2020年江苏省苏州市星海实验中学中考数学模拟试卷(3月份)
2019-2020学年江苏省苏州市工业园区星海实验中学九年级(上)月考数学试卷
2019-2020学年江苏省苏州市工业园区星海实验中学九年级(上)月考数学试卷一、选择题:(本大题共有10小题,每小题3分,共30分,请将正确选项前的字母代号填涂在答题纸相应位置上). 1.(3分)一元二次方程3x2﹣2x=1的二次项系数、一次项系数、常数项分别是()A.3,2,1B.3,2,1C.3,﹣2,﹣1D.﹣3,2,12.(3分)方程x2=x的两根分别为()A.x1=﹣1,x2=0B.x1=1,x2=0C.x1=﹣l,x2=1D.x1=1,x2=13.(3分)在Rt△ABC中,∠C=90°,AB=3BC,则sin B的值为()A.B.C.D.4.(3分)如果△ABC中,sin A=cos B=,则下列最确切的结论是()A.△ABC是直角三角形B.△ABC是等腰三角形C.△ABC是等腰直角三角形D.△ABC是锐角三角形5.(3分)下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A.x2+1=0B.x2+2x+1=0C.x2+2x+3=0D.x2+2x﹣3=06.(3分)下列一元二次方程中两根之和为﹣4的是()A.x2﹣4x+4=0B.x2+2x﹣4=0C.x2+4x﹣5=0D.x2+4x+10=07.(3分)某品牌服装原价为173元,连续两次降价x%后售价为127元,下面所列方程中正确的是()A.173(1+x%)2=127B.173(1﹣2x%)2=127C.173(1﹣x%)2=127D.127(1+x%)2=1738.(3分)如图,在矩形ABCD中,DE⊥AC于E,设∠ADE=α,且cosα=,AB=4,则AD的长为()A.3B.C.D.9.(3分)如图,2条宽为1的带子以α角交叉重叠,则重叠部分(阴影部分)的面积为()A.sinαB.C.D.10.(3分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3B.2C.6D.12二、填空题:(本大题共10小题,每小题3分,共30分,把答案直接填在笞题纸相对应位置上)11.(3分)当k时,关于x的方程(k﹣2)x2+3x+1=0是一元二次方程.12.(3分)在Rt△ABC中,∠C=90°,cos A=,则sin B=.13.(3分)如图,O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(4,0),则点B的坐标为.14.(3分)当k时,关于x的方程2x2﹣4x+k=0有两个实数根.15.(3分)已知2﹣是方程x2﹣4x+c=0的一个根,则c=.16.(3分)若a为方程x2+x﹣5=0的解,则a2+a+1的值为.17.(3分)如图所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为米.(保留根号)18.(3分)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为.19.(3分)已知实数ab满足等式a2+3a﹣2=0,b2+3b﹣2=0,那么求的值是.20.(3分)如图,已知点D是Rt△ABC的斜边BC上的一点,tan B=,BC=(k+1)BD,CE⊥AD,则tan∠ACE =.(用含k的代数式表示)三、解答题:本大题共8小题,共70分,把解答过程写在答题纸相对应的位置上.解答时应写出必要的计算过程、推演步骤或文字说明.21.(4分)计算:sin45°﹣tan60°+sin30°tan45°22.(8分)解下列方程(1)(x﹣3)2+2x(x﹣3)=0(2)(x﹣3)(x﹣5)=2523.(5分)先化简,再求值:(÷,其中a是方程x2+3x﹣10=0的根.24.(8分)已知:如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,sin B=.求:(1)线段DC的长;(2)tan∠EDC的值.25.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若周长为16的等腰△ABC的两边AB,AC的长是方程的两个实数根,求k的值.26.(10分)如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一条输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏西49°方向,B位于南偏西41°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A,B间的距离.(参考数据cos41°≈0.75)27.(12分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想﹣﹣转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=,x3=;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.28.(13分)在数学兴趣小组活动中,小亮进行数学探究活动.△ABC是边长为2的等边三角形,E是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF.(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明.(2)当点E在线段AC上运动时,点F也随着运动,若四边形ABFC的面积为,求AE的长.(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S1与△DBF的面积S2之间的数量关系.并说明理由.(4)如图2,当△ECD的面积S1=时,求AE的长.2019-2020学年江苏省苏州市工业园区星海实验中学九年级(上)月考数学试卷参考答案与试题解析一、选择题:(本大题共有10小题,每小题3分,共30分,请将正确选项前的字母代号填涂在答题纸相应位置上). 1.【解答】解:∵方程3x2﹣2x=1化成一般形式是3x2﹣2x﹣1=0,∴二次项系数是3,一次项系数为﹣2,常数项为﹣1.故选:C.2.【解答】解:方程变形得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选:B.3.【解答】解:设BC为x,则AB=3x,由勾股定理得,AC===2x,∴sin B===,故选:D.4.【解答】解:∵sin A=cos B=,∴∠A=∠B=45°,∴△ABC是等腰直角三角形.故选:C.5.【解答】解:A、x2+1=0中△<0,没有实数根;B、x2+2x+1=0中△=0,有两个相等的实数根;C、x2+2x+3=0中△<0,没有实数根;D、x2+2x﹣3=0中△>0,有两个不相等的实数根.故选:D.6.【解答】解:A、∵x1+x2=4;故本选项错误;B、∵x1+x2=1;故本选项错误;C、∵△=16+20=36>0,x1+x2=﹣4;故本选项正确;D、∵△=16﹣40=﹣24<0,所以本方程无根;故本选项错误.故选:C.7.【解答】解:当商品第一次降价x%时,其售价为173﹣173x%=173(1﹣x%);当商品第二次降价x%后,其售价为173(1﹣x%)﹣173(1﹣x%)x%=173(1﹣x%)2.∴173(1﹣x%)2=127.故选:C.8.【解答】解:由已知可知:AB=CD=4,∠ADE=∠ECD=α.在Rt△DEC中,cos∠ECD=cosα=,即,∴CE=.根据勾股定理得DE==.在Rt△AED中,cosα=,即,∴AD=.故选:B.9.【解答】解:由题意可知:重叠部分是菱形,设菱形为ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,∴BC=AB=,∴重叠部分的面积即阴影部分的面积=BC•AE=.故选:B.10.【解答】解:∵tan∠AOD==,∴设AD=3a、OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=经过点D、E,∴k=12a2=(4+4a)a,解得:a=或a=0(舍),则k=12×=3,故选:A.二、填空题:(本大题共10小题,每小题3分,共30分,把答案直接填在笞题纸相对应位置上)11.【解答】解:关于x的方程(k﹣2)x2+3x+1=0是一元二次方程,得k﹣2≠0,解得k≠2,故答案为:k≠2.12.【解答】解:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴sin B=cos A=.故答案为:.13.【解答】解:过点B作BC⊥OA于点C,∵O为坐标原点,∠AOB=30°,∠ABO=90°.且点A的坐标为(4,0),∴OA=4,∴AB=OA=2,OB=OA•cos30°=2,∴OC=OB•cos30°=3,BC=OB•sin30°=,∴点B的坐标为:(3,);故答案为:(3,).14.【解答】解:由△=16﹣8k≥0,∴k≤2,故答案为:k≤215.【解答】解:∵2﹣是方程x2﹣4x+c=0的一个根,∴x=2﹣满足方程x2﹣4x+c=0,∴(2﹣)2﹣4(2﹣)+c=0,解得c=2+.故答案是:2+.16.【解答】解:∵a为方程x2+x﹣5=0的解,∴a2+a﹣5=0,∴a2+a=5,∴a2+a+1=5+1=6.故答案为6.17.【解答】解:如图,作AD⊥CD于D点.∵∠B=30°,∠ACD=60°,∠ACD=∠B+∠CAB,∴∠CAB=30°.∴BC=AC=10m,在Rt△ACD中,CD=AC•cos60°=10×0.5=5m,∴BD=15.∴在Rt△ABD中,AB=BD÷cos30°=15÷=10m.故答案为:10.18.【解答】解:如图,过点A′作A′D⊥x轴与点D;设A′D=λ,OD=μ;∵四边形ABCO为矩形,∴∠OAB=∠OCB=90°;四边形ABA′D为梯形;设AB=OC=γ,BC=AO=ρ;∵OB=,tan∠BOC=,∴,解得:γ=2,ρ=1;由题意得:A′O=AO=1;△ABO≌△A′BO;由勾股定理得:λ2+μ2=1①,由面积公式得:②;联立①②并解得:λ=,μ=.故答案为(,).19.【解答】解:当a=b时,原式=1+1=2;当a≠b时,可把a、b看作方程x2+3x﹣2=0的两根,则a+b=﹣3,ab=﹣2,所以原式====.故答案为:2或.20.【解答】解:过点D作DF⊥AB于点F,如图所示:∵Rt△ABC的斜边BC,∴∠CAB=90°,DF⊥AB,∴AC∥DF,∴=,∵BC=(k+1)BD,∴==,∴AF=k•BF∵tan B=,∴=,∴DF=FB,∴==,∵∠CAE+∠ACE=90°,∠CAE+∠DAB=90°,∴∠ACE=∠DAF,∴tan∠ACE=tan∠DAF==,故答案为:.三、解答题:本大题共8小题,共70分,把解答过程写在答题纸相对应的位置上.解答时应写出必要的计算过程、推演步骤或文字说明.21.【解答】解:原式=×﹣×+×1=1﹣3+=﹣1.22.【解答】解:(1)(x﹣3)2+2x(x﹣3)=0,(x﹣3)(3x﹣3)=0,∴x﹣3=0或3x﹣3=0,x1=3,x2=1,(2)(x﹣3)(x﹣5)=25,整理得:x2﹣8x=10,∴(x﹣4)2=26,∴,∴,.23.【解答】解:原式=[﹣]×=(+)×=×==(a2+3a),∵a是方程x2+3x﹣10=0的根,∴a2+3a=10,∴原式=×10=5.24.【解答】解:(1)∵AD是BC边上的高,△ABD和△ACD是Rt△,在Rt△ABD中,∵sin B=,AD=12,∴,∴AB=15,∴BD=,又∵BC=14,∴CD=BC﹣BD=5;(2)在Rt△ACD中,∵E为斜边AC的中点,∴ED=EC=AC,∴∠C=∠EDC,∴tan∠EDC=tan C=.25.【解答】(1)证明:∵△=[﹣(2k+1)]2﹣4(k2+k)=1>0,∴方程有两个不相等的实数根;(2)解:∵x2﹣(2k+1)x+k2+k=0,即(x﹣k)(x﹣k﹣1)=0,解得:x1=k,x2=k+1.∵等腰△ABC的周长为16,∴k+k+k+1=16或k+k+1+k+1=16,解得:k=5或k=.26.【解答】解:(1)线段BQ与PQ相等.证明:∵∠PQB=90°﹣41°=49°,∠BPQ=90°﹣24.5°=65.5°,∴∠PBQ=180°﹣49°﹣65.5°=65.5°,∴∠BPQ=∠PBQ,∴BQ=PQ;(2)∠AQB=180°﹣49°﹣41°=90°,∠PQA=90°﹣49°=41°,∴AQ===1600,BQ=PQ=1200,∴AB2=AQ2+BQ2=16002+12002,∴AB=2000,答:A、B的距离为2000m.27.【解答】解:(1)x3+x2﹣2x=0,x(x2+x﹣2)=0,x(x+2)(x﹣1)=0所以x=0或x+2=0或x﹣1=0∴x1=0,x2=﹣2,x3=1;故答案为:﹣2,1;(2)=x,方程的两边平方,得2x+3=x2即x2﹣2x﹣3=0(x﹣3)(x+1)=0∴x﹣3=0或x+1=0∴x1=3,x2=﹣1,当x=﹣1时,==1≠﹣1,所以﹣1不是原方程的解.所以方程=x的解是x=3;(3)因为四边形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3m设AP=xm,则PD=(8﹣x)m因为BP+CP=10,BP=,CP=∴+=10∴=10﹣两边平方,得(8﹣x)2+9=100﹣20+9+x2整理,得5=4x+9两边平方并整理,得x2﹣8x+16=0即(x﹣4)2=0所以x=4.经检验,x=4是方程的解.答:AP的长为4m.28.【解答】解:(1)结论:△ABE≌△CBF.理由:如图1中,∴∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF.(2)如图1中,∵△ABE≌△CBF,∴S△ABE=S△BCF,∴S四边形BCEF=S△BEC+s△BCF=S△BCE+S△ABE=S△ABC=,∵S四边形ABCF=,∴S△ABE=,∴•AE•AB•sin60°=,∴AE=.(3)结论:S2﹣S1=.理由:如图2中,∵∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF,∴S△ABE=S△BCF,∵S△BCF﹣S△BCE=S2﹣S1,∴S2﹣S1=S△ABE﹣S△BCE=S△ABC=.(4)由(3)可知:S△BDF﹣S△ECD=,∵S△ECD=,∴S△BDF=,∵△ABE≌△CBF,∴AE=CF,∠BAE=∠BCF=60°,∴∠ABC=∠DCB,∴CF∥AB,则△BDF的DF边上的高为,可得DF=,设CE=x,则2+x=CD+DF=CD+,∴CD=x﹣,∵CD∥AB,∴=,即=,化简得:3x2﹣x﹣2=0,解得x=1或﹣(舍弃),∴CE=1,AE=3.。
2020年江苏省中考数学模拟试题(含答案)
2020年江苏省中考数学模拟试题含答案注 意 事 项考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡上指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 计算(-4)+6的结果为A .-2B .2C .-10D .22. 我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为A .3.5×106B .3.5×107C .35×105D .0.35×1083. 下列图形中,是中心对称图形的是A .B .C .D .4. 如图,数轴上有四个点M ,P ,N ,Q ,若点M ,N 表示的数互为相反数,则图中表示绝对值最大的数对应的点是 A .点MB .点NC .点PD .点Q5. 如图是某个几何体的三视图,该几何体是A .三棱柱B .三棱锥C .圆锥D .圆柱6. 已知方程3x 2-4x -4=0的两个实数根分别为x 1,x 2.则x 1+x 2的值为A .4B .23C .43D .-43QP N M左视图主视图俯视图(第5题)7. 八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h ,则所列方程正确的是 A.1010202x x -=B.1010202x x -=C.1010123x x -=D.1010123x x -= 8. 若圆锥的母线长是12,侧面展开图的圆心角是120°,则它的底面圆的半径为A. 2B. 4C. 6D. 89. 如图,点A 为反比例函数y =8x (x ﹥0)图象上一点,点B 为反比例函数y =kx(x ﹤0)图象上一点,直线AB 过原点O ,且OA =2OB ,则k 的值为 A .2B .4C .-2D .-410.如图,在矩形ABCD 中,AB =4,BC =6,E 为BC 的中点.将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则△CDF 的面积为 A.3.6B. 4.32C. 5.4D. 5.76二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.9的算术平方根为 ▲ .12.如图,若AB ∥CD ,∠1=65°,则∠2的度数为 ▲ °. 13.分解因式:12a 2-3b 2= ▲ .14.如图,⊙O 的内接四边形ABCD 中,∠BOD =100°,则∠BCD = ▲ °. 15.如图,利用标杆BE 测量建筑物的高度.若标杆BE 的高为1.2m ,测得AB =1.6m ,BC =12.4m ,则楼高CD 为 ▲ m .ABCF(第10题)O xyy =8xAB y =kx(第9题)DCEBA (第15题)ABDOC(第14题)DCB A 1(第12题)216.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数 中位数 众数 方差 8.58.38.10.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是 ▲ . 17.将正六边形ABCDEF 放入平面直角坐标系xOy 后,若点A ,B ,E 的坐标分别为(a ,b ),(-3,-1),(-a ,b ),则点D 的坐标为 ▲ . 18. 如图,平面直角坐标系xOy 中,点A 是直线y =33x +433上一动点,将点A 向右 平移1个单位得到点B ,点C (1,0),则OB +CB 的最小值为 ▲ .三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19. (本小题满分10分)(1)计算(x +y )2-y (2x +y ); (2)先化简,再求代数式的值:2221()244a a a a a a +----+÷4a a-,其中a =25.20.(本小题满分9分)近年来,我国很多地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”, 随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表: 组别观点频数(人数)A 大气气压低,空气不流动 mB 地面灰尘大,空气湿度低40C 汽车尾气排放 nD工厂造成的污染120(第18题)y xB OCAC 10%B A20%DE调查结果扇形统计图E 其他 60请根据图表中提供的信息解答下列问题:(1)填空:m = ▲ ,n = ▲ ,扇形统计图中E 组所占的百分比为 ▲ % ; (2)若该市人口约有400万人,请你计算其中持D 组“观点”的市民人数; (3)对于“雾霾”这个环境问题,请用简短的语言发出倡议.21.(本小题满分8分)一个不透明的口袋中装有四个完全相同的小球,把它们分别标号为1,2,3,4.从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,请用列表法或画树形图的方法,求两次摸出的小球上所标数字之和大于4的概率.22.(本小题满分8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BAD =37°,沿AD 方向前进150米到达点C ,测得∠BCD =45°. 求小岛B 到河边公路AD 的距离.(参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)23.(本小题满分8分)如图,⊙O 的直径AB =10,弦AC =6,∠BAC 的平分线交⊙O 于点D ,过点D 作⊙O 的切线交AC 的延长线于点E .求DE 的长.(第23题)ABC EOBCA (第22题)D24.(本小题满分9分)如果一元一次方程的解是一元一次不等式组的解,那么称该一元一次方程为该不等式组的关联方程.(1)若不等式组122136xx x⎧-<⎪⎨⎪+>-+⎩,的一个关联方程的解是整数,则这个关联方程可以是▲(写出一个即可);(2)若方程3-x=2x,3+x=2(x+12)都是关于x的不等式组22x x mx m<-⎧⎨-⎩,≤的关联方程,试求m的取值范围.25.(本小题满分8分)在△ABC中,AB=AC=2,∠BAC=45º.△AEF是由△ABC绕点A按逆时针方向旋转得到,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF是菱形时,求CD的长.26.(本小题满分10分)请用学过的方法研究一类新函数kyx=(k为常数,k≠0)的图象和性质.(第25题)FEDCBA(1)在给出的平面直角坐标系中画出函数6y x=的图象(可以不列表); (2)对于函数ky x=,当自变量x 的值增大时,函数值y 怎样变化? (3)函数k y x =的图象可以经过怎样的变化得到函数2k y x =+的图象?27.(本小题满分13分)如图,矩形ABCD 中,AB =4,AD =6,点P 在AB 上,点Q 在DC 的延长线上,连接DP ,QP ,且∠APD =∠QPD ,PQ 交BC 于点G .(1)求证:DQ =PQ ; (2)求AP ·DQ 的最大值; (3)若P 为AB 的中点,求PG 的长.(第27题)(第26题)28.(本小题满分13分)已知二次函数y=ax2+bx+c(c≠4a),其图象L经过点A(-2,0).(1)求证:b2-4ac>0;(2)若点B(-c2a,b+3)在图象L上,求b的值;(3)在(2)的条件下,若图象L的对称轴为直线x=3,且经过点C(6,-8),点D(0,n)在y轴负半轴上,直线BD与OC相交于点E,当△ODE为等腰三角形时,求n的值.数学试题参考答案与评分标准说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分 标准的精神给分.一、选择题(本大题共10小题,每小题3分,共30分.)11. 312.6513.3(2a +b )(2a -b )14.13015.10.516.中位数17.(3,-1)18三、解答题(本大题共10小题,共96分.) 19.(本小题满分10分)(1)解:原式=x 2+2xy +y 2-2xy -y 2................. 4分 =x 2 .. (5)分 (2)解:原式=221[](2)(2)4a a aa a a a ----- ··············· 6分 =2(2)(2)(1)(2)4a a a a aa a a +----- ··················· 7分=24(2)4a aa a a --- ························ 8分 =21(2)a - ··························· 9分当a =2时,21(2)a -15= ············ 10分 20.(本小题满分9分)(1)80, 100,15; ························· 3分 (2)400×120400=120(万), 答:其中持D 组“观点”的市民人数约为120万人; ········· 6分 (3)根据所抽取样本中持C 、D 两种观点的人数占总人数的比例较大,所以倡议今后的环境改善中严格控制工厂的污染排放,同时市民多乘坐公共汽车, 减少私家车出行的次数. ······················· 9分 21.(本小题满分8分)★保密材料阅卷使用1 2 3 4 1 (1,2) (1,3) (1,4) 2 (2,1) (2,3) (2,4) 3 (3,1) (3,2) (3,4) 4(4,1)(4,2)(4,3)·································· 5分 因为所有等可能的结果数共有12种,其中所标数字之和大于4的占8种,·································· 6分 所以 P (数字之和大于4)=812=23. ·················· 8分22.(本小题满分8分)解:过B 作BE ⊥CD 垂足为E ,设BE =x 米, ·············· 1分在Rt△ABE 中,tan A =BEAE, ········· 2分AE =BEtan A=BEtan37° =43x , ········ 3分在Rt△ABE 中,tan∠BCD =BE CE, ······· 4分CE =BE tan∠BCD =xtan45°=x ,······· 5分∵AC =AE -CE ,∴43x -x =150解得x =450 ················ 7分答:小岛B 到河边公路AD 的距离为450米. ··············· 8分 23.(本小题满分8分)解:连接OD ,过点O 作OH ⊥AC ,垂足为H . ··············· 1分由垂径定理得AH =12AC =3.在Rt△AOH 中,OH =52-32=4. ········· 2分 ∵DE 切⊙O 于D ,∴OD ⊥DE ,∠ODE =90°. ············· 3分(第23题)A BC EOHEBCA(第22题)D∵AD平分∠BAC,∴∠BAD=∠CAD.∵OA=OD,∴∠BAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC.··········· 5分∴∠E=180°-90°=90°.又OH⊥AC,∴∠OHE=90°,∴四边形ODEH为矩形.·············· 7分∴DE=OH=4.·················· 8分24.(本小题满分9分)(1)x-2=0;(答案不唯一)····················· 3分(2)解方程3-x=2x得x=1,解方程3+x=2(x+12)得x=2,······ 5分解不等式组22x x mx m<-⎧⎨-⎩,≤得m<x≤m+2,·············· 7分∵1,2都是该不等式组的解,∴0≤m<1.··························· 9分25.(本小题满分8分)(1)由△ABC≌△ADE且AB=AC,得∴AE=AD=AC=AB,∠BAC=∠EAF,∴ ∠BAE=∠CAF.∴△ABE≌△ACF,························ 3分∴BE=CF.···························· 4分(2)∵四边形ABDF是菱形,∴AB∥DF,∴∠ACF=∠BAC=45°.····················· 5分∵AC=AF,∴∠CAF=90°,即△ACF是以CF为斜边的等腰直角三角形,∴CF=·························· 7分又∵DF=AB=2,∴CD=2.················· 8分26.(本小题满分10分)(1)图略;····························· 4分(2)若k>0,当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小;················· 6分若k<0,当x<0时,y随x的增大而减小,当x>0时,y随x的增大而增大;················· 8分(3)函数kyx=的图象向左平移2个单位长度得到函数2kyx=+的图象.··10分27.(本小题满分13分)(1)∵四边形ABDF 是矩形,∴AB ∥CD ,∴∠APD =∠QDP . ························ 1分 ∵∠APD =∠QPD ,∴∠QPD =∠QDP , ························ 2分 ∴DQ =PQ . ··························· 3分(2)过点Q 作QE ⊥DP ,垂足为E ,则DE =12D P . ············· 5分 ∵∠DEQ =∠PAD =90°,∠QDP =∠APD ,∴△QDE ∽△DPA ,∴DQ DP =DE AP , ··················· 6分∴AP ·DQ =DP ·DE =12DP 2. 在Rt△DAP 中,有DP 2=DA 2+AP 2=36+AP 2,∴AP ·DQ =12(36+AP 2). ····················· 7分 ∵点P 在AB 上,∴AP ≤4,∴AP ·DQ ≤26,即AP ·DQ 的最大值为26. ············· 8分(3)∵P 为AB 的中点,∴AP =BP =12AB =2, 由(2)得,DQ =14(36+22)=10. ················ 9分 ∴CQ =DQ -DC =6.设CG =x ,则BG =6-x ,由(1)得,DQ ∥AB ,∴CQ BP =CG BG, ·················· 11分 即62=x 6-x ,解得x =92, ····················· 12分 ∴BG =6-92=32, ∴PG =PB 2+BG 2=52. ······················ 13分 28.(本小题满分13分)(1)证明:由题意,得4a -2b +c =0,∴b =2a +12c . ·········· 1分 ∴b 2-4ac =(2a +12c )2-4ac =(2a -12c )2. ·············· 2分∵c ≠4a ,∴2a -12c ≠0,∴(2a -12c )2>0,即b 2-4ac >0. ······ 3分 (2)解:∵点B (-c2a ,b +3)在图象L 上, ∴22()342c c a b c b a a ⋅+⋅-+=+,整理,得(42)34c a b c b a-+=+. ···· 4分 ∵4a -2b +c =0,∴b +3=0,,解得b =-3. ············ 6分(3)解:由题意,得332a--=,且36a -18+c =-8,解得a =12,c =-8. ∴图象L 的解析式为y =12x 2-3x -8. ··············· 7分 设OC 与对称轴交于点Q ,图象L 与y 轴相交于点P ,则Q (3,-4),P (0,-8),OQ =PQ =5.分两种情况:①当OD =OE 时,如图1,过点Q 作直线MQ ∥DB ,交y 轴于点M ,交x 轴于点H , 则OM OQ OD OE=,∴OM =OQ =5. ∴点M 的坐标为(0,-5). 设直线MQ 的解析式为15y k x =-.∴1354k -=-,解得113k =. ∴MQ 的解析式为153y x =-.易得点H (15,0). 又∵MH ∥DB ,OD OB OM OH =. 即8515n -=,∴83n =-. ··················· 10分 ②当EO =ED 时,如图2,∵OQ =PQ ,∴∠1=∠2,又EO =ED ,∴∠1=∠3.∴∠2=∠3, ∴PQ ∥DB .设直线PQ 交于点N ,其函数表达式为28y k x =-∴2384k -=-,解得243k =. ∴PQ 的解析式为483y x =-. ∴点N 的坐标为(6,0). ∵PN ∥DB ,∴OD OB OP ON =,∴886n -=,解得323n =-. ······ 12分 综上所述,当△ODE 是等腰三角形时,n 的值为83-或323-. (13)。
江苏省苏州市2020年(春秋版)数学中考模拟试卷(3月)C卷
江苏省苏州市2020年(春秋版)数学中考模拟试卷(3月)C卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2020七下·武隆月考) 下列说法不正确的是()A . 的平方根是B .C . 的平方根是D . 9是81的算术平方根2. (2分)(2015·宁波模拟) 若|1﹣x|=1+|x|,则等于().A . x﹣1B . 1﹣xC . 1D . ﹣13. (2分) (2018九上·定兴期中) 正方形网格中,∠AOB如图放置,则tan∠AOB的值为()A . 2B .C .D .4. (2分) (2018九上·乐东月考) 用配方法解方程3x2-6x+1=0,则方程可变形为()A .B .C .D .5. (2分)如图,已知△ABC,P是边AB上的一点,连结CP,以下条件中不能确定△ACP与△AB C相似的是()A . ∠ACP=∠BB . ∠APC=∠ACBC . AC2=AP·ABD .6. (2分)记录一个人的体温变化情况,最好选用()A . 条形统计图B . 折线统计图C . 扇形统计图D . 统计表7. (2分) (2019八上·绍兴月考) 如图,已知△ABC的六个元素,则图中甲、乙、丙三个三角形中和△ABC全等的图形个数是A . 1B . 2C . 3D . 08. (2分)(2017·深圳模拟) 如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A .B .C .D .9. (2分) (2019九上·石家庄月考) 如图所示为农村一古老的捣碎器,已知支撑柱的高为0.3米,路板长为1.6米,支撑点到踏脚的距离为0.6米,原来捣头点着地,现在踏脚着地,则捣头点E上升了()A . 1.2米B . 1米C . 0.8米D . 1.5米10. (2分)(2017·岱岳模拟) 若a,b(a<b)是关于x的一元二次方程(x﹣m)(x﹣n)+1=0的两个根,且m<n,则m,n,b,a的大小关系是()A . a<b<m<nB . b<a<n<mC . a<m<n<bD . m<a<b<n11. (2分) (2018七上·满城期末) 若a、b互为相反数,c、d互为倒数,m的绝对值是2,n是有理数且既不是正数也不是负数,则2015a+b+1+m2﹣(cd)2015+n(a+b+c+d)的值为()A . 2015B . 2016C . 2017D . 201812. (2分)如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C 两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为()A . 100mB . 50mC . 50mD . m二、填空题 (共5题;共6分)13. (1分) (2018七上·宿州期末) 当x=________时,代数式(3x﹣2)与﹣x﹣1互为相反数.14. (1分)(2017·杨浦模拟) 如果关于x二次三项式x2﹣6x+m在实数范围内不能分解因式,那么m的取值范围是________.15. (1分)(2016·浙江模拟) 如图是我市某景点6月份内1﹣10日每天的最高温度折线统计图,由图信息可知该景点这10天的最高气温度的中位数是________℃.16. (2分)(2019·贵港模拟) 如图,△DEF和△ABC是位似图形,点O是位似中心,点D,E,F分别时OA,OB,OC的中点,若△DEF的周长是2,则△ABC的周长是________.17. (1分) (2020七下·大化期末) 已知关于的不等式组只有个整数解,则实数的取值范围是________三、解答题 (共8题;共45分)18. (5分)(2017·齐齐哈尔) 先化简,再求值:• ﹣( +1),其中x=2cos60°﹣3.19. (2分) (2019九下·梁子湖期中) 随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了________人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为________;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“________”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.20. (10分) (2020九上·铁东月考) 已知关于x的方程x2﹣(3k+3)x+2k2+4k+2=0,(1)求证:无论k为何值,原方程都有实数根;(2)若该方程的两实数根x1、x2为一菱形的两条对角线之长,且x1x2+2x1+2x2=36,求k值及该菱形的面积.21. (5分) (2017九上·莒南期末) 如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?22. (5分) (2019九上·房山期中) 已知:CD为一幢3米高的温室,其南面窗户的底框G距地面1米,CD 在地面上留下的最大影长CF为2米,现欲在距C点7米的正南方A点处建一幢12米高的楼房AB(设A,C,F在同一水平线上).(1)按比例较精确地作出高楼AB及它的最大影长AE;(2)问若大楼AB建成后是否影响温室CD的采光,试说明理由.23. (6分) (2019八下·张家港期末) 如图(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C'处,若∠ADB=46°,则∠DBE的度数为________∘.(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.【画一画】如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);【算一算】如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A',B'处,若AG= ,求B'D的长;24. (10分)在某超市小明买了1千克甲种糖果和2千克乙种糖果,共付38元;小强买了2千克甲种糖果和0.5千克乙种糖果,共付27元.(1)求该超市甲、乙两种糖果每千克各需多少元?(2)某顾客到该超市购买甲、乙两种糖果共20千克混合,欲使总价不超过240元,问该顾客混合的糖果中甲种糖果最少多少千克?25. (2分)已知:如图,AD∥BC,EF垂直平分BD,与AD,BC,BD分别交于点E,F,O.求证:(1)△BOF≌△DOE;(2) DE=DF.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共6分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共45分)18-1、19-1、19-2、19-3、20-1、20-2、21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、。
2020年江苏省苏州市中考数学全真模拟试卷3解析版
2020年江苏省苏州市中考数学全真模拟试卷3解析版一.选择题(共10小题,满分30分,每小题3分)1.如果|a |=a ,下列各式成立的是( )A .a >0B .a <0C .a ≥0D .a ≤02.计算(﹣x 3)2所得结果是( )A .x 5B .﹣x 5C .x 6D .﹣x 63.如图,直线l 1∥l 2,l 3⊥l 4,∠1=44°,那么∠2的度数( )A .46°B .44°C .36°D .22°4.下列各式属于最简二次根式的是( )A .B .C .D .5.下列因式分解正确的是( )A .6x +9y +3=3(2x +3y )B .x 2+2x +1=(x +1)2C .x 2﹣2xy ﹣y 2=(x ﹣y )2D .x 2+4=(x +2)26.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是( )A .5,5B .5,6C .6,6D .6,57.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是( )A .B .C.D.8.如图,A、B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是()A.B.C.D.9.若点C是线段AB的黄金分割点,且AB=2(AC>BC),则AC等于()A.﹣1B.3﹣C.D.﹣1或3﹣10.如图,在平面直角坐标系中,菱形OABC的顶点A的坐标为(4,3),点D是边OC上的一点,点E在直线OB上,连接DE、CE,则DE+CE的最小值为()A.5B.C.D.二.填空题(共8小题,满分24分,每小题3分)11.多项式(mx+8)(2﹣3x)展开后不含x项,则m=.12.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.13.二次函数y=2(x+1)2﹣3的顶点坐标是.14.分式方程=的解是.15.如图,O为Rt△ABC斜边中点,AB=10,BC=6,M,N在AC边上,∠MON=∠B,若△OMN 与△OBC相似,则CM=.16.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=45°,则劣弧AC的长为.17.如图,在▱ABCD中,点F在CD上,且CF:DF=1:2,则S:S▱ABCD=.△CEF18.已知正比例函数y=2x的图象与反比例函数y=(k≠0)的图象相交于A(2,m),B两点,则点B的坐标为.三.解答题(共10小题,满分76分)19.(5分)计算:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1.20.(5分)解不等式组,并把不等式组的解集在数轴上表示出来.21.(6分)先化简代数式1﹣÷,并从﹣1,0,1,3中选取一个合适的代入求值.22.(6分)为了解某校九年级男生的体能情况,体育老师从中随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成尚不完整的扇形图和条形图,根据图形信息回答下列问题:(1)本次抽测的男生有人,抽测成绩的众数是;(2)请将条形图补充完整;(3)若规定引体向上6次以上(含6次)为体能达标,则该校125名九年级男生中估计有多少人体能达标?23.(8分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.24.(8分)如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG 于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.25.(8分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?26.(10分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.27.(10分)如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.(1)点A的坐标:;点B的坐标:;(2)求△NOM的面积S与M的移动时间t之间的函数关系式;(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG折叠,点N恰好落在x轴上的点H处,求点G的坐标.28.(10分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a <b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】由条件可知a是绝对值等于本身的数,可知a为0或正数,可得出答案.【解答】解:∵|a|=a,∴a为绝对值等于本身的数,∴a≥0,故选:C.【点评】本题主要考查绝对值的计算,掌握绝对值等于它本身的数有0和正数(即非负数)是解题的关键.2.【分析】根据幂的乘方计算即可.【解答】解:(﹣x3)2=x6,故选:C.【点评】此题考查幂的乘方,关键是根据法则进行计算.3.【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据直角三角形两锐角互余列式计算即可得解.【解答】解:∵l1∥l2,∴∠3=∠1=44°,∵l3⊥l4,∴∠2=90°﹣∠3=90°﹣44°=46°.故选:A.【点评】本题考查了平行线的性质,垂线的定义,熟记性质并准确识图是解题的关键.4.【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,由此结合选项可得出答案.【解答】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.【点评】此题考查了最简二次根式的知识,解答本题的关键是熟练掌握最简二次根式满足的两个条件,属于基础题,难度一般.5.【分析】根据因式分解的方法即可求出答案.【解答】解:(A)原式=3(2x+3y+1),故A错误;(C)x2﹣2xy﹣y2不是完全平方式,不能因式分解,故C错误;(D)x2+4不能因式分解,故D错误;故选:B.【点评】本题考查因式分解的方法,涉及提取公因式,完全平方公式,平方差公式,解题的关键会判断多项式是否满足完全平方式以及平方差公式.6.【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【分析】轮船沿江从A港顺流行驶到B港,则由B港返回A港就是逆水行驶,由于船速为26千米/时,水速为2千米/时,则其顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26﹣2=24千米/时.根据“轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时”,得出等量关系:轮船从A港顺流行驶到B港所用的时间=它从B港返回A港的时间﹣3小时,据此列出方程即可.【解答】解:设A港和B港相距x千米,可得方程:.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度﹣水流速度.8.【分析】在4×4的网格中共有25个格点,找到能使得三角形ABC的面积为1的格点即可利用概率公式求解.【解答】解:在4×4的网格中共有25个格点,而使得三角形面积为1的格点有6个,故使得三角形面积为1的概率为.故选:A.【点评】本题考查了概率的公式,将所有情况都列举出来是解决此题的关键.9.【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【解答】解:根据黄金分割点的概念得:AC=AB=(﹣1)cm.故选:A.【点评】考查了黄金分割点的概念,熟悉黄金比的值.10.【分析】如图,连接AC交OB于K,连接AE,作AH⊥OC于H.由A、C关于OB对称,推出AE=EC,推出EC+ED=AE+ED,根据垂线段最短可知:当A、E、D共线,且与AH重合时,EC+ED的值最小,最小值为AH的长;【解答】解:如图,连接AC交OB于K,连接AE,作AH⊥OC于H.∵四边形ABCO是菱形,∴AC⊥OB,AK=3,OK=4,∴OA=OC=5,∵A、C关于OB对称,∴AE=EC,∴EC+ED=AE+ED,根据垂线段最短可知:当A、E、D共线,且与AH重合时,EC+ED的值最小,最小值为AH的长,∵•AC•OK=•OC•AH,∴AH=∴EC+ED的最小值为,故选:D.【点评】本题考查轴对称﹣最短问题、菱形的性质、勾股定理垂线段最短等知识,解题的关键是学会添加常用辅助线,利用垂线段最短解决最短问题.二.填空题(共8小题,满分24分,每小题3分)11.【分析】乘积含x项包括两部分,①mx×2,②8×(﹣3x),再由展开后不含x的一次项可得出关于m的方程,解出即可.【解答】解:(mx+8)(2﹣3x)=2mx﹣3mx2+16﹣24x=﹣3mx2+(2m﹣24)x+16,∵多项式(mx+8)(2﹣3x)展开后不含x项,∴2m﹣24=0,解得:m=12,故答案为:12.【点评】此题考查了多项式乘多项式的知识,属于基础题,注意观察哪些项相乘所得的结果含一次项,难度一般.12.【分析】在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.【解答】解:5 400 000=5.4×106万元.故答案为5.4×106.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).13.【分析】根据二次函数的顶点坐标确定方法,直接得出答案即可.【解答】解:∵二次函数y=2(x+1)2﹣3,∴二次函数y=2(x+1)2﹣3的顶点坐标是:(﹣1,﹣3).故答案为:(﹣1,﹣3).【点评】此题主要考查了二次函数顶点坐标确定方法,根据顶点式得出顶点坐标是考查重点,同学们应熟练掌握.14.【分析】观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘x(x﹣3),得3x﹣9=2x,解得x=9.检验:把x=9代入x(x﹣3)=54≠0.∴原方程的解为:x=9.故答案为:x=9.【点评】本题考查了解分式方程,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.15.【分析】分两种情形分别求解:①如图1中,当∠MON=∠OMN时.②如图2中,当∠MON =∠ONM时.【解答】解:∵∠ACB=90°,AO=OB,∴OC=OA=OB,∴∠B=∠OCB,∵∠MON=∠B,若△OMN与△OBC相似,∴有两种情形:①如图1中,当∠MON=∠OMN时,∵∠OMN=∠B,∠OMC+∠OMN=180°,∴∠OMC+∠B=180°,∴∠MOB+∠BCM=90°,∴∠MOB=90°,∵∠AOM=∠ACB,∠A=∠A,∴△AOM∽△ACB,∴=,∴=,∴AM=,∴CM=AC﹣AM=8﹣=.②如图2中,当∠MON=∠ONM时,∵∠BOC=∠OMN,∴∠A+∠ACO=∠ACO+∠MOC,∴∠MOC=∠A,∵∠MCO=∠ACO,∴△OCM∽△ACO,∴OC2=CM•CA,∴25=CM •8, ∴CM =,故答案为或.【点评】本题考查相似三角形的判定和性质,直角三角形斜边中线的性质等知识,解题的关键是学会用分类讨论的思想思考问题.16.【分析】连接OA 、OC ,然后根据圆周角定理求得∠AOC 的度数,最后根据弧长公式求解. 【解答】解:连接OA 、OC , ∵∠D =45°,∴∠AOC =2∠D =90°,则劣弧AC 的长为:=π.故答案为π.【点评】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式l =.17.【分析】设CF =a ,DF =2a ,S △CEF =S ,则CD =3a .利用相似三角形的性质求出平行四边形的面积,即可解决问题.【解答】解:设CF =a ,DF =2a ,S △CEF =S ,则CD =3a . ∵四边形ABCD 是平行四边形, ∴AB =CD =3a ,AB ∥CF , ∴△CFE ∽△ABE ,∴==,∴=,∴S △ABE =9S , ∴S △BCE =3S ,∴S 平行四边形ABCD =2•S △ABC =24S ,∴S:S▱ABCD=1:24,△CEF故答案为1:24.【点评】本题考查平行四边形的性质、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.18.【分析】先把A(2,m)代入y=2x求出m得到A(2,4),然后根据正比例函数y=2x的图象与反比例函数y=(k≠0)的图象的两交点关于原点对称得到B点坐标.【解答】解:把A(2,m)代入y=2x得m=2×2=4,则A(2,4),因为正比例函数y=2x的图象与反比例函数y=(k≠0)的图象的两交点关于原点对称,所以B点坐标为(﹣2,﹣4).故答案为(﹣2,﹣4).【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.三.解答题(共10小题,满分76分)19.【分析】根据实数的运算顺序,首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1=1﹣3+(﹣1)+2=﹣1.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a ≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.20.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:,解不等式①,得:x≥﹣1,解不等式②,得:x<3,则不等式组的解集为﹣1≤x<3,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【分析】根据分式的混合运算法则把原式化简,根据分式有意义的条件确定x的值,代入计算即可.【解答】解:原式=1﹣×=1﹣=﹣=﹣,由题意得,x≠﹣1,0,1,当x=3时,原式=﹣【点评】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.22.【分析】(1)用7次的人数除以7次所占的百分比即可求得总人数,然后求得6次的人数即可确定众数;(2)补齐6次小组的小长方形即可.(2)用总人数乘以达标率即可.【解答】解:(1)观察统计图知达到7次的有7人,占28%,∴7÷28%=25人,达到6次的有25﹣2﹣5﹣7﹣3=8人,故众数为6次;…(4分) (2)(3)(人).答:该校125名九年级男生约有90人体能达标.…【点评】本题考查了条形统计图的知识,解题的关键是从统计图中整理出进一步解题的有关信息. 23.【分析】列举出符合题意的各种情况的个数,再根据概率公式解答即可.注意概率在0和1之间的事件为随机事件.【解答】解:(1)“3点朝上”出现的频率是,“5点朝上”出现的频率是;(2)小颖的说法是错误的.这是因为:“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近; 小红的判断是错误的,因为事件发生具有随机性,故“6点朝上”的次数不一定是100次;(3)列表如下:∵点数之和为3的倍数的一共有12种情况,总数有36种情况,∴P(点数之和为3的倍数)=.【点评】用到的知识点为:概率=所求情况数与总情况数之比.注意可能事件可能发生,也可能不发生.24.【分析】(1)先利用ASA判定△BGD≌△CFD,从而得出BG=CF;(2)再利用全等的性质可得GD=FD,再有DE⊥GF,从而得出EG=EF,两边和大于第三边从而得出BE+CF>EF.【解答】解:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.25.【分析】(1)根据题意可以设出y与x的函数关系式,然后根据表格中的数据,即可求出日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.【解答】解:(1)设日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=kx+b,,解得,,即日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=﹣x+40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元),即当每件产品的销售价定为35元时,此时每日的销售利润是125元.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.26.【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;(3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【解答】解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO与△CBO中,,∴△CDO≌△CBO(SAS),∴∠CBO=∠CDO=90°,∴OB⊥BC,∴BC是⊙O的切线;(3)∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE(AAS),∴AB=CD,∴四边形ABCD是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.【点评】此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.27.【分析】(1)在y=﹣x+2中,分别令y=0和x=0,则可求得A、B的坐标;(2)利用t可表示出OM,则可表示出S,注意分M在y轴右侧和左侧两种情况;(3)由全等三角形的性质可得OM=OB=2,则可求得M点的坐标;(4)由折叠的性质可知MG平分∠OMN,利用角平分线的性质定理可得到=,则可求得OG的长,可求得G点坐标.【解答】解:(1)在y=﹣x+2中,令y=0可求得x=4,令x=0可求得y=2,∴A(4,0),B(0,2),故答案为:(4,0);(0,2);(2)由题题意可知AM=t,①当点M在y轴右边时,OM=OA﹣AM=4﹣t,∵N(0,4),∴ON=4,∴S=OM•ON=×4×(4﹣t)=8﹣2t;②当点M在y轴左边时,则OM=AM﹣OA=t﹣4,∴S=×4×(t﹣4)=2t﹣8;(3)∵△NOM≌△AOB,∴MO=OB=2,∴M(2,0);(4)∵OM=2,ON=4,∴MN==2,∵△MGN沿MG折叠,∴∠NMG=∠OMG,∴=,且NG=ON﹣OG,∴=,解得OG=﹣1,∴G(0,﹣1).【点评】本题为一次函数的综合应用,涉及函数与坐标轴的交点、三角形的面积、全等三角形的性质、角平分线的性质定理及分类讨论思想等知识.在(1)中注意求函数图象与坐标轴交点的方法,在(2)中注意分两种情况,在(3)中注意全等三角形的对应边相等,在(4)中利用角平分线的性质定理求得关于OG的等式是解题的关键.本题考查知识点较多,综合性很强,但难度不大.28.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N 的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x =﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S =S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a =﹣1时,抛物线的解析式为:y =﹣x 2﹣x +2=﹣(x +)2+,有,﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y =﹣2x +t ,﹣x 2﹣x +2=﹣2x +t ,x 2﹣x ﹣2+t =0,△=1﹣4(t ﹣2)=0,t =,当点H 平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y =﹣2x +t ,t =2,∴当线段GH 与抛物线有两个不同的公共点,t 的取值范围是2≤t <.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。
2020年苏州市中考数学模拟试卷(含答案)
2020年苏州市中考数学模拟试卷本试卷由选择题、填空题和解答题三大题组成.共28小题,满分130分.考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔 填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干 净后,再选涂其他答案;答非选择题必须用0. 5毫米黑色墨水签字笔写在答题卡指定的位 置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上 一律无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有 一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.一2的倒数是( )A.2B.一2C.12 D. 12- 2.下列计算正确的是( )A. 23a a +=B. 235()a a =C. 23a a a ⋅=D. 23(1)1a a a +=+3.某班派6名同学参加拔河比赛,他们的体重分别是:67,61,59,63,57,66(单位:千克)这组数据 的中位数是 ( )A. 59B. 61C. 62D. 634.不等式组11x x ≤⎧⎨>-⎩的解集是( )A. 1x ≤B. 11x -≤<C. 1x >-D. 11x -<≤ 1 5.将抛物线2y x =平移得到抛物线2(3)y x =+,则这个平移过程正确的是( )A.向左平移3个单位长度B.向右平移3个单位长度C.向上平移3个单位长度D.向下平移3个单位长度6.在一个直角三角形中,有一个锐角等于40°,则另一个锐角的度数是( )A. 40°B. 50°C. 60°D. 70°7.一个多边形的内角和等于它的外角和,则这个多边形的边数为( )A. 3B. 4C. 5D. 68.如图,在ABC ∆中,8,6,30AB AC BAC ==∠=︒,将ABC ∆绕点A 逆时针旋转60° 得到11AB C ∆,连接1BC ,则1BC 的长为( )A. 6B. 8C. 10D. 129.如图,E 是ABCD Y 的AD 边上一点,CE 与BA 的延长线交于点F ,有下列比例式: ①FB FC CD CE =;②AE AF ED AB =;③FA AE FB AD =;④AE FE EC ED=,其中一定成立的是( ) A.①②③④ B.①②③ C.①②④ D.①②10.如图,矩形ABCD 中,AC 与BD 相交于点,:3:1E AD AB =,将ABD ∆沿BD 折叠, 点A 的对应点为F ,连接AF 交BC 于点G ,且2BG =,在AD 边上有一点H ,使得 BH EH +的值最小,此时BH CF的值为( ) A. 32 B. 232 C. 62 D. 32二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填 写在答题卡相应位置上)11.要使分式12x +有意义,则x 的取值范围是 . 12.分解因式: 24a -= .13.已知一粒米的质量约是0. 000 021千克,这个数字用科学记数法表示为 .14.如图,在平面直角坐标系中,点M 是直线y x =-上的动点,过点M 作MN x ⊥轴,交 直线y x =于点N ,当8MN ≤时,设点M 的横坐标为m ,则m 的取值范围为 .15.用一张边长为4πcm 的正方形纸片刚好围成一个圆柱的侧面,则该圆柱的底面圆的半径 长为 cm.16.如图,在正方形网格中,ABC ∆的顶点都在格点上,则tan ACB ∠的值为 .17.将被3整除余数为1的正整数,按照下列规律排成一个三角形数阵,则第20行第19个数是.18.如图,在Rt OAB ∆中,90AOB ∠=︒,8,10OA AB ==,⊙O 的半径为4.点P 是AB 上 的一动点,过点P 作⊙O 的一条切线,PQ Q 为切点.设AP x = (010x ≤≤),2PQ y =, 则y 与x 的函数关系式为 .三、解答题(本大题共10小题,共76分.请在答题卡指定区域内作答,解答时应写出文字说 明、证明过程或演算步骤)19.(本题满分5分)计算: 112732()2cos603--+--+︒.20.(本题满分5分)若点P 的坐标为1(,29)3x x --,其中x 满足不等式组5102(1)131722x x x x -≥+⎧⎪⎨-≤-⎪⎩, 求点P 所在的象限.21.(本题满分6分)如图,BD 为ABCD Y 的对角线,,AE BD CF BD ⊥⊥,垂足分别为 ,E F .求证: BE DF =.22.(本题满分6分)有三个质地、大小都相同的小球分别标上数字2,-2,3后放入一个不透明 的口袋搅匀,任意摸出一个小球,记下数字a 后,放回口袋中搅匀,再任意摸出一个小 球,又记下数字b .这样就得到一个点的坐标(,)a b .(1)求这个点(,)a b 恰好在函数y x =-的图像上的概率.(请用“画树状图”或“列表”等 方法给出分析过程,并求出结果)(2)如果再往口袋中增加(1)n n ≥个标上数字2的小球,按照同样的操作过程,所得到的 点(,)a b 恰好在函数y x =-的图像上的概率是 (请用含n 的代数式直接写出 结果).23.(本题满分7分)如图,在ABC ∆中,AB AC =,点,D E 分别在,BC AC 上,且DC DE =. (1)求证: ABC DEC ∆∆:;(2)若5,1,3AB AE DE ===,求BC 的长.24.(本题满分8分)无锡有丰富的旅游产品.某校九年级(1)班的同学就部分旅游产品的喜爱情 况对部分游客随机调查,要求游客在列举的旅游产品中选出最喜爱的产品,且只能选一 项,以下是同学们整理的不完整的统计图.根据以上信息回答下列问题:(1)请将条形统计图补充完整.(2)参与随机调查的游客有 人;在扇形统计图中,A 部分所占的圆心角是 度.(3)根据调查结果估计在2 000名游客中最喜爱惠山泥人的约有 人.25.(本题满分8分)初夏五月,小明和同学们相约去森林公园游玩,从公园入口处到景点只有 一条长15 km 的观光道路.小明先从入口处出发匀速步行前往景点,1. 5 h 后,迟到的另3 位同学在入口处搭乘小型观光车(限载客3人)匀速驶往景点,结果反而比小明早到45 min.已知小型观光车的速度是步行速度的4倍.(1)分别求出小型观光车和步行的速度.(2)如果小型观光车在某处让这3位同学下车步行前往景点(步行速度和小明相同),观光 车立即返回接载正在步行的小明后直接驶往景点,并正好和这3位同学同时到达.求这 样做可以使小明提前多长时间到达景点?(上下车及车辆调头时间忽略不计)26.(本题满分9分)(1)证明推断:如图1,在正方形ABCD 中,点,E Q 分别在边,BC AB 上,DQ AE ⊥于 点O ,点,G F 分别在边,CD AB 上,GF AE ⊥.①求证: DQ AE =;②推断: GF AE的值为 . (2)类比探究:如图:,在矩形ABCD 中,BC k AB= (k 为常数).将矩形ABCD 沿GF 折叠, 使点GF 落在BC 边上的点E 处,得到四边形FEPG , EP 交CD 于点H ,连接AE 交 GF 于点O .试探究GF 与AE 之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP ,当23k =时,若3tan 4CGP ∠=, 210GF =, 求CP 的长.27.(本题满分10分)如图1,直线l 与反比例函数(0)k y k x =>位于第一象限的图像相交于 ,A B 两点,并与y 轴、x 轴分别交于,E F .(1)试判断AE 与BF 的数量关系并说明理由.(2)如图2,若将直线l 绕点A 顺时针旋转,使其与反比例函数k y x=的另一支图像相交, 设交点为B .试判断AE 与AE 的数量关系是否依然成立?请说明理由.28.(本题满分12分)如图,在直角坐标系中,直线132y x =-+与x 轴,y 轴分别交于点B , 点C ,对称轴为1x =的抛物线过,B C 两点,且交x 轴于另一点A ,连接AC .(1)直接写出点A ,点B ,点B 的坐标和抛物线的解析式;(2)已知点P 为第一象限内抛物线上一点.当点P 到直线BC 的距离最大时,求点P 的坐 标;(3)抛物线上是否存在一点Q (点C 除外),使以点,,Q A B 为顶点的三角形与ABC ∆相 似?若存在,求出点Q 的坐标;若不存在,请说明理由.参考答案。
【考试必备】江苏苏州工业园区星海实验中学中考提前自主招生数学模拟试卷(6套)附解析
中学自主招生数学试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC 的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y 轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.16.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.17.【分析】依据题意可得,A,C之间的水平距离为6,点Q与点P的水平距离为7,A,B之间的水平距离为2,双曲线解析式为y=,依据点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,即可得到mn的值.【解答】解:由图可得,A,C之间的水平距离为6,2018÷6=336…2,由抛物线y=﹣x2+4x+2可得,顶点B(2,6),即A,B之间的水平距离为2,∴点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,由抛物线解析式可得AO=2,即点C的纵坐标为2,∴C(6,2),∴k=2×6=12,∴双曲线解析式为y=,2025﹣2018=7,故点Q与点P的水平距离为7,∵点P'、Q“之间的水平距离=(2+7)﹣(2+6)=1,∴点Q“的横坐标=2+1=3,∴在y=中,令x=3,则y=4,∴点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,∴mn=6×4=24,故答案为:24.18.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,连接AC,BC,BQ.∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴△ACB是等腰直角三角形,∴AC=4,∴△ACQ中,AQ=4,∴BQ==4,∵BD≥BQ﹣DQ,∴BD的最小值为4﹣4.故答案为:4﹣4.三、解答题(本大题有10小题,共96分.)19.【分析】(1)根据实数的混合计算解答即可;(2)根据整式的混合计算解答即可.【解答】解:(1)原式==﹣1.(2)原式=1﹣a2+a2﹣2a=1﹣2a20.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为:200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.21.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正数确定出m的范围即可.【解答】解:去分母得:1+m=x﹣2,解得:x=m+3,由分式方程的解为正数,得到m+3>0,且m+3≠2,解得:m>﹣3且m≠﹣1.22.【分析】(1)画树状图列出所有等可能结果,从中找到到第二个路口时第一次遇到红灯的结果数,根据概率公式计算可得.(2)根据在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2可得答案.【解答】解:(1)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第一次遇到红灯的结果数为2,所以到第二个路口时第一次遇到红灯的概率为;(2)∵在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2,∴到第n个路口都没有遇到红灯的概率为()n,故答案为:()n.23.【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×=2(米),∵DH=1.5,∴CD=2 +1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长约为(4+)米.24.【分析】(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,AD∥CB,AB∥CD,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∵ED⊥DB,FB⊥BD.∴DE∥BF,∵AB∥CD,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.25.【分析】(1)利用已知表格中x,y个数变化规律得出第2格的“特征多项式”以及第n格的“特征多项式”;(2)①利用(1)中所求得出关于x,y的等式组成方程组求出答案;②利用二次函数最值求法得出答案.【解答】解:(1)由表格中数据可得:第4格的“特征多项式”为:16x+25y,第n格的“特征多项式”为:n2x+(n+1)2y(n为正整数);故答案为:16x+25y,n2x+(n+1)2y(n为正整数);(2)①由题意可得:,解得:答:x的值为﹣6,y的值为2.②设W=n2x+(n+1)2y当x=﹣6,y=2时:W=﹣6n2+2(n+1)2=,此函数开口向下,对称轴为,∴当时,W随n的增大而减小,又∵n为正整数∴当n=1时,W有最大值,W最大=﹣4×(1﹣)2+3=2,即:第1格的特征多项式的值有最大值,最大值为2.26.【分析】(1)首先连接OD,由BE=EC,CO=OA,得出OE∥AB,根据平行线与等腰三角形的性质,易证得△COE≌△DOE,即可得∠ODE=∠OCE=90°,则可证得ED为⊙O的切线;(2)只要证明OE∥AB,推出,由此构建方程即可解决问题;【解答】解:(1)证明:连接OD,∵E为BC的中点,AC为直径,∴BE=EC,CO=OA,∴OE∥AB,∴∠COE=∠CAD,∠EOD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠COE=∠DOE,在△COE和△DOE中,,∴△COE≌△DOE(SAS),∴∠ODE=∠OCE=90°,∴ED⊥OD,∴ED是圆O的切线;(2)连接CD;由题意EC、ED是⊙O的切线,∴EC=ED,∵OC=OD,∴OE⊥CD,∵AC是直径,∴∠CDA=90°,∴CD⊥AB,∴OE∥AB,∴,在Rt△ECO中,EO==5,∵∠EOC=∠CAD,∴cos∠CAD=cos∠EOC=,∴AD=,设OG=x,则有,∴x=,∴OG=.27.【分析】(1)求出E、F两点坐标,利用待定系数法即可解决问题;(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.只要证明四边形AOMK是正方形,证明AE+OA =2AH即可解决问题;(3)如图2中,设F(0,2a),则E(﹣a,a).构建一次函数利用方程组求出交点P坐标,分三种情形讨论求解即可;【解答】解:(1)∵OE=OA=8,α=45°,∴E(﹣4,4),F(0,8),设直线EF的解析式为y=kx+b,则有,解得∴直线EF的解析式为y=x+8.(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.在Rt△AEO中,tan∠AOE==,OA=8,∴AE=4,∵四边形EOGF是正方形,∴∠EMO=90°,∵∠EAO=∠EMO=90°,∴E、A、O、M四点共圆,∴∠EAM=∠EOM=45°,∴∠MAK=∠MAH=45°,∵MK⊥AE,MH⊥OA,∴MK=MH,四边形KAOM是正方形,∵EM=OM,∴△MKE≌△MHO,∴EK=OH,∴AK+AH=2AH=AE+EK+OA﹣OH=12,∴AH=6,∴AM=AH=6.(3)如图2中,设F(0,2a),则E(﹣a,a).∵A(﹣8,0),E(﹣a,a),∴直线AP的解析式为y=x+,直线FG的解析式为y=﹣x+2a,由,解得,∴P(,).①当PO=OE时,∴PO2=2OE2,则有:+=4a2,解得a=4或﹣4(舍弃)或0(舍弃),此时P(0,8).②当PO=PE时,则有:+=2[(+a)2+(﹣a)2],解得:a=4或12,此时P(0,8)或(﹣24,48),③当PE=EO时,[(+a)2+(﹣a)2]=4a2,解得a=8或0(舍弃),∴P(﹣8,24)综上所述,满足条件的点P的坐标为(0,8),(﹣8,24),(﹣24,48).28.【分析】(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标.设点P的坐标为(,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD=P A、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可.【解答】解:(1)∵C(0,3).∴﹣9a=3,解得:a=﹣.令y=0得:ax2﹣2 ax﹣9a=0,∵a≠0,∴x2﹣2 x﹣9=0,解得:x=﹣或x=3.∴点A的坐标为(﹣,0),B(3,0).∴抛物线的对称轴为x=.(2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60°.∵AE为∠BAC的平分线,∴∠DAO=30°.∴DO=AO=1.∴点D的坐标为(0,1)设点P的坐标为(,a).依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.当AD=P A时,4=12+a2,方程无解.当AD=DP时,4=3+(a﹣1)2,解得a=0或a=2(舍去),∴点P的坐标为(,0).当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4.∴点P的坐标为(,﹣4).综上所述,点P的坐标为(,0)或(,﹣4).(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣m+3=0,解得:m=,∴直线AC的解析式为y=x+3.设直线MN的解析式为y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=﹣,∴点N的坐标为(﹣,0).∴AN=﹣+=.将y=x+3与y=kx+1联立解得:x=.∴点M的横坐标为.过点M作MG⊥x轴,垂足为G.则AG=+.∵∠MAG=60°,∠AGM=90°,∴AM=2AG=+2=.∴+=+=+===.中学自主招生数学试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC 的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y 轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,。
苏州2020中考数学综合模拟测试卷(含答案及解析)
2020苏州市初中毕业暨升学模拟考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(-3)×3的结果是( )A.-9B.0C.9D.-62.已知∠α和∠β是对顶角.若∠α=30°,则∠β的度数为( )A.30°B.60°C.70°D.150°3.有一组数据:1,3,3,4,5,这组数据的众数为( )A.1B.3C.4D.54.若式子-在实数范围内有意义,则x的取值范围是( )A.x≤-4B.x≥-4C.x≤4D.x≥45.如图,一个圆形转盘被分成6个圆心角都为60°的扇形.任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是( )A. B. C. D.6.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为( )A.30°B.40°C.45°D.60°7.下列关于x的方程有实数根的是( )A.x2-x+1=0B.x2+x+1=0C.(x-1)(x+2)=0D.(x-1)2+1=08.二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则代数式1-a-b的值为( )A.-3B.-1C.2D.59.如图,港口A在观测站O的正东方向,OA=4km.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为( )A.4kmB.2kmC.2kmD.(+1)km10.如图,△AOB为等腰三角形,顶点A的坐标为(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A'O'B,点A的对应点A'在x轴上,则点O'的坐标为( )A. B. C. D.第Ⅱ卷(非选择题,共100分)二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在相应位置上.11.的倒数是.12.已知地球的表面积约为510000000km2.数510000000用科学记数法可以表示为.13.已知正方形ABCD的对角线AC=,则正方形ABCD的周长为.14.某学校计划开设A,B,C,D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门.为了了解各门课程的选修人数,现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有人.15.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC= .16.某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道x m,乙工程队平均每天疏通河道y m,则(x+y)的值为.17.如图,在矩形ABCD中,=.以点B为圆心,BC长为半径画弧,交边AD于点E,若AE·ED=,则矩形ABCD的面积为.18.如图,直线l与半径为4的☉O相切于点A,P是☉O上的一个动点(不与点A重合),过点P 作PB⊥l,垂足为B,连结PA.设PA=x,PB=y,则(x-y)的最大值是.三、解答题:本大题共11小题,共76分.把解答过程写在相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(本题满分5分)计算:22+|-1|-.20.(本题满分5分)解不等式组:--21.(本题满分5分)先化简,再求值:-÷-,其中x=-1.22.(本题满分6分)解分式方程:-+-=3.23.(本题满分6分)如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB.连结CD,将线段CD绕点C 按顺时针方向旋转90°后得CE,连结EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.24.(本题满分7分)如图,已知函数y=-x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2.在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=-x+b和y=x的图象于点C,D.(1)求点A的坐标;(2)若OB=CD,求a的值.25.(本题满分7分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色.请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.26.(本题满分8分)如图,已知函数y=(x>0)的图象经过点A,B,点A的坐标为(1,2).过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连结OC,OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.27.(本题满分8分)如图,已知☉O上依次有A,B,C,D四个点,=,连结AB,AD,BD,弦AB不经过圆心O.延长AB到E,使BE=AB.连结EC,F是EC的中点,连结BF.(1)若☉O的半径为3,∠DAB=120°,求劣弧的长;(2)求证:BF=BD;(3)设G是BD的中点.探索:在☉O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE 的位置关系.28.(本题满分9分)如图,已知l1⊥l2,☉O与l1,l2都相切,☉O的半径为2cm.矩形ABCD的边AD,AB分别与l1,l2重合,AB=4cm,AD=4cm.若☉O与矩形ABCD沿l1同时..向右移动,☉O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).(1)如图①,连结OA,AC,则∠OAC的度数为°;(2)如图②,两个图形移动一段时间后,☉O到达☉O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm).当d<2时,求t的取值范围.(解答时可以利用备用图画出相关示意图)备用图29.(本题满分10分)如图,二次函数y=a(x2-2mx-3m2)(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连结AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为 F.探索:在x轴的负半轴上是否存在点G,连结GF,以线段GF,AD,AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G 即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.答案全解全析:一、选择题1.A 根据有理数乘法法则,先确定符号为“-”,再把绝对值相乘,所以结果为-9,故选A.2.A 因为“对顶角相等”,所以∠β=∠α=30°,故选A.3.B 众数为一组数据中出现次数最多的数,故选B.4.D 要使-在实数范围内有意义,则被开方数x-4≥0,所以x≥4,故选D.5.D ∵一个转盘被分成6个相同的扇形,阴影区域有4个扇形,∴指针指向阴影区域的概率为=.6.B 因为AB=AD,所以∠B=∠ADB=80°,因为DC=AD,所以∠C=∠CAD,又因为∠ADB是△ACD 的外角,所以∠ADB=∠C+∠CAD=2∠C,所以∠C=40°,故选B.7.C 选项A、B中,根的判别式Δ都小于零,故不符合题意;选项D可化为(x-1)2=-1,易知方程无实数根;选项C的根为x1=1,x2=-2,故选C.8.B 把点(1,1)代入函数解析式,得a+b-1=1,则1-a-b=-1,故选B.9.C过A作OB边的垂线AD,垂足为D,易知∠BOA=30°,∠BAD=45°,在Rt△OAD中,AD=OAsin∠DOA=4sin30°=2km,在Rt△ABD中,AB===2km,故选C.10.C 过A作OB边的垂线AC,垂足为C,过O'作BA'边的垂线O'D,垂足为D,因为顶点A的坐标为(2,),所以C点坐标为(2,0),所以OC=2,AC=,在Rt△OAC中,根据勾股定理得OA=3,所以AB=3.因为△AOB为等腰三角形,所以C为OB的中点,所以B点坐标为(4,0),故BO'=BO=4.在Rt△O'BD和Rt△O'A'D中,O'B2-BD2=O'A'2-A'D2.设BD=x,则有42-x2=32-(3-x)2,解得x=,所以BD=,所以O'D=,又OD=4+=,故O'点的坐标为,故选C.二、填空题11.答案解析的倒数是.12.答案 5.1×108解析根据科学记数法的表示方法可知,510000000=5.1×108.13.答案4解析设正方形的边长为x.因为正方形的对角线长为,根据勾股定理,可列方程x2+x2=()2,解得x=1(负值舍去),所以正方形的周长为4.14.答案240解析样本中选修C课程的学生占全部被调查学生的×100%=20%,所以估计全校选修C课程的学生有1200×20%=240人.15.答案解析过A作等腰△ABC底边BC上的高AD,垂足为D,则AD平分∠BAC,且D为BC的中点,所以BD=4,根据勾股定理可求出AD=3,又因为∠BPC=∠BAC,所以∠BPC=∠BAD,所以tan∠BPC=tan∠BAD==.16.答案20解析解法一:由题意可列方程组①+②,可得12x+12y=240,所以x+y=20.解法二:由题意可列方程组解得所以x+y=20.评析两种解法中,解法一较为简单,解法二较容易想到.17.答案5解析连结BE,设AB=3k(k≠0),则BC=5k.在Rt△ABE中,根据勾股定理可求出AE=4k,故ED=k,由题意可得4k·k=,可得k2=,所以矩形ABCD的面积为AB·BC=3k·5k=15k2=15×=5.18.答案2解析解法一:连结AO并延长交☉O于点C,连结PC,因为☉O与l相切于点A,所以∠PAB+∠PAC=90°.因为AC为☉O的直径,所以∠APC=90°,所以∠PAC+∠C=90°,所以∠PAB=∠C,又因为∠APC=∠ABP=90°,所以△PAB∽△ACP,所以=,即=,即y=,所以x-y=x-=-(x-4)2+2,所以当x=4时,x-y取最大值2.解法二:连结AO并延长交☉O于点C,连结PC,设∠PAB=α.因为☉O与l相切于点A,所以∠PAB+∠PAC=90°,因为AC为☉O的直径,所以∠APC=90°,所以∠PAC+∠C=90°,所以∠PAB=∠C=α.在Rt△APB中,sin∠PAB==,所以y=x·sinα.在Rt△APC中,sin C==,所以x=8·sinα,所以y=x·sinα=8sin2α,所以x-y=8sinα-8sin2α=-8-+2,所以当sinα=时,x-y取最大值2.评析本题考查圆的性质,切线的性质,二次函数的最值等,综合性强,属难题.三、解答题19.解析原式=4+1-2=3.20.解析解x-1>2,得x>3,解2+x≥2(x-1),得x≤4,所以不等式组的解集是3<x≤4.21.解析原式=-÷--=-×-=.当x=-1时,原式=-==.22.解析去分母,得x-2=3(x-1).解得x=.检验:当x=时,x-1和1-x的值都不等于0,所以x=是原方程的解.评析本题考查分式方程的解法.23.解析(1)证明:∵CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°.∵∠ACB=90°,∴∠BCD=90°-∠ACD=∠FCE.在△BCD和△FCE中,∴△BCD≌△FCE.(2)由△BCD≌△FCE得∠BDC=∠E.∵EF∥CD,∴∠E=180°-∠DCE=90°.∴∠BDC=90°.评析本题考查全等三角形的判定及性质,平行的性质,属容易题.24.解析(1)∵点M在函数y=x的图象上,且横坐标为2,∴点M的纵坐标为2,∴点M的坐标为(2,2).∵点M(2,2)在一次函数y=-x+b的图象上,∴-×2+b=2.∴b=3.∴一次函数的表达式为y=-x+3.令y=0,得x=6.∴点A的坐标为(6,0).(2)由题意得C-,D(a,a).∵OB=CD,∴a--=3.∴a=4.25.解析用树状图表示如下:A区域B区域C区域所得结果∴共有8种等可能结果,∴P(A,C两个区域所涂颜色不相同)==.26.解析(1)∵反比例函数y=的图象经过点A(1,2),∴k=2.∵AC∥y轴,AC=1,点C位于点A的下方,∴点C的坐标为(1,1).∵CD∥x轴,点D在函数图象上,∴点D的坐标为(2,1).∴S△OCD=×1×1=.(2)∵BE=AC,∴BE=.∵BE⊥CD,∴点B的纵坐标为.∴点B的横坐标为.∴CE=-1=.27.解析(1)连结OB,OD.∵∠DAB=120°,∴所对圆心角的度数为240°.∴∠BOD=120°.∵☉O的半径为3,∴劣弧的长为×π×3=2π.(2)证明:连结AC.∵AB=BE,∴点B为AE的中点.∵F是EC的中点,∴BF为△EAC的中位线.∴BF=AC.∵=,∴+=+,∴=.∴BD=AC.∴BF=BD.(3)过点B作AE的垂线,与☉O的交点即为所求的点P.连结PG,PF.∵BF为△EAC的中位线,∴BF∥AC.∴∠FBE=∠CAE.∵=,∴∠CAB=∠DBA.∴∠FBE=∠DBA.∵BP⊥AE,∴∠GBP=∠FBP.∵G为BD的中点,∴BG=BD.∴BG=BF.∵BP=BP,∴△PBG≌△PBF.∴PG=PF.此时PB与AE相互垂直.28.解析(1)105.(2)如图,当O1,A1,C1恰好在同一直线上时,设☉O1与l1的切点为E,连结O1E,可得O1E=2,O1E⊥l1.在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°.∴∠O1A1E=∠C1A1D1=60°,∴A1E==.∵A1E=AA1-OO1-2=t-2,∴t-2=,∴t=+2.∴OO1=3t=2+6.(3)①当直线AC与☉O第一次相切时,设移动时间为t1.如图,此时☉O移动到☉O2的位置,矩形ABCD移动到A2B2C2D2的位置.设☉O2与直线l1,C2A2分别相切于点F,G,连结O2F,O2G,O2A2.∴O2F⊥l1,O2G⊥A2C2.由(2)可得∠C2A2D2=60°,∴∠GA2F=120°.∴∠O2A2F=60°.在Rt△A2O2F中,O2F=2,∴A2F=.∵OO2=3t1,AF=AA2+A2F=4t1+,∴4t1+-3t1=2,∴t1=2-.②当直线AC与☉O第二次相切时,设移动时间为t2.记第一次相切时为位置一,点O1,A1,C1共线时为位置二,第二次相切时为位置三.由题意知,从位置一到位置二所用时间与从位置二到位置三所用时间相等.∴+2--=t2-,∴t2=2+2.综上所述,当d<2时,t的取值范围是2-<t<2+2.评析本题是一道典型的运动型问题,化动为静,合理运用切线的性质是解决本题的关键,主要考查学生分析问题的能力.29.解析(1)将C(0,-3)代入函数表达式得a(0-0-3m2)=-3.∴a=.(2)证明:如图,过点D,E分别作x轴的垂线,垂足为M,N.由a(x2-2mx-3m2)=0解得x1=-m,x2=3m.∴A(-m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,-3).∵AB平分∠DAE,∴∠DAM=∠EAN.∵∠DMA=∠ENA=90°,∴△ADM∽△AEN.∴==.设点E的坐标为--,∴--=--.∴x=4m.∴===(定值).(3)连结FC并延长,与x轴负半轴交于一点,此点即为所求的点G.由题意得,二次函数图象的顶点F的坐标为(m,-4).过点F作FH⊥x轴于点H.∵tan∠CGO=,tan∠FGH=.∴=,∴OG=3m.此时,GF===4,AD===3,∴=.由(2)得=,∴AD∶GF∶AE=3∶4∶5.∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点的横坐标为-3m.。
江苏省苏州市苏州工业园区星海实验中学2022-2023学年七年级下学期3月月考数学试题
A .①②③B .①③⑤C .①②④⑤D .①②③④⑤二、填空题9.如图,直线a b P ,将三角尺直角顶点放在直线a 上,若140Ð=°,则2Ð的度数是______°.10.写出命题“如果1mn =,那么m n 、互为倒数”的逆命题:______________.11.若正n 边形的每个内角的度数为140°.则n 的值是___________.12.若340x y +-=,则327x y ×=__________.13.已知230x x -+=﹐则()()32x x -+的值等于__________.14.如图,点D 为ABC V 内一点,10BCD Ð=°,=60B а,CD AD ^,则BAD Ð的度数为______.15.如图,在三角形ABC 中,3AC AE =,三角形ABD 的面积是三角形ADC 面积的2(1)求线段AE的长;(2)图中共有______条线段;(3)若图中所有线段长度的和是(4)若四边形的面积为n,则点(1)如图1,120ADC Ð=°,130BCD Ð=°,DAB Ð和CBE Ð的平分线交于点F ,则AFB Ð=______°;(2)如图2,ADC a Ð=,BCD b Ð=,且180a b +>°,DAB Ð和CBE Ð的平分线交于点F ,则AFB Ð=______;(用a 、b 表示)(3)如图3,ADC a Ð=,BCD b Ð=,当DAB Ð和CBE Ð的平分线AG 、BH 平行时,a 、b 应该满足怎样的数量关系?请证明你的结论.【挑战】(4)如果将(2)中的条件180a b +>°改为180a b +<°,再分别作DAB Ð和CBE Ð的平分线,交于点F ,那么F Ð与a 、b 有怎样的数量关系?画出图形并直接写出结论.D选项,223+==,故D选项正确,符合题意;2282故选:D.【点睛】本题主要考查整式的运算,掌握合并同类项的方法,乘法公式的运算方法,乘方的运算方法是解题的关键.4.C【分析】根据同位角、同旁内角、内错角,对顶角的定义结合图形逐项分析判断即可求解.【详解】解:A. 1Ð和3Ð是同旁内角,故该选项正确,不符合题意;B. 2Ð和3Ð是内错角,故该选项正确,不符合题意;C. 2Ð和5Ð是同位角,故该选项不正确,符合题意;D. 3Ð和5Ð是对顶角,故该选项正确,不符合题意.故选:C.【点睛】本题考查了同位角、同旁内角、内错角,对顶角的定义,掌握以上定义是解题的关键.两条直线被第三条直线所截,在截线的同旁,被截两直线的同一方,我们把这种位置关系的角称为同位角,两直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角;两条直线被第三条直线所截,在截线同旁,且截线之内的两角,叫做同旁内角;一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角.5.C【分析】根据三角形的高的定义即可进行解答.【详解】解:ABD△的边BD上的高是线段AC,故选:C.【点睛】从三角形一个端点向它的对边所在的直线作一条垂线,三角形顶点和垂足之间的线段称三角形这条边上的高.6.B【分析】利用大正方形的面积减去小正方形的面积得到空白部分的面积,然后根据面积相【详解】解:∵a b P ,140Ð=°,∴3140Ð=Ð=°,∴218039050Ð=°-Ð-°=°.故答案为:50.【点睛】本题主要考查了平行线的性质,熟练掌握两直线平行,同位角相等,是解题的关键.10.如果m n 、互为倒数,那么1mn =【分析】将原命题的条件和结论互换即可得.【详解】解:命题“如果1mn =,那么m n 、互为倒数”的逆命题为:如果m n 、互为倒数,那么1mn =.故答案为:如果m n 、互为倒数,那么1mn =.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.11.9【分析】首先根据正n 边形的每个内角的度数为140°,即可求得每个外角的度数,再根据多边形的外角和为360°,即可得到n 的值.【详解】解:∵正n 边形的每个内角都是140°,在MN 上方时,②DE 在MN 下方时,2180FDP t Ð=°-°,列式求解即可;(2)当BC DF ∥时,延长AC 交MN 于点I ,①DF 在MN 上方时,1802FDN t Ð=°-°,②DF 在MN 下方时,1802FDN t Ð=°-°,列式求解即可.【详解】解:由题意得,302HAC BAH BAC t FDM t Ð=Ð+Ð=°+°Ð=°,,(1)如图1,当DE BC ∥时,延长AC 交MN 于点P ,①DE 在MN 上方时,∵DE BC DE DF AC BC ^^∥,,,∴AP DF ∥,∴FDM MPA Ð=Ð,∵MN GH ∥,∴MPA HAC Ð=Ð,∴FDM HAC Ð=Ð,即230t t °=°+°,∴30t =°,②DE 在MN 下方时,2180FDP t Ð=°-°,∵DE BC DE DF AC BC ^^∥,,,∴AP DF ∥,∴FDP MPA Ð=Ð,∵MN GH ∥,∴MPA HAC Ð=Ð,∴FDP HAC Ð=Ð,即218030t t °-°=°+°,∴210t =(不符合题意,舍去),(2)当BC DF ∥时,延长AC 交MN 于点I ,①DF 在MN 上方时,BC DF ∥,如图,根据题意得:1802FDN t Ð=°-°,∵DF BC AC BC ^∥,,∴CI DF ^,∴90FDN MIC Ð+Ð=°,即18023090t t °-°+°+°=°,∴120t=°,∴2240180t=°>°,此时DF应该在MN下方,不符合题意,舍去;②DF在MN下方时,如图,根据题意可知:2180Ð=°-°,FDN t∵DF BC∥,∴MIC NDFÐ=Ð,∴309060Ð=Ð=+°-°=-°,NDF AQI t t即218060°-°=°-°,t t∴120t=°,综上所述:所有满足条件的t的值为30或120.故答案为:30或120.【点睛】本题考查了平行线的性质,三角形的外角的性质,掌握平行线的性质是解题的关键.17.(1)11-(2)0(2)将所求式子变形为2(2)4x y xy -+,再整体代入求值即可.【详解】(1)解:6()x y a a =Q ,23()x y a a a ¸=6xy a a \=,223x x y y a a a a -¸==,6xy \=,23x y -=;(2)解:224x y +2(2)4x y xy=-+2346=+´33=.【点睛】本题考查幂的乘方的逆用,同底数幂的除法,利用完全平方公式求值等知识.掌握幂的乘方的逆用法则和同底数幂的除法法则是解题关键.21.(1)见解析(2)见解析(3)相等;10(4)8【分析】(1)分别作出A ,B ,C 的对应点A ¢,B ¢,C ¢即可.(2)根据三角形高的定义画出图形即可.(3)利用分割法求解即可.(4)构造菱形ACBQ ,利用等高模型解决问题即可.【详解】(1)解:如图,根据题意可得,先将图形向下平移1个单位长度,然后向右平移6个单位长度,△A B C¢¢¢即为所求作.(2)解:如图,线段BD 即为所求作.。
江苏省苏州市2020版中考数学三模试卷(I)卷
江苏省苏州市2020版中考数学三模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)按100分制60分及格来算,满分是120分的及格分是()A . 60分B . 72分C . 90分D . 105分2. (2分) (2018·房山模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分) (2019九上·宁波期中) 下列事件是必然事件的是()A . 某人体温是100℃B . 太阳从西边下山C . a2+b2=﹣1D . 购买一张彩票,中奖4. (2分) (2018九上·西峡期中) 在Rt△ABC中,∠C=90°,AB=4,BC=3,则cosB等于()A .B .C .D .5. (2分) (2016七下·桐城期中) 下列关系不正确的是()A . 若a﹣5>b﹣5,则a>bB . 若x2>1,则x>C . 若2a>﹣2b,则a>﹣bD . 若a>b,c>d,则a+c>b+d6. (2分)(2017·路南模拟) 如图,正比例函数y=kx与反比例函数y= 的图象不可能是()A .B .C .D .二、填空题 (共10题;共12分)7. (1分) (2019七上·静安期末) 计算: ________.8. (1分)∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为________°.9. (1分) (2019八下·温州月考) 数据2,3,5,2,4的中位数是________.10. (1分) (2018八上·开平月考) 小林从P点向西直走12米后向左转,转动的角度为α,再直走12米,又向左转α,如此重复,小林共走了108米后回到点P,则α=________.11. (1分) (2017九上·相城期末) 已知圆锥的底面半径为3,高为4,则这个圆锥的母线长为________.12. (3分)已知关于x的一次函数y=mx+4m-2的图象经过原点,那么m=________;若m= ,则这个函数的图象经过第________象限;若m= ,则这个函数的图象经过第________象限.13. (1分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB ,垂足为D ,则tan∠BCD的值是________.14. (1分) (2018七上·安图期末) 已知4x2mym+n与-3x6y2是同类项,则m-n=________15. (1分)已知一次函数y=2x+4的图象经过点(m , 8),则m=________.16. (1分)如图,矩形EFGH内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF=EH,那么EH的长为________.三、计算题 (共10题;共89分)17. (5分)计算:①②(﹣)﹣1﹣3tan30°+(1﹣)0+ .18. (5分)先化简:(x﹣)÷,其中的x选一个适当的数代入求值.19. (12分)(2018·南海模拟) 某学校在开展“书香校园”活动期间,对学生课外阅读的喜好进行抽样调查(每人只选一种书籍),将调查结果绘制成如图所示的两幅不完整的统计图,根据图中的信息,解答下列问题:(1)这次调查的学生人数为________人,扇形统计图中m的值为________;(2)补全条形统计图;(3)如果这所学校要添置学生课外阅读的书籍1500册,请你估计“科普”类书籍应添置多少册比较合适?20. (5分)(2019·朝阳模拟) 如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.请用列表或画树状图的方法,求两个转盘停止后指针所指区域内的数字之和小于6的概率.21. (5分) (2016八上·高邮期末) 春节前夕,某商店根据市场调查,用2000元购进第一批盒装花,上市后很快售完,接着又用4200元购进第二批这种盒装花.已知第二批所购的盒数是第一批所购花盒数的3倍,且每盒花的进价比第一批的进价少6元.求第一批盒装花每盒的进价.22. (5分)(2020·绍兴模拟) 如图,小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度CD=1.5米,求这棵树AB的高度(结果精确到0.1,≈1.73).23. (7分) (2016九上·北京期中) 下表是二次函数y=ax2+bx+c(a≠0)图象上部分点的横坐标(x)和纵坐标(y).x…﹣1012345…y…830﹣10m8…(1)观察表格,直接写出m=________;(2)其中A(x1,y1)、B(x2,y2)在函数的图象上,且﹣1<x1<0,2<x2<3,则y1________y2(用“>”或“<”填空);(3)求这个二次函数的表达式.24. (15分)(2017·滨江模拟) 综合题(1)如图①,四边形ABCD是正方形,点G是BC上的任意一点,BF⊥AG于点F,DE⊥A G于点E,探究BF,DE,EF之间的数量关系,第一学习小组合作探究后,得到DE﹣BF=EF,请证明这个结论;(2)若(1)中的点G在CB的延长线上,其余条件不变,请在图②中画出图形,并直接写出此时BF,DE,EF 之间的数量关系;(3)如图③,四边形ABCD内接于⊙O,AB=AD,E,F是AC上的两点,且满足∠AED=∠BFA=∠BCD,试判断AC,DE,BF之间的数量关系,并说明理由25. (15分) (2016八上·蕲春期中) 已知,如图坐标平面内,A(﹣2,0),B(0,﹣4),AB⊥AC,AB=AC,△ABC经过平移后,得△A′B′C′,B点的对应点B′(6,0),A,C对应点分别为A′,C′.(1)求C点坐标;(2)直接写出A′,C′坐标,并在图(2)中画出△A′B′C′;(3)P为y轴负半轴一动点,以A′P为直角边以A’为直角顶点,在A′P右侧作等腰直角三角形A′PD.①试证明点D一定在x轴上;②若OP=3,求D点坐标.26. (15分)(2017·长宁模拟) 已知△ABC,AB=AC=5,BC=8,∠PDQ的顶点D在BC边上,DP交AB边于点E,DQ交AB边于点O且交CA的延长线于点F(点F与点A不重合),设∠PDQ=∠B,BD=3.(1)求证:△BDE∽△CFD;(2)设BE=x,OA=y,求y关于x的函数关系式,并写出定义域;(3)当△AOF是等腰三角形时,求BE的长.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共12分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、计算题 (共10题;共89分)17-1、18-1、19-1、19-2、19-3、20-1、21-1、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、。
江苏省苏州市2020版中考数学三模试卷C卷
江苏省苏州市2020版中考数学三模试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·越城月考) 下列说法错误的是()①有理数分为正数和负数②所有的有理数都能用数轴上的点表示③符号不同的两个数互为相反数④两数相加,和一定大于任何一个加数⑤两数相减,差一定小于被减数A . ①②③④B . ①②③⑤C . ②③④⑤D . ①③④⑤2. (2分) 2015年盐城市中考考生约55800人,则数据55800用科学记数法可表示为()A . 0.558×105B . 5.58×105C . 5.58×104D . 55.8×1033. (2分)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是()A . ①②B . ②③C . ②④D . ①④4. (2分) (2016八上·达县期中) 不等式≤﹣ x+ 的解集在数轴上表示正确的是()A .B .C .D .5. (2分)如图,已知直线a∥b,AC⊥AB,AC交直线b于点C,如果∠1=62°,则∠2的度数是()A . 36°B . 32°C . 30°D . 28°6. (2分) (2017九上·铁岭期末) 如图,在平行四边形ABCD中,E为CD上一点,连接AE,BD,且AE,BD 相交于点F,DE:EC=2:3,则S△DEF:S△ABF等于()A . 4:25B . 4:9C . 9:25D . 2:37. (2分)(2020·锦州模拟) 如图,在平面直角坐标系中,四边形ABCD是菱形,点B的坐标是(0,4),点D的坐标是(8 ,4),点M和点N是两个动点,其中点M从点B出发,沿BA以每秒2个单位长度的速度做匀速运动,到点A后停止,同时点N从点B出发,沿折线BC→CD以每秒4个单位长度的速度做匀速运动,如果其中一个点停止运动,则另一点也停止运动,设M,N两点的运动时间为x,△BMN的面积为y,下列图象中能表示y与x 的函数关系的图象大致是()A .B .C .D .8. (2分) (2018八上·合浦期末) 对于实数、,定义一种新运算“ ”为:,这里等式右边是实数运算.例如:.则方程的解是()A .B .C .D .9. (2分)(2018·宁波) 若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A . 7B . 5C . 4D . 310. (2分)如图,AB是⊙O的直径,∠ABC=30°,则∠BAC的度数为()A . 90°B . 60°C . 45°D . 30°二、填空题 (共8题;共8分)11. (1分) (2019八下·昭通期末) 计算:(2 )2002(2 +5)2002=________.12. (1分)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是________ .13. (1分)写出同时具备下列两个条件:(1)y随着x的增大而减小;(2)图象经过点(0,﹣3)的一次函数表达式:(写出一个即可)________.14. (1分)如图,正△ABC的边长为2,顶点B、C在半径为的圆上,顶点A在圆内,将正△ABC绕点B 逆时针旋转,当点A第一次落在圆上时,则点C运动的路线长为________.(结果保留π)15. (1分) (2019八上·重庆期末) 如图,等边△ABC的边长为2,CD为AB边上的中线,E为线段CD上的动点,以BE为边,在BE左侧作等边△BEF,连接DF,则DF的最小值为________.16. (1分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=________.17. (1分)八年级(1)班有男生有15人,女生20人,从班中选出一名学习委员,任何人都有同样的机会,则这班选中一名女生当学习委员的可能性的大小是________18. (1分)(2019·荆州模拟) 在草稿纸上计算:① ;② ;③ ;④,观察你计算的结果,用你发现的规律直接写出下面式子的值 =________.三、解答题 (共8题;共72分)19. (10分)(2017·徐州模拟) 计算:(1)(﹣1)2+2sin30°+ +π0;(2)(1+ )• .20. (5分) (2020八上·昆明期末) 先化简,再求值:,从 -1 ,1,2,3中选择一个合适的数代入并求值.21. (11分) (2020七下·重庆期中) 《重庆市生活垃圾分类管理办法》于2019年开始实施我校为积极响应政府对垃圾分类处理的号召,开展了垃圾分类网上知识竞赛,并从该校七年级随机抽取了部分学生的竞赛成绩进行整理、描述和分析(根据成绩共分四个等级),其中获得等级和等级的人数相等.下面给出了相应的条形统计图和扇形统计图:根据以上信息,解答下列问题:(1)共抽取了________名学生;(2)补全条形统计图,并求出扇形统计图中等级对应的圆心角的度数;(3) A等级中有名同学是女生,学校计划从等级的学生中抽取名参加区级垃圾分类网上知识竞赛,则抽到女生的概率是多少?22. (5分) (2017九上·滦县期末) 小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈ ,cos35°≈ ,tan35°≈ )23. (6分)(2019·河南模拟) 某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为________元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?24. (10分)(2019·青秀模拟) 如图,在矩形ABCD中,沿EF将矩形折叠,使A、C重合,AC与EF交于点H.(1)求证:△ABE≌△AGF;(2)若AB=6,BC=8,求△ABE的面积.25. (10分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线(2)若AC=3AE,求tanC.26. (15分)(2011·柳州) 如图,一次函数y=﹣4x﹣4的图象与x轴、y轴分别交于A、C两点,抛物线y= x2+bx+c的图象经过A、C两点,且与x轴交于点B.(1)求抛物线的函数表达式;(2)设抛物线的顶点为D,求四边形ABDC的面积;(3)作直线MN平行于x轴,分别交线段AC、BC于点M、N.问在x轴上是否存在点P,使得△P MN是等腰直角三角形?如果存在,求出所有满足条件的P点的坐标;如果不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共72分)19-1、19-2、20-1、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
2020届苏州市工业园区星海实验中学中考数学二模试卷(有解析)
2020届苏州市工业园区星海实验中学中考数学二模试卷一、选择题(本大题共10小题,共30.0分)1.最大的负整数和最小的自然数的和是()A. 1B. 2C. −1D. 02.据统计,我国高新技术产品出口额达40 570亿元.将数据40 570亿用科学记数法表示为()A. 4.0570×109B. 0.40570×1010C. 40.570×1011D. 4.0570×10123.在△ABC中,∠A和∠B的度数如下,能判定△ABC是等腰三角形的是()A. ∠A=50°,∠B=70°B. ∠A=70°,∠B=40°C. ∠A=30°,∠B=90°D. ∠A=80°,∠B=60°4.有甲、乙两个箱子,甲箱内有90颗球,分别标记号码1~90,号码为不重复的整数,乙箱内没有球.已知小李从甲箱内拿出45颗球放入乙箱后,乙箱内球的号码的中位数为30.若此时甲箱内有a颗球的号码小于30,有b颗球的号码大于30,则关于a、b正确的是()A. a=8B. a=22C. b=22D. b=385.如图,⊙O中,弦AB AC,若AB=AC=1,则⊙O的直径长是().A.B. 2C.D.6.连续掷三枚质地均与的硬币,三枚硬币都是正面朝上的概率是()A. 12B. 14C. 18D. 197.若点(a,y1)、(a+1,y2)在直线y=kx+2上,且y1>y2,则该直线所经过的象限是()A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限8.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3√5米,坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带相连,若AB=10米,则旗杆BC的高为()A. (3+√5)米B. 8米C. 6米D. 5米9.如图,矩形ABCD中,∠BAD的平分线交BC于E.若AB=4,AD=7,则S△DEC=()A. 6B. 7C. 8D. 1110.如图,菱形ABCD中,AB=2,∠D=120°,E是对角线AC上的CE的最小值为()任意一点,则BE+12A. √3B. 2C. √3+12D. √3+1二、填空题(本大题共8小题,共24.0分)11.若代数式x2−8ax+1可化为(x−b)2,则a+b=______.12.函数y=√7−2x的自变量x的取值范围是______ .x−213.正八边形的每个内角为.14.洪塘中学一个学期的数学总平均分是按如图所示的进行计算的.该校余佳佳同学这个学期的数学成绩如下:则余佳佳同学这个学期数学总平均分为.15.如图,半径为2的圆形纸片,沿半径OA、OB裁成1:3两部分,用得到的扇形围成圆锥的侧面,则圆锥的底面半径分别为______.16.已知4a+3b=1,则整式8a+6b−3的值为______.17.抛物线y=ax2+bx−2与x轴交于点A(−1,0),B(m,0)两点,与y交于点C,且∠ACB=90°,则该抛物线的解析式为______ .18.如图所示,正方形ABCD和正方形OEFG的边长均为5,O为正方形ABCD的中心,则图中重叠部分的面积是______.三、解答题(本大题共10小题,共76.0分)19.计算:(1)(−12)−2+(π3)0+(−3)3(2)2a3b(−3bc)÷(4ab2)20.解不等式(组):(1)解不等式:4x−13−x>1,并在数轴上表示解集;(2)解不等式组{3x −x ≥21+2x 3>x −1.21. 先化简,再求值:(a−2a 2−4−a−1a 2−3a+2)÷1a−2,其中a =3.22. 一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的5倍.已知从袋中摸出一个球是红球的概率是25.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率.23. 某校对九年级的部分同学做一次内容为“最适合自己的考前减压方式”的抽样调查活动,学校将减压方式分为五类,每人必选且只选其中一类.学校收集整理数据后,绘制了如下的统计图,请你结合图中所提供的信息,解答下列问题:(1)一共抽查了多少名学生?(2)请把条形统计图补充完整;(3)若该校九年级共有350名学,请估计该年级学生选择“听音乐”来缓解压力的人数.24. 如图,四边形ABCD 是菱形,∠BAD =120°,点E 在射线AC 上(不包括点A 和点C),过点E 的直线GH 交直线AD 于点G ,交直线BC 于点H ,且GH//DC ,点F 在BC 的延长线上,CF =AG ,连接ED ,EF ,DF .(1)如图1,当点E 在线段AC 上时,①判断△AEG 的形状,并说明理由.②求证:△DEF 是等边三角形.(2)如图2,当点E在AC的延长线上时,△DEF是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.25.如图,一次函数y=kx+b的图象与反比例函数y=m的图象交于xA(−2,1),B(1,n)两点.(1)求m,n的值;(2)当一次函数的值大于反比例函数的值时,请写出自变量x的取值范围.26.如图,直角坐标系中,已知两点O(0,0),A(2,0),点B在第一象限且△OAB为正三角形,△OAB的外接圆交y轴的正半轴于点C,过点C的圆的切线交x轴于点D.(1)求B,C两点的坐标;(2)求直线CD的函数解析式;(3)设E,F分别是线段AB,AD上的两个动点,且EF平分四边形ABCD的周长.试探究:△AEF的最大面积.27.如图,抛物线y=12x2+mx−32的对称轴为直线x=1,直线y=kx+b与抛物线交于A、B两点,且过点D(1,1),点B在y轴的左侧,过点B作x轴的平行线交抛物线于点C,∠ABC=45°.(1)求抛物线的解析式;(2)求A、B两点的坐标及BC的长.28.如图,以直角三角形ABC的顶点A为原点建立平面直角坐标系xOy,且点B(8,0),点C(8,5),动点M从点B、动点N从点C同时出发,分别沿着BA方向、CB方向以1个单位/秒的速度匀速运动(当N运动到B点即同时停止),运动时间为t秒,过C作CD//AN交y轴于D.(1)请直接写出M、N、D三点的坐标(可用字母t表示);(2)连接CM,交AN于点P①当t=3时,试求∠APM的度数;②当t为何值时,△APM和△CPN的面积相等?请说明理由.【答案与解析】1.答案:C解析:解:根据题意得:−1+0=−1,故选C根据题意列出算式,计算即可得到结果.此题考查了有理数的加法,以及有理数的大小比较,熟练掌握运算法则是解本题的关键.2.答案:D解析:解:40 570亿用科学记数法表示为4.0570×1012,故选D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.答案:B解析:解;当顶角为∠A=50°时,∠B=65°,当顶角为∠B=70°时,∠A=55°所以A选项错误.当顶角为∠B=40°时,∠A=70°,所以B选项正确.当顶角为∠A=30°时,∠B=75°,当顶角为∠B=90°时,∠A=45°所以C选项错误.当顶角为∠A=80°时,∠B=50°,当顶角为∠B=60°时,∠A=60°所以D选项错误.故选:B.根据等腰三角形性质,利用三角形内角定理对4个选项逐一进行分析即可得到答案.此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,解答此题的关键是熟练掌握三角形内角和定理.4.答案:D解析:解:甲箱90−45=45(颗),∵乙箱中位数30,∴小于、大于30各有(45−1)÷2=22(颗),∴甲箱中小于30的球有29−22=7(颗),大于30的有45−7=38(颗),即a=7,b=38.故选:D.先求出甲箱的球数,再根据乙箱中位数30,得出乙箱中小于、大于30的球数,从而得出甲箱中小于30的球数和大于30的球数,即可求出答案.此题考查了中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.答案:A解析:本题考查圆周角定理和勾股定理.解:如图,连结BC,∵AB⊥AC,∴∠BAC=90°∴BC是圆的直径,在Rt△BAC中,由勾股定理得故选A.6.答案:C解析:解:画树状图得:∵共有8种等可能的结果,三枚硬币的投掷结果都是正面朝上的只有1种情况,∴3次抛掷的结果都是正面朝上的概率是1,8故选:C.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三枚硬币的投掷结果都是正面朝上的情况,再利用概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.7.答案:B解析:解:∵a<a+1,且y1>y2,∴y随x的增大而减小,因此k<0,当k<0,b=2>0时,一次函数的图象过一、二、四象限,故选:B.根据两个点的横坐标、纵坐标的大小关系,得出y随x的增大而减小,进而得出k的取值范围,再根据k、b的符号,确定图象所过的象限即可.本题考查一次函数的图象和性质,掌握一次函数的性质是正确解答的前提.8.答案:D解析:解:在Rt△ADC中,AC=3√5,由坡度为1:2,∴CD=AC⋅sin∠DAC=3√5×√5=3,5=6.AD=AC⋅cos∠DAC=3√5×2√55在Rt△ABD中,BD=√AB2−AD2=√102−62=8.∵BD=BC+CD,∴BC=BD−CD=8−3=5(米).答:旗杆的高度为5米.故选D.要求旗杆BC的高度,就要知道BC和CD的高度,就要先求出AD的长度.根据BC=BD−CD,即可得出结果.本题考查了解直角三角形的应用−坡度坡角问题.两个直角三角形有公共的直角边,先求出公共边的长是解决此类题目的基本出发点.9.答案:A解析:解:∵四边形ABCD是矩形,∴∠BAD=∠B=∠C═90°,BC=AD=7,CD=AB=4,∵AE平分∠BAD,∴∠BAE=45°,∴△ABE是等腰直角三角形,∴BE=AB=4,∴CE=BC−BE=3,∴S△DEC=12CE⋅CD=12×3×4=6;故选:A.由矩形的性质得出∠BAD=∠B=∠C═90°,BC=AD=7,CD=AB=4,证明△ABE是等腰直角三角形,得出BE=AB=4,因此CE=BC−BE=3,S△DEC=12CE⋅CD,即可得出结果.本题考查了矩形的性质、等腰直角三角形的性质、三角形面积的计算;熟练掌握矩形的性质,证明三角形是等腰直角三角形得出CE是解决问题的关键.10.答案:A解析:解:如图所示:过点B作BF⊥DC,垂足为F,BF交AC与点E.∵菱形ABCD中,AB=2,∠D=120°,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年江苏省苏州市星海实验中学中考数学模拟试卷(3月份)
一、选择题(每题3分,共30分)
1.(3分)12-的倒数是( ) A .12 B .2 C .12- D .2-
2.(3分)计算2(2)--的结果是( )
A .2
B .2-
C .4-
D .4
3.(3分)2018年苏州市GDP (国内生产总值)约为1860 000 000 000元.该数据可用科学记数法表示为( )
A .9186010⨯
B .1018610⨯
C .1118.610⨯
D .121.8610⨯
4.(3分)数据5,2,4,5,6的中位数是( )
A .2
B .4
C .5
D .6 5.(3分)若2233x y -=,则2312x y -+
的值是( ) A .2- B .12- C .32 D .4
6.(3分)对于二次函数2144
y x x =-+-,下列说法正确的是( ) A .当0x >时,y 随x 的增大而增大
B .当2x =时,y 有最大值3-
C .图象的顶点坐标为(2,7)--
D .图象与x 轴有两个交点 7.(3分)如图,D 是ABC ∆的边AB 的延长线上一点,//D
E BC ,若32A ∠=︒,56D ∠=︒.则C ∠的度数是( )
A .16︒
B .20︒
C .24︒
D .28︒
8.(3分)如图,在ABC ∆中,DE 是AC 的垂直平分线,分别交BC ,AC 于点D ,E ,连接AD ,若ABD ∆的周长16ABD C cm ∆=,5AB cm =,则线段BC 的长度等于( )
A .8cm
B .9 cm
C .10 cm
D .11 cm
9.(3分)如图,菱形ABCD 的对角线AC ,BD 交于点O ,4AC =,16BD =,将ABO ∆沿点A 到点C 的方向平移,得到△A B O '''.当点A '与点C 重合时,点A 与点B '之间的距离为( )
A .6
B .8
C .10
D .12
10.(3分)如图,正方形ABCD 的边长为1,点P 为BC 上任意一点(可与点B 或C 重合),
分别过B 、C 、D 作射线AP 的垂线,垂足分别是B '、C '、D ',则BB CC DD '+'+'的最小值是( )
A .1
B 2
C 3
D 5
二、填空题(每题3分,共24分)
11.(3分)因式分解:228x -= .
12.(3分)函数23x y -x 的取值范围是 . 13.(3分)已知关于x 的一元二次方程2220ax x a a ++-=的一个根是0x =,则系数a = .
14.(3分)如图所示,直线y kx b =+经过点(2,0)-,则关于x 的不等式0kx b +<的解集为 .
15.(3分)如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为 .
16.(3分)如图,扇形OAB 中,90AOB ∠=︒.P 为弧AB 上的一点,过点P 作PC OA ⊥,垂足为C ,PC 与AB 交于点D .若2PD =,1CD =,则该扇形的半径长为 .
17.(3分)如图,已知抛物线24y ax bx =++与x 轴、y 轴正半轴分别交于点A 、B 、D ,且点B 的坐标为(4,0),点C 在抛物线上,且与点D 的纵坐标相等,点E 在x 轴上,且BE AB =,连接CE ,取CE 的中点F ,则BF 的长为 .
18.(3分)如图,在矩形ABCD 中,5AB =,3BC =,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连结CE ,CF ,若CEF α∠=,则tan α= .
三、解答题(共76分)
19.(5分)计算:0
(31)|2|8
---+
20.(5分)解不等式组
523(1)
21
1
62
x x
x
x
+-
⎧
⎪
-
⎨
->
⎪⎩
…
,并写出该不等式组的所有整数解.
21.(6分)先化简再求值:
2
22
31
()
2111
a a a a
a a a a
+-
÷-
++--
,其中31
a=+.
22.(6分)2018年8月中国铁路总公司宣布,京津高铁将再次提速,担任此次运营任务是最新的复兴号动车组,提速后车速是之前的1.5倍,100千米缩短了10分钟,问提速前后的速度分别是多少千米与小时?
23.(8分)如图,平行四边形ABCD中,O是对角线BD的中点,过点O的直线EF分别交DA,BC的延长线于E,F.
(1)求证:AE CF
=;
(2)若AE BC
=,试探究线段OC与线段DF之间的关系,并说明理由.
24.(8分)某学校为了了解九年级学生“一分钟跳绳”体育测试项目情况,随机抽取了九年级部分学生组成测试小组进行调查测试,并对这部分学生“一分钟跳绳”测试的成绩按A,B,C,D四个等级进行了统计,并绘制了如下两幅不完整的统计图。