立体几何(2)
高中数学必修2立体几何专题二面角典型例题解法总结(最新整理)
AA 1 =2, E、E 1 、F 分别是棱 AD、AA 1 、AB 的中点。
D1
A1 (1) 证明:直线 EE 1 //平面 FCC 1 ;
C1 B1
(2) 求二面角 B-FC 1 -C 的余弦值。
E1
D
E
A
F
C B
证(1)略 解 ( 2) 因 为 AB=4, BC=CD=2, 、 F 是 棱 AB 的 中 点 ,所 以 A1 BF=BC=CF,△BCF 为正三角形,取 CF 的中点 O,则 OB⊥CF,又因
分析:本题是一道典型的利用三垂线定理求二面角问题,在证明 AD⊥平面 PAB 后,容易发现平面 PAB⊥ 平面 ABCD,点 P 就是二面角 P-BD-A 的半平面上的一个点,于是可过点 P 作棱 BD 的垂线,再作平面 ABCD
的垂线,于是可形成三垂线定理中的斜线与射影内容,从而可得本解法。(答案:二面角 P BD A 的大
2 ,则 GF
2
,
2
又∵ SA AC 6 ,∴ AM 2 ,∵ AM AB 2 , ABM 600 ∴△ ABM 是等边三角形,∴
BF 3 。在△ GAB 中, AG 6 , AB 2 , GAB 900 ,∴ BG 3 4 11
2
2
2
cos BFG GF 2 FB 2 BG 2
6
,求二面角 E—AF—C 的余弦值.
2
分析:第 1 题容易发现,可通过证 AE⊥AD 后推出 AE⊥平面 APD,使命 题获证,而第 2 题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在 二面角的棱 AF 上找到可计算二面角的平面角的顶点 S,和两边 SE 与 SC,进而计算二面角的余弦值。(答
高一数学必修2立体几何知识点详细总结
立体几何一、立体几何网络图:(1)线线平行的判断:⑴平行于同一直线的两直线平行。
⑶如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
⑹如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
⑿垂直于同一平面的两直线平行。
(2)线线垂直的判断:⑺在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
⑻在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。
⑽若一直线垂直于一平面,这条直线垂直于平面内所有直线。
补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。
(3)线面平行的判断:⑵如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
⑸两个平面平行,其中一个平面内的直线必平行于另一个平面。
(4)线面垂直的判断:⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。
⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。
⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。
(5)面面平行的判断:⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。
⒀垂直于同一条直线的两个平面平行。
(6)面面垂直的判断:⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。
二、其他定理:(1)确定平面的条件:①不公线的三点;②直线和直线外一点;③相交直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。
专题8.8 立体几何中的向量方法(二)—求空间角与距离(重难点突破)(解析版)
专题8.7 立体几何中的向量方法(二)求空间角与距离一、考纲要求1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;2.了解向量方法在研究立体几何问题中的应用.二、考点梳理考点一 异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则a 与b 的夹角β l 1与l 2所成的角θ范围 (0,π) ⎝⎛⎦⎤0,π2 求法cos β=a ·b|a ||b |cos θ=|cos β|=|a ·b ||a ||b |考点二 求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.考点三 求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【特别提醒】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.2.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.三、题型分析例1. (黑龙江鹤岗一中2019届期末)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值为( )A.3-225B.2-26C.12D.32【答案】A【解析】因为BC →=AC →-AB →,所以OA →·BC →=OA →·AC →-OA →·AB →=|OA →||AC →|cos 〈OA →,AC →〉-|OA →||AB →|cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120°=-162+24. 所以cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=24-1628×5=3-225.即OA 与BC 所成角的余弦值为3-225.【变式训练1-1】、(天津新华中学2019届高三质检)如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值.【解析】(1) 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝⎛⎭⎫12+12+12=6, ∴|AC →1|=6,即AC 1的长为 6. (2)证明 ∵AC 1→=a +b +c ,BD →=b -a ,∴AC 1→·BD →=(a +b +c )·(b -a )=a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =b ·c -a ·c =|b ||c |cos 60°-|a ||c |cos 60°=0.∴AC 1→⊥BD →,∴AC 1⊥BD .(3)解 BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.例2、(2018年天津卷)如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】依题意,可以建立以D 为原点, 分别以,,的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,,1),N (1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.【变式训练2-1】、(吉林长春市实验中学2019届高三模拟)如图所示,在四棱锥P-ABCD中,底面ABCD 是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过点E作EF⊥PB于点F.求证:(1)PA ∥平面EDB ; (2)PB ⊥平面EFD .【证明】以D 为坐标原点,射线DA ,DC ,DP 分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系D -xyz .设DC =a .(1)连接AC 交BD 于点G ,连接EG .依题意得A (a,0,0),P (0,0,a ),C (0,a,0),E ⎝⎛⎭⎫0,a 2,a 2. 因为底面ABCD 是正方形,所以G 为AC 的中点故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0,所以PA ―→=(a,0,-a ),EG ―→=⎝⎛⎭⎫a2,0,-a 2, 则PA ―→=2EG ―→,故PA ∥EG .而EG ⊂平面EDB ,PA ⊄平面EDB ,所以PA ∥平面EDB . (2)依题意得B (a ,a,0),所以PB ―→=(a ,a ,-a ).又DE ―→=⎝⎛⎭⎫0,a 2,a 2, 故PB ―→·DE ―→=0+a 22-a 22=0,所以PB ⊥DE ,所以PB ⊥DE .由题可知EF ⊥PB ,且EF ∩DE =E ,所以PB ⊥平面EFD .例3、如图,在四棱锥PABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =22,PA =2,求异面直线BC 与AE 所成的角的大小.【解析】 建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,22,0),E(1,2,1),AE →=(1,2,1),BC →=(0,22,0).设AE →与BC →的夹角为θ,则cosθ=AE →·BC →|AE →|·|BC →|=42×22=22,所以θ=π4,所以异面直线BC 与AE 所成的角的大小是π4.【变式训练3-1】、 如图所示,在空间直角坐标系中有直三棱柱ABCA 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________.【答案】55【解析】 不妨令CB =1,则CA =CC 1=2,可得C(0,0,0),B(0,0,1),C 1(0,2,0),A(2,0,0),B 1(0,2,1),所以BC 1→=(0,2,-1),AB 1→=(-2,2,1),所以cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→|·|AB 1→|=4-15×9=15=55>0,所以BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,所以直线BC 1与直线AB 1夹角的余弦值为55.【变式训练3-2】、如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点. (1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】 (1)证明:连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E -xyz . 不妨设AC =4,则A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝⎛⎭⎫32,32,23,C (0,2,0). 因此,EF ―→=⎝⎛⎭⎫32,32,23,BC ―→=(-3,1,0).由EF ―→·BC ―→=0得EF ⊥BC .(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC ―→=(-3,1,0),A 1C ―→=(0,2,-23).设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC ―→·n =0,A 1C ―→·n =0,得⎩⎨⎧-3x +y =0,y -3z =0.取n =(1, 3,1),故sin θ=|cos 〈EF ―→,n 〉|=|EF ―→·n ||EF ―→|·|n |=45,∴cos θ=35.因此,直线EF 与平面A 1BC 所成的角的余弦值为35.。
空间向量与立体几何:第2讲共线定理、共面定理的应用
共线定理、共面定理的应用【基础知识】(1)共线向量定理:对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a=λb .(2)共面向量定理:如果两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在唯一实数对x 、y ,使p xa yb =+ .(3)空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在唯一的有序实数组{x ,y ,z },使p xa yb zc =++ .把{a ,b ,c }叫做空间的一个基底.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x 、y 、z ,使OP xOA yOB zOC =++ .其中x +y +z =1.【规律技巧】1.在空间适当选取三个不共面向量作为基向量,其它任意一向量都可用这一组基向量表示.2.中点向量公式1()2OM OA OB =+ ,在解题时可以直接使用.3.证明空间任意三点共线的方法对空间三点P ,A ,B 可通过证明下列结论成立来证明三点共线.(1)PA PB λ= ;[来源:学科网](2)对空间任一点O ,OP OA t AB =+ ;(3)对空间任一点O ,(1)OP xOA yOB x y =++= .4.证明空间四点共面的方法对空间四点P ,M ,A ,B 可通过证明下列结论成立来证明四点共面(1)MP xMA yMB =+ ;(2)对空间任一点O ,OP OM xMA yMB =++ ;(3)对空间任一点O ,(1)OP xOM yOA zOB x y z =++++= ;(4)PM ∥AB (或PA ∥MB 或PB ∥AM ).【典例讲解】【例1】已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,用向量方法求证:(1)E ,F ,G ,H 四点共面;(2)BD ∥平面EFGH .【变式探究】如图空间两个平行四边形共边AD ,点M ,N 分别在对角线BD ,AE 上,且BM =13BD ,AN =13AE .求证:MN ∥平面CDE .【针对训练】1、已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,求证:(1)E ,F ,G ,H 四点共面;(2)BD ∥平面EFGH .【答案】(1)E ,F ,G ,H 四点共面;(2)BD ∥平面EFGH .2、有4个命题:①若p =x a +y b ,则p 与a 、b 共面;②若p 与a 、b 共面,则p =x a +y b ;③若MP →=xMA→+yMB →,则P 、M 、A 、B 共面;④若P 、M 、A 、B 共面,则MP →=xMA →+yMB →.其中真命题的个数是()A .1B .2C .3D .4【答案】B【解析】①正确,②中若a ,b 共线,p 与a 不共线,则p =x a +y b 就不成立,③正确,④中若M ,A ,B共线,点P 不在此直线上,则MP →=xMA →+y MB →不正确.故选B.3、】若A ,B ,C 不共线,对于空间任意一点O 都有,则P ,A ,B ,C 四点()A .不共面B .共面C .共线D.不共线4、若平面、的法向量分别为,则()A.B.C.、相交但不垂直 D.以上均不正确【答案】A 【练习巩固】1.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三个向量共面,则实数λ等于________.解析∵a ,b ,c 共面,且显然a ,b 不共线,∴c =x a +y b ,=2x -y ,①=-x +4y ,②=3x -2y ,③=337,=177,代入③得λ=657.答案6572.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________(用a ,b ,c 表示).3.A ,B ,C ,D 是空间不共面四点,且AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 的形状是________三角形(填锐角、直角、钝角中的一个).4.如图,在棱长为a 的正方体ABCD A 1B 1C 1D 1中,G 为△BC 1D 的重心,(1)试证:A 1,G ,C 三点共线;(2)试证:A 1C ⊥平面BC 1D .5、如图,在长方体1111CD C D AB -A B 中,11AA =,D 2AB =A =,E 、F 分别是AB 、C B 的中点.证明1A 、1C 、F 、E 四点共面,并求直线1CD 与平面11C F A E 所成的角的大小.6、若(2,1,3),(1,2,9)a x b y ==- ,如果a 与b 为共线向量,则()A .x =1,y =1B .x =12,y =-12C .x =16,y =-32D .x =-16,y =32。
(高中段)大题考法立体几何第二课时空间向量与空间角3
[解] (1)证明:在△ABC 中,BC=2,AB=4,∠ABC=60°,所以 AC2= BC2+AB2-2BC·AB·cos B=12,
则有 AC2+BC2=AB2,即 AC⊥BC. 又因为 PA⊥BC,PA∩AC=A,PA⊂平面 PAC,AC⊂平面 PAC,所以 BC ⊥平面 PAC. (2)由(1)知 AC⊥BC,以点 C 为坐标原点,CA,CB 所在 直线分别为 x,y 轴建立如图所示的坐标系 C-xyz. 则 C(0,0,0),A(2 3,0,0),B(0,2,0),D( 3,-1,0), 易知 P 在底面的射影为 AC 与 BD 的交点, 所以 P233,0,236,―PD→= 33,-1,-2 36,
由(1)知―A→P =0,1, 22是平面 PCB 的一个法向量,
记 n =―A→P ,则
n ,m
n ·m =
|n |·|m
|=2 5
5 .
所以二面角
B-PC-E
的余弦值为2 5
5 .
融通方法 利用空间向量求二面角的解题模型
应用体验 (2020·河北“五个一”名校联考)在四棱锥 P-ABCD 中,AD ∥BC,AB=BC=CD=12AD,G 是 PB 的中点,△PAD 是 等边三角形,平面 PAD⊥平面 ABCD. (1)求证:CD⊥平面 GAC; (2)求二面角 P-AG-C 大小的正弦值.
设平面 AEF 的一个法向量为 n =(x1,y1,z1),
n ·―AE→=0,
则 n
·―AF→=0,
即x21x+1+z1λ=y1=0,0.
令 y1=2,则zx11==λ-. λ, ∴n =(-λ,2,λ).
设平面 PCD 的一个法向量为 m =(x2,y2,z2),
2021版理科数学全国通用版备战一轮复习(课件 课时跟踪检测):第八章 立体几何 (2)
第八章立体几何第二节空间几何体的表面积与体积A级·基础过关|固根基|1.如图所示,已知三棱柱ABC-A1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1-ABC1的体积为()A.312B.34C.612D.64解析:选A易知三棱锥B1-ABC1的体积等于三棱锥A-B1BC1的体积,又三棱锥A-B1BC1的高为32,底面积为12,故其体积为13×12×32=312.2.(2020届大同调研)某几何体的三视图如图所示,则该几何体外接球的表面积为()A.11πB.14π3C.28π3D.16π解析:选C由三视图可知,该几何体的直观图为三棱锥,记为三棱锥A-BCD,将该三棱锥放在长方体中,如图所示,其中AB⊥平面BCD,AB=2,△BCD为边长为2的正三角形.设O 1为正△BCD 的中心,O 为三棱锥A -BCD 外接球的球心,R 为外接球的半径.连接OO 1,OB ,O 1B ,则OO 1⊥平面BCD ,OO 1=1,BO 1=23×2×32=233,则OB 2=R 2=12+2332=73,所以该几何体外接球的表面积S =4πR 2=4π×73=28π3,故选C .3.如图是一个实心金属几何体的直观图,它的中间是高l 为6124的圆柱,上、下两端均是半径r 为2的半球,若将该实心金属几何体在熔炉中高温熔化(不考虑过程中的原料损失),熔成一个实心球,该球的直径为( )A .3B .4C .5D .6解析:选C 实心金属几何体的体积V =43πr 3+πr 2l =43π×8+π×4×6124=1256π.设实心球的半径为R ,由体积相等得43πR 3=1256π,所以R =52,所以该球的直径为2R =5.4.如图,圆柱的底面半径为1,平面ABCD 为圆柱的轴截面,从A 点开始,沿着圆柱的侧面拉一条绳子到C 点,若绳子的最短长度为3π,则该圆柱的侧面积为( )A .42π2B .22π2C .52π2D .4π2解析:选A 沿AD 将圆柱的侧面展开,绳子的最短长度即侧面展开图中A ,C 两点间的距离,连接AC ,所以AC =3π,展开后AB 的长度为π.设圆柱的高为h ,则AC 2=AB 2+h 2,即9π2=π2+h 2,解得h =22π,所以圆柱的侧面积为2×π×1×22π=42π2.5.(2020届贵阳摸底)某几何体的三视图如图所示,则它的体积为()A.23B.43C.13D.16解析:选A根据三视图可知,该几何体为三棱锥,记为A-BCD,放在正方体中如图所示,则该几何体的体积V=13·S△BCD×2=13×12×2×1×2=23.故选A.6.(2019届合肥市二检)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中俯视图由两个半圆和两条线段组成,则该几何体的表面积为()A.17π+12 B.12π+12C.20π+12 D.16π+12解析:选C由三视图知,该几何体是一个由大半圆柱挖去一个小半圆柱得到的,两个半圆柱的底面半径分别为1和3,高均为3,所以该几何体的表面积为12×2π×3×3+12×2π×1×3+2×⎝⎛⎭⎪⎫12π×32-12π×12+2×2×3=20π+12,故选C.7.(2019届福州市质检)如图,以棱长为1的正方体的顶点A为球心,以2为半径作一个球面,则该正方体的表面被球面所截得的所有弧长之和为()A.3π4B.2πC.3π2D.9π4解析:选C正方体的表面被该球面所截得的弧长是相等的三部分,如图,上底面被球面截得的弧长是以A1为圆心,1为半径的圆周长的14,所以所有弧长之和为3×2π4=3π2.故选C.8.(2019届洛阳市第二次联考)已知正三角形ABC的三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面圆面积的最小值是()A.7π4B.2πC.9π4D.3π解析:选C设正三角形ABC的中心为O1,连接OO1,OA,O1A,由题意得O1O⊥平面ABC,O1O=1,OA=2,∴在Rt△O1OA中,O1A=OA2-O1O2=3,∴AB=3.∵E为AB的中点,∴AE=3 2.连接OE,则OE⊥AB.过点E作球O的截面,当截面与OE垂直时,截面圆的面积最小,此时截面圆的半径r =32,可得截面圆面积的最小值为πr 2=9π4,故选C .9.(2019届南昌市二模)已知圆锥的侧面展开图为四分之三个圆面,设圆锥的底面半径为r ,母线长为l ,有以下结论:①l ∶r =4∶3;②圆锥的侧面积与底面面积之比为4∶3;③圆锥的轴截面是锐角三角形.其中所有正确结论的序号是( )A .①②B .②③C .①③D .①②③解析:选A 设圆锥的母线长l =1.因为圆锥的侧面展开图为四分之三个圆面,所以圆锥的侧面积为34π.又圆锥的底面半径为r ,所以由2πr =34×2π,得r =34,所以l r =43,故①正确;圆锥的侧面积与底面积之比为34ππ·⎝ ⎛⎭⎪⎫342=43,故②正确;设圆锥的轴截面三角形的顶角为θ,因为圆锥的底面直径为2×34=32,所以cos θ=12+12-⎝ ⎛⎭⎪⎫3222×1×1=-18,所以角θ为钝角,所以圆锥的轴截面是钝角三角形,故③错误.故选A .10.(2019届惠州模拟)已知三棱锥S -ABC 的底面是以AB 为斜边的等腰直角三角形,AB =2,SA =SB =SC =2,则三棱锥S -ABC 的外接球的球心到平面ABC 的距离是( )A .33B .1C . 3D .332解析:选A ∵三棱锥S -ABC 的底面是以AB 为斜边的等腰直角三角形,SA =SB =SC =2,∴S 在底面ABC 内的射影为AB 的中点.设AB 的中点为H ,连接SH,CH,∴SH⊥平面ABC,∴SH上任意一点到A,B,C的距离相等,易知SH=3,CH=1,∴在Rt△SHC中,∠HSC=30°.在面SHC内作SC的垂直平分线MO,交SH于点O,交SC于点M,则O为三棱锥S-ABC的外接球的球心.∵SC=2,∴SM=1.又∠OSM=30°,∴SO=233,OH=33,∴球心O到平面ABC的距离为33,故选A.11.如图,在直角梯形ABCD中,AD⊥DC,AD∥BC,BC=2CD=2AD=2,若将该直角梯形绕BC边旋转一周,则所得的几何体的表面积为________.解析:根据题意可知,所得几何体的上半部分为圆锥(底面半径为1,高为1),下半部分为圆柱(底面半径为1,高为1),如图所示,则所得几何体的表面积为圆锥侧面积、圆柱的侧面积以及圆柱的下底面面积之和,即表面积为π×1×12+12+2π×1×1+π×12=(2+3)π.答案:(2+3)π12.(2020届贵阳摸底)在四面体ABCD中,若AB=CD=5,AC=BD=6,AD=BC=3,则四面体ABCD的外接球的表面积为________.解析:如图所示,将四面体补形为长方体,则四面体的四个顶点均为长方体的顶点,四面体的外接球即长方体的外接球.设长方体的长、宽、高分别为a,b,c,则⎩⎪⎨⎪⎧a2+b2=9,a2+c2=6,b2+c2=5,三个等式相加得2(a2+b2+c2)=20⇒a2+b2+c2=10,设该四面体外接球的半径为R,则2R=a2+b2+c2=10,即R=102,所以该四面体外接球的表面积为4πR2=4π×104=10π.答案:10πB级·素养提升|练能力|13.(2019届合肥市二检)我国古代名著《张丘建算经》中记载:“今有方锥,下广二丈,高三丈.欲斩末为方亭,令上方六尺.问:斩高几何?”大致意思是:有一个正四棱锥下底边长为二丈,高三丈,现从上面截去一段,使之成为正四棱台,且正四棱台的上底边长为六尺,则截去的正四棱锥的高是多少.如果我们把求截去的正四棱锥的高改为求剩下的正四棱台的体积,则该正四棱台的体积是(注:1丈=10尺)()A.1 946立方尺B.3 892立方尺C.7 784立方尺D.11 676立方尺解析:选B解法一:如图,记正四棱台为A1B1C1D1-ABCD.该正四棱台由正四棱锥S-ABCD截得,O为正方形ABCD的中心,E为BC的中点,E1为B1C1的中点.设正四棱台的高为x,则由图中△SO1E1∽△SOE,得SO1SO=O1E1OE,即30-x30=310,解得x=21,所以该正四棱台的体积V=13×(62+6×20+202)×21=3 892(立方尺),故选B.解法二:如解法一中图,记正四棱台为A1B1C1D1-ABCD.该正四棱台由正四棱锥S-ABCD截得,O为正方形ABCD的中心,E为BC的中点,E1为B1C1的中点.设截去的正四棱锥的高为x,则由图中△SO1E1∽△SOE,得SO1SO =O1E1OE,即x 30=310,解得x=9,所以该正四棱台的体积V=V正四棱锥S-ABCD-V正四棱锥S-A1B1C1D1=13×202×30-13×62×9=3 892(立方尺),故选B.14.(2019届郑州市第二次质量预测)在长方体ABCD-A1B1C1D1中,AD=DD1=1,AB=3,E,F,G分别是棱AB,BC,CC1的中点,P是底面ABCD 内一动点,若直线D1P与平面EFG没有公共点,则△PBB1面积的最小值为()A.32B.1C.34D.12解析:选C记△PBB1的面积为S.因为P在底面ABCD上,所以PB⊥BB1,即△PBB1为直角三角形.又BB1=DD1=1,所以S=12×BB1×PB=12PB,所以当线段PB的长最小时,S取得最小值.因为D1P与平面EFG无公共点,所以D1P∥平面EFG.如图①,连接AD1,D1C,AC,易证GF∥AD1,EF∥AC,又GF∩EF =F,AD1∩AC=A,所以平面AD1C∥平面EFG,所以D1P⊂平面AD1C,又点P 是底面ABCD内一动点,所以点P一定在线段AC上运动.如图②,当PB⊥AC时,线段PB的长最小,此时PB=AB·BCAC=32,故S min=12×32=34,故选C.15.在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.9π2C.6πD.32π3解析:选B由题意可得,若V最大,则球与直三棱柱的部分面相切,若与三个侧面都相切,可求得球的半径为2,球的直径为4,超过直三棱柱的高,所以这个球放不进去,则球可与上下底面相切,此时半径R=32,故该球的体积最大,V max=43πR3=4π3×278=9π2.16.(2020届惠州调研)在三棱锥A-BCD中,底面BCD是直角三角形且BC⊥CD,斜边BD上的高为1,三棱锥A-BCD的外接球的直径是AB,若该外接球的表面积为16π,则三棱锥A-BCD体积的最大值为________.解析:如图,过点C作CH⊥BD于H.由外接球的表面积为16π,可得外接球的半径为2,则AB=4.因为AB为外接球的直径,所以∠BDA=90°,∠BCA =90°,即BD⊥AD,BC⊥CA,又BC⊥CD,CA∩CD=C,所以BC⊥平面ACD,所以BC⊥AD,又BC∩BD=B,所以AD⊥平面BCD,AD⊂平面ABD,所以平面ABD⊥平面BCD,又平面ABD∩平面BCD=BD,所以CH⊥平面ABD.设AD=x(0<x<4),则BD=16-x2.在△BCD中,BD边上的高CH=1,所以V三棱锥A-BCD=V三棱锥C-ABD=13×12×x×16-x2×1=16-x4+16x2,当x2=8时,V三棱锥A-BCD有最大值,故三棱锥A-BCD体积的最大值为4 3.答案:4 3。
高考数学复习8.8 立体几何中的向量方法(二)——求空间角和距离
又∵β∈[0°,90°],∴β=30°,故选C.
1 2 3 4 5 6 7 8 9 10 11 12
2.(2016·广州模拟)二面角的棱上有A,B两点,直线AC,BD分别在这个
二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,
CD=2 17 ,则该二面角的大小为 答案 解析
4.(2016·长春模拟)在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,
D,E,F分别是棱AB,BC,CP的中点,AB=AC=1,PA=2,则直线
PA与平面DEF所成角的正弦值为 答案 解析
1 A.5
25 B. 5
√C. 55
2 D.5
1 2 3 4 5 6 7 8 9 10 11分类 深度剖析 课时作业
基础知识 自主学习
知识梳理
1.两条异面直线所成角的求法
设a,b分别是两异面直线l1,l2的方向向量,则
范围 求法
l1与l2所成的角θ π
(0, 2 ]
|a·b| cos θ= |a||b|
a与b的夹角β [0,π] a·b cos β=|a||b|
9.(2016·石家庄模拟)已知点E,F分别在正方体ABCD-A1B1C1D1的棱 BB1,CC1上,且B1E=2EB,CF=2FC1,则平面AEF与平面ABC所成的
2 二面角的正切值为___3_____. 答案 解析
1 2 3 4 5 6 7 8 9 10 11 12
10.(2016·南昌模拟)如图(1),在边长为4的菱形ABCD中,∠DAB=60°, 点E,F分别是边CD,CB的中点,AC∩EF=O,沿EF将△CEF翻折到 △PEF,连接PA,PB,PD,得到如图(2)的五棱锥P-ABFED,且PB = 10 . (1)求证:BD⊥平面POA; 证明
(新课标全国I卷)2010_2019学年高考数学真题分类汇编专题07立体几何(2)文(含解析)
专题7 立体几何(2)立体几何大题:10年10考,每年1题.第1小题多为证明垂直问题,第2小题多为体积计算问题(2014年是求高).1.(2019年)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.【解析】(1)连结B1C,ME,∵M,E分别是BB1,BC的中点,∴ME∥B1C,又N为A1D的中点,∴ND=12A1D,由题设知A1B1//DC,∴B1C//A1D,∴ME//ND,∴四边形MNDE是平行四边形,∴MN∥ED,又MN⊄平面C1DE,∴MN∥平面C1DE.(2)过C作C1E的垂线,垂足为H,由已知可得DE⊥BC,DE⊥C1C,∴DE⊥平面C1CE,故DE⊥CH,∴CH⊥平面C1DE,故CH的长即为C到时平面C1DE的距离,由已知可得CE=1,CC1=4,∴C1E,故CH,∴点C 到平面C 1DE . 2.(2018年)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA . (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q ﹣ABP 的体积.【解析】(1)∵在平行四边形ABCM 中,∠ACM =90°,∴AB ⊥AC , 又AB ⊥DA .且AD ∩AC =A , ∴AB ⊥面ADC ,∵AB ⊂面ABC , ∴平面ACD ⊥平面ABC ;(2)∵AB =AC =3,∠ACM =90°,∴AD =AM =∴BP =DQ =23DA = 由(1)得DC ⊥AB ,又DC ⊥CA ,∴DC ⊥面ABC ,∴三棱锥Q ﹣ABP 的体积V =11DC 33S ∆ABP ⨯ =C 121DC 333S ∆AB ⨯⨯=12113333323⨯⨯⨯⨯⨯⨯=1. 3.(2017年)如图,在四棱锥P ﹣ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°. (1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,且四棱锥P ﹣ABCD 的体积为83,求该四棱锥的侧面积.【解析】(1)∵在四棱锥P ﹣ABCD 中,∠BAP =∠CDP =90°, ∴AB ⊥PA ,CD ⊥PD , 又AB ∥CD ,∴AB ⊥PD , ∵PA ∩PD =P ,∴AB ⊥平面PAD , ∵AB ⊂平面PAB ,∴平面PAB ⊥平面PAD .(2)设PA =PD =AB =DC =a ,取AD 中点O ,连结PO , ∵PA =PD =AB =DC ,∠APD =90°,平面PAB ⊥平面PAD ,∴PO ⊥底面ABCD ,且AD ,PO =2a , ∵四棱锥P ﹣ABCD 的体积为83, 由AB ⊥平面PAD ,得AB ⊥AD ,∴V P ﹣ABCD =CD 13S AB ⨯⨯PO 四边形=1D 3⨯AB⨯A ⨯PO =132a a ⨯⨯=313a =83, 解得a =2,∴PA =PD =AB =DC =2,AD =BC =PO ,∴PB =PC∴该四棱锥的侧面积:S 侧=S △PAD +S △PAB +S △PDC +S △PBC=1D 2⨯PA⨯P +12⨯PA⨯AB +1D DC 2⨯P ⨯+1C 2⨯B=11112222222222⨯⨯+⨯⨯+⨯⨯+⨯=6+4.(2016年)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(1)证明:G是AB的中点;(2)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【解析】(1)∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(2)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故CD =23CG . 由题设可得PC ⊥平面PAB ,DE ⊥平面PAB ,所以DE ∥PC ,因此PE =23PG ,DE =13PC .由已知,正三棱锥的侧面是直角三角形且PA =6,可得DE =2,PG =PE = 在等腰直角三角形EFP 中,可得EF =PF =2. 所以四面体PDEF 的体积V =13×DE ×S △PEF =13×2×12×2×2=43.5.(2015年)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD . (1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E ﹣ACD【解析】(1)∵四边形ABCD 为菱形, ∴AC ⊥BD , ∵BE ⊥平面ABCD , ∴AC ⊥BE , 则AC ⊥平面BED , ∵AC ⊂平面AEC , ∴平面AEC ⊥平面BED ;(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,得AG =GC ,GB =GD =2x,∵BE ⊥平面ABCD ,∴BE ⊥BG ,则△EBG 为直角三角形,∴EG =12AC =AG =2x ,则BE x ,∵三棱锥E ﹣ACD 的体积V =11C GD 32⨯A ⨯⨯BE 3x 解得x =2,即AB =2, ∵∠ABC =120°,∴AC 2=AB 2+BC 2﹣2AB •BC cos ABC =4+4﹣2×1222⎛⎫⨯⨯-⎪⎝⎭=12,即AC =在三个直角三角形EBA ,EBD ,EBC 中,斜边AE =EC =ED , ∵AE ⊥EC ,∴△EAC 为等腰三角形, 则AE 2+EC 2=AC 2=12, 即2AE 2=12, ∴AE 2=6,则AE ,∴从而得AE =EC =ED ,∴△EAC 的面积S =11C 22⨯EA⨯E =3, 在等腰三角形EAD 中,过E 作EF ⊥AD 于F ,则AE ,AF =1D 2A =1212⨯=,则EF =∴△EAD 的面积和△ECD 的面积均为S =122⨯故该三棱锥的侧面积为3+6.(2014年)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.【解析】(1)连接BC1,则O为B1C与BC1的交点,∵侧面BB1C1C为菱形,∴BC1⊥B1C,∵AO⊥平面BB1C1C,∴AO⊥B1C,∵AO∩BC1=O,∴B1C⊥平面ABO,∵AB⊂平面ABO,∴B1C⊥AB;(2)作OD⊥BC,垂足为D,连接AD,作OH⊥AD,垂足为H,∵BC⊥AO,BC⊥OD,AO∩OD=O,∴BC⊥平面AOD,∴OH⊥BC,∵OH⊥AD,BC∩AD=D,∴OH⊥平面ABC,∵∠CBB1=60°,∴△CBB1为等边三角形,∵BC=1,∴OD∵AC ⊥AB 1,∴OA =12B 1C =12,由OH •AD =OD •OA ,可得AD ,∴OH =14,∵O 为B 1C 的中点,∴B 1到平面ABC ,∴三棱柱ABC ﹣A 1B 1C 1的高7.7.(2013年)如图,三棱柱ABC ﹣A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60° (1)证明:AB ⊥A 1C ; (2)若AB =CB =2,A 1C =,求三棱柱ABC ﹣A 1B 1C 1的体积.【解析】(1)如图,取AB 的中点O ,连结OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,160∠BAA =,故△AA 1B 为等边三角形, 所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C ;(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以1C O =OA =.又1C A =,则22211C C A =O +OA ,故OA 1⊥OC .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC ﹣A 1B 1C 1的高.又△ABC 的面积C S ∆AB故三棱柱ABC ﹣A 1B 1C 1的体积C 1V 3S ∆AB =⨯OA ==.8.(2012年)如图,三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.【解析】(1)由题意知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC =C , ∴BC ⊥平面ACC 1A 1,又DC 1⊂平面ACC 1A 1, ∴DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45°,∴∠CDC 1=90°,即DC 1⊥DC ,又DC ∩BC =C , ∴DC 1⊥平面BDC ,又DC 1⊂平面BDC 1, ∴平面BDC 1⊥平面BDC ;(2)设棱锥B ﹣DACC 1的体积为V 1,AC =1,由题意得V 1=1121132+⨯⨯⨯=12,又三棱柱ABC ﹣A 1B 1C 1的体积V =1, ∴(V ﹣V 1):V 1=1:1,∴平面BDC1分此棱柱两部分体积的比为1:1.9.(2011年)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)设PD=AD=1,求棱锥D﹣PBC的高.【解析】(1)因为∠DAB=60°,AB=2AD,由余弦定理得BD D,从而BD2+AD2=AB2,故BD⊥AD,又PD⊥底面ABCD,可得BD⊥PD,所以BD⊥平面PAD.故PA⊥BD.(2)解:作DE⊥PB于E,已知PD⊥底面ABCD,则PD⊥BC,由(1)知,BD⊥AD,又BC∥AD,∴BC⊥BD.故BC⊥平面PBD,BC⊥DE,则DE⊥平面PBC.由题设知PD=1,则BD,PB=2.根据DE•PB=PD•BD,得DE即棱锥D﹣PBC10.(2010年)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(1)证明:平面PAC⊥平面PBD;(2)若AB,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.。
高中数学必修二立体几何角的问题-教师版(含几何法和向量法)
立体几何线线、线面、面面所成角的问题几何法1、两异面直线及所成的角:不在同一个平面的两条直线,叫做异面直线,已知异面直线a,b,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).如果两条异面直线所成的角是直角,我们就说这两条直线互相垂直.2、直线和平面所成的角:一条直线PA 和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A 叫做斜足。
过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线 AO 叫做斜线在这个平面上的射影。
平面的一条斜线和它在平面内的摄影所成的锐角,叫做这条直线和这个平面所成的角。
一条直线垂直于平面,我们就说它们所成的角是直角。
一条直线和平面平行,或在平面内,我们说它们所成的角是00.3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
在二面角βα--l 的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角。
二面角的大小可以可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度。
常见角的取值范围:① 异面直线所成的角⎥⎦⎤ ⎝⎛20π,,直线与平面所成的角⎥⎦⎤⎢⎣⎡20π,,二面角的取值范围依次[]π,0② 直线的倾斜角[)π,0、到的角[)π,0、与的夹角的取值范围依次是⎥⎦⎤⎢⎣⎡20π,4、点到平面距离:求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 向量法1、两异面直线及所成的角:设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.2、直线和平面所成的角:设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.3、二面角:设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.4、点到平面距离:点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.例题例1.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010 解析:建立空间直角坐标系如图.则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2).BC 1→=(-1,0,2),AE →=(-1,2,1),cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010.答案:B例 2.已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 证明:在ADE ∆中,222AD AE DE =+,∴AE DE ⊥ ∵PA ⊥平面ABCD ,DE ⊂平面ABCD ,∴PA DE ⊥又PA AE A ⋂=,∴DE ⊥平面PAE (2)DPE ∠为DP 与平面PAE 所成的角在Rt PAD ∆,PD =Rt DCE ∆中,DE =在Rt DEP ∆中,2PD DE =,∴030DPE ∠=例3.如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小.证明:(1)ABD ∆为等边三角形且G 为AD 的中点,∴BG AD ⊥ 又平面PAD ⊥平面ABCD ,∴BG ⊥平面PAD(2)PAD 是等边三角形且G 为AD 的中点,∴AD PG ⊥ 且AD BG ⊥,PG BG G ⋂=,∴AD ⊥平面PBG ,PB ⊂平面PBG ,∴AD PB ⊥(3)由AD PB ⊥,AD ∥BC ,∴BC PB ⊥ 又BG AD ⊥,AD ∥BC ,∴BG BC ⊥∴PBG ∠为二面角A BC P --的平面角在Rt PBG ∆中,PG BG =,∴045PBG ∠=例4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( D ) A.3 B.22C.32λ D.55练习:1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点,(1)求证:EFGH 是平行四边形;(2)若BD=AC=2,EG=2。
高中数学一轮复习:第八章 立体几何(必修2)课后跟踪训练46
课后跟踪训练(四十六)基础巩固练一、选择题1.和两条异面直线都相交的两条直线的位置关系是()A.异面B.相交C.平行D.异面或相交[解析]当两条直线无公共点时,可知两直线异面;当两异面直线中的一条直线与两条直线交于一点时,可知两直线相交,故选D.[答案] D2.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过()A.点A B.点BC.点C但不过点M D.点C和点M[解析]∵AB⊂γ,M∈AB,∴M∈γ.又C∈γ,M、C∈β,∴γ与β的交线必通过点C和点M.故选D.[答案] D3.已知正方体ABCD-A1B1C1D1中,O是BD1的中点,直线A1C 交平面AB1D1于点M,则下列结论错误的是()A.A1、M、O三点共线B.M、O、A1、A四点共面C.A、O、C、M四点共面D.B、B1、O、M四点共面[解析]因为O是BD1的中点.由正方体的性质知,O也是A1C 的中点,所以点O在直线A1C上,又直线A1C交平面AB1D1于点M,则A1、M、O三点共线,A正确.又直线与直线外一点确定一个平面,所以B、C正确.故选D.[答案] D4.以下四个命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A,B,C,D 共面,点A,B,C,E共面,则A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.A.0 B.1C.2 D.3[解析]对于①,不共面的四点中,其中任意三点不共线,故①正确;对于②,若A,B,C共线时,A,B,C,D,E不一定共面,故②不正确;对于③,b,c也可异面,故③不正确;④是错误的.故选B.[答案] B5.在正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则异面直线A1B与AD 1所成角的余弦值为( )A.15B.25C.35D.45[解析] 如图,连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角或其补角.连接A 1C 1,设AB =1,则AA 1=2,A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45.故选D. [答案] D二、填空题6.(2019·陕西汉中调研)若直线a ⊥b ,且直线a ∥平面α,则直线b 与平面α的位置关系是________.[解析] 如图,在正方体中可知,b 与α相交或b ⊂α或b ∥α.[答案] b 与α相交或b ⊂α或b ∥α7.(2019·广东华山模拟)如图所示,在正三棱柱ABC -A 1B 1C 1中,D是AC的中点,AA1∶AB=2∶1,则异面直线AB1与BD所成的角为________.[解析]取A1C1的中点E,连接B1E,ED,AE,在Rt△AB1E中,∠AB1E即为所求.设AB=1,则A1A=2,AB1=3,B1E=32,AE=32,故∠AB1E=60°.[答案]60°8.(2019·江西上饶月考)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线MN与AC所成的角为60°.其中正确的结论为________(注:把你认为正确的结论号都填上) [解析]由题图可知AM与CC1是异面直线,AM与BN是异面直线,BN与MB1为异面直线.因为D1C∥MN,所以直线MN与AC所成的角就是D1C与AC所成的角,且角为60°.[答案]③④三、解答题9.已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D,B,E,F四点共面;(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.[证明](1)如图所示,因为EF是△D1B1C1的中位线,所以EF∥B1D1.在正方体AC1中,B1D1∥BD,所以EF∥BD.所以EF,BD确定一个平面.即D,B,F,E四点共面.(2)在正方体ABCD-A1B1C1D1中,设平面A1ACC1确定的平面为α,又设平面BDEF为β.因为Q∈A1C1,所以Q∈α.又Q∈EF,所以Q∈β.则Q是α与β的公共点,同理,P点也是α与β的公共点.所以α∩β=PQ.又A1C∩β=R,所以R∈A1C,R∈α且R∈β.则R∈PQ,故P,Q,R三点共线.10.(2019·河南许昌模拟)如图所示,在三棱锥P -ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,P A =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.[解] (1)S △ABC =12×2×23=23,三棱锥P -ABC 的体积为V =13S △ABC ·P A =13×23×2=43 3.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE 是异面直线BC 与AD 所成的角(或其补角).在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =22+22-22×2×2=34. 故异面直线BC 与AD 所成角的余弦值为34.能力提升练11.两条异面直线在同一个平面上的正投影不可能是( )A .两条相交直线B .两条平行直线C.两个点D.一条直线和直线外一点[解析]如图,在正方体ABCD-EFGH中,M,N分别为BF,DH的中点,连接MN,DE,CF,EG.当异面直线为EG,MN所在直线时,它们在底面ABCD内的射影为两条相交直线;当异面直线为DE,GF所在直线时,它们在底面ABCD内的射影分别为AD,BC,是两条平行直线;当异面直线为DE,BF所在直线时,它们在底面ABCD内的射影分别为AD和点B,是一条直线和一个点,故选C.[答案] C12.如图,平面α与平面β交于直线l,A,C是平面α内不同的两点,B,D是平面β内不同的两点,且A,B,C,D不在直线l上,M,N分别是线段AB,CD的中点,下列判断正确的是() A.若AB与CD相交,且直线AC平行于l时,则直线BD与l 可能平行也有可能相交B.若AB,CD是异面直线时,则直线MN可能与l平行C.若存在异于AB,CD的直线同时与直线AC,MN,BD都相交,则AB,CD不可能是异面直线D.M,N两点可能重合,但此时直线AC与l不可能相交[解析]对于A,直线BD与l只能平行;对于B,直线MN与l 异面;对于C,AB与CD可能为异面直线.当直线AB与CD的中点M,N重合时,必有直线AC∥l,故不可能相交,综上所述,故选D.[答案] D13.如图所示,在四面体ABCD中,E,F分别为AB,CD的中点,过EF任作一个平面α分别与直线BC,AD相交于点G,H,则下列结论正确的是__________.①对于任意的平面α,都有直线GF,EH,BD相交于同一点;②存在一个平面α0,使得GF∥EH∥BD;③存在一个平面α0,使得点G在线段BC上,点H在线段AD的延长线上.[解析]当H,G分别为AD,BC的中点时,直线GF,EH,BD 平行,所以①错,②正确;若存在一个平面α0,使得点G在线段BC 上,点H在线段AD的延长线上,则平面α0与CD的交点不可能是CD的中点,故③错.[答案]②14.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.(1)求四棱锥O-ABCD的体积;(2)求异面直线OC与MD所成角的正切值的大小.[解] (1)由已知可求得,正方形ABCD 的面积S =4,所以,四棱锥O -ABCD 的体积V =13×4×2=83.(2)连接AC ,设线段AC 的中点为E ,连接ME ,DE ,则∠EMD 为异面直线OC 与MD 所成的角(或其补角),由已知,可得DE =2,EM =3,MD =5,∵(2)2+(3)2=(5)2,∴△DEM 为直角三角形,∴tan ∠EMD =DE EM =23=63. 拓展延伸练15.(2018·全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A.334 B.233 C.324 D.32[解析]记该正方体为ABCD -A ′B ′C ′D ′,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱A ′A ,A ′B ′,A ′D ′与平面α所成的角都相等.如图,连接AB ′,AD ′,B ′D ′,因为三棱锥A ′-AB ′D ′是正三棱锥,所以A ′A ,A ′B ′,A ′D ′与平面AB ′D ′所成的角都相等.分别取C ′D ′,B ′C ′,BB ′,AB ,AD ,DD ′中点的E ,F ,G ,H ,I ,J ,连接EF ,FG ,GH ,IH ,IJ ,JE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面AB ′D ′平行,且截正方体所得截面的面积最大.又EF =FG =GH =IH =IJ=JE =22,所以该正六边形的面积为6×34×⎝ ⎛⎭⎪⎫222=334,所以α截此正方体所得截面面积的最大值为334,故选A.[答案] A16.(2017·全国卷Ⅲ)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB ,以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)[解析]由题意知,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,又AC ⊥a .AC ⊥b ,AC ⊥圆锥底面,所以在底面内可以过点B ,作BD ∥a ,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,所以DE ∥b ,连接AD ,设BC =1,在等腰△ABD 中,AB =AD =2,当直线AB 与a成60°角时,∠ABD=60°,故BD=2,又在Rt△BDE中,BE=2,所以DE=2,过点B作BF∥DE,交圆C于点F,连接AF,EF,所以BF=DE=2,所以△ABF为等边三角形,所以∠ABF=60°,即AB与b成60°角,故②正确,①错误.由最小角定理可知③正确;很明显,可以满足平面ABC⊥直线a,所以直线AB与a所成角的最大值为90°,④错误.所以正确的结论为②③.[答案]②③。
2020版高考数学人教版理科一轮复习第七章 立体几何 (2)
1.(方向 1)(2019·洛阳市第一次统考)某几何体的三视图如图所示,
则该几何体的体积是( B )
15π A. 2
17π C. 2
B.8π D.9π
解析:依题意,题中的几何体是由两个完全相同的圆柱各自 用一个不平行于其轴的平面去截后所得的部分拼接而成的组合 体(各自截后所得的部分也完全相同),其中一个截后所得的部分 的底面半径为 1,最短母线长为 3、最长母线长为 5,将这两个截 后所得的部分拼接,恰好可以形成一个底面半径为 1,母线长为 5+3=8 的圆柱,因此题中的几何体的体积为 π×12×8=8π,故 选 B.
又平面 B1D1D∩平面 B1EDF=B1D,
所以 O1H⊥平面 B1EDF,
所以 O1H 等于四棱锥 C1-B1EDF 的高.
因为△B1O1H∽△B1DD1,
Байду номын сангаас
所以
O1H=B1OB11·DDD1=
6 6 a.
方向 3 利用体积法求点面距离 【例 4】 如图,在四棱锥 P-ABCD 中,底面 ABCD 是矩形,PD ⊥底面 ABCD,M,N 分别为 AB,PC 的中点,PD=AD=2,AB=4.
如图,连接 AB′,AD′,B′D′,因为三棱锥 A′-AB′D′ 是正三棱锥,所以 A′A,A′B′,A′D′与平面 AB′D′所成 的角都相等.分别取 C′D′,B′C′,BB′,AB,AD,DD′ 的中点 E,F,G,H,I,J,连接 EF,FG,GH,IH,IJ,JE, 易得 E,F,G,H,I,J 六点共面,平面 EFGHIJ 与平面 AB′D′ 平行,且截正方体所得截面的面积最大.又 EF=FG=GH=IH =IJ=JE= 22,所以该正六边形的面积为 6× 43×( 22)2=343, 所以 α 截此正方体所得截面面积的最大值为34 3,故选 A.
高二数学寒假作业立体几何2
立体几何22作业(文科)知识回顾一、旋转体和多面体 1.旋转体的形成几何体 旋转图形 旋转轴 圆柱 矩形 任一边所在的直线 圆锥 直角三角形 任一直角边所在的直线 圆台 直角梯形 垂直于底边的腰所在的直线球半圆直径所在的直线2.多面体的结构特征3.直观图(1)画法:常用斜二测画法. (2)规则:①在已知图形中建立直角坐标系xOy ,画直观图时,它们分别对应x ′轴和y ′轴,两轴交于点O ′,使∠x ′O ′y ′=45°,它们确定的平面表示水平平面;②已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于x ′轴和y ′轴的线段; ③已知图形中平行于x 轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,长度为原来的12.4.三视图(1)三视图的画法规则:主、俯视图长对正,主、左视图高平齐;俯、左视图宽相等,前后对应. (2)画简单组合体的三视图应注意的两个问题:①首先,确定主视、俯视、左视的方向,同一物体放置的位置不同,所画的三视图可能不同.②其次,简单组合体是由哪几个基本几何体组成的,并注意它们的组成方式,特别是它们的交线位置.典例1、如图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是 ( )二、空间图形的基本关系与公理 1.空间图形的公理(1)公理1:过不在一条直线上的三点,有且只有一个平面(即可以确定一个平面). (2)公理2:如果一条直线上的两点在一个平面内,那么这条直线在此平面内(即直线在平面内).(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理4:平行于同一条直线的两条直线平行. 2.空间中两直线的位置关系(1)空间中两直线的位置关系⎩⎨⎧共面直线⎩⎪⎨⎪⎧相交直线平行直线异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:过空间任意一点P 分别引两条异面直线a ,b 的平行线l 1,l 2(a ∥l 1,b ∥l 2),这两条相交直线所成的锐角(或直角)就是异面直线a ,b 所成的角.②范围:⎝⎛⎦⎤0,π2. (3)定理(等角定理)空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补. 3.空间中直线与平面、平面与平面的位置关系(1)空间中直线与平面的位置关系位置关系图形表示符号表示公共点直线a在平面α内aα有无数个公共点直线在平面外直线a与平面α平行a∥α没有公共点直线a与平面α斜交a∩α=A有且只有一个公共点直线a与平面α垂直a⊥α(2)空间中两个平面的位置关系位置关系图形表示符号表示公共点两平面平行α∥β没有公共点两平面相交斜交α∩β=l有一条公共直线垂直α⊥β且α∩β=a典例2、如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()A B C D三、线面平行1.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)∵l∥a,aα,lα,∴l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)∵l∥α,lβ,α∩β=b,∴l∥b2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a∥β,b∥β,a∩b=P,aα,bα,∴α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a,β∩γ=b,∴a∥b 1111①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.四、线面垂直1.直线与平面垂直(1)定义:如果一条直线和一个平面内的任意一条直线都垂直,那么称这条直线和这个平面垂直.(2)定理文字语言图形语言符号语言判定定理如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直⎭⎪⎬⎪⎫aαbαl⊥al⊥ba∩b=A⇒l⊥α性质定理如果两条直线同垂直于一个平面,那么这两条直线平行⎭⎬⎫a⊥αb⊥α⇒ a∥b2.二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫作二面角.这条直线叫作二面角的棱,这两个半平面叫作二面角的面.(2)二面角的度量——二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角.平面角是直角的二面角叫作直二面角.3.平面与平面垂直(1)定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.(2)定理文字语言图形语言符号语言判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直⎭⎬⎫l⊥αlβ⇒α⊥β性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎬⎫α⊥βlβα∩β=al⊥a⇒l⊥αA.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥γ 五、空间几何体的表面积与体积 1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式 S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l三者关系S 圆柱侧=2πrl ――→r ′=r S 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl名称几何体表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13Sh台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 31.正四面体的表面积与体积棱长为a 的正四面体,其表面积为3a 2,体积为212a 3. 2.几个与球有关的切、接常用结论 (1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ;③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1,棱长为a 的正四面体,其内切球半径R 内=612a ,外接球半径R 外=64a . 典例5、如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.强化训练一、单选题1.正四棱台的上、下底面边长分别为1cm,3cm 2cm ,则棱台的侧面积为( ) A .24cmB .28cmC .243cmD .23cm2.设a ,b 是两条不同的直线,,αβ是两个不同的平面,给出下列命题: ①若,,a b a b αβ⊥⊂⊂,则αβ⊥ ②若,,a b αβαβ⊂⊂∥,则a b ∥ ③若,,a b αβαβ⊂⊥∥,则a b ⊥ ④若,,a b a b αβ⊥⊥∥,则αβ∥ 其中为真命题的是( ) A .①②B .②③C .③④D .①④3.正方体1111ABCD A B C D -中,点M 在棱1DD 上,过点C 作平面1BMC 的平行平面α,记平面α与平面11BCC B 的交线为l ,则1A C 与l 所成角的大小为( )A .6πB .4π C .3π D .2π 4.如图,正方体1111ABCD A B C D -中,若E ,F ,G 分别是棱AD ,1C C ,11B C 的中点,则下列结论中正确的是( ) A .BE ⊥平面DFGB .1//A E 平面DFGC .//CE 平面DFGD .平面1//A EB 平面DFG5.以下结论中错误的是( ) A .经过不共面的四点的球有且仅有一个 B .平行六面体的每个面都是平行四边形 C .正棱柱的每条侧棱均与上下底面垂直D .棱台的每条侧棱均与上下底面不垂直6.已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为( ) A .4π B .2π C .23π D .π7.如图是一个长方体的展开图,如果将它还原为长方体,那么线段AB 与线段CD 所在的直线( )A .平行B .相交C .是异面直线D .可能相交,也可能是异面直线8.如图为一个三棱锥的三视图,则该三棱锥的体积为( )A .13B .23C .12D .439.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .5B .4C .3D .210.“圆柱容球”是指圆柱形容器里放了一个球,且球与圆柱的侧面及上、下底面均相切,则该圆柱的体积与球的体积之比为( ) A .2 B .32C .3D .π3二、填空题11.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的外接球的表面积为________.12.已知圆锥的顶点为P ,母线PA ,PB 所成角的余弦值为34,PA 与圆锥底面所成角为60°,若PAB △的面积为7,则该圆锥的体积为______.13.某圆柱的侧面展开图是面积为8的正方形,则该圆柱一个底面的面积为___________. 14.如图,在棱长为2的正方体1111ABCD A B C D -中,E 是侧面11BB C C 内的一个动点,则三棱锥1D AED -的体积为_________.三、解答题15.如图,在三棱锥P ABC -中,底面ABC 是直角三角形,2AC BC ==,PB PC =,D 为AB 的中点.(1)证明:BC PD ⊥;(2)若3PA =,5PB =,求点A 到平面PDC 的距离.16.如图1,菱形ABCD 中,60A ∠=︒,4AB =,DE AB ⊥于E ,将AED 沿DE 翻折到A ED ',使A E BE '⊥,如图2.(1)求三棱锥C A BD -'的体积;(2)在线段A D '上是否存在一点F ,使EF ∥平面A BC '?若存在,求DFFA '的值;若不存在,说明理由.17.如图,在三棱锥P -ABC 中,底面ABC 是直角三角形,AC =BC =2,PB =PC ,D 为AB 的中点.(1)证明:BC⊥PD;(2)若AC⊥PB,PA=3,求直线PA与平面PBC所成的角的正弦值.。
2018届高考数学复习—立体几何:(二)空间直线、平面关系的判断与证明—2.平行与垂直关系的证明(试题版)
【考点2:空间直线、平面的平行与垂直关系证明】题型1:直线、平面平行的判断及性质【典型例题】[例1]►(1)如图,在四面体P ABC中,点D,E,F,G分别是棱AP,AC,BC,PB的中点.求证:DE∥平面BCP.►(2)(2013福建改编)如图,在四棱锥P-ABCD中,AB∥DC, AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC. ►(3)如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC 的中点,G为DE的中点.证明:直线HG∥平面CEF.[例2]►(1)如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:①B,C,H,G四点共面;②平面EF A1∥平面BCHG.►(2)如图E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:①EG∥平面BB1D1D;②平面BDF∥平面B1D1H. 【变式训练】1.(2014·衡阳质检)在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为______.2.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.3.如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.4.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E 在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH∥平面BED1F.题型2:直线、平面垂直的判断及性质【典型例题】[例1]►(1)如图,在四棱锥P-ABCD中, P A⊥底面ABCD, AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC中点. 证明:①CD⊥AE;②PD⊥平面ABE.►(2)如图所示,在四棱锥P-ABCD中,AB⊥平面P AD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=12AB,PH为△P AD中AD边上的高.①证明:PH⊥平面ABCD;②证明:EF⊥平面P AB.[例2]►(1)[2014·辽宁文]如图所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(I)求证:EF⊥平面BCG;(II)求三棱锥D -BCG的体积.►(2)(2012·课标全国)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点.(I)证明:平面BDC1⊥平面BDC;(II)平面BDC1分此棱柱为两部分,求这两部分体积的比.►(3)(2015·大庆质检) 如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.①求证:PC⊥BC;②求点A到平面PBC的距离. 【变式训练】1.如图,四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,点E 在线段AD上,且CE∥AB.(1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积.2.[2014·福建文]如图所示,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A -MBC的体积.3.(2015·唐山统考)如图,在三棱锥P-ABC中,P A=PB=AB =BC,∠PBC=90°,D为AC的中点,AB⊥PD.(1)求证:平面P AB⊥平面ABC;(2)如果三棱锥P-BCD的体积为3,求P A.4.[2014·课标Ⅰ文]如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.☆题型3:直线、平面平行与垂直关系的综合【典型例题】[例1]►(1)已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是(写出序号).①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.►(2)(2014·辽宁)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α►(3)(2015·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面►(4)(2013·课标Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l►(5)(2016·课标Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号) [例2]►(1)(2014·北京)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(I)求证:平面ABE⊥平面B1BCC1;(II)求证:C1F∥平面ABE;(III)求三棱锥E-ABC的体积.►(2)[2014江苏文]如图,三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(I)直线P A∥平面DEF;(II)平面BDE⊥平面ABC. [例3]►(1)[2014·陕西文]四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(I)求四面体ABCD的体积;(II)证明:四边形EFGH是矩形.►(2)(2012·北京)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(I)求证:DE∥平面A1CB;(II)求证:A1F⊥BE;(III)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【变式训练】1.(2016·浙江联考)已知a,b,c为三条不同的直线,α,β是空间两个平面,且a⊂α,b⊂β,α∩β=c.给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c;④若a⊥b,a⊥c,则必有α⊥β. 其中正确命题的个数是()A.0B.1C.2D.32.(2012·四川)下列命题正确的是()A.若两直线和同一平面所成的角相等,则这两条直线平行B.若一平面内有三点到另一平面的距离相等,则这两平面平行C.若一直线平行于两相交平面,则这条直线与这两平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.(2015·福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(2016·山东济南一模)设m,n是两条不同的直线,α,β是两个不同的平面.()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.(2016·浙江温州联考)关于直线a,b,l及平面α,β,下列命题中正确的是()A.若a∥α,b∥α,则a∥bB.若a∥α,b⊥a,则b⊥αC.若a⊂α,b⊂α,且l⊥a,l⊥b,则l⊥αD.若a⊥α,a∥β,则α⊥β6.(2015·山东二模)设m,n是空间两条直线,α,β是空间两个平面,则下列命题中不正确的是()A.当n⊥α时,“n⊥β”是“α∥β”的充要条件B.当m⊂α时,“m⊥β”是“α⊥β”的充分不必要条件C.当m⊂α时,“n∥α”是“m∥n”的必要不充分条件D.当m⊂α时,“n⊥α”是“m⊥n”的充分不必要条件7.(2016·浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n8.(2013北京)如图,四棱锥P-ABCD中,AB∥CD,AB⊥AD, CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.9.[2014·山东文]如图,四棱锥P-ABCD中,AP⊥平面PCD, AD∥BC,AB=BC=12AD,E,F分别为线段AD,PC的中点.(1)求证:AP∥平面BEF;(2)求证:BE⊥平面P AC.10.(2013全国Ⅱ文)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)设AA1=AC=CB=2,AB=22,求三棱锥C-A1DE的体积. 11.(2013·辽宁)如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.12.[2014·课标Ⅱ文]如图,四棱锥P-ABCD中,底面ABCD 为矩形,P A⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=3,三棱锥P -ABD的体积V=34,求A 到平面PBC的距离.13.(2015江苏)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.14.(2015广东文)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C到平面PDA的距离.15.(2015课标Ⅱ)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.16.(2015陕西)如图,直角梯形ABCD中,AD∥B C,∠BAD=π2,AB=BC=12AD=a,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到如图2中△A1BE的位置,得到四棱锥A1﹣BCDE.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)当平面A1BE⊥平面BCDE时,四棱锥A1﹣BCDE的体积为362,求a的值.17.(2016·课标Ⅱ文)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.(1)证明:AC⊥HD′(2)若AB=5,AC=6,AE=54,OD′=22,求五棱锥D′ABCFE的体积.18.(2016·课标Ⅲ文)如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面P AB;(2)求四面体N-BCM的体积.19.[2017全国I文]如图,在四棱锥P-ABCD中,AB//CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠ADP=90°,且四棱锥P-ABCD的体积为83,求该四棱锥的侧面积.20.[2017全国II文]如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为27,求四棱锥P-ABCD的体积.21.[2017全国III文]在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC22.[2017全国III文]如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D 不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE 的体积比.。
名师辅导 立体几何 第2课 空间两条直线(含答案解析)
名师辅导 立体几何 第2课 空间两条直线(含答案解析)●考试目标 主词填空1.空间两条直线有三种位置关系 相交直线——有且仅有一个公共点.平行直线——同在一个平面内,没有公共点.异面直线——不同在任何一个平面内,没有公共点. 2.平行直线定义:同一平面内两条不相交的直线称为平行直线. 公理4:平行同一条直线的两条直线互相平行. 3.异面直线)定义:“不同在任何一个平面内的两条直线为异面直线”. 异面直线的判定定理:“过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线”.这是判定空间两直线是异面直线的理论依据. ●题型示例 点津归纳【例1】 如图所示,正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是A 1C 1与A 1B 上的点,且A 1E =A 1F .求证:EF ∥AD 1.【解前点津】 判定两条直线平行,首先考虑把两直线放在同一 平面内,利用平面图形的性质实施证明,若图形中这样的平面不好找, 可以考虑实施转化,利用平行公理(或后继将要学习的直线与平面平行 的性质定理、向量知识等)实施证明.—【规范解答】 证明:连结BC 1、AD 1,因为ABCD -A 1B 1C 1D 1是正方体,所以A 1C 1=A 1B .在△A 1BC 1中, ∵A 1C 1=A 1B ,A 1E =A 1F ,∴BA FA C A E A 11111 ,∴EF ∥BC 1. 又∵D 1C 1平行且等于AB ,∴四边形ABC 1D 1是平行四边形, ∴BC 1∥AD 1,∴EF ∥AD 1.【例2】 如图所示,长方体A 1B 1C 1D 1-ABCD 中,∠ABA 1=45°,∠A 1AD 1=60°,求异面直线A 1B 与AD 1所成的角的度数.【解前点津】 求两条异面直线所成的角的步骤如下: ①用平移法作出异面直线所成的角;)②说明作出的角就是要求的角; ③计算(解三角形); ④结论.【规范解答】 如图所示,连结BC 1、A 1C 1, ∵A 1B 1C 1D 1-ABCD 是长方体,∴AB 平行且等于D 1C 1,即ABC 1D 1是平行四边形, ∴AD 1平行且等于BC 1,∴∠A 1BC 1(或它的补角)是异面直线A 1B 与AD 1所成的角. 设AA 1=a ,∵∠ABA 1=45°,∠A 1AD 1=60°例1题图例2题图∴在△AA 1D 1与△A 1AB 中,AB =AA 1=a ,A 1B =2a ,AD 1=BC 1=2a ,A 1D 1=3a ,\∴A 1C 1=211211B A D A +=2a ,在△A 1BC 1中,由余弦定理知,cos ∠A 1BC 1=1121121212BC B A C A BC B A ⋅-+=42.∴∠A 1BC 1=arcos42,所以异面直线A 1B 与AD 1所成的角是arccos 42. 【解后归纳】 学完空间向量之后,我们还可以利用向量的夹角公式求异面直线所成的角.【例3】 如图所示,求证分别与两条异面直线都相交,且交点为不同的四个点的两条直线是异面直线.已知:a 、b 异面,AB 交a 、b 于A 、B ,CD 交a 、b 于 C 、D ,A 、B 、C 、D 四点不同.求证:AB 与CD 是异面直线.^【解前点津】 此题条件不具备异面直线的判定定理所需条件,而当结论的反面即AB 、CD 共面时,易得AC 、BD共面.即a 、b 共面,与已知矛盾.故用反证法证明较易.【规范解答】 假设AB 与CD 不是异面直线,则AB 与CD 共面,设此平面为α, 所以,A 、B 、C 、D 都在α内, 所以直线AC ⊂平面α,BD ⊂平面α,所以AC 与BD 共面,即a 与b 共面,这与a 、b 为异面直线相矛盾. 所以AB 与CD 是异面直线.【解后归纳】 证明两条直线是异面直线除利用定义、定理外,还常常使用反证法,要掌握好.【例4】 直三棱柱ABC —A 1B 1C 1中AB =AC =AA 1=d ,D 是AB 的中点,若C 1D =211d ,求异面直线AB 与A 1C 1所成的角.《【规范解答】 如图,连结CD ,∵AC ∥A 1C 1,∴∠BAC 或其补角就是异面直线AB 与A 1C 1所成的角, 在Rt △C 1CD 中,∠C 1CD =90°,∴CD 2=C 1D 2-CC 12=247d 在△ADC 中,AD =21AB =2d,AC =dcos ∠CAD =21224742222222-=⋅⨯-+=⋅-+dd d d d AC AD CD AC AD .∴∠CAD =120°,∴异面直线AB 与A 1C 1所成的角为60°.例3题图例4题图【解后归纳】 此题也可运用异面直线上两点间的距离公式θcos 2222mn n m d EF ±++=,求出cos θ,其中EF ,d ,m ,n 就是题中的C 1D ,AA 1,A 1C 1,AD ,而θ就是∠CAD .,●对应训练 分阶提升 一、基础夯实1.“a 、b 为异面直线”是指①a ∩b =,且a ∥\ b ;②a ⊂面α,b ⊂面β且a ∩b =;③a ⊂面α,b ⊂面β,且a ∩β=;④a ⊂平面α,b ⊂平面α;⑤不存在面α,使a ⊂面α且b ⊂面α成立,上述结论中,正确的是 ( )A.①④⑤都正确B.①③④都正确C.仅②④正确D.仅①⑤正确 2.无论怎样选择平面,两条异面直线在该平面内的射影不可能是 ( ) A.两条平行直线 B.两条相交直线 C.一条直线和直线外一点 D.两个点 3.相交直线a 、b 的夹角为50°,则过交点与a 、b 都成60°角的直线的条数为 ( ).2 C4.正方体的对角线与正方体的棱组成的异面直线共有 ( ) 对 对 对 对\5.正方体ABCD —A 1B 1C 1D 1所有各面的对角线中与AB 1成60°角且与AB 1异面的直线的条数为( ).2 C6.空间四边形两条对角线互相垂直,则顺次连结各边中点的四边形是 ( ) A.空间四边形 B.矩形 C.菱形 D.正方形7.如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为棱AA 1和BB 1的中点,则异面直线CM 与D 1N 所成的角的正弦值为 ( )A.91B.32C.594D. 592.8.如图所示,A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1、E 1分别是A 1B 1、A 1C 1的中点,若BC =CA =CC 1,则BD 1与AE 1所成角的余弦值是 ( )A.1015 B.1530 C.21 D.10309.在四面体ABCD 中,AB =8,CD =6,M 、N 分别是BC 、AD 的中点,且MN =5,则AB!第7题图 第8题图与CD 所成角是 ( )° ° ° °10.空间四点A 、B 、C 、D ,每两点的连线长都等于a ,动点P 在线段AB 上,动点Q 在线段CD 上,则点P 与Q 的最小距离为 ( )B.a 23 C.a 22D. a 21 二、思维激活11.正方体六个面内的所有对角线互成60°角的共有 对.12.在三棱锥S —ABC 中,AB =6cm ,AC =4cm ,∠BAC =60°,M 、N 分别是△SAB 和△SAC 的重心,则MN = .13.在正四面体ABCD 中,E 、F 分别是AB ,CD 的中点,则EF 与AC 所成角的大小为 .14.在四面体ABCD 中,棱长均相等,E 是AD 的中点,则AB 和CE 所成角的余弦值为 . 三、能力提高(15.如图所示,在三棱锥D —ABC 中,DA ⊥平面ABC ,∠ACB =90°,∠ABD =30°,AC =BC ,求异面直线AB 与CD 所成角的余弦值.16.已知a 、b 是异面直线,A 、B ∈a 且AB =m ,C ∈b .》(1)当线段AB 在直线a 上移动时,C 为定点,证明△ABC 面积不变.(2)当C 点在直线b 上移动,问点C 在何位置时,△ABC 的面积最小.17.如图所示,已知P 为△ABC 所在平面外的一点,E 为PA 的中点,F 为PC 的中点,BE ⊥AC ,PC ⊥AC .。
立体几何 高中数学试题2解析版
高中数学试题-立体几何2解析版1.已知点P 为正方形ABCD 所在平面外一点,13PA PB PC PD AB =====,M 、N 分别为PA 、BD 上的点,且58PM BN MA ND ==.(1)求证://MN 平面PBC ;(2)求线段MN 的长.2.如图,S 为圆锥的顶点,O 是圆锥底面的圆心,ABC 内接于,,O AC BC AC BC ⊥== 2,3,AM MS AS PQ == 为O 的一条弦,且SB //平面PMQ .(1)求PQ 的最小值;(2)若SA PQ ⊥,求直线PQ 与平面BCM 所成角的正弦值.3.如图,在多面体ABCDEF 中,侧面BCDF 为菱形,侧面ACDE 为直角梯形,//,,,AC DE AC CD M N ⊥分别为,DF AB 的中点,且2,2,60BC AC DE CBF ∠=== .(1)证明://MN 平面ACDE ;(2)若平面BCDF ⊥平面ACDE ,多面体ABCDEF 的体积为3,求直线MN 与平面ABF 所成角的正弦值.4.如图所示正四棱锥S ABCD -,2,SA SB SC SD AB =====P 为侧棱SD 上的点.且3SP PD =,求:侧棱SC 上是否存在一点E ,使得//BE 平面PAC .若存在,求SE EC 的值;若不存在,试说明理由.5.如图,在四棱锥P ABMN -中,PNM △是边长为2的正三角形,AN NP ⊥,AN //BM ,3AN =,1BM =,AB =C ,D 分别是线段AB ,NP 的中点.(1)求证:CD //平面BMP ;(2)求四棱锥P ABMN -的体积.6.正方体1111ABCD A B C D -中,AC 与BD 交于点O ,点E ,F 分别为11,AA CC 的中点.(1)求证:平面11//B D F 平面BEO ;(2)若正方体的棱长为2,求三棱锥F BEO -的体积.7.P为正方形ABCD所在平面外一点,E,F,G分别为PD,AB,DC的中点,如图.求证:(1)AE∥平面PCF;(2)平面PCF∥平面AEG.8.如图,多面体ABCDEF的面ABCD是正方形,其中心为M.平面ADE⊥平面ABCD,∕∕,2BF AE===.AD DE AEAE BF=,2(1)求证:CF⊥平面AEFB;(2)在ADEV内(包括边界)是否存在一点N,使得MN∕∕平面CEF?若存在,求点N 的轨迹,并求其长度;若不存在,请说明理由.9.如图,四棱锥P ABCD -中,PA ⊥平面,ABCD AB DC ∥,,2,AB AD AB DC E ⊥=为PD 上的点且2PE ED =.(1)证明:PB //平面AEC ;(2)设二面角D AE C --为60,3,AP AD ==E ACD -的体积.10.在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为正方形,PA AB =,E 和F 分别为PD 和BC 的中点.(1)证明://EF 平面PAB ;(2)求二面角F ED A --的余弦值.11.如图①,在平面四边形ABCD 中,2AB AD ==,BC CD =60BAD ∠= .将BCD △沿着BD 折叠,使得点C 到达点C '的位置,且二面角A BD C '--为直二面角,如图②.已知,,P G F 分别是,,AC AD AB '的中点,E 是棱AB 上的点,且C E '与平面ABD(1)证明:平面//PGF 平面C DB ';(2)求四棱锥P GFED -的体积.12.如图,在三棱柱111ABC A B C -中,,E F 分别为11,AB A C 的中点,G 为侧面11ABB A 对角线的交点.(1)求证:平面EFG 平面11BB C C ;(2)若11111112,3A B B C C A AA ====,侧面11AA C C 为矩形,平面11AA C C ⊥平面111A B C ,求直线BC 与平面11BA C 所成角的正弦值.参考答案:1.(1)证明见解析(2)7MN =【分析】(1)过M 作AB 的平行线交PB 于E ,过N 作CD 的平行线交BC 于F ,连接EF ,证明出四边形MEFN 是平行四边形,可得出//ME NF ,再利用线面平行的判定定理可证得结论成立;(2)过E 作PC 的平行线交BC 于G ,计算出EG 、FG 的长以及EGF ∠的值,利用余弦定理可求得EF ,即可得出MN 的长.【详解】(1)证明:过M 作AB 的平行线交PB 于E ,过N 作CD 的平行线交BC 于F ,连接EF ,因为::5:8PM MA BN ND ==,所以,::5:13ME AB NF CD ==,因为四边形ABCD 是正方形,则AB CD =,所以,ME NF =,因为//ME AB ,//NF CD ,//AB CD ,所以,//ME NF ,所以,四边形MEFN 是平行四边形,则//MN EF ,因为MN ⊄平面PBC ,EF ⊂平面PBC ,所以,//MN 平面PBC .(2)解:过E 作PC 的平行线交BC 于G ,因为::5:8PM MA BN ND ==,13PB BC ==,且//ME AB ,//NF CD ,所以,513PE PM PB PA ==,则5PE =,同理可得5BF =,因为//EG PC ,所以,513CG PE BC PB ==,则5CG =,所以,1358BG BC CG =-=-=,则3FG BG BF =-=,由813EG BG PC BC ==且13PC =可得8EG =,因为13PB PC BC ===,则PBC 为等边三角形,则60EGF PCB ∠=∠= ,由余弦定理得2222212cos 83283492EF EG FG EG FG EGF =+-⋅⋅∠=+-⨯⨯⨯=,所以,7EF =,故7MN EF ==.2.(1)10【分析】(1)作出辅助线,找到符合要求的PQ ,并利用垂径定理得到最小值;(2)在第一问基础上,得到当PQ 取得最小值时,SA PQ ⊥,并建立空间直角坐标系,利用空间向量求解线面角.【详解】(1)过点M 作//MH SB 交AB 于点H ,过点H 作PQ ⊥AB ,此时满足SB //平面PMQ ,且PQ 取得最小值,因为2,3AM MS AS == ,所以2AH HB =,因为,2AC BC AC BC ⊥==,由勾股定理得32AB ==,故2,1AH HB ==,连接OQ ,则32OQ =,由勾股定理得HQ =,所以2PQ HQ ==(2)由(1)知,当PQ 取得最小值时,AB ⊥PQ ,连接OS ,则OS ⊥圆O ,因为PQ ⊂圆O ,故OS ⊥PQ ,因为AO OS O = ,,AO OS ⊂平面AOS ,所以PQ ⊥平面AOS ,因为AS ⊂平面AOS ,所以SA PQ ⊥,以O 为坐标原点,OB 所在直线为y 轴,OS 所在直线为z 轴,建立空间直角坐标系,则1133,0,2,,0,0,,0,,0,0,0,22222P Q B C M ⎛⎫⎫⎛⎫⎛⎫⎛⎫- ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎭⎝⎭⎝⎭⎝⎭,设平面BCM 的法向量为(),,m x y z = ,则()()(3333,,,,002222,,0,2,20m CB x y z x y m MB x y z y z ⎧⎛⎫⋅=⋅-=-+= ⎪⎪⎝⎭⎨⎪⋅=⋅==⎩ ,令1x =,则1,3y z ==,故1,1,3m ⎛= ⎝⎭,设直线PQ 与平面BCM 所成角的大小为θ,则sin cos ,PQ m PQ m PQ m θ⋅====⋅.故直线PQ 与平面BCM 3.(1)证明见解析38【分析】(1)取AC 的中点G ,连接,NG DG ,易证四边形DMNG 为平行四边形,则有//MN DG ,再由线面平行的判定证结论;(2)由题设及面面、线面垂直的性质可得CM DF ⊥、DE CM ⊥,线面垂直的判定有CM ⊥平面DEF ,连接,GE GB 得到CGB DEF -为三棱柱,设DE m =,用m 表示多面体ABCDEF 的体积求参,构建空间直角坐标系,向量法求直线MN 与平面ABF 所成角的正弦值.【详解】(1)取AC 的中点G ,连接,NG DG ,则NG 为ABC 的中位线,所以//NG BC ,且12NG BC =,又//DM BC ,且12DM BC =,所以//NG DM ,且NG DM =,即四边形DMNG 为平行四边形,所以//MN DG ,又MN ⊄平面,ACDE DG ⊂平面ACDE ,故//MN 平面ACDE .(2)连接CM ,在菱形BCDF 中60CBF ∠= ,则,CM DF CM ⊥=在直角梯形ACDE 中AC CD ⊥,所以DE CD ⊥,因为面BCDF ⊥面ACDE ,面BCDF ⋂面,ACDE CD DE =⊂面ACDE ,所以DE ⊥平面BCDF ,又CM ⊂平面BCDF ,故DE CM ⊥,又DF DE D = ,,DF DE ⊂面DEF ,所以CM ⊥平面DEF .连接,GE GB ,因为2AC DE =,即CG DE =,且//CG DE ,所以CDEG 为平行四边形,////CD EG BF 且CD EG BF ==,则CGB DEF -为三棱柱,设DE m =,则2AC m =,三棱柱CGB DEF -的体积1122DEF V S CM m CM =⨯=⨯⨯⨯= .连接GF ,则三棱锥F ABG -的体积21113333ABG BCG DEF V S CM S CM S CM m =⨯⨯=⨯⨯=⨯⨯= .取BF 中点H ,连接CH ,则,CH CD CH ⊥=面BCDF ⊥面ACDE ,面BCDF ⋂面,ACDE CD CH =⊂面BCDF ,则CH ⊥面ACDE ,所以三棱锥F AGE -的体积311123323AGE V S CH m m =⨯⨯=⨯⨯⨯= ,由多面体ABCDEF +=2m =.综上,,,CA CH CD 两两垂直,以C 为坐标原点,,,CA CH CD 所在直线分别为,,x y z 轴,建立如图所示的空间直角坐标系.则()()()()0,0,0,4,0,0,0,1,0,0,2C A B D -,()2,0,0,G ()()1,0,0,2AB BF CD =--== ,()2,0,2NM GD ==- ,设面ABF 的法向量为(),,m x y z = ,由4020AB m x z BF m z ⎧⋅=--=⎪⎨⋅==⎪⎩ ,令x =则)4,0m = ,设直线MN 与平面ABF 所成角为θ,所以sin cos ,38NM m θ== ,故直线MN 与平面ABF所成角的正弦值为38.4.在侧棱SC 上存在一点E ,使//BE 平面PAC ,满足2SE EC =【分析】根据线面平行的判定定理、面面平行的判定定理和性质定理可证出结论.【详解】在侧棱SC 上存在一点E ,使//BE 平面PAC ,满足2SE EC=.理由如下:取SD 中点为Q ,因为3SP PD =,则PQ PD =,过Q 作PC 的平行线交SC 于E ,连接BQ ,BE .在BDQ △中,有//BQ PO ,PO ⊂ 平面PAC ,⊄BQ 平面PAC ,//BQ ∴平面PAC ,由于2SQ QP =,∴2SE SQ EC QP==.又由于//QE PC ,PC ⊂平面PAC ,QE ⊄平面PAC ,//QE ∴平面PAC ,BQ QE Q ⋂= ,∴平面//BEQ 平面PAC ,又BE ⊂平面BEQ ,//BE ∴平面PAC ,5.(1)证明见解析【分析】(1)取MN 中点Q ,连,CQ DQ ,利用中位线定理得到线线平行,进而得到线面平行,利用面面平行的判定定理证明平面CDQ 平面BMP ,进一步证明CD 平面BMP ;(2)在四边形ABMN 中,过B 作BE MN ∥交AN 于E ,利用勾股定理得到线线垂直,进而证得面面垂直,利用面面垂直求出锥体的高,代入锥体的体积计算公式即可求解.【详解】(1)如图,取MN 中点Q ,连,CQ DQ ,DQ 为中位线,DQ MP ∴∥,又DQ ⊄平面,BMP MP ⊂平面BMP ,DQ ∴ 平面BMP ,同理,在梯形ABMN 中,CQ MB ∥,又CQ ⊄平面,BMP MB ⊂平面BMP ,CQ ∴ 平面BMP ,且DQ ⊂平面,CDQ CQ ⊂平面,CDQ DQ CQ Q ⋂=,∴平面CDQ 平面BMP ,又CD ⊂平面CDQ ,所以CD 平面BMP .(2)如图,在四边形ABMN 中,过B 作BE MN ∥交AN 于E ,在AEB △中,易得2,2,AE BE AB ===,则222AB AE BE =+,得AE BE ⊥,BE MN∥AN NM ∴⊥,又由已知条件,,,AN NP NM NP N NM NP ⊥⋂=⊂平面NMP ,故AN ⊥平面NMP ,又AN ⊂平面ANMB ,∴平面ANMB ⊥平面NMP .又PNM △是边长为2的正三角形,连接PQ ,因为Q 为MN 的中点,所以PQ MN ⊥,因为平面ANMB ⊥平面NMP ,且平面ANMB 平面NMP MN =,PQ ⊂平面NMP ,所以PQ ⊥平面ANMB ,因为PNM △是边长为2的正三角形,所以PNM △∴四棱锥P ABMN -()·1323P ABMN AN BM MN V -+∴=⨯=.6.(1)证明见解析(2)23【分析】(1)利用中位线定理与线面平行的判定定理证得//MF 面BEO ,11//B D 平面BEO ,从而利用面面平行的判定定理即可得证;(2)先利用线面垂直的判定定理证得BO ⊥平面OEF ,再利用等体积法即可得解.【详解】(1)连接11A C 交11B D 于M ,连接1A C ,MF ,∵在正方体中,O 为AC 的中点,E 为1AA 的中点,∴1//EO A C ,同理1//MF A C ,∴//MF EO ,∵EO ⊂平面BEO ,MF ⊄平面BEO ,∴//MF 面BEO ,∵11//B D BD ,而BD ⊂平面BEO ,11B D ⊄平面BEO ,∴11//B D 平面BEO ,∵11B D MF M ⋂=,11B D ,MF ⊂平面11B D F ,∴平面11//B D F 平面BEO .(2)∵1,BO AC BO C C ⊥⊥,11,,AC CC C AC CC =⊂ 平面OEF ,∴BO ⊥平面OEF ,∵正方体棱长为2,112OEF S =⨯= ,∴112333F BEO B OEF OEF V V S BO --==⋅== .7.(1)证明见解析(2)证明见解析【分析】(1)取PC 中点H ,分别连接EH ,FH ,根据E ,F ,H 分别为PD ,AB ,PC 的中点,得到EAFH 为平行四边形,从而EA ∥FH ,再利用线面平行的判定定理证明;(2)根据E ,G 分别为PD ,CD 的中点,得到EG ∥PC ,利用线面平行的判定定理得到EG ∥平面PCF ,再利用面面平行的判定定理证明.【详解】(1)证明:如图所示:,取PC 中点H ,分别连接EH ,FH ,∵E ,F ,H 分别为PD ,AB ,PC 的中点,∴11//,22EH DC EH DC =,∴EAFH 为平行四边形.∴EA ∥FH .又AE ⊄平面PCF ,FH ⊂平面PCF ,∴AE ∥平面PCF .(2)∵E ,G 分别为PD ,CD 的中点,∴EG ∥PC .又EG ⊄平面PCF ,PC ⊂平面PCF ,∴EG ∥平面PCF .由(1)知AE ∥平面PCF ,EG ∩AE =E .∴平面PCF ∥平面AEG .8.(1)证明见解析(2)存在;点N 的轨迹为线段DG (AE 的中点G )【分析】(1)取AE 的中点G ,连接GF ,DG ,证明CF DG ∕∕,根据面面垂直的性质可得BA ⊥平面ADE ,从而可得BA DG ⊥,在证明DG ⊥平面AEFB ,即可得证;(2)先证明BG ∕∕平面CEF ,DG ∕∕平面CEF ,再根据面面平行的判定定理可得平面BDG ∕∕平面CEF ,再根据面面平行的性质即可得出结论.【详解】(1)如图,取AE 的中点G ,连接GF ,DG ,因为BF AE ∕∕,2AE BF =,所以BF AG ∕∕,BF AG =,所以四边形ABFG 是平行四边形,所以FG AB ∕∕,FG BA =,又因为BA CD ∕∕,BA CD =,所以FG CD ∕∕,FG CD =,所以四边形CDGF 是平行四边形,所以CF DG ∕∕,因为BA AD ⊥,平面ADE ⊥平面ABCD ,BA ⊂平面ABCD ,平面ADE 平面ABCD AD =,所以BA ⊥平面ADE ,又DG ⊂平面ADE ,所以BA DG ⊥,因为AD DE AE ==,G 为AE 的中点,所以DG AE ⊥,又AE ,BA ⊂平面AEFB ,且AE BA A ⋂=,所以DG ⊥平面AEFB ,所以CF ⊥平面AEFB ;(2)如图,连接BD ,BG ,由(1)知,BF AG ∕∕,BF AG =,所以BF EG ∕∕,BF EG =,所以四边形BGEF 是平行四边形,所以BG EF ∕∕,因为EF ⊂平面CEF ,BG ⊄平面CEF ,所以BG ∕∕平面CEF ,又由(1)知,CF DG ∕∕,CF ⊂平面CEF ,DG ⊄平面CEF ,所以DG ∕∕平面CEF ,因为DG ,BG ⊂平面BDG ,且DG BG G = ,所以平面BDG ∕∕平面CEF ,设点N 为线段DG 上任意一点,则MN ⊂平面BDG ,MN ∕∕平面CEF ,所以点N 的轨迹为线段DG ,长度为3.9.(1)证明见解析(2)93926【分析】(1)利用线面平行的判定,在平面AEC 内找一条线使其和PB 平行;(2)建立空间直角坐标系,通过二面角的大小算出AB 的长度,根据2PE ED =得出三棱锥E ACD -的高,从而进行求解.【详解】(1)连接BD 交AC 于点F ,连接EF因为AB //DC 所以ABF △与CDF 相似,所以AB BF CD DF=又2AB DC =,所以2BF DF=因为E 为PD 上的点且2PE ED=所以PB //EF因为EF ⊂平面,AEC PB ⊄平面AEC所以PB //平面AEC ⋅(2)因为PA ⊥平面,ABCD AB AD⊥所以,,AB AD AP 两两互相垂直.如图,以A 为坐标原点,,,AB AD AP 的方向为,,x y z 轴的正方向,建立空间直角坐标系A xyz -,则()()()()0,0,0,,0,,0,A D E AE = 设()2,0,0(0)B m m >,则()(),C m AC m = 设()1,,n x y z = 为平面AEC 的法向量,则1100n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩即00z mx ⎧+=⎪⎨+=⎪⎩可取()1,n m =- .又()21,0,0n = 为平面DAE 的法向量,由题设121cos ,2n n =12=,解得m =因为2PE ED =,所以三棱锥E ACD -的高为1.三棱锥E ACD -的体积1113226V =⨯⨯=10.(1)证明见解析(2)13【分析】(1)通过证明四边形MBFE 是平行四边形,进而由线线平行得出线面平行;(2)通过DEF 为等腰三角形,推导出FGN ∠即为二面角F ED A --的平面角,即可求出二面角F ED A --的余弦值.【详解】(1)取PA 的中点M ,连接,ME MB ,∵M ,E 分别为,PA PD 的中点,∴ME 是PAD 的中位线,∴//ME AD 且12ME AD =,又F 为BC 的中点,∴//BF AD 且12BF AD =,∴//ME BF 且ME BF =,∴四边形MBFE 是平行四边形,∴,EF MB EF ⊄//平面,PAB MB ⊂平面PAB ,∴//EF 平面PAB ,(2)取,AD DE 的中点N ,G ,连接,NG FG ,设4,PA AB DF EF ====∴DEF 为等腰三角形,∴FG DE ⊥,∵PA AB =,∴AE PD ⊥即NG DE ^,又FG ⊂ 平面FED ,NG ⊂平面AED ,平面FED平面AED DE =,∴FGN ∠即为二面角F ED A --的平面角,∴2221cos 23FG NG FN FGN FG NG +-∠==⋅,∴二面角F ED A --的平面角的余弦值为13.11.(1)证明见解析【分析】(1)利用三角形中位线性质和线面平行的判定可证得//PG 平面C DB ',//PF 平面C DB ',由面面平行的判定可证得结论;(2)取BD 的中点M ,根据已知的长度关系和面面垂直性质可证得C M '⊥平面ABD ,结合线面角定义可得tan C EM '∠=E 点位置,从而求得GFED S 四边形,利用棱锥体积公式可求得结果.【详解】(1),,P G F 分别为,,AC AD AB '的中点,//PG C D '∴,//PF BC ',,PG PF ⊄ 平面C DB ',,C D BC ''⊂平面C DB ',//PG ∴平面C DB ',//PF 平面C DB ',又PG PF P ⋂=,,PG PF ⊂平面PGF ,∴平面//PGF 平面C DB '.(2)取BD 的中点M ,连接,C M EM ',2AB AD == ,60BAD ∠= ,ABD ∴ 为等边三角形,2BD ∴=,又BC C D ''=222BC C D BD ''∴+=,C DB '∴ 为等腰直角三角形,112C M BD '∴==,C M BD '⊥; 二面角A BD C '--是直二面角,即平面C DB '⊥平面ABD ,平面C DB '⋂平面ABD BD =,C M '⊂平面C DB ',C M '∴⊥平面ABD ,C EM '∴∠即为C E '与平面ABD 所成角,1tan 3C M C EM EM EM ''∴∠===,解得:2EM =;在EMB △中,由余弦定理得:2222cos60EM BM BE BM BE =+-⋅ ,即2314BE BE =+-,解得:12BE =,E ∴为线段AB 上靠近点B 的四等分点,111442ABD AGF BDE ABD ABD ABD ABD GFED S S S S S S S S ∴=--=--= 四边形211222=⨯⨯=111113232212P GFED GFED V S C M -'∴=⨯⨯=⨯⨯⨯=四棱锥四边形.12.(1)证明见解析(2)34【分析】(1)根据已知结合中位线性质得出1GE B B ,1GF BC ,即可根据两平面平行的判定定理证明;(2)根据已知得出111EO A B C O 、、两两垂直,以点O 为坐标原点,建立空间直角坐标系,根据线面角的向量求法得出答案.【详解】(1) 点G 为侧面11ABB A 对角线的交点,∴点G 为1AB 与1A B 的中点,点,E F 分别为11,AB A C 的中点,1//GE B B ∴,1//GF BC ,GE GF G ⋂= ,1B B BC B = ,且GE GF ⊂、平面EFG ,1B B BC ⊂、平面11BB C C ,∴平面EFG 平面11BB C C ;(2)延长EG 与直线11A B 交于点O ,连接1C O ,点E 分别为AB 的中点,G 为侧面11ABB A 对角线的交点,且侧面11AA C C 为矩形,11EO A B ∴⊥,且O 为直线11A B 中点,平面11AA C C ⊥平面111A B C ,1C O ⊂平面111A B C ,1EO C O ∴⊥,答案第15页,共15页1111112A B B C C A === ,111C O A B ∴⊥,则以点O 为坐标原点,向量1OC 、1OB 、OE 方向为x y z 、、轴正方向,建立如图所示空间直角坐标系,则()0,1,3B,)C,()10,1,0A -,)1C ,则)1,0BC =- ,()1023BA =-- ,,,)113BC =-- ,,设平面11BA C 的一个法向量为(),,n x y z =r,1123030n BA y z n BC y z ⎧⋅=--=⎪⎨⋅=--=⎪⎩ ,令2z =,则)3,2n =- ,设直线BC 与平面11BA C 所成角为θ,则3sin cos ,4n BC θ== ,故直线BC 与平面11BA C 所成角的正弦值为34.。
第2讲 立体几何中的空间角问题
(2)求直线DF与平面DBC所成角的正弦值.
解 方法一 如图(2),过点O作OH⊥BD,交直线BD于点H,连接CH.
由ABC-DEF为三棱台,得DF∥CO,
所以直线DF与平面DBC所成角等于直线CO与平面DBC所成角.
由BC⊥平面BDO,得OH⊥BC,又BC∩BD=B,
故OH⊥平面DBC,
所以∠OCH为直线CO与平面DBC所成角.
(2)(2021·温州模拟)如图,点M,N分别是正四面体ABCD的棱AB,CD上 的点,设BM=x,直线MN与直线BC所成的角为θ,则 A.当ND=2CN时,θ随着x的增大而增大 B.当ND=2CN时,θ随着x的增大而减小 C.当CN=2ND时,θ随着x的增大而减小
√D.当CN=2ND时,θ随着x的增大而增大
又∵AA1∥B1B,∴BB1⊥BM. 又BM∩BC=B,BM,BC⊂平面BMC, ∴BB1⊥平面BMC, 又CM⊂平面BMC,∴BB1⊥CM.
(2)求直线BM与平面CB1M所成角的正弦值.
解 方法一 作BG⊥MB1于点G,连接CG. 由(1)知BC⊥平面AA1B1B,得到BC⊥MB1, 又BC∩BG=B,BC,BG⊂平面BCG,
MN= x2-3x+7,
所以在△MNE 中,cos θ=2
4-x x2-3x+7
=12 1+x2-9-3x5+x 7(x∈[0,3]),
令 f(x)=x2-9-3x5+x 7,
则 f′(x)=5xx22--31x8+x-782<0,
所以f(x)在定义域内单调递减,即x增大,f(x)减小,即cos θ减小,从而θ 增大,故D正确,C错误.
所以在△FNM中, cos θ=2 x25--3xx+7=21
1+x21-8-3x7+x 7(x∈[0,3]),
高考一轮复习第7章立体几何第2讲空间几何体的表面积与体积
第二讲 空间几何体的表面积与体积知识梳理·双基自测 知识梳理知识点一 柱、锥、台和球的侧面积和体积侧面积 体积圆柱 S 侧=2πrh V =_S 底·h__=πr 2h圆锥 S 侧=_πrl __ V =13S 底·h=13πr 2h =13πr 2l 2-r 2 圆台 S 侧=π(r 1+r 2)l V =13(S 上+S 下+S 上·S 下)·h=13π(r 21+r 22+r 1r 2)h 直棱柱 S 侧=_ch__ V =_S 底h__ 正棱锥 S 侧=12ch′V =13S 底h 正棱台 S 侧=12(c +c′)h′V =13(S 上+S 下+S 上·S 下)h 球S 球面=_4πR 2V =43πR 3 (1)棱柱、棱锥、棱台的表面积就是_各面面积之和__.(2)圆柱、圆锥、圆台的侧面展开图分别是_矩形__、_扇形__、_扇环形__;它们的表面积等于_侧面积__与底面面积之和.重要结论1.长方体的外接球:球心:体对角线的交点;半径:r =_a 2+b 2+c22__(a ,b ,c 为长方体的长、宽、高).2.正方体的外接球、内切球及与各条棱相切的球: (1)外接球:球心是正方体中心;半径r =_32a__(a 为正方体的棱长); (2)内切球:球心是正方体中心;半径r =_a2__(a 为正方体的棱长);(3)与各条棱都相切的球:球心是正方体中心;半径r =_22a__(a 为正方体的棱长). 3.正四面体的外接球与内切球(正四面体可以看作是正方体的一部分):(1)外接球:球心是正四面体的中心;半径r =_64a__(a 为正四面体的棱长); (2)内切球:球心是正四面体的中心;半径r =_612a__(a 为正四面体的棱长). 双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)多面体的表面积等于各个面的面积之和.( √ ) (2)台体的体积可转化为两个锥体的体积之差.( √ ) (3)锥体的体积等于底面积与高之积.( × )(4)已知球O 的半径为R ,其内接正方体的棱长为a ,则R =32a.( √ ) (5)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.( × ) 题组二 走进教材2.(必修2P 27T1)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( B ) A .1 cm B .2 cm C .3 cmD .32cm [解析] 由条件得:⎩⎪⎨⎪⎧πrl+πr 2=12π2πrl =π,∴3r 2=12,∴r =2.题组三 走向高考3.(2020·天津卷)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( C ) A .12π B .24π C .36πD .144π[解析] 这个球是正方体的外接球,其半径等于正方体的体对角线长的一半, 即R =232+232+2322=3,所以,这个球的表面积为S =4πR 2=4π×32=36π.故选:C .4.(2018·课标全国Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( B )A .122πB .12πC .82πD .10π[解析] 设圆柱底面半径为r ,则4r 2=8,即r 2=2.∴S 圆柱表面积=2πr 2+4πr 2=12π.5.(2020·浙江卷)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm 3)是( A )A .73 B .143C .3D .6[解析] 由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面.棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:13×⎝ ⎛⎭⎪⎫12×2×1×1+⎝ ⎛⎭⎪⎫12×2×1×2=13+2=73.故选:A .考点突破·互动探究考点一 几何体的表面积——自主练透例1 (1)(2021·北京模拟)某三棱锥的三视图如图所示,则该三棱锥的表面积是( C )A .2+ 5B .4+ 5C .2+2 5D .5(2)(2021·安徽江南十校联考)已知某几何体的三视图如图所示,网格纸上小正方形的边长为1,则该几何体的表面积为( B )A .78-9π2B .78-9π4C .78-πD .45-9π2(3)(多选题)(2021·山东潍坊期末)等腰直角三角形直角边长为1,现将该三角形绕其某一边旋转一周,则所形成的几何体的表面积可以为( AB )A .2πB .(1+2)πC .22πD .(2+2)π[解析] (1)由三视图知,该几何体是底面为等腰三角形,其中一条侧棱与底面垂直的三棱锥(SA ⊥平面ABC),如图所示,由三视图中的数据可计算得S △ABC =12×2×2=2,S △SAC =12×5×1=52,S △SAB =12×5×1=52,S △SBC =12×2×5=5,所以S 表面积=2+2 5.故选C .(2)由三视图可知该几何体是一个长方体中挖去一个18球,如图所示.∴S =3×3×2+3×5×4-27π4+9π2=78-94π.故选B .(3)若绕直角边旋转一周形成的几何体是圆锥,其表面积为π+2π;若绕斜边旋转一周形成的几何体是两同底圆锥构成的组合体,其表面积为2π,故选A 、B .名师点拨空间几何体表面积的求法(1)旋转体的表面积问题注意其轴截面及侧面展开图的应用.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)已知几何体的三视图求其表面积,一般是先根据三视图判断空间几何体的形状,再根据题目所给数据与几何体的表面积公式,求其表面积.〔变式训练1〕(2020·河南开封二模)已知某个几何体的三视图如图所示,根据图中标出的数据,可得出这个几何体的表面积是( C )A .6B .8+4 6C .4+2 6D .4+ 6[解析] 由三视图得几何体如图所示,该几何体是一个三棱锥,底面是一个底和高均为2的等腰三角形,一个侧面是一个底和高均为2的等腰三角形,另外两个侧面是腰长为AC =AB =22+12=5, 底边AD 长为22的等腰三角形, 其高为52-22=3,故其表面积为S =2×12×22+2×12×22×3=4+2 6.故选C .考点二 几何体的体积——师生共研例2 (1)(2021·浙江金色联盟百校联考)一个空间几何体的三视图(单位:cm)如图所示,则该几何体的体积为( )cm 3.( A )A .π6+13B .π3+16C .π6+16D .π3+13(2)(2021·云南师大附中月考)如图,某几何体的三视图均为边长为2的正方形,则该几何体的体积是( D )A .56 B .83 C .1D .163(3)(2021·湖北武汉部分学校质检)某圆锥母线长为4,其侧面展开图为半圆面,则该圆锥体积为_83π3__.(4)(2020·江苏省南通市通州区)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,P 是侧棱CC 1上一点,且C 1P =2PC .设三棱锥P - D 1DB 的体积为V 1,正四棱柱ABCD -A 1B 1C 1D 1的体积为V ,则V 1V 的值为_16__.[解析] (1)由三视图可知该几何体是由底面半径为1 cm ,高为1 cm 的半个圆锥和三棱锥S -ABC 组成的,如图,三棱锥的高为SO =1 cm ,底面△ABC 中,AB =2 cm ,AC =1 cm ,AB ⊥AC .故其体积V =13×12×π×12×1+13×12×2×1×1=⎝ ⎛⎭⎪⎫π6+13cm 3.故选A .(2)由题意三视图对应的几何体如图所示,所以几何体的体积为正方体的体积减去2个三棱锥的体积,即V =23-2×13×12×2×2×2=163,故选D .(3)该圆锥母线为4,底面半径为2,高为23, V =13×π×22×23=83π3. (4)设正四棱柱ABCD -A 1B 1C 1D 1的底面边长AB =BC =a ,高AA 1=b , 则VABCD -A 1B 1C 1D 1=S 四边形ABCD ×AA 1=a 2b ,VP -D 1DB =VB -D 1DP =13S △D 1DP·BC=13×12ab·a=16a 2b ,∴VP -D 1DB VABCD -A 1B 1C 1D 1=16,即V 1V =16.[引申]若将本例(2)中的俯视图改为,则该几何体的体积为_83__,表面积为_83__.[解析] 几何体为如图所示的正三棱锥(棱长都为22). ∴V =8-4×43=83,S =4×34×(22)2=8 3.名师点拨求体积的常用方法直接法对于规则的几何体,利用相关公式直接计算割补法首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算等体 积法选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换注:若以三视图的形式给出的几何体问题,应先得到直观图,再求解. 〔变式训练2〕(1)(2020·海南)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为_13__.(2)(2021·开封模拟)如图所示,正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥A -B 1DC 1的体积为( C )A .3B .32 C .1D .32(3)(2017·浙江)某三棱锥的三视图如图所示,则该三棱锥的体积为( A )A .16 B .13 C .12D .1(4)(2021·浙北四校模拟)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( B )A .8B .8πC .16D .16π[解析] (1)如图,∵正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,∴S △ANM =12×1×1=12,∴VA -NMD 1=VD 1-AMN =13×12×2=13,故答案为:13.(2)如题图,在正△ABC 中,D 为BC 的中点,则有AD =32AB =3,又因为平面BB 1C 1C ⊥平面ABC ,AD ⊥BC ,AD ⊂平面ABC ,由面面垂直的性质定理可得AD ⊥平面BB 1C 1C ,即AD 为三棱锥A -B 1DC 1的底面B 1DC 1上的高,所以V 三棱锥A -B 1DC 1=13·S△B 1DC 1·AD=13×12×2×3×3=1,故选C .(3)由三视图可画出三棱锥的直观图如图所示.其底面是等腰直角三角形ACB ,直角边长为1,三棱锥的高为1,故体积V =13×12×1×1×1=16.故选A .(4)由三视图的图形可知,几何体是等边圆柱斜切一半,所求几何体的体积为:12×22π×4=8π.故选B .考点三 球与几何体的切、接问题——多维探究角度1 几何体的外接球例3 (1)(2021·河南中原名校质量测评)已知正三棱锥P -ABC 的底面边长为3,若外接球的表面积为16π,则PA =_23或2__.(2)(2020·新课标Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( A )A .64πB .48πC .36πD .32π(3)(2019·全国)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E 、F 分别是PA ,PB 的中点,∠CEF =90°,则球O 的体积为( D )A .86πB .46πC .26πD .6π[解析] (1)由外接球的表面积为16π,可得其半径为2,设△ABC 的中心为O 1,则外接球的球心一定在PO 1上,由正三棱锥P -ABC 的底面边长为3,得AO 1=3,在Rt △AOO 1中,由勾股定理可得(PO 1-2)2+(3)2=22,解得PO 1=3或PO 1=1,又PA 2=PO 21+AO 21,故PA =9+3=23或PA =1+3=2,故答案为:23或2.(2)由题意可知图形如图:⊙O 1的面积为4π, 可得O 1A =2, 则ABsin60°=2O 1A =4,∴AB =4sin60°=23,∴AB=BC=AC=OO1=23,外接球的半径为:R=AO21+OO21=4,球O的表面积为:4×π×42=64π,故选A.(3)∵PA=PB=PC,△ABC为边长为2的等边三角形,∴P-ABC为正三棱锥,∴PB⊥AC,又E,F分别为PA、AB中点,∴EF∥PB,∴EF⊥AC,又EF⊥CE,CE∩AC=C,∴EF⊥平面PAC,∴PB⊥平面PAC,∴∠APB=90°,∴PA=PB=PC=2,∴P-ABC为正方体一部分,2R=2+2+2=6,即R=62,∴V=43πR3=43π×668=6π.名师点拨几何体外接球问题的处理(1)解题关键是确定球心和半径,其解题思维流程是:(R—球半径,r—截面圆的半径,h—球心到截面圆心的距离).注:若截面为非特殊三角形可用正弦定理求其外接圆半径r.(2)三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.注意:不共面的四点确定一个球面.角度2 几何体的内切球例4 (1)(2020·新课标Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_23π__. (2)(2021·安徽蚌埠质检)如图,E ,F 分别是正方形ABCD 的边AB ,AD 的中点,把△AEF ,△CBE ,△CFD 折起构成一个三棱锥P -CEF(A ,B ,D 重合于P 点),则三棱锥P -CEF 的外接球与内切球的半径之比是_26__.[解析] (1)因为圆锥内半径最大的球应该为该圆锥的内切球, 如图,圆锥母线BS =3,底面半径BC =1, 则其高SC =BS 2-BC 2=22, 不妨设该内切球与母线BS 切于点D , 令OD =OC =r ,由△SOD ∽△SBC ,则OD OS =BCBS ,即r22-r =13,解得r =22,V =43πr 3=23π,故答案为:23π.(2)不妨设正方形的边长为2a ,由题意知三棱锥P -CEF 中PC 、PF 、PE 两两垂直,∴其外接球半径R =PC 2+PF 2+PE 22=62a ,下面求内切球的半径r ,解法一(直接法):由几何体的对称性知,内切球的球心在平面PCH(H 为EF 的中点)内,M 、N 、R 、S 为球与各面的切点,又22=tan ∠CHP =tan2∠OHN , ∴tan ∠OHN =22=rNH,∴NH =2r , 又PN =2r ,∴22r =PH =22a ,∴r =a 4. 解法二(体积法):V C -PEF =13r·(S △PEF +S △PCE +S △PCF +S △CEF ),∴a 3=r·⎝ ⎛⎭⎪⎫a 22+a 2+a 2+2a 2×32a 2,∴r =a 4,故R r =6a 2·4a=2 6.名师点拨几何体内切球问题的处理(1)解题时常用以下结论确定球心和半径:①球心在过切点且与切面垂直的直线上;②球心到各面距离相等.(2)利用体积法求多面体内切球半径. 〔变式训练3〕(1)(角度1)(2020·南宁摸底)三棱锥P -ABC 中,△ABC 为等边三角形,PA = PB = PC =3,PA ⊥PB ,三棱锥P -ABC 的外接球的体积为( B )A .27π2B .273π2C .273πD .27π(2)(角度1)(2021·山西运城调研)在四面体ABCD 中,AB =AC =23,BC =6,AD ⊥平面ABC ,四面体ABCD 的体积为 3.若四面体ABCD 的顶点均在球O 的表面上,则球O 的表面积是( B )A .49π4B .49πC .49π2D .4π(3)(角度2)棱长为a 的正四面体的体积与其内切球体积之比为_63π__.[解析] (1)因为三棱锥P -ABC 中,△ABC 为等边三角形,PA =PB =PC =3,所以△PAB ≌△PBC ≌△PAC .因为PA ⊥PB ,所以PA ⊥PC ,PC ⊥PB .以PA ,PB ,PC 为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥P -ABC 的外接球.因为正方体的体对角线长为32+32+32=33,所以其外接球半径R =332.因此三棱锥P -ABC 的外接球的体积V =4π3×⎝ ⎛⎭⎪⎫3323=273π2.故选B .(2)如图,H 为BC 的中点,由题意易知AH =3,设△ABC 外接圆圆心为O 1,则|O 1C|2=32+(3-|O 1C|)2,∴|O 1C|=23,又12×6×3×|AD|3=3,∴|AD|=1,则|OA|2=|O 1C|2+⎝ ⎛⎭⎪⎫122=494,∴S 球O =4πR 2=49π,故选B .(3)如图,将正四面体纳入正方体中,显然正四面体内切球的球心O(也是外接球的球心)、△BCD 的中心O 1都在正方体的对角线上,设正四面体的棱长为a ,则|AO|=64a ,又|O 1A|=a 2-⎝⎛⎭⎪⎫33a 2=63a ,∴内切球半径|OO 1|=612a ,∴V 正四面体V 内切球=13×34a 2×63a4π3⎝ ⎛⎭⎪⎫612a 3=63π.名师讲坛·素养提升 最值问题、开放性问题例5 (1)(最值问题)(2018·课标全国Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( B )A .12 3B .18 3C .24 3D .54 3(2)(2021·四川凉山州模拟)已知长方体ABCD -A 1B 1C 1D 1的体积V =12,AB =2,若四面体A -B 1CD 1的外接球的表面积为S ,则S 的最小值为( C )A .8πB .9πC .16πD .32π[解析] (1)设等边△ABC 的边长为a ,则有S △ABC =12a·a·sin 60°=93,解得a =6.设△ABC 外接圆的半径为r ,则2r =6sin 60°,解得r =23,则球心到平面ABC 的距离为42-232=2,所以点D 到平面ABC 的最大距离为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=183,故选B .(2)设BC =x ,BB 1=y ,由于V =12,所以xy =6.根据长方体的对称性可知四面体A -B 1CD 1的外接球即为长方体的外接球, 所以r =4+x 2+y22,所以S =4πr 2=π(4+x 2+y 2)≥π(4+2xy)=16π, (当且仅当x =y =6,等号成立). 故选C .名师点拨立体几何中最值问题的解法(1)观察图形特征,确定取得最值的条件,计算最值.(2)设出未知量建立函数关系,利用基本不等式或导数计算最值.例6 (开放性问题)若四面体各棱的长是1或2,且该四面体不是正四面体,则其体积的值为_116⎝ ⎛⎭⎪⎫或1412等__(只需写一个可能值). [解析] 如图,若AB =AC =BD =CD =AD =2,BC =1,取AD 的中点H ,则CH =BH =3,且AH ⊥平面BCH ,又S △BCH =114,∴V A -BCD =13S △BCH ×2=116. 如图,若AB =AC =BD =CD =2,AD =BC =1,同理可求得V A -BCD =1412.〔变式训练4〕(2021·河南阶段测试)四面体ABCD 中,AC ⊥AD ,AB =2AC =4,BC =25,AD =22,当四面体的体积最大时,其外接球的表面积是_28π__.[解析] 由已知可得BC 2=AC 2+AB 2,所以AC ⊥AB ,又因为AC ⊥AD ,所以AC ⊥平面ABD ,四面体ABCD 的体积V =13AC·12AB·ADsin∠BAD ,当∠BAD =90°时V 最大,把四面体ABCD 补全为长方体,则它的外接球的直径2R 即长方体的体对角线,(2R)2=AD 2+AC 2+AB 2=28,所以外接球的表面积为4πR 2=28π.。
_新教材高中数学第13章立体几何初步2
3.垂直于梯形两腰的直线与梯形所在平面的位置关系是( ) A.垂直 B.相交但不垂直 C.平行 D.不确定
【解析】选 A.因为梯形两腰所在直线为两条相交直线,所以由线面垂直的判定定理 知,直线与平面垂直.
4.直线 l 与平面 α 内的无数条直线垂直,则直线 l 与平面 α 的关系是( ) A.l 和平面 α 相互平行 B.l 和平面 α 相互垂直 C.l 在平面 α 内 D.不能确定
【解析】由线面垂直的判定定理可知①③能判定,而②中线面可能平行、相交、还可 能线在平面内,④中由于正六边形的两边可能平行,所以也无法判定线面垂直. 答案:①③
四、解答题 10.如图所示,在三棱柱 ABC-A1B1C1 中,侧棱 AA1⊥底面 ABC,AB=AC=1,AA1 =2,∠B1A1C1=90°,D 为 BB1 的中点.求证:AD⊥平面 A1DC1.
【证明】(1)因为 PA⊥平面 ABCD,BC⊂平面 ABCD,所以 PA⊥BC.又 AB⊥BC,PA∩AB =A, 所以 BC⊥平面 PAB,因为 AE⊂平面 PAB,所以 AE⊥BC.又 AE⊥PB,PB∩BC=B, 所以 AE⊥平面 PBC,因为 PC⊂平面 PBC,所以 AE⊥PC.又因为 PC⊥AF,AE∩AF =A,所以 PC⊥平面 AEF. (2)由(1)知 PC⊥平面 AEF,所以 PC⊥AG,因为 CD⊥平面 PAD,AG⊂平面 PAD, 所以 CD⊥AG,PC∩CD=C,所以 AG⊥平面 PCD,PD⊂平面 PCD,所以 AG⊥PD.
对于④,由图形可以看出,B 到线段 EF 的距离与 A 到 EF 的距离不相等,故△ AEF 的面积与△ BEF 的面积不相等,故④错误. 答案:①②③
7.如图,PA⊥平面 ABCD,底面 ABCD 为矩形,AE⊥PB 于 E,AF⊥PC 于 F.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省各地市2012年高考数学(理科)最新试题分类大汇编:第8部分:立体几何(2)一、选择题【山东省潍坊市寿光现代中学2012届高三12月段考理】已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】B【山东省潍坊市寿光现代中学2012届高三12月段考理】7.如图是某一几何体的三视图,则这个几何体的体积为( )A.4B.8C.16D.20【答案】C【山东省潍坊市寿光现代中学2012届高三12月段考理】8.已知正四棱柱ABC D -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1中点,则异面直线BE 与CD 1所形成角的余弦值为A. 1010B. 51C. 10103D. 53【答案】C【山东省潍坊市寿光现代中学2012届高三12月段考理】10.如图,在四面体ABCD 中,截面PQMN 是正方形,则在下列命题中,错误的为A.AC ⊥BDB.AC ∥截面PQMNC.AC =BDD.异面直线PM 与BD 所成的角为45°【答案】C【山东省日照市2012届高三12月月考理】(3)一个正方体的八个顶点都在同一个球面上,已知这个球的表面积是12π,那么这个正方体的体积是 (A )3(B )π34(C )8(D )24【答案】C 解析:设球的半径为R ,则ππ1242=R ,从而3=R ,所以正方体的体对角线为23,故正方体的棱长为2,体积为823=。
【山东省日照市2012届高三12月月考理】(7)下列四个几何体中,各几何体的三视图有且仅有两个视图相同的是(A )①②(B )②③(C )②④(D )①③【答案】C 解析:①的三个视图都相同;②的主视图与左视图相同,与俯视图不同;③的三个视图互不相同;④的主视图与左视图相同,而与俯视图不同。
【山东省日照市2012届高三12月月考理】(10)已知m ,n 是两条不同直线,βα,是两个不同平面,下列命题中的假命题的是(A )βαβα//,,则若⊥⊥m m (B )αα⊥⊥n m n m 则若,,// (C )n m n m //,,//则若=βαα (D )βαβα⊥⊂⊥则若,,m m 【答案】C 解析:由n m =βαα ,//无法得到m ,n 的确切位置关系。
【山东省枣庄市2012届高三上学期期末理】9.设a ,b 为两条不重合的直线,βα,为两个不重合的平面,下列命题中为真命题的是A.若,,//αα⊂b a 则b a //B.若,//,//,//βαβαb a 则b a //C.若,,,βαβα⊥⊥⊥b a 则b a ⊥D.若,//,,βααa b a ⊂⊂则βα//【答案】C【山东省枣庄市2012届高三上学期期末理】6.若一个底面是正三角形的三棱柱的正视图如图所示,则其体积等于A.2B.3C.32D.6 【答案】B【山东实验中学2012届高三第一次诊断性考试理】3. 如图是某一几何体的三视图,则这个几何体的体积为( )(A). 4 (B). 8 (C). 16 (D). 20【答案】C【解析】由三视图我们易判断这个几何体是四棱锥,由左视图和俯视图我们易该棱锥底面的长和宽,及棱锥的高,代入棱锥体积公式即可得到答案 解:由三视图我们易判断这个几何体是一个四棱锥, 又由侧视图我们易判断四棱锥底面的宽为2,棱锥的高为4由俯视图我们易判断四棱锥的长为4代入棱锥的体积公式,我们易得故答案为:16【山东省淄博一中2012届高三上学期期末检测理】4. 关于直线,m n 与平面,αβ,有以下四个命题:①若//,//m n αβ且//αβ,则//m n ;②若//,m n αβ⊥且αβ⊥,则//m n ; ③若,//m n αβ⊥且//αβ,则m n ⊥; ④若,m n αβ⊥⊥且αβ⊥,则m n ⊥.其中真命题有( )A .4个B .3个C .2个D .1个【答案】C【山东省临清三中2012届高三12月模拟理】7.若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 ( ) A .6B .2C .D 【答案】A【山东省聊城市五校2012届高三上学期期末联考】4.对于任意的直线l 与平面α,在平面α内必有直线m ,使m 与l( ) A .平行 B .相交 C .垂直 D .互为异面直线 【答案】C【山东省聊城市五校2012届高三上学期期末联考】8.一个空间几何体的正视图、侧视图均是长为2、高为3的矩形,俯视图是直径为2的圆(如右图),则这个几何体的表面积为A .12π+B .7πC . π8D .π20 【答案】C【山东省济宁市鱼台一中2012届高三第三次月考理】6.已知六棱锥P ABCDEF -的底面是正六边形,PA ⊥平面ABC .则下列结论不正确...的是( ) A .//CD 平面PAFB .DF ⊥平面PAFC .//CF 平面PABD .CF ⊥平面PAD 【答案】D【山东济宁梁山二中2012届高三12月月考理】10. 有如下三个命题: ①分别在两个平面内的两条直线一定是异面直线; ②垂直于同一个平面的两条直线是平行直线;③过平面α的一条斜线有一个平面与平面α垂直; 其中正确命题的个数为A .0B .1C .2D .3 【答案】C【莱州一中2012高三第三次质量检测理】4.某几何体的三视图如图所示,则该几何体的体积为 A.12 B. 13 C. 14 D. 16【答案】A二、填空题【山东省淄博一中2012届高三上学期期末检测理】14.从一个棱长为1的正方体中切去一部分,得到一个几何体,其三视图如右图,则该几何体的体积为___________.【答案】65 【山东省临清三中2012届高三12月模拟理】16.正三棱锥P -ABC 高为2,侧棱与底面所成角为45°,则点A 到侧面PBC 的距离是 . 【答案】556 【莱州一中2012高三第三次质量检测理】16.设m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列四个命题.①若,,m n m n αα⊥⊥⊄,则n ∥α;②若αβ⊥,m αβ= ,n m ⊥,则n α⊥或n β⊥; ③若m β⊥,αβ⊥,则m ∥α;④若,,m n m n αβ⊥⊥⊥,则αβ⊥.其中正确命题的序号是 (把所有正确命题的序号都填上).【答案】①④【山东济宁汶上一中2012届高三12月月考理】14.已知某个几何体的三视图如下图(主视图的弧线是半圆),可得这个几何体的体积是 .【答案】64080π+三、解答题【山东省枣庄市2012届高三上学期期末理】18.(本题满分12分)在△ABC 中,角A,B,C 的对边分别是a ,b ,c ,已知.cos cos cos 2C b B c A a += (1)求A cos 的值;(2)若23cos cos ,1=+=C B a ,求边c 的值. 【答案】18.解:(1)由C b B c A a cos cos cos 2+=及正弦定理得,cos sin cos sin cos sin 2C B B C A A +=即().sin cos sin 2C B A A +=4分 又,A C B -=+π所以有(),sin cos sin 2A A A -=π即.sin cos sin 2A A A = 而0sin ≠A ,所以.21cos =A ………………………………………………6分 (2)由21cos =A 及0<A <π,得A =.3π 因此.32ππ=-=+A C B由,23cos cos =+C B 得,2332cos cos =⎪⎭⎫⎝⎛-+B B π 即23sin 23cos 21cos =+-B B B ,即得.236sin =⎪⎭⎫ ⎝⎛+πB ………………8分 由,3π=A 知.65,66⎪⎭⎫⎝⎛∈+πππB 于是,36ππ=+B 或.326ππ=+B 所以6π=B ,或.2π=B …………………………………………………………10分若,6π=B 则.2π=C 在直角△ABC 中,c13sin=π,解得;332=c 若,2π=B 在直角△ABC 中,,13tanc=π解得.33=c ……………………12分 【山东省枣庄市2012届高三上学期期末理】19.(本题满分12分)如图,ABCD 是菱形,PA ⊥平面ABCD ,PA=AD=2,∠BAD=60°.(1)证明:面PBD ⊥面PAC ;(2)求锐二面角A —PC —B 的余弦值.【答案】19.(1)因为四边形ABCD 是菱形,所以AC .BD ⊥因为PA ⊥平面ABCD ,所有PA ⊥BD.…………………………2分 又因为PA ⋂AC=A ,所以BD ⊥面 PAC.……………………3分 而BD ⊂面PBD ,所以面PBD ⊥面PAC.…………………5分(2)如图,设AC ⋂BD=O.取PC 的中点Q ,连接OQ.在△APC 中,AO=OC ,CQ=QP ,OQ 为△APC 的中位线,所以OQ//PA. 因为PA ⊥平面ABCD ,所以OQ ⊥平面ABCD ,……………………………………………………6分 以OA 、OB 、OQ 所在直线分别为x 轴、z 轴,建立空间直角坐标系O .xyz - 则()()(),0,0,3,0,1,0,0,0,3-C B A().2,0,3P ………………………………………………………………………7分因为BO ⊥面PAC ,所以平面PAC 的一个法向量为().0,1,0=OB …………………………………8分 设平面PBC 的一个法向量为(),,,z y x n = 而()(),2,1,3,0,1,3--=--=由⎪⎩⎪⎨⎧⊥⊥,,BC n 得⎪⎩⎪⎨⎧=-+-=--.023,03x y x y x令,1=x 则.3,3-=-=z y所以()3,3,1--=为平面PBC 的一个法向量.……………………………10分c o s <,>.72133113-=++⨯-==……………………12分【山东实验中学2012届高三第一次诊断性考试理】19.(本小题满分12分)如图,在四棱锥P 一AB CD 中,底面ABCD 为菱形,,Q 为AD的中点。
,点M在线段PC上P M=:,证明:平面MQB;(1)若平面平面求二面角的大小.【解题说明】本试题主要考查在四棱锥中线面平行的判定以及二面角的求解的综合运用。
考查了同学们的空间想象能力和借助于空间向量运用代数的方法来解决空间中问题的思想的运用。
一般可以用两种方法来解决立体几何试题。
关键是找到平面的垂线,以及空间向量坐标的准确表示。
【答案】(1)略(2)060【解析】解:连AC交BQ于N,由AQ//BC可得,AA 1BCDB 1C1E取平面ABCD 的法向量【山东省淄博一中2012届高三上学期期末检测理】18. (本小题满分12分)直三棱柱ABC -A 1B 1C 1中,AB =5,AC =4,BC =3,AA 1=4,点D 在AB 上.(Ⅰ)求证:AC ⊥B 1C ;(Ⅱ)若D 是AB 中点,求证:AC 1∥平面B 1CD ;(Ⅲ)当13BD AB =时,求二面角1B CD B --的余弦值.【答案】18.(Ⅰ)证明:在△ABC 中,因为 AB =5,AC =4,BC =3,所以 AC 2+ BC 2= AB 2, 所以 AC ⊥BC .因为 直三棱柱ABC -A 1B 1C 1,所以 C C 1⊥AC .因为 BC ∩AC =C ,所以 AC ⊥平面B B 1C 1C .所以 AC ⊥B 1C . …………4分 (Ⅱ)证明:连结BC 1,交B 1C 于E ,连接DE .因为 直三棱柱ABC -A 1B 1C 1,D 是AB 中点,所以 侧面 BB 1C 1C 为矩形,DE 为△ABC 1的中位线,所以 DE // AC 1.因为 DE ⊂平面B 1CD , AC 1⊄平面B 1CD ,所以 AC 1∥平面B 1CD .........8分(Ⅲ)解:由(Ⅰ)知AC ⊥BC ,如图,以C 为原点建立空间直角坐标系C-xyz .则B (3, 0, 0),A (0, 4, 0),A 1AA 1BC DB 1C1(0, 4, 4),B 1 (3, 0, 4). 设D (a , b , 0)(0a >,0b >),因为 点D 在线段AB 上,且13BD AB =,即13BD BA = .所以2a =,43b =,4(1,,0)3BD =- ,1(3,0,4)CB = , ,4(2,,0)3CD = .平面BCD 的法向量为1(0,0,1)n = . 设平面B 1 CD 的法向量为2(,,1)n x y =, 由 120CB n ⋅= ,20CD n ⋅= , 得 3404203x x y +=⎧⎪⎨+=⎪⎩, 所以 43x =-,2y =,24(,2,1)3n =- .所以1212cos n n n n θ⋅==. 所以二面角1B CD B --. ……………12分【山东省临清三中2012届高三12月模拟理】18.(本小题满分12分) 如图,在四棱锥P-ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°. (Ⅰ)求证:BD ⊥平面P AC ;(Ⅱ)若P A =AB ,求PB 与AC 所成角的余弦值; (Ⅲ)当平面PBC 与平面PDC 垂直时,求P A 的长.【答案】18.(I )证明:因为四边形ABCD 是菱形, 所以AC ⊥BD . 又因为P A ⊥平面ABCD , 所以P A ⊥BD , 所以BD ⊥平面P AC . ………………………4分 (Ⅱ)设AC ∩BD =O . 因为∠BAD =60°,P A =AB =2, 所以BO =1,AO =CO =3.如图,以O 为坐标原点,OB 、OC 所在直线及过点O 且与P A 平行的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系O -xyz ,则 P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0). 所以=(1,3,-2),=(0,23,0). 设PB 与AC 所成角为θ,则cos θ==622×23=64. ………………8分(Ⅲ)由(Ⅱ)知=(-1,3,0).设P (0,-3,t ) (t >0),则=(-1,-3,t ). 设平面PBC 的法向量m =(x ,y ,z ), 则·m =0,·m =0.所以⎩⎨⎧-x +3y =0,-x -3y +tz =0,令y =3,则x =3,z =6t , 所以m =⎝⎛⎭⎫3,3,6t . 同理,可求得平面PDC 的法向量n =⎝⎛⎭⎫-3,3,6t . 因为平面PBC ⊥平面PDC , 所以m ·n =0,即-6+36t2=0. 解得t =6.所以当平面PBC 与平面PDC 垂直时,PA =6. ……………………12分【山东省聊城市五校2012届高三上学期期末联考】18. ( 12分)如图,在多面体ABCDE 中,⊥AE 面ABC ,AE DB //,且1====AE BC AB AC ,,2=BD F 为CD 中点。