高一数学函数与方程知识点整理-教育文档
(完整版)高一数学函数全章知识点整理,推荐文档
x 1 x 1
8.(图象法) y 3 2x x2 (1 x 2)
四.函数的奇偶性 1.定义: 设 y=f(x),x∈A,如果对于任意 x ∈A,都有 f (x) f (x) ,则称 y=f(x)为偶函数。
如果对于任意 x ∈A,都有 f (x) f (x) ,则称 y=f(x)为奇函数。
2 求函数定义域的两个难点问题
(1) 已知f (x)的定义域是[ - 2, 5] , 求f ( 2x+3) 的定义域。
(2) 已知f (2x-1的) 定义域是[ - 1, 3] , 求f ( x) 的定义域
三、函数的值域
1
1 求函数值域的方法
①直接法:从自变量 x 的范围出发,推出 y=f(x)的取值范围,适合于简单的复合函数;
b ,顶点坐标 (
b
4ac b 2
,
)
2a
2a 4a
2.二次函数与一元二次方程关系
一元二次方程 ax 2 bx c 0(a 0) 的根为二次函数 f(x)=ax2+bx+c(a≠0) y 0 的 x 的取值。
一元二次不等式 ax 2 bx c 0( 0) 的解集(a>0)
二次函数 Y=ax2+bx+c (a>0)
△情况 △=b2-4ac
一元二次不等式解集
ax2+bx+c>0
ax2+bx+c<0
(a>0)
(a>0)
图
象 与
△>0
x x x1或x x2
x x1 x x2
解
3
△=0
x x x0
△<0
高一数学知识点总结前两章
高一数学知识点总结前两章第一章:函数与方程在高中数学的学习中,函数与方程是一个重要的内容。
函数是描述变化规律的工具,而方程则是表示等式关系的数学表达式。
本章主要涉及以下几个知识点:1. 函数的概念:函数是自变量和因变量之间关系规律的抽象表示。
函数可以用图像、表格和公式来表示,常见的函数类型包括线性函数、二次函数、指数函数和对数函数等。
2. 函数的性质:函数的性质包括定义域、值域、单调性、奇偶性、周期性等。
通过分析函数的性质,可以帮助我们更好地理解函数的特点和变化规律。
3. 一次函数:一次函数也称为线性函数,表达式为y = kx + b,其中k和b分别是常数。
通过掌握一次函数的性质、图像和方程,可以解决与线性关系有关的问题。
4. 二次函数:二次函数的图像是一个抛物线,表达式为y =ax^2 + bx + c,其中a、b和c分别是常数且a不为零。
学习二次函数的性质和图像特点,可以解决与抛物线相关的问题。
5. 指数函数和对数函数:指数函数是以指数为自变量的函数,对数函数是指数函数的反函数。
学习指数函数和对数函数的性质和图像,可以解决与指数和对数关系有关的问题。
第二章:三角函数三角函数是高中数学重要的内容之一,它是研究角度和边长之间的关系的数学函数。
本章主要涉及以下几个知识点:1. 弧度与角度:为了方便计算,引入了弧度的概念,将角度转化为弧度。
角度和弧度之间的转换关系是π弧度=180°。
2. 正弦函数、余弦函数和正切函数:这是三角函数中最常见的三种函数。
通过学习它们的图像、性质和运算规律,可以解决与三角形和角度有关的问题。
3. 三角函数的图像与周期性:了解三角函数的图像和周期性特点,可以帮助我们更好地理解三角函数的变化规律。
4. 三角函数的性质和公式:学习三角函数的性质和相关的运算公式,可以简化计算和推导过程,提高问题解决的效率。
5. 平面向量与三角函数的关系:通过向量的概念,可以建立平面向量与三角函数之间的联系,进一步深化对三角函数的理解。
函数与方程知识点总结资料
函数与方程知识点总结资料函数与方程是数学中的重要概念,是许多其他数学分支的基础。
本文将对函数与方程的知识点做一个总结,帮助读者更好地理解和掌握这些概念。
一、函数的基本概念1. 函数定义函数是一种特殊的关系,即将一个自变量映射到一个因变量上的过程。
函数的定义方式可以有多种,最常见的定义方式是:f(x)=y\qquad y=f(x)其中,x 是自变量,f 是函数名,y 是因变量。
2. 函数的图像函数的图像是指函数在直角坐标系中的表现形式,即以自变量x 为横坐标,对应的因变量 y 为纵坐标所构成的图形。
函数的图像可以用数学软件绘制,也可以手绘出来。
3. 函数的定义域和值域函数的定义域是自变量的取值范围,是使函数有意义的自变量的集合。
函数的值域是函数在定义域内的所有可能输出值的集合。
函数的定义域和值域可以用数学符号表示,例如:\text{定义域:}D(f)=\{x\mid x\text{ 是实数}\}\text{值域:}R(f)=\{y\mid y\text{ 是实数}\}4. 奇偶性、单调性和周期性函数的奇偶性指函数图像相对于 y 轴的对称性,分为偶函数和奇函数。
偶函数满足 f(-x)=f(x),奇函数满足 f(-x)=-f(x)。
函数的单调性指函数图像在定义域内是否单调递增或单调递减。
如果对于任意 x_1<x_2,都有 f(x_1)<f(x_2),则称函数 f 在定义域内是单调递增的;如果对于任意 x_1<x_2,都有f(x_1)>f(x_2),则称函数 f 在定义域内是单调递减的。
函数的周期性指函数在定义域内是否有重复的输出值。
如果存在一个正数 T,使得对于任意 x\in D(f),都有 f(x+T)=f(x),则称函数 f 是周期函数,T 称为函数的周期。
5. 复合函数和反函数复合函数是指将一个函数的输出作为另一个函数的输入,并得到新函数的过程。
反函数是指对于一个函数 f,存在一个函数g,使得 g(f(x))=x 在定义域内成立。
高一数学函数与方程的知识点
高一数学函数与方程的知识点
高一数学函数与方程的知识点
1、函数零点的定义
(1)对于函数y=f(x),我们把方程f(x)=0的实数根叫做函数y=f(x)的零点。
(2)方程f(x)=0有实根=函数y=f(x)的图像与x轴有交点=函数y=f(x)有零点。
因此判断一个函数是否有零点,有几个零点,就是判断方程f(x)=0是否有实数根,有几个实数根。
函数零点的求法:解方程f(x)=0,所得实数根就是f(x)的零点
(3)变号零点与不变号零点
①若函数f(x)在零点x0左右两侧的函数值异号,则称该零点为函数f(x)的变号零点。
②若函数f(x)在零点x0左右两侧的函数值同号,则称该零点为函数f(x)的不变号零点。
③若函数f(x)在区间=a,b=上的图像是一条连续的曲线,则f(a)f(b)=0是f(x)在区间=a,b=内有零点的`充分不必要条件。
2、函数零点的判定
(1)零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的曲线,并且有f(a)=f(b)=0,那么,函数y=f(x)在区间=a,b=内有零点,即存在x0=(a,b),使得f(x0)=0,这个x0也就是方程f(x)=0的根。
(2)函数y=f(x)零点个数(或方程f(x)=0实数根的个数)确定方法
① 代数法:函数y=f(x)的零点=f(x)=0的根;
②(几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点。
下载全文。
必修一数学知识点归纳
一、函数与方程1. 函数的概念:函数是一种特殊的关系,它将一个集合中的每个元素对应到另一个集合中的唯一元素。
2. 函数的表示方法:函数可以用表达式、表格、图像等方式表示。
3. 函数的性质:函数具有单值性、连续性、可导性等性质。
4. 函数的分类:根据函数的定义域和值域的不同,可以将函数分为常数函数、线性函数、二次函数、指数函数、对数函数、三角函数等。
5. 函数的运算:函数可以进行加法、减法、乘法、除法等运算。
6. 函数的复合:两个或多个函数可以组合成一个新的函数,称为函数的复合。
7. 函数的反函数:如果一个函数的输入和输出可以互换,那么这个函数就是其自身的反函数。
8. 方程与不等式:方程是含有未知数的等式,不等式是含有未知数的大于或小于关系的式子。
9. 一元一次方程:只含有一个未知数的一次方程,可以通过移项、消去法等方法求解。
10. 一元二次方程:只含有一个未知数的二次方程,可以通过配方法、公式法等方法求解。
11. 一元一次不等式:只含有一个未知数的一次不等式,可以通过移项、消去法等方法求解。
12. 一元二次不等式:只含有一个未知数的二次不等式,可以通过配方法、判别式法等方法求解。
二、数与式1. 数的概念:数是用来表示数量的符号,包括整数、分数、小数等。
2. 整数的概念:整数是没有小数部分的数,包括正整数、负整数和零。
3. 整数的性质:整数具有加法和乘法的封闭性、交换律、结合律等性质。
4. 整数的运算:整数可以进行加法、减法、乘法、除法等运算。
5. 分数的概念:分数是表示部分数量的数,包括真分数、假分数和带分数。
6. 分数的性质:分数具有加法和乘法的封闭性、交换律、结合律等性质。
7. 分数的运算:分数可以进行加法、减法、乘法、除法等运算。
8. 小数的概念:小数是表示部分数量的数,包括有限小数和无限小数。
9. 小数的性质:小数具有加法和乘法的封闭性、交换律、结合律等性质。
10. 小数的运算:小数可以进行加法、减法、乘法、除法等运算。
高一数学函数与方程的基本性质总结
高一数学函数与方程的基本性质总结函数与方程是高中数学中的重要概念,它们在数学和其他学科的研究中都具有广泛的应用。
本文将对高一数学中函数与方程的基本性质进行总结,帮助学生更好地理解和掌握这些概念。
一、函数的定义和性质函数可以看作是两个集合之间的一种特殊关系,它将一个集合中的元素映射到另一个集合中的唯一元素。
函数通常用公式或图形表示,常见的函数形式包括代数函数、三角函数等。
1. 函数的定义:函数由定义域、值域和对应关系三部分组成。
定义域是指函数输入的所有可能值的集合,值域是指函数输出的所有可能值的集合。
对应关系表示输入和输出之间的关系。
2. 函数的性质:- 单射:如果不同的输入对应不同的输出,即函数的每个输出对应唯一的输入,这个函数就是单射函数。
- 满射:如果函数的值域等于其真值域,即函数的所有输出都能找到对应的输入,这个函数就是满射函数。
- 双射:如果一个函数既是单射又是满射,即每个输出都对应唯一的输入,且所有的输出都能找到对应的输入,这个函数就是双射函数。
二、方程的定义和性质方程是含有未知数的等式,通过解方程可以求出未知数的值。
方程是数学和实际问题中常见的工具,深入理解方程的性质对解题非常重要。
1. 方程的定义:方程是等式的一种特殊形式,它将一个或多个未知数与已知数之间的关系表示为等式。
解方程就是要找到使等式成立的未知数的值。
2. 方程的性质:- 根:方程成立的解称为方程的根。
一元方程的根是使方程成立的未知数的值。
多元方程有多个未知数,其根是使其成立的未知数值组成的组合。
- 方程等价变形:通过等价变形可以从一个方程推导出另一个与之等价的方程,等价变形不改变方程的根。
- 方程的解集:方程的解的全体称为方程的解集,解集是使方程成立的所有根组成的集合。
三、函数与方程的关系函数与方程密切相关,函数可以用方程来表示,而方程中的未知数的取值也可以看作函数的输入。
1. 方程表示函数关系:给定函数的定义域和对应关系,可以通过方程来表示这种函数关系。
高一数学公式和重点知识点
高一数学公式和重点知识点一、函数与方程1. 一次函数一次函数的标准方程为:y = kx + b其中,k为斜率,b为截距。
2. 二次函数二次函数的标准方程为:y = ax² + bx + c其中,a为二次项系数,b为一次项系数,c为常数项。
3. 一元二次方程一元二次方程的一般形式为:ax² + bx + c = 0其中,a、b、c为实数,且a不等于0。
4. 二元一次方程组二元一次方程组的一般形式为:{ ax + by = cdx + ey = f其中,a、b、c、d、e、f为实数,且ad-be ≠ 0。
5. 不等式不等式常见的符号包括:<(小于)、>(大于)、≤(小于等于)、≥(大于等于)解不等式时需要进行符号的转换和区间的划分。
二、几何1. 基本图形的面积和周长常见图形的计算公式:- 长方形的面积:S = 长 ×宽,周长:C = 2 × (长 + 宽)- 正方形的面积:S = 边长²,周长:C = 4 ×边长- 圆的面积:S = π × 半径²,周长:C = 2 × π × 半径- 三角形的面积:S = 底 ×高 / 2,周长:C = 边1 + 边2 + 边3 - 梯形的面积:S = (上底 + 下底) ×高 / 2,上底和下底是梯形上下平行的边,高是两平行边之间的垂直距离。
2. 三角函数常见三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
三角函数的定义中,角度可以用弧度表示,也可以用角度表示。
3. 相似与全等在几何中,相似表示两个图形的形状和角度相同但大小不同,全等表示两个图形的形状和大小完全相同。
三、概率与统计1. 计数原理- 排列:从n个元素中取出m个元素按一定次序排列的方法数为:A(n, m) = n! / (n-m)!- 组合:从n个元素中取出m个元素不计次序排列的方法数为:C(n, m) = n! / (m! × (n-m)!)2. 事件的概率事件的概率可以用数值表示,概率值介于0和1之间。
高中数学函数与方程归纳
高中数学函数与方程归纳高中数学:函数与方程归纳导言:函数与方程是高中数学中的重要内容,它们在数学建模、科学研究以及日常生活中都有广泛的应用。
本文将围绕函数与方程进行归纳总结,从基本概念、性质、图像、解法等方面进行讨论,帮助读者更好地理解和掌握这一重要知识点。
一、函数的基本概念与性质1.1 函数的定义函数是一种特殊的关系,它将两个集合之间的元素按照某种规律进行对应。
通常用一个字母代表函数,如f(x),其中x是自变量,f(x)是因变量。
函数的定义域是自变量的取值范围,值域是因变量的取值范围。
1.2 函数的性质函数可以分为奇函数和偶函数、增函数和减函数等。
奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x);增函数满足f(x1)<f(x2),当x1<x2;减函数满足f(x1)>f(x2),当x1<x2。
二、常见函数类型的图像与性质2.1 一次函数一次函数的图像是一条直线,形如y=ax+b。
斜率a决定了直线的倾斜程度,截距b代表直线与y轴的交点。
一次函数的图像是一条斜率为a的直线。
2.2 二次函数二次函数的图像是一条抛物线,形如y=ax²+bx+c。
二次函数的开口方向由二次项的系数a的正负性决定,开口向上为a>0,开口向下为a<0。
顶点是抛物线的最高点或最低点。
2.3 幂函数幂函数的图像是一条曲线,形如y=ax^b。
幂函数的特点是,当b>1时曲线上升得越来越快,当0<b<1时曲线上升越来越慢。
2.4 指数函数指数函数的图像是一条曲线,形如y=a^x。
指数函数的特点是,当a>1时曲线上升得越来越快,当0<a<1时曲线上升越来越慢。
指数函数的导数等于函数值与自变量的乘积。
2.5 对数函数对数函数的图像是一条曲线,形如y=logₐx。
对数函数的特点是,曲线渐近于x轴和y轴,且当x趋近于无穷大时,对数函数值无限增大。
三、方程的解法与应用3.1 一元一次方程一元一次方程是形如ax+b=0的方程。
数学高一必修一知识点笔记
数学高一必修一知识点笔记一、函数与方程1.1 函数的概念与表示方法函数是自变量和因变量之间的一种特定关系。
常用的表示方法有解析式、图像和数据表。
1.2 函数的性质①定义域:自变量的取值范围。
②值域:函数对应的因变量的取值范围。
③单调性:函数增减的趋势。
④奇偶性:函数关于原点对称的性质。
⑤周期性:函数在一定范围内重复出现的性质。
1.3 一次函数和二次函数一次函数的解析式为 y=ax+b,图像是一条直线;二次函数的解析式为 y=ax²+bx+c,图像是开口朝上或朝下的抛物线。
1.4 不等式不等式是用不等号表示大小关系的式子。
解不等式可以用数轴上的区间表示。
二、数列与数列求和2.1 等差数列等差数列中,两个相邻的数之差是常数,称为公差。
通项公式为 an=a₁+(n-1)d,其中a₁为首项,d为公差。
2.2 等比数列等比数列中,两个相邻的数之比是常数,称为公比。
通项公式为 an=a₁*q^(n-1),其中a₁为首项,q为公比。
2.3 数列的求和等差数列的前n项和为 Sn=n/2(a₁+an),等比数列的前n项和为 Sn=a₁(q^n-1)/(q-1)。
三、平面向量3.1 平面向量的定义平面向量是具有大小和方向的量,用箭头表示。
平面向量有相等、相反、共线和共面的性质。
3.2 平面向量的运算①加法:向量的加法满足三角形法则,即将两个向量首尾相接。
②数乘:向量乘以一个实数,可以改变向量的大小和方向。
③减法:向量的减法可以转化为加法的逆运算。
四、三角函数4.1 任意角与弧度制任意角的三角函数可以通过单位圆和直角三角形来定义。
弧度制是一种用弧长比表示角度大小的单位。
4.2 正弦函数、余弦函数和正切函数正弦函数、余弦函数和正切函数是三个基本的三角函数,它们都可以表示为某个直角三角形中两条边的比值。
4.3 三角恒等变换三角恒等变换是指三角函数之间的等式关系,包括倒数公式、和差化积等多种形式。
五、立体几何5.1 空间几何体的概念常见的空间几何体包括点、线、面和体。
数学高一知识点及公式
数学高一知识点及公式高中数学知识点及公式一、函数与方程1. 一次函数一次函数的标准方程为:y = kx + b,其中k为斜率,b为常数。
斜率公式:k = (y₂ - y₁) / (x₂ - x₁),其中(x₁, y₁)和(x₂, y₂)为直线上两点的坐标。
2. 二次函数二次函数的标准方程为:y = ax² + bx + c,其中a、b、c为常数且a ≠ 0。
顶点坐标公式:顶点的横坐标为x = -b / (2a),纵坐标为y = -Δ / (4a),其中Δ为判别式,Δ = b² - 4ac。
3. 指数函数指数函数的标准方程为:y = a^x,其中a为底数,a > 0且a ≠ 1。
公式:a^m * a^n = a^(m+n),a^m / a^n = a^(m-n),(a^m)^n = a^(mn),(ab)^n = a^n * b^n。
4. 对数函数对数函数的标准方程为:y = logₐx,其中a为底数,a > 0且a ≠ 1。
公式:logₐ(mn) = logₐm + logₐn,logₐ(m/n) = logₐm - logₐn,logₐ(m^n) = n * logₐm。
5. 三角函数常见三角函数有正弦函数、余弦函数和正切函数。
正弦函数的定义:y = sin(x),取值范围为[-1, 1]。
余弦函数的定义:y = cos(x),取值范围为[-1, 1]。
正切函数的定义:y = tan(x),取值范围为实数。
二、平面几何1. 直线直线的一般方程为:Ax + By + C = 0,其中A、B、C为实数且A² + B² ≠ 0。
直线的斜率公式:k = -A / B。
2. 平面平面的一般方程为:Ax + By + Cz + D = 0,其中A、B、C、D为实数且A² + B² + C² ≠ 0。
平面的法向量:平面的法向量为(A, B, C)。
完整版)高一数学必修一函数知识点总结
完整版)高一数学必修一函数知识点总结二、函数的概念和相关概念函数是从一个非空数集A到另一个非空数集B的一个确定的对应关系f,使得集合A中的每个数x都有唯一的数f(x)与之对应。
我们把f:A→B称为从集合A到集合B的一个函数,记作y=f(x),其中x是自变量,A是函数的定义域,而与x对应的y值是函数值,其集合{f(x)| x∈A }是函数的值域。
需要注意的是,在求函数的定义域时,我们需要注意分式的分母不等于零,偶次方根的被开方数不小于零,对数式的真数必须大于零,指数、对数式的底必须大于零且不等于1,以及函数是由一些基本函数通过四则运算结合而成的。
同时,指数为零底不可以等于零,实际问题中的函数的定义域还要保证实际问题有意义。
相同函数的判断方法有两种:表达式相同(与表示自变量和函数值的字母无关)和定义域一致。
在考虑函数的值域时,我们可以使用观察法、配方法或代换法。
函数图象是指在平面直角坐标系中,以函数y=f(x)。
(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C。
C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上。
我们可以使用描点法或图象变换法来画函数图象,其中常用的变换方法有平移变换、伸缩变换和对称变换。
区间是指数轴上的一段连续的区域,可以分为开区间、闭区间和半开半闭区间。
同时,还有无穷区间。
我们可以使用数轴来表示区间。
映射是指两个非空集合A和B之间的确定对应关系f,使得集合A中的每个元素x都有唯一的元素y与之对应。
我们把对应f:A→B称为从集合A到集合B的一个映射,记作“f (对应关系):A(原象)→B(象)”。
对于映射f:A→B来说,应该满足集合A中的每一个元素,在集合B中都有象,并且象是唯一的;集合A中不同的元素,在集合B中对应的象可以是同一个。
3.分段函数分段函数是指在定义域的不同部分上有不同的解析表达式的函数。
函数与方程知识点总结
函数与方程知识点总结一、函数的基本概念及性质1.什么是函数函数是一种特殊的关系,它将一个数集的每个元素对应到另一个数集的唯一元素上。
通常用f(x)表示函数,表示自变量x经过函数f(x)的映射后得到的因变量。
2.定义域和值域函数的定义域是自变量的取值范围,值域是函数的所有可能的输出值。
3.函数的图像函数的图像是函数的自变量和因变量的关系在坐标系中的几何表示。
4.常用函数的特点常用函数有线性函数、二次函数、指数函数、对数函数、三角函数等。
线性函数:函数的图像是一条直线。
二次函数:函数的图像是抛物线。
指数函数:函数的图像呈现上升或下降的曲线。
对数函数:函数的图像也是上升或下降的曲线。
三角函数:函数的图像是周期性的波形。
5.奇偶性函数的奇偶性是指函数在自变量为x和-x时的对称性。
奇函数:f(-x)=-f(x),图像关于原点对称。
偶函数:f(-x)=f(x),图像关于y轴对称。
6.函数的单调性单调递增:对于自变量x1<x2,有f(x1)<f(x2)。
单调递减:对于自变量x1<x2,有f(x1)>f(x2)。
7.函数的周期性如果存在一个正数T,使得对于任意的x,有f(x+T)=f(x),则称函数为周期函数,T称为函数的周期。
二、方程的基本概念及性质1.什么是方程方程是一个等式,其中包含一个或多个未知数,并且要求找出未知数满足等式的关系。
2.方程的解方程的解就是使方程成立的未知数的取值。
3.一元一次方程一元一次方程是未知数的最高次数为 1 的代数方程,通常采用ax+b=0 的形式。
4.一元二次方程一元二次方程是未知数的最高次数为 2 的代数方程,通常采用ax^2+bx+c=0 的形式。
它的解可以通过求根公式来求得。
5.二元一次方程组二元一次方程组是包含两个未知数的一次方程的集合,通常采用ax+by=c 和 dx+ey=f 的形式。
6.三元一次方程组三元一次方程组是包含三个未知数的一次方程的集合,通常采用ax+by+cz=d、ex+fy+gz=h 和 ix+jy+kz=l 的形式。
高一上册数学全册知识点
高一上册数学全册知识点一、函数与方程在高一上册数学中,函数与方程是一个重要的知识点。
函数是自变量与因变量之间的关系,可以用来描述各种变化规律。
方程则是关系等式,可以通过求解得到未知数的值。
1. 函数的定义与性质函数的定义:对于集合A和B,如果双射关系f使得对于A中的每个元素x,都存在一个唯一的元素y使得(x,y)∈f,则称f 为A到B的函数。
函数的性质:- 定义域、值域和原像:函数的定义域是指所有可能输入的值的集合,在函数中有相应输出的这些值构成了函数的值域。
原像则是指函数输出对应的输入值。
- 单调性:函数的单调性可以分为递增和递减两种,根据函数图像的上升或下降趋势来判断。
- 奇偶性:函数的奇偶性可以通过函数的定义式来判断,奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
- 周期性:如果存在常数T使得对于函数f任意x有f(x+T)=f(x),则函数具有周期性。
2. 方程的解法方程是数学中的等式,可以通过解方程得到未知数的值。
解方程的方法有很多,包括:- 直接解法:将方程两边进行运算,将未知数的项移至一边,最后得到未知数的值。
- 因式分解法:将方程进行因式分解,然后设置每个因式为零,解得未知数的值。
- 二次方程的解法:对于二次方程ax^2+bx+c=0,可以使用求根公式(-b±√(b^2-4ac))/2a求得解。
- 分式方程的解法:对于含有分式的方程,可以通过通分、约分等方法将方程化为一般形式,然后进行解法。
二、数列与数学归纳法数列是数学中一组有序的数的集合,数列中的每一项都有特定的位置。
数学归纳法是一种证明方法,用于证明数列或命题在自然数中的全体成立。
1. 等差数列与等差数列求和公式等差数列是每一项与前一项之差相等的数列,可以用通项公式an=a1+(n-1)d来表示,其中a1为首项,d为公差,n为项数。
等差数列求和公式:对于等差数列an=a1+(n-1)d,其前n项和Sn=n/2[a1+an],其中a1为首项,an为末项,n为项数。
函数与方程高考知识点总结
函数与方程高考知识点总结一、函数的概念与性质1.函数的定义:函数是一个从一个集合到另一个集合的映射关系。
2.函数的表示方法:函数可以用函数解析式、函数图象、函数表等形式表示。
3.函数的性质:奇偶性、周期性、有界性、单调性、极值、最值等。
二、初等函数1.常数函数:y=c。
2. 一次函数:y=kx+b。
3. 二次函数:y=ax²+bx+c。
4.幂函数:y=xⁿ。
5.指数函数:y=aᵡ。
6. 对数函数:y=logₐx。
7.三角函数:正弦函数、余弦函数、正切函数等。
8.反三角函数:反正弦函数、反余弦函数、反正切函数等。
三、函数的运算1.函数的和、差、积、商的定义与性质。
2.复合函数的定义与性质。
3.反函数的定义与性质。
四、方程的概念与性质1.方程的定义:含有未知数的等式称为方程。
2.方程的根:使方程等式成立的未知数的值称为方程的根。
3.方程的解:满足方程的根的值的集合。
4.方程的性质:等价方程、可解性、唯一性等。
五、一元一次方程1.一元一次方程的定义与解的概念。
2.一元一次方程的解法:解方程的基本步骤、去分母、去项、整理方程等。
3.一元一次方程的应用:问题转化为一元一次方程。
六、一元二次方程1.一元二次方程的定义与解的概念。
2.一元二次方程的解法:配方法、因式分解法、求根公式、三角函数法等。
3.一元二次方程的判别式:判别式与方程根的关系。
七、一元高次方程1.一元高次方程的定义与解的概念。
2.一元高次方程的解法:因式分解法、整理方程法、二次根与系数关系、综合除法等。
3.一元高次方程的应用:问题转化为一元高次方程。
八、二元一次方程组1.二元一次方程组的定义与解的概念。
2.二元一次方程组的解法:方法一、方法二、方法三等。
3.二元一次方程组的应用:问题转化为二元一次方程组。
九、二元二次方程组1.二元二次方程组的定义与解的概念。
2.二元二次方程组的解法:消元法、代入法、加减消元法、变量代换法等。
3.二元二次方程组的应用:问题转化为二元二次方程组。
高一数学必修1函数与方程知识点归纳.doc
高一数学必修1函数与方程知识点总结高一数学必修1函数与方程知识点梳理1、函数零点的定义(1)对于函数)(xfy ,我们把方程0)( xf的实数根叫做函数)(xfy 的零点。
(2)方程0)( xf有实根函数()yfx 的图像与x轴有交点函数()yfx 有零点。
因此判断一个函数是否有零点,有几个零点,就是判断方程0)( xf是否有实数根,有几个实数根。
函数零点的求法:解方程0)( xf,所得实数根就是()fx的零点(3)变号零点与不变号零点①若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。
②若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。
③若函数()fx在区间,ab上的图像是一条连续的曲线,则0)()( bfaf是()fx在区间,ab内有零点的充分不必要条件。
2、函数零点的判定(1)零点存在性定理:如果函数)(xfy 在区间],[ba上的图象是连续不断的曲线,并且有()()0fafb ,那么,函数)(xfy 在区间,ab 内有零点,即存在),(0bax ,使得0)(0 xf,这个0x也就是方程0)( xf 的根。
(2)函数)(xfy 零点个数(或方程0)( xf实数根的个数)确定方法①代数法:函数)(xfy 的零点0)( xf的根; ②(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy 的图象联系起来,并利用函数的性质找出零点。
(3)零点个数确定0 )(xfy 有2个零点0)( xf有两个不等实根; 0 )(xfy 有1个零点0)( xf有两个相等实根;0 )(xfy 无零点0)( xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定.3、二分法(1)二分法的定义:对于在区间[,]ab上连续不断且()()0fafb 的函数()yfx ,通过不断地把函数()yfx 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法;高一数学必修1教学总结高一数学必修1教学总结(一)数学必修1即将学习结束,我有以下几点体会:1、刚开学,高一数学要放慢进度,降低难度,注意教学内容和方法的衔接。
高一数学函数与方程知识点的总结
高一数学函数与方程知识点的总结高一数学函数与方程知识点的总结「篇一」1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;高一数学函数与方程知识点的总结「篇二」一、直线与方程高考考试内容及考试要求:考试内容:1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;考试要求:1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程;2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系;二、直线与方程课标要求:1.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;4.会用代数的方法解决直线的有关问题,包括求两直线的交点,判断两条直线的位置关系,求两点间的距离、点到直线的距离以及两条平行线之间的距离等。
高一数学函数、函数与方程知识点总结
高一数学函数、函数与方程知识点总结(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除映射定义:设A ,B 是两个非空的集合,如果按某一个确定的对应关系,使对于集合A中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合到集合的一个映射函数及其表示定义传统定义:如果在某变化中有两个变量x ,y ,并且对于x 在某个范围内的每一个确定的值,按照某个对应关系f ,y 都有唯一确定的值和它对应。
那么y 就是x 的函数。
记作y=()x f 近代定义:函数是从一个数集到另一个数集的映射 函数三要素 定义域值域 对应法则 函数的表示方法解析法 列表法 图象法函数的基本性质单调性传统定义:在区间[a ,b]上,若a ≤x 1﹤x 2≤b ,如果f ()1x ﹤f ()2x ,则f ()x 在[a ,b]上递增,[a ,b]是递增区间;如果f ()1x ﹥f ()2x ,则f ()x 在[a ,b]上递减,[a ,b]是递减区间。
导数定义:在区间[a ,b]上,若f ()x ﹥0,则f ()x 在[a ,b]上递增,[a ,b]是递增区间;若f ()x ﹤0,则f ()x 在[a ,b]上递减,[a ,b]是递减区间。
最值最大值:设函数y=f ()x 的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f ()x ≤M ;②存在x 0∈I ,使得f ()0x =M ,则称M 是函数y=f ()x 的最大值。
最小值:设函数y=f ()x 的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f ()x ≥M ;②存在x 0∈I ,使得f ()0x =M ,则称M 是函数y=f ()x 的最大值。
奇偶性①f ()x -= -f ()x ,x ∈定义域D ,则f ()x 叫做奇函数,其图像关于原点对称。
高中数学的函数与方程总结
高中数学的函数与方程总结数学是一门基础学科,其中函数与方程是数学的重要组成部分。
在高中数学中,函数与方程的学习是建立数学思维和解决实际问题的关键。
本文将对高中数学的函数与方程进行总结,并介绍其应用和相关概念。
一、函数的基本概念函数是一种数学关系,它将一个集合的元素映射到另一个集合的元素。
函数的定义域、值域和图像是理解函数概念的重要要素。
函数可以用文字、符号或图像表示。
1.1 函数的定义函数通常用f(x)表示,其中x是自变量,f(x)是因变量。
函数的定义包括定义域、值域和映射规则。
1.2 定义域与值域定义域是指自变量取值的范围,值域是指因变量可能取值的范围。
1.3 函数的图像函数的图像可以通过绘制坐标系和描绘函数曲线来表示。
图像有助于我们直观地理解函数的变化趋势、极值和特殊点。
二、常见的函数类型高中数学中常见的函数类型有线性函数、二次函数、指数函数与对数函数。
2.1 线性函数线性函数是一个一次多项式函数,函数图像呈直线。
线性函数的一般形式为y = kx + b,其中k和b为常数。
2.2 二次函数二次函数是一个二次多项式函数,函数图像呈抛物线。
二次函数的一般形式为y = ax^2 + bx + c,其中a、b和c为常数。
2.3 指数函数指数函数是以指数为变量的函数,函数图像呈指数增长或指数衰减的曲线。
指数函数的一般形式为y = a^x,其中a为常数。
2.4 对数函数对数函数是指数函数的逆运算,函数图像呈现递减的曲线。
对数函数的一般形式为y = loga(x),其中a为底数。
三、方程的求解方法高中数学中,方程是关于未知数的等式,解方程是找出使等式成立的未知数的值的过程。
常见的方程求解方法有因式分解法、等式两边开方、配方法和二次公式等。
3.1 因式分解法因式分解法适用于一元多次方程,将方程因式分解为两个或多个乘积形式,然后令每个因式等于零,求解出未知数的值。
3.2 等式两边开方等式两边开方法适用于含有平方根的方程,通过等式两边开方,将方程转化为简化形式,然后求解未知数的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学函数与方程知识点整理
在中国古代把数学叫算术,又称算学,最后才改为数学。
数学分为两部分,一部分是几何,另一部分是代数。
精品小编准备了高一语文函数与方程知识点,希望你喜欢。
1.设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-12)f(12)0,则方程f(x)=0在[-1,1]内()
A.可能有3个实数根
B.可能有2个实数根
C.有唯一的实数根
D.没有实数根
解析:由f -12f 120得f(x)在-12,12内有零点,又f(x)在[-1,1]上为增函数,
f(x)在[-1,1]上只有一个零点,即方程f(x)=0在[-1,1]上有唯一的实根.
答案:C
2.(2019长沙模拟)已知函数f(x)的图象是连续不断的,x、f(x)的对应关系如下表:
x123456
f(x)136.1315.552-3.9210.88-52.488-232.064
则函数f(x)存在零点的区间有
A.区间[1,2]和[2,3]
B.区间[2,3]和[3,4]
C.区间[2,3]、[3,4]和[4,5]
D.区间[3,4]、[4,5]和[5,6]
解析:∵f(2)与f(3),f(3)与f(4),f(4)与f(5)异号,
f(x)在区间[2,3],[3,4],[4,5]上都存在零点.
答案:C
3.若a1,设函数f(x)=ax+x-4的零点为m,g(x)=logax+x-4的零点为n,则1m+1n的取值范围是
A.(3.5,+)
B.(1,+)
C.(4,+)
D.(4.5,+)
解析:令ax+x-4=0得ax=-x+4,令logax+x-4=0得
logax=-x+4,
在同一坐标系中画出函数y=ax,y=logax,y=-x+4的图象,结合图形可知,n+m为直线y=x与y=-x+4的交点的横坐标的2倍,由y=xy=-x+4,解得x=2,所以n+m=4,因为
(n+m)1n+1m=1+1+mn+nm4,又nm,故(n+m)1n+1m4,则1n+1m1. 答案:B
4.(2019昌平模拟)已知函数f(x)=ln x,则函数
g(x)=f(x)-f(x)的零点所在的区间是
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)
解析:函数f(x)的导数为f(x)=1x,所以g(x)=f(x)-f(x)=ln x-1x.因为g(1)=ln 1-1=-10,g(2)=ln 2-120,所以函数
g(x)=f(x)-f(x)的零点所在的区间为(1,2).故选B.
答案:B
5.已知函数f(x)=2x-1,x0,-x2-2x,x0,若函数g(x)=f(x)-m 有3个零点,则实数m的取值范围是________.
解析:画出f(x)=2x-1,x0,-x2-2x,x0,的图象,如图.
由函数g(x)=f(x)-m有3个零点,结合图象得:0
答案:(0,1)
6.定义在R上的奇函数f(x)满足:当x0时,f(x)=2 014x+log2 014x则在R上,函数f(x)零点的个数为________.
解析:函数f(x)为R上的奇函数,因此f(0)=0,当x0时,f(x)=2 014x+log2 014x在区间0,12 014内存在一个零点,又f(x)为增函数,因此在(0,+)内有且仅有一个零点.根据对称性可知函数在(-,0)内有且仅有一解,从而函数在R上的零点的个数为3.
答案:3
7.已知函数f(x)=x+2x,g(x)=x+ln x,h(x)=x-x-1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是________. 解析:令x+2x=0,即2x=-x,设y=2x,y=-x;
令x+ln x=0,即ln x=-x,
设y=ln x,y=-x.
在同一坐标系内画出y=2x,y=ln x,y=-x,如图:x10
则(x)2-x-1=0,
x=1+52,即x3=3+521,所以x1
答案:x1
8.若函数f(x)=ax2-x-1有且仅有一个零点,求实数a的取值范围.
解:(1)当a=0时,函数f(x)=-x-1为一次函数,则-1是函数的零点,即函数仅有一个零点.
(2)当a0时,函数f(x)=ax2-x-1为二次函数,并且仅有一个零点,则一元二次方程ax2-x-1=0有两个相等实根.则
=1+4a=0,解得a=-14.综上,当a=0或a=-14时,函数仅有一个零点.
9.关于x的二次方程x2+(m-1)x+1=0在区间[0,2]上有解,求实数m的取值范围.
解:设f(x)=x2+(m-1)x+1,x[0,2],
①若f(x)=0在区间[0,2]上有一解,
∵f(0)=10,则应用f(2)0,
又∵f(2)=22+(m-1)2+1,
m-32.
②若f(x)=0在区间[0,2]上有两解,
则0,0-m-122,f20,
m-12-40,-3
m3或m-1,-3
-32-1.
由①②可知m的取值范围(-,-1].
B组能力突破
1.函数f(x)=x-cos x在[0,+)内
A.没有零点
B.有且仅有一个零点
C.有且仅有两个零点
D.有无穷多个零点
解析:在同一直角坐标系中分别作出函数y=x和y=cos x的图象,如图,由于x1时,y=x1,y=cos x1,所以两图象只有一个交点,即方程x-cos x=0在[0,+)内只有一个根,所以f(x)=x-cos x在[0,+)内只有一个零点,所以选B.
答案:B
2.(2019吉林白山二模)已知函数f(x)=2mx2-x-1在区间(-2,2)上恰有一个零点,则m的取值范围是
A.-38,18
B.-38,18
C.-38,18
D.-18,38
解析:当m=0时,函数f(x)=-x-1有一个零点x=-1,满足条件.当m0时,函数f(x)=2mx2-x-1在区间(-2,2)上恰有一个零点,需满足①f(-2)f(2)0,或
②f-2=0,-20,或③f2=0,02.
解①得-18
答案:D
3.已知函数f(x)满足f(x+1)=f(x-1),且f(x)是偶函数,当x[0,1]时,f(x)=x,若在区间[-1,3]上函数g(x)=f(x)-kx-k 有4个零点,则实数k的取值范围是________.
解析:由f(x+1)=f(x-1)得,
f(x+2)=f(x),则f(x)是周期为2的函数.
∵f(x)是偶函数,当x[0,1]时,f(x)=x,
当x[-1,0]时,f(x)=-x,
易得当x[1,2]时,f(x)=-x+2,
当x[2,3]时,f(x)=x-2.
在区间[-1,3]上函数g(x)=f(x)-kx-k有4个零点,即函数y=f(x)与y=kx+k的图象在区间[-1,3]上有4个不同的交点.作出函数y=f(x)与y=kx+k的图象如图所示,结合图形易知k0,14].
答案:0,14]
4.(1)m为何值时,f(x)=x2+2mx+3m+4.①有且仅有一个零点;②有两个零点且均比-1大;
(2)若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围.
解:(1)①函数f(x)有且仅有一个零点方程f(x)=0有两个相等实根=0,即4m2-4(3m+4)=0,即m2-3m-4=0,m=4或m=-1.
②设f(x)有两个零点分别为x1,x2,
则x1+x2=-2m,x1x2=3m+4.
由题意,有=4m2-43m+40x1+1x2+10 x1+1+x2+10
m2-3m-403m+4-2m+10-2m+2m4或m-1,m-5,m1,
-5
(2)令f(x)=0,
得|4x-x2|+a=0,
即|4x-x2|=-a.
令g(x)=|4x-x2|,
h(x)=-a.
作出g(x)、h(x)的图象.
由图象可知,当04,即-4
故a的取值范围为(-4,0).
高一数学函数与方程知识点就为大家介绍到这里,希望对你有所帮助。