相似图形测试
《图形的相似》达标测试卷
《图形的相似》达标测试卷(时间:80分钟 满分100分)一、选择题(每道3分,共18分)1.如图,把其中的一个小正方形看作是基本图形,这个图形 中不包含的变换是( )A .对称B .平移C .相似(相似比不为1)D .旋转2.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与A B C △相似的是( )3.如图,在△ABC 中,已知∠ADE=∠C ,则下列等式成立的是( ) A .A D A E A BA C=B .A E A DB CB D=C .ACAD BCDE = D .ACAE BCDE =4.手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不相似的是( )A .B .C .D .EABCD A . B .C .D .5.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,CD ⊥AB 于点D .则△BCD 与△ABC 的周 长之比为( )A .1︰2B .1︰3C .1︰4D .1︰56.如图,△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形,并把△ABC 的边长放大到原来的2倍,记所得的像是△A ′B ′C .设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是( ) A .12a - B .1(3)2a -+C .1(1)2a --D .1(1)2a -+二、填空题(每道4分,共24分)7.若32=b a ,则:=+b b a ,=-ab a .8.三角尺在灯泡O 的照射下在墙上形成影子(如图所示).现测得cm OA 20=,cm A O 50=',则这个三角尺的周长与它在墙上形成的影子的周长的比是 .9.如图,平行四边形ABCD 中,CD=10,F 是AB 边上一点,DF 交AC 于点E ,且ECAE =52,则:的面积的面积CDE AEF ∆∆= ,BF= .DBCA 第8题图E BAC D F10.如图,A B C △与A E F △中,A B A E B C E F B E A B ==∠=∠,,,交E F 于D .给出下列结论:①A F C C ∠=∠;②D F C F =;③A D E F D B △∽△;④BF D C A F ∠=∠.其中正确的结论是 (填写所有正确结论的序号).11.锐角△ABC 中,BC =6,,12=∆ABC S 两动点M 、N 分别在边AB 、AC 上滑动,且MN ∥BC ,以MN 为边向下作正方形MPQN ,设其边长为x ,正方形MPQN 与△ABC 公共部分的面积为y (y >0),当x =,公共部分面积y 最大,y 最大值 = .12.如图,△ABC 的面积为1,分别取AC 、BC 两边的中点A 1、B 1,则四边形A 1ABB 1的面积为34,再分别取A 1C 、B 1C 的中点A 2、B 2,A 2C 、B 2C 的中点A 3、B 3,依次取下去….利用这一图形,能直观地计算出3 4+3 42+3 43+…+34n =________.A BCA 1A 2A 3B 1 B 2 B 3 第12题图第11题图第10题图三、解答题(6道题,共58分)13.(本题8分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E , 连接DE ,F 为线段DE 上一点,且∠AFE =∠B . (1)求证:△ADF ∽△DEC .(2)若AB =4,AD =33,AE =3,求AF 的长.14.(本题8分)学习《图形的相似》后,我们可以借助探索两个直角三角形全等的条件所获得的经验,继续探索两个直角三角形相似的条件. (1)“对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”.类似地,你可以得到“满足____________ ____ 或___________ ______,两个直角三角形相似”; (2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地,你可以得到“满足__________的两个直角三角形相似”.请你结合下列所给图形,写出已知,并完成说理过程.已知:如图,___________________________ ______. 求证:Rt △ABC ∽Rt △A ’B ’C ’ .15.(本题10分)如图,方格纸中每个小正方形的边长为1,△ABC 和△DEF 的顶点都在方格纸的格点上.(1)判断△ABC 和△DEF 是否相似,并说明理由;(2)P 1,P 2,P 3,P 4,P 5,D ,F 是△DEF 边上的7个格点,请在这7个格点中选取3个EBACDFA'BC C'B'A点作为三角形的顶点,使构成的三角形与△ABC 相似(要求写出2个符合条件的三角形,并在图中连结相应线段,不必说明理由).16.(本题10分)正方形A B C D 边长为4,M 、N 分别是B C 、C D 上的两个动点,当M 点在B C 上运动时,保持A M 和M N 垂直, (1)证明:R t R t A B M M C N △∽△;(2)设B M x ,梯形A B C N 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形A B C N 面积最大,并求出最大面积;(3)当M 点运动到什么位置时R t R t A B M A M N △∽△,求此时x 的值.17.(本题10分)图1所示的遮阳伞,伞炳垂直于水平地面,其示意图如图2.当伞收紧时,点P 与点A 重合;当伞慢慢撑开时,动点P 由A 向B 移动;当点P 到达点B 时,伞张得最开。
图形的相似经典测试题及答案解析
∵四边形 ABCD 是正方形
∴AE=BF,AD=AB,∠EAD=∠B= 90
∴△ADE≌△BAF
∴∠ADE=∠BAF,∠AED=∠BFA
∵∠DAO+∠FAB= 90 ,∠FAB+∠BFA= 90 ,
∴∠DAO=∠BFA,
∴∠DAO=∠AED
∴△AOD∽△EAD
∴ AO AE 1 DO AD 2
故选:D
A.1.5cm 【答案】B 【解析】 【分析】 【详解】
B.1.2cm
C.1.8cm
D.2cm
由图 2 知,点 P 在 AC、CB 上的运动时间时间分别是 3 秒和 4 秒,
∵点 P 的运动速度是每秒 1cm ,
∴AC=3,BC=4.
∵在 Rt△ABC 中,∠ACB=90°,
∴根据勾股定理得:AB=5.
AE / / AB,
DAE DAB ,
则
AD 2 AD
SADE SABD
,即
AD 2 AD 1
2
9 8
9 16
,
解得 AD 3 或 AD 3 (舍), 7
故选: B . 【点睛】 本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的 性质、相似三角形的判定与性质等知识点.
3.如图,将 ABC 沿 BC 边上的中线 AD 平移到 ABC 的位置.已知 ABC 的面积为 16,阴影部分三角形的面积 9.若 AA 1,则 AD 等于( )
A.2
【答案】B 【解析】
B.3
C.4
D. 3 2
【分析】
由 S△ABC=16、S△A′EF=9 且 AD 为 BC 边的中线知
SADE
解得:{
5.
完整版相似图形测试题及答案
《相似图形》水平测试二一、试试你的身手(每小题3分,共30分)1在比例尺为1 : 50 0000的福建省地图上,量得省会福州到漳州的距离约为46厘米,则福州到漳州实际距离约为__________ 千米.2.若线段a , b , c , d成比例,其中a 5cm, b 7cm, c 4cm,则d _________________3.已知4x 5y 0,则(x y): (x y)的值为9: 25,其中一个三角形的周长为36cm,则另一个三角形的周长是(如图1),如果把各边中点连线所围成三角形铺成黑色大理石,其余部分铺成白色大理石,则黑色大理石的面积与白色大理石的面积之比为4•两个相似三角形面积比是5.把一个矩形的各边都扩大4倍,则对角线扩大到________ 倍,其面积扩大到 _______ 倍. 6•厨房角柜的台面是三角形7•顶角为36。
的等腰三角形称为黄金三角形,如图黄金三角形,已知AB 1,贝U DE的长_________2, △ ABC, △ BDC , △ DEC 都是&在同一时刻,高为 1.5m的标杆的影长为2.5m,一古塔在地面上影长为50m,那么古塔的高为_________ .9•如图3, △ ABC 中,DE // BC , AD 2 , AE 3, BD 4,贝U AC(:10.如图4,在△ ABC和厶EBD中EB之差为10cm,则△ ABC的周长是_________二、相信你的选择(每小题3分,共30分)1 .在下列说法中,正确的是()A .两个钝角三角形一定相似B. 两个等腰三角形一定相似C. 两个直角三角形一定相似D .两个等边三角形一定相似BD ED 32.如图5,在厶ABC中,D , E分别是AB、AC边上的点,DE // BC , / ADE 30°,Z C 120°,则/ A ( )3.如果三角形的每条边都扩大为原来的5倍,那么三角形的每个角()A.都扩大为原来的5倍B.都扩大为原来的10倍C.都扩大为原来的25倍D.都与原来相等4•如图6,在Rt A ABC 中,z ACB 90°, CD AB 于D,若AD 1 , BDCD (6.如图8,点E是Y ABCD的边BC延长线上的一点,AE与CD相交于点G ,Y ABCD的对角线,则图中相似三角形共有()A . 2对B . 3对C . 4对D . 5对7.如图9,小正方形的边长均为1,则下列图中的三角形(阴影部分)与厶ABC相似的是B . 45 C. 30°4,则C. 2 D . 35.如图7, BC 6 , E , F分别是线段AB和线段AC的中点,那么线段EF的长是C. 4.5 D . 3AC是7777/7/A.1!. 2itD .20°/;图6图R&如图10,梯形ABCD的对角线交于点0,有以下四个结论:①△ A0B C0D ; ②△ AOD ACB ;其中始终正确的有()A . 1个B . 2个C. 3个9•用作相似图形的方法,可以将一个图形放大或缩小,相似中心位置可选在(同,我们就把它们叫做相似图形•比如两个正方形,它们的边长, 成比例,就可以称它们为相似图形.现给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形;④两个正六边形•请指出其中哪几对是相似图形,哪几对不是相似图形,并简单地说明理由.2 . (8 分)如图12,梯形ABCD 中,AB // DC,/ B 90°,E 为BC 上一点,且AE ED .若BC 12,DC 7,BE : EC=1 : 2,求AB 的长.③ S A DOC:S A AOD DC : AB :④ S A AOD S A BOC•A •原图形的外部B •原图形的内部这支蜡烛在暗盒中所成的像CD的长是()111A . - cmB . cm C. cm D. 1cm632三、挑战你的选择(本大题共60分):如果两个几何图形形状相同而大小不一定相对角线等所有元素都对应D . 4个C.原图形的边上 D •任意位置10•如图11是小孔成像原理的示意图,根据图中所标注的尺寸,1. (8分)我们已经学习了相似三角形,也知道4. (8分)某中学平整的操场上有一根旗杆(如图 14),一数学兴趣小组欲测量其高度,现有 测量工具(皮尺、标杆)可供选用,请你用所学的知识,帮助他们设计测量方案. 要求:(1)画出你设计的测量平面图; (2)简述测量方法,并写出测量的数据2.7米宽的光亮区,如图 15,已知亮区一 1.8米,那么窗口底边离地面的高 BC 是多6. (14分)如图16,在一个长40m 、宽30m 的长方形小操场上,王刚从 A 点出发,沿着 A T B T C 的路线以3m/s 的速度跑向C 地.当他出发4s 后,张华有东西需要交给他,就从 A2地出发沿王刚走的路线追赶,当张华跑到距 B 地2-m 的D 处时,他和王刚在阳光下的影3子恰好重叠在同一条直线上•此时, A 处一根电线杆在阳光下的影子也恰好落在对角线 AC上.(1) 求他们的影子重叠时,两人相距多少米 (DE 的长)?3. ( 8分)如图13,已知△ ABC 中,点F 是BC 的中点, 样的关系?请你说明理由.DE // BC ,贝V DG 和GE 有怎(长度用a , b , c …表示).5. (14分)阳光通过窗户照到室内,在地面上留下 边到窗下墙脚的距离 CE 8.7米,窗口高 AB 少米?[R f| 16(2)求张华追赶王刚的速度是多少(精确到0.1m/s)?《相似图形》水平测试二参考答案一、1. 230282.cm53.9卡1084.60 或 -55.4, 1616.-33 「57.2& 30m9. 910. 25cm二、1. D 2. C 3. D 4. A 5. D 6. B 7. A 8. C 9. D 10. D三、1.①、④是相似图形,②、③不一定是相似图形理由:两个圆和两个正六边形分别为相似图形,因为它们的对应元素都成比例;两个菱形和两个长方形都不是,因为它们的对应元素不一定都成比例(或举出具体的反例)2.解:因为AB // DC,且/ B 90°,所以Z AEB Z BAE所以Z AEB Z CED 90°.故Z BAE Z CED .又Z B Z C 90°,所以△EAB DEC . 所以AB BEEC CD又BE: EC 1:2,且BC 12及DC7 ,故AB-.所以873.解:DG GE.因为DE // BC,所以Z ADG ZB :,Z AGD Z AFB ,所以△ ADG ABF,所以DG AGBF AFGE AG DG GE同样△ AGE AFC,所以,所以FC AF BF FC '又F是BC的中点,所以DG GE .4.解:(1)如图,沿着旗杆的影竖立标杆,使标杆影子的顶端正好与旗杆影子顶端重合.(2)用皮尺测量旗杆的影长BE 标杆CD c米. AB327a米,标杆CD的影长DE b米,fi D90°及Z C 90°.CD 根据△EDC EBA,得—AB巨,2 b,所以ABEB AB a ac b米. 即旗杆 AB 的高为 ac 米 5•解: 由已知可得 CB BD // AE ,所以A CBDCAE ,所以— CACDCE又CE 8.7, CD CB ()8.7 2.7 6, CA CB —,解得CB 4 •1.8,所以 CB 1.8 8.7即窗口底边离地面的高 BC 是4米. 6. (1)根据投影的特征可知 AC //DE ,所以 所以DE BD DE AC BA ' AC △ BDE BAC ,BE 又 AB CF 40, AC BC 、402—302 50, BD2| •所以 DE 22 3 50 (2) 因为 40 DE 所以DE 10 (m )• 3 所以 BE 所以 所以王刚从 所以张华从 AB ACDEgBC AC BE 40 匹,BC AF 30, BC 10 “ 30 ,即 BE 2,50 2 42 (m ), A 到E 的时间为42十3=14 (s ), A 到D 的时间为14- 4=10 (s ), 2 所以张华的速度为(40- 2-)十10~ 3.7 ( m/s ).3。
图形的相似练习题
图形的相似练习题1、什么是图形的相似?答:图形的相似是指两个图形形状相同,大小可以不同。
2、什么是相似三角形?答:相似三角形是形状相同,大小不等的两个三角形。
二、基础应用1、下面的两个三角形是相似三角形吗?如果是,请说明理由。
答:是,因为它们的对应角相等,对应边成比例。
2、已知一个三角形的三边长分别为3、4、5,请找出与它相似的三角形的三边长。
答:与它相似的三角形的三边长可以为6、8、10或者9、12、15等等。
三、提升练习1、在一张纸上画一个正方形,然后在纸上画一个与它相似的正方形。
验证这两个正方形是相似的。
答:在纸上画出两个正方形,通过测量它们的边长和角度来验证它们是相似的。
2、如果一个三角形与一个正方形是相似的,那么这个三角形的三边长有什么特点?答:如果一个三角形与一个正方形是相似的,那么这个三角形的三边长必须满足勾股定理。
四、拓展探究1、如果两个多边形分别是n边形和m边形,且它们是相似的,那么它们的边数有什么关系?答:如果两个多边形分别是n边形和m边形,且它们是相似的,那么它们的边数必须满足n:m=m:n。
2、如果两个图形是相似的,那么它们的其他属性(如面积、周长等)有什么关系?答:如果两个图形是相似的,那么它们的面积的比等于边长的比的平方,周长的比等于边长的比。
一、引言图形的相似是几何学中的一个重要概念,对于理解几何形状的性质和解决几何问题有着至关重要的作用。
为了确保学生对这个概念有深入的理解,我们进行了一次图形的相似单元测试。
以下是对本次测试的详细介绍。
二、测试内容本次测试旨在评估学生对图形相似的定义、性质和判定方法的理解和应用能力。
测试问题涵盖了基本概念、性质理解、判定方法以及应用题等多个方面。
1、基本概念:测试首先要求学生识别和理解图形相似的定义,包括相似图形的定义和性质。
2、性质理解:测试问题涉及图形相似的性质,如相似三角形的对应角相等、对应边成比例等。
3、判定方法:测试包括一些判定图形相似的方法,如利用角度、利用比例等。
判断图形相似练习题
判断图形相似练习题在几何学中,判断图形相似是一个非常重要的概念。
相似的图形具有相同的形状但尺寸不同,通过比较它们的边长比例可以得出它们是否相似。
下面,我们将提供一些图形相似的练习题,帮助你巩固对这一概念的理解。
练习题1:给定两个三角形ABC和DEF,已知∠A=∠D,∠B=∠E,边长比例为AB:DE=1:2。
判断这两个三角形是否相似。
解答1:根据题目已知条件可得∠A=∠D,∠B=∠E,以及边长比例AB:DE=1:2。
根据相似三角形的性质,如果两个三角形的对应角相等且相应边的比例相等,那么它们是相似的。
练习题2:给定两个矩形ABCD和EFGH,已知AB=3cm,DC=6cm,EF=4cm,判断这两个矩形是否相似。
解答2:根据矩形的性质,对角线相等的四边形是矩形。
所以我们可以先计算两个矩形的对角线长度:AC和EG。
根据勾股定理,AC的长度为√(AB^2+DC^2)=√(3^2+6^2)=√45≈6.71cm;EG的长度为√(EF^2+FG^2)=√(4^2+6^2)=√52≈7.21cm。
由于AC和EG的长度不相等,因此两个矩形并不相似。
练习题3:给定两个圆O和P,已知O的半径为4cm,P的半径为8cm,判断这两个圆是否相似。
解答3:由于圆没有边长之类的概念,我们不能直接用边长比例判断两个圆是否相似。
相似的圆是指半径相等或者半径的比例相等的圆。
在这个例子中,圆O的半径为4cm,圆P的半径为8cm。
它们的半径之比为4:8=1:2。
根据相似圆的定义,我们可以得出结论:圆O和圆P是相似的。
通过以上练习题的解答,我们对判断图形相似练习题有了更深入的理解。
相似的图形有着相同的形状,但尺寸可能不同。
通过比较对应角的相等性以及边长比例的关系,我们能够准确判断图形是否相似。
熟练掌握这些概念对于几何学的学习和实际应用非常重要。
相似单元测试题及答案解析
相似单元测试题及答案解析一、选择题1. 以下哪项不是相似图形的特点?A. 形状相同B. 面积相等B. 边长成比例D. 角度相同答案:B解析:相似图形的特点是形状相同、边长成比例、角度相同,但面积不一定相等,而是面积比等于边长比的平方。
2. 如果两个三角形相似,它们的对应边长比为3:5,那么它们的对应角的度数比是多少?A. 1:1B. 3:5C. 5:3D. 无法确定答案:A解析:相似三角形的对应角相等,所以它们的对应角的度数比是1:1。
3. 一个矩形的长和宽分别是8厘米和6厘米,另一个矩形的长和宽分别是16厘米和12厘米。
这两个矩形是否相似?A. 是B. 不是C. 无法确定答案:A解析:两个矩形的长宽比分别为8:6和16:12,简化后都是4:3,所以它们是相似的。
二、填空题4. 如果两个图形的相似比为2:3,那么它们的面积比是________。
答案:4:9解析:相似图形的面积比等于相似比的平方,即(2:3)² = 4:9。
5. 在相似三角形中,如果一个三角形的高是另一个三角形高的1.5倍,那么它们的相似比是________。
答案:1.5:1解析:相似三角形的高之比等于相似比,所以相似比为1.5:1。
三、简答题6. 为什么两个相似三角形的对应边长比等于它们的对应角的正弦值之比?答案:在相似三角形中,对应角相等,根据正弦定理,对应角的正弦值与对应边长成比例,所以两个相似三角形的对应边长比等于它们的对应角的正弦值之比。
四、计算题7. 已知三角形ABC与三角形DEF相似,且AB:DE = 2:3,求三角形ABC的面积与三角形DEF的面积之比。
答案:4:9解析:根据相似三角形的性质,面积比等于边长比的平方,即(2:3)² = 4:9。
结束语:通过本单元的测试题,我们复习了相似图形的定义、性质以及相关计算方法。
希望同学们能够熟练掌握相似图形的相关知识,并在实际问题中灵活运用。
图形的相似练习题
图形的相似练习题一、选择题1. 若两个图形的对应角相等,对应边成比例,则这两个图形是相似的。
这种说法是正确的吗?A. 正确B. 错误2. 相似图形的面积比等于它们对应边长的平方比,这种说法正确吗?A. 正确B. 错误3. 在相似三角形中,对应高的长度之比等于:A. 对应边长之比B. 对应角的正弦值之比C. 对应角的余弦值之比D. 对应边长的平方比4. 如果两个三角形的三组对应边长之比分别为2:3,3:4,4:5,那么这两个三角形是相似的吗?A. 是B. 不是5. 相似多边形的周长比等于它们对应边长的比,这种说法正确吗?A. 正确B. 错误二、填空题6. 相似三角形的判定定理包括AA定理、SAS定理和______定理。
7. 若两个图形的对应角相等,对应边成比例,且它们的面积比为4,则它们的周长比为______。
8. 在一个相似三角形中,如果最长边长为10,最短边长为5,那么第三边的长度可能为______(假设第三边长度为整数)。
9. 如果两个三角形的对应角相等,但对应边长之比为3:5,那么这两个三角形是______的。
10. 相似多边形的对应角相等,对应边成比例,且它们的面积比为9:16,则它们的周长比为______。
三、简答题11. 解释为什么相似三角形的对应角相等。
12. 描述如何使用相似三角形的性质来解决实际问题。
13. 给出一个例子,说明在什么情况下两个图形不能被判定为相似。
四、计算题14. 已知三角形ABC与三角形DEF相似,且AB:DE=2:3,BC:EF=1:2,求AC:DF的比值。
15. 如果一个矩形的长是宽的2倍,且其面积为24平方厘米,求矩形的周长。
五、证明题16. 证明:如果两个三角形的三组对应边长之比相等,那么这两个三角形是相似的。
17. 证明:相似三角形的对应角的正弦值之比等于它们的对应边长之比。
六、应用题18. 一个摄影师正在拍摄一座塔,他站在距离塔基30米的地方,拍摄到塔的高度为10米。
《相似图形》单元基础测试题
第四章 相似图形单元测试题姓名: 成绩:一、选择题1.已知4x -5y=0,则x∶y 的值为( )A .5∶4B .4:5C .4D .52.已知dc b a =,那么下列各式中一定成立的是( ) A . bd c a = B .bd ac b c = C . d d c b b a 22+=+ D .dc b a 11+=+ 3.地图上的比例尺为1:200000,小明家到单位的图距为20cm ,则实际距离为( )A . 40000米B .4000米C .10000米D . 5000米4.已知△ABC ∽△DEF ,AB=6cm ,BC=4cm ,AC=9cm ,且△DEF 的最短边边长为8cm ,则最长边边长为( )A 、16cmB 、18cmC 、4.5cmD 、13cm5.△ABC ∽△DEF ,它们的周长之比为2:1,则它们的对应高比及面积比分别为( )A 、1:2,2 :1B 、2:1,2 :1C 、2:1,2:1D 、1:2,2:16. 下列四个三角形,与左图中的三角形相似的是( )7. 如图, 在Rt△ABC 中, ∠ACB=90°,CD⊥AB 于D , 若AD=1,BD=4,则CD=( )A 、2B 、4 C、38. 如图,丁轩同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行20m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部,已知丁轩同学的身高是1.5m ,两个路灯的高度都是9m ,且AP=BQ,则两路灯之间的距离是( )A .24mB .25mC .28mD .30m9. 如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA ,OB ,OC 的中点,则△DEF 与△ABC 的面积比是( )A .B .C .D . D CB A (第7题) (第8题)(第9题)10.已知:如图在△ABC 中,AE=ED=DC ,FE//MD//BC ,FD 的延长线交BC 的延长线于N ,则BNEF 为( ) A 、21 B 、31 C 、 41 D 、5111. 如图,在ABC 中,AB=3AD, DE//BC, EF//AB, 若AB=9, DE=2, 则线段FC 的长度是( )A.2B.4C.5D.612. 如图,在Rt△ABC 中,AB AC =, D 、E 是斜边BC 上两点,且∠DAE=45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论:①△AED ≌△AEF ;②△ABE ∽△ACD ;③BE DC DE +=;④222BE DC DE +=其中一定正确的是( )A 、②④B 、①③C、②③ D 、①④二、填空题13.已知d c b a ,,,是成比例线段,且5,8,2===c b a ,那么=d 。
第四章图形的相似单元测试北师大版2024—2025学年秋季九年级上册
第四章图形的相似单元测试北师大版2024—2025学年秋季九年级上册考生注意:本试卷共三道大题,23道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(每题只有一个正确选项,每小题3分,满分36分)1.在比例尺是1:8000的地图上,中山路的长度约为25cm,该路段实际长度约为()A.3200m B.3000m C.2400m D.2000m2.如图,用放大镜将贺兰山旅游图标放大,这两个图形之间属于以下哪种图形变换()A.相似B.平移C.轴对称D.旋转3.已知=,则下列式子中正确的是()A.a:b=c2:d2B.a:d=c:bC.a:b=(a+c):(b+d)D.a:b=(a﹣d):(b﹣d)4.下列说法中,不正确的是()A.等边三角形都相似B.等腰直角三角形都相似C.矩形都相似D.正八边形都相似5.以下四组线段中,成比例的是()A.3,4,6,8B.2,3,4,5C.1,2,3,4D.5,6,7,8 6.如果两个相似三角形的相似比是1:2,那么它们的周长比是()A.2:1B.1:4C.1:D.1:27.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中△ABC相似的是()A.B.C.D.8.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上.若正方形ABCD的边长为2,则点F坐标为()A.(8,6)B.(9,6)C.D.(10,6)9.如图,在▱ABCD中,E是AB边的中点,则S△AEG:S平行四边形ABCD的值为()A.B.C.D.10.如图,在矩形ABCD中,E、F分别在BC、CD上运动(不与端点重合),连接BF、AE,交于点P,且满足.连接CP,若AB=4,BC=6,则CP的最小值为()A.2﹣3B.2﹣2C.5D.3二.填空题(6小题,每题3分,共18分)11.若,则=.12.如图,已知AC∥EF∥BD,如果AE:EB=2:3,CD=6,那么DF的长等于.13.如图,在▱ABCD中,AD=16,∠ABC的平分线交AD于点F,交CD的延长线于点E,若S△EDF:S四边形FBCD=9:55,则AB=.14.若,则k=.15.如图,△ABC∽△CBD,AB=9,BD=25,则BC=.16.如图,矩形ABCD中,AB=3,BC=10,点P是AD上的一个动点,若以A,P,B为顶点的三角形与△PDC相似,则AP=.第II卷第四章图形的相似单元测试北师大版2024—2025学年秋季九年级上册姓名:____________ 学号:____________准考证号:___________一、选择题12345678910题号答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.已知,求的值.18.如图,AB∥CD∥EF,BF=20.(1)若AC=3,CE=5,求DF的长;(2)若AC:CE=2:3,求DF的长.19.在△ABC中,∠BAC=90°,AB=AC,点D是BC边上一点,过点D作∠ADE=45°,DE交AC于点E,求证:△ABD∽△DCE.20.如图,在△ABC中,AD是角平分线,点E在边AC上,且AD2=AE•AB,连接DE.(1)求证:△ABD∽△ADE;(2)若CD=3,CE=2,求AE的长.21.如图,△ABC中,D、E两点分别在BC、AD上,且AD为∠BAC的角平分线,若∠ABE=∠C,=.(1)求证:△AEB∽△ADC.(2)求△BDE与△ABC的面积比.22.如图,在正方形ABCD中,点E在边AD上,过点D作DK⊥BE于K,且DK=.(1)若AE=ED,求正方形ABCD的周长;(2)若∠EDK=22.5°,求正方形ABCD的面积.23.如图,AB=4,CD=6,F在BD上,BC、AD相交于点E,且AB∥CD∥EF.(1)若AE=3,求ED的长.(2)求EF的长.24.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=8,AB=12.求的值.25.问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.。
相似图形测试题及答案
...3.如果三角形的每条边都扩大为原来的5 倍,那么三角形的( )《相似图形》测试题A .每个角都扩大为原来的 5 倍B .面积扩大为原来的 10 倍C .周长是原来的 15 倍D .每个角都与原来相等一、试试你的身手(每小题 3 分,共 30 分)4.如图 6, 在 Rt △ ABC 中,∠ACB90 ,CDAB 于 D ,若 AD 1, BD 4,则 CD ()1.在比例尺为 1∶ 50 0000 的福建省地图上,量得省会福州到漳州的距离约为 46 厘米,则福州到漳州实际距离约为 千米. 2.若线段a , b , c , d 成比例,其中a 5cm ,b 7cm ,c 4cm ,则 d.A .2B . 4C .2D .35.如图 7, BC 6, E , F 分别是线段A B 和线段A C 的中点,那么线段E F 的长是( )A .6B . 5C .4.5D .3 3.已知 4x 5y 0 ,则 (x y) : (x y) 的值为.6.如图 8,点 E 是ABCD 的边 BC 延长线上的一点, AE 与 CD 相交于点 G , AC 是 ABCD 的对角线,则图中相似三角形共有( )4.两个相似三角形面积比是 9∶ 25,其中一个三角形的周长为 36cm ,则另一个三角形的周长是 . 5.把一个矩形的各边都扩大4 倍,则对角线扩大到倍,其面积扩大到倍.6.厨房角柜的台面是三角形 (如图 1),如果把各边中点连线所围成三角形铺成黑色大理石,其余部分铺成白色大理石,则黑色大理石的面积与白色大理石的面积之比为 .A .2 对B . 3 对C .4 对D .5 对7.如图 9,小正方形的边长均为 1,则下列图中的三角形(阴影部分 )与△ ABC 相似的是( )8.如图 10,梯形 ABCD 的对角线交于点O ,有以下四个结论:① △AOB ∽△COD ; ② △ AOD ∽△ ACB ; ③::S △S △DC AB ;④ S △ AODS △ B OC .DOCAOD7.顶角为 36°的等腰三角形称为黄金三角形,如图2, △ABC , △BDC , △DEC 都是黄金三角形,已知 AB1,则 DE 的长.8.在同一时刻, 高为 1.5m 的标杆的影长为 2.5m ,一古塔在地面上影长为 50m ,那么古塔的高为 . 9.如图 3, △ABC 中, DE ∥ BC , AD2, AE 3, BD 4,则 AC.10.如图 4,在 △ ABC 和 △EBD中,则 △ABC 的周长是 .A BBC AC EB BDED 5 3, △ABC 与 △EBD 的周长之差为 10cm ,二、相信你的选择(每小题 3 分,共 30 分) 1.在下列说法中,正确的是( )A .两个钝角三角形一定相似B .两个等腰三角形一定相似C .两个直角三角形一定相似D .两个等边三角形一定相似其中始终正确的有( ) A . 1 个B . 2 个C .3 个D .4 个9.用作相似图形的方法,可以将一个图形放大或缩小,相似中心位置可选在( ) A .原图形的外部 B .原图形的内部 C .原图形的边上D .任意位置10.如图 11 是小孔成像原理的示意图,根据图中所标注的尺寸,这支蜡烛在暗盒中所成的像 CD 的长是()A . 1 6 cmB . 1 3 cmC .1 2cm D.1cm三、挑战你的选择(本大题共60 分)1(. 8 分)如图12,梯形ABCD中,AB∥DC ,∠B 90 ,E 为BC 上一点,且AE ED .若BC 12,2.如图5,在△ABC中,D ,E分别是AB 、AC 边上的点,DE∥BC,∠ADE 30 ,∠C 120 ,则∠A ()D C 7 ,BE∶EC=1∶2,求AB 的长.A.60°B.45°C.30°D.20°15.(14 分)阳光通过窗户照到室内,在地面上留下 2.7 米宽的光亮区,如图15,已知亮区一边到窗下墙脚2.(8 分)如图电线杆上有一盏路灯O,电线杆与三个等高的标杆整齐划一地排列在马路一侧的一直线的距离CE 8.7 米,窗口高AB 1.8 米,那么窗口底边离地面的高BC是多少米?上,AB、CD、EF 是三个标杆,相邻的两个标杆之间的距离都是 2 m,已知AB、CD 在灯光下的影长分别为BM = 1. 6 m,DN = 0. 6m.(1)请画出路灯O 的位置和标杆EF 在路灯灯光下的影子。
图形的相似经典测试题及答案
A.4B.8C.16D.24
【答案】C
【解析】
【分析】
延长根据相似三角形得到 ,再过点 作垂线,利用相似三角形的性质求出 、 ,进而确定点 的坐标,确定 的值.
【详解】
解:过点 作 ,垂足为 ,
是正方形,
5.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点P是直线BC上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P与点B之间的距离为( )
A.1B. C.1或3D. 或5
【答案】D
【解析】
【分析】
分点B1在BC左侧,点B1在BC右侧两种情况讨论,由勾股定理可AB=5,由平行线分线段成比例可得 ,可求BE,DE的长,由勾股定理可求PB的长.
【答案】C
【解析】
试题分析:根据相似图形的定义,可由三角形相似,那么它们边长的比相同,均为5:6:8,乙那个20cm的边可以当最短边,最长边和中间大小的边.
故选:C.
点睛:本题考查的是相似形的定义,相似图形的形状相同,但大小不一定相同.
13.如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点E,交AD边于点F,则 =()
【详解】
解:在平行四边形ABCD中,
AB=CD,∠BAE=∠DCF,BC=DA,
∵E,F分别是边AD,BC的中点,
∴AE=CF,
∴△ABE≌△CDF,故①正确;
∵AD∥BC,
∴△AGE∽△CGB,△CHF∽△AHD,
∴AG∶CG=EG∶BG=AE∶CB,CH∶AH=CF∶AD,
∵E,F分别是边AD,BC的中点,
《相似图形》测试题 2
《相似图形》单元测试班别: 姓名 得分:一、选择题(每题4分,共40分)1、已知mn xy =,把它改写成比例式后,错误的是( )。
A y m n x =B x n m y =C ny m x = D y n m x = 2、已知2=b a ,那么bb a +的值是( )。
A 3 B 4 C 5 D 63、下列两个图形一定相似的是( )。
A 两个矩形B 两个等腰三角形C 两个五边形D 两个正方形4、如果两个相似多边形面积的比是4:9,那么这两个相似多边形对应边的比是( )。
A 4:9B 2:3C 16:81D 9:4 5、如右图,四边形ABCD 是平行四边形,E 是BC 的延长线上一点,AE 与CD 相交于F ,与⊿CEF 相似的三角形有( )个。
A 1 B 2 C 3 D 46、如图2,D 为⊿ABC 边BC 上一点,要使⊿AB D ∽⊿CBA ,应该具备下列条件中的( )。
A BD AB CD AC = B AD BC CD AB = C AB BD CB AB = D ACCB CD AC =7、△ABC ∽△A ′B ′C ′,且∠B=68°,则∠B ′=( )A 22°B 44°C 68°D 80°8、下列四个三角形,与已知图构成相似的三角形是( )(已知图)A .B .C .D .图2B9、关于下列的表述,正确的有( )。
① 相似图形一定是位似图形,位似图形一定是相似图形;② 位似图形一定有位似中心;③ 相似三角形是全等三角形;④ 全等三角形是相似三角形.A ①②③④B ②③④C ②③D ②④10、如图,把△PQR 沿着PQ 的方向平移到△P ′Q ′R ′的位置,它们重叠部分的面积是△PQR 面积的一半,若PQPP ′是-------------( )A .12B.2 C .1 D1-二、填空题(每题4分,共16分) 11、已知d c b a ,,,是成比例线段,且5,8,2===c b a ,那么=d 。
图形的相似经典测试题含答案
【详解】
解: BCE BDA, CEB DEA
ADE∽B查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的
圆周角相等.
2.如果两个相似正五边形的边长比为 1:10,则它们的面积比为( )
A.1:2
B.1:5
C.1:100
D.1:10
【答案】C
∴∠DFG=∠A=90°,
在 Rt△ADG 和 Rt△FDG 中,
AD=DF DG=DG
,
∴Rt△ADG≌Rt△FDG(HL),故①正确;
设正方形 ABCD 的边长为 a,AG=FG=x,BG=a−x,
∵BE=EC,
∴EF=CE=BE= 1 a 2
∴GE= 1 a+x 2
由勾股定理得:EG2=BE2+BG2,
即:( 1 a+x)2=( 1 a)2+(a-x)2 解得:x= 1
2
2
3
∴BG=2AG,
故②正确; ∵BE=EF,
∴△BEF 是等腰三角形,易知△GED 不是等腰三角形,
∴△EBF 与△DEG 不相似,
故③错误; 连接 CF, ∵BE=CE,
∴BE= 1 BC, 2
∴S△BFC=2S△BEF. 故④错误, 综上可知正确的结论的是 2 个. 故选:B.
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质.
9.如图,在 Rt△ABC 中,∠ACB=90°,CD⊥AB 于点 D,如果 AC=3,AB=6,那么 AD 的值为 ()
A. 3 2
B. 9 2
C. 3 3 2
【答案】A
【解析】
【分析】
【详解】
第23章 图形的相似 达标测试卷(含答案)
第23章图形的相似达标测试卷一、选择题(每题3分,共24分)1.如图是某种汽车的标志示意图,下面选项的图形中与其相似的是()2.在△ABC中,D和E分别是BC和BA的中点,已知AC=4,则DE的长为() A.1 B.2 C.4 D.83.已知线段a,b,c,d是成比例线段,a=2,b=5,c=2 3,则d=()A. 153 B.4 155C.2 5 D.154.如图,AB∥CD∥EF,若ACCE=32,BD=12,则DF的长为()A.2 B.4 C.6 D.8(第4题)(第6题)(第7题)(第8题)5.若两个相似三角形的面积比是1∶9,则它们对应边的中线之比为() A.1∶9 B.3∶1 C.1∶3 D.1∶816.如图,△ABC和△DEF是以点O为位似中心的位似图形,若OA∶AD=2∶3,则△ABC与△DEF的周长之比是()A.2∶3 B.3∶2 C.2∶5 D.5∶27.如图,已知D是△ABC的边AC上一点,下列条件中,不能判定△CAB∽△CBD的是()A.∠A=∠CBD B.∠CBA=∠CDBC.AB·CD=BD·BC D.BC2=AC·CD8.如图,在平行四边形ABCD中,DE∶EC=3∶1,AE与BD交于点F,则S△DEF∶S四边形BCEF=()A .3∶5B .4∶7C .7∶15D .9∶19二、填空题(每题3分,共18分)9.在一幅比例尺是1∶6 000 000的图纸上,量得两地的图上距离是2 cm ,则两地的实际距离是________ km.10.如图,已知线段AB 和线段CD 是第一象限内以原点O 为位似中心的位似图形,点A 的坐标为(8,12),点C 的坐标为(2,3),则线段AB 和线段CD 的数量关系为________.(第10题) (第11题) (第12题) (第13题) (第14题) 11.如图,在△ABC 中,AB =13,BC =12,D ,E 分别是AB ,BC 的中点,连结DE ,CD ,如果DE =2.5,那么△ACD 的周长为________.12.如图,在正方形网格中,每个小正方形的边长均为1,△ABC 和△DEF 的顶点都在网格线的交点上.设△ABC 的周长为C 1,△DEF 的周长为C 2,则 C 1C2的值为________.13.图①,图②分别是液体沙漏某一时刻沙漏上半部分液面宽度与液面距离水平面高度的平面示意图,则图②中AB =__________cm.14.如图,在四边形ABCD 中,AD ∥BC ,∠ABC =90°,AB =8,AD =3,BC =4,P 为边AB 上一动点,若△P AD 与△PBC 是相似三角形,则满足条件的点P 有________个.三、解答题(第19~21题每题12分,第22题14分,其余每题7分,共78分) 15.已知a b =29,求2a -3b a +b 的值.16.王霞和爸爸妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出坐标原点O和x轴,y 轴,只知道游乐园D的坐标为(1,-2)(图中每个小正方形的边长均为1).(第16题)(1)请画出x轴,y轴,并标出坐标原点O;(2)写出其他各景点的坐标.17.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,连结DE,EF.已知四边形BFED是平行四边形,DEBC=14.(第17题)(1)若AB=12,求AD的长;(2)若△ADE的面积为1,求平行四边形BFED的面积.318.图①,图②均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)在图①中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(2)在图②中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1∶2.(第18题)19.如图,在△ABC中,BC=3,D为AC延长线上一点,AC=3CD,∠CBD=∠A,过点D作DH∥AB,交BC的延长线于点H.(第19题)(1)求证:△HCD∽△HDB;(2)求DH的长.20.如图所示,在△ABC中,DE∥BC,AD=5,BD=10,AE=3.(第20题) (1)求CE的长;(2)若点Q在BC上,AQ交DE于点P.小明认为DPBQ=PECQ,你认为小明的结论正确吗?请说明你的理由.21.如图,在Rt△ABC中,∠C=90°,AC=10 cm,BC=8 cm.点P从点C出发,5以2 cm/s的速度沿CA向点A匀速运动,同时点Q从点B出发,以1 cm/s的速度沿BC向点C匀速运动,当一个点到达终点时,另一个点随之停止.(第21题)(1)经过几秒后,△PCQ的面积等于△ABC的面积的2 5(2)经过几秒后,△PCQ与△ABC相似?22.【基础问题】(1)如图①,在矩形ABCD中,点E、F分别在边AD、CD上,BE⊥FE,AB=6,AE=9,DE=2,求DF的长;【拓展延伸】(2)如图②,在等边△ABC中,D为边BC上一点,E为边AB上一点,且∠ADE=60°,CD=3,BE=2,则BC的长为________;(3)如图③,在四边形ABCD中,DE∥BC,交AB于点E,CF∥AD,交AB于点F,∠DEC=∠A=∠B,FB=4,EB=6,则DEAE=________.(第22题)7 答案一、1.B 2.B 3.D 4.D 5.C 6.C 7.C 8.D二、9.120 10.AB =4CD 11.18 12.22 13.83 14.3三、15.解:∵a b =29,∴a 2=b 9. 设a 2=b9=k ,则a =2k ,b =9k ,∴2a -3b a +b =4k -27k 2k +9k=-23k 11k =-2311.(第16题)16.解:(1)x 轴,y 轴和原点O 如图所示.(2)音乐台A 的坐标为(-1,4),湖心亭B 的坐标为(-4,2),望春亭C 的坐标为(-3,-1),牡丹亭E 的坐标为(2,3).17.解:(1)∵四边形BFED 是平行四边形,∴DE ∥BF ,即DE ∥BC ,∴△ADE∽△ABC ,∴AD AB =DE BC =14. ∵AB =12,∴AD =3.(2)∵△ADE ∽△ABC ,∴S △ADE S △ABC =⎝ ⎛⎭⎪⎫DE BC 2=⎝ ⎛⎭⎪⎫142=116.∵△ADE 的面积为1,∴△ABC 的面积为16.∵四边形BFED 是平行四边形,∴EF ∥AB ,DE =BF ,∴△EFC ∽△ABC ,∴S △EFC S △ABC =⎝ ⎛⎭⎪⎫FC BC 2=⎝⎛⎭⎪⎫BC -BF BC 2=⎝ ⎛⎭⎪⎫BC -DE BC 2=⎝ ⎛⎭⎪⎫1-DE BC 2=⎝ ⎛⎭⎪⎫342=916,∴△EFC 的面积为9, ∴平行四边形BFED 的面积为16-9-1=6. 18.解:(1)如图①,点E 即为所求.(2)如图②,点P ,点Q 即为所求.(第18题)19.(1)证明:∵DH ∥AB ,∴∠A =∠HDC .∵∠CBD =∠A .∴∠HDC =∠CBD .又∵∠H =∠H ,∴△HCD ∽△HDB .(2)解:∵DH ∥AB ,∴△HCD ∽△BCA ,∴CD AC =CHBC . ∵AC =3CD ,BC =3,∴13=CH3,∴CH =1, ∴BH =BC +CH =3+1=4.由(1)知△HCD ∽△HDB ,∴DH BH =CHDH ,∴DH 2=4×1=4, ∴DH =2(负值舍去).20.解:(1)∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AD +BD =AEAE +EC.∵AD =5,BD=10,AE =3,∴CE =6.(2)结论正确.理由:在△ABQ 中,∵DP ∥BQ ,∴△ADP ∽△ABQ ,∴DP BQ =AP AQ .同理可得PE CQ =AP AQ ,∴DP BQ =PE CQ .21.解:(1)设经过x s 后,△PCQ 的面积等于△ABC 的面积的25.根据题意,得12×2x ×(8-x )=8×10×12×25.解得x 1=x 2=4.所以经过4 s 后,△PCQ 的面积等于△ABC 的面积的25.(2)设经过t s 后,△PCQ 与△ABC 相似,因为∠C =∠C ,所以分为两种情况:① PC BC =CQ CA ,即2t 8=8-t 10,解得t =167.②PC AC =CQ CB ,即 2t 10=8-t 8,解得t =4013.综上所述,经过167 s 或4013 s 后,△PCQ 与△ABC 相似.22.解:(1)∵BE ⊥FE ,∴∠BEF =90°.∵四边形ABCD 为矩形,∴∠A =∠D =90°,∴∠AEB +∠ABE =∠AEB +∠DEF =90°,∴∠ABE =∠DEF ,∴△ABE ∽△DEF ,∴AB DE =AE DF ,∴62=9DF ,解得DF =3.(2)9(3)62点拨:∵DE∥BC,∴∠DEC=∠BCE,∠B=∠DEA.∵AD∥CF,∴∠A=∠CFB.∵∠DEC=∠A=∠B,∴∠DEC=∠A=∠B=∠BCE=∠CFB=∠DEA,∴△DAE∽△CFB∽△ECB,∴EBBC=BCFB,DEBE=AEBC,即6BC=BC4,DE AE=EBBC,解得BC=24=2 6(负值舍去),∴DEAE=EBBC=62 6=62.9。
图形的相似基础测试题含答案解析
图形的相似基础测试题含答案解析一、选择题1.已知正方形ABCD 的边长为5,E 在BC 边上运动,DE 的中点G ,EG 绕E 顺时针旋转90°得EF ,问CE 为多少时A 、C 、F 在一条直线上( )A .35B .43C .53D .34【答案】C【解析】【分析】首先延长BC ,做FN ⊥BC ,构造直角三角形,利用三角形相似的判定,得出Rt △FNE ∽Rt △ECD ,再利用相似比得出1 2.52NE CD ==,运用正方形性质,得出△CNF 是等腰直角三角形,从而求出CE .【详解】解:过F 作BC 的垂线,交BC 延长线于N 点,∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,∴∠DEC=∠EFN ,∴Rt △FNE ∽Rt △ECD ,∵DE 的中点G ,EG 绕E 顺时针旋转90°得EF ,∴两三角形相似比为1:2,∴可以得到CE=2NF ,1 2.52NE CD == ∵AC 平分正方形直角,∴∠NFC=45°,∴△CNF 是等腰直角三角形,∴CN=NF , ∴2255.3323CE NE ==⨯= 故选C .【点睛】 此题主要考查了旋转的性质与正方形的性质以及相似三角形的判定等知识,求线段的长度经常运用相似三角形的知识解决,同学们应学会这种方法.2.如图,已知////AB CD EF ,:3:5AD AF =,6BC =,CE 的长为( )A.2B.4C.3D.5【答案】B【解析】【分析】根据平行线分线段成比例定理列出比例式,计算即可.【详解】∵AD:AF=3:5,∴AD:DF=3:2,∵AB∥CD∥EF,∴AD BCDF CE=,即362CE=,解得,CE=4,故选B.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.3.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.12【答案】D【解析】分析:根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.详解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选D.点睛:本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.4.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC 的长为()A.2 B.4 C.6 D.8【答案】B【解析】【分析】证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.【详解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴AC AD AB AC=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.5.如图,在△ABC中,DE∥BC,BE和CD相交于点F,且S△EFC=3S△EFD,则S△ADE:S△ABC的值为()A.1:3 B.1:8 C.1:9 D.1:4【答案】C【解析】【分析】根据题意,易证△DEF∽△CBF,同理可证△ADE∽△ABC,根据相似三角形面积比是对应边比例的平方即可解答.【详解】∵S△EFC=3S△DEF,∴DF:FC=1:3 (两个三角形等高,面积之比就是底边之比),∵DE∥BC,∴△DEF∽△CBF,∴DE:BC=DF:FC=1:3同理△ADE∽△ABC,∴S△ADE:S△ABC=1:9,故选:C.【点睛】本题考查相似三角形的判定和性质,解题的关键是掌握相似三角形面积比是对应边比例的平方.6.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点P是直线BC 上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P与点B 之间的距离为()A.1 B.54C.1或 3 D.54或5【答案】D【解析】【分析】分点B1在BC左侧,点B1在BC右侧两种情况讨论,由勾股定理可AB=5,由平行线分线段成比例可得12BD BE DEAB BC AC===,可求BE,DE的长,由勾股定理可求PB的长.【详解】解:如图,若点B1在BC左侧,∵∠C=90°,AC=3,BC=4,∴AB=225AC BC+=∵点D是AB的中点,∴BD=12BA=52∵B1D⊥BC,∠C=90°∴B1D∥AC∴12 BD BE DEAB BC AC===∴BE=EC=12BC=2,DE=12AC=32∵折叠∴B1D=BD=52,B1P=BP∴B1E=B1D-DE=1∴在Rt△B1PE中,B1P2=B1E2+PE2,∴BP2=1+(2-BP)2,∴BP=5 4如图,若点B1在BC右侧,∵B1E=DE+B1D=32+52,∴B1E=4在Rt△EB1P中,B1P2=B1E2+EP2,∴BP 2=16+(BP-2)2,∴BP=5故选:D .【点睛】本题考查了折叠的性质、直角三角形的性质以及勾股定理.此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系.7.如图,在矩形ABCD 中,1AB =,在BC 上取一点E ,沿AE 将ABE ∆向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD 的长为( )A .2B 3C 15±D .152【答案】D【解析】【分析】 可设AD=x ,由四边形EFDC 与矩形ABCD 相似,根据相似多边形对应边的比相等列出比例式,求解即可.【详解】解:∵1AB =,设AD=x ,则FD=x-1,FE=1,∵四边形EFDC 与矩形ABCD 相似, ∴EF AD DF AB=,即111x x =-, 解得:1152x +=,2152x -=(不合题意,舍去) 经检验152x +=,是原方程的解. ∴15AD +=. 故选:D .【点睛】本题考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC 与矩形ABCD 相似得到比例式.8.如图,矩形ABCD 中,AB =8,AD =4,E 为边AD 上一个动点,连接BE ,取BE 的中点G ,点G 绕点E 逆时针旋转90°得到点F ,连接CF ,则△CEF 面积的最小值是( )A .16B .15C .12D .11【答案】B【解析】【分析】 过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【详解】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA ,∴△FEH ∽△EBA ,∴ ,HF HE EF AE AB BE== G Q 为BE 的中点,1,2FE GE BE ∴== ∴ 1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴== CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+= 故选:B .【点睛】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.9.如果两个相似正五边形的边长比为1:10,则它们的面积比为( )A .1:2B .1:5C .1:100D .1:10 【答案】C【解析】根据相似多边形的面积比等于相似比的平方,由两个相似正五边形的相似比是1:10,可知它们的面积为1:100.故选:C .点睛:此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.10.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm【答案】B【解析】【分析】【详解】 由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则 123k b {507k b=+=+, 解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==. 故选B .11.如图,已知AOB ∆和11A OB ∆是以点O 为位似中心的位似图形,且AOB ∆和11A OB ∆的周长之比为1:2,点B 的坐标为()1,2-,则点1B 的坐标为( ).A .()2,4-B .()1,4-C .()1,4-D .()4,2-【答案】A【解析】【分析】 设位似比例为k ,先根据周长之比求出k 的值,再根据点B 的坐标即可得出答案.【详解】设位似图形的位似比例为k则1111,,OA kOA OB kOB A B kAB ===△AOB Q 和11A OB △的周长之比为1:2111112OA OB AB OA OB A B ++∴=++,即12OA OB AB kOA kOB kAB ++=++ 解得2k =又Q 点B 的坐标为(1,2)-∴点1B 的横坐标的绝对值为122-⨯=,纵坐标的绝对值为224⨯= Q 点1B 位于第四象限∴点1B 的坐标为(2,4)-故选:A .【点睛】本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键.12.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A 在反比例函数y=6x (x >0)的图象上,则经过点B 的反比例函数解析式为( )A.y=﹣6xB.y=﹣4xC.y=﹣2xD.y=2x【答案】C 【解析】【分析】直接利用相似三角形的判定与性质得出13BCOAODSS=VV,进而得出S△AOD=3,即可得出答案.【详解】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∵BOAO=tan30°3∴13BCOAODSS=VV,∵12×AD×DO=12xy=3,∴S△BCO=12×BC×CO=13S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣2x.故选C.【点睛】此题主要考查了相似三角形的判定与性质,反比例函数数的几何意义,正确得出S △AOD =2是解题关键.13.如图,点A ,B 是双曲线18y x=图象上的两点,连接AB ,线段AB 经过点O ,点C 为双曲线k y x=在第二象限的分支上一点,当ABC V 满足AC BC =且:13:24AC AB =时,k 的值为( ).A .2516-B .258-C .254-D .25-【答案】B【解析】【分析】如图作AE ⊥x 轴于E ,CF ⊥x 轴于F .连接OC .首先证明△CFO ∽△OEA ,推出2()COF AOE S OC S OA∆∆=,因为CA :AB =13:24,AO =OB ,推出CA :OA =13:12,推出CO :OA =5:12,可得出2()COF AOE S OC S OA ∆∆==25144,因为S △AOE =9,可得S △COF =2516,再根据反比例函数的几何意义即可解决问题.【详解】解:如图作AE ⊥x 轴于E ,CF ⊥x 轴于F .连接OC .∵A 、B 关于原点对称,∴OA =OB ,∵AC =BC ,OA =OB ,∴OC ⊥AB ,∴∠CFO =∠COA =∠AEO =90°,∴∠COF +∠AOE =90°,∠AOE +∠EAO =90°,∴∠COF =∠OAE ,∴△CFO ∽△OEA , ∴2()COF AOE S OC S OA∆∆=, ∵CA :AB =13:24,AO =OB ,∴CA :OA =13:12,∴CO :OA =5:12, ∴2()COF AOE S OC S OA ∆∆==25144, ∵S △AOE =9,∴S △COF =2516, ∴||25216k =, ∵k <0, ∴258k =- 故选:B .【点睛】本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.14.如图,将图形用放大镜放大,应该属于( ).A.平移变换B.相似变换C.旋转变换D.对称变换【答案】B【解析】【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【点睛】本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.15.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )A.2 B.3 C.4 D.5【答案】B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴AE AG BF BE,又∵AE=BE,∴AE2=AG•BF=2,∴AE=2(舍负),∴GF 2=GE 2+EF 2=AG 2+AE 2+BE 2+BF 2=1+2+2+4=9,∴GF 的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG ∽△BFE .16.如图,△AOB 是直角三角形,∠AOB =90°,△AOB 的两边分别与函数12,y y x x=-=的图象交于B 、A 两点,则等于( )A .22B .12C .14D 3【答案】A【解析】【分析】过点A,B 作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C,D.根据条件得到△ACO ∽△ODB.根据反比例函数比例系数k 的几何意义得出2()S OBD OB S AOC OA ∆=∆=121=12利用相似三角形面积比等于相似比的平方得出2OB OA =【详解】 ∵∠AOB =90°,∴∠AOC +∠BOD =∠AOC +∠CAO =90°,∠CAO =∠BOD ,∴△ACO ∽△BDO ,∴2()S OBD OB S AOC OA∆=∆ , ∵S △AOC =12 ×2=1,S △BOD =12×1=12, ∴2()OB OA =121=12 ,∴2 OBOA,故选A.【点睛】此题考查了反比例函数图象上点的坐标特征和相似三角形的判定与性质,解题关键在于做辅助线,然后得到相似三角形再进行求解17.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1,当点C1、B1、C三点共线时,旋转角为α,连接BB1,交AC于点D.下列结论:①△AC1C 为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1,其中正确的是()A.①③④B.①②④C.②③④D.①②③④【答案】B【解析】【分析】将△ABC绕点A顺时针旋转得到△AB1C1,得到△ABC≌△AB1C1,根据全等三角形的性质得到AC1=AC,于是得到△AC1C为等腰三角形;故①正确;根据等腰三角形的性质得到∠C1=∠ACC1=30°,由三角形的内角和得到∠C1AC=120°,得到∠B1AB=120°,根据等腰三角形的性质得到∠AB1B=30°=∠ACB,于是得到△AB1D∽△BCD;故②正确;由旋转角α=120°,故③错误;根据旋转的性质得到∠C1AB1=∠BAC=45°,推出∠B1AC=∠AB1C,于是得到CA=CB1;故④正确.【详解】解:∵将△ABC绕点A顺时针旋转得到△AB1C1,∴△ABC≌△AB1C1,∴AC1=AC,∴△AC1C为等腰三角形;故①正确;∴AC1=AC,∴∠C1=∠ACC1=30°,∴∠C1AC=120°,∴∠B1AB=120°,∵AB1=AB,∴∠AB1B=30°=∠ACB,∵∠ADB1=∠BDC,∴△AB1D∽△BCD;故②正确;∵旋转角为α,∴α=120°,故③错误;∵∠C1AB1=∠BAC=45°,∴∠B1AC=75°,∵∠AB1C1=∠BAC=105°,∴∠AB1C=75°,∴∠B1AC=∠AB1C,∴CA=CB1;故④正确.故选:B.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.18.下列图形中,一定相似的是()A.两个正方形 B.两个菱形 C.两个直角三角形 D.两个等腰三角形【答案】A【解析】【分析】根据相似形的对应边成比例,对应角相等,结合正方形,菱形,直角三角形,等腰三角形的性质与特点对各选项分析判断后利用排除法.【详解】A、两个正方形角都是直角一定相等,四条边都相等一定成比例,所以一定相似,故本选项正确;B、两个菱形的对应边成比例,角不一定相等,所以不一定相似,故本选项错误;C、两个直角三角形的边不一定成比例,角不一定相等,所以不一定相似,故本选项错误;D、两个等腰三角形的边不一定成比例,角不一定相等,所以不一定相似,故本选项错误.故选A.【点睛】本题主要考查了相似图形的定义,比较简单,要从边与角两方面考虑.19.如图,点D是△ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论错误的是()A .AD AE BD EC =B .AF DF AE BE =C .AE AF EC FE =D .DE AF BC FE = 【答案】D【解析】【分析】 由平行线分线段成比例和相似三角形的性质进行判断. 【详解】∵DE //BC ,∴AD AE BD EC= ,故A 正确; ∵DF //BE ,∴△ADF ∽△ABF , ∴AF DF AE BE =,故B 正确; ∵DF //BE ,∴ AD AF BD FE =,∵AD AE BD EC= ,∴AE AF EC FE =,故C 正确; ∵DE //BC ,∴△ADE ∽△ABC ,∴DE AD BC AB =,∵DF //BE ,∴AF AD AE AB =,∴DE AF BC AE =,故D 错误.故选D.【点睛】本题考查平行线分线段成比例性质,相似三角形的性质,由平行线得出比例关系是关键.20.如图,P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点,△PEF 、△PDC 、△PAB 的面积分别为S 、1S 、2S ,若S=2,则1S +2S =( ).A .4B .6C .8D .不能确定 【答案】C【解析】 试题分析:过P 作PQ ∥DC 交BC 于点Q ,由DC ∥AB ,得到PQ ∥AB ,可得出四边形PQCD 与ABQP 都为平行四边形,所以△PDC ≌△CQP ,△ABP ≌△QPB ,进而确定出△PDC 与△PCQ 面积相等,△PQB 与△ABP 面积相等,再由EF 为△BPC 的中位线,利用中位线定理得到EF ∥BC ,EF=12BC ,得出△PEF 与△PBC 相似,相似比为1:2,面积之比为1:4,所以PBC CQP QPB PDC ABP S S S S S =+=+V V V V V =1S +2S =8. 故选C .考点:平行四边形的性质;三角形中位线定理.。
图形的相似及答案
图形的相似检测试题一、填空题(每小题6分,本题满分30分)1.如图,D、E是三角形ABC中边AB、AC上的点,DE∥BC,已知AB=8cm,AC=12cm,BD=3cm,则AE= ,EC= .2.两个相似三角形的一组对应边长分别为15和27,它们的周长之差为36,则较小三角形的周长是 .3.相距1000km的两市在比例尺为1:30000000的地图上的距离约是cm (精确到0.1);某市规划筹建一个开发区,这个开发区在1:50000的地图上面积是30cm2,实际占地面积约为km24.如图,E是平行四边形ABCD边CD的中点,连结AE、BD,交于点O.如果已知△ADE的面积是6,试写出能求出的图形面积(要求写出四个以上图形的面积).5.已知△ABC在坐标平面内三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).以B为位似中心,画出与△ABC相似(与图形同向),且相似比是3的三角形,它的三个对应顶点的坐标分别是 .二、选择题(每小题5分,本题满分25分)6.语句:“①所有度数相等的角都相似;②所有边长相等的菱形都相似;③所有的正方形都相似;④所有的圆都相似”中准确的有( ).(A)4句 (B)3句 (C)2句 (D)1句7.D、E分别是△ABC中边AB、AC上的点,若DE∥BC,且S△ADE =S梯形DBCE,则AD:DB=( ).8.如图,AB、CD都是BD的垂线,AB=4,CD=6,BD=14.P是BD上一点,连结AP、CP,所得两个三角形相似,则BP的长是( ).(A)2 (B)5.6(C)12 (D)上述各个值都有可能9.我们已经学习和掌握了不少在平地上测量建筑物高度的方法,如果在同一个斜坡上,在同一时刻,测得在斜坡上自己的影子和一幢大楼的影子长,那么由自己的身高( ).(A)也能够求出楼高(B)还须知道斜坡的角度,才能求出楼高(C)不能求出楼高(D)只有在光线垂直于斜坡时,才能求出楼高10.相邻两根电杆都用钢索在地面上固定,如图,一根电杆钢索系在离地面4米处,另一根电杆钢索系在离地面6米处,则中间两根钢索相交处点P离地面( ).(A)2.4米 (B)2.8米(C)3米 (D)高度不能确定三、解答题(每小题9分,本题满分45分)11.一个直立的油桶高0.8米,在顶部的一个开口中将一根长1米的木杆斜着插入桶内,上端正好与桶面相平,抽出后看到杆上油浸到部分长0.8米,求油桶内油面的高度.12.一块三角形的余料,底边BC长1.8米,高AD=1米,如图. 要利用它裁剪一个长宽比是3:2的长方形,使长方形的长在BC上,另两个顶点在AB、AC上,求长方形的长EH和宽EF的长.13.学生会举办一个校园摄影艺术展览会,小华和小刚准备将矩形的作品四周镶上一圈等宽的纸边,如图所示.两人在设计时发生了争执:小华要使内外两个矩形相似,感到这样视觉效果较好;小刚试了几次不能办到,表示这是不可能的.小红和小莉了解情况后,小红说这一要求只有当矩形是黄金矩形时才能做到,小莉则坚持只有当矩形是正方形时才能做到.请你动手试一试,说一说你的看法.14.如图,正方形MNPQ的顶点在三角形ABC的边上,当边BC=a与高AD=h 满足什么条件时,正方形MNPQ的面积是三角形ABC面积的一半?15.已知两个不相似的直角三角形ABC和A′B′C′中∠C=∠C′ =90°,能否将这两个三角形各分割成两个小三角形,使它们分别相似?你能想出几种分割方法?能否将这个问题推广到有一个角相等的两个任意三角形?答案2.45.3.3.3;7.5.5.(-6,0)、(3,3)、(0,-3).6.B.7.D.8.D、9.A. 10.A. 11.0.64米.15.①若考虑保持两个直角不变,可以从∠A和∠B′中较大的∠A中作∠BAD=∠B′,一边交BC于D,同理在∠B′A′C′中作∠B′A′D′=∠B,一边交B′C′于D′,则所得两对小三角形对应相似;②也可以在直角∠C内作∠ACD=∠A′,一边交AB于D,在直角∠内作∠B′C′D′=∠B,一边交A′B′于D′,所得两对小三角形对应相似. 对有一个内角相等的任意两个三角形也能作这样的分割,但第二种方法不一定可行.。
专题04 图形的相似(五大类型)(题型专练)(原卷版)
专题04 图形的相似(五大类型)【题型1位似图形性质】【题型2 位似图形的点坐标】【题型3 判定位似中心】【题型4 位似图形-作图】【题型5 平移、轴对称、旋转和位似综合】【题型1位似图形性质】1.(2023春•乳山市期末)如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=3,AC=5,则=()A.B.C.D.2.(2023•开州区校级模拟)如图,△ABC与△DEF位似,点O是位似中心,且OD=2AD,则S△ABC :S△DEF=()A.3:2B.9:4C.9:1D.4:1 3.(2023•衡南县三模)如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且,则()A.B.C.D.4.(2023•宿豫区三模)如图,△ABC与△DEF是位似图形,位似中心为O,OA:AD=3:4,S△ABC=9,则△DEF的面积为()A.12B.16C.21D.49 5.(2023•大理州模拟)如图,△ABC与△DEF位似,点O为位似中心,位似比为2:3,若△ABC的面积为4,则△DEF的面积是()A.6B.9C.12D.16 6.(2023春•石景山区期中)如图,四边形ABCD与四边形EFGH是位似图形,点O是位似中心.若,四边形ABCD的面积是100,则四边形EFGH 的面积是()A.4B.16C.36D.7.(2023•汇川区模拟)如图,△ABC和△DEF是位似三角形,点O是位似中心,且AC=9,DF=3,OA=6,则OD=()A.2B.4C.6D.8 8.(2023春•太仓市期末)如图,在平面直角坐标系中,将△OAB以原点O为位似中心放大后得到△OCD,若A(1,0),C(3,0),则△OAB与△OCD 的面积比是()A.1:2B.1:3C.1:4D.1:9 9.(2023•岳麓区校级模拟)如图所示,△ABC与△DEF是位似图形,点O为位似中心.若AD=3OA,△ABC的周长为5,则△DEF的周长为()A.10B.15C.25D.125【题型2 位似图形的点坐标】9.(2022秋•江北区校级期末)如图,在平面直角坐标系中△ABC与△A'B'C'位似,且原点O为位似中心,其位似比1:2,若点B(﹣2,﹣1),则其对应点B'的坐标为()A.(2,4)B.(4,2)C.(2,1)D.(1,2)10.(2023•舟山三模)在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(2,﹣1)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)11.(2023•市南区校级二模)如图,在平面直角坐标系中,等边三角形OAB的顶点O(0,0),B(2,0),已知△OA'B′与△OAB位似,位似中心是原点O,且△OA'B′的面积是△OAB面积的4倍,则点A对应点A′的坐标为()A.B.或C.D.或12.(2023春•岱岳区期末)如图,△OAB和△OCD是以点O为位似中心的位似图形,已知A(﹣4,2),△OAB与△OCD的相似比为2:1,则点C的坐标为()A.(2,﹣1)B.(﹣2,1)C.(1,﹣2)D.(﹣1,2)13.(2023春•肥城市期末)如图,矩形OABC与矩形ODEF是位似图形,点P 是位似中心.若点B的坐标为(2,3),点E的横坐标为﹣1,则点P的坐标为()A.(﹣2,0)B.(0,﹣2)C.D.14.(2023春•长寿区校级期中)如图,线段AB两个端点坐标分别为A(6,9),B(9,3),以原点O为位似中心,在第三象限内将线段AB缩小为原来的后,得到线段CD,则点C的坐标为()A.(﹣2,﹣3)B.(﹣3,﹣2)C.(﹣3,﹣1 )D.(﹣2,﹣1)15.(2023•杜集区校级模拟)如图,在平面直角坐标系中,△A'B'C'与△ABC 位似,位似中心为原点O,已知点A(﹣1,﹣1),C(﹣4,﹣1),A'C'=6,则点C'的坐标为()A.(2,2)B.(4,2)C.(6,2)D.(8,2)【题型3 判定位似中心】16.(2022秋•泉州期末)如图,在8×8网格中,△ABC和△A'B'C'位似,则位似中心为()A.点O B.点P C.点Q D.点R 17.(2023•长安区模拟)图中的两个三角板是位似图形,则位似中心可能是()A.点A B.点B C.点C D.点D 18.(2022秋•青县期末)如图中的两个三角形是位似图形,点M的坐标为(3,2),则它们位似中心的坐标是()A.(0,2)B.(0,3)C.(2,﹣1)D.(2,3 )19.(2023春•烟台期末)如图,点A的坐标为(﹣3,1),点B的坐标为(﹣1,1),点C的坐标为(0,﹣1).(1)求出△ABC的面积;(2)请以点O为位似中心作一个与△ABC位似的△A1B1C1,使得△A1B1C1的面积为18.20.(2022秋•未央区期末)如图,在平面直角坐标系中,△ABO的顶点都在正方形网格顶点上.以原点O为位似中心,相似比为1:2,在y轴的右侧,画出将△ABO放大后得到的△A1B1O.【题型4 位似图形-作图】21.(2023春•福山区期末)已知,△ABC在平面直角坐标系的位置如图所示,点A,B,C的坐标分别为(1,0),(4,﹣1),(3,2).△A1B1C1与△ABC是以点P为位似中心的位似图形.(1)请画出点P的位置,并写出点P的坐标;(2)以点O为位似中心,在y轴左侧画出△ABC的位似图形△A2B2C2,使相似比为1:1,若点M(a,b)为△ABC内一点,则点M在△A2B2C2内的对应点的坐标为.【题型5 平移、轴对称、旋转和位似综合】22.(2023•碑林区校级模拟)如图,在平面直角坐标系中,△AOB的顶点均在网格格点上,且点A、B的坐标分别为A(3,1),B(2,﹣1).(1)在y轴的左侧以原点O为位似中心作△OAB的位似图形△OA1B1(点A、B的对应点分别为A1,B1)使△OA1B1与△OAB的相似比为2:1;(2)在(1)的条件下,计算△OA1B1的面积为.23.(2023•南山区校级一模)在平面直角坐标系内,△ABC的位置如图所示.(1)将△ABC绕点O顺时针旋转90°得到△A1B1C1,作出△A1B1C1.(2)以原点O为位似中心,在第四象限内作出△ABC的位似图形△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.24.(2023春•荣成市期末)如图,在边长为1的小正方形组成的网格中,△ABC 的顶点在格点(网格线的交点)上,以点O为原点建立平面直角坐标系,点B的坐标为(1,0).(1)将△ABC向左平移5个单位长度,得到△A1B1C1,画出△A1B1C1;(2)以点O为位似中心,将△A1B1C1放大到两倍(即新图与原图的相似比为2),得到△A2B2C2,在所给的方格纸中画出△A2B2C2;(3)若点M是AB的中点,经过(1)、(2)两次变换,M的对应点M2的坐标是.25.(2023•碑林区校级模拟)如图,在由边长为1的小正方形组成的网格中,△ABC的三个顶点坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).(1)请在网格中画出△ABC关于x轴对称的△A1B1C1.(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)①点B1的坐标为;②求△A2B2C2的面积.26.(2022秋•青羊区期中)已知O是坐标原点,A、B的坐标分别为(3,1)、(2,﹣1).(1)画出△OAB绕点O顺时针旋转90°后得到的△OA1B1;(2)在y轴的左侧以O为位似中心作△OAB的位似图形△OA2B2,使新图与原图相似比为2:1;(3)求出△OA2B2的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章《相似图形》测试题
姓名___________ 班级__________ 分数_________
一、选择题(9×3′=27′) 1、下列说法
“①凡正方形都相似;②凡等腰三角形都相似;③凡等腰直角三角形都相似;④直角三角形斜边上的中线与斜边的比为1∶2;⑤两个相似多边形的面积比为4∶9,则周长的比为16∶81.”中,正确的个数有(
)个
A 、1
B 、2
C 、3
D 、4
2、已知△ABC ∽△A ′B ′C ′,且相似比为3:2,若A ′B ′=10cm ,则AB 等于( )
A 、320
cm B 、15cm C 、30cm D 、20cm
3、Rt ∆ABC 中,CD 是斜边AB 上的高,∠BAC 的平分线分别交BC 、CD 于点E 、F 。
图中共有8个三角形,如果把一定相似的三角形归为一类,那么图中的三角形可分为( )类。
A .2
B .3
C .4
D .5
4、如图,点M 在BC 上,点N 在AM 上,CM=CN ,CM
BM
AN AM =
,下列结论正确的是( )
A .∆ABM ∽∆AC
B B .∆AN
C ∽∆AMB C .∆ANC ∽∆ACM
D . ∆CMN ∽∆BCA 5、在下列各组线段中,不成比例的是( )
32,15,5,2..10,5,6,4..3,6,2,1..4,2,6,3.================d c b a D d c b a C d c b a B d c b a A
第3题
A
B
C
E
F 第4题
A
N
A
D
C
第6题
6、如图,△ABC 中,AD ⊥BC 于D ,下列条件:
⑴∠B +∠DAC =90°;⑵∠B =∠DAC ;⑶CD
AD =AC AB ;⑷BC BD AB ∙=2
其中一定能够
判定△ABC 是直角三角形的有( )
A 、1
B 、2
C 、3
D 、4 7、如图,D 、
E 分别是△ABC 的边AB 、AC 上的点, ∠1=∠B ,AE =EC =4,BC =10,AB =12, 则△ADE 和△ACB 的周长之比为( ) A 、12 B 、13 C 、14 D 、16
8、在△ABC 与△C B A '''中,有下列条件:①C B BC B A AB ''='';⑵C A AC
C B BC ''=
''③∠A =∠A ';④∠C =∠C '。
如果从中任取两个条件组成一组,那么能判断△ABC ∽△C B A '''的共
有( )组。
A 、1
B 、2
C 、3
D 、4
9、如图所示,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是( )
二、填空题(8×3′=24′)
10、设x 3 =y 5 =z
7 ,则x+y y =______,y+3z
3y-2z =______.
11、如图,四边形EFGH 是∆ABC 内接正方形, BC=21cm ,高AD=15cm ,则内接 正方形边长EF=____________。
12、如图,要使∆AEF 和∆ACB 相似,已具备条件__________________,还需补充的条件是_________,或_________,或_________。
13、在1:38000的交通图上,一公路长7cm ,则它的实际长度是 _________ km 。
14、RT ∆ABC 中,AC ⊥BC ,CD ⊥AB 于D ,AC=8,BC=6,则AD=_________。
第7题
B
E
F H
I
第11题
G
C
D A
15、某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为 米。
16、如图,在梯形ABCD 中,AD ∥BC ,AC 、BD 交于O 点,S △AOD :S △COB =1:9,则S △
DOC :S △BOC =
17、如图,已知点D 是AB 边的中点,AF ∥BC,CG ∶GA=3∶1,BC=8,则AF = 三、解答题(共49分)
18、(7′)如图,已知AD=3cm ,AC=6cm ,BC=9cm,∠B=36°,∠D=117°,△ABC ∽△DAC.(1)求AB 的长;(2)求DC 的长;(3)求∠BAD 的大小。
19、(7′)如图,把一个矩形纸片ABCD 沿AD 和BC 的中点连线EF 对折,要使矩形
AEFB 与原矩形相似,则原矩形长与宽的比为多少?
第14题
C
D 第12题
A E
F A
B
D
O
第16题
A
B D
F
G C
E
第17题
20、(7′)如图,在△ABC 中,DE ∥BC ,且S △ADE :S 四边形BCED =1:2,BC =26。
求DE 的长。
21、(7′)将下图缩小,使缩小前后的相似比为2:1,并保持图形原来的方向.
22、(13′)如图:四边形ABCD 中,∠A=∠BCD=90°,①过C 作对角线BD 的垂线交BD 、AD 于点E 、F ,求证:DA DF CD ⋅=2
;②如图:若过BD 上另一点E 作BD 的垂线交BA 、BC 延长线于F 、G ,又有什么结论呢?你会证明吗?
A
B
C
D F
E
A
B
C
D
F E
G
A
B
C
D
E。