等积变形例题

合集下载

小学五年级 等积变形

小学五年级 等积变形

第五讲等积变形答案方法与技巧:(1)等底等高的两个三角形面积相等。

(2)两个三角形如果有相等的底(或高),且其中一个三角形的高(或底)是另一个三角形高(或底)的若干倍,那么,这个三角形的面积是另一个三角形面积的若干倍。

【例1】如下图所示,四边形ABCD是直角梯形,两条对角线把梯形分为4个三角形,已知其中两个三角形的面积为4平方厘米和8平方厘米,求直角梯形ABCD的面积。

(18)【练习1】如图所示,三角形ABO的面积为9平方厘米,线段BO的长度是OD的3倍,梯形ABCD的面积是多少平方厘米?(48)【例2】如图所示,把三角形ABC的一条边AB延长1倍到D点,把它的另一条边AC延长2倍到点E,得到一个较大的三角形ADE,三角形ADE面积是三角形ABC面积的多少倍?(6)【练习2】如图所示,AE=3AB,BD=2BC,△DEC的面积是△ABC面积的倍。

(4)【例3】已知三角形ABC面积为56平方厘米,是平行四边形DEFC的2倍,则阴影部分的面积是多少平方厘米?(14)【例4】如图所示,矩形ABCD的面积为24平方厘米,三角形ADM与三角形BCN的面积和为7.8平方厘米,则四边形PMON的面积是多少平方厘米?(1.8)【例5】如图所示,点M、N、P、Q分别在平行四边形ABCD的边AB、BC、CD、DA上,且PE//GM//CB,HN//QF//AB。

若平行四边形ABCD的面积为600平方厘米、阴影部分的面积为80平方厘米。

请问四边形MNPQ的面积为多少平方厘米?(340)【例6】如图所示,在正方形ABCD的BC边上取一动点E,以DE为边作矩形DEFG,且FG边通过点A。

在点E从点B移动到点C过程中,矩形DEFG的面积()(E)(A)一直变大。

(B)一直变小。

(C)先变小后变大。

(D)先变大后变小。

(E)保持不变。

【练习1】如左下图,△ABC中,D、E分别为边BC、AB的中点。

若图中阴影部分面积为1,则△ABC的面积为多少?(4)【练习2】如右上图所示,图中阴影部分的面积为多少平方厘米?(24)【练习3】如图,六角形的6个顶点恰好是一个正六边形的6个顶点。

小学五年级数学思维专题训练—等积变形(含答案解析)

小学五年级数学思维专题训练—等积变形(含答案解析)

小学五年级数学思维专题训练—等积变形例1.长方形ABCD的面积是40平方厘米,E、F、G、H分别为AD、AH、DH、BC的中点,三角形EFG的面积是平方厘米例 2.梯形ABCD中,AE与DC平行,S ABE∆=15,S BCF∆= .例3。

如下图所示,长方形ABCD内的阴影部分的面积之和为70,AB=8,AD= 15.四边EFGO 的面积为。

例4.如下图所示,在平行四边形ABCD中,已知三角形ABP.BPC的面积分别是73、100,求三角形BPD的面积.例5.如下图所示,BD是平行四边形ABCD的对角线,EF平行于BD,如果三角形ABE的面积是12平方厘米,那么三角形AFD的面积是平方厘米。

例6.如下图所示,已知AE=EC,CD=DB,S ABC =60,求四边形FDCE的面积.例7.如右图所示,正方形ABC D和正方形ECGF并排放置,BF与CD相交于点H,已知AB=6厘米,则阴影部分的面积是平方厘米.例8.如下图所示,E、F、G、H分别是四边形ABCD各边的中点,EG与FH交于点O,S1、S2、S3及S4分别表示4个小四边形的面积.试比较S1+S3与S2+S4的大小.例9.将长15厘米、宽9厘米的长方形的长和宽都分成三等份,长方形内任意一点与分点及顶点连结,如右图所示,则阴影部分的面积是 平方厘米.例10.右图所示ABCD 是个直角梯形(∠DAB=∠ABC= 900),以 , AD 为一边向外作长方形ADEF ,其面积为6.36平方厘米,连接BE 交AD 于P ,再连接PC .则图中阴影部分的面积是 平方厘米。

A.6.36B.3.18C.2.12D.1.59例11.如下图所示,平行四边形内有两个大小一样的正六边形,那么阴影部分的面积占平行四边形面积的 。

A .21B .32C .52D .125例12.如下图所示,矩形ABCD 的面积是24平方厘米,三角形ADM 与三角形BCN 的面积之和是7.8平方厘米,则四边形PMON 的面积是 平方厘米.例13.一个矩形分成4个不同的三角形(如下图),绿色三角形面积占矩形面积的15%,黄色三角形的面积是21平方厘米.问:矩形的面积是多少平方厘米?例14.如下图所示,正方形每条边上的三个点(端点除外)都是这条边的四等分点,则阴影部分的面积是正方形面积的。

等积变形例题

等积变形例题

解 在直角三角形CDH和直角三角形EKD 中,CD=DE 又∵∠EDK=180°-∠CDH-90° ∠DCH=180°-∠CDH-90° ∴ DCH与 EDK完全相等。 而ABCD是等腰梯形
K A
E
故CH=(BC-AD) ÷2 =(35-23) ÷2
23
D F
=6(厘米) ∴DK=CH=6厘米
B
35
求绿色四边形的面积。 解 连BF,则四边形BCDF为梯形。 4 6 6 ∵S黄÷S红=6÷4=1.5 ∴S白÷S红=1.5×1.5=2.25 ∴S白=S红×2.25=4 ×2.25=9(平方厘米) ∴S绿=S白+S黄-S红 =9+6-4=11(平方厘米) 答:绿色四边形ABEF的面积为11平方厘米。
S KGE=S C D S DGE=S F G P 所以 阴影部分面积= H A B 解:14÷4=3.5(厘米) 正方形BEFG的周长=14厘米, E K
FGE BGE
正方形BEFG的面积
3.5×3.5=12.25(平方厘米) 求阴影部分面积。 答:图中阴影部分面积是 12.25平方厘米。
分析与解: 分析与解:
答:丙、丁两个三角形面 积之和是甲、乙两个三角 形面积之和的1.25倍。
分析与解:
等积变形
例5
G
F
∵∠DAB=∠GAE=90° ∴ ∠GAD+ ∠EAB =360°-90 °×2 =180°
D
A C
E
∴三角形BAE绕A点顺时针旋转, 使AB与AD重合,这时,点E落 在点H,且G,A,H在一条直线上。 ∵AG=AE=AH,三角形DAH与 三角形DAG等底同高, ∴S DAH=S DAG 答:内圈三角形石板的总面积 与外圈石板的总面积一样大。

等积变形的应用——两道赛题的解法

等积变形的应用——两道赛题的解法

等积变形的应用——两道赛题的解法赛题一:给定一个三角形ABC,给定它的边长a,b,c,要求把它变形成一个等腰直角三角形,且其新的三边为x,x,y。

解题思路:由等积变形定理可知,三角形ABC与新三角形ABC满足:$$\frac{a}{\sin A} = \frac{x}{\sin A'} = \frac{x}{\sin B'} = \frac{y}{\sin C'}$$解出新的三角形边长x,y的差分方程为:$$a\cdot\sin A = x\cdot\sin B = x\cdot\sin C = y\cdot\sinA'$$解得:$$x = \frac{a \cdot \sin A}{\sin B} = \frac{a \cdot \sinA}{\sin C}$$$$y = \frac{a \cdot \sin A}{\sin A'}$$赛题二:给定一个三角形ABC,给定它的边长a,b,c,要求把它变形成一个三角形,且其新的三边为x,y,z。

解题思路:由等积变形定理可知,三角形ABC与新三角形ABC满足:$$\frac{a}{\sin A} = \frac{x}{\sin A'} = \frac{y}{\sin B'} = \frac{z}{\sin C'}$$解出新的三角形边长x,y,z的差分方程为:$$a\cdot\sin A = x\cdot\sin A' = y\cdot\sin B' = z\cdot\sin C'$$解得:$$x = \frac{a \cdot \sin A}{\sin A'}$$$$y = \frac{a \cdot \sin A}{\sin B'}$$$$z = \frac{a \cdot \sin A}{\sin C'}$$。

典例分析(等积变形问题)

典例分析(等积变形问题)

等积变形问题【例1】要锻造一个直径为100毫米,高为80毫米的圆柱形毛坯,应截取直径为160毫米的圆钢多长?分析:需要直径为100mm、高为80mm的圆柱,用直径为160mm的圆钢锻造,在锻造过程中,圆柱的直径、高都变了,没有变化的是圆柱的体积.因此本题的相等关系是锻造前的圆柱体积=锻造后的圆柱体积.[解]根据题意,得802x=502×8080x=2500x=31.25答:应截取的圆钢长为31.25毫米.[说明]1.等积类应用题的基本关系式是:变形前的体积=变形后的体积.2.有关圆柱、圆锥、球等体积变换问题中,经常给的条件是直径,而公式中用的是半径,不注意这一点就会犯错误.【例2】有一个底面半径为5cm的圆柱形储油器,油中浸有钢珠,若从中捞出546π克钢珠.问液面将下降多少厘米?(1cm3钢珠重7.8克) [分析]设液面下降xcm,列表:等量关系:液面下降后减少的体积=钢珠的体积[解]设液面下降x厘米,依题意得方程两边同除以π,得70=25xx=2.8答:圆柱形储油器内液面下降2.8cm.[说明]当方程两边的每一项中都含有圆周率π时,一般采用在等号两边同除以π将方程化简的方法,而不用以π的近似数代入计算的苯方法.【例3】一圆柱形水桶,它的高和底面直径都是22厘米,盛满水后把水倒入底面长、宽分别是30厘米和20厘米的长方体容器.问这个长方体容器的高至少要多少厘米?(π取3.14,结果精确到0.1).[分析]本题是等积问题,其等量关系:圆柱的体积=长方体的体积.这类问题也可用列表来分析前后变化的体积关系.[解]设这个长方体容器的高至少要x厘米.依题意,得答:这个长方体容器的高至少要13.9厘米.【例4】现有一条直径为12cm的圆柱形铅柱,若铸造12只直径为12cm的铅球,问应截取多长的铅柱?(损耗不计)[分析]此类题是等积变形问题.解等积变形的应用题.一般利用几何变形前后的体积相等的等量关系来列出方程.如果设变形前的圆柱形铅柱长为xcm,则可依据如下的等量关系列出方程:变形前的xcm长的圆柱形的体积=变形后12个直径为12cm的球的体积.[解]设应截取的圆柱形铅柱长为xcm,由题意列方程:答:应截取的铅圆柱长为96cm.[说明]半径为R的球的体积公式是:【例5】要铸造一个零件毛坯,其上部是底面直径为6cm,高是2cm 的圆锥体;下部是直径和高度都是6cm的圆柱体.问需要熔解多长截面边长为4cm的正方形钢锭?(精确到1cm)[分析]这个问题涉及到三个几何体,成品中的圆锥体、圆柱体和原料中的长方体.解题的关键是正确表示出三个几何体的体积.等量关系是:组合体的体积=长方体的体积.[解]设需要该种钢锭xcm,那么钢锭的体积为:42·x;由题意可得:∴x≈12(cm)答:需要该种钢锭12cm.[说明]等体积变形问题往往用到一些体积公式,要注意复习这些公式.底圆半径为r,高为h的。

等积变形练习题

等积变形练习题

• 9、一个长8分米,宽5分米,高6分米 的玻璃缸内有2分米的水,将一个石 块放入水中,水面上升到2.5分米,这 个石块的体积有多大?
• 10、一个长方体玻璃缸,底面是2分 米的正方形,向容器内倒入5.4升水, 再把一个梨子放入水中,量得水深 1.5分米,这个梨子的体积有多大?
• 11、一个长方体玻璃缸,底面积是 200平方厘米,高是8厘米,里面 盛有4厘米深的水,现在将一块石 头放入水中,水面升高2厘米。这 块石头的体积是多少立方厘米?
• 12、一个长方体玻璃容器,从里面 量长和宽都为2分米。向容器中倒 入5.5升水,在把一个苹果浸没在 水中,这时容器内的水深是1.5分 米。这个苹果的体积是多少?
• 13、在一个长25厘米、宽12厘 米、高20厘米的长方体玻璃容 缸中放入一个棱长9厘米的正方 体铁块,然后在玻璃缸中加入 一些水,使铁块完全浸没在水 中。当铁块从水中取出时,玻 璃缸中的水会下降多少厘米?
• 6、两个容器,甲正方体(棱长6分 米),乙长方体(长8分米、宽和 高都是6分米),将甲容器的水装 满倒入乙容器,乙容器水面有多高?

• 7、一个货车的车厢是棱长4米,宽 2.5米,高1.5米的长方体,将它装满 石子,铺在一个长20米,宽5米的路 上,能铺多厚?
• 8、一个棱长5分米的玻璃缸 内有水100升,将一个石块投 入缸内,水面上升了1厘米,这 个石块的体积是多少?
一个货车的车厢是棱长4米宽25米高15米的长方体将它装满石子铺在一个长20分米的玻璃缸内有水100升将一个石块投入缸内水面上升了1厘米这个石块的体积是多少
等积变形练习题
1、用一块体积是2000立方厘米的钢块锻造 成一根横截面面积是20平方厘米长方体方
钢,这根长方体方钢长多少?

等积变形题目五年级

等积变形题目五年级

等积变形题目五年级等积变形是指图形在形状发生改变的过程中,其面积大小保持不变的一种变形。

例如,一个四边形可以变成正方形、长方形、梯形或不规则的其他几边形,只要其面积大小保持不变,就是等积变形。

1.问题:有一个长方体,它的长、宽、高分别是a、b、c(a>b>c),现在进行等积变形,把长方体的长变成d,宽和高保持不变。

请问变形后的长方体与原长方体的体积相比,是变大还是变小?解析:因为等积变形不改变物体的体积,所以原长方体和变形后的长方体的体积是相等的。

2.问题:有一个正方体,边长为a,现在进行等积变形,把正方体的边长变成d,请问变形后的正方体与原正方体的体积相比,是变大还是变小?解析:因为等积变形不改变物体的体积,所以原正方体和变形后的正方体的体积是相等的。

3.问题:有一个三角形,它的底边为a,高为h,现在进行等积变形,把三角形的底边变成d,高保持不变。

请问变形后的三角形与原三角形的面积相比,是变大还是变小?解析:因为等积变形不改变三角形的面积,所以原三角形和变形后的三角形的面积是相等的。

4.问题:有一个正方形,边长为a,现在进行等积变形,把正方形的边长变成d,请问变形后的正方形与原正方形的面积相比,是变大还是变小?解析:因为等积变形不改变正方形的面积,所以原正方形和变形后的正方形的面积是相等的。

5.问题:有一个长方形,长为a,宽为b,现在进行等积变形,把长方形的长变成d,宽保持不变。

请问变形后的长方形与原长方形的面积相比,是变大还是变小?解析:因为等积变形不改变长方形的面积,所以原长方形和变形后的长方形的面积是相等的。

等积变形问题

等积变形问题

等积变形问题--一元一次方程的应用题
一知识点
“等积变形”是以形状改变而体积不变为前提。

常用等量关系为:形状面积变了,周长没变;原料体积=成品体积。

二试试身手
1、一块正方形铁皮,四角截去4个一样的小正方形,折成底面边长是50cm的无盖长方体盒子,容积是45000.,求原来正方形铁皮的边长.
2、用直径为4cm的圆钢,锻造一个重0。

62kg的零件毛坯,如果这种钢每立方厘米重7。

8g,应截圆钢多长?
3、把直径6cm,长16cm的圆钢锻造成半径为4cm的圆钢。

求锻造后的圆钢的长。

4、直径为30厘米,高为50厘米的圆柱形瓶里存满了饮料,现把饮料倒入底面直径为10厘米的圆柱形小杯中,刚好倒满20杯,求小杯子的高。

5 现有直径为0。

8米的圆柱形钢坯长30米,可足够锻造直径为0。

4米,长为3米的圆柱形机轴多少根?
6 用直径为90mm的圆柱形玻璃杯(已装满水),向一个由底面积为125*125mm,内高为81mm的长方体铁盒倒满水时,玻璃杯中的水的高度下降多少mm?(结果保留整数,π=3。

14)
7 把内径为200mm,高为500mm的圆柱形铁桶,装满水后慢慢地向内径为160mm,高为400mm 的空木桶装满水后,铁桶内水位下降了多少?
8 要锻造一个直径为8cm高为4cm的圆柱形毛坯,至少应截取直径为4cm的圆钢多少cm.。

人教版数学6年级下册 第3单元(圆柱和圆锥)专项训练《等积变形》(含答案)

人教版数学6年级下册 第3单元(圆柱和圆锥)专项训练《等积变形》(含答案)

人教版六年级数学下册第三单元专项训练《等积变形》(含答案)1.把一个圆柱底面平均分成若千个扇形,沿高切开拼成一个近似长方体。

这个长方体的宽是4厘米,高是20厘米,这个圆柱的体积是多少?2.把一个棱长是8分米的正方体铁块熔铸成一个底面直径是10分米的圆柱,这个圆柱的高大约是多少?(得数保留一位小数)3.一个圆柱形水池装满水,它的底面积是12.56平方米,深3米,将水池的水全部倒入一个长8米、宽3米、深2米的长方体水池,长方体的水面高是多少米?4.把一个棱长8分米的正方体木块加工成一个最大的圆柱,圆柱的体积是多少立方分米?5.一个圆柱体,如果把它的高截短2厘米,它的表面积就减少94.2平方厘米,这个圆柱体的体积减少多少立方厘米?6.将一个底面直径是20厘米,高为12厘米的金属圆锥体,全部浸没在直径是20厘米的圆柱形水槽中,水槽水面会升高多少厘米?7.一个圆锥形沙堆,底面积12.56平方米,高1.2米。

用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?8.一个圆锥形沙堆,底面积是24平方米,高是1.8米。

用这堆沙子去填一个长7.5米、宽4米的长方体沙坑,沙坑里沙子的厚度是多少厘米?9.把一个长、宽、高分别是7厘米、3厘米、9厘米的长方体铁块和一个棱长是5厘米的正方体铁块,熔铸成一个底面直径是10厘米的圆柱,这个圆柱的高是多少?10.机灵狗有一块体积是753.6立方厘米的绿色橡皮泥,它用这块橡皮泥捏成了等底等高的一个圆柱体和一个圆锥体。

则这个圆柱体体积是多少立方分米?11.在底面半径为5厘米、高为18厘米的圆柱形玻璃缸中,放入一个底面半径3厘米、高为10厘米的圆锥形铅块,放水将铅块全部淹没。

当铅块取出后,玻璃缸中的水面下降了多少厘米?12.学校的跳远沙池长6.28米,宽2米,学校运来一堆沙子(堆放如图)。

如果把这些沙子均匀地铺在跳远沙池中,可以铺多厚?13.把一个棱长6分米的正方体木块削成一个最大的圆锥,需要削去多少立方分米的木头?14.把一个长是10厘米,宽和高都是5厘米的长方体铁块和一个棱长是4厘米的正方体铁块,一起熔铸成一个底面周长是314厘米的圆柱。

五年级数学(下)长方体正方体等积变形有关题型专项练习

五年级数学(下)长方体正方体等积变形有关题型专项练习

五年级数学(下)长方体正方体等积变形有关题型专项练习
1)体育场用 37.5 立方米的煤渣铺在一条长100米、宽7.5米的直跑道上。

煤渣可以铺多厚?
2)有一块棱长是80厘米的正方体的铁块,现在要把它溶铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米?
3)学校运来7.6立方米的沙子,铺在一个宽5米,厚40厘米的沙坑里,可以铺多少米长?
4)一辆货车的车厢是长方体的,长4米,宽2米,高1.8米,里面装满了沙子。

把这些沙子铺到长30米,宽4米的公路上,可以铺多少厘米厚?
5)有一个正方体橡皮泥棱长6厘米。

现在把这块橡皮泥捏成一个长为8 cm,宽为3cm的长方体,这个长方体的高是多少厘米?
6)有一个正方体铝块,棱长是6cm。

如果把它锻造成长为9cm,宽为8cm(锻造过程中的损耗忽略不计)的长方体,长方体的高是多少厘米?
7)学校把 8m的黄沙填入沙坑,已知沙坑长5m,宽36 dm。

如果沙坑中至少需要填 40cm深的黄沙,这些黄沙够用吗?
8)如右图:一个长方体封闭容器长20厘米,宽15厘米,高
35厘米,里面装有25厘米高的水。

如果把这封闭容器如图放
倒,这时容器里面的水高是多少厘米?。

六年级数学等积变形

六年级数学等积变形

六年级数学等积变形1,一个盛水的圆柱形水桶,内底面周长为6028分米,当一个长方形的物体投入水中时,水面上升1分米,量得这个长方体的长为3;14分米,宽为1分米,他的高是多少?2,在长为15厘米,宽为12厘米的长方体水箱中,有10厘米深的水,现沉入一个高为10厘米的圆锥形铁块《全部浸入水中》,水面上升了2厘米,求圆锥的底面积?3,甲,乙两个圆柱体容器,底面积比为4:3,甲容器水深7厘米,以容器水深3厘米,再往两容器中各注入同样多的水,直到水深相等,这时水深多少厘米?4,一个棱长为1分米的正方体木块,从这个木块中各出一个最大的圆锥,求这个圆锥的表面积和体积?5,用一张长3米宽1米的长方形铁皮可以做成无底的圆柱形管子,此圆柱形管子的最大面积是多少?6,一个胶水瓶,它的瓶身呈圆柱形《不包括瓶颈》,容积是32;4立方厘米,当瓶子正放时,瓶内胶水深为8厘米,瓶子倒放时,空余部分为2厘米,则瓶内所装水的体积是多少?7;有A;B两个圆柱形容器,最初在容器A里装有2升水,容器B是空的。

现在往两个容器中以每分钟0;4升的流量注入水,4分钟后,两个容器的水面高度相等。

设B的底面半径为5厘米,那么A的底面直径是多少厘米?8;将一个圆柱体木块沿上下底面圆心切成四块,表面积增加48平方厘米;若将这个圆柱体切成三块小圆柱体,表面积增加50;24平方厘米。

现在把这个圆柱体木块削成一个最大的圆锥体,体积减少多少立方厘米?9;圆钢切削成一个最大的圆锥体,切削掉的部分部分重8千克,这段圆钢重多少㎏?10;棱长是4分米的立方体钢坯切削成一个最大的圆柱,这个圆柱的体积是多少立方分米?11;一个体积为60立方厘米的圆柱,削成一个最大的圆锥,这个圆锥的体积是多少立方厘米?12;一车箱是长方体,长4米,宽1;5米,高4分米,装满沙,堆成一个高5分米的圆锥,底面积多少㎡13;一个底面周长15;7m高10m的圆柱铁块,熔成一个底面积是25㎡的圆锥,圆锥的高是多少m?14;把一个体积是18㎝³的圆柱削成一个最大的圆锥,削成的圆锥体积是多少㎝³?15;正方体钢材,棱长6分米,把它削成一个最大的圆锥体零件,零件的体积是多少?。

等积变形专项练习

等积变形专项练习

等积变形专项练习
1。

在一个底面积是31.4平方厘米的长方体玻璃容器中,有一个底面半径是1厘米的圆锥形铝块完全浸在水中,当从水中取出铝块时,容器的水面下降了0。

2厘米。

这个圆锥形铝块高多少厘米?
2。

用半径10cm高7cm的圆柱形泥巴揉成半径一样大的圆锥形,圆锥的高是多少厘米呢?
3.一个圆柱形的水桶,内部的底面半径是20厘米,高是45厘米,里面盛有30厘米深的水。

将一个底面半径是15厘米的圆锥形铁块完全沉进水里,水不溢出,水面上升了3厘米,圆锥形铁块的高是多少?
4.有一段钢可做一个底面直径8厘米,高9厘米的圆柱形零件.如果把它改制成高是12厘米的圆锥形零件,零件的底面积是多少平方厘米?
5。

一个圆柱形容器的底面半径是4分米,高6分米,里面盛满水,把水倒在棱长是8分米的正方体容器中,水深多少分米?
6.将一个底面直径是20厘米、高是9厘米的金属圆锥,全部浸没在直径是40厘米的圆柱形水槽中且水未溢出。

水槽中的水面会升高多少厘米?
7。

把一个长2米的圆柱截去4分米后,原来的表面积就减少了25.12平方分米,原来圆柱的体积是多少立方分米?
8。

在一个底面是边长为2分米的正方形的长方形水槽中,放入一块青铜(完全浸没在水中),水面上升1分米且水未溢出.(水槽厚度忽略不计)
(1)求这块青铜的体积.
(2)如果把这块青铜铸成一个底面直径是2分米的圆柱,它的高是多少?(得数保留一位小数)
9.(拓展)在一个圆柱形储水桶里,把一段半径是5cm的圆钢全部放入水中,水面就上升9cm;把圆钢竖着拉出水面8cm长后,水面就下降4cm。

求圆钢的体积。

等积变形练习题

等积变形练习题

等积变形练习题等积变形是一种在数学中常见的概念,它涉及到图形或物体形态的变化,同时保持其面积或体积不变。

通过等积变形,我们可以研究图形之间的关系以及解决一些复杂的数学问题。

本文将介绍一些常见的等积变形练习题,帮助读者加深对等积变形的理解与应用。

1. 矩形的等积变形假设有一片固定面积的矩形,在等积变形的过程中,我们可以改变矩形的长和宽,但保持面积不变。

那么问题来了:在固定面积条件下,矩形的长和宽的关系是怎样的?解答:设矩形的长为x,宽为y,由题意可知xy=常数。

我们可以通过解方程的方法来找出x和y的关系。

将这个方程改写为y=常数/x的形式,其中常数为C。

这意味着y和x成反比例关系,当x增大时,y会减小;当x减小时,y会增大。

这样我们就找到了矩形的等积变形规律。

2. 圆的等积变形与矩形不同,圆的等积变形是指在保持圆的面积不变的情况下改变圆的半径。

现在考虑一个具体的例子:题目:一个圆的半径为r,它的面积为S。

将该圆按照一定的方式等面积地变形成一个新的圆,新的圆的半径为r'。

请问,r'与r之间的关系是怎样的?解答:圆的面积公式为S=πr²,保持面积不变意味着S=πr²=π(r')²。

将这个方程进行变形,可以得到r' = √(S/π)。

也就是说,在等积变形的过程中,圆的半径与原来的半径r之间的关系是r' = √(r²S/S'),其中S'是新圆的面积。

3. 立方体的等积变形对于一个正立方体,它的体积可以通过边长的立方来计算。

在等积变形中,我们可以改变立方体的边长,但保持体积不变。

接下来让我们看一个例子:题目:一个正立方体的边长为a,它的体积为V。

将该立方体等面积地变形成一个新的立方体,新的立方体的边长为b。

请问,b与a之间的关系是怎样的?解答:立方体的体积公式为V=a³,保持体积不变意味着a³=b³。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

答:丙、丁两个三角形面 积之和是甲、乙两个三角 形面积之和的1.25倍。
分析与解:
等积变形
例5
G ∠GAD+ ∠EAB =360°-90 °×2 =180°
D
A C
E
∴三角形BAE绕A点顺时针旋转, 使AB与AD重合,这时,点E落 在点H,且G,A,H在一条直线上。 ∵AG=AE=AH,三角形DAH与 三角形DAG等底同高, ∴S DAH=S DAG 答:内圈三角形石板的总面积 与外圈石板的总面积一样大。
H
C
∴三角形ADE的面积 =23×6÷2 =69(平方厘米) 答:三角形ADE的面积是69平方厘米。
解 连BF,则S深绿 =S 黄=6平方厘米
等积变形
∵S黄÷S红=6÷4=1.5 例7 ∴CE ÷EF=1.5 4 ∴S白=S深绿×1.5=9平方厘米
(单位:

平方厘米)
6 ∵S绿+S红=S黄+S白 ∴S绿=9+6-4=11(平方厘米) 答:绿色四边形ABEF的面积为11平方厘米。
等积变形
例4
60÷30=2 ÷ 80÷40=2 ÷ 假设丁的面积为1 假设丁的面积为1,则 S甲=2×S丁=2 甲 × 丁 S乙=2×S丁=2 乙 × 丁 S丙= 丙 2×S甲=4×S丁=4 × 甲 × 丁 所以 (4+1)÷(2+2) ) ) =1.25
问:丙、丁两个三角形面积之和是甲、 乙两个三角形面积之和的多少倍?
S KGE=S C D S DGE=S F G P 所以 阴影部分面积= H A B 解:14÷4=3.5(厘米) 正方形BEFG的周长=14厘米, E K
FGE BGE
正方形BEFG的面积
3.5×3.5=12.25(平方厘米) 求阴影部分面积。 答:图中阴影部分面积是 12.25平方厘米。
分析与解: 分析与解:
求绿色四边形的面积。 解 连BF,则四边形BCDF为梯形。 4 6 6 ∵S黄÷S红=6÷4=1.5 ∴S白÷S红=1.5×1.5=2.25 ∴S白=S红×2.25=4 ×2.25=9(平方厘米) ∴S绿=S白+S黄-S红 =9+6-4=11(平方厘米) 答:绿色四边形ABEF的面积为11平方厘米。
B
H(E)
求内圈三角形石板 面积大还是外圈三角形 石板面积大?
F
D
A C
E
B
H(E)
如果两个三角形有一组对应角的和为180°, ° 如果两个三角形有一组对应角的和为 而夹这组角的两组对应边又分别相等, 而夹这组角的两组对应边又分别相等,那么它们的 面积相等。 面积相等。
等积变形
例6 CDEF是正方形,ABCD是 等腰梯形,它的上底AD=23 厘米,下底BC=35厘米,求 三角形ADE的面积。
等积变形
Z E 例1 C Y D D B F S X G W A H
Z E A C Y D D H
W
B F X Z E A C Y EFGH W D D B F X G H G
WXYZ=7.17平方厘米
AB∥EF,CD∥WX, 求S EFGH的面积。 WXYZ=1/2 S
解 S ACBD=1/2 S ∴S WXYZ= S
解 在直角三角形CDH和直角三角形EKD 中,CD=DE 又∵∠EDK=180°-∠CDH-90° ∠DCH=180°-∠CDH-90° ∴ DCH与 EDK完全相等。 而ABCD是等腰梯形
K A
E
故CH=(BC-AD) ÷2 =(35-23) ÷2
23
D F
=6(厘米) ∴DK=CH=6厘米
B
35
EFGH =7.17平方厘米
答:纸片EFGH的面积是7.17平方厘米。
等积变形
例2
问红、 问红、蓝两张三角形纸 片面积之和是多少? 片面积之和是多少?
49×29÷2=710.5 × ÷
49 29
答:红、蓝两张三角形 纸片面积之和是710.5。 纸片面积之和是 。 29
49
29
等积变形
例3
分析: KF∥EG∥BD
相关文档
最新文档