351.401.451.501.551.601.651.701.00-4085OUTPUT OFF-LEAKAGE CURRENTvs. SUPPLY VOLTAGEM A X 4822-25 t o c 08SUPPLY VOLTAGE (V)O U T P U T O F F -L E A K A G E (pA )5.14.74.33.93.53.12.712345602.3 5.5OUTPUT OFF-LEAKAGE CURRENTvs. TEMPERATURETEMPERATURE (°C)O U T P U T O F F -L E A K A G E (n A )603510-150.010.11100.001-4085Typical Operating Characteristics(V CC = 3.3V, T A = +25°C, unless otherwise noted.)M A X 4822–M A X 4825+3.3V/+5V , 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode 6_______________________________________________________________________________________OUT_ TURN-ON DELAY TIME vs. SUPPLY VOLTAGEM A X 4822-25 t o c 10SUPPLY VOLTAGE (V)I O N D E L A Y T I M E (n s )5.14.74.33.93.53.12.7406080100120140202.35.5OUT_ TURN-OFF DELAY TIMEvs. SUPPLY VOLTAGEM A X 4822-25 t o c 11SUPPLY VOLTAGE (V)I O F F D E L A Y T I M E (n s ) 5.14.74.33.93.53.12.760080010001200140016004002.3 5.5INPUT-LOGIC THRESHOLD vs. SUPPLY VOLTAGEM A X 4822-25 t o c 2SUPPLY VOLTAGE (V)I N P U T -L O G I C T H R E S H O L D (V )5.14.73.9 4.33.1 3.52.71.11.21.31.41.51.61.71.81.92.02.11.02.3 5.5BACK EMF CLAMPING WITH STANDARD 3V RELAY V CC = 3.3V MAX4822-25 toc13100µs/div0V0VCS 5V/divVOUT 2V/divPOWER-SAVE DELAY TIMEvs. CAPACITANCECAPACITANCE (nF)t P S (m s )800600200400510152030253540001000POWER-SAVE DELAY TIME vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)t P S (m s )5.14.73.94.33.13.52.73.553.603.653.703.753.803.853.903.954.003.502.35.50.30.40.60.50.70.810050150200250300OUTPUT VOLTAGE vs. OUTPUT CURRENTIN POWER-SAVE MODE (PSAVE REGISTER = 111)M A X 4822 t o c 16OUTPUT CURRENT (mA)O U T P U T V O L T A G E (V )Typical Operating Characteristics (continued)(V CC = 3.3V, T A = +25°C, unless otherwise noted.)MAX4822–MAX4825+3.3V/+5V , 8-Channel Relay Drivers with FastRecovery Time and Power-Save Mode_______________________________________________________________________________________7MAX4822/MAX4823 Pin DescriptionM A X 4822–M A X 4825+3.3V/+5V , 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode 8_______________________________________________________________________________________MAX4822/MAX4823 Pin Description (continued)MAX4824/MAX4825 Pin DescriptionDetailed DescriptionSerial Interface (MAX4822/MAX4823)Depending on the MAX4822/MAX4823 device, the serial interface can be controlled by either 8- or 16-bit words as depicted in Figures 1 and 2. The MAX4823 does not support power-save mode, so the serial interface con-sists of an 8-bit-only shift register for faster control.The MAX4822 consists of a 16-bit shift register and par-allel latch controlled by SCLK and CS . The input to the shift register is a 16-bit word. In the MAX4822, the first 8 bits determine the register address and are followedsponds to the MSB of the 8-bit register address in Figure 1, while bit D7 corresponds to the MSB of the 8bits of data in the same Figure 1.The MAX4823 consists of an 8-bit shift register and par-allel latch controlled by SCLK and CS . The input to the shift register is an 8-bit word. Each data bit controls one of the eight outputs, with the most significant bit (D7) corresponding to OUT8, and the least significant bit (D0) corresponding to OUT1 (see Figure 2).MAX4822–MAX4825+3.3V/+5V , 8-Channel Relay Drivers with FastRecovery Time and Power-Save Mode_______________________________________________________________________________________9M A X 4822–M A X 4825When CS is low (MAX4822/MAX4823 device is select-ed), data at DIN is clocked into the shift register syn-chronously with SCLK’s rising edge. Driving CS from low to high latches the data in the shift register (Figures 5 and 6).DOUT is the output of the shift register. Data appears on DOUT synchronously with SCLK’s falling edge and is identical to the data at DIN delayed by eight clock cycles for the MAX4823, or 16 clock cycles for the MAX4822. When shifting the input data, A7 is the first input bit in and out of the shift register for the MAX4822device. D7 is the first bit in or out of the shift register for+3.3V/+5V , 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode 10______________________________________________________________________________________Figure 1. 16-Bit Register Map for MAX4822the MAX4823 device. If the address A0…….A7 is not 00h or 01h, then the outputs and the PSAVE configura-tion register are not updated. The address is stored in the shift register only.While CS is low, the OUT_ outputs always remain in their previous state. For the MAX4823, drive CS high after 8bits of data have been shifted in to update the output state of the MAX4823, and to further inhibit data from entering the shift register. For the MAX4822, drive CS high after 16 bits of data have been shifted in to update the output state of the MAX4822, and to further inhibit data from entering the shift register. When CS is high, transi-tions at DIN and SCLK have no effect on the output, and the first input bit A7 (or D7) is present at DOUT.For the MAX4822, if the number of data bits entered while CS is low is greater or less than 16, the shift regis-ter contains only the last 16 bits, regardless of when they were entered. For the MAX4823, if the number of data bits entered while CS is low is greater or less than 8, the shift register contains only the last 8 data bits,regardless of when they were entered.Parallel Interface (MAX4824/MAX4825)The parallel interface consists of 3 address bits (A0,A1, A2) and one level selector bit (LVL). The address bits determine which output is updated, and the level bit determines whether the addressed output is switched on (LVL = high) or off (LVL = low). When CS is high, the address and level bits have no effect on the state of the outputs. Driving CS from low to high latchesMAX4822–MAX4825Recovery Time and Power-Save Mode______________________________________________________________________________________11Figure 4. 3-Wire Serial-Interface Timing DiagramFigure 2. 8-Bit Register Map for MAX4823M A X 4822–M A X 4825level data to the parallel register and updates the state of the outputs. Address data entered after CS is pulled low is not reflected in the state of the outputs following the next low-to-high transition on CS (Figure 7).SET/RESET FunctionsThe MAX4822–MAX4825 feature set and reset inputs that allow simultaneous turn-on or turn-off of all outputs using a single control line. Drive SET low to set all latch-es and registers to 1 and turn all outputs on. SET over-rides all serial/parallel control inputs. Drive RESET low to clear all latches and registers and to turn all outputs off. RESET overrides all other inputs including SET .Power-On ResetThe MAX4822–MAX4825 feature power-on reset. The power-on reset function causes all latches to be cleared automatically upon power-up. This ensures that all outputs come up in the off or high-impedance state.Applications InformationDaisy ChainingThe MAX4822/MAX4823 feature a digital output (DOUT) that provides a simple way to daisy chain multi-ple devices. This feature allows driving large banks of relays using only a single serial interface. To daisy chain multiple devices, connect all CS inputs together,and connect the DOUT of one device to the DIN of another device (see Figure 8). During operation, a stream of serial data is shifted through the MAX4822/MAX4823 devices in series. When CS goes high, all outputs update simultaneously.The MAX4822/MAX4823 can also be used in a slave configuration that allows individual addressing of devices. Connect all the DIN inputs together, and usethe CS input to address one device at a time. Drive CS low to select a slave and input the data into the shift register. Drive CS high to latch the data and turn on the appropriate outputs. Typically, in this configuration only one slave is addressed at a time.Power-Save ModeThe MAX4822/MAX4824 feature a unique power-save mode where the relay current, after activation, can be reduced to a level just above the relay hold-current threshold. This mode keeps the relay activated while significantly reducing the power consumption.In serial mode (MAX4822), choose between seven cur-rent levels ranging from 30% to 90% of the nominal cur-rent in 10% increments. The actual percentage is determined by the power-save configuration register (Figure 1).In parallel mode (MAX4824), the power-save current is fixed at 60% of the nominal current.Power-Save TimerEvery time there is a write operation to the device (CS transitions from low to high), the MAX4822/MAX4824start charging the capacitor connected to PSAVE. The serial power-save implementation is such that a write operation does not change the state of channels already in power-save mode (unless the write turns the channel OFF).After a certain time period, t PS (determined by the capacitor value), the capacitor reaches a voltage threshold that sets all active outputs to power-save mode. The t PS period should be made long enough to allow the relay to turn on completely. The time period t PS can be adjusted by using different capacitor valuesRecovery Time and Power-Save Mode 12______________________________________________________________________________________Figure 5. 3-Wire Serial-Interface Operation for MAX4822connected to PSAVE. The value t PS is given by the fol-lowing formula:t PS = 32 x Cwhere C is in µF and t PS is in ms.For example, if the desired t PS is 20ms, then the required capacitor value is 20 / 32 = 0.625µF.Power-Save Mode AccuracyThe current through the relay is controlled by setting the voltage at OUT_ to a percentage of the V CC supply as specified under the Electrical Characteristics and in the register description. The current through the relay (I OUT )depends on the switch on-resistance, R ON,in addition to the relay resistance R R according to the fol-lowing relation:I OUT = V CC / (R ON + R R )The power-save, current-setting I PS depends on the fraction αof the supply voltage V CC that is set by the loop depending on the following relation:I PS = V CC - (αx V CC ) / R RTherefore:I PS / I OUT = (1- α) x (1 + R ON / R R )This relation shows how the fraction of reduction in the current depends on the switch on-resistance, as well as from the accuracy of the voltage setting (α). The higher the R ON with respect to R R, the higher the inaccuracy.This is particularly true at low voltage when the relay resistance is low (less than 40Ω) and the switch can account for up to 10% of the total resistance. In addi-tion, when the supply-voltage setting (α) is low (10% or 20%) and the supply voltage (V CC ) is low, the voltage drop across the switch (I OUT x R ON ) may already exceed, or may be very close to, the desired voltage-setting value.Daisy Chaining and Power-Save ModeIn a normal configuration using the power-save feature,several MAX4822s can be daisy chained as shown in Figure 9. For each MAX4822, the power-save timing t PD (time it takes to reduce the relay current once the relay is actuated) is controlled by the capacitor con-nected to PSAVE.An alternative configuration that eliminates the PSAVE capacitors uses a common PSAVE control line driven by an open-drain n-channel MOSFET (Figure 10). In this con-figuration, the PSAVE inputs are connected together to asynchronously control the power-save timing for all the MAX4822s in the chain. The µC/µP drives the n-channel MOSFET low for the duration of a write cycle to the SPI chain, plus some delay time to allow the relays to close.(This time is typically specified in the relay data sheet.)Once this delay time has elapsed, the n-channel MOSFET is turned off, allowing the MAX4822’s internal 35µA pullup current to raise PSAVE to a logic-high level, activating the power-save mode in all active outputs.MOSFET SelectionIn the daisy-chain configuration of Figure 10, the n-channel MOSFET drives PSAVE low. When the n-channel MOSFET is turned off, PSAVE is pulled high by an internal 35µA pullup in each MAX4822, and the power-save mode is enabled. Because of the paralleled PSAVE pullup currents, the required size of the n-channel MOSFET depends upon the number of MAX4822 devices in the chain. Determine the size of the n-channel MOSFET by the following relation:R ON < 1428 / NMAX4822–MAX4825Recovery Time and Power-Save Mode______________________________________________________________________________________13Figure 6. 3-Wire Serial-Interface Operation for the MAX4823Figure 7. Parallel-Interface Timing DiagramM A X 4822–M A X 4825where N is the total number of MAX4822 devices in a single chain, and R ON is the on-resistance of the n-channel MOSFET in Ωs.For example, if N = 10:R ON < 142ΩAn n-channel MOSFET with R ON less than 142Ωis required for a daisy chain of 10 MAX4822 devices.Inductive Kickback Protection withFast Recovery TimeThe MAX4822–MAX4825 feature built-in inductive kick-back protection to reduce the voltage spike on OUT_generated by a relay’s coil inductance when the output is suddenly switched off. An internal Zener clamp allows the inductor current to flow back to ground. The Zener configuration significantly reduces the recovery time (time it takes to turn off the relay) when compared to protection configurations with just one diode across the coil.Recovery Time and Power-Save Mode 14______________________________________________________________________________________Figure 9. Daisy-Chained MAX4822s with a Capacitor Connected to PSAVEFigure 8. Daisy-Chain ConfigurationMAX4822–MAX4825Recovery Time and Power-Save Mode______________________________________________________________________________________15Figure 10. Daisy-Chaining MAX4822s with a PSAVE Connected to an n-Channel MOSFETChip InformationTRANSISTOR COUNT: 5799PROCESS: BiCMOSM A X 4822–M A X 4825Recovery Time and Power-Save Mode 16______________________________________________________________________________________MAX4822/MAX4823 Functional Diagram (Serial Interface)MAX4822–MAX4825Recovery Time and Power-Save Mode______________________________________________________________________________________17MAX4824/MAX4825 Functional Diagram (Parallel Interface)M A X 4822–M A X 4825Recovery Time and Power-Save Mode 18______________________________________________________________________________________Pin ConfigurationsRecovery Time and Power-Save Mode Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses areimplied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________19©2005 Maxim Integrated Products Printed USAis a registered trademark of Maxim Integrated Products, Inc.MAX4822–MAX4825Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to /packages.)。

MAX3181EEUK-T中文资料

MAX3181EEUK-T中文资料

For free samples & the latest literature: , or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.General DescriptionThe MAX3180E–MAX3183E single RS -232 receivers in a SOT23-5 package are designed for space- and cost-constrained applications requiring minimal RS -232communications. The receiver inputs are protected to ±15kV using IEC 1000-4-2 Air-Gap Discharge, to ±8kV using IEC 1000-4-2 Contact Discharge, and to ±15kV per the Human Body Model, ensuring compliance with international standards.The devices minimize power and heat dissipation by consuming only 0.5µA supply current from a +3.0V to +5.5V supply, and they guarantee true RS -232 perfor-mance up to a 1.5Mbps data rate. The MAX3180E/MAX3182E feature a three-state TTL/CMOS receiver output that is controlled by an EN logic input. The MAX3181E/MAX3183E feature an INVALID output that indicates valid RS-232 signals at the receiver input for applications requiring automatic system wake-up. The MAX3182E/MAX3183E have a noninverting output,while the MAX3180E/MAX3181E have a standard inverting output.ApplicationsFeatureso Tiny SOT23-5 Packageo ESD-Protected RS-232 Input±15kV—Human Body Model±8kV—IEC 1000-4-2, Contact Discharge ±15kV—IEC 1000-4-2, Air-Gap Discharge o 0.5µA Supply Currento 1.5Mbps Guaranteed Data Rateo Meets EIA/TIA-232 and V.28/V.24 Specifications Down to V CC = +3.0V o INVALID Output Indicates Valid RS-232 Signal at Receiver Input (MAX3181E/MAX3183E)o Three-State TTL/CMOS Receiver Output (MAX3180E/MAX3182E)o Noninverting RS-232 Output (MAX3182E/MAX3183E)MAX3180E–MAX3183E±15kV ESD-Protected, 0.5µA, +3V to +5.5V ,1.5Mbps RS-232 Receivers in SOT23-5________________________________________________________________Maxim Integrated Products 119-1479; Rev 1; 7/99Ordering InformationM A X 3180E –M A X 3183E±15kV ESD-Protected, 0.5µA, +3V to +5.5V ,1.5Mbps RS-232 Receivers in SOT23-52_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = +3.0V to +5.5V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V, T A = +25°C.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC to GND..............................................................-0.3V to +6V RIN to GND..........................................................................±25V EN , ROUT, INVALID to GND......................-0.3V to (V CC + 0.3V)Continuous Power Dissipation (T A = +70°C)SOT23-5 (derate 7.1mW/°C above +70°C)...................571mWOperating Temperature Range ...........................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10sec).............................+300°CMAX3180E–MAX3183E±15kV ESD-Protected, 0.5µA, +3V to +5.5V ,1.5Mbps RS-232 Receivers in SOT23-5_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V CC = +3.0V to +5.5V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V, T A = +25°C.) (Note 1)Typical Operating Characteristics(V CC = +5V, T A = +25°C, unless otherwise noted.)00.20.10.40.30.60.50.700.51.0 1.5SUPPLY CURRENT vs. DATA RATEDATA RATE (Mbps)S U P P L Y C U R R E N T (m A )2302702502903303103503.0 3.5 5.04.54.0 5.5RIN TO INVALID HIGH vs. SUPPLY VOLTAGEM A X 3180E -02V CC (V)t I N V H (n s )Note 1:Specifications are 100% tested at T A = +25°C. Limits over temperature are guaranteed by design.Detailed DescriptionThe MAX3180E–MAX3183E are EIA/TIA-232 and V.28/V.24communications receivers that convert RS -232signals to CMOS logic levels. They operate on a +3V to +5.5V supply, have 1.5Mbps data rate capability, and feature enhanced electrostatic discharge (ESD) protec-tion (see ESD Protection ). All of these devices achieve a typical supply current of 0.5µA. The MAX3180E/MAX3182E have a receiver enable control (EN ). The MAX3181E/MAX3183E contain a signal invalid output (INVALID ). The MAX3180E/MAX3181E invert the ROUT signal relative to RIN (standard RS -232). The MAX3182E/MAX3183E outputs are not inverted. The devices come in tiny SOT23-5 packages.M A X 3180E –M A X 3183E±15kV ESD-Protected, 0.5µA, +3V to +5.5V ,1.5Mbps RS-232 Receivers in SOT23-54_______________________________________________________________________________________25353045405550603.03.54.04.55.05.5RIN TO INVALID LOW vs. V CCM A X 3180E -03V CC (V)t I N V L (µs )Typical Operating Characteristics (continued)(V CC = +5V, T A = +25°C, unless otherwise noted.)5V010V 0-10V RINROUTENABLE5V 0500ns/divMAX3180EENABLE ASSERTION TO ROUT RESPONSEV CC = 5.0V R L = 50k ΩC L = 100pFReceiver Output EnablePin DescriptionFUNCTIONOutput of the Valid Input Detector Inverting Receiver Output Figure 1. Receiver Propagation-Delay Timing Noninverting Receiver OutputSignal Invalid DetectorIf no valid signal levels appear on RIN for 30µs (typ),INVALID goes low. This event typically occurs if the RS -232 cable is disconnected, or if the connected peripheral transmitter is turned off. INVALID goes high when a valid level is applied to the RS -232 receiver input. Figure 2 shows the input levels and timing dia-gram for INVALID operation.Enable InputThe MAX3180E/MAX3182E feature an enable input (EN ). Drive EN high to force ROUT into a high-imped-ance state. In this state, the devices ignore incoming RS-232 signals. Pull EN low for normal operation.ESD ProtectionAs with all Maxim devices, ES D protection structures are incorporated on all pins to protect against ES D encountered during handling and assembly. The receiver inputs of the MAX3180E–MAX3183E have extra protection against static electricity. Maxim’s engineers have developed state-of-the-art structures enabling these pins to withstand ESD up to ±15kV without dam-age or latchup. The receiver inputs of the MAX3180E–MAX3183E are characterized for protection to the fol-lowing limits:•±15kV using the Human Body Model•±8kV using the Contact Discharge method specified in IEC 1000-4-2•±15kV using the Air-Gap Discharge method speci-fied in IEC 1000-4-2Human Body ModelFigure 3 shows the Human Body Model, and Figure 4shows the current waveform it generates when dis-charged into a low impedance. This model consists ofa 100pF capacitor charged to the ESD voltage of inter-est, and then discharged into the test device through a 1.5k Ωresistor.MAX3180E–MAX3183E±15kV ESD-Protected, 0.5µA, +3V to +5.5V ,1.5Mbps RS-232 Receivers in SOT23-5_______________________________________________________________________________________5Figure 3. Human Body ESD Test ModelFigure 4. Human Body Model Current WaveformFigure 2. Input Levels and INVALID TimingM A X 3180E –M A X 3183EIEC 1000-4-2The IEC 1000-4-2 standard covers ES D testing and performance of finished equipment; it does not specifi-cally refer to ICs. The MAX3180E–MAX3183E enable the design of equipment that meets the highest level (Level 4) of IEC 1000-4-2 without the need for additional ESD-protection components.The major difference between tests done using the Human Body Model and IEC 1000-4-2 is higher peak current in IEC 1000-4-2. Because series resistance is lower in the IEC 1000-4-2 model, the ES D withstand voltage measured to this standard is generally lower than that measured using the Human Body. Figure 5shows the IEC 1000-4-2 model, and Figure 6 shows thecurrent waveform for the ±8kV IEC 1000-4-2 Level 4ESD Contact Discharge test.The Air-Gap test involves approaching the device with a charged probe. The Contact Discharge method con-nects the probe to the device before the probe is ener-gized.Power-Supply DecouplingIn most circumstances, a 0.1µF V CC bypass capacitor is adequate. Connect the bypass capacitor as close to the IC as possible.±15kV ESD-Protected, 0.5µA, +3V to +5.5V ,1.5Mbps RS-232 Receivers in SOT23-56_______________________________________________________________________________________Figure 5. IEC 1000-4-2 ESD Test ModelFigure 6. IEC 1000-4-2 ESD Generator Current WaveformMAX3180E–MAX3183E±15kV ESD-Protected, 0.5µA, +3V to +5.5V ,1.5Mbps RS-232 Receivers in SOT23-5_______________________________________________________________________________________7Pin Configurations/Functional Diagrams___________________Chip InformationTRANSISTOR COUNT: 41M A X 3180E –M A X 3183E±15kV ESD-Protected, 0.5µA, +3V to +5.5V ,1.5Mbps RS-232 Receivers in SOT23-5Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.8_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©1999 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information。

MAX6373中文资料

MAX6373中文资料

General DescriptionThe MAX6369–MAX6374 are pin-selectable watchdog timers that supervise microprocessor (µP) activity and signal when a system is operating improperly. During normal operation, the microprocessor should repeated-ly toggle the watchdog input (WDI) before the selected watchdog timeout period elapses to demonstrate that the system is processing code properly. If the µP does not provide a valid watchdog input transition before the timeout period expires, the supervisor asserts a watch-dog (WDO ) output to signal that the system is not exe-cuting the desired instructions within the expected time frame. The watchdog output pulse can be used to reset the µP or interrupt the system to warn of processing errors.The MAX6369–MAX6374 are flexible watchdog timer supervisors that can increase system reliability through notification of code execution errors. The family offers several pin-selectable watchdog timing options to match a wide range of system timing applications:•Watchdog startup delay: provides an initial delay before the watchdog timer is started.•Watchdog timeout period: normal operating watch-dog timeout period after the initial startup delay.•Watchdog output/timing options: open drain (100ms)or push-pull (1ms).The MAX6369–MAX6374 operate over a +2.5V to +5.5V supply range and are available in miniature 8-pin SOT23 packages.________________________ApplicationsEmbedded Control Systems Industrial ControllersCritical µP and Microcontroller (µC) Monitoring AutomotiveTelecommunications NetworkingFeatureso Precision Watchdog Timer for Critical µP Applications o Pin-Selectable Watchdog Timeout Periods o Pin-Selectable Watchdog Startup Delay Periods o Ability to Change Watchdog Timing Characteristics Without Power Cycling o Open-Drain or Push-Pull Pulsed Active-Low Watchdog Output o Watchdog Timer Disable Feature o +2.5V to +5.5V Operating Voltage o 8µA Low Supply Currento No External Components Required o Miniature 8-Pin SOT23 PackageMAX6369–MAX6374Pin-Selectable Watchdog Timers19-1676; Rev 2; 2/03Ordering InformationPin Configuration appears at end of data sheet.Note:All devices are available in tape-and-reel only. Required order increment is 2,500 pieces.Selector GuideFor pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at1-888-629-4642, or visit Maxim’s website at .M A X 6369–M A X 6374Pin-Selectable Watchdog Timers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V= +2.5V to +5.5V, SET_ = V or GND, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C and Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Terminal Voltage (with respect to GND)V CC .....................................................................-0.3V to +6V WDI.....................................................................-0.3V to +6V WDO (Open Drain: MAX6369/71/73).................-0.3V to +6V WDO (Push-Pull: MAX6370/72/74 .......-0.3V to (V CC + 0.3V)SET0, SET1, SET2................................-0.3V to (V CC + 0.3V)Maximum Current, Any Pin (input/output)...........................20mAContinuous Power Dissipation (T A = +70°C)SOT23-8 (derate 8.75mW/°C above +70°C)...............700mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Junction Temperature......................................................+150°C Lead Temperature (soldering, 10s).................................+300°C V CC Rise or Fall Rate......................................................0.05V/µsMAX6369–MAX6374Pin-Selectable Watchdog Timers_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)M A X 6369–M A X 6374Pin-Selectable Watchdog Timers 4_______________________________________________________________________________________461081214-4010-15356085SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (µA )Typical Operating Characteristics(Circuit of Figure 1, T A = +25°C, unless otherwise noted .)0.9970.9990.9981.0011.0001.0021.003-4010-15356085WATCHDOG TIMEOUT PERIODvs. TEMPERATUREM A X 6369/74-02TEMPERATURE (°C)N O R M A L I Z E D W A T C H D O G T I M E O U T P E R I O DELECTRICAL CHARACTERISTICS (continued)Note 2:Guaranteed by design.Note 3:In this setting the watchdog timer is inactive and startup delay ends when WDI sees its first level transition. See SelectingDevice Timing for more information.Note 4:After power-up, or a setting change, there is an internal setup time during which WDI is ignored.MAX6369–MAX6374Pin-Selectable Watchdog Timers_______________________________________________________________________________________5Pin DescriptionDetailed DescriptionThe MAX6369–MAX6374 are flexible watchdog circuits for monitoring µP activity. During normal operation, the internal timer is cleared each time the µP toggles the WDI with a valid logic transition (low to high or high to low) within the selected timeout period (t WD ). The WDO remains high as long as the input is strobed within the selected timeout period. If the input is not strobed before the timeout period expires, the watchdog output is asserted low for the watchdog output pulse width (t WDO ). The device type and the state of the three logic control pins (SET0, SET1, and SET2) determine watch-dog timing characteristics. The three basic timing varia-tions for the watchdog startup delay and the normalTable 1 for the timeout characteristics for all devices in the family):•Watchdog Startup Delay:Provides an initial delay before the watchdog timer is started.Allows time for the µP system to power up and initial-ize before assuming responsibility for normal watch-dog timer updates.Includes several fixed or pin-selectable startup delay options from 200µs to 60s, and an option to wait for the first watchdog input transition before starting the watchdog timer.M A X 6369–M A X 6374Pin-Selectable Watchdog Timers 6_______________________________________________________________________________________•Watchdog Timeout Period:Normal operating watchdog timeout period after the initial startup delay.A watchdog output pulse is asserted if a valid watch-dog input transition is not received before the timeout period elapses.Eight pin-selectable timeout period options for each device, from 30µs to 60s.Pin-selectable watchdog timer disable feature.•Watchdog Output/Timing Options:Open drain, active low with 100ms minimum watch-dog output pulse (MAX6369/MAX6371/MAX6373).Push-pull, active low with 1ms minimum watchdog output pulse (MAX6370/MAX6372/MAX6374).Each device has a watchdog startup delay that is initi-ated when the supervisor is first powered or after the user modifies any of the logic control set inputs. The watchdog timer does not begin to count down until theFigure 1. Functional Diagramcompletion of the startup delay period, and no watch-dog output pulses are asserted during the startup delay. When the startup delay expires, the watchdog begins counting its normal watchdog timeout period and waiting for WDI transitions. The startup delay allows time for the µP system to power up and fully ini-tialize before assuming responsibility for the normal watchdog timer updates. Startup delay periods vary between the different devices and may be altered by the logic control set pins. To ensure that the system generates no undesired watchdog outputs, the routine watchdog input transitions should begin before the selected minimum startup delay period has expired. The normal watchdog timeout period countdown is initi-ated when the startup delay is complete. If a valid logic transition is not recognized at WDI before the watchdog timeout period has expired, the supervisor asserts a watchdog output. Watchdog timeout periods vary between the different devices and may be altered by the logic control set pins. To ensure that the system generates no undesired watchdog outputs, the watch-dog input transitions should occur before the selected minimum watchdog timeout period has expired.The startup delay and the watchdog timeout period are determined by the states of the SET0, SET1, and SET2 pins, and by the particular device within the family. For the MAX6369 and MAX6370, the startup delay is equal to the watchdog timeout period. The startup and watchdog timeout periods are pin selectable from 1ms to 60s (minimum).For the MAX6371 and MAX6372, the startup delay is fixed at 60s and the watchdog timeout period is pin selectable from 1ms to 60s (minimum).The MAX6373/MAX6374 provide two timing variations for the startup delay and normal watchdog timeout. Five of the pin-selectable modes provide startup delays from 200µs to 60s minimum, and watchdog timeout delays from 3ms to 10s minimum. Two of the selectable modes do not initiate the watchdog timer until the device receives its first valid watchdog input transition (there is no fixed period by which the first input must be received). These two extended startup delay modesare useful for applications requiring more than 60s for system initialization.All the MAX6369–MAX6374 devices may be disabledwith the proper logic control pin setting (Table 1).Applications InformationInput Signal Considerations Watchdog timing is measured from the last WDI risingor falling edge associated with a pulse of at least 100nsin width. WDI transitions are ignored when WDO is asserted, and during the startup delay period (Figure2). Watchdog input transitions are also ignored for asetup period, t SETUP, of up to 300µs after power-up ora setting change (Figure 3).Selecting Device TimingSET2, SET1, and SET0 program the startup delay and watchdog timeout periods (Table 1). Timeout settingscan be hard wired, or they can be controlled with logicgates and modified during operation. To ensure smooth transitions, the system should strobe WDI immediately before the timing settings are changed. This minimizesthe risk of initializing a setting change too late in thetimer countdown period and generating undesired watchdog outputs. After changing the timing settings,two outcomes are possible based on WDO. If the change is made while WDO is asserted, the previous setting is allowed to finish, the characteristics of thenew setting are assumed, and the new startup phase is entered after a 300µs setup time (t SETUP) elapses. Ifthe change is made while WDO is not asserted, thenew setting is initiated immediately, and the new start-up phase is entered after the 300µs setup time elapses.MAX6369–MAX6374Pin-Selectable Watchdog Timers_______________________________________________________________________________________7 Figure 3. Setting Change TimingM A X 6369–M A X 6374Pin-Selectable Watchdog TimersSelecting 011 (SET2 = 0, SET1 = 1, SET0 = 1) disables the watchdog timer function on all devices in the family.Operation can be reenabled without powering down by changing the set inputs to the new desired setting. The device assumes the new selected timing characteris-tics and enter the startup phase after the 300µs setup time elapses (Figure 3).The MAX6373/MAX6374 offer a first-edge feature. In first-edge mode (settings 101 or 110, Table 1), the internal timer does not control the startup delay period.Instead, startup terminates when WDI sees a transition.If changing to first-edge mode while the device is oper-ating, disable mode must be entered first. It is then safe to select first-edge mode. Entering disable mode first ensures the output is unasserted when selecting first-edge mode and removes the danger of WDI being masked out.OutputThe MAX6369/MAX6371/MAX6373 have an active-low,open-drain output that provides a watchdog output pulse of 100ms. This output structure sinks current when WDO is asserted. Connect a pullup resistor from WDO to any supply voltage up to +5.5V.Select a resistor value large enough to register a logic low (see Electrical Characteristics ), and small enoughto register a logic high while supplying all input current and leakage paths connected to the WDO line. A 10k Ωpullup is sufficient in most applications. The MAX6370/MAX6372/MAX6374 have push-pull outputs that pro-vide an active-low watchdog output pulse of 1ms.When WDO deasserts, timing begins again at the beginning of the watchdog timeout period (Figure 2).Usage in Noisy EnvironmentsIf using the watchdog timer in an electrically noisy envi-ronment, a bypass capacitor of 0.1µF should be con-nected between V CC and GND as close to the device as possible, and no further away than 0.2 inches.________________Watchdog SoftwareConsiderationsTo help the watchdog timer monitor software execution more closely, set and reset the watchdog input at differ-ent points in the program, rather than pulsing the watch-dog input high-low-high or low-high-low. This technique avoids a stuck loop, in which the watchdog timer would continue to be reset inside the loop, keeping the watch-dog from timing out. Figure 4 shows an example of a flow diagram where the I/O driving the watchdog input is set high at the beginning of the program, set low at the end of every subroutine or loop, then set high again when the program returns to the beginning. If the pro-gram should hang in any subroutine, the problem would be quickly corrected, since the I/O is continually set low and the watchdog timer is allowed to time out, causing WDO to pulse.Figure 4. Watchdog Flow DiagramChip InformationTRANSISTOR COUNT: 1500PROCESS: BiCMOSPin ConfigurationMaxim cannot assume responsibility f or use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.8_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2003 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.。

MAX810SQ293D3T1G资料

MAX810SQ293D3T1G资料

MAX809 Series,MAX810 SeriesVery Low Supply Current3−Pin MicroprocessorReset MonitorsThe MAX809 and MAX810 are cost−effective system supervisor circuits designed to monitor V CC in digital systems and provide a reset signal to the host processor when necessary. No external components are required.The reset output is driven active within 10 m sec of V CC falling through the reset voltage threshold. Reset is maintained active for a timeout period which is trimmed by the factory after V CC rises above the reset threshold. The MAX810 has an active−high RESET output while the MAX809 has an active−low RESET output. Both devices are available in SOT−23 and SC−70 packages.The MAX809/810 are optimized to reject fast transient glitches on the V CC line. Low supply current of 0.5 m A (V CC= 3.2 V) makes these devices suitable for battery powered applications.Features•Precision V CC Monitor for 1.5 V, 1.8 V, 2.5 V, 3.0 V, 3.3 V, and 5.0 V Supplies•Precision Monitoring V oltages from 1.2 V to 4.9 V Availablein 100 mV Steps•Four Guaranteed Minimum Power−On Reset Pulse Width Available (1 ms, 20 ms, 100 ms, and 140 ms)•RESET Output Guaranteed to V CC = 1.0 V.•Low Supply Current•Compatible with Hot Plug Applications•V CC Transient Immunity•No External Components•Wide Operating Temperature: −40°C to 105°C•Pb−Free Packages are AvailableTypical Applications•Computers•Embedded Systems•Battery Powered Equipment•Critical Microprocessor Power Supply MonitoringV CCFigure 1. Typical Application DiagramSee general marking information in the device marking section on page 8 of this data sheet.DEVICE MARKING INFORMATIONSee detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.ORDERING INFORMATIONPIN DESCRIPTIONPin No.Symbol Description1GND Ground2RESET (MAX809)RESET output remains low while V CC is below the reset voltage threshold, and for a reset timeoutperiod after V CC rises above reset threshold2RESET (MAX810)RESET output remains high while V CC is below the reset voltage threshold, and for a reset timeoutperiod after V CC rises above reset threshold3V CC Supply Voltage (Typ)ABSOLUTE MAXIMUM RATINGSRating Symbol Value Unit Power Supply Voltage (V CC to GND)V CC−0.3 to 6.0V RESET Output Voltage (CMOS)−0.3 to (V CC + 0.3)V Input Current, V CC20mA Output Current, RESET20mAdV/dt (V CC)100V/m secThermal Resistance, Junction−to−Air (Note 1)SOT−23SC−70R q JA301314°C/WOperating Junction Temperature Range T J−40 to +105°C Storage Temperature Range T stg−65 to +150°C Lead Temperature (Soldering, 10 Seconds)T sol+260°C ESD ProtectionHuman Body Model (HBM): Following Specification JESD22−A114 Machine Model (MM): Following Specification JESD22−A1152000200VLatchup Current Maximum Rating: Following Specification JESD78 Class IIPositiveNegative I Latchup200200mAStresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.1.This based on a 35x35x1.6mm FR4 PCB with 10mm2 of 1 oz copper traces under natural convention conditions and a single componentcharacterization.2.The maximum package power dissipation limit must not be exceeded.P D+T J(max)*T Aq JAwith T J(max) = 150°CELECTRICAL CHARACTERISTICS T A = −40°C to +105°C unless otherwise noted. Typical values are at T A = +25°C. (Note 3) Characteristic Symbol Min Typ Max Unit V CC RangeT A = 0°C to +70°CT A = −40°C to +105°C 1.01.2−−5.55.5VSupply CurrentV CC = 3.3 VT A = −40°C to +85°CT A = 85°C to +105°C V CC = 5.5 VT A = −40°C to +85°CT A = 85°C to +105°C I CC−−−−0.5−0.8−1.22.01.82.5m AReset Threshold (V in Decreasing) (Note 4)V TH V MAX809SN490T A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 4.834.784.664.9−−4.975.025.14MAX8xxLTR, MAX8xxSQ463T A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 4.564.504.404.63−−4.704.754.86MAX809HTRT A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 4.484.434.324.55 4.624.674.78MAX8xxMTR, MAX8xxSQ438T A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 4.314.274.164.38 4.454.494.60MAX809JTR, MAX8xxSQ400T A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 3.943.903.804.00−−4.064.104.20MAX8xxTTR, MAX809SQ308T A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 3.043.002.923.08−−3.113.163.24MAX8xxSTR, MAX8xxSQ293T A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 2.892.852.782.93−−2.963.003.08MAX8xxRTR, MAX8xxSQ263T A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 2.592.562.492.63−−2.662.702.77MAX809SN232, MAX809SQ232T A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 2.282.252.212.32−−2.352.382.45MAX809SN160T A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 1.581.561.521.60−−1.621.641.68MAX809SN120, MAX8xxSQ120T A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 1.181.171.141.20−−1.221.231.263.Production testing done at T A = 25°C, over temperature limits guaranteed by design.4.Contact your ON Semiconductor sales representative for other threshold voltage options.ELECTRICAL CHARACTERISTICS(continued) T A = −40°C to +105°C unless otherwise noted. Typical values are atT A = +25°C. (Note 5)Characteristic Symbol Min Typ Max Unit Detector Voltage Threshold Temperature Coefficient−30−ppm/°C V CC to Reset Delay V CC = V TH to (V TH − 100 mV)−10−m secReset Active TimeOut Period (Note 6) MAX8xxSN(Q)293D1MAX8xxSN(Q)293D2MAX8xxSN(Q)293D3MAX8xxSN(Q)293t RP1.020100140−−−−3.366330460msecRESET Output Voltage Low (No Load) (MAX809)V CC = V TH − 0.2 V1.6 V v V TH v2.0 V, I SINK = 0.5 mA2.1 V v V TH v 4.0 V, I SINK = 1.2 mA4.1 V v V TH v 4.9 V, I SINK = 3.2 mAV OL−−0.3VRESET Output Voltage High (No Load) (MAX809)V CC = V TH + 0.2 V1.6 V v V TH v2.4 V, I SOURCE = 200 m A2.5 V v V TH v 4.9 V, I SOURCE = 500 m AV OH0.8 V CC−−VRESET Output Voltage High (No Load) (MAX810)V CC = V TH + 0.2 V1.6 V v V TH v2.4 V, I SOURCE = 200 m A2.5 V v V TH v 4.9 V, I SOURCE = 500 m AV OH0.8 V CC−−VRESET Output Voltage Low (No Load) (MAX810)V CC = V TH − 0.2 V1.6 V v V TH v2.0 V, I SINK = 0.5 mA2.1 V v V TH v 4.0 V, I SINK = 1.2 mA4.1 V v V TH v 4.9 V, I SINK = 3.2 mAV OL−−0.3V5.Production testing done at T A = 25°C, over temperature limits guaranteed by design.6.Contact your ON Semiconductor sales representative for timeout options availability for other threshold voltage options.TYPICAL OPERATING CHARACTERISTICS0.50.40.30.20.10S U P P L Y C U R R E N T (m A )0.60.250.150.0500.35S U P P L Y C U R R E N T (m A )−50−2502550TEMPERATURE (°C)S U P P L Y C U R R E N T (m A )75100−50−2502550TEMPERATURE (°C)100Figure 6. Supply Current vs. Temperature(No Load, MAX809)Figure 7. Supply Current vs. Temperature (NoLoad, MAX810)750.100.200.30TYPICAL OPERATING CHARACTERISTICS252015105.00−50−25255075TEMPERATURE (°C)O U T P U T V O L T A G E V C C (m V )30100250−50−252575125TEMPERATURE (°C)125P O W E R −D O W N R E S E T D E L A Y (m s e c )125−50−2502550TEMPERATURE (°C)N O R M A L I Z E D P O W E R −U P R E S E T T I M E O U T0.70.80.91.21.375100Figure 10. Power−Down Reset Delay vs.Temperature and Overdrive (V TH = 1.2 V)Figure 11. Power−Down Reset Delay vs.Temperature and Overdrive (V TH = 4.9 V)Figure 12. Normalized Power−Up Reset vs.Temperature10050751.01.110050APPLICATIONS INFORMATIONV CC Transient RejectionThe MAX809 provides accurate V CC monitoring and reset timing during power−up, power−down, and brownout/sag conditions, and rejects negative−going transients (glitches) on the power supply line. Figure 13shows the maximum transient duration vs. maximum negative excursion (overdrive) for glitch rejection. Any combination of duration and overdrive which lies under the curve will not generate a reset signal. Combinations above the curve are detected as a brownout or power−down.Typically, transient that goes 100 mV below the reset threshold and lasts 5.0 m s or less will not cause a reset pulse.Transient immunity can be improved by adding a capacitor in close proximity to the V CC pin of the MAX809.Figure 13. Maximum Transient Duration vs.Overdrive for Glitch Rejection at 25°CV CC1011060M A X I M U M T R A N S I E N T D U R A T I O N (m s e c )RESET COMPARATOR OVERDRIVE (mV)410160210260310360RESET Signal Integrity During Power−DownThe MAX809 RESET output is valid to V CC = 1.0 V .Below this voltage the output becomes an “open circuit” and does not sink current. This means CMOS logic inputs to the Microprocessor will be floating at an undetermined voltage.Most digital systems are completely shutdown well above this voltage. However, in situations where RESET must bemaintained valid to V CC = 0 V , a pull−down resistor must be connected from RESET to ground to discharge stray capacitances and hold the output low (Figure 14). This resistor value, though not critical, should be chosen such that it does not appreciably load RESET under normal operation (100 k W will be suitable for most applications).Figure 14. Ensuring RESET Valid to V CC = 0 VProcessors With Bidirectional I/O PinsSome Microprocessor’s have bidirectional reset pins.Depending on the current drive capability of the processor pin, an indeterminate logic level may result if there is a logic conflict. This can be avoided by adding a 4.7 k W resistor in series with the output of the MAX809 (Figure 15). If there are other components in the system which require a reset signal, they should be buffered so as not to load the reset line.If the other components are required to follow the reset I/O of the Microprocessor, the buffer should be connected as shown with the solid line.Figure 15. Interfacing to Bidirectional Reset I/OBUFFERED RESETORDERING, MARKING AND THRESHOLD INFORMATIONPart Number V TH*(V)Timeout*(ms)Description Marking Package Shipping†MAX809SN160T1 1.60140−460Push−Pull RESET SAA SOT23−33000 / Tape & ReelMAX809SN160T1G 1.60140−460SAA SOT23−3(Pb−Free)MAX809SN232T1 2.32140−460SQP SOT23−3MAX809SN232T1G 2.32140−460SQP SOT23−3(Pb−Free)MAX809RTR 2.63140−460SPS SOT23−3MAX809RTRG 2.63140−460SPS SOT23−3(Pb−Free)MAX809STR 2.93140−460SPT SOT23−3MAX809STRG 2.93140−460SPT SOT23−3(Pb−Free)MAX809TTR 3.08140−460SPU SOT23−3MAX809TTRG 3.08140−460SPU SOT23−3(Pb−Free)MAX809JTR 4.00140−460SPR SOT23−3MAX809JTRG 4.00140−460SPR SOT23−3(Pb−Free)MAX809MTR 4.38140−460SPV SOT23−3MAX809MTRG 4.38140−460SPV SOT23−3(Pb−Free)MAX809HTR 4.55140−460SBD SOT23−3MAX809HTRG 4.55140−460SBD SOT23−3(Pb−Free)MAX809LTR 4.63140−460SPW SOT23−3MAX809LTRG 4.63140−460SPW SOT23−3(Pb−Free)MAX809SN490T1 4.90140−460SBH SOT23−3MAX809SN490T1G 4.90140−460SBH SOT23−3(Pb−Free)MAX809SN120T1G 1.20140−460SSO SOT23−3(Pb−Free)MAX809SN293D1T1G 2.931−3.3SSP SOT23−3(Pb−Free)MAX809SN293D2T1G 2.9320−66SSQ SOT23−3(Pb−Free)MAX809SN293D3T1G 2.93100−330SSR SOT23−3(Pb−Free)MAX809SQ120T1G 1.20140−460ZD SC70−3(Pb−Free)MAX809SQ232T1G 2.32140−460ZE SC70−3(Pb−Free)MAX809SQ263T1G 2.63140−460ZF SC70−3(Pb−Free)MAX809SQ293T1G 2.93140−460ZG SC70−3(Pb−Free)MAX809SQ308T1G 3.08140−460ZH SC70−3(Pb−Free)MAX809SQ400T1G 4.00140−460SZ SC70−3(Pb−Free)MAX809SQ438T1G 4.38140−460ZI SC70−3(Pb−Free)MAX809SQ463T1G 4.63140−460ZJ SC70−3(Pb−Free)MAX809SQ293D1T1G 2.931−3.3ZK SC70−3(Pb−Free)MAX809SQ293D2T1G 2.9320−66ZL SC70−3(Pb−Free)MAX809SQ293D3T1G 2.93100−330ZM SC70−3(Pb−Free)†For information on tape and reel specifications,including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.*Contact your ON Semiconductor sales representative for other threshold voltage options.ORDERING, MARKING AND THRESHOLD INFORMATIONPart Number V TH*(V)Timeout*(ms)Description Marking Package Shipping†MAX810RTR 2.63140−460Push−Pull RESET SPX SOT23−33000 / Tape & ReelMAX810RTRG 2.63140−460SPX SOT23−3(Pb−Free)MAX810STR 2.93140−460SPY SOT23−3MAX810STRG 2.93140−460SPY SOT23−3(Pb−Free)MAX810TTR 3.08140−460SPZ SOT23−3MAX810TTRG 3.08140−460SPZ SOT23−3(Pb−Free)MAX810MTR 4.38140−460SQA SOT23−3MAX810MTRG 4.38140−460SQA SOT23−3(Pb−Free)MAX810LTR 4.63140−460SQB SOT23−3MAX810LTRG 4.63140−460SQB SOT23−3(Pb−Free)MAX810SN120T1G 1.20140−460SSS SOT23−3(Pb−Free)MAX810SN293D1T1G 2.931−3.3SST SOT23−3(Pb−Free)MAX810SN293D2T1G 2.9320−66SSU SOT23−3(Pb−Free)MAX810SN293D3T1G 2.93100−330SSZ SOT23−3(Pb−Free)MAX810SQ120T1G 1.20140−460ZN SC70−3(Pb−Free)MAX810SQ263T1G 2.63140−460ZO SC70−3(Pb−Free)MAX810SQ293T1G 2.93140−460ZP SC70−3(Pb−Free)MAX810SQ438T1G 4.38140−460ZQ SC70−3(Pb−Free)MAX810SQ463T1G 4.63140−460ZR SC70−3(Pb−Free)MAX810SQ293D1T1G 2.931−3.3ZS SC70−3(Pb−Free)MAX810SQ293D2T1G 2.9320−66ZT SC70−3(Pb−Free)MAX810SQ293D3T1G 2.93100−330ZU SC70−3(Pb−Free)†For information on tape and reel specifications,including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.*Contact your ON Semiconductor sales representative for other threshold voltage options.PACKAGE DIMENSIONSSOT−23 (TO236)CASE 318−08ISSUE AN*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*ǒmm inchesǓSCALE 10:1NOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: INCH.3.MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEADTHICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.4.318−01 THRU −07 AND −09 OBSOLETE, NEW STANDARD 318−08.VIEW CDIM A MIN NOM MAX MINMILLIMETERS0.89 1.00 1.110.035INCHES A10.010.060.100.001b 0.370.440.500.015c 0.090.130.180.003D 2.80 2.90 3.040.110E 1.20 1.30 1.400.047e 1.78 1.90 2.040.070L 0.100.200.300.0040.0400.0440.0020.0040.0180.0200.0050.0070.1140.1200.0510.0550.0750.0810.0080.012NOM MAX L1 2.102.40 2.640.0830.0940.104H E0.350.540.690.0140.0210.029MAX809 Series, MAX810 SeriesPACKAGE DIMENSIONSSC−70 (SOT−323)CASE 419−04ISSUE Mǒmm inchesǓSCALE 10:1*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.PUBLICATION ORDERING INFORMATION元器件交易网。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

General DescriptionThe MAX6305–MAX6313 CMOS microprocessor (µP)supervisory circuits are designed to monitor more than one power supply. Ideal for monitoring both 5V and 3.3V in personal computer systems, these devices assert a system reset if any of the monitored supplies falls outside the programmed threshold. Low supply current (15µA) and a small package suit them for portable applications. The MAX6305–MAX6313 are specifically designed to ignore fast transients on any monitored supply.These devices are available in a SOT23-5 package,have factory-programmed reset thresholds from 2.5V to 5.0V (in 100mV increments), and feature four power-on reset timeout periods. Ten standard versions are avail-able. Contact the factory for availability of non standard versions.ApplicationsPortable Computers Computers ControllersIntelligent InstrumentsPortable/Battery-Powered Equipment Multivoltage Systems: 3V/5V, 5V/12V, 5V/24V Embedded Control SystemsFeatureso Small 5-Pin SOT23 Packageo Precision Factory-Set V CC Reset Thresholds;Available in 0.1V Increments from 2.5V to 5V o Immune to Short V CC Transientso Guaranteed RESET Valid to V CC = 1V o Guaranteed Over Temperature o 8µA Supply Currento Factory-Set Reset Timeout Delay from 1ms (min) to 1120ms (min)o No External Components o Manual Reset Inputo Under/Overvoltage Supply MonitoringMAX6305–MAX63135-Pin, Multiple-Input,Programmable Reset ICs________________________________________________________________Maxim Integrated Products119-1145; Rev 5; 4/08†The MAX6306/MAX6307/MAX6309/MAX6310/MAX6312/MAX6313 are available with factory-set V CC reset thresholds from 2.5V to 5V, in 0.1V increments. Insert the desired nominal reset threshold (from Table 1) into the blanks following the letters UK.All parts also offer factory-programmed reset timeout periods.Insert the number corresponding to the desired nominal timeout period index following the “D” in the part number (D1 = 1ms min,D2 = 20ms min, D3 = 140ms min, and D4 = 1120ms min). There are 10 standard versions with a required order increment of 2,500pieces. Sample stock is generally held on the standard versions only (see Standard Versions table). Required order increment is 10,000 pieces for non-standard versions. Contact factory for availability of non-standard versions. All devices available in tape-and-reel only.Devices are available in both leaded and lead-free packaging.Specify lead-free by replacing “-T” with “+T” when ordering.Pin Configurations and Typical Operating Circuit appear atend of data sheet.Ordering Information continued at end of data sheet.Standard Versions Table appears at end of data sheet._______________________________________________________________Selector TableFor pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .M A X 6305–M A X 63135-Pin, Multiple-Input, Programmable Reset ICsABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSV CC = +2.5V to +5.5V for the MAX6305/MAX6308/MAX6311, V CC = (V TH + 2.5%) to +5.5V for the MAX6306/MAX6307/MAX6309/Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC ...........................................................................-0.3V to +6V All Other Pins..............................................-0.3V to (V CC + 0.3V)Input/Output Current, All Pins.............................................20mA Rate of Rise, V CC ............................................................100V/µs Continuous Power Dissipation (T A = +70°C)SOT23-5 (derate 7.1mW/°C above +70°C).................571mWOperating Temperature RangeMAX63_ _UK _ _D_-T.........................................0°C to +70°C MAX63_ _EUK _ _D_-T...................................-40°C to +85°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°CMAX6305–MAX63135-Pin, Multiple-Input, Programmable Reset ICs_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)V CC = +2.5V to +5.5V for the MAX6305/MAX6308/MAX6311, V CC = (V TH + 2.5%) to +5.5V for the MAX6306/MAX6307/MAX6309/Note 2: The MAX6305/MAX6308/MAX6311 switch from undervoltage reset to normal operation between 1.5V < V CC < 2.5V.Note 3: The MAX6306/MAX6307/MAX6309/MAX6310/MAX6312/MAX6313 monitor V CC through an internal factory-trimmed voltagedivider, which programs the nominal reset threshold. Factory-trimmed reset thresholds are available in approximately 100mV increments from 2.5V to 5V (Table 1).Note 4:Guaranteed by design.M A X 6305–M A X 63135-Pin, Multiple-Input, Programmable Reset ICs 4_________________________________________________________________________________________________________________________________Typical Operating Characteristics(V CC = +5V, T A = +25°C, unless otherwise noted.)5.05.56.06.57.07.58.08.59.09.5-60-40-2020406080100SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (μA )01020304050607080-60-40-2020406080100V CC FALLING PROPAGATION DELAYvs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )010203040506070-60-40-20020406080100OVRST IN RISING PROPAGATION DELAY vs. TEMPERATURE (OVERVOLTAGE RESET INPUT)TEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )020406080100120-60-40-2020406080100RST IN_ FALLING PROPAGATION DELAY vs. TEMPERATURETEMPERATURE (°C)R S T I N _ P R O P A G A T I O N D E L A Y (n s )104001200800MAXIMUM TRANSIENT DURATION vs.VCC RESET THRESHOLD OVERDRIVE10OVERDRIVE, V TH - V CC (mV)T R A N S I E N T D U R A T I O N (μs )100100010,0000.900.920.940.960.981.001.021.041.061.081.10-60-40-20020406080100RESET TIMEOUT vs. TEMPERATURE6305 T O C 05TEMPERATURE (°C)N O R M A L I Z E D R E S E T T I M E O U T0.9900.9920.9940.9960.9981.0001.0021.0041.0061.0081.010-60-40-2020406080100RESET THRESHOLD vs. TEMPERATURE6305 T O C 06TEMPERATURE (°C)N O R M A L I Z E D R E S E T T H R E S H O L D (V /V )104001200800MAXIMUM TRANSIENT DURATION vs.OVRST IN THRESHOLD OVERDRIVE10OVERDRIVE, V OVRST IN - V REF (mV)T R A N S I E N T D U R A T I O N (μs )100100010,000104001200800MAXIMUM TRANSIENT DURATION vs.RST IN_ THRESHOLD OVERDRIVE10OVERDRIVE, V REF - V RST IN (mV)T R A N S I E N T D U R A T I O N (μs )100100010,000_______________Detailed DescriptionThe MAX6305–MAX6313 CMOS microprocessor (µP)supervisory circuits are designed to monitor more than one power supply and issue a system reset when any monitored supply falls out of regulation. The MAX6305/MAX6308/MAX6311 have two adjustable undervoltage reset inputs (RST IN1 and RST IN2). The MAX6306/MAX6307/MAX6309/MAX6310/MAX6312/MAX6313 mon-itor V CC through an internal, factory-trimmed voltage divider. The MAX6306/MAX6309/MAX6312 have, in addition, an adjustable undervoltage reset input and a manual-reset input. The internal voltage divider sets the reset threshold as specified in the device part number (Table 1). The MAX6307/MAX6310/ MAX6313 feature an adjustable undervoltage reset input (RST IN) and an adjustable overvoltage reset input (OVRST IN) in addition to the factory-trimmed reset threshold on the V CC moni-tor. Program the adjustable reset inputs with an external resistor divider (see Adjustable Reset Inputs section).Reset OutputsA µP’s reset input starts the µP in a known state. These µP supervisory circuits assert reset to prevent code-execution errors during power-up, power-down, or brownout conditions.RESET (MAX6305–MAX6310) and RESET (MAX6311/MAX6312/MAX6313) are guaranteed to be asserted at a valid logic level for V CC > 1V (see Electrical Characteristics ). Once all monitored voltages exceed their programmed reset thresholds, an internal timer keeps reset asserted for the reset timeout period (t RP );after this interval, reset deasserts.If a brownout condition occurs (any or all monitored volt-ages dip outside their programmed reset threshold),reset asserts (RESET goes high; RESET goes low). Any time any of the monitored voltages dip below their reset threshold, the internal timer resets to zero and reset asserts. The internal timer starts when all of the moni-tored voltages return above their reset thresholds, and reset remains asserted for a reset timeout period. The MAX6305/MAX6306/MAX6307 feature an active-low,MAX6305–MAX63135-Pin, Multiple-Input, Programmable Reset ICs_______________________________________________________________________________________5______________________________________________________________Pin DescriptionM A X 6305–M A X 6313open-drain, N-channel output. The MAX6308/MAX6309/MAX6310 feature an active-low, complementary output structure that both sinks and sources current, and the MAX6311/MAX6312/MAX6313 have an active-high com-plementary reset output.The MAX6305/MAX6308/MAX6311 switch from under-voltage lockout operation to normal operation between 1.5V < V CC < 2.5V. Below 1.5V, V CC undervoltage-lockout mode asserts RESET . Above 2.5V, V CC normal-operation mode asserts reset if RST IN_ falls below the RST IN_ threshold.Manual-Reset Input(MAX6306/MAX6309/MAX6312)Many µP-based products require manual-reset capability,allowing an operator or external logic circuitry to initiate a reset. A logic low on MR asserts reset. Reset remains asserted while MR is low, and for a reset active timeout period (t RP ) after MR returns high. This input has an inter-nal 63.5k Ωpull-up resistor, so it can be left open if it is not used. MR can be driven with TTL-logic levels in 5V sys-tems, with CMOS-logic levels in 3V systems, or with open-drain/collector output devices. Connect a normally open momentary switch from MR to GND to create a manual-reset function; external debounce circuitry is not required.If MR is driven from long cables or if the device is used in a noisy environment, connecting a 0.1µF capacitor from MR to ground provides additional noise immunity.The MR pin has internal ESD-protection circuitry that may be forward biased under certain conditions, drawing excessive current. For example, assume the circuitry driv-ing MR uses a +5V supply other than V CC . If V CC drops or browns out lower than +4.7V, MR ’s absolute maximum rat-ing is violated (-0.3V to (V CC + 0.3V)), and undesirable current flows through the ESD structure from MR to V CC .To avoid this, it is recommended that the supply for the MR pin be the same as the supply monitored by V CC . In this way, the voltage at MR will not exceed V CC .Adjustable Reset InputsThe MAX6305–MAX6313 each have one or more reset inputs (RST IN_ /OVRST IN). These inputs are com-pared to the internal reference voltage (F igure 1).Connect a resistor voltage divider to RST IN_ such that V RST IN_falls below V RSTH (1.23V) when the monitored voltage (V IN ) falls below the desired reset threshold (V TH ) (F igure 2). Calculate the desired reset voltage with the following formula:R1 + R2V TH = ________x VRSTHR25-Pin, Multiple-Input, Programmable Reset ICs 6_______________________________________________________________________________________Figure 1. Functional DiagramMAX6305–MAX63135-Pin, Multiple-Input, Programmable Reset ICs_______________________________________________________________________________________7The ±25nA max input leakage current allows resistors on the order of megohms. Choose the pull-up resistor in the divider to minimize the error due to the input leakage cur-rent. The error term in the calculated threshold is simply:±25nA x R1If you choose R1 to be 1M Ω, the resulting error is ±25 x 10-9x 1 x 106= ±25mV.Like the V CC voltage monitors on the MAX6306/MAX6307/MAX6309/MAX6310/MAX6312/MAX6313, the RST IN_inputs (when used with a voltage divider) are designed to ignore fast voltage transients. Increase the noise immunity by connecting a capacitor on the order of 0.1µF between RST IN and GND (Figure 2). This creates a single-pole lowpass filter with a corner frequency given by:f = (1/2π) / (R1 + R2)(R1 x R2 x C)For example, if R1 = 1M Ωand R2 = 1.6M Ω, adding a 0.1µF capacitor from RST IN_ to ground results in a lowpass corner frequency of f = 2.59Hz. Note that adding capacitance to RST IN slows the circuit’s overall response time.__________Applications InformationInterfacing to µPs with Bidirectional Reset PinsSince the RESET output on the MAX6305/MAX6306/MAX6307 is open drain, these devices interface easily with µPs that have bidirectional reset pins, such as the Motorola 68HC11. Connecting the µP supervisor’s RESET output directly to the microcontroller’s RESET pin with a single pull-up resistor allows either device to assert reset (Figure 3).Negative-Going V CC TransientsIn addition to issuing a reset to the µP during power-up,power-down, and brownout conditions, these devices are relatively immune to short-duration, negative-going V CC transients (glitches).The Typical Operating Characteristics show the Maximum Transient Duration vs. V CC Reset Threshold Overdrive, for which reset pulses are not generated.The graph was produced using negative-going pulses,starting at V TH max, and ending below the pro-grammed reset threshold by the magnitude indicated (reset threshold overdrive). The graph shows the maxi-mum pulse width that a negative-going V CC transient may typically have without causing a reset pulse to be issued. As the amplitude of the transient increases (i.e.,goes farther below the reset threshold), the maximum allowable pulse width decreases.RST IN_/OVRST IN are also immune to negative/positive-going transients (see Typical Operating Characteristics ).A 0.1µF bypass capacitor mounted close to the RST IN_,OVRST IN, and/or the V CC pin provides additional tran-sient immunity.Ensuring a Valid RESET /RESETOutput Down to V CC = 0VWhen V CC falls below 1V, push/pull structured RESET /RESET current sinking (or sourcing) capabilities decrease drastically. High-impedance CMOS-logic inputs connected to RESET can drift to undetermined voltages. This presents no problem in most applica-tions, since most µPs and other circuitry do not operate with V CC below 1V. In those applications where RESET must be valid down to 0V, adding a pull-down resistor between RESET and ground sinks any stray leakageFigure 2. Increasing Noise ImmunityFigure 3. Interfacing to µPs with Bidirectional Reset I/Ocurrents, holding RESET low (Figure 4). The pull-down resistor’s value is not critical; 100k Ωis large enough not to load RESET and small enough to pull RESET to ground. For applications where RESET must be valid to V CC , a 100k Ωpull-up resistor between RESET and V CC will hold RESET high when V CC falls below 1V (Figure 5).Since the MAX6305/MAX6306/MAX6307 have open-drain, active-low outputs, they typically use a pull-up resistor. With these devices and under these conditions (V CC < 1V), RESET will most likely not maintain an active condition, but will drift toward a nonactive level due to the pull-up resistor and the RESET output’s reduction in sinking capability. These devices are not recommended for applications that require a valid RESET output below 1V.* Factory-trimmed reset thresholds are available in approximately 100mV increments with a ±1.5% room-temperature variance.M A X 6305–M A X 63135-Pin, Multiple-Input, Programmable Reset ICs 8_______________________________________________________________________________________Figure 4. Ensuring RESET Valid to V CC = 0VFigure 5. Ensuring RESET Valid to V CC = 0VTable 1. Factory-Trimmed Reset Thresholds*MAX6305–MAX63135-Pin, Multiple-Input, Programmable Reset ICs_______________________________________________________________________________________9Chip InformationTRANSISTOR COUNT: 800Typical Operating Circuit†The MAX6306/MAX6307/MAX6309/MAX6310/MAX6312/MAX6313 are available with factory-set V CC reset thresholds from 2.5V to 5V, in 0.1V increments. Insert the desired nominal reset threshold (from Table 1) into the blanks following the letters UK.All parts also offer factory-programmed reset timeout periods.Insert the number corresponding to the desired nominal timeout period index following the “D” in the part number (D1 = 1ms min,D2 = 20ms min, D3 = 140ms min, and D4 = 1120ms min). There are 10 standard versions with a required order increment of 2,500pieces. Sample stock is generally held on the standard versions only (see Standard Versions table). Required order increment is 10,000 pieces for non-standard versions. Contact factory for avail-ability of non-standard versions. All devices available in tape-and-reel only.Devices are available in both leaded and lead-free packaging.Specify lead-free by replacing “-T” with “+T” when ordering.M A X 6305–M A X 63135-Pin, Multiple-Input, Programmable Reset ICs 10______________________________________________________________________________________Pin ConfigurationsPackage InformationFor the latest package outline information, go to /packages .Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________11©2008 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.MAX6305–MAX6313 5-Pin, Multiple-Input, Programmable Reset ICs元器件交易网。

相关文档
最新文档