北京市门头沟区2016年中考二模数学试题含答案(word版)

合集下载

2016-2017学年北京市门头沟区初三第一学期期末数学试题(WORD版含答案)

2016-2017学年北京市门头沟区初三第一学期期末数学试题(WORD版含答案)

18. (本小题满分 5 分) (1)证明:条件正确; „„„„„„„„„„„„„„„1 分
A
结论; (条件支持的结论)„„„„„„„„„„„„2 分 (2)条件正确 „„„„„„„„„„„„„„„„„3 分
B D
得出△ABD∽△CBA, „„„„„„„„„„„„„„„„„4 分 得出结论:„„„„„„„„„„„„„„„„„„„„„„„5 分
yHale Waihona Puke Ox21 题备用图
九年级数学试卷 第 5 页(共 8 页)
22. 亮亮和颖颖住在同一幢住宅楼, 两人准备用测量影子的方法测算其楼高, 但恰逢阴天, 于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适 当调整自己的位置, 当楼的顶部 M, 颖颖的头顶 B 及亮亮的眼睛 A 恰在一条直线上时, 两人分别标定自己的位置 C,D.然后测出两人之间的距离 CD 1.25m ,颖颖与楼之间 的距离 DN 30m (C,D,N 在一条直线上) ,颖颖的身高 BD 1.6m ,亮亮蹲地观测时 眼睛到地面的距离 AC 0.8m ; 请根据以上测量数据帮助他们求出住宅楼的高度.
(1)条件是__________,结论是_______;(注:填序号) (2)写出你的证明过程.
BC DA 中的一个作为条件,另一个作为结论,组成一个真命题 . BA AC A
B
19.已知二次函数 y = x -2x-8. (1)将 y = x2-2x-8 用配方法 化成 y = a (x-h)2 + k 的形式; .... (2)求该二次函数的图象的顶点坐标; (3)请说明在对称轴左侧图像的变化趋势.
2 x b 的图像与图像 G 有 4 个交点, 3
y

2016年门头沟区初三数学二模答案

2016年门头沟区初三数学二模答案

2016年门头沟区初三二模考试数学试卷答案及评分参考 2016.6三、解答题(本题共72分,第17-26题,每小题5分,第27、28题,每小题7分,第29题8分)17.(本小题满分5分)解:原式=1641-++,………………………………………………4分=4………………………………………………………………………5分18.(本小题满分5分)解:原式 =22(44)(6)3a a a a a -+--- ,=32324463a a a a a -+-+-,=2243a a +-.………………………………………………………………3分∵ 2240a a +-=,∴ 224a a +=. ………………………………………………………………………… 4分∴ 原式22(2)35a a =+-=. ……………………………………………………………5分19.(本小题满分5分)解:由①得2->x .………………………………………………………………………1分由②得x ≤37. ………………………………………………………………………3分∴ 原不等式组的解集是-2< x ≤37.………………………………………………4分 ∴ 它的非负整数解为0,1,2.……………………………………………………5分20.(本小题满分5分)证明:∵ ∠BAC =90°,∠C =30°,∴ ∠B =60°, AB =12BC ,………………………………………………………2分HFCDEBA ∵ ∠BAC =90°, AE 为BC 边上的中线, ∴ AE =12BC ,……………………………………………………………………3分 ∴ AE =AB .………………………………………………………………………4分 ∴ △ABE 是等边三角形.………………………………………………………5分21.(本小题满分5分)解:设每人每小时的绿化面积为 x 平方米. …………………………………………1分 依题意,得()1801803.662x x-=+ ……………………………………………… 2分 解得 2.5.x = …………………………………………………………… 3分 经检验, 2.5x =是原方程的解,且符合题意. ………………………… 4分答:每人每小时的绿化面积为 2.5 平方米.………………………………………… 5分22.(本小题满分5分)(1)证明:∵ 四边形ABCD 是平行四边形, ∴ AB ∥CD 且AB=CD . ………………1分 ∵ 点E ,F 分别是AB ,CD 的中点, ∴ CD DF AB AE 21,21==. ∴ AE=DF . ………………………………………………………………2分∴ 四边形AEFD 是平行四边形. ………………………………………3分 (2)解:过点D 作DH ⊥AB 于点H . ∵ AB =2AD =4,∴ AD =2. ………………………………………………………………4分 在Rt △AGD 中,∵90,60,AHD A ∠=︒∠=︒ AD =2, ∴cos 601AH AD =⋅︒=,sin 60DH AD =⋅︒= ∴ 3BHAB AH =-=.在Rt △DHB 中,∵90,3,DHBDH BH ∠=︒==∴DB = …………………………………5分23.(本小题满分5分)解:(1)∵ 点A (,3m -)在反比例函数xy 3=的图象上, ∴ m33=-. ∴ 1m =-. …………………………………………………………… 1分 ∴ 点A 的坐标为A (-1, -3). …………………………………… 2分∵ 点A (-1, -3)在一次函数y =kx 的图象上, ∴ 3k =.∴ 一次函数的表达式为y =3x . ………………………………………… 3分(2)点P 的坐标为P (1,3) 或P (-3,-9) . ………………………………5分24.(本小题满分5分)(1)证明:∵ P A ,PC 与⊙O 分别相切于点A 、C ,∴ P A =PC ,∠APO =∠EPD . ∵ AB 是⊙O 的直径, ∴ P A ⊥AB . ∵ DE ⊥PO , ∴ ∠A =∠E =90°. ∵ ∠POA =∠DOE ,∴ ∠EPD =∠EDO .………………………………………………………2分(2)解:连接OC ,则OC ⊥PD .在Rt △P AD 中,∠A =90°,P A =PC =6,3tan 4PDA ∠=, 可得AD =8,PD =10,CD =4.在Rt △OCD 中,∠OCD =90°,CD =4,3tan 4ODC ∠=,可得OC =3,OD =5.在Rt △PCO 中,由勾股定理得 PO = ∵ 可证Rt △DEO ∽Rt △PCO . ∴OE ODOC OP=, 即3OE =. ∴ OE =5分25.(本小题满分5分)解:(1)17%;………………………………………………………………………1分(2)略;………………………………………………………………………………3分 (3)略.………………………………………………………………………………5分26.(本小题满分5分)解:(1)成立;…………………………………………………………………………1分(2)略;…………………………………………………………………………3分 (3.……………………………………………………………………………5分27.(本小题满分7分)解:(1)∵ 点A ,B 在抛物线y =x 2+bx +c 上,∴ 23,544.c b c -=⎧⎨=++⎩…………………………………………………………1分 解得 2,3.b c =-⎧⎨=-⎩∴ 抛物线的表达式为223y x x =--. ……………………………………2分 (2)∵ ()22231 4.y x x x =--=--∴ 此抛物线的顶点C 坐标为(1,-4).………………………………3分 (3)∵ C (1,-4),∴ D (-1,-4).…………………………………………………………4分 当直线l 经过点D 和点C 时,0m =. 当直线经过点D 和点A 时, 由题意得 4,3.m n n -+=-⎧⎨=-⎩解得 1.m =……………………………………………………………………5分 当直线经过点D 和点B 时,D (-1,-4)B (4,5) 由题意得4,4 5.m n m n -+=-⎧⎨+=⎩解得9.5m =……………………………………………………………………6分综上所述,m 的取值范围是0m =,91.5m <≤……………………………7分28.(本小题满分7分)解:(1)① 如图1;…………………………………………………………………1分② DF =GF .…………………………………………………………………2分 (2)证明:如图2,连接EF ,EG .∵ 矩形ABCD ,∴ ∠A =∠D =∠C =90°. ∵ E 是AD 的中点,∴ 12AE ED AD ==.∵ A 与G 关于AE 对称,∴ EG =AE ,∠EGB =∠EGF =∠A =∠D =90°, ∴ EG =ED ,∠EGF =∠D =90°. 又 ∵ EF =EF ,∴ Rt △EGF ≌Rt △EDF ,……………………………………………3分 ∴ GF =DF .设DF =x ,BC =y ,则有GF =x ,AD =y . ∵ F 为DC 的中点, ∴ DC =2DF .图1 图 2∴ CF =x ,DC =AB =BG =2x ,∴ BF =BG +GF =3x ;…………………………………………………4分 在Rt △BCF 中,∠C =90°,由勾股定理得BC 2+CF 2=BF 2,即y 2+x 2=(3x )2.∴ y=.∴AD AB ==5分 (3)求ADAB的值的思路如下: a .如图3,连接EF 和EG ,由(2)可知GF =DF ;b .设DF =x ,BC =y ,则有GF =x ,AD =y ,由DC nDF =,可用含有n 和x 的代数式表示BF ; c .利用勾股定理,用含有n 和x 的代数式表示y ; d).……………………………………………7分29.(本小题满分8分)解:(1)① 3;………………………………………………………………………………1分② 4或-2.………………………………………………………………………3分 (2)当x ≤-1时,由题意得[]11,2.y x y x -=+⎧⎪⎨=⎪⎩解得1112x y =⎧⎨=⎩(舍),2221x y =-⎧⎨=-⎩. …………………………………………………4分∴ 它们的交点坐标为(-2,-1). 当x >-1时, 由题意得[]11,2.y x y x -=--⎧⎪⎨=⎪⎩此方程组无实数根.………………………………………………………………5分 ∴ 双曲线2y x=与[]1y 的图象的交点坐标(-2,-1).………………………6分 (3)① -2≤m <1.………………………………………………………………8分②12t <,23t -<<.……………………………………………8分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。

轴对称图形习题及详细解答

轴对称图形习题及详细解答

轴对称图形习题及详细解答一.解答题(共30小题)1.(2016•宁夏)在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.2.(2016•江西)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt △ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.3.(2016•十堰)如图,将矩形纸片ABCD(AD >AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.4.(2016•海淀区校级模拟)如图,已知∠BAC=90°,AD⊥BC于点D,∠1=∠2,EF∥BC交AC于点F.试说明AE=CF.5.(2016•漳州模拟)数学课上,老师要求学生证明命题:“角平分线上的点到这个角的两边距离相等”,以下是小华解答的部分内容(缺少图形和证明过程).请你把缺少内容补充完整.已知:点P在∠AOB的角平分线OC上,PD⊥OA于D,PE⊥OB于E,求证:PD=PE.6.(2016•历下区一模)如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE 垂直平分AB于D,求证:BE+DE=AC.7.(2016•萧山区二模)已知:如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,BE=CF,求证:AD是BC的中垂线.8.(2016•怀柔区一模)如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.9.(2016•长春二模)如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC 的度数.10.(2016•东城区一模)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).11.(2016•怀柔区二模)如图,在△ABC中,AB=AC,AD是△ABC点的中线,E是AC的中点,连接AC,DF⊥AB于F.求证:∠BDF=∠ADE.12.(2016•西城区一模)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.13.(2016•门头沟区一模)如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.14.(2016•吉林校级二模)如图,等边三角形ABC的边长是2,D、E分别为AB、AC的中点,点F在BC延长线上,且CF=,求四边形DEFB 的面积.15.(2016•门头沟区二模)如图,在△ABC中,∠BAC=90°,∠C=30°,AE为BC边上的中线.求证:△ABE是等边三角形.16.(2016•泗水县一模)如图,把矩形纸片ABCD 沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.(1)求证:B′E=BF;(2)若AE=3,AB=4,求BF的长.17.(2016•北京一模)如图1,四边形ABCD中,AB=AD,BC=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究“筝形”的性质和判定方法.小聪根据学习四边形的经验,对“筝形”的判定和性质进行了探究.下面是小聪的探究过程,请补充完整:(1)如图2,连接筝形ABCD的对角线AC,BD交于点O,通过测量边、角或沿一条对角线所在直线折叠等方法探究发现筝形有一组对角相等,请写出筝形的其他性质(一条即可):,这条性质可用符号表示为:;(2)从边、角、对角线或性质的逆命题等角度进行探究,写出筝形的一个判定方法(定义除外),并证明你的结论.18.(2016•拱墅区二模)如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC 于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A 正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.19.(2016春•吉州区期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.20.(2016春•金堂县期末)如图,已知:AB∥CD,∠BAE=∠DCF,AC,EF相交于点M,有AM=CM.(1)求证:AE∥CF;(2)若AM平分∠FAE,求证:FE垂直平分AC.21.(2016春•滕州市期末)如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC=15cm,△BCE的周长等于25cm.(1)求BC的长;(2)若∠A=36°,并且AB=AC.求证:BC=BE.22.(2016春•淅川县期末)如图,已知:在△ABC中,∠C=∠ABC,BE⊥AC,△BDE是正三角形.求∠C的度数.23.(2016春•罗湖区期末)上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处.测得∠NAC=32°,∠ABC=116°.求从B处到灯塔C的距离?24.(2016春•埇桥区期末)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.25.(2016春•高平市期末)已知a、b满足方程组(1)求a,b的值;(2)若a、b是一个等腰三角形的两边长,求这个等腰三角形的周长.26.(2016春•张家港市期末)若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.27.(2016春•吉林期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,E是边AB的中点,连接DE,若AD=12,BC=10,求DE的长.28.(2016春•安岳县期末)等腰三角形一腰上的中线将三角形的周长分成了21和27两个部分,求等腰三角形的底边和腰长.29.(2016春•西藏校级期末)如图,在△ABC 中,AB=AC,点D是BC的中点,AC的垂直平分线分别交AC,AD,AB于点E,O,F.(1)求证:点O在AB的垂直平分线上;(2)若∠CAD=20°,求∠BOF的度数.30.(2016春•鄄城县期末)如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.参考答案与试题解析一.解答题(共30小题)1.(2016•宁夏)在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.【分析】先证明△DEC是等边三角形,再在RT △DEC中求出EF即可解决问题.【解答】解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在RT△DEC中,∵∠DEC=90°,DE=2,∴DF=2DE=4,∴EF===2.【点评】不同考查等边三角形的性质、直角三角形中30度角所对的直角边等于斜边的一半,勾股定理等知识,解题的关键是利用特殊三角形解决问题,属于中考常考题型.2.(2016•江西)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt △ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.【分析】(1)根据方程组的解法解答即可;(2)由翻折可知∠AED=∠CED=90°,再利用平行线的判定证明即可.【解答】解:(1),①﹣②得:y=1,把y=1代入①可得:x=3,所以方程组的解为;(2)∵将Rt△ABC向下翻折,使点A与点C 重合,折痕为DE.∴∠AED=∠CED=90°,∴∠AED=∠ACB=90°,∴DE∥BC.【点评】本题考查的是图形的翻折变换,涉及到平行线的判定,熟知折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.3.(2016•十堰)如图,将矩形纸片ABCD(AD >AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D 的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.【分析】(1)由四边形ABCD是矩形,根据折叠的性质,易证得△EFG是等腰三角形,即可得GF=EC,又由GF∥EC,即可得四边形CEGF 为平行四边形,根据邻边相等的平行四边形是菱形,即可得四边形BGEF为菱形;(2)如图1,当G与A重合时,CE取最大值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,推出四边形CEGD是矩形,根据矩形的性质即可得到CE=CD=AB=3;如图2,当F 与D重合时,CE取最小值,由折叠的性质得AE=CE,根据勾股定理即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折线,∴∠GEF=∠FEC,∴∠GFE=∠FEG,∴GF=GE,∵图形翻折后BC与GE完全重合,∴BE=EC,∴GF=EC,∴四边形CEGF为平行四边形,∴四边形CEGF为菱形;(2)由(1)得四边形CEGD是菱形,∴CE=CD=AB=3;如图2,当G与A重合时,CE取最大值,由折叠的性质得AE=CE,∵∠B=90°,∴AE2=AB2+BE2,即CE2=32+(9﹣CE)2,∴CE=5,∴线段CE的取值范围3≤CE≤5.【点评】本题考查了翻折变换﹣折叠问题,菱形的判定,线段的最值问题,矩形的性质,勾股定理,正确的作出图形是解题的关键.4.(2016•海淀区校级模拟)如图,已知∠BAC=90°,AD⊥BC于点D,∠1=∠2,EF∥BC交AC于点F.试说明AE=CF.【分析】作EH⊥AB于H,作FG⊥BC于G,根据角平分线的性质可得EH=ED,再证ED=FG,则EH=FG,通过证明△AEH≌△CFG 即可.【解答】解:作EH⊥AB于H,作FG⊥BC于G,∵∠1=∠2,AD⊥BC,∴EH=ED(角平分线的性质)∵EF∥BC,AD⊥BC,FG⊥BC,∴四边形EFGD是矩形,∴ED=FG,∴EH=FG,∵∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,又∵∠AHE=∠FGC=90°,∴△AEH≌△CFG(AAS)∴AE=CF.【点评】本题考查了角平分线的性质;综合利用了角平分线的性质、同角的余角相等、全等三角形的判定等知识点.5.(2016•漳州模拟)数学课上,老师要求学生证明命题:“角平分线上的点到这个角的两边距离相等”,以下是小华解答的部分内容(缺少图形和证明过程).请你把缺少内容补充完整.已知:点P在∠AOB的角平分线OC上,PD⊥OA于D,PE⊥OB于E,求证:PD=PE.【分析】结合已知条件,根据全等三角形的判定定理,推出△POD≌△POE即可.【解答】证明:∵OC是∠AOB的平分线,∴∠POD=∠POE,∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°,在△POD与△POE中,,∴△POD≌△POE,∴PD=PE.【点评】本题主要考查了全等三角形的判定和性质、角平分线的性质,解题的关键在于找到对应角相等、公共边.6.(2016•历下区一模)如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE 垂直平分AB于D,求证:BE+DE=AC.【分析】根据角平分线性质得出CE=DE,根据线段垂直平分线性质得出AE=BE,代入AC=AE+CE求出即可.【解答】证明:∵∠ACB=90°,∴AC⊥BC,∵ED⊥AB,BE平分∠ABC,∴CE=DE,∵DE垂直平分AB,∴AE=BE,∵AC=AE+CE,∴BE+DE=AC.【点评】本题考查了角平分线性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.7.(2016•萧山区二模)已知:如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,BE=CF,求证:AD是BC的中垂线.【分析】由AD是△ABC的角平分线,DE⊥AB,DF⊥AC,根据角平分线的性质,可得DE=DF,∠BED=∠CFD=90°,继而证得Rt△BED≌Rt △CFD,则可得∠B=∠C,证得AB=AC,然后由三线合一,证得AD是BC的中垂线.【解答】证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴∠B=∠C,∴AB=AC,∵AD是△ABC的角平分线,∴AD是BC的中垂线.【点评】此题考查了等腰三角形的性质与判定以及全等三角形的判定与性质.注意掌握三线合一性质的应用.8.(2016•怀柔区一模)如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.【分析】根据线段垂直平分线的性质得出AE=BE,再由直角三角形的性质即可得出结论.【解答】证明:∵DE是线段AB的垂直平分线,∴AE=BE,∠ADE=90°,∴∠EAB=∠B.在Rt△ABC中,∵∠C=90°,∴∠CAB+∠B=90°.在Rt△ADE中,∵∠ADE=90°,∴∠AED+∠EAB=90°,∴∠CAB=∠AED.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.9.(2016•长春二模)如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC 的度数.【分析】首先由AB=AC,利用等边对等角和∠A的度数求出∠ABC和∠C的度数,然后由BD是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,再根据三角形的内角和定理即可求出∠BDC的度数.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵BD是∠ABC的平分线,∴∠DBC=∠ABC=35°,∴∠BDC=180°﹣∠DBC﹣∠C=75°.【点评】本题考查了等腰三角形的性质,角平分线的定义,三角形内角和定理等知识,解答本题的关键是正确识图,利用等腰三角形的性质:等边对等角求出∠ABC与∠C的度数.10.(2016•东城区一模)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).ACB=70°,由角平分线的性质得到∠ABD=∠CBD=35°,根据平行线的性质得到∠E=∠EAB=35°,于是得到结论.【解答】解:∠EAC=75°,∵AB=AC,∠BAC=40°,∴∠ABC=∠ACB=70°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=35°,∵AE∥BD,∴∠E=∠EAB=35°,∴∠EAC=∠EAB+∠BAC=75°.【点评】此题考查了等腰三角形的性质、平行线的性质以及角平分线的定义.注意等边对等角定理的应用.11.(2016•怀柔区二模)如图,在△ABC中,AB=AC,AD是△ABC点的中线,E是AC的中点,连接AC,DF⊥AB于F.求证:∠BDF=∠ADE.CAD,∠ADB=∠ADC=90°,根据等腰三角形的判定定理得到∠CAD=∠ADE.根据余角的性质得到∠BAD=∠BDF,等量代换即可得到结论.【解答】证明:∵AB=AC,AD是△ABC点的中线,∴∠BAD=∠CAD,∠ADB=∠ADC=90°,∵E是AC的中点,∴DE=AE=EC,∴∠CAD=∠ADE.在Rt△ABD中,∠ADB=90°,∴∠B+∠BAD=90°.∵DF⊥AB,∴∠B+∠BDF=90°,∴∠BAD=∠BDF,∴∠BDF=∠CAD,∴∠BDF=∠ADE,【点评】本题考查了等腰直角三角形的性质,余角的性质,熟练掌握等腰三角形的性质是解题的关键.12.(2016•西城区一模)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.【分析】根据等腰三角形的性质得到BD=BC,AD⊥BC根据角平分线的判定定理即可得到结论..【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∵BE=BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.【点评】本题考查了等腰三角形的性质,角平分线的性质,熟练掌握等腰三角形的性质是解题的关键.13.(2016•门头沟区一模)如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.【分析】根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.【解答】证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).【点评】此题主要考查学生对等边三角形的性质及三角形外角的性质的理解及运用;利用三角形外角的性质得到∠CDE=30°是正确解答本题的关键.14.(2016•吉林校级二模)如图,等边三角形ABC的边长是2,D、E分别为AB、AC的中点,点F在BC延长线上,且CF=,求四边形DEFB 的面积.【分析】由三角形的中位线定理得到DE=CF,DE∥CF,证得四边形DEFC是平行四边形,即可证得S△ECF=S△DEC=S△ADE,即可证得S四边形DEFB=S△ABC,求得△ABC的面积即可.【解答】解:∵点D、E分别是AB、AC的中点,∴DE=BC,DE∥BF,∵CF=,∴DE=CF,DE∥CF,∴四边形DEFC是平行四边形,∴S△ECF=S△DEC=S△ADE,∵△ABC是等边三角形,D是AB的中点,∴CD⊥AB,AD=BD=1,BC=2,∴DC==∴S 四边形DEFB=S△ABC=×2×=.【点评】本题考查了三角形中位线定理,平行四边形的判定和性质,勾股定理的应用,证得S△ECF=S△DEC=S△ADE是本题的关键.15.(2016•门头沟区二模)如图,在△ABC中,∠BAC=90°,∠C=30°,AE为BC边上的中线.求证:△ABE是等边三角形.【分析】根据直角三角形的性质得出AE=BE=CE=AB,即可得出答案.【解答】证明:∵∠BAC=90°,∠C=30°,∴AB=BC,∵AE为BC边上的中线,∴AE=BE=CE,∴AB=AE=BE,∴△ABE是等边三角形.【点评】本题考查了等边三角形的性质,掌握等边三角形的判定:三边都相等的三角形是等边三角形.16.(2016•泗水县一模)如图,把矩形纸片ABCD 沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.(1)求证:B′E=BF;(2)若AE=3,AB=4,求BF的长.【分析】(1)根据折叠的性质以及平行线的性质可以证明∠B'FE=∠B'EF,根据等角对等边证明B'E=B'F,然后根据折叠的性质可证得;(2)直角△A'B'E中利用勾股定理求得B'E的长,然后根据(1)的结论即可求解.【解答】(1)证明:∵矩形ABCD中,AD∥BC,∴∠B'EF=∠EFB,又∵∠B'FE=∠EFB,∴∠B'FE=∠B'EF,∴B'E=B'F,又∵BF=B'F,∴B'E=BF;(2)解:∵直角△A'B'E中,A'B'=AB=4,∴B'E===5,∴BF=N'E=5.【点评】本题考查了折叠的性质以及勾股定理,在折叠的过程中认识到相等的角和相等的边是关键.17.(2016•北京一模)如图1,四边形ABCD中,AB=AD,BC=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究“筝形”的性质和判定方法.小聪根据学习四边形的经验,对“筝形”的判定和性质进行了探究.下面是小聪的探究过程,请补充完整:(1)如图2,连接筝形ABCD的对角线AC,BD交于点O,通过测量边、角或沿一条对角线所在直线折叠等方法探究发现筝形有一组对角相等,请写出筝形的其他性质(一条即可):对角线互相垂直,这条性质可用符号表示为:已知四边形ABCD是筝形,则AC⊥BD.;(2)从边、角、对角线或性质的逆命题等角度进行探究,写出筝形的一个判定方法(定义除外),并证明你的结论.【分析】(1)根据筝形的定义可以证明△BAC ≌△DAC,依据全等三角形的性质即可证得边和对角线的关系;(2)利用△BAC≌△DAC,根据边、角、对角线的性质证得.【解答】解:(1)筝形的性质:两组邻边分别相等;对角线互相垂直,即已知四边形ABCD是筝形,则AC⊥BD;有一条对角线被另一条平分;有一条对角线平分对角;是轴对称图形.(写出一条即可);故答案是:对角线互相垂直;已知四边形ABCD 是筝形,则AC⊥BD;(2)筝形的判定方法:有一条对角线平分一组对角的四边形是筝形.已知:四边形ABCD中,AC是一条对角线,∠BAC=∠DAC,∠BCA=∠DCA.求证:四边形ABCD是筝形.证明:在△BAC和△DAC中,,∴△BAC≌△DAC,∴AB=AD,BC=CD,即四边形ABCD是筝形.其他正确的判定方法:有一条对角线垂直平分令一条对角线的四边形是筝形;有一组邻边相等且互相垂直的四边形是筝形.【点评】本题考查了图形的对称以及全等三角形的判定,正确证明△BAC≌△DAC是解决本题的关键.18.(2016•拱墅区二模)如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC 于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A 正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.【分析】(1)利用尺规作出∠ABC的平分线BD 即可.(2)首先利用勾股定理求出BC,再求出A1C,根据△A 1DC的面积=•A1C•A1D计算即可.【解答】解:(1)∠ABC的平分线BD,交AC 于点D,如图所示,(2)在RT△ABC中,∵∠A=90°,AC=BC=1,∴BC=,∵AB=A1B=AC=1,∴A 1C=,∵∠C=45°,∠DA1C=90°,∴∠C=∠A1DC=45°∴△A1DC是等腰直角三角形,∴=.【点评】本题考查尺规作图、翻折变换、勾股定理、三角形面积等知识,熟练掌握基本尺规作图是解题的关键,属于基础题,中考常考题型.19.(2016春•吉州区期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM=CM,BN=CN,然后求出△CMN的周长=AB;(2)根据三角形的内角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根据等边对等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵DM、EN分别垂直平分AC 和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,(2)整体思想的利用是解题的关键.20.(2016春•金堂县期末)如图,已知:AB∥CD,∠BAE=∠DCF,AC,EF相交于点M,有AM=CM.(1)求证:AE∥CF;(2)若AM平分∠FAE,求证:FE垂直平分AC.【分析】(1)先根据AB∥CD得出∠BAC=∠DCA,再由∠BAE=∠DCF可知∠EAM=∠FCM,故可得出结论;(2)先由AM平分∠FAE得出∠FAM=∠EAM,再根据∠EAM=∠FAM可知∠FAM=∠FCM,故△FAC是等腰三角形,由等腰三角形三线合一的性质即可得出结论.【解答】(1)证明:∵AB∥CD,∴∠BAC=∠DCA,又∵∠BAE=∠DCF,∴∠EAM=∠FCM,∴AE∥CF;(2)证明:∵AM平分∠FAE,∴∠FAM=∠EAM,又∵∠EAM=∠FCM,∴∠FAM=∠FCM,∴△FAC是等腰三角形,又∵AM=CM,∴FM⊥AC,即EF垂直平分AC.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.21.(2016春•滕州市期末)如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC=15cm,△BCE的周长等于25cm.(1)求BC的长;(2)若∠A=36°,并且AB=AC.求证:BC=BE.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△BCE的周长=AC+BC,再求解即可;(2)根据等腰三角形两底角相等求出∠C=72°,根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,根据等边对等角可得∠ABE=∠A,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BEC=72°,从而得到∠BEC=∠C,然后根据等角对等边求解.【解答】(1)解:∵AB的垂直平分线MN交AB于点D,∴AE=BE,∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC,∵AC=15cm,∴BC=25﹣15=10cm;(2)证明:∵∠A=36°,AB=AC,∴∠C=(180°﹣∠A)=(180°﹣36°)=72°,∵AB的垂直平分线MN交AB于点D,∴AE=BE,∴∠ABE=∠A,由三角形的外角性质得,∠BEC=∠A+∠ABE=36°+36°=72°,∴∠BEC=∠C,∴BC=BE.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,等角对等边的性质,综合题难度不大,熟记各性质并准确识图是解题的关键.22.(2016春•淅川县期末)如图,已知:在△ABC中,∠C=∠ABC,BE⊥AC,△BDE是正三角形.求∠C的度数.【分析】本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC﹣60°=∠C﹣60°,最后根据三角形内角和定理得出关系式∠C﹣60°+∠C=90°解出即可.【解答】解:∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC则∠EBC=∠ABC﹣60°=∠C﹣60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C﹣60°+∠C=90°解得∠C=75°.【点评】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.23.(2016春•罗湖区期末)上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处.测得∠NAC=32°,∠ABC=116°.求从B处到灯塔C的距离?【分析】根据已知条件“上午8时,一条船从A 处出发以30海里/时的速度向正北航行,12时到达B处”可以求得AB=120海里,然后根据三角形的内角和定理求得∠C=32°,所以△ABC是等腰三角形;最后由等腰三角形的两腰相等的性质来求从B处到灯塔C的距离.【解答】解:根据题意,得AB=30×4=120(海里);在△ABC中,∠NAC=32°,∠ABC=116°,∴∠C=180°﹣∠NAC﹣∠ABC=32°,∴∠C=∠NAC,∴BC=AB=120(海里),即从B处到灯塔C的距离是120海里.【点评】本题考查了等腰三角形的性质、方向角.解答该题时充分利用了三角形的内角和定理.24.(2016春•埇桥区期末)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.【分析】(1)由在△ABC中,AB=AC,∠A=40°,根据等腰三角形的性质,可求得∠ABC的度数,又由AB的垂直平分线交AB于点N,交BC的延长线于点M,即可求得答案;(2)由在△ABC中,AB=AC,∠A=70°,根据等腰三角形的性质,可求得∠ABC的度数,又由AB的垂直平分线交AB于点N,交BC的延长线于点M,即可求得答案;(3)由在△ABC中,AB=AC,根据等腰三角形的性质,即可用∠A表示出∠ABC,又由AB点M,即可求得答案.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=70°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=20°;(2)∵在△ABC中,AB=AC,∠A=70°,∴∠ABC=∠ACB=55°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=35°;(3)∠NMB=∠A.理由:∵在△ABC中,AB=AC,∴∠ABC=∠ACB=,长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=∠A.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.25.(2016春•高平市期末)已知a、b满足方程组(1)求a,b的值;(2)若a、b是一个等腰三角形的两边长,求这个等腰三角形的周长.【分析】(1)直接利用加减消元法,即可求得a,b的值;(2)分别从若7为腰长,2为底边长与若2为腰长,7为底边长,去分析求解即可求得答案.【解答】解:(1),①+3②得:10a=70,解得:a=7,把a=7代入2a+b=16,得:b=2,∴;(2)①若7为腰长,2为底边长,则周长为:7×2+2=16;②若2为腰长,7为底边长,∵2+2<7,∴不能组成三角形,舍去;∴这个等腰三角形的周长为16.【点评】此题考查了等腰三角形的性质以及二元一次方程组的解法.注意掌握分类讨论思想的应用是解此题的关键.26.(2016春•张家港市期末)若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.【分析】(1)先解方程组用含a的代数式表示x,y的值,再代入有关x,y的不等关系得到关于a 的不等式求解即可;(2)根据绝对值的定义即可得到结论;(3)首先用含m的式子表示x和y,由于x、y 的值是一个等腰三角形两边的长,所以x、y可能是腰也可能是底,依次分析即可解决,注意应根据三角形三边关系验证是否能组成三角形.【解答】解:(1)解得∴,∵若关于x、y的二元一次方程组的解都为正数,∴a>1;(2)∵a>1,∴|a+1|﹣|a﹣1|=a+1﹣a+1=2;(3)∵二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,这个等腰三角形的周长为9,∴2(a﹣1)+a+2=9,解得:a=3,∴x=2,y=5,不能组成三角形,∴2(a+2)+a﹣1=9,解得:a=2,∴x=1,y=5,能组成等腰三角形,∴a的值是2.【点评】主要考查了方程组的解的定义和不等式的解法.理解方程组解的意义用含m的代数式表示出x,y,找到关于x,y的不等式并用a表示出来是解题的关键.27.(2016春•吉林期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,E是边AB的中点,连接DE,若AD=12,BC=10,求DE的长.【分析】先根据勾股定理求得AC的长,根据条件可知DE是△ABC的中位线,所以利用中位线定理可知DE的长.【解答】解:∵AB=AC,AD⊥BC,∴BD=CD,∴CD=BC=5,∵AD=12,∴在Rt△ADC中,AC==13,。

市门头沟区初三二模数学试题及答案

市门头沟区初三二模数学试题及答案

市门头沟区初三二模数学试题及答案Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT2011年门头沟区初三年级第二次统一练习数 学 试 卷考生须知1.本试卷共6页,共五道大题,25道小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡的密封线内准确填写学校、班级和姓名。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.2的倒数是 A .12B .2C .12-D .2- 2.一种细胞的直径约为0.00000156米.将用科学记数法表示应为 A .61.5610⨯ B .61.5610-⨯ C .51.5610-⨯ D .415.610-⨯ 3.两圆的半径分别为5cm 和2cm ,圆心距为7cm ,则这两圆的位置关系是 A .内切 B .外切 C .外离 D .内含4.右图所示的是一个几何体的三视图,则这个几何体是 A .长方体 B .正方体 C .圆柱体 D .三棱柱 5.已知一组数据1,4,5,2,3,则这组数据的极差和方差分别是A .4,2B .4,3C .2,3D .1,56.若圆锥侧面展开图的扇形面积为65πcm 2,扇形的弧长为10πcm ,则圆锥的母线长是A .5cmB .10cmC .12cmD .13cm7.桌面上有三张背面相同的卡片,正面分别写有数字1、2、3.先将卡片背面朝上洗匀, 然后从中同时抽取两张,则抽到的两张卡片上的数字之积为奇数的概率是 A .16B .23C . 13D . 128.如图,正方形ABCD 的边长为2,动点P 从点C 出发, 在正方形的边上沿着C B A →→的方向运动(点P 与A 不重合). 设点P 的运动路程为x , 则下列图象中,表BA CP 主视图左视图俯视图示△ADP 的面积y 与x 的函数关系的是二、填空题(本题共16分,每小题4分)9.在函数2y x =-中,自变量x 的取值范围是 .10.如图,在△ABC 中,DE ∥BC ,AD =3,BD =6,AE =4,则EC 的长是 . 11.已知一个多边形的内角和是外角和的2倍,则这个多边形的边数是 . 12.如图,在矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 的内部, 延长BG 交DC 于点F .若DC =2DF ,则AD AB= ;若DC=nDF ,则AD AB= (用含n 的式子表示).三、解答题(本题共30分,每小题5分)131184sin 45(3)4-⎛⎫-︒+-π+ ⎪⎝⎭.14.解不等式组245(2),3(1)3,x x x x +≤+⎧⎨-<+⎩ 并求它的正整数解.4 3 2 1 0 1 2 3 x yC 43 2 1 0 12 3 x yB43 2 1 0 12 3 x y A4 3 2 1 0 1 2 3 xyDED CBAGEDCBAF15.已知:如图,DB ∥AC ,且12DB AC =,E 是AC 的中点.求证:BC=DE .16.已知20y x -=,求y x y y x y x y xy x x-++-⋅+-2222222的值.17.列方程或方程组解应用题:AECB D为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工产品的数量是甲工厂每天加工产品数量的倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品18.已知二次函数m x x y ++=22的图象与x 轴有且只有一个公共点. (1)求m 的值;(2)若此二次函数图象的顶点为A ,与y 轴的交点为B ,求A 、B 两点的坐标;(3)若1(,)P n y 、2(2,)Q y 是二次函数图象上的两点,且12y y >,请你直接写出n 的取值范围.图1A B C D四、解答题(本题共20分,每小题5分)19.如图,在梯形ABCD 中,AD 343O ⊙BC BD =O ⊙CD BF ∥O ⊙3cos 4BCD ∠= 小明把本年级学生400人的捐款情况进行了统计,并绘制成了如下不完整的频数分布表和频数分布直方图.请你根据以上图表提供的信息,解答下列问题: (1)补全频数分布表和频数分布直方图; (2)捐款金额的中位数落在哪个组内(3)若该校共有学生1600人,请你估计该校学生捐款金额不低于40元的有多少人22.如图1,有一张菱形纸片ABCD ,AC =8,BD =6.(1)若沿着AC 剪开,把它分成两部分,把剪开的两部分拼成一个平行四边形,请在图2中用实线画出你所拼成的平行四边形,并直接写出这个平行四边形的面积;(2)若沿着BD 剪开,把它分成两部分,把剪开的两部分拼成一个平行四边形,请在图3中用实线画出你所拼成的平行四边形,并直接写出这个平行四边形的周长;(3)沿着一条直线剪开,把它分成两部分,把剪开的两部分拼成与上述两种都不全等的平行四边形,请在图4中用实线画出你所拼成的平行四边形. (注:上述所画的平行四边形都不能与原菱形全等)五、解答题(本题共22分,第23、24题各7分,第25题8分)23.已知抛物线y =ax 2+bx -4a 经过A (-1,0)、C (0,4)两点,与x 轴交于另一点B .分组/元频数 频率 10≤x <20 40 20≤x <30 80 30≤x <40 40≤x <50 100 50≤x <60 20 合 计400A D FBCO EA B CD周长为DCBA图3D CBA图4图2AB CD 面积为102030405060频数(1)求抛物线的解析式;(2)若点D (m ,m +1)在第一象限的抛物线上, 求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连结BD ,若点P 为抛物线上一点,且∠DBP =45°,求点P 的坐标.24.已知在△ABC 和△DBE 中,AB =AC ,DB =DE ,且∠BAC =∠BDE .(1)如图1,若∠BAC =∠BDE =60°,则线段CE 与AD 之间的数量关系是 ;(2)如图2,若∠BAC =∠BDE =120°,且点D 在线段AB 上,则线段CE 与AD 之 间的数量关系是__________________;(3)如图3,若∠BAC =∠BDE =α,请你探究线段CE 与AD 之间的数量关系(用含α的式子表示),并证明你的结论.A C DB图1BACDE图3E BAC D图211yxO25.如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA = 3,AB = 5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A 后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BO-OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(2)在点P从O向A运动的过程中,求△积S与t之间的函数关系式(不必写出t范围);(3)在点E从B向O运动的过程中,四边形能否成为直角梯形若能,请求出t能,请说明理由;(4)当DE经过点O时,请你直接写出t2011年门头沟区初三年级第二次统一练习数学试卷评分参考一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)C题号 9 10 11 12答案x ≥28六22n n三、解答题(本题共30分,每小题5分)13.计算: 10184sin 45(3)4-⎛⎫-︒+-π+ ⎪⎝⎭.解:1184sin 45(3)4-⎛⎫-︒+-π+ ⎪⎝⎭2224142=-⨯++ 4分 5=. 5分14.解不等式组245(2),3(1)3,x x x x +≤+⎧⎨-<+⎩ 并求它的正整数解. 解: 245(2),3(1)3,x x x x +≤+⎧⎨-<+⎩由①,得x ≥-2. 1分 由②,得x <3.2分不等式组的解集在数轴上表示如下:3分 所以原不等式组的解集为-2≤x <3. 4分 所以原不等式组的正整数解为1,2. 5分15. 证明:∵E 是AC 的中点, ∴EC=21AC .…………………………………………………………………… 1分 ∵12DB AC =,∴DB = EC . ……………………………………2分 ∵DB ∥AC ,①②·AECBD∴DB ∥EC .……………………………………… 3分 ∴四边形DBCE 是平行四边形. ……………… 4分 ∴BC=DE . ……………………………………… 5分16.解:y x y y x y x yxy x x-++-⋅+-2222222 =yx y y x y x y x y x x -+++-⋅-2))(()(222分= 22x yx y x y +-- =22x yx y+-. 3分 当20y x -=时,x y 2=. 4分原式=242x xx x+-=-6. 5分17.解:设甲工厂每天加工x 件新产品,则乙工厂每天加工件新产品. ………………1分 依题意,得1200120010.1.5x x-=…………………………………………………………3分 解得x=40. …………………………………………………………………………4分经检验,40x =是所列方程的解,且符合实际问题的意义. 当x=40时,=60.答:甲、乙两个工厂每天分别能加工新产品40件、60件. ………………………………5分 18. 解:(1)根据题意,得△=2240m -=.解得1m =. ……………………………………………………………………1分 (2)当1m =时,221y x x =++.二次函数图象的顶点A 的坐标为(-1,0), ………………………………2分 与y 轴的交点B 的坐标为(0,1). …………………………………………3分 (3)n 的取值范围是2n >或4n <-. ………………………………………………5分 四、解答题(本题共20分,每小题5分)19. 解:如图,分别过点A 、D 作AE ⊥BC 于点E ,DF ⊥BC 于点F . ……………………1分∴AE12=12=3=BE BC EF =-AB CDAB CD⊥BF O ⊙AB O ⊙AB BF ∴⊥CD BF ∴∥BD 90ADB ∴∠=°.在Rt ADB △中,3cos cos 4A C ==,428AB =⨯=, 3cos 864AD AB A ∴=⋅=⨯=.4分在Rt AED △中,39cos 642AE AD A =⋅=⨯=, ∴=.由直径AB 平分CD , 可求2CD DE == 5分21.解:(1)补全频数分布表和频数分布直方图. …………………………3分 (每个1分) (2)捐款金额的中位数落在30≤x <40这个组内. ………………………………4分 (3)该校学生捐款数额不低于40元的有100201600480400+⨯=(人). ……………5分 22.解:(1)画出图形、面积为24. ………………………………………………2分(每个1分) (2)画出图形、周长为22. ……………………………………………4分(每个1分) (3)画出图形(答案不唯一). ……………………………………………5分五、解答题(本题共22分,第23、24题各7分,第25题8分)23.解:(1)抛物线24y ax bx a =+-经过(10)A -,,(04)C ,两点, 404 4.a b a a --=⎧∴⎨-=⎩,B解得13.a b =-⎧⎨=⎩,………………………………………………………………………1分∴抛物线的解析式为234y x x =-++. ………………………………………2分(2)点(1)D m m +,在抛物线上,2134m m m ∴+=-++.∴2230m m --=. 1m ∴=-或3m =.点D 在第一象限,1m ∴=-舍去.∴点D 的坐标为(34),. …………………………………………………3分 抛物线234y x x =-++与x 轴的另一交点B 的坐标为(4),0,(04)C ,, ∴.45OC OB CBO BCO =∴∠=∠=°. 设点D 关于直线BC 的对称点为点E .CD AB ∥,45ECB CBO DCB ∴∠=∠=∠=°.∴E 点在y 轴上,且3CE CD ==. ∴OE =1.(01)E ∴,. ………………………………………………………………4分即点D 关于直线BC 对称的点的坐标为(0,1).(3)过点D 作BD 的垂线交直线PB 于点Q ,过点D 作DH x ⊥轴于H ,过点Q 作QG DH ⊥于G . ∴90QDB QGD DHB ∠=∠=∠=°..45PBD ∠=°,45BQD ∴∠=°..QD BD ∴= QDG BDH ∠+∠90=°,90DQG QDG ∠+∠=°, DQG BDH ∴∠=∠.QDG DBH ∴△≌△. 4QG DH ∴==,1DG BH ==. (13)Q ∴-,.………………………………………………………………………5分设直线BP 的解析式为y kx b +=.由点(13)Q -,,点(40)B ,,求得直线BP 的解析式为31255y x =-+.…………6yOA BC DE解方程组234,31255y x x y x ⎧=-++⎪⎨=-+⎪⎩得112,566;25x y ⎧=-⎪⎪⎨⎪=⎪⎩2240.x y =⎧⎨=⎩,(舍) ∴点P 的坐标为266525⎛⎫- ⎪⎝⎭,. ……………………………………………………7分24.解:(1)CE= AD . …………………………………………………………………………2分 (2)AD . ……………………………………………………………………4分 (3)CE 与AD 之间的数量关系是 α2sin 2CE AD =. 证明:∵AB =AC ,DB =DE , ∴.AB ACDB DE= ∵∠BAC =∠BDE , ∴△ABC ∽△DBE . ∴,.AB BCABC DBE DB BE=∠=∠ ∴,AB DBBC BE =.ABD ABC DBC DBE DBC CBE ∠=∠-∠=∠-∠=∠ ∴△ABD ∽△CBE .…………………………………………………………5分∴ .AD BD CE BE =过点D 作DF ⊥BE 于点F .∴1α.22BDF BDE ∠=∠=∴α22sin 2sin .2BE BF BD BDF BD ==⋅∠=⋅ …………………………6分 ∴1.α2sin2AD CE=∴α2sin 2CE AD =.…………………………………………………………7分25.解:(1)在Rt △AOB 中,OA = 3,AB = 5,由勾股定理得4OB =.F图3EDCAB∴A (3,0),B (0,4). 设直线AB 的解析式为y kx b +=.∴30,4.k b b +=⎧⎨=⎩ 解得 4,34.k b ⎧=-⎪⎨⎪=⎩ ∴直线AB 的解析式为443y x +=-.…………1分 (2)如图,过点Q 作QF ⊥AO 于点F. ∵ AQ = OP= t ,∴3AP t =-. 由△AQF ∽△ABO ,得QF AQBO AB=. ∴45QF t =.∴45QF t =. …………2分 ∴14(3)25S t t =-⋅,∴22655S t t =-+.………………………3分(3)四边形QBED 能成为直角梯形. ①如图,当DE ∥QB 时, ∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP=90°. 由△APQ?∽△ABO ,得AQ APAO AB=. ∴335t t-=. 解得98t =. ……………………………5分 ②如图,当PQ ∥BO 时, ∵DE ⊥PQ ,∴DE ⊥BO ,四边形QBED 是直角梯形.此时∠APQ =90°.由△AQP?∽△ABO ,得.AQ APAB AO= 即353t t-=. y xEDQ POB AF A BOPQ DExy ABOP QDE xy解得158t =. ………………………6分 (4)52t =或4514t =. ………………………8分。

6.北京2016初三中考二模数学word版答案-朝阳

6.北京2016初三中考二模数学word版答案-朝阳

6.北京2016初三中考二模数学试题及答案word 版答案-朝阳数学试卷评分标准及参考答案 2016.6一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分, 第29题8分)17.解:原式=52--…………………………………………………………4分 =3.…………………………………………………………………5分18.解:21,2.x y x y +=⎧⎨-=⎩①+②,得33x =,1x =.………………………………………………………2分 把1x =代入②,得12y -=,1y =-.……………………………………………………4分 所以这个方程组的解是1,1.x y =⎧⎨=-⎩ …………………………………………………5分19.解:原式()()21111a a a a +=⋅+-- ……………………………………………………1分()22=1a - ……………………………………………………………………3分22=21a a -+.∵2220a a --=,∴222a a -=.……………………………………………………………4分 ∴ 原式23=.………………………………………………………………5分 ①②20.解:∵ED BC ⊥,35E ∠=︒,∴55B ∠=︒. …………………………………………1分∵在Rt △ABC 中,∠BAC = 90º,AD 是BC 边上的中线, ∴AD BD =. …………………………………………3分∴55BAD B ∠=∠=︒ .………………………………4分 ∴70BDA ∠=︒.…………………………………………………………………5分21.解:设这两栋楼的住户一年内人均阅读纸质图书的数量为x 本.……………………1分 由题意,得460218420x x⨯=+. …………………………………………3分 解得 4.6x =. ……………………………………………………4分 经检验, 4.6x =是原方程的解,且符合题意.……………………………5分 答:这两栋楼的住户一年内人均阅读纸质图书的数量为4.6本. 22.证明:(1)∵AB ∥DC ,FC=AB ,∴四边形ABCF 是平行四边形.…………………………………………1分∵90B ∠=︒,∴四边形ABCF 是矩形.…………………………………………………2分(2)由(1)可得,90AFC ∠=︒,∴90DAF D ∠=︒-∠,90CGF ECD ∠=︒-∠. ………………3分 ∵ED EC =,∴D ECD ∠=∠.…………………………4分 ∴DAF CGF ∠=∠.∵EGA CGF ∠=∠, ∴EAG EGA ∠=∠.∴EA EG =.………………………………………………………5分 23.解:(1)∵双曲线4y x=过点M (1,b ), ∴4b =.……………………………………………………………………1分 ∵正比例函数y kx =的图象过点M (1,4),∴4k =.……………………………………………………………………2分 ∴正比例函数的表达式为4y x =.………………………………………3分 (2)(-1,-4),(3,12). …………………………………………………5分E CBA24.(1)证明:连接OD .∵AD 平分MAN ∠, ∴EAD OAD ∠=∠. ∵OA OD =, ∴ODA OAD ∠=∠.∴EAD ODA ∠=∠.……………………………1分 ∵DE AM ⊥于E , ∴90AED ∠=︒. ∴90EAD EDA ∠+∠=︒, ∴90ODA EDA ∠+∠=︒.∴OD ED ⊥.∴DE 是⊙O 的切线. ………………2分 (2)解:∵30EDA ∠=︒,∴60ODA ∠=︒. ∵OA OD =,∴△ADO 为等边三角形.…………………………………………………3分 在Rt △AED 中,1AE =,可得2AD =,ED =.………………4分 ∴2OD AD ==.在Rt △ODE中,由勾股定理可得OE = ………………………5分25.解:(1)41. ……………………………………………………………………… ……1分 (2)补全图1,如图所示. ……………………………………………… ………2分(3)801; ………………………………………………………………3分答:预计观看“沪剧”、“秦腔”、“粤剧”的人数分别约为96、40、64,…………4分所以演出应分别安排在江苏园、福建园、岭南园.………………………………5分前四天每天接待的观众人数统计图图126.(1)解: 由题意可得2132x x =+. ∵12x x <,∴132x =-,22x =. …………………………………………………1分 ∴121116x x +=-.∵直线132y x =+与x 轴交于点C ,C 点横坐标为3x ,∴36x =-.………………………………………………………………2分∴3116x =-.∴123111x x x +=.…………………………………………………………3分(2)①证明:如图,过点B 作BE ∥PA 交PC 于点E .∴△BEC ∽△APC .…………………………………………………4分 由PB 平分APC ∠,120APC ∠=︒,可得△PBE 是等边三角形.∴3BE PE PB x ===.∴23EC x x =-.∵BE ECAP PC =, ∴32312x x x x x -=.∴231312x x x x x x +=. ∴123111x x x +=.…………………………………………………………5分②解:过点C 作CD ⊥x 轴于点D ,CE ⊥y 轴于点E .∵点C 在直线y x =上,且横坐标为3x , ∴点C (3x ,3x ).∴3CE CD x ==.……………………………4分 ∵BOC AOC AOB S S S ∆∆∆+=,∴231312111222x x x x x x +=. ∴123111x x x +=.…………………………………………………………5分 lxy E Dx 3x 1x 2C A BO l图 2 27.解:(1)∵抛物线()2296y x m x =-++-的对称轴是2x =,∴922(2)m +-=⨯-.∴1m =-. ……………………………………………………………1分∴抛物线的表达式为2286y x x =-+-.…………………………………2分 ∴22(2)2y x =--+.∴顶点坐标为(2,2).………………………………………………3分 (2)由题意得,平移后抛物线表达式为 ()2232y x =--+……………………4分 ∵()()222223x x --=--,∴52x =. ∴A (52,32).………………………5分(3)702b <≤. ……………………………7分28.(1)BD CE =;………………………………………1分(2)补全图形.………………………………………2分 证明:如图2,在BE 上截取BF CD =,连接CF .∵12DCB EBC A ∠=∠=∠, ∴△DCB ≌△FBC .………………………3分 ∴BD CF =,FCB DBC ∠=∠.∴CFE FBC FCB FBC ABE ∠=∠+∠=∠+∠2.∵CEF A ABE ∠=∠+∠.∴CFE CEF ∠=∠.………………………………………………………4分 ∴CF CE =.∴BD CE =.………………………………………………………5分(3)求解思路如下:a .如图3,过点E 作EM BC ⊥于M ;b .由BE 平分ABC ∠,可得ABC A ∠=∠;c .由BDC ∠=︒105,可得EBC ∠=︒25,50A ∠=︒,80ACB ∠=︒;………………………………………………………6分d .由(2)知CE BD ==3,在Rt △CEM 中,可求EM 的长度;e .在Rt △BEM 中,由EBM ∠的度数和的EM 的长度,可求BE 的长度.…7分图3ADBM CE29.(1)①16.………………………………………………………………………………1分②当弦AB 的位置改变时,点P 关于⊙O 的“幂值”为定值.………………2分 证明:如图,AB 为⊙O 中过点P 的任意一条弦,且不与OP 垂直. 过点P 作⊙O 的弦''A B ⊥OP ,连接'AA 、'BB . ∵在⊙O 中,''AA P B BP ∠=∠,''APA BPB ∠=∠,∴△'APA ∽△'B PB .…………………………………………………3分∴''PA PA PB PB=. ∴''PA PB PA PB ⋅=⋅.…………………………4分∵OP ⊥''A B ,3OP =,⊙O 半径为5. ∴''4A P B P ==.∴16PA PB ⋅=.…………………………………………………………5分 ∴当弦AB 的位置改变时,点P 关于⊙O 的“幂值”为定值.(2)22r d -. …………………………………………………………………………6分 (3)22b -≤≤. …………………………………………………………………8分说明:各解答题的其他正确解法请参照以上标准给分.。

北京市门头沟区初三二模数学试题及答案.doc

北京市门头沟区初三二模数学试题及答案.doc

石景山区2011年初三第一次统一练习暨毕业考试数 学 试 卷题号 一 二 三 四五 六 七 总分 分数第Ⅰ卷(共32分)一、选择题(本题共32分,每小题4分)在每个小题给出的四个备选答案中,只有一个是正确的,请将所选答案前的字母按规定要求填涂在答题纸第1-8题的相应位置上. 1.12-的绝对值是 A .12B . 12-C .2D .2-2.据《北京日报》报道,去年北京批准约209亿元公积金贷款投入保障房建设,数字209用科学记数法可表示为 A .10.920⨯B .2109.02⨯ C .31009.20⨯D . 3109.02⨯3.已知:如图,m l ∥,等边ABC △的顶点B 在直线m 上,边BC 与直线m 所夹锐角为︒20,则α∠的度数为 A .︒60B .︒45C .︒40D .︒304.函数12y x =-的自变量x 的取值范围是A .0x ≠B .2x ≠C .2x ≥D .2x >5.下列数据是某班六位同学定点投篮(每人投10个)的情况,投进篮筐的个数为6,9,8,4,0,3,这组数据的平均数、中位数和极差分别是A .6,6,9B .6,5,9C .5,6,6D .5,5,96.已知:⊙O 的半径为2cm ,圆心到直线l 的距离为1cm ,将直线l 沿垂直于l 的方向平移,使l 与⊙O 相切,则平移的距离是 A .1 cmB .2 cmC .3cmD .1 cm 或3cm7.为吸引顾客,石景山万达广场某餐饮店推出转盘抽奖打折活动,如图是可以自由转动的转盘,转盘被分成若干个扇形,转动转盘,转盘停止后,指针所指区域内的奖项可作为打折等级(若指针指向两个考 生 须 知 1.本试卷共6页.全卷共七道大题,25道小题. 2.本试卷满分120分,考试时间120分钟.3.在试卷密封线内准确填写区(县)名称、毕业学校、姓名和准考证号. 4.考试结束后,将试卷和答题纸一并交回. 第3题图l 20︒mBA αC扇形的交线时,重新转动转盘),其中一等奖打九折,二等奖打九五折,三等奖赠送小礼品.小明和同学周六去就餐,他们转动一次转盘能够得到九折优惠的概率是 A .31B .72 C .163 D .81 QPHG FED C BA8.已知:如图,无盖无底的正方体纸盒ABCD EFGH -,P ,Q 分别为棱FB ,GC 上的点,且12,2FP PB GQ QC ==,若将这个正方体纸盒沿折线AP PQ QH --裁剪并展开,得到的平面图形是A .一个六边形B .一个平行四边形C .两个直角三角形D . 一个直角三角形和一个直角梯形第Ⅱ卷(共88分)二、填空题(本题共16分,每小题4分)9.将二次函数562++=x x y 配方为k h x y +-=2)(形式,则=h ____,=k ________. 10.分解因式:=-234xy x _______________.11.已知:如图,AB ,BC 为⊙O 的弦,点D 在AB 上,若4=OD ,10=BC ,︒=∠=∠60B ODB ,则DB 的长为 .12.已知:如图,在平面直角坐标系xOy 中,点1B 、点1C 的坐标分别为()0,1,()31,,将△11C OB 绕原点O 逆时针旋转︒60,再将其各边都扩大为原来的m 倍,使12OC OB=,得到△22C OB .将△22C OB 绕原点O 逆时针旋转︒60,再将其各边都扩大为原来的m 倍,使23OC OB =,得到△33C OB ,如此下去,得到△n n C OB . (1)m 的值是_______________;(2)△20112011C OB 中,点2011C 的坐标:_____________.三、解答题(本题共30分,每小题5分)一 等 奖 一等奖二等奖三等奖 二 等 奖三等奖 三等奖第7题图 第8题图第11题图 第12题图C 1 B 1D A OB C13.103130tan 12)2011(-⨯︒--+-)(.14.解不等式组⎪⎩⎪⎨⎧⋅-≥++->-②)1(517,①4113x x x x 并把解集在数轴上表示出来.15.如图,在△ABC 中,BC AB ⊥,AC BE ⊥于E ,点F 在线段BE 上,21∠=∠,点D 在线段EC上,请你从以下两个条件中选择一个作为条件,证明△AFD ≌△AFB . (1)DF ∥BC ; (2)DF BF =.16.已知:04622=-+x x ,求代数式)225(4232---÷--x x x x x 的值.17.已知:如图,一次函数3+=kx y 的图象与反比例函数xmy =(0>x )的图象交于点P .x PA ⊥轴于点A ,y PB ⊥轴于点B .一次函数的图象分别交x 轴、y 轴于点C 、点D ,且27=DBP S △,21=CA OC .(1)求点D 的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当x18.为继续进行旅游景区公共服务改造,某市今年预算用资金1100台,其中普通轮椅每台360元,轻便型轮椅每台500(1) (2) 由于获得了不超过4万元的社会捐助,问轻便型轮椅最多可以买多少台?四、解答题(本题共20分,每小题5分)19.已知:如图,直角梯形ABCD 中,AD AB CDA BCD =︒=∠︒=∠,,6090,4,2AB DF ==,求BF 的长.20.已知:如图,在矩形ABCD 中,点O 在对角线BD 上,以OD 的长为半径的⊙O 与AD ,BD 分别交于点E 、点F ,且∠ABE =∠DBC .(1)判断直线BE 与⊙O 的位置关系,并证明你的结论;(2)若33sin =∠ABE ,2=CD ,求⊙O 的半径. 21.远洋电器城中,某品牌电视有D C B A ,,,四种不同型号供顾客选择,它们每台的价格(单位:元)依次分别是:2500,4000,6000,10000.为做好下阶段的销售工作,商场调查了一周内这四种不同型号电视的销售情况,并根据销售情况,将所得的数据制成统计图,现已知该品牌一周内四种型号电型号A B C D 利润10% 12% 15% 20%请根据以上信息,解答下列问题: (1)请补全统计图;(2)通过计算,说明商场这一周内该品牌哪种型号的电视总销售利润最大; (3)谈谈你的建议.22.在边长为1的正方形网格中,正方形ABFE 与正方形EFCD 的位置如图所示. (1)请你按下列要求画图: ① 联结BD 交EF 于点M ;② 在AE 上取一点P ,联结BP ,MP ,使△PEM 与△PMB 相似;(2)若Q 是线段BD 上一点,连结FQ 并延长交四边形ABCD 的一边于点R ,且满足BD FR 21=,则QRFQ的值为_____________.五、解答题(本题满分7分)23.已知抛物线C :()112++-=x m x y 的顶点在坐标轴...上. (1)求m 的值; (2)0>m 时,抛物线C 向下平移()0>n n 个单位后与抛物线1C :c bx ax y ++=2关于y 轴对称,且1C 过点()3,n ,求1C 的函数关系式;(3)03<<-m 时,抛物线C 的顶点为M ,且过点()0,1y P .问在直线1-=x 上是否存在一点Q 使得△QPM 的周长最小,如果存在,求出点Q 的坐标, 如果不存在,请说明理由.六、解答题(本题满分7分) 24.已知:如图,正方形ABCD 中,,AC BD 为对角线,将BAC ∠绕顶点A 逆时针旋转α°(045α<<),某商场四种型号电视一周的销售量统计图 销售量(台) 型号旋转后角的两边分别交BD 于点P 、点Q ,交,BC CD 于点E 、点F ,联结,EF EQ .(1)在BAC ∠的旋转过程中,AEQ ∠的大小是否改变,若不变写出它的度数,若改变,写出它的变化范围(直接在答题卡上写出结果,不必证明);(2)探究△APQ 与△AEF 的面积的数量关系,写出结论并加以证明.七、解答题(本题满分8分) 25.已知二次函数23332-+-=mx mx y 的图象与x 轴交于点A (230)、点B ,与y 轴交于点C . (1)求点B 坐标; (2)点P 从点C 出发以每秒1个单位的速度沿线段CO 向O 点运动,到达点O 后停止运动,过点P 作AC PQ //交OA 于点Q ,将四边形PQAC 沿PQ 翻 折,得到四边形''C PQA ,设点P 的运动时间为t .①当t 为何值时,点'A 恰好落在二次函数23332-+-=mx mx y 图象的对称轴上; ②设四边形''C PQA 落在第一象限内的图形面积为S ,求S 关于t 的函数关系式,并求出S 的最大值.石景山区2011年初三第一次统一练习暨毕业考试试卷初三数学参考答案阅卷须知:为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数. 一、选择题(本题共32分,每小题4分)题 号 1 2 3 4 5 6 7 8 答 案ABCBDDCB二、填空题(本题共16分,每小题4分)9.4,3--; 10.)2)(2(y x y x x -+; 11.6; 12.2;(32,220102010).三、解答题(本题共30分,每小题5分) 13.解:原式333321⨯-+= …………………………………………4分 31+= …………………………………………5分14.解:解不等式① 3<x …………………………………………1分解不等式② 3-≥x …………………………………………2分 原不等式组的解集为33<x ≤- …………………………………………4分在数轴上表示为:…………………………………………5分15.情况一、添加条件:DF //BC证明: ∵ DF ∥BC∴ C FDE ∠=∠ ………………………………… 1分 ∵BC AB ⊥,AC BE ⊥∴︒=∠+∠=∠+∠90EBC C EBC ABF ∴C ABF ∠=∠ ……………… …………2分 ∴ADF ABF ∠=∠ ……………… …………3分 在ABF ∆和ADF ∆中 ⎪⎩⎪⎨⎧=∠=∠∠=∠AFAF ADF ABF 21 ∴AFD ∆≌AFB ∆ ……………………………………………… 5分 情况二、添加条件:DF BF =证明:过点F 作AB FG ⊥于G …………………………………………… 1分∵ AC BE ⊥,21∠=∠ ∴ EF FG =………………………… ……… 2分 在BGF Rt ∆和DEF Rt ∆中 ︒=∠=∠90DEF BGF∵⎩⎨⎧==DFBF EF FG∴BGF Rt ∆≌()HL DEF Rt ∆ ………………………………………… 3分 ∴EDF GBF ∠=∠………………………………………………………… 4分 在ABF ∆和ADF ∆中21FA B C D E G 21F A B C D E⎪⎩⎪⎨⎧=∠=∠∠=∠AF AF ADF ABF 21 ∴AFD ∆≌AFB ∆ ………………………………………………………… 5分16.解:原式)1225(4232+--÷---=x x x x x ……………………………………1分)29(42322-+-÷---=x x xx x ………………………………………… 2分x x 6212+= ………………………………………………… 3分 当04622=-+x x 时,4622=+x x …………………………… 4分原式41= ………………………………………………………5分17.解:(1)根据题意,得:)3,0(D …………………………………1分 (2)在Rt △COD 和Rt △CAP 中, 21=CA OC ,3=OD ∴,6=AP 6=OB ∴9=DBRt △DBP 中,∴,272=⨯BPDB ∴6=BP ,)6,6(-P …………………2分一次函数的解析式为:323+-=x y ……………………………………………………………3分反比例函数解析式为:xy 36-= …………………………………4分(3)如图可得:6>x ………………………………5分 18.解:(1)设能买普通轮椅x 台,轻便型轮椅()x -1100台 …………………1分根据题意得:()4100001100500360=-+x x …………………………2分 解得:1000=x经检验1000=x 符合实际意义且1001100=-x …………………………3分答:能买普通轮椅1000台,轻便型轮椅100台.(2) 根据题意得:()4500001100500360≤-+x x ………………………4分 解得:72714≥x 753851100≤-x符合题意的整数值为385 ………………………………5分 答:轻便型轮椅最多可以买385台.四、解答题(本题共20分,每小题5分)19.解:如图,过A 作AH ⊥FC 于H ……… ………1分 则四边形ABCH 为矩形AB CH AH BC ==, ……………………… ………2分 ∵60,4CDA AD AB ===o∠∴AH ==︒60sin AD 23,HD ==︒60cos AD 2 …………………………4分F E D CB AH∴CF =CH +HD +DF =4+2+2=8,∴BF 22219BC CF += ………………………………………………5分20.解:(1)直线BE 与⊙O 相切……………………………………………………1分证明:联结OE在矩形ABCD 中, AD ∥BC∴∠ADB =∠DBC ∵OE OD = ∴∠OED =∠ODE又∵∠ABE =∠DBC∴∠ABE =∠OED ……………………………………………………………2分 ∵矩形ABDC ,∠︒=90A ∴︒=∠+∠90AEB ABE ∴︒=∠+∠90AEB OED∴︒=∠90BEO ………………………………………………………………3分 ∴直线BE 与⊙O 相切 (2) 联结EF 方法1:∵四边形ABCD 是矩形,2=CD ∴︒=∠=∠90C A ,2==CD AB ∵∠ABE =∠DBC∴=∠CBD sin 33sin =∠ABE ∴32sin =∠=CBDDCBD …………………………………………………4分在AEB Rt ∆中,可求2=AE ∴勾股定理求得6=BE在BEO Rt ∆中,︒=∠90BEO 222OB EB EO =+ 设⊙O 的半径为r则()()222326r r -=+∴r =23……………………………………………………………………5分 方法2:∵DF 是⊙O 的直径 ∴︒=∠90DEF∵四边形ABCD 是矩形∴︒=∠=∠90C A ,2==CD AB∵∠ABE =∠DBC ∴=∠CBD sin 33sin =∠ABE 设x BD x DC 3,==,则x BC 2=∵2=CD∴22=BC ……………………………………………………………4分 ∵ABE CBD ∠=∠tan tan ∴ABAEBC DC = O F E D C B A O FE DC∴2222AE=∴2=AE∴E 为AD 中点.∵DF 为直径,∠︒=90FED ∴AB EF //∴321==BD DF∴⊙O 的半径为23……………………………………………………………5分21. 解:(1)补全统计图如下…………2分(2)12500502500%10=⨯⨯ ,480001004000%12=⨯⨯,63000706000%15=⨯⨯,400002010000%20=⨯⨯∴商场在这一周内该品牌C 型号的电视总销售利润最大………………4分(3)从进货角度、宣传角度等方面答对即可. ……………………………5分 22.(1)如图所示…………………………2分(2)1、32或2 ………………………………………………………………5分 五、解答题(本题满分7分)23.解:当抛物线C 的顶点在x 轴上时()[]0412=-+-=∆m解得1=m 或3-=m ………………………………1分 当抛物线C 的顶点在y 轴上时 ()01=+-m∴1-=m ………………………………2分 综上1±=m 或3-=m . (2)当0>m 时,1=m抛物线C 为122+-=x x y .向下平移()0>n n 个单位后得到n x x y -122+-=抛物线n x x y -122+-=与抛物线1C : c bx ax y ++=2关于y 轴对称 ∴1=a ,2=b ,n c -=1 …………………………………3分 ∴抛物线1C : n x x y -++=122 ∵1C 过点()3,n∴3122=-++n n n ,即022=-+n n ……………………………………4分 P MF E D C B A 型号销售量(台)解得2,121-==n n (由题意0>n ,舍去)∴1=n ∴抛物线1C : x x y 22+=. ………………………………………………5分 (3)当03<<-m 时1-=m抛物线C :12+=x y 顶点()1,0M ∵过点()0,1y P ∴2110=+=y∴()2,1P ………………6分作点()1,0M 关于直线1-=x 的对称点()1,2'-M直线'PM 的解析式为3531+=x y ∴⎪⎭⎫ ⎝⎛-34,1Q ………………………………………7分六、解答题(本题满分7分) 24. 解:(1)不变; ……………………………………………………………………1分45°;………………………………………………………………………2分(2)结论:S △AEF =2 S △APQ ………………………………………………………………3分 证明:∵AEQ ∠=45°,45EAF ∠=︒∴90EQA ∠=︒ …………………… ∴2AE AQ =…………………… ………4分同理2AF AP = …………………… ………5分 过点P 作PH AF ⊥于H …………… ………6分∴S △AEF 11222AF EQ AP AQ =⋅=⨯⋅222AP AQ PH AQ S =⋅=⋅=△APQ …………………………………7分七、解答题(本题满分8分)25. 解:(1)将A (23,0)代入23332-+-=mx mx y 解得33m =………1分 ∴函数的解析式为23312-+-=x x y令0=y ,解得:32,321==x x∴B (3,0) ……………………………………………………………………2分 (2)①由解析式可得点)2,0(-C二次函数图象的对称轴方程为332x =Rt △AOC 中 ∵32,2==OA OC ∴︒=∠︒=∠60,30OCA OAC∴︒=∠︒=∠60',150QH A PQA ,Q A AQ '= 过点A ′作'A H x ⊥轴于点H ,则QH AH =HQ P FE DC B A∴332223OQ QH OQ QH ⎧+=⎪⎨⎪+=⎩………………………3分 解得32QH =则3AQ =,1CP =∴1=t ……………………………………………………4分 ②分两种情况:ⅰ)当10≤<t 时,四边形PQA ′C ′落在第一象限内的图形为等腰三角形QA ’N . '3NQ A Q t ==t t AQ H A 2323360sin '=⋅=︒= 2'43323321t t t S NQ A =⋅=△ 当1=t 时,有最大值S 433= ⅱ)当21<<t 时,设四边形PQA ′C ′落在第一象限内的图形为四边形M O QA ′.''''222233323(2)(2)5343234OPQ PC MMOQA QA C S S S S t t t t t ∆∆=--⎡⎤=-----⎢⎥⎣⎦=-+-四边形梯形P 当85t =时,有最大值'635MOQA S =四边形 综上:当85t =时,四边形PQA ’ C ’落在第一象限内的图形面积有最大值是635.。

2016-2017学年北京市门头沟区九年级二模数学试卷(含答案)

2016-2017学年北京市门头沟区九年级二模数学试卷(含答案)

2017年门头沟区初三二模考试数 学 试 卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.将284231︒′″保留到“′”为 A .2842︒′ B .2843︒′C .2842︒′30″D .2900︒′ 2.如图,实数1-,a ,1,b 在数轴上的对应点分别为E ,F ,M ,N ,这四个数中绝对值最小的数对应的点是A .点EB .点FC .点MD .点N3.下列运算中,正确的是 A .235x x x+=B .347()x x = C .623x x x ÷= D .22232x x x-=4.以下是关于正多边形的描述①正多边形的每条边都相等; ②正多边形都是轴对称图形; ③正多边形的外角和是360°;④正多边形都是中心对称图形. 其中正确的描述是A .①②③B .①②④C .②③④D .①②③④5.如图,在△ABC 中,点D 是BC 边上一点且CD CA =,过点A 作MN BC ∥,48CAN ∠=︒, 41B ∠=︒,BAD ∠=A .23°B .24°C .25°D .26°6.分式方程211x x x-=-的解为 A .x =1 B .x =2 C .x =3 D .x =2或 x=32017.6FN M E7.一个不透明的盒子中装有3个红球,2个白球,这些球除颜色外,没有任何其他区别,从这个盒子中同时..随机摸出两个球,所有的可能性如下表:摸到两个红球的概率为A.110B.15C.310D.258.数分别为105°、155°,则BAC的大小为A.55°B.50°C.27.5°D.25°9.甲、乙两名射箭运动员在某次测试中各射箭10次,两人的测试成绩如下表,则这两个人本次测试成绩的方差比较A.S甲<S乙B.S甲=S乙C.S甲>S乙D.无法比较10. 如图所示的立方体,如果把它展开,可以是下列图形中的A.B.C.D.二、填空题(本题共18分,每小题3分)11.如果242xx--的值为0,那么x满足的条件是.12.如果一个函数的图象在纵轴的右侧满足函数值随自变量的取值的增大而增大,那么它的表达式可以为_______.13. 2016年11月—2017年4月某省“共享单车”的用户使用情况如图,根据统计表中提供的信息,预估2017年5月该省共享单车的使用用户约____万人,你的预估理由是__________________________.14.在平面直角坐标系xOy中有一矩形ABCD,如果10A(,)、50B(,)、53C(,),那么该矩形对角线交点P的坐标为__________.15.“多米诺骨牌效应”告诉我们:一个最小的力量能够引起的或许只是察觉不到的渐变,但是它所引发的却可能是翻天覆地的变化,依次推倒的能量一个比一个大……下图是设计者开始摆放大小相同的骨牌,骨牌之间平行摆放,长、宽、高(单位:cm)如图所示,若要求第一张骨牌那么两张骨牌的间距是___________.16.学完一元一次不等式的解法后,老师布置了如下练习:101.54/月用户量/万人解不等式:1532x-≥7x -,并把它的解集在数轴上表示出来. 以下是小明的解答过程:第一步:去分母,得 1532(7)x x --≥, 第二步:去括号,得 153142x x --≥, 第三步:移项,得 321415x x -+-≥, 第四步:合并同类项,得 1x --≥,第五步:系数化为1,得 1x ≥.第六步:把它的解集在数轴上表示为:请指出从第几步开始出现了错误________,你判断的依据是__________________.三、解答题(本题共72分,第17-26题,每小题5分,第27、28题,每小题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程. 17.计算:011tan 6021)()3-︒--.18.如图,已知AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿直线AD 翻折,使得点C落在点E 的位置,BC =6;求线段BE 的长.19. 已知2430x x --=,求代数式2(23)(2)(2)x x x --+-的值.20. 如图,在平面直角坐标系xOy 中,直线(0)y kx b k =+≠与反比例函数 (0)m y m x=≠交(1)求证:无论m取任何实数时,原方程总有两个实数根;(2)如果对于原方程的每一个整数根,都满足两根之商也是整数,直接写出m的取值.22.通过初中阶段的学习,二元一次方程从函数的视角去分析就可以形成函数图象.如图,在平面直角坐标系中的图象来自于生活中的问题,其中一个图象的表达式为(0)y ax a=>,并且结合y ax=给出了如下情境:①出发后,甲车以每小时60公里的速度行驶;②打电话每分钟支付0.12元;③…….请根据这两个图象提供的信息及上述情景之一或自主选择新的情景完成下面的问题:(1)写出一个符合题意的二元一次方程与方程y ax=组成二元一次方程组;(2)在(1)的条件下完成情境创设(不需要解方程组)23.如图,在菱形ABCD中,延长BD到E使得BD=DE,连接AE,延长CD交AE于点F. x(1)求证:AD =2DF(2)如果FD =2,∠C =60°,求菱形ABCD 的面积.24.阅读下列材料:为了了解某市初中生的视力情况,随机抽取了3000名学生进行检测,收集数据后,绘制了以下三幅统计图表,请根据图表中提供的信息解答下列问题:调查人数 视力不良视力不良率(精确到0.01)男生 1400 750 54% 女生1600m n根据统计图表回答下列问题:(1 )统计表中m = ,n = ;(2)补全条形统计图,并通过计算估计该市80000名初中生的视力不良情况的人数; (3)通过统计图表中的信息,写出一条关于视力不良的正确结论.25. 如图,AB 为⊙O 的直径,直线CD 切⊙O 于点M ,BE ⊥CD 于点E .FEA DCB年级人数各年级视力不良人数680530初三初二初一800100200300400500600700O(1)求证:∠BME =∠MAB ; (2)如果BE =185,sin ∠BAM =35,求⊙O 的半径.26. 小鹏遇到这样一个问题,已知实数a 、b (0,0a b >>),请问2a bab +-是否有最小值,如果有请写出最小值并说明理由.他找不到思路,开始翻阅笔记,发现此题可以用以前老师讲的“配方”来解决 笔记中写到:求26+9x x +的最小值步骤如下: 22226+963(3)x x x x x +=++=+∵无论x 取任意实数,2(3)0x +≥ ∴26+9x x +的最小值是0(1)小鹏发现代数式2233a a -+可以用上面的方法找到最小值,请问最小值是多少,并说明理由;(2)小鹏通过笔记和问题(1)的方案很快解决了上面的问题,请你完成解答过程.27. 在平面直角坐标系xOy 中,抛物线22234y x mx m m =-+-+-的对称轴是直线x =1(1)求抛物线的表达式;(2)点1()D n y ,,2(3)E y ,在抛物线上,若12y y >,请直接写出n 的取值范围; (3)设点()M p q ,为抛物线上的一个动点,当12p -<<时,点M 关于y 轴的对称点形成的图象与直线4y k x =-(0k ≠)有交点,求k 的取值范围.28. 已知:△ABC ,AB =4,AC =3,以CB 为边作等边三角形△CBP ,连接AP ,求AP 的值.这道题目难到了小明,首先没有图形,然后发现△ABC 不是一个固定的图形,等边三角形△CBP 也没有指定在BC 所在直线的哪一侧,这两个不确定的因素会使得AP 的值不一定是固定的长度,为此小明从特殊情况出发研究这个问题,按如下步骤进行了解决: 步骤1:取∠CAB =30°,以CB 为边作等边三角形△CBP ,使点A 与点P 在BC 所在直线的异侧;步骤2:要想建立AB ,AC ,AP 的联系,需要将这三条线段进行转移处理,由于图中有等边三角形,可以通过旋转来完成线段与角的转移,因此将△ACP 以P 点为旋转中心,逆时针旋转60°,得到△P BP ′,通过推理与计算得到了此位置时AP 的值.(1)请结合小明的步骤补全图形; (2)结合补全后的图形求出AP 的值;(3)根据上述经验,改变∠CAB 的度数,发现∠CAB 在变化到某一角度时,AP 有最大值,画出这个特殊角度时的示意图,写出AP 的最大值,并说明取得最大值的思路.B29.我们给出如下定义:两个图形G 1和G 2,对于G 1上的任意一点11()P x y ,与G 2上的任意一点22()Q x y ,,如果线段PQ 的长度最短,我们就称线段PQ 为“最佳线段”. (1)如图29-1,点P 在线段AB ((10)A ,,(30)B ,)上,点Q 在线段CD 上,如果PQ 为最佳线段, 那么PQ 的长为____________;(2)有射线EF ((40)E ,,(04)F ,)和线段AB ,点P 在线段AB 上,点Q 在 射线EF 上;①如图29-2,当A (1,0),B (3,0)时,最佳线段PQ 的长为____________; ②保持线段AB 在x 轴上(点A 在点B 的左侧),且AB 为2个单位长度,(0)A m ,, 最佳线段PQ的长满足0PQ ≤,在图29-3中画出示意图,写出m 的取值范围; (3)有⊙M ,圆心为(a ,0),半径为2,点P 在⊙M 上,点Q 在(2)中的射线EF 上,最佳线段PQ 的长满足01PQ ≤≤时,画出示意图,写出 a 的取值范围.2017年门头沟区初三二模考试29-3备用图数学答案及评分参考2017.6一、选择题(本题共30分,每小题3分)29题8分)17.(本小题满分5分)解:原式=13-, (4)分=2-.………………………………………………………………………5分18.(本小题满分5分)由题意可知∠EDA 是由∠CDA 翻折得到∴∠EDA =∠CDA =45°. ……………………………………1分ED =CD . ∴ ∠EDB =90° ……………………………………∵ AD 是△ABC 的中线,BC =6∴ BD =CD =3.∴ ED =BD =3. ………………………………4分 在Rt BDE ∆中,根据勾股定理可得∴BE = ………………………5分 19. (本小题满分5分)原式=2241294x x x -+-+……………………………………2分=231213x x -+ …………………3分=23(4)13x x -+ …………………………4分 ∵2430x x --= …………………………5分 ∴原式=331322⨯+= 20.(本小题满分5分) 解:(1)∵ (0)m y m x=≠过点(24)B -,, ∴2(4)8m =⨯-=- ∴反比例函数的表达式为8y x =- …………………………………………………2分∵ (0)my m x =≠过点(4)A n -,∴ 824n -==- ……………………………………………3分(2)40x -<<或2x >…………………………………………5分21. (本小题满分5分)解:(1)证明:Δ=)4(14)]15([22m m m +⨯⨯-+- =1692++m m=2)13(+m ……………………………………1分∵无论m 取任何实数时,∴2)13(+m ≥0. ………………………………………2分 即无论m 取任何实数时,原方程总有两个实数根.(2)解:解关于x 的一元二次方程04)15(22=+++-m m x m x ,得 1241x m x m ,==+. …………………………3分∴当1241x mx m =+时,0m =; 当214+1x m x m =时,4+114m m m=+ ,1m =±综上所述0m =或1m =±………………………………………………5分 22. (本小题满分5分)(1)答案不唯一.满足(0,0)y kx b k b =+>≠,且 a k > …………2分 (2)情景编写符合图像信息即可,无需求解 ……………5分23. (本小题满分5分) (1) ∵ 四边形ABCD 是菱形,∴ AD =AB , CD ∥AB . ………………………………1分 ∵BD =DE ∴EF =FA∴FD 是△EAB 的中位线 ∴AB =2FD∴AD =2FD …………………………2分 (2)过点D 作DM ⊥AB ∵FD =2∴AB =4 …………………………3分 ∵∠C =60°∴ ∠ADB =∠60°. △DAB 为等边三角形 ∴∠ADM =30°,AM =2 ∴ DM=tan 60AM︒,可得23DM = …………………………4分∴42383ABCD S AB DM =⋅=⨯=菱形……………………5分24. (本小题满分5分)(1) m =1050;n =66% …………………………………………………2分(2)初二视力不良人数590人,补图正确 ; …………………………3分 该市视力不良人数:180080000=480003000⨯………………………4分 (3)可以结合视力不良人数在年级的增长趋势或男女生视力不良的比例去描述…5分25. (本小题满分5分)(1)如图,连接OM . ∵直线CD 切⊙O 于点M .∴∠OMD =90°.∴∠BME +∠OMB =90°. ∵AB 为⊙O 的直径.∴∠AMB =90°. ∴∠AMO +∠OMB =90°. ∴∠BME =∠AMO .∵OA =OM .∴∠MAB =∠AMO .∴∠BME =∠MAB .…………………………………………………2分(3)由(1)可得,∠BME =∠MAB . ∵sin ∠BAM =35,∴sin ∠BME =35. ………………………………3分 在Rt △BEM 中,BE =185. ∴sin ∠BME =BE BM =35. ∴BM =6,在Rt △ABM 中,sin ∠BAM =35. ∴sin ∠BAM =BM AB =35.∴AB =53BM =10. ………………………………5分∴⊙O 的半径=526. (本小题满分5分)(1)最小值是0 …………………………………………………………………………1分理由:22223=(a a a -+-+=∵2(0a ≥∴23a -+的最小值是0. …………………………………………………2分(2)最小值是0 …………………………3分 理由:2222220,0a b a ba b +=+->>=+-=∵∴原式4分∵20≥………………………………………5分27. (本小题满分7分)(1)∵222234=)43y x mx m m x m m =-+--+--+-(…………………………1分 对称轴是对称轴是直线x =1 ∴m =1,∴2y 2x x =-+……………………………………………………2分(2)图像正确, ………………………………3分 -1<n <3 …………………………………4分 (3)由题意可得M’(-p ,q ),翻折后的函数表达式为2y 2x x =-- ∴结合-1<p <2,确定动点M 及M’,当1x =-时,3y =-;当2x =时,0y =因为动点M 与M’ 关于y 轴对称,所以图像确定如下当过(13)-,时,代入 4y kx =- ,1k = 当过(20)-,时,代入 4y kx =- ,2k =-综上所述:1k >,或2k <- ………………………7分28. (本小题满分7分)(1)补全图形正确 ………………………………1分 (2)∵△ACP 以P 点为旋转中心,逆时针旋转60°,得到△P ′BP∴△A C P ≌△P ′BP∴∠ACP =∠P ′BP ,AP = P ′P , ∠CP A =∠P ′PBAC = P ′B =3 …………………………………2分 ∵△CBP 为等边三角形 ∴∠APP ′=60°∠CBP =60° ∴△P ′AP 为等边三角形∴AP = AP ′ 3分∵∠CAB =30°∴∠ACB +∠ABC =150°∴∠ABP ′=360°-150°-120°=90° 在Rt △ABP ′中AP = AP5 …………………………………4分(3)当∠CAB =120°,最大值是7.图形正确 …………5分 思路:A①由∠CAB=120°,可得∠ACB+∠ABC=60°②由(2)中的旋转后的全等,可得∠ACP=∠P′BP,AP=P′P,AC=P′B③由∠CBP=60°,进而推出∠ABC+∠CBP+∠P′BP =180°(即点A、B、P共线) …6分④由AC=3,AB=4,可得AP= AP′=AB+BP′=7 …………………7分29. (本小题满分7分)(1)最佳线段PQ …………………………1分(2)①辅助线正确 …………………………2分2…………………………3分 ②图形正确 …………………………4分0m ≤≤…………………………5分(3)补图正确 ………………………………………………………………7分7a ≤………………………8分。

2016北京中考数学各区二模28题汇编(含答案)

2016北京中考数学各区二模28题汇编(含答案)

1.(海淀二模) 已知:AB BC =,90ABC ∠=︒.将线段AB 绕点A 逆时针旋转α(090α︒<<︒)得到线段AD .点C 关于直线BD 的对称点为E ,连接AE ,CE 。

(1)如图, ①补全图形;②求AEC ∠的度数;(2)若AE =1CE =,请写出求α度数的思路.(可以不写出计算结果.........)2.(石景山二模)如图,正方形ABCD ,G 为BC 延长线上一点,E 为射线BC 上一点,连接AE . (1)若E 为BC 的中点,将线段EA 绕着点E 顺时针旋转90°,得到线段EF ,连接CF . ①请补全图形; ②求证:∠DCF =∠FCG ;(2)若点E 在BC 的延长线上,过点E 作AE 的垂线交∠DCG 的平分线于点M ,判断AE 与EM 的数量关系并证明你的结论.EGD CBAMABCDGE3.(顺义二模)已知:如图,90ACD ∠=︒,MN 是过点A 的直线,AC DC =,DB MN ⊥于点B .图2图3图1ABCDNMABCDNMNMABCD(1)在图1中,过点C 作CE CB ⊥,与直线MN 于点E ,①依题意补全图形;②求证:BCE ∆是等腰直角三角形;③图1中,线段BD 、AB 、CB 满足的数量关系是 ; (2)当MN 绕A 旋转到如图(2)和图(3)两个位置时,其它条件不变. 在图2中,线段BD 、AB 、CB 满足的数量关系是 ; 在图3中,线段BD 、AB 、CB 满足的数量关系是 ; (3)MN 在绕点A 旋转过程中,当30BCD ∠=︒,BD =则CB = .4.(通州二模) 已知,在菱形ABCD 中,∠ADC=60°,点F 为CD 上任意一点(不与C 、D 重合),过点F 作CD 的垂线,交BD 于点E ,连接AE 。

(1)①依愿意补全图1;②线段EF 、CF 、AE 之间的等量关系是 . (2)在图1中将ΔDEF 绕点D 逆时针旋转,当点F 、E 、C 在一条直线上(如图2). 线段EF 、CE 、AE 之间的等量关系是 。

5.北京2016初三中考二模数学word版答案-东城

5.北京2016初三中考二模数学word版答案-东城

5.北京2016初三中考二模数学试题及答案word 版答案-东城 初三数学参考答案及评分标准 2016.6二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.计算:0112sin 60(3π)()4-︒-+.解:原式14+ …………4分 =3 …………5分18. 解: 22422a b a b a ab-++=224(2)(2)a b a a b a a b -++ =2a ba - …………3分 023a b=≠ , ∴设2,3.a k b k == …………4分∴ 原式=-2 . …………5分 19. 证明: △ABD 和△BCE 为等边三角形, ∴∠ABD =∠CBE =60°,BA=BD ,BC=BE. …………2分∴∠ABD+∠ABC =∠CBE+∠ABC ,即∠CBD =∠ABE. …………3分∴△CBD ≌△EBA.(SAS ) …………4分∴AE=CD. …………5分20.解:设打折前一件商品A 的价格为x 元,一件商品B 的价格为y 元. …………1分依据题意,得631083494x y x y +=⎧⎨+=⎩. …………3分 解得:1016x y =⎧⎨=⎩. …………4分 所以5×10+4×16-86=28(元) 答:比打折前节省了28元. …………5分 21. 满足条件的所有图形如图所示:…………5分注意:画出一个给2分,二个给4分,三个给5分. 22.解:(1)∵矩形ABCD ,∴∠B =∠BAC =90°.∵EF ⊥AM ,∴∠AFE =∠B =∠BAD =90°.∴∠BAM +∠EAF =∠AEF+∠EAF =90°. ∴∠BAM =∠AEF . …………2分 (2)在Rt △ABM 中,∠B =90°,AB =4,cos ∠BAM =45, ∴AM =5.∵F 为AM 中点, ∴AF =52. ∵∠BAM =∠AEF , ∴cos ∠BAM = cos ∠AEF =45. ∴sin ∠AEF =35.在Rt △AEF 中, ∠AFE =90°,AF =52,sin ∠AEF =35, ∴AE =256. ∴DE=AC-AE =6-256=116. …………5分 23.解:(1)∵四边形ABCD 是平行四边形,点(10)(31)(33)A B C ,,,,,,∴BC =2.∴D (1,2). ∵反比例函数my x=的图象经过点D , ∴21m =. ∴2m =.∴2y x=. …………3分(2)233p x <<. …………5分 24.解:(1)172;133. …………2分25.(1)证明:连结BD .∵AB 是O 的直径, ∴90ADB ∠=︒.∴90DAB DBA ∠+∠=︒. ∵AB AC =,∴2ABD ABC ∠=∠,12AD AC =. ∵AF 为⊙O 的切线, ∴∠F AB =90°.∴90FAC CAB ∠+∠=︒. ∴FAC ABD ∠=∠.∴2.ABC CAF ∠=∠ …………2分⑵ 解:连接AE.∴∠AEB =∠AEC =90°.∵sin CAF ABD CAF CBD CAE ∠=∠=∠=∠=∠,∴sin sin ABD CAF ∠=∠=.∵90ABD AC ∠=︒=,∴AD 10sin ADAB ABD==∠=BC .∵90AEC AC ∠=︒=, ∴sin 2CE AC CAE =⋅∠=.∴1028BE BC CE =-=-=. …………5分26.解:(1)sin α=13, sin2α…………2分 (2)∵AC = cos α,BC =sin α,∴CD =AC BCAB⨯=sin cos αα⋅.∵∠DCB =∠A ,∴在Rt △BCD 中,BD =sin 2α.∴OD =12- sin 2α. ∴tan2α=CD OD =22sin cos 2sin cos 112sin sin 2αααααα⋅⋅=--. …………5分 27.解:(1)∵21:C y x bx c =++的图象过点A (-1,2),B (4,7),∴217164.b c b c =-+⎧⎨=++⎩,∴21.b c =-⎧⎨=-⎩,∴221y x x =--. …………2分(2)∵二次函数2C 与1C 的图象关于x 轴对称,∴22:21C y x x =-++. ∴2C 的顶点为(1,2). ∵A (-1,2),B (4,7),∴过A 、B 两点的直线的解析式:3y x =+. 令x =1,则y =4.∴2C 的顶点不在直线AB 上. …………4分(3)414m <≤或4m =-. …………7分28.解:【探究发现】:相等. …………1分 【数学思考】证明:在AC 上截取CG=CE ,连接GE. ∵∠ACB =90°,∴∠CGE =∠CEG =45°.∵AE ⊥EF ,AB ⊥BF ,∴∠AEF =∠ABF =∠ACB =90°,∴∠FEB +∠AEF =∠AEB =∠EAC +∠ACB. ∴∠FEB =∠EAC. ∵CA=CB ,∴AG=BE ,∠CBA =∠CAB =45°. ∴∠AGE =∠EBF =135°. ∴△AGE ≌△EBF .∴AE=EF . …………5分 【拓展应用】ABC S △:AEF S △=1:(222n n ++) …………7分29.解:(1)图象略;是. …………2分 (2)①2. …………4分②M (3,3). …………6分…………8分。

2016北京市各区初三数学二模-第26题汇编包含答案

2016北京市各区初三数学二模-第26题汇编包含答案

8 3
3
2
0
3 2
n…
求 m,n 的值;
(3)如下图,在平面直角坐标系 xOy xOy 中,描出了以上表中各对 y
对应值为坐标的点. 根据描出的点,画出该函数的图象;
5
4
(4)结合函数的图象,写出该函数的性质
3
(一条即可):________________.
2 1
-3
-2
-1
O -1
12 345
x
-2
C
C 点横坐标为 x3.请你计算 1 1 与 1 的值,并判断
x3
x1 x2 x3
它们的数量关系.
y
B A
x1 O
x2 x
(2)在数学的世界里,有很多结论的形式是统一的,这也体现了数学的美.请你在下列两
组条件中选.择.一.组.,证明
1 x1
1 x2

1 x3
仍具有(1)中的数量关系.
①如图,∠APC=120º,PB 平分∠APC,直线 l 与 PA、
则 cosA A的邻边 AC
斜边
AB
3 2
.
类似的,可以在等腰三角形中建立边角之间的联系,我们定
义:等腰三角形中底边与腰的比叫做顶角的正对. 如图 2,在△ ABC 中,AB=AC,顶角 A 的
正对记作 sadA,这时,sadA= 底边 BC . 容易知道一个角的大小与这个角的正对值也是相 腰 AB
26.(1)解: 由题意可得 x2 1 x 3 . 2
∵ x1 x2 ,

x1
3 2

x
2 2

…………………………………………………1 分
∴ 1 1 1.

3.北京2016初三中考二模数学答案word版-西城

3.北京2016初三中考二模数学答案word版-西城

3.北京2016初三中考二模数学试题及答案word 版答案-西城试卷数 学 2016.5一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.调查显示,2016年“两会”期间,通过手机等移动端设备对“两会”相关话题的浏览量高达115 000 000次.将115 000 000用科学记数法表示应为 A . 1.15×109B .11.5×107C .1.15×108D .1.158各式各样,属于中国特有的文化艺术遗产.下列“瓦当”的图案中,A B C D 3.下列各式中计算正确的是A .246x x x ⋅= B .()2121m n mn -+=-+C .551023x x x +=D .()3322a a =4.有一个可以自由转动且质地均匀的转盘,被分成6个大小相同的扇形.在转盘的适当地方涂上灰色,未涂色部分为白色.为了使转动的转盘停止时,指针指向灰色的概率为23,则下列各图中涂色方案正确的是A B C D5.利用复印机的缩放功能,将原图中边长为5cm 的一个等边三角形放大成边长为20cm 的等边三角形,则放大前后的两个三角形的面积比为 A . 1:2B .1:4C .1:8D .1:166.如图,AB 是⊙O 的一条弦,直径CD ⊥AB 于点E . 若AB =24,OE =5,则⊙O 的半径为 A .15B .13C .12D .107.如图,在一次定向越野活动中,“超越”小组准备从目前所在的 A 处前往相距2km 的B 处,则相对于A 处来说,B 处的位置是 A .南偏西50°,2km B .南偏东50°,2kmC .北偏西40°,2kmD .北偏东40°,2km8.教材中“整式的加减”一章的知识结构如图所示,则A 和B 分别代表的是A .分式,因式分解B .二次根式,合并同类项C .多项式,因式分解D .多项式,合并同类项9.某商店在节日期间开展优惠促销活动:购买原价超过200元的商品,超过..200元的部分可以享受打折优惠.若购买商品的实际付款金额y (单位:元)与商品原价x (单位:元)的函数关系的图象如图所示,则超过..200元的部分可以享受的优惠是A .打八折B .打七折C .打六折D .打五折10.一组管道如图1所示,其中四边形ABCD 是矩形,O 是AC 的中点,管道由AB ,BC ,CD ,DA ,OA ,OB ,OC ,OD 组成,在BC 的中点M 处放置了一台定位仪器.一个机器人在管道内匀速行进,对管道进行检测.设机器人行进的时间为x ,机器人与定位仪器之间的距离为y ,表示y 与x 的函数关系的图象大致如图2所示,则机器人的行进路线可能为图1 图2A .A →O →DB .B →O →DC .A →B →OD .A →D →O二、填空题(本题共18分,每小题3分) 11.若20x ++=,则xy 的值为 .12.一个扇形的半径长为5,且圆心角为72°,则此扇形的弧长为___________.13.有一张直角三角形纸片,记作△ABC ,其中∠B =90°.按如图方式剪去它的一个角(虚线部分),在剩下 的四边形ADEC 中,若∠1=165°,则∠2的度数 为 °.14.某班级进行了一次诗歌朗诵比赛,甲、乙两组学生的成绩如下表所示(满分10分):你认为哪一组的成绩更好一些?并说明理由.答: 组(填“甲”或“乙”),理由是 . 15.有一列有序数对:(1,2),(4,5),(9,10),(16,17),……,按此规律,第5对有序数对为 ;若在平面直角坐标系xOy 中,以这些有序数对为坐标的点都在同一条直线上,则这条直线的表达式为 .16.在平面直角坐标系xOy 中,点A 的坐标为(1,0).P 是第一象限内任意一点,连接PO ,P A .若∠POA = m °,∠P AO = n °,则我们把P (m °,n °)叫做点P 的“双角坐标”.例如,点(1,1)的“双角坐标”为(45°,90°).(1)点(12______________; (2)若点P 到x 轴的距离为12,则m +n 的最小值为__________.三、解答题(本题共72分,第17﹣26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:()()39222sin 30--+-+-+︒.18.如图,在△ABC 中,D 是AB 边上一点,且DC =DB .点E 在CD 的延长线上,且∠EBC =∠ACB . 求证:AC =EB .19.先化简,再求值:221()1221x x x x x +÷----,其中1x =.20.如图,在□ABCD 中,对角线AC ,BD 相交于点O ,AB =5,AC =6,BD =8. (1)求证:四边形ABCD 是菱形;(2)过点A 作AH ⊥BC 于点H ,求AH 的长.21.已知关于x 的方程224490x mx m -+-=. (1)求证:此方程有两个不相等的实数根;(2)设此方程的两个根分别为1x ,2x ,其中1x <2x .若1221x x =+,求m 的值.22.列方程或方程组解应用题为祝贺北京成功获得2022年冬奥会主办权,某工艺品厂准备生产纪念北京申办冬奥会成功的“纪念章”和“冬奥印”.生产一枚“纪念章”需要用甲种原料4盒,乙种原料3盒;生产一枚“冬奥印”需要用甲种原料5盒,乙种原料10盒.该厂购进甲、乙两种原料分别为20000盒和30000盒,如果将所购进原料正好全部都用完,那么能生产“纪念章”和“冬奥印”各多少枚?23.在平面直角坐标系xOy 中,反比例函数xky =1的图象与一次函数2y ax b =+的图象交于点A (1,3)和(3)B m -,. (1)求反比例函数xky =1和一次函数2y ax b =+的表达式; (2)点C 是坐标平面内一点,BC ∥x 轴,AD ⊥BC 交直线BC 于点D ,连接AC .若AC ,求点C 的坐标.24.如图,四边形ABCD 内接于⊙O ,点E 在CB 的延长线上,连接AC ,AE ,∠ACB =∠BAE =45°.(1)求证:AE 是⊙O 的切线;(2)若AB =AD ,AC =tan ∠ADC =3,求CD 的长.25.阅读下列材料:根据联合国《人口老龄化及其社会经济后果》中提到的标准,当一个国家或地区65岁及以上老年人口数量占总人口比例超过7%时,意味着这个国家或地区进入老龄化.从经济角度,一般可用“老年人口抚养比”来反映人口老龄化社会的后果.所谓“老年人口抚养比”是指某范围人口中,老年人口数(65岁及以上人口数)与劳动年龄人口数(15–64岁人口数)之比,通常用百分比表示,用以表明每100名劳动年龄人口要负担多少名老年人.以下是根据我国近几年的人口相关数据制作的统计图和统计表.2011–2014年全国人口年龄分布图2011–2014年全国人口年龄分布表*以上图表中数据均为年末的数据.根据以上材料解答下列问题:(1)2011年末,我国总人口约为________亿,全国人口年龄分布表中m的值为_________;(2)若按目前我国的人口自然增长率推测,到2027年末我国约有14.60亿人.假设0-14岁人口占总人口的百分比一直稳定在16.5%,15-64岁的人口一直稳定在10亿,那么2027年末我国0-14岁人口约为___________亿,“老年人口抚养比”约为___________;(精确到1%)(3)2016年1月1日起我国开始施行“全面二孩”政策,一对夫妻可生育两个孩子.在未来..10..年.内.,假设出生率显著提高,这________(填“会”或“不会”)对我国的“老年人口抚养比”产生影响.26.【探究函数9y xx=+的图象与性质】(1)函数9y xx=+的自变量x的取值范围是;(2)下列四个函数图象中,函数9y x=+的图象大致是__________;A B C D(3)对于函数9y xx=+,求当0x>时,y的取值范围.请将下面求解此问题的过程补充完整:解:∵0x>,∴9y xx=+22=+2=+______.∵20≥,∴y_________.【拓展运用】(4)若函数259x xyx-+=,则y的取值范围是.27.在平面直角坐标系xOy 中,抛物线1C :2144y ax ax =--的顶点在x 轴上,直线l :25y x =-+与x 轴交于点A .(1)求抛物线1C :2144y ax ax =--的表达式及其顶点坐标;(2)点B 是线段OA 上的一个动点,且点B 的坐标为(t ,0).过点B 作直线BD ⊥x 轴交直线l 于点D ,交抛物线2C :2344y ax ax t =--+于点E .设点D 的纵坐标为m ,点E 的纵坐标为n ,求证:m n ≥;(3)在(2)的条件下,若抛物线2C :2344y ax ax t =--+与线段BD 有公共点,结合函数的图象,求t 的取值范围.28.在等腰直角三角形ABC 中,AB =AC ,∠BAC =90°.点P 为直线AB 上一个动点(点P 不与点A ,B 重合),连接PC ,点D 在直线BC 上,且PD =PC .过点P 作EP ⊥PC 于点P ,点D ,E 在直线AC 的同侧,且PE =PC ,连接BE .(1)情况一:当点P 在线段AB 上时,图形如图1所示;情况二:如图2,当点P 在BA 的延长线上,且AP <AB 时,请依题意补全图......2.; (2)请从问题(1)的两种情况中,任选..一种..情况..,完成下列问题: ①求证:∠ACP =∠DPB ;②用等式表示线段BC ,BP ,BE 之间的数量关系,并证明.图1 图229.给出如下规定:在平面直角坐标系xOy 中,对于点P (x ,y ),以及两个无公共点的图形1W 和2W ,若在图形1W 和2W 上分别存在点M (1x ,1y )和N (2x ,2y ),使得P 是线段MN 的中点,则称点M 和N 被点P “关联”,并称点P 为图形1W 和2W 的一个“中位点”,此时P ,M ,N 三个点的坐标满足122x x x +=,122y y y +=.(1)已知点(0,1),(4,1),(3,1),(3,2)A B C D --,连接AB ,CD .①对于线段AB 和线段CD ,若点A 和C 被点P “关联”,则点P 的坐标为__________; ②线段AB 和线段CD 的一个“中位点”是1(2,)2Q -,求这两条线段上被点Q “关联”的两个点的坐标;(2)如图1,已知点R (-2,0)和抛物线1W :22y x x =-,对于抛物线1W 上的每一个点M ,在抛物线2W 上都存在点N ,使得点N 和M 被点R “关联”,请在图1中画出符合条件的抛物线2W ;(3)正方形EFGH 的顶点分别是(4,1),(4,1),(2,1),(2,1)E F G H ------,⊙T 的圆心为(3,0)T ,半径为1.请在图2中画出由正方形EFGH 和⊙T 的所有“中位点”组成的图形(若涉及平面中某个区域时可以用阴影表示),并直接写出该图形的面积.图1 图2。

北京市门头沟区2016年初三二模化学试题(纯word版含官方参考答案及评分标准)

北京市门头沟区2016年初三二模化学试题(纯word版含官方参考答案及评分标准)

2016年北京市门头沟区初三二模考试化 学 试 卷可能用到的相对原子质量 H 1 C 12 O 16 Cl 35.5 Ca 40第一部分 选择题(共20分)(每小题只有1个选项符合题意。

每小题1分)1.空气中体积分数为78%的气体是A .氧气B .稀有气体C .氮气D .二氧化碳2.下列四种生活现象中,与其他三种有本质区别的是3.厨房中的物质放入足量的水中,充分搅拌,不能形成溶液的是A .食用油B .白醋C .白糖D .食盐4.农作物生长需要氮、磷、钾等营养元素,下列化学肥料中属于复合化肥的是A .NH 4NO 3B .NH 4HCO 3C .K 2CO 3D .NH 4H 2PO 45.下列物质属于氧化物的是A .氧气B .四氧化三铁C .碳酸钠D .氢氧化钙6.带活性炭口罩防雾霾与下列化学实验原理最相似的是A .吸附B .溶解C .过滤D .结晶7.某些花岗岩石材中含有放射性氡。

氡原子的质子数为86,中子数为136,这种氡原子核外电子数为A .50B .86C .136D .2228.某品牌厨房清洁剂的主要成分是氢氧化钠,其俗称为A .纯碱B .小苏打C .烧碱D .生石灰9.Mn 2O 7是一种强氧化剂,其中Mn 元素的化合价为A.+2 B.+3 C.+5 D.+710.下列物质在氧气中燃烧产生大量白烟的是A.红磷B.木炭C.铁丝D.甲烷11.下列实验操作正确的是A.制取氧气B.倾倒液体C.蒸发浓缩D.量取液体12.有关燃烧和灭火的说法错误的是A.用水来灭火,是因为降低了可燃物的着火点B.油锅着火时可用锅盖盖灭,是因为隔绝了空气C.木炭在氧气中燃烧比在空气中燃烧更剧烈,是因为氧气浓度不同D.山林中开辟的隔离带可以控制火势蔓延,是因为隔离了可燃物13.下列物质长时间放置在空气中,质量增加且变质的是A.浓硫酸B.浓盐酸C.氢氧化钠固体D.碳酸钙14.一氧化氮是大气污染物之一,但少量一氧化氮在人体内具有扩张血管,增强记忆的功能,且一氧化氮难溶于水,密度比空气大,通常条件下极易与氧气反应,实验室收集一氧化氮的装置是15.废旧家用电器的某部件含有Zn、Fe、Cu三种金属,若与足量稀盐酸充分反应,过滤后剩余的金属是A.Zn、Fe B.Zn C.Fe D.Cu16.如图所示,打开分液漏斗的旋塞,滴下少量双氧水。

北京市2016年各区中考二模汇编:四边形

北京市2016年各区中考二模汇编:四边形

北京市2016年各区中考二模汇编四边形一、四边形与三角形1. 【2016年西城二模,第10题】一级管道如图1所示,其中四边形是矩形,是是中点,管道由组成,在的中点处放置了一台定位仪器.一个机器人在管道内匀速行进,对管道进行检测.设机器人行进的时间为,机人与定位仪器之间的距离为,表示与的函数关系的图象大致如图2所示,则机器人的行进路线可能为图1 图2A. B. C. D.2. 【2016年房山二模,第14题】如图,在正方形网格中,每个小正方形的边长均为1,△ABC 的三个顶点均在格点上,则△A BC 的面积为 .3. 【2016年昌平二模,第10题】如图1,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,AB =2厘米,∠BAD =60°.P ,Q 两点同时从点O 出发,以1厘米/秒的速度在菱形的对角线及边上运动. 设运动的时间为x 秒,P ,Q 间的距离为y 厘米,y 与x 的函数关系的图象大致如图2所示,则P ,Q 的运动路线可能为ABCD O AC ,,,,,,,AB BC CD DA OA OB OC OD BC M x y yx A O D →→B O D →→A B O -→→A D O →→ABCA. 点P : O —A —D —C ,点Q : O —C —D —OB. 点P : O —A —D —O ,点Q : O —C —B —OC. 点P : O —A —B —C ,点Q : O —C —D —OD. 点P : O —A —D —O ,点Q : O — C —D —O4. 【2016年通州二模,第23题】如图,四边形ABCD 中,∠A=∠ABC=90°,AD=1,BC=3,E 是边CD 的中点,连接BE 并延长与AD 的延长线相较于点F.连接CF. (1)求证:四边形BDFC 是平行四边形; (2)已知CB=CD ,求四边形BDFC 的面积。

5. 【2016年通州二模,第28题】已知,在菱形ABCD 中,∠ADC=60°,点F 为CD 上任意一点(不与C 、D 重合),过点F 作CD 的垂线,交BD 于点E ,连接AE. (1)①依愿意补全图1;②线段EF 、CF 、AE 之间的等量关系是 。

北京市门头沟区初三二模数学试题及答案.doc

北京市门头沟区初三二模数学试题及答案.doc

2011年门头沟区初三年级第二次统一练习数 学 试 卷考生须知1.本试卷共6页,共五道大题,25道小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡的密封线内准确填写学校、班级和姓名。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.2的倒数是A .12 B .2 C .12- D .2- 2.一种细胞的直径约为0.00000156米.将0.00000156用科学记数法表示应为 A .61.5610⨯ B .61.5610-⨯ C .51.5610-⨯ D .415.610-⨯ 3.两圆的半径分别为5cm 和2cm ,圆心距为7cm ,则这两圆的位置关系是 A .内切 B .外切 C .外离 D .内含 4.右图所示的是一个几何体的三视图,则这个几何体是 A .长方体 B .正方体 C .圆柱体 D .三棱柱 5.已知一组数据1,4,5,2,3,则这组数据的极差和方差分别是A .4,2B .4,3C .2,3D .1,56.若圆锥侧面展开图的扇形面积为65πcm 2,扇形的弧长为10πcm ,则圆锥的母线长是 A .5cm B .10cm C .12cm D .13cm7.桌面上有三张背面相同的卡片,正面分别写有数字1、2、3.先将卡片背面朝上洗匀, 然后从中同时抽取两张,则抽到的两张卡片上的数字之积为奇数的概率是A .16B .23C . 13D . 128.如图,正方形ABCD 的边长为2,动点P 从点C 出发,在正方形的边上沿着C B A →→的方向运动(点P 与 A 不重合). 设点P 的运动路程为x , 则下列图象中,表示△ADP 的面积y 与x 的函数关系的是错误!未指定书签。

北京市门头沟区2016年中考二模数学试题(word版含官方参考答案及评分标准)

北京市门头沟区2016年中考二模数学试题(word版含官方参考答案及评分标准)

CBDAE 2016年门头沟区初三二模考试数 学 试 卷 2016.6一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.门头沟位于北京西南部,属太行山余脉,地势险要“东望都邑,西走塞上而通大漠”,自古为兵家必争之地,全区总面积1455平方公里,其中山区占98.5%.将数字1455用科学记数法表示为 A .1.455×103B .14.55×102C .1.455×104D .0.1455×1042.有理数a ,b ,c 在数轴上的位置如图所示,下面结论正确的是abcA .c >aB .10c> C .a b <D .0a c -<3.窗花是我国传统民间艺术,下列窗花中,是轴对称图形的为A B C D4.在下列运算中,正确的是 A .235a a a ⋅=B .()325a a =C .623a a a ÷=D .55102a a a +=5.如图,AD BC ∥,点E 在BD 的延长线上,如果155ADE ∠=︒, 那么∠DBC 的度数为 A .155° B .50° C .45°D .25°6.右图是一个正方体的平面展开图,那么这个正方体“美”字的对面所标的字是 A .让B .更让生活更美好E C BDAPC .活D .生7.某小区要建一个地基为多边形的凉亭,如果这个多边形的外角和等于它的内角和,那么这个多边形是 A .六边形B .五边形C .四边形D .三边形8.甲、乙、丙、丁四位同学参加了10次数学测验,他们测验的平均成绩(x )与方差(2S )如下表所示,那么这四位同学中,成绩较好,且较稳定的是A .甲B .乙C .丙D .丁9.如图,四边形ABCD 内接于⊙O ,E 是DC 延长线上一点, 如果⊙O 的半径为6,60BCE ∠=︒,那么 BCD的长为 A .6π B .12π C .2πD .4π10.如图,在正方形ABCD 中,2AB =,E 是AB 的中点,动点P 从点B 开始,沿着边BC ,CD 匀速运动到D ,设点P 运动的时间为x ,EP y =,那么能表示y 与x 函数 关系的图象大致是二、填空题(本题共18分,每小题3分) 11.函数12y x =-的自变量x 的取值范围是 . 12.分解因式:429ax ay -= .13.《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个 更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x 人,小和尚y 人,可列方程组为 .14.请写出一个图象经过点(1,2),且第一象限内的函数值随着自变量的值增大而减小的函数表达式: . 15.小明同学在“计算:23211x x x-+-+”时,他是这样做的:小明的解法从 步开始出现错误,错误的原因是 . 16.小明同学在做作业时,遇到这样一道几何题:如图,△DEB 和△ABC 都是等边三角形,连接DC 和AE ,求证:AE =DC .DACE B 123小明冥思苦想许久不得解,只好去问老师,老师给了他如下提示:请问老师的提示中①是 ,②是 .FCDEBAE ACB 三、解答题(本题共72分,第17-26题,每小题5分,第27、28题,每小题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:()2120166tan 3012π-⎛⎫--︒++- ⎪⎝⎭18.已知2240a a +-=,求代数式()()22263a a a a ----的值.19.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并直接写出它的所有非负整数解.20.如图,在△ABC 中,90BAC ∠=︒,30C ∠=︒,AE 为BC 边上的中线.求证:△ABE 是等边三角形.21.一支园林队进行某区域的绿化,在合同期内高效地完成了任务,这是记者与该队工程师的一段对话:我们的施工人数由原计划的6人,增加了2人.你们是怎样提前3小时完成了180平方米的绿化任务?如果每人每小时绿化面积相同,请通过这段对话,求每人每小时的绿化面积.22.如图,在平行四边形ABCD 中,点E ,F 分别是AB ,CD 的中点. (1)求证:四边形AEFD 是平行四边形;(2)如果60A ∠=︒,24AB AD ==,求BD 的长.23.如图,在平面直角坐标系xOy 中,反比例函数3y x=的图象与一次函数y kx =的图象的一个交点为A (m ,-3). (1)求点A 的坐标和一次函数y kx =的表达式;(2)如果点P 在直线OA 上,且满足2PA OA =,直接写出点P 的坐标.24.如图,AB 是⊙O 的直径,P A ,PC 分别与⊙O 相切于点A 、C ,PC 交AB 的延长线于点D ,DE PO ⊥交PO 的延长线于点E . (1)求证:EPD EDO ∠=∠; (2)如果6PC =,3tan 4PDA ∠=,求OE 的长.25.门头沟地处北京西南部,山青水秀,风景如画,静谧清幽.近年来,某村依托丰富的自然资源和人文资源,大力开发建设以农业观光园为主的多类型休闲旅游项目,农民收入逐步提高.以下是根据该村公布的“主要经济发展指标”相关数据绘制的统计图表的一部分.根据以上信息解答下列问题:(1)该村2013年农业观光园经营年收入的年增长率约是;(结果精确到1%) (2)补全条形统计图,并在图中标明相应的数据;(结果精确到0.1)Dab c ACB图3y图1CA BbcA CBab c 图2(3)请预估该村2016年的农业观光园经营年收入约为 万元,你预估的理由是 .26.阅读材料,回答问题:小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt △ABC 中,如果90C ∠=︒,30A ∠=︒,1BC a ==,AC b =, 2AB c ==,那么2sin sin a bA B==. 通过上网查阅资料,他又知“sin 901︒=”,因此他得到“在含 30°角的直角三角形中,存在着sin sin sin a b cA B C==的关系.” 这个关系对于一般三角形还适用吗?为此他做了如下的探究: (1)如图2,在Rt △ABC 中,90C ∠=︒,BC a =,AC b =,AB c =.请判断此时“sin sin sin a b cA B C==”的关系是否成立? (2)完成上述探究后,他又想“对于任意的锐角△ABC ,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC 中,BC a =,AC b =,AB c =.过点C 作CD AB ⊥于D .∵ 在Rt △ADC 和Rt △BDC 中,90ADC BDC ∠=∠=︒, ∴ sin A = ,sin B = . ∴ sin a A = ,sin bB = . ∴sin sin a bA B=. 同理,过点A 作AH BC ⊥于H ,可证sin sin b cB C =. ∴sin sin sin a b cA B C==. 请将上面的过程补充完整.(3)如图4,在△ABC 中,如果60B ∠=︒,45C ∠=︒,2AB =,那么AC = .27.在平面直角坐标系xOy 中,抛物线2y x bx c =++经过点A (0,-3),B (4,5).(1)求此抛物线的表达式;图4CBA(2)如果此抛物线的顶点为C ,求点C 的坐标;(3)设点C 向左平移2个单位长度后的点为D ,此抛物线在A ,B 两点之间的部分为图象W (包含A ,B 两点),经 过点D 的直线为l :y mx n =+.如果直线l 与图象W 有且只有一个公共点,结合函数图象,求m 的取值范围.28.如图,在矩形ABCD 中,E 是AD 的中点,点A 关于BE 的对称点为G (G 在矩形ABCD内部),连接BG 并延长交CD 于F . (1)如图1,当AB AD =时,① 根据题意将图1补全;② 直接写出DF 和GF 之间的数量关系.(2)如图2,当AB AD ≠时,如果点F 恰好为DC 的中点,求ADAB的值. (3)如图3,当AB AD ≠时,如果DC nDF =,写出求ADAB的值的思路(不必写出计算结果).EDC AB ECDABEDC AB图1 图2 图329.对于关于x 的一次函数y kx b =+(0k ≠),我们称函数[]()().m kx b x m y kx b x m ⎧+⎪=⎨--⎪⎩≤,>为它的m分函数(其中m 为常数).例如,32y x =+的4分函数为:当x ≤4时,[]432y x =+;当x >4时,[]432y x =--. (1)如果1y x =-+的2分函数为[]2y ,① 当4x =时,[]2y = ;② 当[]23y =时,x = . (2)如果1y x =+的-1分函数为[]1y -,求双曲线2y x=与[]1y -的图象的交点坐标; (3)从下面两问中任选一问作答:(温馨提示:两问均2分,不重复计分!)① 设2y x =-+的m 分函数为[]m y ,如果抛物线2y x =与[]m y 的图象有且只有一个公共点,直接写出m 的取值范围.② 如果点A (0,t )到2y x =-+的0分函数[]0y 的图象的距离小于1,直接写出t的取值范围.③。

4.北京2016初三中考二模数学word版答案-顺义

4.北京2016初三中考二模数学word版答案-顺义

4.北京2016初三中考二模数学试题及答案word 版答案-顺义数学答案及评分参考一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)11.3; 12.>; 13.21; 14.70︒; 15.4y x =-+(不唯一); 16.BCE ∠和线段BC ;思路:①在Rt BCE ∆中,由tan BEBCE BC∠=,求出tan BE BC BCE =⋅∠, ②由13AE AB =,可求23BE AB =,求得33tan 22AB BE BC BCE ==⋅∠.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:1112cos453-⎛⎫++-︒ ⎪⎝⎭312=+…………………………..…………………...………4分2=+ …….…………………………………………………….……….….…5分18.解:解不等式532x x -< ,得1x <. …….…………….…….……….…1分 解不等式7332x x +> ,得3x >- ..……………….…….……….…2分 ∴原不等式组的解集为31x -<< . ………….…………….…4分 ∴原不等式组的所有整数解为2-、1-、0 . ……….………….….…5分 19. 解:原式=2(1)(1)11(1)12x x x x x x +-+⋅+-++ ……………….…….……….…1分=1112x x x ++-+ ……………………………………….………2分 =2(1)(1)(1)(2)(1)(2)x x x x x x x +-++-+-+ ………………….……….….…3分=2212x x x x +++- ……………………………………….……….…4分∵ 230x x +-= ∴ 23x x +=∴原式=221314232x x x x +++==+-- ………………….………….….…5分 20. 证明:∵AB AC =,AD 是BC 边上的中线,∴90ADC ∠=︒.………………………………………………………………………….….1分 又∵E 是AC 的中点,∴AE DE =,………………………..…………………………………………………….….2分 ∴=90ADE EAD C ∠=∠-∠.………………………………………………………..…..3分 ∵BF CA ⊥延长线于点F ,∴=90CBF C ∠-∠.……………………………………………………………………….4分 ∴CBF ADE ∠=∠.……………………………………………………………………..….5分21.解:设甲工程队整治了x 米的河道,则乙工程队整治了(360)x -米的河道. …….………………………………1分 根据题意得:360202416x x -+= ……………………………………….…...…3分 解得:120x = ………………………………………….….….…4分 ∴360240x -=答:甲工程队整治了120米的河道,乙工程队整治了240米的河道 ….………..5分 22.(1)证明:∵AC BD ⊥,AE AC ⊥,∴AE ∥BD ,……………………………………………………………………..………….1分 ∵AB ∥DC , ∴AB ∥DE .∴四边形ABDE 为平行四边形.……………………………………………..…………..….2分 (2)解:∵四边形ABDE 为平行四边形,∴BD AE =,E ABD ∠=∠.………………………………………………………...….3分 ∵4sin 5ABD ∠=, ∴4sin 5E ∠=.……………………………………………………………….………....….4分 在RT △EAC 中,8AC =, ∴10CE =,6AE =,∴6BD =.………………………………………………………………………..…...….5分23. 解:(1)把A (-4,n )代入4y x=-中,得1n =, …………………....….1分把A (-4,1)代入y x k =-+中,得3k =- ……………….….…….2分解方程组3,4.y x y x =--⎧⎪⎨=-⎪⎩得4,1.x y =-⎧⎨=⎩ , 1,4.x y =⎧⎨=-⎩∴点B 的坐标是(1,4)- ……………………………………….…...…3分 (2)点P 的是坐标(3,0)或(11,0)- ……………………………….…...…5分24. (1)证明:∵AB 为⊙O 的直径,∴90ADB ∠=︒.………………………………………………………………………..……1分又∵AD DC =,∴AB BC =.…………………………………………………………………………………2分 (2)解:∵BF 切⊙O 于点B ,∴90ABF ∠=︒.…………………………………………………………………………………………………..…………3分 ∴90BAF F ∠+∠=︒.又∵90BAF ABD ∠+∠=︒, ∴ABD F ∠=∠, ∴△ABD ∽△BFD , ∴AD BDBD DF=, ∴2BD AD DF =⋅.又∵CF DC =, ∴CF DC AD ==,设=CF DC AD k ==,则2222BD AD DF k k k =⋅=⋅=,∴BD .在RT △BCD中,BC,sin 3CBD ∠==, 又∵CBD CAE ∠=∠,……………………..………………………………………………………………….……4分∴sin 3CAE ∠=.…………………………………………………………..…………5分 25. 解:(1)18,0.18;…………………………………..…………………………….……2分 (2)…………………………..………3分(3)80-90;…………………………………..…………………………………………4分(4)3500.30105⨯=(人)…………………………………..………………..……5分答:约有105人. 26. 解:(1) 结论:点是四边形在边上的相似点.……….…1分证明:∵50A B DEC ∠=∠=∠=︒, ∴1+2=130∠∠︒,1+3=130∠∠︒,∴2=3∠∠,………………………………………………..……2分 ∴△AED ∽△BCE ,∴点是四边形在边上的相似点.…………….…3分 (2)E ABCD AB E ABCD AB 321ABCDE 成绩/分9080706050010084频数或BA D CEE CD AB……………………………………………………………………5分27. 解:(1)[]22224(21)42441(21)b ac m m m m m ∆=-=-+-⨯=-+=- -----1分∵不论m 为任何实数时 ,总有2(21)0m ∆=-≥,∴该方程总有两个实数根 . --------------------------------------------------2分(2)(21)(21)2m m x +±-==∴12x m =, 21x = ………………………………………………….… 4分 不妨设点(1,0)B ,依题意则点(3,0)A - ∴ 32m =-∴ 抛物线的表达式为223y x x =+- …………….…………………5分 (3)134b >……………………………………………...………………….…7分 28.(1)①……………………….…………………1分②证明:∵90ACD ∠=︒, 又∵CE CB ⊥, ∴90=ECB ACD ∠=︒∠, ∴1=2∠∠.∵DB MN ⊥于点B , ∴90ABD ∠=︒, ∴180BAC D ∠+∠=︒.E12NMABCD又∵180BAC EAC ∠+∠=︒,∴D EAC ∠=∠.……………………………………………….…..……2分 ∴△CAE ≌△CDB ,∴CE CB =.………………………………………………………..……3分BD AB =+.……………………………………………....….4分(2AB BD =-BD AB =-.……………….…………6分(31.…………………………………………………..……7分 29.解:(1)① 在点M ,N ,E ,F 中,⊙O 的关联点是M ,N ; ….………..2分② ∵过点F 作直线l 交y 于点G ,使30GFO ∠=︒,点F∴OF = 2OG =∴ 点G 的坐标是(0 ,2) ----------------------------------------------------3分设直线l 的表达式为y kx b =+,又直线l 过点点F 和点(0,2)G∴ 直线l 的表达式为23y x =-+ ----------------------------------------4分 ∵ 直线l 上的点(,)P m n 是⊙O 的关联点∴直线l 上的点(,)P m n 满足2OP ≤的所有点都是⊙O 的关联点∴当2OP =时, 224m n +=,即 22(2)4m ++= --------5分∴ 10m = ,2m =∴m 的取值范围是0m ≤ ------------------------------------------------6分 (2) 2r ≥ --------------------------------------------------------------------------------8分。

北京市门头沟区中考二模数学试题及答案

北京市门头沟区中考二模数学试题及答案

门头沟区初三二模考试试卷数 学学校 姓名 准考证号__________________一、选择题(本题共32分,每小题4分) 1.3-的倒数是A .3B .-3C .13-D .132. 门城湖公园位于门城湖畔,南至永定河管理处,北至城子东街,设计水体面积670000平方米,水体蓄水量160万立方米.请将670000用科学计数法表示A. 46710⨯B. 56.710⨯C. 60.6710⨯D. 60.610⨯ 3. 窗花是我国的传统艺术,下列四个窗花图案中,不是..轴对称图形的是A. B. C. D.4.为了调查某班的学生每天使用零花钱的使用情况,张华随机调查了20名同学,结果 如下表:每天使用零花钱(单位:元)1 2 3 4 5 人数13655则这20名同学每天使用的零花钱的平均数和中位数分别是 A .3,3 B .3,3.5 C .3.5,3.5 D .3.5,35.在九张形状、大小、质地等完全相同的卡片的一面分别标上数字1,2,3,4,5,6,7,8,9,将这九张卡片放到不透明的桌面上洗匀,且标有数字的一面向下,从中随机摸取一张卡片,则摸到卡片上标有的数字是2的整数倍的概率为 A .45 B .49 C .59 D .12考生须知 1.本试卷共6页,共五道大题,25道小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

6. 已知一扇形的圆心角是60︒,扇形的半径为9,则这个扇形的弧长..是 A. π B. 2π C. 3π D. 4π7. 如图,BD 是⊙O 的直径,∠A=60︒,则∠DBC 的度数是 A. 30︒ B. 45︒ C. 60︒ D. 25︒8. 如图,把左边的图形折叠起来,它会变为右面的哪幅立体图形A . B. C. D.二、填空题(本题共16分,每小题4分)9.请写出一个对称轴为1,且开口朝上的二次函数关系式 . 10. 分解因式a am am 962+-=____________________. 11. 阳光通过窗口照射到室内,在地面上留下2.7m 宽的亮区 (如图所示),已知亮区到窗口下的墙脚距离EC =8.7m , 窗口高AB =1.8m ,则窗口底边离地面的高BC =________m .12. 我们知道,一元二次方程12-=x 没有实数根,即不存在一个实数的平方 等于-1,若我们规定一个新数“i ”,使其满足12-=i (即方程12-=x 有一个根为i ),并且进一步规定: 一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有,1i i =12-=i ,,).1(23i i i i i -=-=⋅=.1)1()(2224=-==i i 从而对任意正整数n ,则6i =______________;由于,.)(.4414i i i i i in n n ===+同理可得,1,,143424=-=-=++n n n i i i i 那么,20132012432i i i i i i +⋅⋅⋅++++的值为________________三、解答题(本题共30分,每小题5分)13. 计算:()011()33-2cos 454π-----+︒. 14.解分式方程 26111x x x -=+-15. 已知13x y =,求y x y y x y x y xy x x -++-⋅+-2222222的值.16已知:如图,四边形ABCD 是正方形.G 是 BC 上的一点,AG DE ⊥于E ,AG BF ⊥于点F .O BDA DOyx42BA(1)求证:△ABF ≌△DAE ; (2)求证:FB EF AF +=.17.如图,直线AB 与y 轴交于点A ,与x 轴交于点B ,点A 的纵坐标、点B 的横坐标如图所示.(1)求直线AB 的解析式;(2)点P 在直线AB 上,是否存在点P 使得△AOP 的面积为1,如果有请直接写出所有满足条件的点P 的坐标18. 节能减排已经是全社会都在关注的问题,低碳出行是倡导的绿色理念.据调查从某地到北京,若乘飞机需要2小时,若乘汽车需要7小时.这两种交通工具平均每小时二氧化碳的排放量之和为65千克,飞机全程二氧化碳的排放总量比汽车全程二氧化碳的排放总量多40千克,求飞机和汽车平均每小时二氧化碳的排放量.四、解答题(本题共20分,每小题5分)19. 如图,在平行四边形ABCD 中,点E ,F 分别是AB ,CD 的中点.(1)求证:四边形AEFD 是平行四边形; (2)若∠A =60°,AB =6,AD =4,求BD 的长.20. 如图,线段BC 切⊙O 于点C ,以AC 为直径,连接AB 交⊙O 于点D ,点E 是BC 的中点,交AB 于点D ,连结OB 、DE 交于点F . (1)求证:DE 是⊙O 的切线; (2)若4AC =,43BC =求EFFD的值.21. 在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下三个统计图表(如图1,图2,图3),请根据图表提供的信息,回答下列问题:(1)图1中“统计与概率”所在扇形的圆心角为 度; (2)图2、3中的a = ,b = ;(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?1234-1-2-1-212345xyO22. 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如2322(12)+=+.善于思考的小明进行了以下探索:设a+b=(m +n)2(其中a 、b 、m 、n 均为整数),则有a +b=m 2+2n 2+2mn.∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把类似a+b 的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1) 当a 、b 、m 、n 均为正整数时,若23(3)a b m n +=+用含m 、n 的式子分别表示a 、b ,则a = ,b= ;(2)利用探索的结论,找一组正整数a 、b 、m 、n 填空: +=( + )2;(3)若243(3)a m n +=+且a 、m 、n 均为正整数,求a 的值?五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知二次函数223y x x =-++图象的对称轴为直线. (1)请求出该函数图像的对称轴; (2)在坐标系内作出该函数的图像;(3)有一条直线过点p (1,5),若该直线与二次函数223y x x =-++只有一个交点,请求出所有满足条件的直线的关系式.24. 在△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,M 是BC 边中点中点,连接MD 和MEEDBCEDBC MBC(1)如图24-1所示,若AB=AC ,则MD 和ME 的数量关系是(2)如图24-2所示,若AB ≠AC 其他条件不变,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程;(3) 在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧..作等腰直角三角形,M 是BC 的中点,连接MD 和ME ,请在图24-3中补全图形,并直接判断△MED 的形状.25.如图25-1,抛物线y =-x 2+bx +c 与直线221+=x y 交于C 、D 两点,其中点C 在y 轴图24-1图24-2图24-3上,点D 的坐标为)273(,. 点P 是y 轴右侧的抛物线上一动点,过点P 作PE ⊥x 轴于点E ,交CD 于点F .(1)求抛物线的解析式;(2)若点P 的横坐标为m ,当m 为何值时,以O 、C 、P 、F 为顶点的四边形是平行四边形?请说明理由.(3)若存在点P ,使∠PCF =45°,请直接写出....相应的点P 的坐标.PE O FCDB A xy O CDB A 备用图yx图25-1门头沟区初三二模考试 数学试卷答案及评分参考一、 选择题(本题共32分,每小题4分) 题号 1 2 3 4 5 6 7 8 答案CBDCBCAB二、 填空题(本题共16分,每小题4分) 题号 9 1011 12答案不唯一2(3)a m -4-1(2分)i(2分)三、解答题(本题共30分,每小题5分)13.解= 4312---+……………………………………………………4分=82-+ ……………………………………………………5分14. 解: 去分母,得()()()1611x x x x --=+-. ……………………2分 解得 5x =-. ……………………4分检验:把5x =-代入()()110x x +-≠所以5x =-是原方程的解. ……………………5分15解:y x y y x y x yxy x x-++-⋅+-2222222 =yx yy x y x y x y x x -+++-⋅-2))(()(22·················· 2分= yx y y x x -+-2)(2=)()(2y x y x -+. ·························· 3分当13x y =时,3y x =. ························ 4分 原式=2(3)(3)x x x x +-=-4. ······················· 5分16. (1)∵ ABCD 是正方形, ∴ 090=∠BAD .∴ 090=∠+∠DAE BAF .∵ AG DE ⊥于E , ∴ 090=∠+∠ADE DAE .∴ ADE BAF ∠=∠. …………………1分 ∵ AG DE ⊥于E ,AG BF ⊥于F ,∴ 090=∠=∠DEA AFB . …………………2分 ∵ 在正方形ABCD 中,AD AB =, …………………3分 ∴ △ABF ≌△DAE . …………………4分 (2)证明:∵ △ABF ≌△DAE , ∴ AE BF =.∵ EF AE AF +=, ∴ EF BF AF +=. …………………5分 17. (1)根据题意得,A (0,2),B (4,0)…………………1分 设直线AB 的解析式为(0)y kx b k =+≠则240b k b =⎧⎨+=⎩ …………………2分∴122k b ⎧=-⎪⎨⎪=⎩ …………………3分∴直线AB 的解析式为122y x =-+ (2) 1235(1,);(1,)22p p - …………………5分18. 设飞机和坐汽车每小时的二氧化碳排放量分别是x 千克和y 千克. 根据题意,得 (1)分65,2740.x y x y +=⎧⎨-=⎩ …………………3分 解得:55,10.x y =⎧⎨=⎩ …………………4分答: 飞机和汽车每小时的二氧化碳排放量分别是55千克和10千克. ………5分四、解答题(本题共20分,每小题5分)19.(1)证明:如图∵ 四边形ABCD 是平行四边形,∴ AB ∥CD 且AB=CD . ﹍﹍﹍﹍1分 ∵ 点E ,F 分别是AB ,CD 的中点,∴ CD DF AB AE 21,21==.∴ AE=DF . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 2分 ∴ 四边形AEFD 是平行四边形. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分(2)解:过点D 作DG ⊥AB 于点G .在Rt △AGD 中,∵90,60,AGD A ∠=︒∠=︒ AD =4, ∴ cos 602,sin 6023AG AD DG AD =⋅︒==⋅︒= ∴ 4BG AB AG =-=.在Rt △DGB 中,∴ 22121627DB DG BG =+=+= ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分20. (1)证明:连结OD 、CD (如图) ∵AC 是⊙O 直径∴90ADC BDC ∠=∠=︒. ………………1分 ∵点E 是BC 的中点, DE BE EC ∴==.OA OD DE BE ==,,ADO A ∴∠=∠,DBE BDE ∠=∠.……………2分 90DBE A ∠+∠=︒, 90BDE ADO ∴∠+∠=︒.90EDO ∴∠=︒. ……………3分 ∴OD DE ⊥.即DE 是⊙O 的切线 . (2)解:连结OE .则OE ∥AB ,12OE AB = ∴△OEF ∽△BDF . ∵BC 切⊙O 于点C ∴90ACB ∴∠=︒在Rt ABC △中,4,43AC BC ==,∴ 根据勾股定理得,AB = 8,……………4分 ∴ OE = 4,∵∠A =60°.∴ AOD △是边长为2的等边三角形, ∴ 2AD =,BD = AB-AD =6. ∴4263EF OE FD BD ===……………………5分21.(1)36. ……………1分 (2)60; 14 ……………3分 (3)依题意,得45%×60=27 ……………4分 答:唐老师应安排27课时复习“数与代数”内容。

2016门头沟二模答案

2016门头沟二模答案

2016年门头沟区初三二模考试化学答案及评分参考一、选择题(每小题只有1个选项符合题意,共20个小题,每小题1分,共20分)二、非选择题(共60分)(除特殊注明,每空1分)21.(3分)(1)C (2)贫血(3)BC22.(2分)(1)石油(2)CH 4+2O 2点燃2H 2O + CO 223.(3分)(1)酸(2)厨房清洁剂(3)肥皂水显碱性,与蚁酸发生中和反应24.(2分)4 9:35.525.(4分)(1)CO 2 +Ca(OH)2==CaCO 3↓+H 2O 稀盐酸CaCO 3 +2HCl==CaCl 2+H 2O+CO 2↑(2)3H 2O26.(4分)(1)AB (2)与潮湿的空气接触 Fe 2O 3+6HCl==2FeCl 3++3H 2O 涂油27.(2分)(1)物理变化(2)BC28.(5分)(1)用途(2)D (3)银白色的金属光泽、很软等(4)不能(5)2LiOH + CO 2==Li 2CO 3 + H 2O29.(3分)(1)肥料 ( 2 ) 可回收物(3)SO 2和HCl30.(3分)(1) CO (2)置换反应(3)Mg 、Cl 231.(5分)(1)O 2 (2)Fe + 2HCl == FeCl 2 +H 2↑(3)NaOH + HCl ==NaCl + H 2O(4)Na 2CO 3+Ca(OH)2==CaCO 3↓+ 2NaOH NaCl 、CaCl 2和HCl ;NaCl 、CaCl 232.(2分)(1)bc (2)2KMnO 4 △ K 2MnO 4 + MnO 2 + O 2↑33.(5分)(1)蜡烛自下而上依次熄灭(2)2H 2O2H 2↑+O 2↑氢元素和氧元素(3)紫色石蕊溶液变红 CO 2 + H 2O==H 2CO 334 .(3分)(1)不断搅拌,撤酒精灯(2)取下10克砝码,加5克砝码。

如果仍然是左高右低,取下5克砝码,拨动游码至天平平衡;如果左低右高,拨动游码至天平平衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CBDAE 2016年门头沟区初三二模考试 数 学 试 卷 2016.6一、选择题(本题共30分,每小题3分)1.门头沟位于北京西南部,属太行山余脉,地势险要“东望都邑,西走塞上而通大漠”,自古为兵家必争之地,全区总面积1455平方公里,其中山区占98.5%.将数字1455用科学记数法表示为 A .1.455×103B .14.55×102C .1.455×104D .0.1455×1042.有理数a ,b ,c 在数轴上的位置如图所示,下面结论正确的是abcA .c >aB .10c> C .a b <D .0ac -<3.窗花是我国传统民间艺术,下列窗花中,是轴对称图形的为A B C D4.在下列运算中,正确的是 A .235a a a ⋅=B .()325a a =C .623a a a ÷=D .55102a a a +=5.如图,AD BC ∥,点E 在BD 的延长线上,如果155ADE ∠=︒, 那么∠DBC 的度数为 A .155° B .50° C .45°D .25°6.右图是一个正方体的平面展开图,那么这个正方体“美”字的对面所标的字是 A .让 B .更 C .活D .生7.某小区要建一个地基为多边形的凉亭,如果这个多边形的外角和等于它的内角和,那么这个多边形是 A .六边形B .五边形C .四边形D .三边形8.甲、乙、丙、丁四位同学参加了10次数学测验,他们测验的平均成绩(x )与方差(2S )如下表所示,那么这四位同学中,成绩较好,且较稳定的是A .甲B .乙C .丙D .丁让生活更美好E C BDA P9.如图,四边形ABCD 内接于⊙O ,E 是DC 延长线上一点, 如果⊙O 的半径为6,60BCE ∠=︒,那么 BCD的长为 A .6π B .12π C .2πD .4π10.如图,在正方形ABCD 中,2AB =,E 是AB 的中点,动点 P 从点B 开始,沿着边BC ,CD 匀速运动到D ,设点P 运动的时间为x ,EP y =,那么能表示y 与x 函数 关系的图象大致是二、填空题(本题共18分,每小题3分) 11.函数12y x =-的自变量x 的取值范围是 . 12.分解因式:429ax ay -= .13.《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个 更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x 人,小和尚y 人,可列方程组为 .14.请写出一个图象经过点(1,2),且第一象限内的函数值随着自变量的值增大而减小的函数表达式: . 15.小明同学在“计算:23211x x x-+-+”时,他是这样做的:小明的解法从 步开始出现错误,错误的原因是 . 16.小明同学在做作业时,遇到这样一道几何题:如图,△DEB 和△ABC 都是等边三角形,连接DC 和AE ,求证:AE =DC .DACE B 123小明冥思苦想许久不得解,只好去问老师,老师给了他如下提示:请问老师的提示中①是 ,②是 .三、解答题(本题共72分,第17-26题,每小题5分,第27、28题,每小题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程. 17.计算:()2120166tan 3012π-⎛⎫--︒++ ⎪⎝⎭18.已知2240a a +-=,求代数式()()22263a a a a ----的值.FCDEBAE ACB 19.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并直接写出它的所有非负整数解.20.如图,在△ABC 中,90BAC ∠=︒,30C ∠=︒,AE 为BC 边上的中线.求证:△ABE 是等边三角形.21.一支园林队进行某区域的绿化,在合同期内高效地完成了任务,这是记者与该队工程师的一段对话:我们的施工人数由原计划的6人,增加了2人.你们是怎样提前3小时完成了180平方米的绿化任务?如果每人每小时绿化面积相同,请通过这段对话,求每人每小时的绿化面积.22.如图,在平行四边形ABCD 中,点E ,F 分别是AB ,CD 的中点. (1)求证:四边形AEFD 是平行四边形;(2)如果60A ∠=︒,24AB AD ==,求BD 的长.23.如图,在平面直角坐标系xOy 中,反比例函数3y x=的图象与一次函数y kx =的图象的一个交点为A (m ,-3). (1)求点A 的坐标和一次函数y kx =的表达式;(2)如果点P 在直线OA 上,且满足2PA OA =,直接写出点P 的坐标.24.如图,AB 是⊙O 的直径,P A ,PC 分别与⊙O 相切于点A 、C ,PC 交AB 的延长线于点D ,DE PO ⊥交PO 的延长线于点E . (1)求证:EPD EDO ∠=∠;图1CA BabcACBab c图2(2)如果6PC =,3tan 4PDA ∠=,求OE 的长.25.门头沟地处北京西南部,山青水秀,风景如画,静谧清幽.近年来,某村依托丰富的自然资源和人文资源,大力开发建设以农业观光园为主的多类型休闲旅游项目,农民收入逐步提高.以下是根据该村公布的“主要经济发展指标”相关数据绘制的统计图表的一部分.根据以上信息解答下列问题:(1)该村2013年农业观光园经营年收入的年增长率约是 ;(结果精确到1%) (2)补全条形统计图,并在图中标明相应的数据;(结果精确到0.1)(3)请预估该村2016年的农业观光园经营年收入约为 万元,你预估的理由是 .26.阅读材料,回答问题:小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt △ABC 中,如果90C ∠=︒,30A ∠=︒,1BC a ==,AC b =,2AB c ==,那么2sin sin a bA B==. 通过上网查阅资料,他又知“sin 901︒=”,因此他得到“在含 30°角的直角三角形中,存在着sin sin sin a b cA B C==的关系.” 这个关系对于一般三角形还适用吗?为此他做了如下的探究: (1)如图2,在Rt △ABC 中,90C ∠=︒,BC a =,AC b =,AB c =.请判断此时“sin sin sina b cA B C==”的关系是否成立?Dabc A CB图3xyO(2)完成上述探究后,他又想“对于任意的锐角△ABC ,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC 中,BC a =,AC b =,AB c =. 过点C 作CD AB ⊥于D .∵ 在Rt △ADC 和Rt △BDC 中,90ADC BDC ∠=∠=︒, ∴ sin A = ,sin B = . ∴ sin a A = ,sin bB = . ∴sin sin a bA B=. 同理,过点A 作AH BC ⊥于H ,可证sin sin b cB C =. ∴sin sin sin a b cA B C==. 请将上面的过程补充完整.(3)如图4,在△ABC 中,如果60B ∠=︒,45C ∠=︒,2AB =,那么AC = .27.在平面直角坐标系xOy 中,抛物线2y x bx c =++经过点A (0,-3),B (4,5).(1)求此抛物线的表达式;(2)如果此抛物线的顶点为C ,求点C 的坐标;(3)设点C 向左平移2个单位长度后的点为D ,此抛物线在A ,B 两点之间的部分为图象W (包含A ,B 两点),经 过点D 的直线为l :y mx n =+.如果直线l 与图象W 有且只有一个公共点,结合函数图象,求m 的取值范围.28.如图,在矩形ABCD 中,E 是AD 的中点,点A 关于BE 的对称点为G (G 在矩形ABCD 内部),连接BG 并延长交CD 于F . (1)如图1,当AB AD =时,① 根据题意将图1补全;② 直接写出DF 和GF 之间的数量关系.(2)如图2,当AB AD ≠时,如果点F 恰好为DC 的中点,求ADAB的值. (3)如图3,当AB AD ≠时,如果DC nDF =,写出求ADAB的值的思路(不必写出计算结果). 图4CBAE D C AB E CD A BEDC A B图1 图2 图329.对于关于x 的一次函数y kx b =+(0k ≠),我们称函数[]()().m kx b x m y kx b x m ⎧+⎪=⎨--⎪⎩≤,>为它的m 分函数(其中m为常数).例如,32y x =+的4分函数为:当x ≤4时,[]432y x =+;当x >4时,[]432y x =--. (1)如果1y x =-+的2分函数为[]2y ,① 当4x =时,[]2y = ;② 当[]23y =时,x = . (2)如果1y x =+的-1分函数为[]1y -,求双曲线2y x=与[]1y -的图象的交点坐标; (3)从下面两问中任选一问作答:(温馨提示:两问均2分,不重复计分!)① 设2y x =-+的m 分函数为[]m y ,如果抛物线2y x =与[]m y 的图象有且只有一个公共点,直接写出m 的取值范围.② 如果点A (0,t )到2y x =-+的0分函数[]0y 的图象的距离小于1,直接写出t 的取值范围.初三二模数学试卷第11页(共8页)。

相关文档
最新文档