河南省郑州市九年级二模数学试卷及参考答案和评分标准

合集下载

河南省郑州市中考数学二模试卷及答案(word解析版)

河南省郑州市中考数学二模试卷及答案(word解析版)

河南省郑州市中考数学二模试卷参考答案与试题解析一、填空题:(本大题共10小题,每小题2分,计20分)1.(2分)(•常德)3的倒数是.考点:倒数.分析:根据倒数的定义可知.解答:解:3的倒数是.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(2分)﹣y的系数是﹣,次数是3.考点:单项式.分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:根据单项式系数、次数的定义,数字因式﹣为单项式的系数,字母指数和为2+1=3,故系数是3.点评:单项式中的数字因数叫做这个单项式的系数.单项式中,所有字母的指数和叫做这个单项式的次数.3.(2分)(•盐城)因式分解:x2﹣4y2=(x+2y)(x﹣2y).考点:因式分解-运用公式法.分析:直接运用平方差公式进行因式分解.解答:解:x2﹣4y2=(x+2y)(x﹣2y).点评:本题考查了平方差公式分解因式,熟记公式结构是解题的关键.平方差公式:a2﹣b2=(a+b)(a ﹣b).4.(2分)(•邵阳)函数y=中,自变量x的取值范围是x≥1.考点:函数自变量的取值范围;二次根式有意义的条件.专题:计算题.分析:根据二次根式的意义,有x﹣1≥0,解不等式即可.解答:解:根据二次根式的意义,有x﹣1≥0,解可x≥1,故自变量x的取值范围是x≥1.点评:本题考查了二次根式的意义,只需保证被开方数大于等于0即可.5.(2分)(•盐城)已知△ABC∽△A′B′C′,它们的相似比为2:3,那么它们的周长比是2:3.考点:相似三角形的性质.分析:根据相似三角形性质,相似三角形周长的比等于相似比可求.解答:解:∵△ABC∽△A′B′C′,它们的相似比为2:3,∴它们的周长比是2:3.点评:本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.6.(2分)(•盐城)在正比例函数y=3x中,y随x的增大而增大(填“增大”或“减小”).考点:正比例函数的性质.分析:根据正比例函数的性质可知.解答:解:因为正比例函数y=3x中,k=3>0,故此函数为增函数,即y随x的增大而增大.故填:增大.点评:本题考查的是正比例函数的性质,解答此题的关键是要熟知以下知识:正比例函数y=kx中:当k>0时,图象位于一、三象限,y随x的增大而增大;当k<0时,图象位于二、四象限,y随x的增大而减小.7.(2分)(•盐城)若直角三角形斜边长为6,则这个直角三角形斜边上的中线长为3.考点:直角三角形斜边上的中线.分析:此题考查了直角三角形的性质,根据直角三角形的性质直接求解.解答:解:∵直角三角形斜边长为6,∴这个直角三角形斜边上的中线长为3.点评:解决此题的关键是熟记直角三角形斜边上的中线等于斜边的一半.8.(2分)(•盐城)请写出你熟悉的两个无理数或.考点:无理数.专题:开放型.分析:由于开方开不尽的数或无限不循环小数是无理数,根据此定义即可解答.解答:解:例如,.(答案不唯一).点评:此题主要考查了无理数的定义,解答此题的关键是熟知无理数的定义:无理数为无限不循环小数.9.(2分)(•郴州)已知⊙O的半径是3,圆心O到直线l的距离是3,则直线l与⊙O的位置关系是相切.考点:直线与圆的位置关系.专题:应用题;压轴题.分析:圆心到直线的距离大于圆心距,直线与圆相离;小于圆心距,直线与圆相交;等于圆心距,直线与圆相切.解答:解:∵圆心到直线的距离=圆的半径,∴直线与圆的位置关系为相切.点评:此题考查的是圆与直线的位置关系.10.(2分)(•盐城)如图,在⊙O的内接四边形ABCD中,∠BOD=90°,则∠BCD=135度.考点:圆周角定理;圆内接四边形的性质.专题:压轴题.分析:根据圆周角定理可求出∠A的度数,由于圆内接四边形的对角互补,可求出∠BCD的度数.解答:解:根据圆周角定理,得:∠A=∠BOD=45°,∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∴∠BCD=180°﹣45°=135°.点评:本题综合考查了圆内接四边形的性质和圆周角定理的应用.二.选择题(本大题共8小题,每小题3分,计24分)下列各题给出的四个选项中只有一个是正确的,请将正确答案的字母代号填写在下面的表格内.11.(3分)(•盐城)下列各式正确的是()A.a5+3a5=4a5B.(﹣ab)2=﹣a2b2C.D.m4•m2=m8考点:二次根式的性质与化简;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项、同底数幂的乘法、幂的乘方与积的乘方、二次根式的化简的法则进行判断.解答:解:A、合并同类项,正确;B、(﹣ab)2=a2b2,错误;C、=2,错误;D、m4•m2=m6,错误.故选A.点评:(1)本题综合考查了整式运算的多个考点,包括合并同类项、同底数幂的乘法、幂的乘方与积的乘方、二次根式的化简,需熟练掌握且区分清楚,才不容易出错;(2)同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.12.(3分)(•盐城)已知a:b=2:3,那么(a+b):b等于()A.2:5 B.5:2 C.5:3 D.3:5考点:分式的基本性质.专题:计算题.分析:分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.根据此性质作答.解答:解:由a:b=2:3,可得出3a=2b,让等式两边都加上3b,得:3(a+b)=5b,因此,(a+b):b=5:3.故选C.点评:在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.13.(3分)(•盐城)解分式方程时,可设=y,则原方程可化为整式方程是()A.y2+2y+1=0 B.y2+2y﹣1=0 C.y2﹣2y+1=0 D.y2﹣2y﹣1=0考点:换元法解分式方程.专题:换元法.分析:观察方程的两个分式具备的关系,设=y ,则原方程另一个分式为.可用换元法转化为关于y的方程.去分母即可.解答:解:把=y代入原方程得:y+=2,方程两边同乘以y整理得:y2﹣2y+1=0.故选C.点评:换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.14.(3分)(•盐城)下列命题中假命题是()A.平行四边形的对角线互相平分B.矩形的对角线相等C.等腰梯形的对角线相等D.菱形的对角线相等且互相平分考点:命题与定理.分析:平行四边形的对角线互相平分;矩形的对角线相等;等腰梯形的对角线相等;菱形的对角线垂直且互相平分.解答:解:根据特殊四边形的性质,知:A、B、C正确;D、菱形的对角线不相等,故错误.故选D.点评:本题考查命题的真假性,是易错题.注意平行四边形和特殊平行四边形对角线特性的掌握.15.(3分)(•盐城)某正方形园地是由边长为1的四个小正方形组成的,现在园地上建一个花园(即每个图中的阴影部分),使花坛面积是园地面积的一半,以下图中的设计不合要求的是()A.B.C.D.考点:正方形的性质.专题:压轴题.分析:根据正方形的对称性,逐个进行判断,可知A、C、D中的花坛面积均是园地面积的一半,而D则不是.解答:解:根据正方形的对称性可知:A、C、D 中的花坛面积都是,而B中的面积是1﹣﹣=.故选B.点评:主要考查了正方形的对称性和基本性质.正方形性质:边:两组对边分别平行,四条边都相等,相邻边互相垂直内角:四个角都是90°,对角线:对角线互相垂直,对角线相等且互相平分,每条对角线平分一组对角.16.(3分)(•盐城)若直线y=3x+m经过第一,三,四象限,则抛物线y=(x﹣m)2+1的顶点必在()A.第一象限B.第二象限C.第三象限D.第四象限考点:二次函数的性质;一次函数的性质.分析:由直线y=3x+m经过第一,三,四象限可判断m的符号,再由抛物线y=(x﹣m)2+1求顶点坐标,判断象限.解答:解:∵直线y=3x+m经过第一,三,四象限,∴m<0,∴抛物线y=(x﹣m)2+1的顶点(m,1)必在第二象限.故选B.点评:要求掌握直线性质和抛物线顶点式的运用.17.(3分)(•盐城)一台机床在十天内生产的产品中,每天出现的次品个数依次为(单位:个)0,2,0,2,3,0,2,3,1,2.那么,这十天中次品个数的()A.平均数是2 B.众数是3 C.中位数是1.5 D.方差是1.25考点:方差;算术平均数;中位数;众数.专题:应用题;压轴题.分析:根据平均数、众数、中位数、方差的概念计算后,再判断各选项的正误.解答:解:由题意可知:这十天次品的平均数为=1.5,故A错误;出现次数最多的数就叫这组数据的众数,则这组数据的众数是2,故B错误;总数个数是偶数的,按从小到大的顺序,取中间的那两个数的平均数便为中位数,则中位数为,故C错误;一组数据中各数据与这组数据的平均数的差的平方的平均数叫做这组数据的方差,则方差=1.25,故D正确.故选D.点评:正确理解中位数、众数及方差的概念,是解决本题的关键.18.(3分)(•盐城)如图是一个圆柱形木块,四边形ABB1A1是经边它的轴的剖面,设四边形ABB1A1的面积为S,圆柱的侧面积为S侧,则S与S侧的关系是()A.S=S侧B.S=C.D.不能确定考点:圆柱的计算.专题:压轴题.分析:侧面积=底面周长×高,四边形的面积=底面直径×高,算出后比较即可.解答:解:设底面直径为d,高为h,则四边形ABB1A1的面积为S=dh.圆柱的侧面积为S侧=πdh,所以.故选C.点评:本题的关键是设未知数,但又要把未知数当已知数来求.三.解答题(本大题共4小题,计29分)19.(6分)(•盐城)计算:(﹣(2﹣π)0+|﹣|﹣.考点:实数的运算.分析:本题涉及零指数幂、负整数指数幂、绝对值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2﹣1+﹣1=0.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(7分)(•盐城)如图,甲、乙两楼相距36m,甲楼高度为30m,自甲楼楼顶看乙楼楼顶的仰角为30°,问乙楼有多高(结果保留根式).考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:分析题意可得:过点A作AE⊥CD,交CD于点E;可构造Rt△ACE,利用已知条件解可得:CE=12;而乙楼高CD=AB+CE;代入可得答案.解答:解:过点A作AE⊥CD,交CD于点E;在Rt△ACE中,AE=36,∠CAE=30°,故CE=36×tan30°=12,CD=AB+CE=30+12答:乙楼高为(30+12)m.点评:本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.21.(8分)(•盐城)分别解不等式5x﹣2<3(x+1)和,再根据它们的解集写出x与y的大小关系.考点:解一元一次不等式.专题:计算题.分析:解不等式5x﹣2<3(x+1),去括号移项得2x<5,得x<.解不等式去括号,移项得2y>8,解得:y>4,然后比较x与y的大小.解答:解:不等式5x﹣2<3(x+1)的解集为,不等式的解集为y>4,∴y>x.点评:先利用不等式的性质,分别求出两个不等式的解集,然后比较大小.22.(8分)(•盐城)如图,直角梯形ABCD中,AB∥CD,AB⊥BC,对角线AC⊥BD,垂足为E,AD=BD,过点E作EF∥AB交AD于F,求证:(1)AF=BE;(2)AF2=AE•EC.考点:相似三角形的判定与性质;平行线的性质;直角梯形.专题:证明题.分析:(1)根据平行构造相似三角形,利用相似三角形的性质解答;(2)因为AB⊥BC,所以△ABC为直角三角形,又因为AC⊥BD,所以可知△BCE∽△ABE,利用相似三角形的性质即可解答.解答:证明:(1)∵EF∥AB,∴△DFE∽△DAB.∴=.又∵DA=DB,∴DF=DE.∴DA﹣DF=DB﹣DE,即AF=BE.(2)∵AB⊥BC,∴△ABC为直角三角形.又∵AC⊥BD,∴△BCE∽△ABE.∴=,即EB2=AE•EC.又∵AF=EB,∴AF2=AE•EC.点评:解答此题的关键是根据平行和直角三角形的性质找出图中的相似三角形,利用相似三角形的性质解答此题.要知道,EB2=AE•EC属于射影定理.四.解答题(本大题共8小题,计77分)23.(9分)(•盐城)已知关于x的一元次方程x2﹣(m+2)x+m2﹣2=0(1)当m为何值时,这个方程有两个相等的实数根;(2)如果这个方程的两个实数根x1,x2满足x12+x22=18,求m的值.考点:根与系数的关系;解一元二次方程-因式分解法;根的判别式.分析:(1)由于△=0时,一元二次方程有2个相等的实数根,故建立关于m的方程,求得m的值;(2)把等号左边进行整理,根据x12+x22=(x1+x2)2﹣2x1x2即可得到关于m的方程,从而求解.解答:解:(1)根据题意得:△=[﹣(m+2)]2﹣4×(m2﹣2)=0解得:m=﹣3;(2)∵x12+x22=18∴(x1+x2)2﹣2x1x2=18即(m+2)2﹣2×(m2﹣2)=18解得m=2或m=﹣10根据题意可得m≥﹣3才有实数根∴m=2.点评:解决本题的关键是把所求的代数式整理成与根与系数有关的形式.注意所求值的取舍.24.(9分)(•盐城)某气球内充满了一定质量的气球,当温度不变时,气球内气球的气压p(千帕)是气球的体积V(米2)的反比例函数,其图象如图所示.(千帕是一种压强单位)(1)写出这个函数的解析式;(2)当气球的体积为0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?考点:反比例函数的应用.专题:应用题.分析:(1)设p与V的函数的解析式为,利用待定系数法求函数解析式即可;(2)把v=0.8代入可得p=120;(3)由p=144时,v=,所以可知当气球内的气压>144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于立方米.解答:解:(1)设p与V的函数的解析式为,把点A(1.5,64)代入,解得k=96.∴这个函数的解析式为;(2)把v=0.8代入,p=120,当气球的体积为0.8立方米时,气球内的气压是120千帕;(3)由p=144时,v=,∴p≤144时,v≥,当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于立方米.点评:主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式.会用不等式解决实际问题.25.(8分)(•盐城)如图,AB是⊙O的直径,DF切⊙O于点D,BF⊥DF于F,过点A作AC∥BF交BD的延长线于点C.(1)求证:∠ABC=∠C;(2)设CA的延长线交⊙O于E,BF交⊙O于G,若的度数等于60°,试简要说明点D和点E关于直线AB对称的理由.考点:切线的性质.专题:证明题.分析:(1)作辅助线,连接OD,由DF为⊙O的切线,可得OD⊥DF,又BF⊥DF,AC∥BF,所以OD∥AC,∠ODB=∠C,由OB=OD得∠ABD=∠ODB,从而可证∠ABC=∠C;(2)连接OG,OD,AD,由BF∥OD,=60°,可求证===60°由平行线的性质及三角形的内角和定理可求出∠OHD=90°,由垂径定理便可得出结论.解答:证明:(1)连接OD,∵DF为⊙O的切线,∴OD⊥DF.∵BF⊥DF,AC∥BF,∴OD∥AC∥BF.∴∠ODB=∠C.∵OB=OD,∴∠ABD=∠ODB.∴∠ABC=∠C.(2)连接OG,OD,AD,∵BF∥OD,∴∠OBG=∠AOD,=.∵=60°,∴===60°.∴OD∥BF∥AC.∴∠ABC=∠C=∠E=30°,∠ODE=∠E=30°.在△ODH中,∠ODE=30°,∠AOD=60°,∴∠OHD=90°,∴AB⊥DE.∴点D和点E关于直线AB对称.点评:本题考查的是切线的性质及圆周角定理,比较复杂,解答此题的关键是作出辅助线,利用数形结合解答.26.(9分)(•盐城)如图,给出了我国从1998年~年每年教育经费投入的情况.(1)由图可见,1998年~年这五年内,我国教育经费投入呈现出逐年增长趋势;(2)根据图中所给数据,求我国1998年~年教育经费的年平均数;(3)如果我国的教育经费从年的5480亿元增加到年的7891亿元,那么这两年的教育经费平均增长率为多少?(结果精确到0.01)考点:算术平均数;一元二次方程的应用.分析:(1)从图中可以我国从1998年~年每年教育经费投入一年比一年高,所以呈现逐年增长的趋势;(2)我国从1998年~年每年教育经费投入分别是2949亿元,3349亿元,3849亿元,4638亿元,5480亿元,所以教育经费的年平均数为(2949+3349+3849+4638+5480)÷5=4053亿元;(3)第三问考查数量平均变化率问题,解题的关键是正确列出一元二次方程.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.解答:解:(1)根据图表可知我国教育经费投入呈现出趋势逐年增长趋势;(2)根据图表我国教育经费平均数=(2949+3349+3849+4638+5480)÷5=4053亿元;(3)设这两年的教育经费的平均增长率为x,则5480(1+x)2=7891解得x1≈0.20 x2≈﹣2.2(舍去)(结果精确到0.01)∴x=0.20=20%.故答案为(1)逐年增长;(2)我国1998年~年教育经费的年平均数为4053亿元;(3)教育经费平均增长率为20%.点评:本题主要考查的知识点:(1)平均数的求法;(2)涉及一元二次方程的平均变化率的求解.27.(10分)(•盐城)已知y=ax2+bx+c经过点(2,1)、(﹣1,﹣8)、(0,﹣3).(1)求这个抛物线的解析式;(2)画出该抛物线的草图、并标出图象与x轴交点的横坐标;(3)观察你所画的抛物线的草图,写出x在什么范围内取值时,函数值y<0?考点:待定系数法求二次函数解析式;二次函数的图象.分析:(1)直接利用图中的三个点的坐标代入解析式用待定系数法求解析式;(2)令y=0,解关于x的一元二次方程﹣x2+4x﹣3=0,其解即为图象与x轴交点的横坐标;(3)依据图象可知,当图象在x轴上方时,y>0,在x轴下方时,y<0,在x轴上时,y=0.解答:解:(1)把点(2,1),(﹣1,﹣8),(0,﹣3)代入可得解得a=﹣1,b=4,c=﹣3故y=﹣x2+4x﹣3;(2)当y=0时,﹣x2+4x﹣3=0解得x=1或x=3故图象与x轴交点的横坐标是1和3;(3)当x<1或x>3时,函数值y<0.点评:主要考查了用待定系数法求二次函数的解析式和二次函数及其图象的性质.28.(11分)(•盐城)银河电器销售公司通过对某品牌空调市场销售情况的调查研究,预测从年1月份开始的6个月内,其前n个月的销售总量y(单位:百台)与销售时间n(单位:月)近似满足函数关系式y=(n2+3n)(1≤n≤6,n是整数).(1)根据题中信息填写下表:(百台)第一个月的销售量前两个月的销售量(百台)第二个月的销售量(百台)前三个月的销售量(百台)第三个月的销售量(百台)(2)试求该公司第n个月的空调销售台数W(单位:百台)关于月份的函数关系式.考点:二次函数的应用.专题:应用题.分析:(1)先将月份1代入函数式中,求出1月份的销售量,然后将月份2代入函数式中求出1、2月份的销售量的和,然后减去1月份的销售量,就求出了2月份的销售量,然后按照此办法依次求出前3个月的销售总量和第3个月的销售量;(2)根据(1)得出的1、2、3月份的单月销售量,观察它们大致符合什么函数,然后设出函数通式,用待定系数法求出函数的解析式即可.解答:解:(1)第一个月的销售量 1(百台)前两个月的销售量2.5(百台)第二个月的销售量1.5 (百台)前三个月的销售量4.5 (百台)第三个月的销售量2(百台)(2)可设:W=kn+b,根据(1)中的填表信息可得:,解得:即该函数关系式为:W=(1≤n≤6,n是整数).点评:本题主要考查了二次函数的应用以及用待定系数法求一次函数解析式.根据二次函数准确填表是解题的关键,要注意给出的二次函数中y代表的是前n个月的销售总量,而不是第n个月的销售量.29.(10分)(•盐城)如图1,E为线段AB上一点,AB=4BE,以AE,BE为直径在AB的同侧作半圆,圆心分别为O1,O2,AC、BD分别是两半圆的切线,C、D为切点.(1)求证:AC=BD;(2)现将半圆O2沿着线段BA向点A平移,如图2,此时半圆O2的直径E′B′在线段AB上,AC′是半圆O2的切线,C′是切点,当为何值时,以A、C′、O2为顶点的三角形与△BDO1相似?考点:切线的性质;勾股定理;相似三角形的判定.专题:综合题;压轴题;分类讨论.分析:(1)如果设⊙O1的半径为R,⊙O2的半径为r,那么根据AB=4BE,可知R=3r.连接O1D,O2C,那么O1B=5r,AO2=7r,可在直角△BO1D中求出BD的长,同理求出AC的长,即可得出AC,BD的比例关系;(2)本题要分两种情况进行讨论:①当∠CAO2=∠B时,O2C,O1D和AO2,BO1分别对应成比例.设AE′=kAB,那么可用k,r表示出AE′的长,然后代入比例关系式中即可求出k的值.②当∠CAO2=∠DO1B时,AO2,BO1和O2C,BD对应成比例,然后按①的方法即可求出此时k的值.解答:(1)证明:连接O1D,O2C,设⊙O1的半径为R,⊙O2的半径为r,则R=3r在直角三角形BO1D中∵BO1=5r,O1D=3r∴BD=4r,同理可求得AC=4r∴AC=BD;(2)解:设AE′=kAB,因此AE′=8kr①当∠C′AO2=∠B时,,即∴k=,②当∠C′AO2=∠BO1D时,,即∴k=,或时,以A、C′、O2为顶点的三角形与△BDO1相似.点评:本题主要考查了勾股定理,相似三角形的判定和性质等知识点,要注意(2)中要按不同的相似三角形对应的成比例线段是不同的,因此要分类讨论.不要漏解.30.(11分)(•大庆)如图①,四边形AEFG和ABCD都是正方形,它们的边长分别为a,b(b≥2a),且点F在AD上(以下问题的结果均可用a,b的代数式表示).(1)求S△DBF;(2)把正方形AEFG绕点A按逆时针方向旋转45°得图②,求图②中的S△DBF;(3)把正方形AEFG绕点A旋转一周,在旋转的过程中,S△DBF是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由.考点:旋转的性质;正方形的性质.专题:压轴题.分析:(1)根据图形的关系,可得AF的长,根据三角形面积公式,可得△DBF的面积;(2)连接AF,由题意易知AF∥BD;△DBF与△ABD同底等高,故面积相等;(3)分析可得:当F点到BD的距离取得最大、最小值时,S△BFD取得最大、最小值;分两种情况讨论可得其最大最小值.解答:解:(1)∵点F在AD上,∴AF2=a2+a2,即AF=a,∴DF=b﹣a,∴S△DBF=DF×AB=×(b﹣a)×b=b2﹣ab;(2)连接DF,AF,由题意易知AF∥BD,∴四边形AFDB是梯形,∴△DBF与△ABD等高同底,即BD为两三角形的底,由AF∥BD,得到平行线间的距离相等,即高相等,∴S△DBF=S△ABD=b2;(3)正方形AEFG在绕A点旋转的过程中,F点的轨迹是以点A为圆心,AF为半径的圆,第一种情况:当b>2a时,存在最大值及最小值,因为△BFD的边BD=b,故当F点到BD的距离取得最大、最小值时,S△BFD取得最大、最小值.如图②所示DF⊥BD时,S△BFD的最大值=S△BFD=b•(+a)=,S△BFD的最小值=S△BFD=b•(﹣a)=,第二种情况:当b=2a时,存在最大值,不存在最小值.∴S△BFD的最大值=.(如果答案为4a2或b2也可).点评:解答本题要充分利用正方形的特殊性质,注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,可有助于提高解题速度和准确率.。

年九年级郑州市二模数学试卷及答案

年九年级郑州市二模数学试卷及答案

2019年河南省郑州市二模数学试卷(满分120分,考试时间100分钟)一、选择题(每小题3分,共30分)1.如表是郑州市2019年1月1日零点到三点的天气情况,从零点到三点最高温度与最低温度差是()A.2℃B.3℃C.4℃ D.5℃2.如图所示,该几何体的左视图是()A. B. C. D.3.下列运算正确的是()A.-3a2·2a3=-6a6B.6a6÷(-2a3)=-3a2C.(-a3)2=a6D.(ab3)2=ab64.如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为()A.25°B.40°C.50°D.80°5.某校九年级“经典咏流传”朗诵比赛中,有15名学生参加比赛,他们比赛的成绩各不相同,其中一名学生想知道自己能否进入前8名,不仅要了解自己的成绩,还要了解这15名学生成绩的统计量是()A.中位数B.众数C.平均数D.方差6.如图,在△ABC中,∠ABC=90°,AB=4 cm,BC=3 cm.动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为12cm/s,点Q的速度为1 cm/s,点Q移动到点C后停止,点P也随之停止运动.若使△PBQ的面积为154cm2,则点P运动的时间是()A.2 s B.3 s C.4 s D.5 s7.不等式组23539xx+⎧⎨-<⎩≤的解集在数轴上表示正确的是()A.B.C.D.8.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:①分别以点A,D为圆心,以大于12 AD的长为半径在AD两侧作弧,分别交于M,N两点;②连接MN分别交AB,AC于点E,F;③连接DE,DF.若BD=8,AF=5,CD=4,则下列说法中正确的是()A.DF平分∠ADC B.AF=3CFC.DA=DB D.BE=109.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形DABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(-2,0),第2次碰到正方形的边时的点为P2,……,第n次碰到正方形的边时的点为P n,则点P2 019的坐标是()A.(0,1) B.(-4,1)C.(-2,0) D.(0,3)10.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发,沿折线B-A-D-C方向以1单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.5 B.C.8 D.二、填空题(每小题3分,共15分)11.2-=__________.12.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为3:4.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为__________.13.若关于x的一元二次方程29304kx x--=有实数根,则实数k的取值范围是__________.14.如图,在△ABC中,CA=CB,∠ACB=90°,AB=4,点D为AB的中点,以点D为圆心作圆,半圆恰好经过△ABC的直角顶点C,以点D为顶点,作∠EDF=90°,与半圆分别交于点E,F,则图中阴影部分的面积是_______.15.在矩形ABCD中,AB=6,AD=3,E是AB边上一点,AE=2,F是直线CD上一动点,将△AEF沿直线EF折叠,点A的对应点为点A′,当点E,A′,C三点在一条直线上时,DF的长度为__________.三、解答题(共75分)16.(8分)先化简,再求值:21122xxx x-⎛⎫+÷⎪--⎝⎭,其中x是方程x2-2x=0的根.17.(9分)“安全教育平台”是中国教育学会为方便家长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解九年级家长和学生参与“青少年不良行为的知识”的主题情况,在本校九年级学生中随机抽取部分学生作调查,把收集的数据分为以下四类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了_______名学生;(2)补全条形统计图,并在扇形统计图中计算B类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该年级600名学生中“家长和学生都未参与”的人数.18.(9分)如图,AB是⊙O的直径,且AB=12,点M为⊙O外一点,且MA,MC分别为⊙O的切线,切点分别为点A,C.点D是两条线段BC与AM延长线的交点.(1)求证:点M是AD的中点;(2)①当CM=_______时,四边形AOCM是正方形;②当CM=_______时,△CDM为等边三角形.19.(9分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数ayx(a≠0)的图象分别交于点A,C,点A的横坐标为-3,与x轴交于点E(-1,0).过点A作AB⊥x轴于点B,过点C作CD⊥x轴于点D,△ABE的面积是2.(1)求一次函数和反比例函数的表达式;(2)求四边形ABCD的面积.20.(9分)五星红旗作为中华民族五千年历史上第一面代表全体人民意志的民族之旗、团结之旗、胜利之旗、希望之旗、吉祥之旗,是中华人民共和国的标志和象征.某校九年级综合实践小组开展了测量学校五星红旗旗杆AB高度的活动.如图,他们在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处分别测得旗杆顶点A的仰角为40°,平面镜E的俯角为45°,FD=米,问旗杆AB的高度约为多少米(结果保留整数)(参考数据:tan40°≈,tan50°≈,tan85°≈)21.(10分)郑州市创建国家生态园林城市实施方案已经出台,到2019年6月底,市区主城区要达到或超过《国家生态园林城市标准》各项指标要求,郑州市林荫路推广率要超过85%.在推进此活动中,郑州市某小区决定购买A,B两种乔木树,经过调查,获取信息如下:如果购买A种树木40棵,B种树木60棵,需付款11 400元;如果购买A种树木50棵,B种树木50棵,需付款10 500元.(1)A种树木与B种树木的单价各多少元(2)经过测算,需要购置A,B两种树木共100棵,其中B种树木的数量不多于A种树木的三分之一,如何购买付款最少最少费用是多少元请说明理由.22.(10分)已知△ABC是等腰直角三角形,∠ACB=90°,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图1,若点P在线段AB上,且AC=6,PA=,则:①线段PB=_________,PC=__________;②直接写出PA2,PB2,PC2三者之间的数量关系:_______________.(2)如图2,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图2给出证明过程.(3)若动点P满足14PAAB,直接写出PCBC的值:___________.23. (11分)如图1,在平面直角坐标系中,O 是坐标原点.点A 在x 轴的正半轴上,点A 的坐标为(10,0).一条抛物线214y x bx c =-++经过O ,A ,B 三点,直线AB 的表达式为152y x =-+,且与抛物线的对称轴交于点Q .(1)求拋物线的表达式.(2)如图2,在A ,B 两点之间的抛物线上有一动点P ,连接AP ,BP ,设点P 的横坐标为m ,△ABP 的面积为S ,求出面积S 取得最大值时点P 的坐标.(3)如图3,将△OAB 沿射线BA 方向平移得到△DEF .在平移过程中,以A ,D ,Q 为顶点的三角形能否成为等腰三角形如果能,请直接写出此时点E 的坐标(点O 除外);如果不能,请说明理由.2019年九年级适应性测试 数学 参考答案及评分细则一、 选择题(每小题3分,共30分)二、 填空题(每小题3分,共15分) 11. 5 12. 242513. -10k k ≥≠且 14. 2π- 15. 1或11 三、解答题(本大题有8个小题,共75分)16.(8分) 解:)21(x x +-÷212--x x =⨯--2)1(2x x )1)(1(2-+-x x x …………………3分 =11+-x x . ………………………………4分 由x 2-2x=0可得,x=0或x=2, ……………………6分 当x =2时,原来的分式无意义, ………………………7分 ∴当x =0时,原式=11010-=+-. ……………8分4017.(9分) 解:(1)200; ……………………………2分 (2)如图;B 类所对应扇形的圆心角的度数为360°⨯40=20072°;……… 6分 (3)20600=60200⨯(人). .............. 8分 答:该年级600名学生中“家长和学生都未参加”的人数约为60人. ……………9分18. (9分)解:(1)如图,连接OM ………………1分 ∵MA ,MC 分别切⊙O 于点A 、C , ∴MA ⊥OA ,MC ⊥OC . 在Rt△MAO 和Rt△MCO 中,MO =MO ,AO =CO ,∴△MAO ≌△MCO (HL ).∴MC =MA . …………………3分 ∵OC =OB , ∴∠OCB =∠B .又∵∠DCM +∠OCB =90°,∠D +∠B =90°, ∴∠DCM =∠D .………………4分 ∴DM =MC . ∴DM =MA .∴点M 是AD 的中点; ……………………………………5分 (2)①6; …………………………………7分 ②32 . …………………………………9分 (说明:本题方法不唯一,只要对,请对应给分)19.(9分) 解:(1)∵AB ⊥x 轴于点B ,BE =2. ∵S △ABE =21AB•BE =2,∴21×AB×2=2. ∴AB =2.∴点A (3-, 2).………………………2分 ∵点A 在反比例函数y=(a ≠0)的图象上, ∴,32-=aa =23⨯-=6-. ∴反比例函数的表达式为.6xy -= ………………………3分∵点A (3-, 2),E (1-, 0)在一次函数b kx y +=(k ≠0)的图象上,将A (3-, 2),E (1-, 0)分别代入b kx y +=,得:⎩⎨⎧=+-=+-.0,23b k b k 解得⎩⎨⎧-=-=.1,1b k ∴一次函数的表达式为.1--=x y …………………6分(2)∵点A (3-, 2),根据题意,得⎪⎩⎪⎨⎧-=--=.6,1x y x y 解之得,⎩⎨⎧-==⎩⎨⎧=-=.3,2.2,32211y x y x ∴C (2,3-), .........7分又∵BD =2-(3-)=5,CD =3, AB =2, ∴S 四边形ABCD =S △ABD +S △BCD=21BD•AB+21BD•CD =21×5×2+ 21×5×3=225. 答:四边形ABCD 的面积是225…………9分20. (9分)解:过点F 作AB FG ⊥于点G .................1分∴ο90=∠=∠BGF AGF .∵ο90=∠BDF ,ο90=∠ABD ,∴四边形BDFG 为矩形.........2分 ∴DF BG =,FG BD =,BD ∥FG ,∴ο45=∠=∠DEF GFE .设x AB =米,由题意得,ο45=∠=∠FED AEB ,∴οοο454590=-=∠EAB . ∴EAB AEB ∠=∠,∴x AB BE ==米. 同理可得,51.DF DE ==米,.)51(米.x FG BE DE BD +==+=51.DF BG ==米.∴.)51(米.x AG -=.…………,5分 在ΔAFG Rt 中,ο40=∠AFG , ∵FGAGAFG =∠tan ,∴).5.1(8405.1,40tan +⨯=-•=x .x FG AG ο...............7分解得,x =,17≈x . …………8分答:旗杆AB 的高度约为17米.………………9分 (说明:本题方法不唯一,只要对,就对应给分)21.(10分)解:(1)设A 种树木单价x 元,B 种树木单价y 元………1分由题意,可得 40600.911400,500.8500.910500.x y x y +⨯=⎧⎨⨯+⨯=⎩………………3分解得150,100.x y =⎧⎨=⎩答:A 种树木单价150元,B 种树木单价100元; …………4分(2)设购置A 种树木a 棵,则购置B 种树木(a -100)棵,所需的总费用为w 元 ....5分 由题意,可得:a -100≤13a . 解得:a ≥75. ……………………7分 ∴w =×150×a +100×(a -100)=20a +10000. ∵20>0,∴ w 随a 的增大而增大. ……………………9分∴a =75时,w 有最小值11500, 且a -100 =25.答:购买A 种树木75棵,B 种树木25棵时付款费用最少,最少付款费用为11500元. ……10分22. (10分) 解:(1)24,52; ……………………2分②PA 2+PB 2=2PC 2. …… ……………………4分 (2)如图②,连接BQ . ∵∠ACB =∠PCQ =90°,∴∠ACP =∠BCQ . .222PC PQ =在△ACP 和△BCQ 中,⎪⎩⎪⎨⎧=∠=∠=.,,CQ CP BCQ ACP CB CA ∴△ACP ≌△BCQ .....................6分∴PA =BQ ,∠CBQ =∠CAP =45°. ∴∠PBQ =90°.∴BQ 2+PB 2=PQ 2. ∴PA 2+PB 2=PQ 2. ……………7分23.(11分) 解:(1)将点A (10,0)、O (0,0)的坐标分别代入抛物线的表达式y =14-x 2+bx +c , 中,得⎪⎩⎪⎨⎧==++⨯.001010412c c b -,解得⎪⎩⎪⎨⎧==.0,25c b所以抛物线的表达式为y =14-x 2+x 25; ……………3分 (2)如图:作PC ⊥x 轴于C 点,交AB 与E ,AB 的表达式为521+=x -y . 设P (m ,﹣41m 2+25m ),E (m ,﹣21m +5). PE =y P ﹣y E =﹣41m 2+3m ﹣5, ......................5分S =21PE •(x A ﹣x E )+21PE (x E ﹣x B )=21×(﹣41m 2+3m ﹣5)×(10﹣2),化简,得 S =﹣m 2+12m ﹣20, 当m =6时,S 最大=16.当S 取得最大值时点P 的坐标为(6,6); ………………7分 (3) E 1(21,﹣211), E 2(15,﹣25), E 3(16,﹣3), E 4(312,﹣411).…..............................11分(说明:本题方法不唯一,只要对,就对应给分)。

河南省郑州市2022年九年级中考二模模拟数学试题卷(含答案与解析)

河南省郑州市2022年九年级中考二模模拟数学试题卷(含答案与解析)
【1题答案】
【答案】D
【解析】
【分析】根据相反数的定义即可求得.
【详解】解:- 的相反数是
故选:D.
【点睛】本题考查了求一个数的相反数,熟练掌握和运用求一个数的相反数的方法是解决本题的关键.
2.据河南省统计局发布的信息,2021年我省对外贸易取得新突破,全年全省进出口总值 亿元,创河南省进出口规模历史新高,数据“ 亿”用科学记数法表示为()
15.如图,在平行四边形ABCD中,对角线AC,BD相交于点O, , ,E为AD上一动点,连接BE,将 沿BE折叠得到 ,当点F落在平行四边形的对角线上时,OF的长为______.
三、解答题(共8个小题,共75分)
16.如果 ,那么代数式 的值.
17.为了解某市八年级数学期末考试情况,进行了抽样调查,过程如下,请将有关问题补充完整.
证明:如图①,延长AD与BT交于点H,连接OD,OT.
∵DT,BT与⊙O相切
∴… …,①
∴BT=DT
∵AB是半⊙O的直径,∠ADB=90°,②
在△BDH中,BT=DT,得到∠TDB=∠TBD,
可得∠H=∠TDH,
∴BT=DT=HT.
又∵DE∥BH,∴ = , =
∴ =
又∵BT=HT,∴DF=EF.
任务:
(1)求点B距水平地面AE 高度;
(2)求广告牌CD的高度.(结果精确到0.1米)
22.阅读下面材料,并按要求完成相应的任务:
阿基米德是古希腊的数学家、物理学家.在《阿基米德全集》里,他关于圆的引理的论证如下:
命题:设AB是一个半圆的直径,并且过点B的切线与过该半圆上的任意一点D的切线交于点T,如果作DE垂直AB于点E,且与AT交于点F,则DF=EF.
13.如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=120°, , 的长为π,则图中阴影部分的面积为_____.

2024年河南省郑州市九年级中考第二次模拟考试数学试题

2024年河南省郑州市九年级中考第二次模拟考试数学试题

2024年河南省郑州市九年级中考第二次模拟考试数学试题一、单选题1.2的绝对值是( )A .﹣2B .12 C .2 D .±22.近十年来,我国扎实开展国土绿化行动,持续推进科学绿化,累计完成国土绿化面积16.8亿亩,其中16.8亿用科学记数法表示为( )A .81.6810⨯B .91.6810⨯C .816.810⨯D .100.16810⨯ 3.要说明命题“两个数相加,和一定大于其中一个加数”是假命题,能够作为反例的是( ) A .134+= B .132-+= C .033+= D .()134-+-=- 4.如果一个四边形绕对角线的交点旋转90°,所得四边形与原四边形重合,那么这个四边形一定是( )A .平行四边形B .矩形C .菱形D .正方形 5.a ,b ,c 是三个连续的正偶数,以b 为边长的正方形面积的为1S ,分别以a ,c 为长和宽的长方形的面积为2S ,则1S 与2S 的数量关系是( )A .12S S =B .122S S -=C .214S S -=D .124S S -= 6.在平面直角坐标系中,某个图形上各点的纵坐标保持不变,而横坐标变为原来的相反数,此时图形却未发生任何改变.下列说法正确的是( )A .该图形是轴对称图形且关于y 轴对称B .该图形是轴对称图形且关于x 轴对称C .该图形是中心对称图形且关于原点中心对称D .该图形是任意图形均可7.中国古代“四大发明”有造纸术、指南针、火药和活字印刷术.小明购买了以“四大发明”为主题的四张纪念卡片,他将卡片背面朝上放在桌面上(纪念卡片背面完全相同),小亮从中随机抽取两张,则他抽到的两张纪念卡片恰好是“造纸术”和“指南针”的概率是( )A .23 B .12 C .16 D .188.下面的三个问题中都有两个变量:①某水池有水315m ,现打开进水管进水,进水速度为35m /h ,x 小时后,这个水池有水3m y ; ②某电信公司手机的A 类收费标准为:每部手机每月必须缴月租费12元,另外,通话费按0.2元/min 计.若一个月的通话时间为min x ,应缴费用为y 元;③用长度为1的铁丝围成一个矩形,设矩形的面积为y ,其中一边长x .其中,变量y 与变量x 之间的函数关系可以用如图所示的图象表示的是( )A .①②B .②③C .①③D .①②③9.已知数轴上点A ,B ,C ,D 对应的数字分别为1-,1,x ,7,点C 在线段BD 上且不与端点重合,若线段AB BC CD ,,能围成三角形,则x 的取值范围是( )A .17x <<B .26x <<C .35x <<D .34x <<10.如图1,在ABC V 中,动点P 从点A 出发沿折线AB BC CA →→匀速运动至点A 后停止,设点P 的运动路程为x ,线段AP 的长度为y ,ABC V 的高CG =,图2是y 与x 的函数关系的大致图象,其中点F 为曲线DE 的最低点,则点F 的坐标为( )A .(12B .(4C .(13D .(12二、填空题11.平面上两条直线的位置关系是或.12.某校为了解九年级1000名学生一分钟跳绳的情况,随机抽取50名学生进行一分钟跳绳测试,获得了他们跳绳的数据(单位:个),数据整理如下:根据以上数据,估计九年级1000名学生中跳绳的个数不低于175个的人数为 人. 13.如图,一座金字塔被发现时,顶部已经损坏,但底部未曾受损.已知该金字塔的底面是一个边长为130m 的正方形,且每个侧面与底面所夹的角都为()090αα︒<<︒,则这座金字塔原来的高为 m (用含α的式子表示).14.如图,在Rt ABC △中,90C ∠=︒,AC BC =,点O 在边AB 上,2OA =,以O 为圆心,OA 长为半径作半圆,恰好与BC 相切于点D ,交AB 于点E ,则阴影部分的面积为 .15.如图,在菱形ABCD 中,=60B ∠︒,将边AB 绕点A 顺时针旋转()0360αα︒<<︒得到AE ,连接EC ,ED ,当ECD V 为直角三角形时,α的度数为 .三、解答题16.(1131---;(2)化简:2221442x x x x x -⎛⎫÷+ ⎪-+-⎝⎭. 17.某校所在城市中学段跳远成绩达到596cm 就很可能夺冠,该市跳远记录为609cm .该校要从甲、乙两名运动员中挑出一人参加全市中学生跳远比赛.李老师记录了二人在最近的10次选拔赛中的成绩(单位:cm ),并进行整理、描述和分析.a .甲、乙二人最近10次选拔赛成绩:甲:585,596,610,598,612,597,604,600,613,601;乙:613,618,580,574,618,593,585,590,598,624.b .甲、乙两人最近10次选拔赛成绩的统计表:根据以上信息,回答下列问题:(1)分析这两名运动员的成绩各有什么特点?(2)你认为李老师会让谁去参加比赛?请说明理由.18.如图,点A ,B 为O e 上的两点,连接AO ,BO ,(90)AB AOB ∠<︒.(1)请用无刻度的直尺和圆规,过点B 作OA 的平行线(保留作图痕迹,不写作法).(2)若(1)中所作的平行线与O e 交于点C ,连接AC ,则C A O ∠与O ∠有怎样的数量关系,请说明理由.19.如图,在平面直角坐标系xOy 中,函数()0ky x x=>的图象与直线1y x =+交于点()1,A m .(1)求k ,m 的值;(2)已知点P 为直线1y x =+在第一象限上的一个动点,且点P 的横坐标为a ,过点P 作x 轴的垂线,交函数()0k y x x=>的图象于点Q ,当2PQ =时,求a 的值;(3)观察图象,直接写出当2PQ >时,a 的取值范围.20.阅读材料:小学阶段我们学习过被3整除的数的规律,初中阶段可以论证结论的正确性.以三位数为例,设abc 是一个三位数,若a b c ++可以被3整除,则这个数可以被3整除.论证过程如下:()()10010999abc a b c a b a b c =++=++++,显然99a +9b 能被3整除,因此,如果a b c ++可以被3整除,那么abc 就能被3整除.应用材料解答下列问题:(1)设abc 是一个三位数,直接写出abc 满足什么条件时,它可以被5整除;(2)设abcd 是一个四位数,猜想abcd 满足什么条件时,它可以被4整除,并说明理由. 21.生物学家认为,睡眠中的恒温动物依然会消耗体内能量,主要是为了保持体温.脉搏率f 是单位时间心跳的次数,医学研究发现,动物的体重W (单位:g )与脉搏率f 存在着一定的关系.如表给出一些动物体重与脉搏率对应的数据,图1画出了体重W 与脉搏率f 的散点图,图2画出了lgf 与lgW 的散点图(lgX 是一种运算,如1100220.330.5g lg lg =≈≈,,).为了较好地描述体重W 和脉搏率f 的关系,现有以下两种模型供选择:①f kW b =+;②lgf klgW b =+.(1)选出你认为最符合实际的函数模型,并说明理由;(2)不妨取表1中豚鼠和兔的体重、脉搏率数据代入所选函数模型,求出lgf 关于lgW 的函数表达式.(参考数据:1200 2.32000 3.3300 2.5g lg lg ≈≈≈,,.)22.在平面直角坐标系中,设二次函数2(y x bx c b =-++,c 为常数).. (1)写出一组b ,c 的值,使抛物线2y x bx c =-++与x 轴有两个不同的交点,并说明理由.(2)若抛物线2y x bx c =-++经过(1,0)-,(2,3).①求抛物线的表达式,并写出顶点坐标;②设抛物线与y 轴交于点A ,点B 为抛物线上的一点,且到y 轴的距离为2个单位长度,点(,)P m n 为抛物线上点A ,B 之间(不含点A ,)B 的一个动点,求点P 的纵坐标n 的取值范围.23.如图,ABC V 的三边长分别为a ,b ,()c a b c >>,111A B C △的三边长分别为1a ,1b ,1c ,111ABC A B C ∽△△,相似比为(k k 为常数且0k >,1)k ≠..(1)若1c a =,用k 表示a 和c 的数量关系;(2)在(1)的条件下,请写出符合条件的一对ABC V 和111A B C △,使得a ,b ,c 和1a ,1b ,1c 都是正整数;(3)若1b a =,1c b =,是否存在ABC V 和111A B C △相似使得k 是正整数?请说明理由.。

郑州市 中考数学二模试卷及答案(word解析版)

郑州市 中考数学二模试卷及答案(word解析版)

河南省郑州市中考数学二模试卷参考答案与试题解析一、填空题:(本大题共10小题,每小题2分,计20分)1.(2分)(2009•常德)3的倒数是.的倒数是2.(2分)﹣y的系数是﹣,次数是3.解:根据单项式系数、次数的定义,数字因式﹣为单项式的系数,字母指数和为3.(2分)(2004•盐城)因式分解:x2﹣4y2=(x+2y)(x﹣2y).4.(2分)(2011•邵阳)函数y=中,自变量x的取值范围是x≥1.5.(2分)(2004•盐城)已知△ABC∽△A′B′C′,它们的相似比为2:3,那么它们的周长比是2:3.6.(2分)(2004•盐城)在正比例函数y=3x中,y随x的增大而增大(填“增大”或“减小”).7.(2分)(2004•盐城)若直角三角形斜边长为6,则这个直角三角形斜边上的中线长为3.8.(2分)(2004•盐城)请写出你熟悉的两个无理数或.解:例如,9.(2分)(2008•郴州)已知⊙O的半径是3,圆心O到直线l的距离是3,则直线l与⊙O的位置关系是相切.10.(2分)(2004•盐城)如图,在⊙O的内接四边形ABCD中,∠BOD=90°,则∠BCD=135度.A=∠二.选择题(本大题共8小题,每小题3分,计24分)下列各题给出的四个选项中只有一个是正确的,请将正确答案的字母代号填写在下面的表格内.13.(3分)(2004•盐城)解分式方程时,可设=y,则原方程可化为整式方程是观察方程的两个分式具备的关系,设,则原方程另一个分式为解:把y+15.(3分)(2004•盐城)某正方形园地是由边长为1的四个小正方形组成的,现在园地上建一个花园(即每个图中的阴影部分),使花坛面积是园地面积的一半,以下图中的设计不合要求的是()B.中的花坛面积都是,而﹣=.217.(3分)(2004•盐城)一台机床在十天内生产的产品中,每天出现的次品个数依次为(单位:个)0,2,解:由题意可知:这十天次品的平均数为则中位数为18.(3分)(2004•盐城)如图是一个圆柱形木块,四边形ABB1A1是经边它的轴的剖面,设四边形ABB1A1的面积为S,圆柱的侧面积为S侧,则S与S侧的关系是()S=S=.三.解答题(本大题共4小题,计29分)19.(6分)(2004•盐城)计算:(﹣(2﹣π)0+|﹣|﹣.﹣20.(7分)(2004•盐城)如图,甲、乙两楼相距36m,甲楼高度为30m,自甲楼楼顶看乙楼楼顶的仰角为30°,问乙楼有多高(结果保留根式).;30+1221.(8分)(2004•盐城)分别解不等式5x﹣2<3(x+1)和,再根据它们的解集写出x 与y的大小关系..解不等式,不等式22.(8分)(2004•盐城)如图,直角梯形ABCD中,AB∥CD,AB⊥BC,对角线AC⊥BD,垂足为E,AD=BD,过点E作EF∥AB交AD于F,求证:(1)AF=BE;(2)AF2=AE•EC.=.=,即四.解答题(本大题共8小题,计77分)23.(9分)(2004•盐城)已知关于x的一元次方程x2﹣(m+2)x+m2﹣2=0(1)当m为何值时,这个方程有两个相等的实数根;(2)如果这个方程的两个实数根x1,x2满足x12+x22=18,求m的值.((24.(9分)(2004•盐城)某气球内充满了一定质量的气球,当温度不变时,气球内气球的气压p(千帕)是气球的体积V(米2)的反比例函数,其图象如图所示.(千帕是一种压强单位)(1)写出这个函数的解析式;(2)当气球的体积为0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?的函数的解析式为,利用待定系数法求函数解析式即可;可得v=球的体积应不小于立方米.的函数的解析式为∴这个函数的解析式为,v=,立方米.25.(8分)(2004•盐城)如图,AB是⊙O的直径,DF切⊙O于点D,BF⊥DF于F,过点A作AC∥BF 交BD的延长线于点C.(1)求证:∠ABC=∠C;(2)设CA的延长线交⊙O于E,BF交⊙O于G,若的度数等于60°,试简要说明点D和点E关于直线AB对称的理由.,,可求证====60===6026.(9分)(2004•盐城)如图,给出了我国从1998年~2002年每年教育经费投入的情况.(1)由图可见,1998年~2002年这五年内,我国教育经费投入呈现出逐年增长趋势;(2)根据图中所给数据,求我国1998年~2002年教育经费的年平均数;(3)如果我国的教育经费从2002年的5480亿元增加到2004年的7891亿元,那么这两年的教育经费平均增长率为多少?(结果精确到0.01)27.(10分)(2004•盐城)已知y=ax2+bx+c经过点(2,1)、(﹣1,﹣8)、(0,﹣3).(1)求这个抛物线的解析式;(2)画出该抛物线的草图、并标出图象与x轴交点的横坐标;(3)观察你所画的抛物线的草图,写出x在什么范围内取值时,函数值y<0?可得28.(11分)(2004•盐城)银河电器销售公司通过对某品牌空调市场销售情况的调查研究,预测从2004年1月份开始的6个月内,其前n个月的销售总量y(单位:百台)与销售时间n(单位:月)近似满足函数关系式y=(n2+3n)(1≤n≤6,n是整数).(2)试求该公司第n个月的空调销售台数W(单位:百台)关于月份的函数关系式.,解得:W=29.(10分)(2004•盐城)如图1,E为线段AB上一点,AB=4BE,以AE,BE为直径在AB的同侧作半圆,圆心分别为O1,O2,AC、BD分别是两半圆的切线,C、D为切点.(1)求证:AC=BD;(2)现将半圆O2沿着线段BA向点A平移,如图2,此时半圆O2的直径E′B′在线段AB上,AC′是半圆O2的切线,C′是切点,当为何值时,以A、C′、O2为顶点的三角形与△BDO1相似?AC=4AC=,即k=时,,即k=或30.(11分)(2008•大庆)如图①,四边形AEFG和ABCD都是正方形,它们的边长分别为a,b(b≥2a),且点F在AD上(以下问题的结果均可用a,b的代数式表示).(1)求S△DBF;(2)把正方形AEFG绕点A按逆时针方向旋转45°得图②,求图②中的S△DBF;(3)把正方形AEFG绕点A旋转一周,在旋转的过程中,S△DBF是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由.a﹣DF×﹣b ab=b(aa,.。

郑州市九年级第二次质量预测数学试题及答案(解析版)

郑州市九年级第二次质量预测数学试题及答案(解析版)

河南省郑州市中考第二次质量预测数学试卷一、选择题(每小题3分,共24分)1.(3分)(•遵义)下列各数中,比﹣1小的数是()A.0B.﹣2 C.D.1考点:有理数大小比较.分析:根据有理数大小关系,负数绝对值大的反而小,即可得出比﹣1小的数.解答:解:∵|﹣1|=1,|﹣2|=2,∴2>1,∴﹣2<﹣1.故选B.点评:此题主要考查了有理数的比较大小,根据负数比较大小的性质得出是解决问题的关键.2.(3分)(•烟台)从不同方向看一只茶壶,你认为是俯视效果图的是()A.B.C.D.考点:简单组合体的三视图.专题:图表型.分析:俯视图就是从物体的上面看物体,从而得到的图形;找到从上面看所得到的图形即可.解答:解:选项A的图形是从茶壶上面看得到的图形.故选A.点评:本题考查了三视图的知识,明确一个物体的三视图:俯视图就是从物体的上面看物体,从而得到的图形.3.(3分)(•绍兴)明天数学课要学“勾股定理”.小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约为12 500 000,这个数用科学记数法表示为()A.1.25×105B.1.25×106C.1.25×107D.1.25×108考点:科学记数法—表示较大的数.专题:存在型.分析:根据用科学记数法表示数的方法进行解答即可.解答:解:∵12 500 000共有8位数,∴n=8﹣1=7,∴12 500 000用科学记数法表示为:1.25×107.故选C.点评:本题考查的是科学记数法的概念,即把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.4.(3分)(•庆阳)如图,AB∥CD,EF⊥AB于E,EF交CD于F,已知∠1=60°,则∠2=()A.30°B.20°C.45°D.60°考点:平行线的性质.分析:利用对顶角相等求出∠3,再由∠CFE=90°,可求出∠2.解答:解:∵∠1和∠2是对顶角,∴∠2=∠1=60°,∵EF⊥AB,∴∠CFE=90°,∴∠2=90°﹣60°=30°.故选A.点评:本题考查了对顶角、余角的知识,注意掌握对顶角相等、互余的两角之和为90°.5.(3分)(•孝感)一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是()A.B.C.D.考点:概率公式.专题:应用题.分析:让绿灯亮的时间除以时间总数60即为所求的概率.解答:解:一共是60秒,绿的是25秒,所以绿灯的概率是.故选C.点评:本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.6.(3分)(•湘潭)如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.20°B.40°C.50°D.80°考点:圆周角定理;平行线的性质.专题:压轴题;探究型.分析:先根据弦AB∥CD得出∠ABC=∠BCD,再根据∠ABC=40°即可得出∠BOD的度数.解答:解:∵弦AB∥CD,∴∠ABC=∠BCD,∴∠BOD=2∠ABC=2×40°=80°.故选D.点评:本题考查的是圆周角定理及平行线的性质,根据题意得到∠ABC=∠BCD,是解答此题的关键.7.(3分)(•郑州模拟)样本方差的计算式S2=[(x1﹣30)2+(x2﹣30)]2+…+(x n﹣30)2]中,数字20和30分别表示样本中的()A.众数、中位数B.方差、标准差C.样本中数据的个数、平均数D.样本中数据的个数、中位数考点:方差.分析:根据方差的计算公式中各数据所表示的意义回答即可.解答:解:由方差的计算公式可知:20表示的是样本数据的数量,而30表示的是样本数据的平均数.故选C.点评:考查了方差,在方差公式:S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]中,n表示的是样本的数量,表示的是样本的平均数.8.(3分)(•郑州模拟)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.1B.1.2 C.1.3 D.1.5考点:勾股定理;矩形的性质.专题:几何综合题.分析:根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.解答:解:∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.因为AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴AM的最小值是1.2.故选B.点评:此题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质.要能够把要求的线段的最小值转换为便于分析其最小值的线段.二、填空题(每小题3分,共21分)9.(3分)(•黔西南州)﹣2的相反数是2.考点:相反数.分析:根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.解答:解:﹣2的相反数是:﹣(﹣2)=2,故答案为:2.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.10.(3分)(•郑州模拟)请写出一个运算结果为a6的运算式子:a4•a2=a6(答案不唯一).考点:幂的乘方与积的乘方;同底数幂的乘法.专题:开放型.分析:根据同底数幂相乘,底数不变,指数相加即可求.注意答案不唯一.解答:解:a4•a2=a6.故答案是a4•a2=a6(答案不唯一).点评:本题考查了同底数幂的乘方,解题的关键是注意掌握同底数幂的运算法则.11.(3分)(•中山)方程x2=2x的解是x1=0,x2=2.考点:解一元二次方程-因式分解法.专题:计算题.分析:先移项得到x2﹣2x=0,再把方程左边进行因式分解得到x(x﹣2)=0,方程转化为两个一元一次方程:x=0或x﹣2=0,即可得到原方程的解为x1=0,x2=2.解答:解:∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴x1=0,x2=2.故答案为x1=0,x2=2.点评:本题考查了解一元二次方程﹣因式分解法:把一元二次方程变形为一般式,再把方程左边进行因式分解,然后把方程转化为两个一元一次方程,解这两个一元一次方程得到原方程的解.12.(3分)(•郑州模拟)如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分)的面积,验证了一个等式是a2﹣b2=(a+b)(a﹣b).考点:平方差公式的几何背景.专题:常规题型.分析:分别表示出两个图形中的阴影部分的面积,然后根据两个阴影部分的面积相等即可得解.解答:解:左边图形中,阴影部分的面积=a2﹣b2,右边图形中,阴影部分的面积=(a+b)(a﹣b),∵两个图形中的阴影部分的面积相等,∴a2﹣b2=(a+b)(a﹣b).故答案为:a2﹣b2=(a+b)(a﹣b).点评:本题考查了平方差公式的几何解释,根据阴影部分的面积相等列出面积的表达式是解题的关键.13.(3分)(•郑州模拟)如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B',则图中阴影部分的面积是6π.考点:扇形面积的计算;旋转的性质.分析:根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积,即可求解.解答:解:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积=扇形ABB′的面积,则阴影部分的面积是:=6π,故答案为:6π.点评:本题主要考查了扇形的面积的计算,正确理解阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积=扇形ABB′的面积是解题的关键.14.(3分)(•天水)抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是﹣3<x <1.考点:二次函数的图象.专题:压轴题.分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.解答:解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.点评:此题的关键是根据二次函数的对称轴与对称性,找出抛物线y=﹣x2+bx+c的完整图象.15.(3分)(•郑州模拟)如图,在等腰梯形ABCD中,AD∥BC,BC=3AD=3,∠B=45°.直角三角板含45°角的顶点E在边BC上移动,一直角边始终经过点A,斜边与CD所在的直线交于点F.若△ABE为等腰三角形,则CF的长等于3﹣2或2.考点:等腰梯形的性质;勾股定理.分析:过D作DH⊥BC于H,①当AE=BE时,根据等腰梯形的性质求出BE和CH,由勾股定理求出AB,进一步求出CE,根据等腰三角形的判定和三角形的内角和定理求出CF=EF,根据勾股定理求出即可;②当AB=AE时,由勾股定理求出BE,进一步求出CE,根据等腰三角形的判定和三角形的内角和定理求出EF=CE,由勾股定理求出CF即可;根据三角形的内角和定理求出∠AEB、∠FEC,进一步求出∠CFE=∠FEC,求出CF=CE即可.解答:解:,过D作DH⊥BC于H,∵BC=3AD=3,∴AD=,∴AB=2,有三种情况:,如图所示①:①当AE=BE时,∵四边形ABCD是等腰梯形,∴BE=CH=(3﹣)=,由勾股定理得:AB=2,∴CE=BC﹣BE=3﹣=2,∵∠B=∠BAE=45°,∴∠AEB=90°,∴∠FEC=180°﹣90°﹣45°=45°=∠C,∴∠EFC=180°﹣45°﹣45°=90°,∴由勾股定理得:CF=EF=2;②如图②,当AB=AE=2时,由勾股定理求得:BE=2,∴CE=BC﹣BE=3﹣2=,同理可得∠FEC=90°,∠EFC=45°=∠C,由勾股定理得:CF===2;③如图③,如图当AB=BE=2时,∵∠AEB=∠BAE=(180°﹣∠B)=67.5°,∴∠FEC=180°﹣67.5°﹣45°=67.5°,∵∠C=45°,∴∠CFE=180°﹣∠C﹣∠FEC=67.5°=∠FEC,∴CF=CE=BC﹣BE=3﹣2,故答案为:3﹣2或2.点评:本题主要考查对等腰三角形的性质和判定,等腰梯形的性质,勾股定理,三角形的内角和定理,平行四边形的性质和判定等知识点的理解和掌握,能求出CE的长是解此题的关键.三、解答题(本大题8个小题,共75分)16.(8分)(•郑州模拟)我们在数学学习过程中,经常遇到这样的试题:“先化简()÷,然后从不等式组的解集中,选取一个你认为符合题意的x的值代入求值.”(1)请你直接写出平时在解决这道数学题的过程中,需要用到哪些数学知识?(2)请你直接写出在进行运算时容易出错的地方有哪些?(写出三个)考点:分式的化简求值;解一元一次不等式组.专题:计算题.分析:(1)用到的知识有:通分,约分,除法法则等;(2)括号中通分时,应将第二个分母变形找最简公分母;除以一个数等于乘以这个数的倒数将除法运算化为乘法运算;代入x值时,x不能为5,﹣5.解答:解:(1)括号中利用的知识是通分,同分母分式的加法法则;除以一个数等于乘以这个数的倒数将除法运算化为乘法运算;约分;(2)括号中通分时,应将第二个分母变形找最简公分母x﹣5;除以一个数等于乘以这个数的倒数将除法运算化为乘法运算;代入x值时,x不能为5,﹣5.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.17.(9分)(•郑州模拟)如图,已知Rt△ABC,AB=AC,∠ABC的平分线BD交AC于点D,BD的垂直平分线分别交AB,BC于点E、F,CD=CG.(1)请以图中的点为顶点(不增加其他的点)分别构造两个菱形和两个等腰梯形.那么,构成菱形的四个顶点是B,E,D,F或E,D,C,G;构成等腰梯形的四个顶点是B,E,D,C或E,D,G,F;(2)请你各选择其中一个图形加以证明.考点:等腰梯形的判定;全等三角形的判定与性质;线段垂直平分线的性质;菱形的判定.分析:(1)首先根据题意画出图形,再根据图形可以看出形似菱形与等腰梯形的图形,再加以证明推理即可.(2)根据线段垂直平分线的性质以及全等三角形的判定方法即可得出BE=DE=BF=DF,四边形EDFB是菱形.解答:解:(1)构成菱形的四个顶点是B、E、D、F或E、D、C、G;(2分)构成等腰梯形的四个顶点是B、E、D、C或E、D、G、F;(2分)(2)证明:∵EF垂直平分BD,∴BE=DE,BF=DF,∠3=∠4=90°又∵∠1=∠2,BT=BT,∴△BET≌△BFT(ASA),∴BE=BF,∴BE=DE=BF=DF,∴四边形EDFB是菱形.点评:此题主要考查了等腰梯形,菱形,线段的垂直平分线等知识点,关键是熟练把握已知条件,进行分析.18.(9分)(•郑州模拟)为了贯彻落实提出的“厉行节约,反对浪费”的精神,我市某校学生自发组织了“保护水源从我做起”的活动,学生们对我国“水资源问题”进行了调查,发现我国水资源越来越匮乏,可是人们的节约意识并不强,据查,仅我市某饮料厂每天从地下抽水达3500立方米左右.同学们又采取问卷调查的方式,随机调查了本校150名同学,家庭人均月用水量和节水措施情况.以下是根据调查结果做出的部分统计图.请根据以上信息解答以下问题:(1)补全图1和图2;(2)如果全校家庭总人数约为3000人,根据这150名同学家庭人均月用水量,估计全校学生家庭每月用水总量;(3)为提高人们的节水意识,请你写出一条与图2中的已明确的节水措施不同的节水措施.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据扇形统计图所给的信息,用整体1减去洗衣用水冲马桶、安装节水设备、其它所占的百分比,即可到帐饿出淘米水浇花所占的百分比;用总调查的学生数减去其它人均月用水量,即可得出人均月用水量为3吨的人数,从而补全统计图;(2)先求出150名同学家庭人均月用水量,再乘以总人数,即可得出全校学生家庭每月用水总量;(3)根据实际生活,可以举洗脸后的水拖地等节约用水的措施.解答:解:(1)根据扇形统计图可得:淘米水浇花所占的百分比是:1﹣11%﹣44%﹣30%=15%,人均月用水量为3吨的人数是:150﹣10﹣42﹣32﹣16=50(人);补图如下:(2)全校学生家庭每月用水总量约为:3000×=9040(吨).答:全校学生家庭每月用水总量约为9040吨.(3)我们要节约用水,如洗脸后的水拖地.点评:此题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(9分)(•扬州)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)考点:解直角三角形的应用-仰角俯角问题.专题:压轴题.分析:过B分别作AE、DE的垂线,设垂足为F、G.分别在Rt△ABF和Rt△ADE中,通过解直角三角形求出BF、AF、DE的长,进而可求出EF即BG的长;在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长;根据CD=CG+GE﹣DE即可求出宣传牌的高度.解答:解:过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.Rt△ABF中,i=tan∠BAF==,∴∠BAF=30°,∴BF=AB=5,AF=5.∴BG=AF+AE=5+15.Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m.答:宣传牌CD高约2.7米.点评:此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.20.(9分)(•宜宾)如图,一次函数的图象与反比例函数的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时,一次函数值小于反比例函数值.(1)求一次函数的解析式;(2)设函数y2=的图象与的图象关于y轴对称,在y2=的图象上取一点P(P点的横坐标大于2),过P作PQ丄x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.考点:反比例函数综合题.专题:综合题;压轴题.分析:(1)根据x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时候,一次函数值小于反比例函数值得到点A的坐标,利用待定系数法求函数的解析式即可;(2)求得B点的坐标后设出P点的坐标,利用告诉的四边形的面积得到函数关系式求得点P的坐标即可.解答:解:(1)∵x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时候,一次函数值小于反比例函数值.∴A点的横坐标是﹣1,∴A(﹣1,3),设一次函数的解析式为y=kx+b,因直线过A、C,则,解之得,∴一次函数的解析式为y=﹣x+2;(2)∵y2=的图象与的图象关于y轴对称,∴y2=(x>0),∵B点是直线y=﹣x+2与y轴的交点,∴B(0,2),设p(n,)n>2,S四边形BCQP=S四边形OQPB﹣S△OBC=2,∴(2+)n﹣×2×2=2,n=,∴P(,).点评:此题主要考查反比例函数的性质,注意通过解方程组求出交点坐标.同时要注意运用数形结合的思想.21.(10分)(•郑州模拟)某地一经济适用房楼盘一楼是商铺(暂不出售),二楼至二十三楼均为商品适用房(对外出售).商品房售价方案如下:第八层售价为2000元/m2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为80平方米.开发商为购买者制定了两种购买方案:方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款).方案二:购买者一次性付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a元)(1)请写出每平方米售价y(元/米2)与楼层x(2≤x≤23,x是正整数)之间的函数关系式;(2)王老师已筹到60000元,若用方案一购房,他可以购买哪些楼层的商品房呢?(3)有人建议王老师使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为王老师的说法一定正确吗?请通过运算确定a的范围,阐明你的看法.考点:一次函数的应用.分析:(1)分①当2≤x≤8时,用第八层售价减去楼层差价,②当9≤x≤23时,用第八层售价加上楼层差价,整理即可得解;(2)求出购买第八层楼的首付款为48000元可知2~8层可任选;第9层以上,根据首付款不大于60000元列出不等式其解即可,然后综合两种情况即可确定出王老师可购买楼层的方案;(3)根据购买方案二求出实交房款的关系式和按王老师的想法则要交房款的关系式,然后分情况讨论即可确定出a的取值范围.解答:解:(1)①当2≤x≤8时,每平方米的售价应为:2000﹣(8﹣x)×20=20x+1840(元/平方米).②当9≤x≤23时,每平方米的售价应为:2000+(x﹣8)•40=40x+1680(元/平方米).∴y=;(2)由(1)知:①当2≤x≤8时,王老师首付款为(20x+1840)•80•30%=24(20x+1840),∵24(20•8+1840)=48000元<60000元,∴2~8层可任选;②当9≤x≤23时,王老师首付款为(40x+1680)•80•30%=24(40x+1680)元.24(40x+1680)≤60000,解得:x≤20.5.∵x为正整数,∴9≤x≤20,综上得:王老师用方案一可以购买二至二十层的任何一层;(3)若按方案二购买第十六层,则王老师要实交房款为:y1=(40•16+1680)•80•92%﹣60a(元)若按王老师的想法则要交房款为:y2=(40•16+1680)•80•91%(元).∵y1﹣y2=1856﹣60a,∴当y1>y2,即y1﹣y2>0时,解得0<a<,此时王老师想法正确;当y1≤y2,即y1﹣y2≤0时,解得a≥,此时王老师想法不正确.点评:本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.22.(10分)(•舟山)将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC=3;直线BC与直线B′C′所夹的锐角为60度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB′C′,使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.考点:相似三角形的判定与性质;解一元二次方程-公式法;平行四边形的性质;矩形的性质;旋转的性质.专题:代数几何综合题;压轴题.分析:(1)由旋转与相似的性质,即可得S△AB′C′:S△ABC=3,然后由△ABN与△B′MN中,∠B=∠B′,∠ANB=∠B′NM,可得∠BMB′=∠BAB′,即可求得直线BC与直线B′C′所夹的锐角的度数;(2)由四边形 ABB′C′是矩形,可得∠BAC′=90°,然后由θ=∠CAC′=∠BAC′﹣∠BAC,即可求得θ的度数,又由含30°角的直角三角形的性质,即可求得n的值;(3)由四边形ABB′C′是平行四边形,易求得θ=∠CAC′=∠ACB=72°,又由△ABC∽△B′BA,根据相似三角形的对应边成比例,易得AB2=CB•BB′=CB(BC+CB′),继而求得答案.解答:解:(1)根据题意得:△ABC∽△AB′C′,∴S△AB′C′:S△ABC=()2=()2=3,∠B=∠B′,∵∠ANB=∠B′NM,∴∠BMB′=∠BAB′=60°;故答案为:3,60;(2)∵四边形 ABB′C′是矩形,∴∠BAC′=90°.∴θ=∠CAC′=∠BAC′﹣∠BAC=90°﹣30°=60°.在 Rt△ABB′中,∠ABB'=90°,∠BAB′=60°,∴∠AB′B=30°,∴n==2;(3)∵四边形ABB′C′是平行四边形,∴AC′∥BB′,又∵∠BAC=36°,∴θ=∠CAC′=∠ACB=72°.∴∠BB′A=∠BAC=36°,而∠B=∠B,∴△ABC∽△B′BA,∴AB:BB′=CB:AB,∴AB2=CB•BB′=CB(BC+CB′),而 CB′=AC=AB=B′C′,BC=1,∴AB2=1(1+AB),∴AB=,∵AB>0,∴n==.点评:此题考查了相似三角形的判定与性质、直角三角形的性质、旋转的性质、矩形的性质以及平行四边形的性质.此题综合性较强,难度较大,注意数形结合思想与方程思想的应用,注意辅助线的作法.23.(11分)(•郑州模拟)如图1所示,已知二次函数y=ax2﹣6ax+c与x轴分别交于点A(2,0)、B (4,0),与y轴交于点C(0,﹣8t)(t>0).(1)求a、c的值及抛物线顶点D的坐标(用含t的代数式表示);(2)如图1,连接AC,将△OAC沿直线AC翻折,若点O的对应点O′恰好落在该抛物线的对称轴上,求实数t的值;(3)如图2,在正方形EFGH中,点E、F的坐标分别是(4,﹣4)、(4,﹣3),边HG位于边EF的右侧.若点P是边EF或边FG上的任意一点(不与E、F、G重合),请你说明以PA、PB、PC、PD的长度为边长不能构成平行四边形;(4)将(3)中的正方形EFGH水平移动,若点P是正方形边FG或EH上任意一点,在水平移动过程中,是否存在点P,使以PA、PB、PC、PD的长度为边长构成平行四边形,其中PA、PB为对边.若存在,请直接写出t的值;若不存在,请说明理由.考点:二次函数综合题.专题:综合题;压轴题.分析:(1)将A、B、C三点的坐标代入已知的抛物线的解析式利用待定系数法及其求得a、c的值,配方后即可确定其顶点坐标;(2)设抛物线对称轴与x轴交点为M,则可得到AM=1,然后根据O′A=OA=2得到O′A=2AM,最后在Rt△OAC中,利用OC和OA的关系列出有关t的方程求得t值即可.(3)本题需先分两种情况进行讨论,当P是EF上任意一点时,可得PC>PB,从而得出PB≠PA,PB≠PC,PB≠PD,即可求出线段PA、PB、PC、PD不能构成平行四边形.(4)分假设点P为FG与对称轴交点时,存在一个正数t,使得线段PA、PB、PC、PD能构成一个平行四边形和假设当点P为EH与对称轴交点时,存在一个正数t,使得线段PA、PB、PC、PD能构成一个平行四边形两种情况列出有关的方程求得t值即可.解答:解:(1)把点A、C的坐标(2,0)、(0,﹣8t)代入抛物线y=ax2﹣6ax+c得,,解得,该抛物线为y=﹣tx2+6tx﹣8t=﹣t(x﹣3)2+t.∴顶点D坐标为(3,t)(2)如图1,设抛物线对称轴与x轴交点为M,则AM=1.由题意得:O′A=OA=2.∴O′A=2AM,∴∠O′AM=60°.∴∠O′AC=∠OAC=60°∴在Rt△OAC中:∴OC=,即.∴.(3)①如图2所示,设点P是边EF上的任意一点(不与点E、F重合),连接PM.∵点E(4,﹣4)、F(4,﹣3)与点B(4,0)在一直线上,点C在y轴上,∴PB<4,PC≥4,∴PC>PB.又PD>PM>PB,PA>PM>PB,∴PB≠PA,PB≠PC,PB≠PD.∴此时线段PA、PB、PC、PD不能构成平行四边形.②设P是边FG上的任意一点(不与点F、G重合),∵点F的坐标是(4,﹣3),点G的坐标是(5,﹣3).∴FB=3,,∴3≤PB≤.∵PC>4,∴PC>PB.∴PB≠PA,PB≠PC.∴此时线段PA、PB、PC、PD不能构成平行四边形.(4)t=或或1.∵已知PA、PB为平行四边形对边,∴必有PA=PB.①假设点P为FG与对称轴交点时,存在一个正数t,使得线段PA、PB、PC、PD能构成一个平行四边形.如图3所示,只有当PC=PD时,线段PA、PB、PC、PD能构成一个平行四边形.∵点C的坐标是(0,﹣8t),点D的坐标是(3,t),又点P的坐标是(3,﹣3),∴PC2=32+(﹣3+8t)2,PD2=(3+t)2.当PC=PD时,有PC2=PD2即 32+(﹣3+8t)2=(3+t)2.整理得7t2﹣6t+1=0,∴解方程得t=>0满足题意.②假设当点P为EH与对称轴交点时,存在一个正数t,使得线段PA、PB、PC、PD能构成一个平行四边形.如图4所示,只有当PC=PD时,线段PA、PB、PC、PD能构成一个平行四边形.∵点C的坐标是(0,﹣8t),点D的坐标是(3,t),点P的坐标是(3,﹣4),∴PC2=32+(﹣4+8t)2,PD2=(4+t)2.当PC=PD时,有PC2=PD2即 32+(﹣4+8t)2=(4+t)2整理得7t2﹣8t+1=0,∴解方程得t=或1均大于>0满足题意.综上所述,满足题意的t=或或1.点评:本题主要考查了二次函数的综合问题,在解题时要注意运用数形结合和分类讨论,把二次函数的图象与性质和平行四边形的判定相结合是本题的关键.。

河南省郑州市重点中学2023-2024学年九年级上学期第二次月考数学试题(含答案)

河南省郑州市重点中学2023-2024学年九年级上学期第二次月考数学试题(含答案)

九年级学情调研2数学试卷(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.我国古代建筑中经常使用榫卯构件,如图是某种卯构件的示意图,其俯视图是()卯A .B .C .D .2.若点在反比例函数的图象上,则下列结论证确的是( )A .B .C .D .3.如图,电路图上有4个开关和1个小题,同时闭合开关或同时的合开关都可以使小灯泡发光.随机同时闭合两个开关,小大泡发光的概率是()第3题图A.B .C .D .4.如图,滑雪场有一坡角为20°的滑雪道,滑雪道AC 长为200米,则滑雪道的坡顶到坡底的竖直高度的长为()()()()1232,,1,,2,A y B y C y -2y x=123y y y >>231y y y >>321y y y >>312y y y >>,,,A B C D ,A B ,C D 131211216AB第4题图A.米B .米C .米D .米5.近年来,由于新能源汽车的崛起,燃油汽车的销量出现了不同程度的下滑,经销商纷纷开展降价促销活动.某款燃油汽车今年2月份售价为23万元,4月份售价为18.63万元,设该款汽车这两月售价的月平均降价率是x ,则所列方程正确的是( )A .B .C .D .6.如图,将视力表中的两个“”放在平面直角坐标系中,两个“”字是位似图形,位似中心点,①号“”与②号“”的相似比为.点与为一组对应点,若点坐标为,则点的坐标为()第6题图A .B .C .D .7.关于二次函数,下列说法错误的是( )A .图象的开口方向向上B .函数的最小值为C .图象可由抛物线向左平移3个单位长度,再向上平移1个单位长度得到D .当时,随的增大而减小8.如图,菱形的对角线与相交于点为的中点,连接,,则等于( )200cos 20︒200sin 20︒200cos 20︒200sin 20︒223(1)18.63x -=218.63(1)23x +=218.63(1)23x -=223(1)18.63x +=E E O E E 2:1P Q Q (2,3)-P 93,2⎛⎫- ⎪⎝⎭(6,4)-9,32⎛⎫-⎪⎝⎭(4,6)-2(1)3y x =+-3-2y x =1x <-y x ABCD AC BD ,O E AD OE 120,12BAD BD ∠=︒=OE第8题图A .6B .C .4D .9.如图,一块材料的形状是锐角三角形,边长,边上的高为,把它加工成正方形零件,使正方形的一边在上,其余两个顶点分别在、上,则这个正方形零件的边长是()第9题图A.B .C .D .10.如图,在轴的正半轴上依次截取,过分别作轴的垂线,与反比例函数的图象交于点,并设面积分别为,其中为正整数,按此作法进行下去,的值为( )第10题图ABC BC 12cm BC AD 10cm GH BC E F 、AB AC 60cm 115cm 6cm 7cmx 1122334451n n OA A A A A A A A A A A -====== 12345n A A A A A A 、、、、x 4y x=12345n P P P P P P 、、、、111222331n n n OA P A A P A A P A A P - △△△、、△123n S S S S 、、n n SA.B .C .D .二、填空题(每小题3分,共15分)11.一元二次方程的解是______.12.将放置在的正方形网格中,顶点都在格点上.则的值为______.第12题图13.如图,小树在路灯的照射下形成投影.若树高,树影,树与路灯的水平距离.则路灯的高度为______.第13题图14.在平面直角坐标系中,若一个点的横坐标与纵坐标的和为零,则称这个点为“零和点”.已知二次函数的图像上有且只有一个“零和点”,则______.15.如图,菱形中,,点为射线上一个动点,连接,点关于直线的对称点为,连接,当时,的长为______.三、解答题(本大题共8个小题,共75分)16.(8分)(课本原题)(1)计算4n 2n12n2n2(1)4x -=BAC ∠44⨯A B C 、、tan BAC ∠AB O BC 2m AB =3m BC =4m BP =OP m 23y x x m =++m =ABCD 30CD BCD =∠=︒P AB DP A DP A',A'P A'D A'P BC ⊥AP 22sin 302sin 60tan 45tan 60cos 30︒︒︒︒︒++-+(2)(课本原题)解方程17.(9分)【问题情境】大自然中的植物千姿百态,如果细心观察,就会发现:不同植物的叶子通常有着不同的特征,如果我们用数学的眼光来观察,会有什么发现呢?“思维math ”小组的四位同学小颖、小平、小名和小字,一起开展了“利用树叶的特征对树木进行分类”的项目化学习活动.【实践发现】同学们从收集的杨树叶、柳树叶中各随机选取10片,通过测量得到这些树叶的长和宽(单位:cm )的数据后,分别计算长宽比,整理数据如下:序号12345678910杨树叶的长宽比2 2.4 2.1 2.4 2.8 1.8 2.4 2.2 2.1 1.7柳树叶的长宽比 1.51.61.51.41.51.41.71.51.61.4【实贱探究】分析数据如下:平均数中位数众数方差杨树叶的长宽比 2.19m 2.40.0949柳树叶的长宽比 1.511.5n0.0089【问题解决】(1)上述表格中:m =______,n =______.(2)①这两种树叶从长宽比的方差来看,______树叶的形状差别较小;②该小组收集的树叶中有一片长为11.5cm ,宽为5cm 的树叶,这片树叶来自于______树的可能性大;(3)该小组准备从小颖、小平、小名和小宇四位成员中随机选取两名同学进行成果汇报,请用列表或画树状图的方法,求成员小颍和小平同时被选中的概率.18.(9分)(《学练优》原题)为建设美好公园社区,增强民众生活幸福感,文化路社区服务中心在文化活动室墙外安装遮阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB 长为5米,与水平面的夹角为,且靠墙端离地高BC 为4米,当太阳光线与地面的夹角为时,求阴影的长.(结果精确到0.1米;多考数据:)22410x x --=16︒AD CE 45︒CD sin160.28,cos160.96,tan160.29︒︒≈︒≈≈19.(9分)“直播带货”已经成为信息社会中商家的一种新型促销手段.某主播小佳在直播间销售一种进价为每件10元的日用商品,经调查发现,该商品每天的销售量y (件)与销售单价x (元)满足一次函数关系,它们的关系如图所示:(1)当定价为______元时,开始无人购买;(2)设小佳每天的销售利润(快递费用等不考虑)为w 元,求w 与x 之间的函数关系式(不需要写出自变量x 的取值范围);(3)若小佳每天想获得的销售利润w 为910元,又要尽可能地减少库存,应将销售单价定为多少元?20.(10分)如图,一次函数的图象与反比例函数的图象交于,两点.(1)求反比例函数的表达式;(2)直接写出不等式的解集;(3)设直线与轴交于点,若为轴上的一动点,连接,当的面积为时,求点的坐标.21.(10分)如图,菱形的对角线相交于点,112y x =-my x=(,1)A a (2,)B b -112mx x-<AB x C (0,)P n y ,AP CP APC △52P ABCD AC BD 、O(1)尺规作图:在边的左侧,作,使;(2)在(1)的条件下,连接.求证:四边形为矩形;(3)在(2)的条件下,连接,交于点,菱形中,若,,求的长.22.(10分)如图,已知二次函数的图象经过点,点.(1)求该二次函数的表达式,并求出对称轴和顶点坐标;(2)点在该二次函数图像上,当时,的最大值为,最小值为1,请根据图像直接写出的取值范围.23.(10分)综合与实践:综合与实践课上,老师带领同学们,以“特殊四边形旋转”为主题,开展数学活动.图1 图2CD CDE ACB ∠=∠12DE AC =CE OCED AE CD F ABCD 10DB =12AC =EF 2y x bx c =-++(4,1)A (0,5)B (,)C m n 4m x ≤≤n 294m图3备用图【问题发现】如图1,在矩形中,,点在对角线上,过点分别作和的垂线,垂足为,则四边形为矩形.请问线段与的数量关系为______;【拓展探究】如图2,将图1中的矩形绕点逆时针旋转,记旋转角为,当时,连接.在旋转的过程中,与的数量关系是否仍然成立?请利用图2进行证明.【解决问题】如图3,当矩形的边时,点为直线上异于的一点,以为边作正方形,点为正方形的中心,连接,若,直接写出的长.九年级学情调研2数学评分标准一、选择题(每小题3分,共30分)1.C .2.B .3.A .4.D .5.A .6.D .7.C .8.B .9.A .10.D .二、填空题(每小题3分,共15分)11.. 12.1. 13.. 14.4. 15.2或6.三、解答题(本大题共8个小题,共75分)16.(8分)(1)原式;(2)解:这里,,,;17.(9分)解:(1)2.15,1.5;(2)①柳;②杨;ABCD :AD CD =F AC F AB AD ,E G AEFG CFDG AEFG A α0180α<<︒︒,CF DG CF DG ABCD AD AB =E CD ,DC AE AEFG H AEFG DH4,2AD DE ==DH 1,3-14312sin 60tan 45tan 60︒︒=++-︒1212=+=2,4,1a b c ==-=-2(4)421240∴∆=-+⨯⨯=>x ∴==12x x ∴==(3)四位同学分别用A 、B 、C 、D 表示,其中A 代表小颖,B 代表小平,C 代表小名,D 代表小宇,画树状图为:共有12中等可能的结果,其中成员小颖和小平同时被选中的结果数为2,所以成员小颖和小平同时被选中的概率.18.(9分)解:过作于于,如图:在中,(米),(米),,四边形是矩形,米,(米),在中,,米(米),阴影的长约为2.2米.19.(9分)解:(1)设每天的销售量(件)与销售单价(元)的函数解析式为,把和代入解析式得:,解得,,令,即,解得,当定价为30元时,开始无人购买,故答案为:30;(2)由题意得:.21126==A AT BC ⊥,T AK CE ⊥K Rt ABT △sin 5sin16 1.4BT AB BAT =⋅∠=≈︒⨯cos 5cos16 4.8AT AB BAT =⋅∠=≈︒⨯90ATC C CKA ∠=∠=∠=︒ ∴ATCK 4.8CK AT ∴==4 1.4 2.6AK CT BC BT ==-=-=Rt AKD △45ADK =︒∠ 2.6DK AK ∴==4.8 2.6 2.2CD CK DK ∴=-=-=∴CD y x (0)y kx b k =+≠(10,200)(20,100)1020020100k b k b +=⎧⎨+=⎩10300k b =-⎧⎨=⎩10300y x ∴=-+0y =103000x -+=30x =∴2(10)(10300)104003000w x x x x =--+=-+-与之间的函数关系式为;(3)由题意,令,..又尽可能地减少库存,,.应将销售单价定为17元;20.(10分)解:(1)图象经过,,反比例函数表达式为:(2)由图可得,不等式的解集是或;(3)设直线交轴于,交轴于,在中,当时,,当时,得,解得:,,,,,,,解得:或,点的坐标为或.21.(10分)(1)如图,即为所求.w ∴x 2104003000w x x =-+-910w =2104003000910x x ∴-+-=1217,23x x ∴==10173002310300-⨯+>-⨯+17x ∴=∴112y x =- (,1)A a 4a ∴=∴4y x=112mx x-<2x <-04x <<AB x C y D 112y x =-0x =1y =-(0,1), D ∴-0y =1102x -=2x =(2,0)C ∴2OC ∴=(0,),(4,1)P n A |1|PD n ∴=+52APC S =△15|1|(42)22n ∴+⋅-=32n =72-∴P 30,2⎛⎫ ⎪⎝⎭70,2⎛⎫- ⎪⎝⎭(2)证明:四边形是菱形,,,,,,,四边形是平行四边形,又,平行四边形是矩形;(3)解:四边形是菱形,,,平行四边形是矩形;在中,,,,.22.(10分)解:(1)将点的坐标分别代入二次函数,得方程组:解之,得得.所以,对称轴是:直线,顶点坐标为.答:该二次函数的表达式为,对称轴是:直线,顶点坐标为. ABCD 1,2AC BD AO OC AC ∴⊥==90DOC ∴∠=︒DE AC ∥12DE AC =DE OC ∴=DE OC ∥∴OCED 90DOC =︒∠ ∴OCED ABCD 10,12DB AC ==,5,6AC BD OB OD OA OC ∴⊥==== OCED 5,6,CE OD DE OC ∴====∴Rt ACE △13AE ===DE AC ∥,EDF FCA DEF FAC ∴∠=∠∠=∠61113,,12233EF DE DEF CAF EF AE AF AC ∴∴===∴==△△∽A B 、1641,5b c c -++=⎧⎨=⎩3,5b c =⎧⎨=⎩235y x x =-++2232935,24y x x x ⎛⎫=-++=--+ ⎪⎝⎭32x =329,24⎛⎫ ⎪⎝⎭235y x x =-++32x =329,24⎛⎫ ⎪⎝⎭(2)当,解得或,因为,顶点是.根据题意,点应在点之间的函数图象上,可以看出,.23.(10分)解:【问题发现】;【拓展探究】仍然成立.理由如下:图1中,,,,图2中,由旋转可得:,,,,,,;2351x x -++=1x =-4x =(4,1),(1,1)A D -329,24E ⎛⎫ ⎪⎝⎭C A D 、312m -≤≤2CF GD =,FAG CAD FGA CDA ∠=∠∠=∠AFG ACD ∴△△∽AG AD AF AC∴=CAF DAG ∠=∠ACF ADG ∴△△∽CF AC DG AD∴=:AD CD = AC 2AD 1∴=CF 2DG 1∴=2CF GD ∴=图3【解决问题】①如图3,当点在线段上时,连接,四边形,四边形为正方形,,,,,,,图4②如图4,当点在线段延长线上时,连接,四边形,四边形为正方形,,,,,;综上所述,或.E CD AC AH 、 ABCD AEFG 45CAD EAH ∴∠=∠=︒AC AE AD AH==CAE DAH ∴∠=∠ACE ADH ∴△△∽DH AD CE AC ∴==4,2AD CD DE === 422CE ∴=-=DH ∴==E CD AC AH 、 ABCD AEFG 45,AC AE CAD EAH AD AH ︒∴∠=∠===CAE DAH ∴∠=∠ACE ADH ∴△△∽DH AD CE AC ∴==4,2AD CD DE === 426CE ∴=+=DH ∴==DH。

郑州市中考数学二模试卷(含解析)

郑州市中考数学二模试卷(含解析)

20XX年河南省郑州市中考数学二模试卷一、选择题(每小题3分,共24分)在每小题四个选项中,只有一项是符合题目要求1.给出四个数0,,﹣1,其中最小的是()A.0 B.C.D.﹣12.有一种圆柱体茶叶筒如图所示,则它的左视图是()A. B.C.D.3.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.4.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.5.马老师想知道学生每天上学路上要花多少时间,于是让大家将每天来校的单程时间写在纸上用于统计,下面是全班45名学生单程所花时间(单位:分)与对应人数(单位:人)6.如图,在一单位长度为1的方格纸上,依如图所示的规律,设定点A1,A2,A3,A4,A5,A6,A7,…A n,连接点O,A1,A2组成三角形,记为△1,连接O,A2,A3组成三角形,记为△2,…,连接O,A n,A n+1组成三角形,记为△n(n为正整数),请你推断,当n为10时,△n的面积=()平方单位.A.45 B.55 C.66 D.1007.郑徐客运专线(简称郑徐高铁),即郑州至徐州高速铁路,是《国家中长期铁路网规划》中“四纵四横”之一的徐兰客运专线的重要组成部分.20XX年7月将要开通运营.高铁列车从郑州到徐州的运行时间比原普通车组的运行时间要快约1.4个小时.已知郑州到徐州的铁路长约为361千米,原普通车组列车的平均速度为x千米/时,高铁列车的平均速度比原普通车组列车增加了145千米/时,依题意,下面所列方程正确的是()A.﹣=1.4 B.﹣=1.4C.﹣=1.4 D.x+1.4(x+145)=3618.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是()A.6 B.3 C.2 D.1.5二、填空题(每小题3分,共21分)9. =______.10.如图,已知直线AB∥CD,直线EG垂直于AB,垂足为G,直线EF交CD于点F,∠1=50°,则∠2=______.11.微信根据移动ID所带来的数据,发布了“微信用户春节迁徙数据报告”.该报告显示,20XX年1月24日春运首日至2月4日期间,人口流入最多的省份是河南,作为劳务输出大省,河南约有313万微信用户在春节期间返乡,313万用科学记数法可表示为______.12.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为______.13.反比例函数y=经过点A(﹣3,1),设B(x1,y1),C(x2,y2)是该函数图象上的两点,且x1<x2<0,那么y1与y2的大小关系是______(填“y1>y2”,“y1=y2”或“y1<y2”).14.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=4,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为______平方单位.15.已知一个矩形纸片OACB,OB=6,OA=11,点P为BC边上的动点(点P不与点B,C重合),经过点O折叠该纸片,得折痕OP和点B′,经过点P再次折叠纸片,使点C落在直线PB′上,得折痕PQ和点C′,当点C′恰好落在边OA上时BP的长为______.三、解答题(共75分)16.先化简(+),再求值.a为整数且﹣2≤a≤2,请你从中选取一个合适的数代入求值.17.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有______ 人;(2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树______棵.(保留整数)18.如图,已知⊙A的半径为4,EC是圆的直径,点B是⊙A的切线CB上的一个动点,连接AB交⊙A于点D,弦EF平行于AB,连接DF,AF.(1)求证:△ABC≌△ABF;(2)当∠CAB=______时,四边形ADFE为菱形;(3)当AB=______时,四边形ACBF为正方形.19.已知:关于x的一元二次方程x2+2x+k=0有两个不相等的实数根.(1)求k的取值范围;(2)当k取最大整数值时,用合适的方法求该方程的解.20.图1是小明在健身器材上进行仰卧起坐锻炼时情景.图2是小明锻炼时上半身由EM位(sin18°置运动到与地面垂直的EN位置时的示意图.已知BC=0.64米,AD=0.24米,α=18°.≈0.31,cos18°≈0.95,tan18°≈0.32)(1)求AB的长(精确到0.01米);(2)若测得EN=0.8米,试计算小明头顶由M点运动到N点的路径弧MN的长度(结果保留π)21.某公司推销一种产品,公司付给推销员的月报酬有两种方案如图所示:其中方案一所示图形是顶点在原点的抛物线的一部分,方案二所示的图形是射线.设推销员销售产品的数量为x(件),付给推销员的月报酬为y(元).(1)分别求两种方案中y关于x的函数关系式;(2)当销售量达到多少件时,两种方案的月报酬差额将达到3 800元?(3)若公司决定改进“方案二”:基本工资1 200元,每销售一件产品再增加报酬m元,当推销员销售量达到40件时,方案二的月报酬不低于方案一的月报酬.求m至少增加多少元?22.如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB的中点,∠EDF=90°,DE交AC于点G,DF经过点C.(1)求∠ADE的度数;(2)如图2,将图1中的∠EDF绕点D顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E1DF1,∠E2DF2,DE1交直线AC于点P,DF1交直线BC于点Q,DE2交直线AC于点M,DF2交直线BC于点N,求的值;(3)若图1中∠B=β(60°<β<90°),(2)中的其余条件不变,判断的值是否为定值?如果是,请直接写出这个值(用含β的式子表示);如果不是,请说明理由.23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?20XX年河南省郑州市中考数学二模试卷参考答案与试题解析一、选择题(每小题3分,共24分)在每小题四个选项中,只有一项是符合题目要求1.给出四个数0,,﹣1,其中最小的是()A.0 B.C.D.﹣1【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣1<0<,∴四个数0,,﹣1,其中最小的是﹣1.故选:D.2.有一种圆柱体茶叶筒如图所示,则它的左视图是()A. B.C.D.【考点】简单几何体的三视图.【分析】找到从几何体的左面看所得到的视图即可.【解答】解:圆柱体茶叶筒的左视图是矩形,故选:D.3.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】求得不等式组的解集为﹣1<x≤1,所以B是正确的.【解答】解:由第一个不等式得:x>﹣1;由x+2≤3得:x≤1.∴不等式组的解集为﹣1<x≤1.故选B .4.如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC=BC ,则下列选项正确的是( )A .B .C .D .【考点】作图—复杂作图.【分析】由PB+PC=BC 和PA+PC=BC 易得PA=PB ,根据线段垂直平分线定理的逆定理可得点P 在AB 的垂直平分线上,于是可判断D 选项正确.【解答】解:∵PB+PC=BC ,而PA+PC=BC ,∴PA=PB ,∴点P 在AB 的垂直平分线上,即点P 为AB 的垂直平分线与BC 的交点.故选D .5.马老师想知道学生每天上学路上要花多少时间,于是让大家将每天来校的单程时间写在纸上用于统计,下面是全班45名学生单程所花时间(单位:分)与对应人数(单位:人)【考点】中位数.【分析】根据总人数找出最中间的数,再根据中位数的定义即可得出答案.【解答】解:∵共有45名学生,∴最中间的数是第23个数,∴这45名学生单程所花时间的数据的中位数是20.故选B .6.如图,在一单位长度为1的方格纸上,依如图所示的规律,设定点A 1,A 2,A 3,A 4,A 5,A 6,A 7,…A n ,连接点O ,A 1,A 2组成三角形,记为△1,连接O ,A 2,A 3组成三角形,记为△2,…,连接O ,A n ,A n+1组成三角形,记为△n (n 为正整数),请你推断,当n 为10时,△n 的面积=( )平方单位.A.45 B.55 C.66 D.100【考点】规律型:图形的变化类.【分析】分别求出△1,△2,△3,△4的面积,探究规律后,利用规律解决问题即可.【解答】解:由图象可知,因为S△1=×1×2,S△2=×2×3,S△3=×3×4,S△4=×4×5,…,所以S△10=×10×11=55.故选B.7.郑徐客运专线(简称郑徐高铁),即郑州至徐州高速铁路,是《国家中长期铁路网规划》中“四纵四横”之一的徐兰客运专线的重要组成部分.20XX年7月将要开通运营.高铁列车从郑州到徐州的运行时间比原普通车组的运行时间要快约1.4个小时.已知郑州到徐州的铁路长约为361千米,原普通车组列车的平均速度为x千米/时,高铁列车的平均速度比原普通车组列车增加了145千米/时,依题意,下面所列方程正确的是()A.﹣=1.4 B.﹣=1.4C.﹣=1.4 D.x+1.4(x+145)=361【考点】由实际问题抽象出分式方程.【分析】直接利用高铁列车从郑州到徐州的运行时间比原普通车组的运行时间要快约1.4个小时,进而表示出两种列车行驶的时间得出等式即可.【解答】解:设原普通车组列车的平均速度为x千米/时,高铁列车的平均速度为:(x+145)千米/时,依题意得:﹣=1.4.故选:C.8.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是()A.6 B.3 C.2 D.1.5【考点】全等三角形的判定与性质;等边三角形的性质.【分析】取线段AC的中点F,连接EF,根据等边三角形的性质以及角的计算即可得出CD=CF 以及∠FCE=∠DCF,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS 证出△FCE≌△DCF,进而即可得出DF=FE,再根据点F为AC的中点,即可得出FE的最小值,此题得解.【解答】解:取线段AC的中点F,连接EF,如图所示.∵△ABC为等边三角形,且AD为△ABC的对称轴,∴CD=CF=AB=3,∠ACD=60°,∵∠ECF=60°,∴∠FCE=∠DCF.在△FCE和△DCF中,,∴△FCE≌△DCF(SAS),∴DF=FE.当FE∥BC时,FE最小,∵点F为AC的中点,∴此时FE=CD=.故选D.二、填空题(每小题3分,共21分)9. = 2 .【考点】算术平方根.【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:210.如图,已知直线AB∥CD,直线EG垂直于AB,垂足为G,直线EF交CD于点F,∠1=50°,则∠2= 140°.【考点】平行线的性质.【分析】先根据垂直的定义求出∠AGE=90°,由三角形外角的性质得出∠AHE的度数,根据平行线的性质即可得出结论.【解答】解:∵EG⊥AB,∴∠AGE=90°.∵∠1=50°,∴∠AHE=∠1+∠AGE=50°+90°=140°.∵AB∥CD,∴∠2=∠AHE=140°.故答案为:140°.故答案为:140°.11.微信根据移动ID所带来的数据,发布了“微信用户春节迁徙数据报告”.该报告显示,20XX年1月24日春运首日至2月4日期间,人口流入最多的省份是河南,作为劳务输出大省,河南约有313万微信用户在春节期间返乡,313万用科学记数法可表示为 3.13×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于313万有7位,所以可以确定n=7﹣1=6.【解答】解:313万=3.13×106.故答案为:3.13×106.12.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及两次摸出的小球上两个数字乘积是负数的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况,∴两次摸出的小球上两个数字乘积是负数的概率为: =.故答案为:.13.反比例函数y=经过点A(﹣3,1),设B(x1,y1),C(x2,y2)是该函数图象上的两点,且x1<x2<0,那么y1与y2的大小关系是y1<y2(填“y1>y2”,“y1=y2”或“y1<y2”).【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数y=经过点A(﹣3,1)得出反比例函数y=﹣,判断此函数图象所在的象限,再根据x1<x2<0判断出A(x1,y1)、B(x2,y2)所在的象限,根据此函数的增减性即可解答.【解答】解:∵反比例函数y=经过点A(﹣3,1),∴反比例函数y=﹣中,k=﹣3<0,∴此函数的图象在二、四象限,在每一象限内y随x的增大而增大,∵x1<x2<0,∴A(x1,y1)、B(x2,y2)两点均位于第二象限,∴y1<y2.故答案为:y1<y2.14.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=4,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为π﹣2 平方单位.【考点】扇形面积的计算.【分析】连接OC,作OM⊥BC,ON⊥AC,证明△OMG≌△ONH,则S四边形OGCH=S四边形OMCN,求得扇形FOE的面积,则阴影部分的面积即可求得.【解答】解:连接OC,作OM⊥BC,ON⊥AC.∵CA=CB,∠ACB=90°,点O为AB的中点,∴OC=AB=2,四边形OMCN是正方形,OM=,则扇形FOE的面积是: =π,∵OA=OB,∠AOB=90°,点D为AB的中点,∴OC平分∠BCA,又∵OM⊥BC,ON⊥AC,∴OM=ON,∵∠GOH=∠MON=90°,∴∠GOM=∠HON,则在△OMG和△ONH中,,∴△OMG≌△ONH(AAS),∴S四边形OGCH=S四边形OMCN=()2=2.则阴影部分的面积是:π﹣2,故答案为:π﹣2.15.已知一个矩形纸片OACB,OB=6,OA=11,点P为BC边上的动点(点P不与点B,C重合),经过点O折叠该纸片,得折痕OP和点B′,经过点P再次折叠纸片,使点C落在直线PB′上,得折痕PQ和点C′,当点C′恰好落在边OA上时BP的长为或.【考点】翻折变换(折叠问题).【分析】设BP=t,AQ=m,首先过点P作PE⊥OA于E,易证△PC′E∽△C′QA,由勾股定理可求得C′Q的长,然后利用相似三角形的对应边成比例得到m=t2﹣t+6,即可求得t的值.【解答】解:过点P作PE⊥OA于E,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴=,设BP=t,AQ=m,∵PC′=PC=11﹣t,PE=OB=6,C′Q=CQ=6﹣m,AC′==,∴=.∵=,∴m=t2﹣t+6,又∵36﹣12m=t2,将m=t2﹣t+6代入36﹣12m=t2,化简得,3t2﹣22t+36=0,解得:t1=,t2=.故答案为:或.三、解答题(共75分)16.先化简(+),再求值.a为整数且﹣2≤a≤2,请你从中选取一个合适的数代入求值.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,选取合适的a的值代入进行计算即可.【解答】解:原式=•=•=•=,当a=﹣1时,原式=(答案不唯一).17.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有50 人;(2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树 3 棵.(保留整数)【考点】条形统计图;扇形统计图;加权平均数.【分析】(1)用植2棵树的学生数除以其百分比即可解答.(2)用总人数减去其他人数即可解答,再填图即可.(3)利用加权平均数的求法,求出总棵树再除以人数即可解答.【解答】解:(1)16÷32%=50;(2)50﹣10﹣16﹣8﹣4=12人,画图如下(3)(1×10+2×16+4×12+5×8+6×4)÷50=3.18.如图,已知⊙A的半径为4,EC是圆的直径,点B是⊙A的切线CB上的一个动点,连接AB交⊙A于点D,弦EF平行于AB,连接DF,AF.(1)求证:△ABC≌△ABF;(2)当∠CAB= 60°时,四边形ADFE为菱形;(3)当AB= 4时,四边形ACBF为正方形.【考点】圆的综合题.【分析】(1)根据EF∥AB,可以得到∠FAB和∠CAB的关系,由AC和AF都是圆的半径,AB 是△ABC和△ABF的公共边可以得到△ABC和△ABF关系;(2)根据四边形ADFE为菱形,通过变形可以得到∠CAB的度数;(3)根据四边形ACBF为正方形,AC=4,AB是该正方形的对角线,可以求得AB的长.【解答】(1)证明:∵EF∥AB,∴∠AEF=∠CAB,∠AFE=∠FAB,又∵AE=AF,∴∠AEF=∠AFE,∴∠FAB=∠CAB,在△ABC和△ABF中,,∴△ABC≌△ABF(SAS);(2)连接CF,如右图所示,若四边形ADFE为菱形,则AE=EF=FD=DA,又∵CE=2AE,CE是圆A的直径,∴CE=2EF,∠CFE=90°,∴∠ECF=30°,∴∠CEF=60°,∵EF∥AB,∴∠AEF=∠CAB,∴∠CAB=60°,故答案为:60°;(3)若四边形ACBF为正方形,则AC=CB=BF=FA,AB是正方形ACBF的对角线,∵AC=4,∴AB=.故答案为:4.19.已知:关于x的一元二次方程x2+2x+k=0有两个不相等的实数根.(1)求k的取值范围;(2)当k取最大整数值时,用合适的方法求该方程的解.【考点】根的判别式.【分析】(1)根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.(2)从上题中找到K的最大整数,代入方程后求解即可.【解答】解:(1)∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,∴△>0,即22﹣4×1×k>0,解得:k<1;(2)根据题意,当k=0时,方程为:x2+2x=0,左边因式分解,得:x(x+2)=0,∴x1=0,x2=﹣2.20.图1是小明在健身器材上进行仰卧起坐锻炼时情景.图2是小明锻炼时上半身由EM位置运动到与地面垂直的EN位置时的示意图.已知BC=0.64米,AD=0.24米,α=18°.(sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)(1)求AB的长(精确到0.01米);(2)若测得EN=0.8米,试计算小明头顶由M点运动到N点的路径弧MN的长度(结果保留π)【考点】解直角三角形的应用;弧长的计算.【分析】(1)构造∠α为锐角的直角三角形,利用α的正弦值可得AB的长;(2)弧MN的长度为圆心角为90+α,半径为0.8的弧长,利用弧长公式计算即可.【解答】解:(1)作AF⊥BC于F.∴BF=BC﹣AD=0.4米,∴AB=BF÷sin18°≈1.29米;(2)∵∠NEM=90°+18°=108°,∴弧长为=0.48π米.21.某公司推销一种产品,公司付给推销员的月报酬有两种方案如图所示:其中方案一所示图形是顶点在原点的抛物线的一部分,方案二所示的图形是射线.设推销员销售产品的数量为x(件),付给推销员的月报酬为y(元).(1)分别求两种方案中y关于x的函数关系式;(2)当销售量达到多少件时,两种方案的月报酬差额将达到3 800元?(3)若公司决定改进“方案二”:基本工资1 200元,每销售一件产品再增加报酬m元,当推销员销售量达到40件时,方案二的月报酬不低于方案一的月报酬.求m至少增加多少元?【考点】二次函数的应用.【分析】(1)分别设出两种方案中y关于x的函数关系式,用待定系数法求解,即可解答;(2)根据“两种方案月报酬差额将达到3800元”,得到方程30x2﹣(50x+1200)=3800,即可解答;(3)分别计算出当销售员销售产量达到40件时,方案一与方案二的月报酬,根据方案二的月报酬不低于方案一的月报酬,列出不等式组,即可解答.【解答】解:(1)设y1=ax2,把(30,2700)代入得:900a=2700,解得:a=3,∴y1=3x2.设y2=kx+b,把(0,1200),(30,2700)代入得:,解得:,∴y2=50x+1200.(2)由题意得:30x2﹣(50x+1200)=3800,解得:x1=50,x2=﹣(舍去),答:当销售达到50件时,两种方案月报酬差额将达到3800元.(3)当销售员销售产量达到40件时,方案一的月报酬为:3×402=4800,方案二的月报酬为:(50+m)×40+1200=40m+3200,由题意得:40m+3200≥4800,解得:m≥40,答:当推销员销售量达到40件时,方案二的月报酬不低于方案一的月报酬,m至少增加40元.22.如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB的中点,∠EDF=90°,DE交AC于点G,DF经过点C.(1)求∠ADE的度数;(2)如图2,将图1中的∠EDF绕点D顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E1DF1,∠E2DF2,DE1交直线AC于点P,DF1交直线BC于点Q,DE2交直线AC于点M,DF2交直线BC于点N,求的值;(3)若图1中∠B=β(60°<β<90°),(2)中的其余条件不变,判断的值是否为定值?如果是,请直接写出这个值(用含β的式子表示);如果不是,请说明理由.【考点】几何变换综合题.【分析】(1)根据含30°的直角三角形的性质和等边三角形的性质解答即可;(2)根据相似三角形的判定和性质以及直角三角形中的三角函数解答即可;(3)由(2)的推理得出,再利用直角三角形的三角函数解答.【解答】解:(1)∵∠ACB=90°,D为AB的中点,∴CD=DB,∴∠DCB=∠B,∵∠B=60°,∴∠DCB=∠B=∠CDB=60°,∴∠CDA=120°,∵∠EDC=90°,∴∠ADE=30°;(2)∵∠C=90°,∠MDN=90°,∴∠DMC+∠CND=180°,∵∠DMC+∠PMD=180°,∴∠CND=∠PMD,同理∠CPD=∠DQN,∴△PMD∽△QND,过点D分别做DG⊥AC于G,DH⊥BC于H,可知DG,DH分别为△PMD和△QND的高∴=,∵DG⊥AC于G,DH⊥BC于H,∴DG∥BC,又∵D为AC中点,∴G为AC中点,∵∠C=90°,∴四边形CGDH 为矩形有CG=DH=AG,Rt△AGD中,即(3)是定值,定值为tan(90°﹣β),∵,四边形CGDH 为矩形有CG=DH=AG,∴Rt△AGD中, =tan∠A=tan(90°﹣∠B)=tan(90°﹣β),∴=tan(90°﹣β).23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?【考点】二次函数综合题.【分析】(1)将点A、B代入抛物线解析式,求出a、b值即可得到抛物线解析式;(2)根据已知求出点D的坐标,并且由线段OC、OB相等、CD∥x轴及等腰三角形性质证明△CDB≌△CGB,利用全等三角形性质求出点G的坐标,写出直线BP解析式,联立二次函数解析式,求出点P坐标;(3)分两种情况,第一种情况重叠部分为四边形,利用大三角形减去两个小三角形求得解析式,第二种情况重叠部分为三角形,可利用三角形面积公式求得.【解答】解:(1)将A(﹣1,0)、B(3,0)代入抛物线y=ax2+bx+3(a≠0),,解得:a=﹣1,b=2.故抛物线解析式为:y=﹣x2+2x+3.(2)存在将点D代入抛物线解析式得:m=3,∴D(2,3),令x=0,y=3,∴C(0,3),∴OC=OB,∴∠OCB=∠CBO=45°,如下图,设BP交y轴于点G,∵CD∥x轴,∴∠DCB=∠BCO=45°,在△CDB和△CGB中:∵∠∴△CDB≌△CGB(ASA),∴CG=CD=2,∴OG=1,∴点G(0,1),设直线BP:y=kx+1,代入点B(3,0),∴k=﹣,∴直线BP:y=﹣x+1,联立直线BP和二次函数解析式:,解得:或(舍),∴P(﹣,).(3)直线BC:y=﹣x+3,直线BD:y=﹣3x+9,当0≤t≤2时,如下图:设直线C′B′:y=﹣(x﹣t)+3联立直线BD求得F(,),S=S△BCD﹣S△CC′E﹣S△C′DF=×2×3﹣×t×t﹣×(2﹣t)(3﹣)整理得:S=﹣t2+3t(0≤t≤2).当2<t≤3时,如下图:H(t,﹣3t+9),I(t,﹣t+3)S=S△HIB= [(﹣3t+9)﹣(﹣t+3)]×(3﹣t)整理得:S=t2﹣6t+9(2<t≤3)综上所述:S=.。

郑州市九年级第二次质量预测数学试卷

郑州市九年级第二次质量预测数学试卷

郑州市九年级第二次质量预测数学试卷一、选择题(每小题3分,共24分) 1、2015的倒数是 ( ) A 、-2015 B 、20151-C 、20151D 、2015 2、PM2.5是指大气中直径小于等于2.5微米,即0.0000025米的颗粒物,将0.0000025用科学记数法表示为( )A 、7105.2-⨯ B 、6105.2-⨯ C 、71025-⨯ D 、51025.0-⨯ 3、如图,从左面观察这个立体图形,能得到的平面图形是( )A. B. C. D.4、如图,直线m l //,等边三角形ABC 的顶点B 在直线m 上,251=∠,则2∠的度数为( ) A 、35 B 、25 C 、30 D 、45(第4题图) (第5题图) (第6题图)5、如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是( )A.8,6B.8,5C.52,52D.52,536、如图,已知菱形ABCD 的对角线AC ,BD 的长分别为6,8,AE ⊥BC ,垂足为点E ,则AE 的长是( ) A 、35 B 、52 C 、548 D 、5247、如图,矩形ABCD 中,AB=5,AD=12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,使点B 旋转到'B 点,则点B 在两次旋转过程中经过的路径的长是( )8、如图①,在四边形ABCD 中,AD ∥BC ,∠A=60°,动点P 从A 点出发,以1cm/s 的速度沿着A →B →C →D 的方向向点D 移动,已知△PAD 的面积S (单位:cm 2)与点P 移动的时间t (单位:s )的函数如图②所示,则点P 从开始移动到停止共用时( )A 、、8秒B 、)324(+秒C 、)334(+秒D 、)34(+秒二、填空题(每小题3分,共21分) 9、计算:2-8-3+=_____.10、如图,四边形ABCD 内接于圆O ,若77=∠B ,则______=∠D .11、若关于x 的一元二次方程022=++m x x 有实数根,则m 的取值范围是_________.12、如图,ABC Rt ∆中,90=∠ACB ,AC=3cm,BC=6cm,以斜边AB 上的一点O 为圆心所作的半圆分别与AC 、BC 相切于点D ,E ,则圆O 的半径为_______cm.13、在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,一人从中随机摸出一球记下标号后放回,再从中随机摸出一个小球记下标号,则两次摸出的小球的标号之和大于4的概率是_______.14、如图,四边形ABCD 中,AD//BC ,90=∠B ,E 为AB 上一点,分别以ED ,EC 为折痕将两个角(∠A ,∠B )向内折起,点A ,B 恰好落在CD 边的点F 处.若AD=5,BC=9,则EF=____.(14题图) (15题图)15、如图,在一张长为6cm ,宽为5cm 的矩形纸片上,现要剪下一个腰长为4cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为_____cm 2.三、解答题(本题共8道小题,共75分)16、(8分)先化简)111(122-+÷-x x x ,再从-2<x<3中选一个合适的整数代入求值。

郑州市九年级二摸数学试卷及参考答案和评分标准

郑州市九年级二摸数学试卷及参考答案和评分标准

新华师大版河南中考数学摸底试卷(二)2020年郑州市九年级二摸数学试卷 B 卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 计算47+-的结果是 【 】 (A )3 (B )3- (C )11 (D )11-2. 下列运算中,正确的是 【 】 (A )743x x x =⋅ (B )56=-x x (C )()222y x y x +=+ (D )xy y x 743=+3. 一个几何体的三视图如图所示,该几何体是 【 】 (A )立方体 (B )四棱柱 (C )圆锥 (D )直三棱柱第 3 题图俯视图主视图左视图第 5 题图FEDC BA4. 在攻击人类的病毒中,某类新型冠状病毒体积较大,直径约为0. 000 000 125米,含约3万个碱基,拥有RNA 病毒中最大的基因组,比艾滋病毒和丙型肝炎的基因组大三倍以上,比流感病毒的基因组大两倍.0. 000 000 125用科学记数法表示为 【 】 (A )61025.1-⨯ (B )71025.1-⨯ (C )61025.1⨯ (D )71025.1⨯5. 将一副直角三角板ABC 和EDF 如图放置(其中︒=∠︒=∠45,60F A ),使点E 落在AC 边上,且BC ED //,则AEF ∠的度数为 【 】 (A )︒145 (B )︒155 (C )︒165 (D )︒1706. 某校八年级三班进行中国诗词知识大赛,共有10道题目,该班得分情况如下表.全班40名同学的成绩的众数和中位数分别是 【 】 (A )76 , 78 (B )76 , 76 (C )80 , 78 (D )76 , 807. 若关于x 的一元二次方程0232=+-x mx 有两个不相等的实数根,则实数m 的取值范围是 【 】 (A )89>m (B )89<m (C )98<m 且0≠m (D )89<m 且0≠m 8. 如图,在平面直角坐标系中,□OABC 的顶点A 在x 轴上,︒=∠=60,4AOC OC ,且以点O 为圆心,任意长为半径画弧,分别交OA 、OC 于点D 、E ;再分别以点D 、E 为圆心,大于DE 21的长度为半径画弧,两弧相交于点F ,过点O 作射线OF ,交BC 于点P ,则点P 的坐标为 【】 (A )()32,4 (B )()32,6 (C )()4,32 (D )()6,32第 8 题图第 9 题图NMFED CBA9. 如图,在Rt △ABC 中,AC AB BAC =︒=∠,90.点D 为BC 中点,E 为边AB 上一动点(不与A 、B 两点重合),以点D 为直角顶点、以射线DE 为一边作︒=∠90MDN ,另一条边DN 与边AC 交于点F .下列结论中正确的是 【 】 ①AF BE =; ②△DEF 是等腰直角三角形; ③无论点E 、F 的位置如何,总有CF DF EF +=成立; ④四边形AEDF 的面积随着点E 、F 位置的不同发生变化.(A )①③ (B )②③ (C )①② (D )①②③④10. 如图,在正方形ABCD 中,边长CD 为3 cm,动点P 从点A 出发,以2cm/s 的速度沿AC 方向运动到点C 停止.动点Q 同时从点A 出发,以1 cm/s 的速度沿折线AB →BC 方向运动到点C 停止.设△APQ 的面积为y (cm 2),运动时间为x (s ),则下列图象能反映y 与x 之间关系的是 【 】 二、填空题(每小题3分,共15分) 11. 计算:()=--914.30π_________.12. 不等式组⎩⎨⎧>-<-3212b x a x 的解集为11<<-x ,则()()22-+b a 的值等于_________.xy (A )O 634.5(cm 2)(s )x y (B )O 634.5(cm 2)(s )x y (C )O 634.5(cm 2)(s )x y (D )O 634.5(cm 2)(s )第 10 题图QPDCBA13. 如图,电路图上有编号为①②③④⑤共5个开关和一个灯泡,闭合开关①或同时闭合开关②③或同时闭合开关④⑤都可使小灯泡发光,任意闭合电路上其中的两个开关,小灯泡发光的概率为_________.14. 如图,正方形ABCD 的边长为2,E 是AB 的中点,以点E 为圆心,线段ED 的长为半径作半圆,交直线AB 于点M 、N ,分别以线段MD 、ND 为直径作半圆,则图中阴影部分的面积为____________.第 14 题图NDC第 15 题图F GOEDC15. 如图,矩形ABCD 中,4,3==BC AB ,对角线AC 、BD 相交于点O ,点E 是AD 边上一动点,将△AEO 沿直线EO 折叠,点A 落在点F 处,线段EF 、OD 相交于点G .若△DEG 是直角三角形,则线段DE 的长为____________. 三、解答题(共75分)16.(8分)先化简,再求值:12211122++-÷⎪⎭⎫⎝⎛+-+-x x x x x x ,其中︒+=60cos 22x .17.(9分)期末考试后,某市第一中学为了解本校九年级学生期末考试数学学科成绩情况,决定对该年级学生数学学科期末考试成绩进行抽样分析,已知九年级共有12个班,每班48名学生,请按要求回答下列问题: 【收集数据】(1)若要从全年级学生中抽取一个48人的样本,你认为以下抽样方法中比较合理的有_________;(只要填写序号即可)①随机抽取一个班级的48名学生;②在全年级学生中随机抽取48名学生;③在全年级12个班中分别各抽取4名学生;④从全年级学生中随机抽取48名男生; 【整理数据】(2)将抽取的48名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图(不完整)如下,请根据图表中数据填空:①C 类和D 类部分的圆心角度数分别为_________、_________; ②估计全年级A 、B 类学生大约一共有_________名;D 类(0 ~ 39)48C 类(40 ~ 59)0. 25B 类(60 ~ 79)0. 5A 类(80 ~ 100)频率频数成绩(单位:分)D 类C 类B 类25%A 类50%(3)学校为了解其他学校教学情况,将同层次的第一、第二两所中学的抽样数据进行对比,得下表:你认为哪所学校的教学效果较好?结合数据,请给出一个解释来支持你的观点.18.(9分)如图,在Rt △ABC 中,︒=∠90ACB ,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC 、BC 交于点E 、F ,过点F 作⊙O 的切线交AB 于点M . (1)求证:AB MF ⊥; (2)若⊙O 的直径是6,填空:①连结OF 、OM ,当=FM _________时,四边形OMBF 是平行四边形; ②连结DE 、DF ,当=AC _________时,四边形CEDF 是正方形.B19.(9分)图1是一台实物投影仪,图2是它的示意图,折线B —A —O 表示固定支架,AO 垂直水平桌面OE 于点O ,点B 为旋转点,BC 可转动,当BC 绕点B 顺时针旋转时,投影探头CD 始终垂直于水平桌面OE ,经测量:4.6=AO cm,8=CD cm,40=AB cm,45=BC cm.(1)如图2,︒=∠70ABC ,OE BC //. ①填空:=∠BAO _________;②投影探头的端点D 到桌面OE 的距离是_________cm;(2)如图3,将(1)中的BC 向下旋转,︒=∠30ABC 时,求投影探头点D 到桌面OE 的距离. (参考数据:77.040cos ,64.040sin ,34.070cos ,94.070sin ≈︒≈︒≈︒≈︒)20.(9分)在学习函数时,我们经历了“确定函数的表达式、利用函数图象研究其性质、运用函数解决问题”的学习过程.在画函数图象时,我们通过列表、描点、连线的方法画出了所学的函数图象.同时,我们也学习过绝对值的意义()()⎩⎨⎧<-≥=00a a a a a .结合上面经历的学习过程,现在来解决下面的问题:在函数b kx y +-=1中,当0=x 时,2-=y ;当1=x 时,3-=y . (1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请直接画出此函数的图象并写出这个函数的两条性质; (3)函数x y 3-=的图象如图所示,结合你所画的函数图象,直接写出不等式b kx +-1≤x3-的解集.21.(10分)某淘宝网店销售甲、乙两种电器,已知甲种电器每个的售价比乙种电器多60元,马老师从该网站购买了3个甲种电器和2个乙种电器,共花费780元.(1)该店甲、乙两种电器每个的售价各是多少元?(2)根据销售情况,店主决定用不少于10800元的资金购进甲、乙两种电器,这两种电器共100个,已知甲种电器每个的进价为150元,乙种电器每个的进价为80元.若所购进电器均可全部售出,请求出网店所获利润W(元)与甲种电器进货量m(个)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?22.(10分)已知:△ABC 和△ADE 是两个不全等的等腰直角三角形,AE AD AC AB ==,,︒=∠=∠90DAE BAC .(1)观察猜想如图1所示,连结BE 、CD 交于点H ,再连结CE ,那么BE 和CD 的数量关系和位置关系分别是_________、_________; (2)探究证明将图1中的△ABC 绕点A 逆时针旋转到图2的位置时,分别取BC 、CE 、D E 的中点P 、M 、Q ,连结MP 、PQ 、MQ ,请判断MP 、MQ 的数量关系和位置关系,并说明理由; (3)拓展延伸已知4,2==AD AB ,在(2)的条件下,将△ABC 绕点A 旋转的过程中,若︒=∠45CAE ,请直接写出此时线段PQ 的长.图 1HECBAM QP图 2H ECB A备用图ECBA23.(11分)如图,抛物线bx ax y +=2过()0,4A ,()3,1-B 两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线x BH ⊥轴,交x 轴于点H . (1)求抛物线的表达式;(2)点P 是抛物线上一动点,当△ABP 的面积为3时,求点P 的坐标;(3)若点M 在直线BH 上运动,点N 在x 轴上运动,点R 是坐标平面内一点,当以点C 、M 、N 、R 为顶点的四边形为正方形时,请直接写出此时点R 的坐标.备用图新华师大版河南中考数学摸底试卷(二)2020年郑州市九年级二摸数学试卷 B 卷 参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分) 11. 2- 12. 12- 13. 53 14. 52 15. 21或45 部分选择题、填空题答案解析9. 如图所示,在Rt △ABC 中,,90︒=∠BACAC AB =.点D 为BC 中点,E 为边AB 上一动点(不与A 、B 两点重合),以点D 为直角顶点、以射线DE 为一边作︒=∠90MDN ,另一条边DN 与边AC 交于点F .下列结论中正确的是 【 】 ①AF BE =;②△DEF 是等腰直角三角形;③无论点E 、F 的位置如何,总有CF DF EF +=成立;④四边形AEDF 的面积随着点E 、F 位置的不同发生变化.(A )①③ (B )②③ (C )①②(D )①②③④ 解析:∵AC AB BAC =︒=∠,90 点D 为BC 中点∴△ABC 为等腰直角三角形第 9 题图NMFED CBA︒=∠=∠45CAD B ,BC BD AD 21== BC AD ⊥∵︒=∠+∠901ADE ︒=∠+∠902ADE ∴21∠=∠在△BDE 和△ADF 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠21AD BD DAF DBE ∴△BDE ≌△ADF (ASA ) ∴DF DE AF BE ==, ∴△DEF 是等腰直角三角形. 故结论①、②正确.在△DCF 中,由三边之间的关系定理得: 对于③,当点E 为AB 边的中点时,点F 为AC边的中点(为什么?) ∴CD BC EF ==21,AC CF DF 21== ∴CD AC CF DF ≠=+ ∴CF DF EF +≠. ∴结论③错误;对于④,∵△BDE ≌△ADF∴ADF BDE S S ∆∆=∵ADE ADF AEDF S S S ∆∆+=四边形 ∴ABD ADE BDE AEDF S S S S ∆∆∆=+=四边形 ∴随着点E 、F 位置的不同,四边形AEDF 的面积不变. 故结论④错误.综上所述,正确的是结论是①、②. ∴选择答案【 C 】.10. 如图,在正方形ABCD 中,边长CD 为3 cm,动点P 从点A 出发,以2cm/s 的速度沿AC 方向运动到点C 停止.动点Q 同时从点A 出发,以1 cm/s 的速度沿折线AB →BC 方向运动到点C 停止.设△APQ 的面积为y (cm 2),运动时间为x (s ),则下列图象能反映y 与x 之间关系的是 【 】第 10 题图(A )(B )(C )(D )解析:分为两种情况: ①当点Q 在AB 边上运动时由题意可知:△APQ 为等腰直角三角形 (为什么?) ∴x AQ PQ ==cm ∴22121x x x S APQ=⋅=∆(x <0≤3) 即221x y =(x <0≤3);②当点Q 在BC 边上运动时,此时点P 与点C 重合,如下图所示.( P )()x PQ -=6cm∴()92362321+-=-=⋅=∆x x AB PQ S APQ 即923+-=x y (x <3≤6).综上所述,()⎪⎪⎩⎪⎪⎨⎧≤<+-≤<=63923)30(212x x x x y .∴选择答案【 D 】.14. 如图,正方形ABCD 的边长为2,E 是AB 的中点,以点E 为圆心,线段ED 的长为半径作半圆,交直线AB 于点M 、N ,分别以线段MD 、ND 为直径作半圆,则图中阴影部分的面积为____________.解析:如下页图所示,图中阴影部分的面积为:ABC S S ∆=阴影第 14 题图在第14题图中,∵MN 为⊙E 的直径 ∴︒=∠90MDN即△MDN 为直角三角形 根据上面的结论,有:MDN S S ∆=阴影 ∵E 是AB 的中点 ∴121==AB AE 在Rt △ADE 中,由勾股定理得:5122222=+=+=AE AD DE∴522==DE MN ∴522522121=⨯⨯=⋅=∆AD MN S MDN ∴52=阴影S .15. 如图,矩形ABCD 中,4,3==BC AB ,对角线AC 、BD 相交于点O ,点E 是AD 边上一动点,将△AEO 沿直线EO 折叠,点A 落在点F 处,线段EF 、OD 相交于点G .若△DEG 是直角三角形,则线段DE 的长为____________.第 15 题图解析:分为两种情况:①当︒=∠90DGE 时,如上图所示. 设x DE =,由勾股定理得:5432222=+=+=BC AB AC∵四边形ABCD 为矩形∴2521===AC OD OA 由折叠可知:25==OA OFODA OAD F ∠=∠=∠易证:△DGE ∽△DAB∴54,xDG DB DE DA DG == ∴x DG 54=,x DG OD OG 5425-=-=∵ODA F ∠=∠∴BDABOF OG ODA F =∠=,sin sin ∴53255425=-x ,解之得:45=x ∴45=DE ;②当︒=∠90DEG 时,如下图所示,此时CD EF //,作EF OH ⊥,则x OH -=2∵ODA OAD F ∠=∠=∠∴BDABOF OH ODA F =∠=,sin sin ∴53252=-x ,解之得:21=x∴21=DE .综上所述,线段DE 的长为21或45.三、解答题(共75分) 16.(8分)先化简,再求值:12211122++-÷⎪⎭⎫⎝⎛+-+-x x x x x x ,其中︒+=60cos 22x .解:12211122++-÷⎪⎭⎫⎝⎛+-+-x x x x x x()()()()()21121211111222-+⋅+--=+-÷⎥⎦⎤⎢⎣⎡+-+-+-=x x x x x x x x x x x xx x --=2 ………………………………5分当12212260cos 22+=⨯+=︒+=x 时…………………………………………6分 原式()23412122--=--+-=. ……………………………………………8分 17.(9分)期末考试后,某市第一中学为了解本校九年级学生期末考试数学学科成绩情况,决定对该年级学生数学学科期末考试成绩进行抽样分析,已知九年级共有12个班,每班48名学生,请按要求回答下列问题: 【收集数据】(1)若要从全年级学生中抽取一个48人的样本,你认为以下抽样方法中比较合理的有_________;(只要填写序号即可) ①随机抽取一个班级的48名学生;②在全年级学生中随机抽取48名学生;③在全年级12个班中分别各抽取4名学生;④从全年级学生中随机抽取48名男生; 【整理数据】(2)将抽取的48名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图(不完整)如下,请根据图表中数据填空: ①C 类和D 类部分的圆心角度数分别为_________、_________;②估计全年级A 、B 类学生大约一共有_________名;D 类C 类B 类25%A 类50%D 类(0 ~ 39)48C 类(40 ~ 59)0. 25B 类(60 ~ 79)0. 5A 类(80 ~ 100)频率频数成绩(单位:分)(3)学校为了解其他学校教学情况,将同层次的第一、第二两所中学的抽样数据进行对比,得下表:你认为哪所学校的教学效果较好?结合数据,请给出一个解释来支持你的观点.解:(1)②、③;(填对一个、两个都给满分) ……………………………………………2分 (2)①︒︒30,60;(不带单位不扣分) ……………………………………………4分 提示:C 类部分圆心角的度数为:︒=⨯︒60488360 D 类部分圆心角的度数为:︒=⨯︒30484360.②432;……………………………………7分 提示:()432%25%504812=+⨯⨯(名). (3)本题答案不唯一,以下两个答案仅供参考:答案一:第一中学成绩较好,两校平均分相同,极差、方差小于第二中学,说明第一中学学生两极分化较小,学生之间的差距比第二中学小. ………………………………………9分答案二:第二中学成绩较好,两校平均分相同,A 、B 类的频率和大于第一中学,说明第二中学学生的及格率比第一中学高.……………………………………………9分18.(9分)如图,在Rt △ABC 中,︒=∠90ACB ,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC 、BC 交于点E 、F ,过点F 作⊙O 的切线交AB 于点M . (1)求证:AB MF ⊥; (2)若⊙O 的直径是6,填空:①连结OF 、OM ,当=FM _________时,四边形OMBF 是平行四边形;②连结DE 、DF ,当=AC _________时,四边形CEDF 是正方形.MOFED CBA(1)证明:连结OF . ……………………1分 ∵OF OC = ∴OFC OCF ∠=∠∵CD 是Rt △ABC 斜边AB 上的中线∴AB CD BD 21== ……………………2分∴OCF B ∠=∠ ∴OFC B ∠=∠∴BD OF // ……………………………3分 ∵FM 是⊙O 的切线∴FM OF ⊥……………………………4分 ∴AB MF ⊥;……………………………5分 (2)①3 ; ………………………………7分 ②26. …………………………………9分 提示:由(1)可知:BD OF //∵OD OC = ∴BF CF =若四边形OMBF 是平行四边形 则BC OM // ∴BM DM =∴FM 是△BCD 的中位线 ∴321==CD FM ; ②若四边形CEDF 是正方形 则︒=∠=∠4521ACB ACD ∵CD 是Rt △ABC 斜边AB 上的中线 ∴AB AD CD 21== ∴︒=∠=∠45CAD ACD∴△ACD 为等腰直角三角形 ∴262==CD AC .19.(9分)图1是一台实物投影仪,图2是它的示意图,折线B —A —O 表示固定支架,AO 垂直水平桌面OE 于点O ,点B 为旋转点,BC 可转动,当BC 绕点B 顺时针旋转时,投影探头CD 始终垂直于水平桌面OE ,经测量:4.6=AO cm,8=CD cm,40=AB cm,45=BC cm.(1)如图2,︒=∠70ABC ,OE BC //. ①填空:=∠BAO _________;②投影探头的端点D 到桌面OE 的距离是_________cm;(2)如图3,将(1)中的BC 向下旋转,︒=∠30ABC 时,求投影探头点D 到桌面OE 的距离. (参考数据:77.040cos ,64.040sin ,34.070cos ,94.070sin ≈︒≈︒≈︒≈︒)解:(1)①︒160;…………………………2分 ②36 ; ……………………………………5分提示:如图1所示,作BC AG // ∴OE AG ABC GAB //,70︒=∠=∠ ∴︒=∠90GAO∴︒=︒+︒=∠1609070BAO .如图2所示,延长OA 交BC 于点F ,则BC AF ⊥在Rt △ABF 中 ∵ABAF=︒70sin ∴︒⋅=70sin AB AF6.3794.040=⨯≈cm∴446.374.6=+=+=AF OA OF cm ∴投影探头的端点D 到桌面OE 的距离是:36844=-cm.(2)如图3所示,过点C 作直线OE CD ⊥于点H ,作CD BM ⊥于点M ,延长OA 交BC 于点H ,则四边形OFMH 为矩形 ∴MH OF = 在Rt △ABF 中 ∵ABAF=︒70sin ∴︒⋅=70sin AB AF6.3794.040=⨯≈cm∴446.374.6=+=+=AF OA OF cm ∴44=MH cm …………………………7分 由题意可知:︒=︒-︒=∠403070CBM在Rt △BCM 中 ∵BCMC=︒40sin ∴8.2864.04540sin =⨯≈︒⋅=BC MC cm ∴CD MC MH DH --=2.788.2844=--=cm……………………………………………8分 答:投影探头点D 到桌面OE 的距离为7.2cm. ……………………………………………9分 20.(9分)在学习函数时,我们经历了“确定函数的表达式、利用函数图象研究其性质、运用函数解决问题”的学习过程.在画函数图象时,我们通过列表、描点、连线的方法画出了所学的函数图象.同时,我们也学习过绝对值的意义()()⎩⎨⎧<-≥=00a a a a a .结合上面经历的学习过程,现在来解决下面的问题:在函数b kx y +-=1中,当0=x 时,2-=y ;当1=x 时,3-=y . (1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请直接画出此函数的图象并写出这个函数的两条性质;(3)函数xy 3-=的图象如图所示,结合你所画的函数图象,直接写出不等式b kx +-1≤x3-的解集.解:(1)由题意可得:⎩⎨⎧-=+--=+3121b k b 解之得:⎩⎨⎧-==31b k∴31--=x y ;…………………………3分 (2)如图所示. …………………………5分性质1: 函数31--=x y 的图象关于直线1=x 对称;性质2: 当1<x 时,y 随x 的增大而减小;当x ≥1,y 随x 的增大而增大;……………………………………………7分 性质3: 当1=x 时,函数取得最小值,最小值为3-.(写对两个即可)(3)3-≤0<x 或1≤x ≤3.……………………………………………9分提示:函数31--=x y 的图象可由绝对值函数x y =的图象两次平移得到,如下:21.(10分)某淘宝网店销售甲、乙两种电器,已知甲种电器每个的售价比乙种电器多60元,马老师从该网站购买了3个甲种电器和2个乙种电器,共花费780元.(1)该店甲、乙两种电器每个的售价各是多少元?(2)根据销售情况,店主决定用不少于10800元的资金购进甲、乙两种电器,这两种电器共100个,已知甲种电器每个的进价为150元,乙种电器每个的进价为80元.若所购进电器均可全部售出,请求出网店所获利润W (元)与甲种电器进货量m (个)之间的函数关系式,并说明当m 为何值时所获利润最大?最大利润是多少?解:(1)设该店甲种电器每个的售价为x 元,则乙种电器每个的售价为()60-x 元,由题意可得:()7806023=-+x x解之得:180=x12060180=-(元)答:甲种电器每个的售价为180元,乙种电器每个的售价为120元;……………………4分 (2)由题意可得:()m m -+10080150≥10800解之得:m ≥40 …………………………6分 ∵()()()m m W --+-=10080120150180 ∴400010+-=m W ……………………8分 ∵010<-=k∴W 随m 的增大而减小∴当40=m 时,所获利润最大,最大利润为:360040004010max =+⨯-=W (元)答:当40=m 时,所获利润最大,最大利润为3600元.…………………………………10分 22.(10分)已知:△ABC 和△ADE 是两个不全等的等腰直角三角形,AE AD AC AB ==,,︒=∠=∠90DAE BAC .(1)观察猜想如图1所示,连结BE 、CD 交于点H ,再连结CE ,那么BE 和CD 的数量关系和位置关系分别是_________、_________; (2)探究证明将图1中的△ABC 绕点A 逆时针旋转到图2的位置时,分别取BC 、CE 、D E 的中点P 、M 、Q ,连结MP 、PQ 、MQ ,请判断MP 、MQ 的数量关系和位置关系,并说明理由; (3)拓展延伸已知4,2==AD AB ,在(2)的条件下,将△ABC 绕点A 旋转的过程中,若︒=∠45CAE ,请直接写出此时线段PQ 的长.解:(1)CD BE CD BE ⊥=,;……………………………………………2分 提示:易证:△ABE ≌△ACD (SAS ) ∴CD BE =,ACD ABE ∠=∠∴︒=∠+∠=∠+∠90CGH ACD AGB ABE ∴,90︒=∠BHC 即CD BE ⊥.图 1图 2备用图EDCBA(2)MQ MP MQ MP ⊥=,.……………………………………………3分 理由如下:∵△ABC 和△ADE 都是等腰直角三角形∴AE AD AC AB ==, ∵︒=∠=∠90DAE BAC∴BAD DAE BAD BAC ∠+∠=∠+∠∴BAE CAD ∠=∠ 在△ABE 和△ACD 中∵⎪⎩⎪⎨⎧=∠=∠=AD AE CAD BAE AC AB ∴△ABE ≌△ACD (SAS )……………………………………………4分∴CD BE =,ACD ABE ∠=∠∵︒=∠+∠=∠+∠90BGH ABE AGC ACD ∴CD BE ⊥ ……………………………6分∵点P 、M 、Q 分别是边BC 、CE 、DE 的中点∴BE MP BE MP 21,//=CD MQ CD MQ 21,//=∴MQ MP MQ MP ⊥=,; ………………8分 (3)5或13.………………………10分 提示:分为两种情况:①如图3所示.图 3由(2)可知:MQ MP MQ MP ⊥=, 即△PMQ 为等腰直角三角形 连结AQ,则︒=∠=∠4521DAE EAQ∵︒=∠+∠+∠180EAQ CAE BAC ∴B 、A 、Q 三点共线∵△ADE 为等腰直角三角形,点Q 为DE 的中点∴DE AQ ⊥,△BEQ 为直角三角形 求得:2221,242=====DE EQ AQ AD DE ∴23=+=AQ AB BQ 在Rt △BEQ 中,由勾股定理得: ()()2622232222=+=+=EQ BQ BE ∵MP 为△BCE 的中位线∴22621==BE MP∴1322622=⨯==MP PQ ; ②如图4所示.图 4此时A 、C 、Q 三点共线2222=-=-=AC AQ CQ在Rt △DCQ 中,由勾股定理得: ()()102222222=+=+=DQ CQ CD ∵MQ 为△DCE 的中位线∴21021==CD MQ ∴521022=⨯==MQ PQ . 综上所述,线段PQ 的长为5或13. 23.(11分)如图,抛物线bx ax y +=2过()0,4A ,()3,1-B 两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线x BH ⊥轴,交x 轴于点H .(1)求抛物线的表达式;(2)点P 是抛物线上一动点,当△ABP 的面积为3时,求点P 的坐标;(3)若点M 在直线BH 上运动,点N 在x 轴上运动,点R 是坐标平面内一点,当以点C 、M 、N 、R 为顶点的四边形为正方形时,请直接写出此时点R的坐标.解:(1)把()0,4A ,()3,1-B 分别代入bx ax y +=2可得:⎩⎨⎧-=+=+30416b a b a ,解之得:⎩⎨⎧-==41b a∴抛物线的表达式为x x y 42-=;……………………………………………3分备用图(2)分为两种情况:①当点P 在直线AB 的上方时,如图1所示.图 1设直线AB 的解析式为c kx y += 把()0,4A ,()3,1-B 分别代入c kx y +=得:⎩⎨⎧-=+=+304c k c k ,解之得:⎩⎨⎧-==41c k ∴直线AB 的解析式为4-=x y .设点P 为()m m m 4,2-,过点P 作y PE //轴,交直线AB 于点E ,则()4,-m m E ∴442+--=-=m m m y y PE E P 452+-=m m ∵3=∆ABP S∴3=-∆∆PAE PBE S S∴()()32121=-⋅--⋅A P B P x x PE x x PE ∴()321=-⋅B A x x PE ∴()()31445212=-⨯+-⨯m m 整理得:0252=+-m m 解之得:2175,217521-=+=m m ∴点P 的坐标为⎪⎪⎭⎫⎝⎛++2171,2175或⎪⎪⎭⎫⎝⎛--2171,2175;……………………7分 ②当点P 在直线AB 的下方时,如图2所示.图 2过点P 作y PF //轴,交直线AB 于点F ,则()4,-m m F∴m m m y y PF P F 442+--=-= 452-+-=m m ∵3=∆ABP S∴()321=-⋅B A x x PF ∴()()31445212=-⨯-+-⨯m m 整理得:0652=+-m m 解之得:3,221==m m∴点P 的坐标为()4,2-或()3,3-.综上所述,点P 为⎪⎪⎭⎫⎝⎛++2171,2175或⎪⎪⎭⎫⎝⎛--2171,2175或()4,2-或()3,3-; ……………………………………………9分 (3)()1,4-或()5,2--或()2,0-或()2,6. …………………………………………11分学生整理用图。

2022年河南省郑州市中考数学二模试题及答案解析

2022年河南省郑州市中考数学二模试题及答案解析

2022年河南省郑州市中考数学二模试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. −5的相反数是( )A. 5B. −5C. 15D. −152. 2021年对于郑州来说是不平凡的一年,在重重困难中勤劳团结的郑州人民不懈努力,使GDP达到12691亿元,同比增加4.7%.数据“12691亿”可用科学记数法表示为( )A. 1.2691×1011B. 0.12691×1012C. 12.691×1011D. 1.2691×10123. 如图,下面物体的左视图是( )A.B.C.D.4. 体育课上,老师测量跳远成绩的依据是( )A. 平行线间的距离相等B. 两点之间,线段最短C. 垂线段最短D. 两点确定一条直线5. 某面粉厂准备确定面粉包装袋的规格,市场调查员小李随机选择三家超市进行调查,收集三家超市一周的面粉销售情况,并整理数据、做出如图所示的统计图,则该面粉厂应选择面粉包装袋的规格为( )A. 2kg/包B. 3kg/包C. 4kg/包D. 5kg/包6. 若关于x 的方程x 2−2x −n =0没有实数根,则n 的值可能是( ) A. −1B. 0C. 1D. −√37. 如图,AB 是⊙O 的直径,∠ACD =15°,则∠BAD 的度数为( )A. 15°B. 30°C. 60°D. 75°8. 《九章算术》中第七章《盈不足》记载了一个问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“现有一些人合伙购买物品,若每人出8钱,则多出3钱;若每人出7钱,则还差4钱.问人数、物品价格各是多少?”设有x 个人,物品价格为y 钱,则下列方程组中正确的是( )A. {8x +3=y7x −4=yB. {8x −3=y7x +4=yC. {8x −3=y7x −4=yD. {8x +3=y7x +4=y9. 如图是简化的冬奥会跳台滑雪的雪道示意图,AB 为助滑道,BC 为着陆坡,着陆坡倾角为α,A 点与B 点的高度差为ℎ,A 点与C 点的高度差为120m ,着陆坡BC 长度为( )A.120−ℎsinαB.120−ℎcosαC. (120−ℎ)sinαD. (120−ℎ)cosα10. 如图,平面直角坐标系中,正六边形ABCDEF 的顶点A ,B 在x 轴上,顶点F 在y 轴上,点P 为该正六边形的中心.在C ,D ,E ,P 四个点中,位于同一反比例函数图象上的两个点是( )A. 点C与点DB. 点P与点EC. 点E与点CD. 点D与点P二、填空题(本大题共5小题,共15.0分)11. 面积为3的正方形边长是______.12. 请写出一个分式,并写出使其有意义的条件______.13. 一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是______.14. 如图,将▱ABCD绕点A顺时针旋转,其中点B,C,D分别落在点E,F,G处,且点B,E,D,F在同一直线上.若∠CBA=115°,则∠CBD的度数为______.15. 如图,在正方形ABCD中,AB=12.以点B为圆心,BA长为半径在正方形内部作AC⏜,点E为AC⏜上一点,连接BE;分别以点B,E为圆心,大于1BE的长为半径作弧,两弧交于点M,2N,作直线MN,交AC⏜于点F,交BE于点G,则图中阴影部分的周长为______.三、解答题(本大题共8小题,共75.0分。

河南省郑州市九年级数学中考二模试卷

河南省郑州市九年级数学中考二模试卷

河南省郑州市九年级数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·南山期末) 实数,,在数轴上的对应点的位置如图所示,则正确的结论是()A .B .C .D .2. (2分)(2017·赤壁模拟) 钓鱼岛是中国的固有领土,面积约4400000平方米,数据4400000用科学记数法表示应为()A . 44×105B . 0.44×107C . 4.4×106D . 4.4×1053. (2分) (2019·广东) 如图,由4个相同正方体组合而成的几何体,它的左视图是()A .B .C .D .4. (2分) (2017七上·辽阳期中) 下列计算正确的是()A . 2x+3y=5xyB . 5a2﹣3a2=2C . (﹣7)÷ × =﹣7D . (﹣2)﹣(﹣3)=15. (2分) (2019七下·萧县期末) 计算(-a-b)2等于()A . a2+b2B . a2-b2C . a2+2ab+b2D . a2-2ab+b26. (2分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=20°,那么∠3的度数是()A . 25°B . 30°C . 60°D . 65°7. (2分) (2020八下·漯河期中) 已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A . 16B . 16C . 8D . 88. (2分)某储户去年8月份存入定期为1年的人民币5000元,存款利率为3.5%,设到期后银行应向储户支付现金x元,则所列方程正确的是()A . x-5000=5000×3.5%B . x+5000=5000×3.5%C . x+5000=5000×(1+3.5%)D . x+5000×3.5%=5000×3.5%9. (2分)(2020·绵阳) 甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A . 1.2小时B . 1.6小时C . 1.8小时D . 2小时10. (2分) (2015九上·莱阳期末) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a,b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=﹣2时,x的值只能取2;⑤当﹣1<x<5时,y<0.其中正确的有()A . 2个B . 3个C . 4个D . 5个二、填空题 (共8题;共13分)11. (1分)(2016·宿迁) 因式分解:2a2﹣8=________.12. (1分) (2016七上·兴化期中) 当1<a<2时,代数式|a﹣2|+|1﹣a|的值是________.13. (1分)若已知数据x1 , x2 , x3的平均数为a,那么数据2x1+1,2x2+1,2x3+1的平均数为________ (用含a的代数式表示).14. (1分) (2016八上·龙湾期中) 如图,在△ABC中,∠ABC平分线交AC于点E,过E作DE平行BC,交AB于点D,DB=5,则线段DE=________.15. (1分)(2017·湖州) 如图,已知在中,.以为直径作半圆,交于点.若,则的度数是________度.16. (5分) (2020九上·合浦期中) 一元二次方程x2-2x-1=0的根是________.17. (1分)(2017·莒县模拟) 如图,点A,B在反比例函数y= (k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是________.18. (2分)(2018·北部湾模拟) 如图①,②,③,④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第8个“广”字中的棋子个数是________.三、解答题 (共10题;共68分)19. (5分)计算:|﹣3|﹣(5﹣π)0+.20. (5分)已知3x2+xy﹣2y2=0,求的值.21. (2分)如图,一位旅行者骑自行车沿湖边正东方向笔直的公路BC行驶,在B地测得湖中小岛上某建筑物A在北偏东45°方向,行驶12min后到达C地,测得建筑物A在北偏西60°方向如果此旅行者的速度为10km/h,求建筑物A到公路BC的距离.(结果保留根号)22. (10分) (2020七上·越秀期末) 如图,A地和B地都是海上观测站,B地在A地正东方向,且A、B两地相距2海里.从A地发现它的北偏东60°方向有一艘船C,同时,从B地发现船C在它的北偏东30°方向.(1)在图中画出船C所在的位置;(要求用直尺与量角器作图,保留作图痕迹)(2)已知三角形的内角和等于180°,求∠ACB的度数.(3)此时船C与B地相距________海里.(只需写出结果,不需说明理由)23. (12分)(2019·营口模拟) 某数学兴趣小组在全校范围内随机抽取了一部分学生进行“风味泰兴﹣﹣我最喜爱的泰兴美食”调查活动,将调查问卷整理后绘制成如下图所示的不完整的条形统计图和扇形统计图.调查问卷:在下面四种泰兴美食中,你最喜爱的是()(单选)A.黄桥烧饼B.宣堡小馄饨C.蟹黄汤包D.刘陈猪四宝请根据所给信息解答下列问题:(1)本次抽样调查的样本容量是________;(2)补全条形统计图,并计算扇形统计图中“A”部分所对应的圆心角的度数为________;(3)若全校有1200名学生,请估计全校学生中最喜爱“蟹黄汤包”的学生有多少人?24. (10分) (2019九上·鹿城月考) 在不透明的袋子中装有5个球,2个红球和3个黄球,每个球除颜色外都相同,(1)从中任意摸出一个球,恰好摸到红球的概率是多少?(2)小明从袋子中摸出一个红球后,小慧再从袋子里剩余的球中摸两个球(不放回),则小慧摸到的球刚好是两个黄球的概率是多少?(要求画树状图或列表)25. (10分) (2020九上·北京月考) 在 ABC中,∠C=90°,AC>BC,D是AB的中点,E为直线AC上一动点,连接DE,过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当点E是线段AC的中点时,AE=2,BF=1,求EF的长;(2)当点E在线段CA的延长线上时,依题意补全图形2,用等式表示AE,EF,BF之间的数量关系,并证明.26. (2分)(2019八下·平昌期末) 已知一个一次函数的图象与一个反比例函数的图象交于点.(1)分别求出这两个函数的表达式;(2)在同一个平面直角坐标系中画出这两个函数的图象,根据图象回答:当取何值时,一次函数的值大于反比例函数的值?(3)求平面直角坐标中原点与点构成的三角形的面积.27. (10分)(2018·高台模拟) 如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)求证:DE是⊙O的切线;(2)若,求sinC .28. (2分)如图,△ABC是等边三角形,AB=6.动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D,以PD为边向右作矩形PDEF,且PA=PF,点M为AC中点,连接PM.设矩形PDEF 与△ABC重叠部分的面积为S,点P运动的时间为t(t>0)秒.(1)填空:PD=________(用含t的代数式表示).(2)当点F落在BC上时,求t的值.(3)求S与t之间的函数关系式.(4)直接写出直线PM将矩形PDEF分成两部分的面积比为1:3时t的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共13分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共68分)19-1、20-1、21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、28-1、28-2、。

郑州市中考第二次模拟考试数学试卷含答案(1)

郑州市中考第二次模拟考试数学试卷含答案(1)

中学数学二模模拟试卷一、选择题(每小题3分,计30分)1.若a是绝对值最小的有理数,b是最大的负整数,c是倒数等于它本身的自然数,则代数式a﹣b+c的值为()A.0 B.1 C.2 D.32.如图是一个全封闭的物体,则它的俯视图是()A.B.C.D.3.若点A(1,a)和点B(4,b)在直线y=﹣x+m上,则a与b的大小关系是()A.a>b B.a<bC.a=b D.与m的值有关4.一副三角板如图摆放,边DE∥AB,则∠1=()A.135°B.120°C.115°D.105°5.不等式9﹣3x<x﹣3的解集在数轴上表示正确的是()A.B.C.D.等于()6.如图,在△ABC中,BC=4,BC边上的中线AD=2,AB+AC=3+,则S△ABCA.B.C.D.7.一次函数图象经过A(1,1),B(﹣1,m)两点,且与直线y=2x﹣3无交点,则下列与点B(﹣1,m)关于y轴对称的点是()A.(﹣1,3)B.(﹣1,﹣3)C.(1,3)D.(1,﹣3)8.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5 B.C.D.9.已知:⊙O为△ABC的外接圆,AB=AC,E是AB的中点,连OE,OE=,BC=8,则⊙O 的半径为()A.3 B.C.D.510.二次函数y=ax2﹣4ax+2(a≠0)的图象与y轴交于点A,且过点B(3,6)若点B关于二次函数对称轴的对称点为点C,那么tan∠CBA的值是()A.B.C.2 D.二、填空题(每小题3分,计12分)11.因式分解:x2﹣y2﹣2x+2y=.12.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC=105°,则∠A的度数是.13.如图,点B是双曲线y=(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB,若∠BAO=60°,则k=.14.如图,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E,若AE=17,BC=8,CD=6,则四边形ABCD的面积为.三、解答题15.(5分)计算;﹣tan30°+(π﹣1)0+16.(5分)解方程: +﹣=1.17.(5分)如图,在四边形ABCD中,AB=AD.在BC上求作一点P使△ABP≌△ADP.(要求:用尺规作图,不写作法,保留作图痕迹)18.(5分)如图,点P是正方形ABCD的对角线AC上的一点,PM⊥AB,PN⊥BC,垂足分别为点M,N,求证:DP=MN.19.(7分)为了解某中学去年中招体育考试中女生“一分钟跳绳”项目的成绩情况,从中抽取部分女生的成绩,绘制出如图所示的频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据下列统计图中提供的信息解决下列问题:(1)本次抽取的女生总人数为,第六小组人数占总人数的百分比为,请补全频数分布直方图;(2)题中样本数据的中位数落在第组内;(3)若“一分钟跳绳”不低于130次的成绩为优秀,这个学校九年级共有女生560人,请估计该校九年级女生“一分钟跳绳”成绩的优秀人数.20.(7分)如图,河对岸有一路灯杆AB,在灯光下,小亮在点D处测得自己的影长DF=3m,沿BD方向从D后退4米到G处,测得自己的影长GH=5,如果小亮的身高为1.7m,求路灯杆AB的高度.21.(7分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地的距离是千米;(2)两车行驶多长时间相距300千米?(3)求出两车相遇后y与x之间的函数关系式.22.(7分)有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).23.(8分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的长.24.(10分)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0)、B两点,与y轴交于点C(0,﹣3).(1)求抛物线的函数解析式;(2)已知点P(m,n)在抛物线上,当﹣2≤m<3时,直接写n的取值范围;(3)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线上是否存在点P,使△ABP与△ABD全等?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.25.(12分)问题提出;(1)如图1,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P为BC上的动点,CP=时,△APE的周长最小.(2)如图2,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P、点Q为BC上的动点,且PQ=2,当四边形APQE的周长最小时,请确定点P的位置(即BP的长)问题解决;(3)如图3,某公园计划在一片足够大的等边三角形水域内部(不包括边界)点P处修一个凉亭,设计要求PA长为100米,同时点M,N分别是水域AB,AC边上的动点,连接P、M、N的水上浮桥周长最小时,四边形AMPN的面积最大,请你帮忙算算此时四边形AMPN面积的最大值是多少?参考答案一、选择题1.解:根据题意得:a=0,b=﹣1,c=1,则a﹣b+c=0﹣(﹣1)+1=2,故选:C.2.解:从上面观察可得到:.故选:D.3.解:因为k=﹣1<0,所以在函数y=﹣x+m中,y随x的增大而减小.∵1<4,∴a>b.故选:A.4.解:∵DE∥AB,∴∠D+∠DAB=180°,又∵∠D=45°,∠BAC=30°,∴∠1=180°﹣∠D﹣∠BAC=105°,故选:D.5.解:移项,得:﹣3x﹣x<﹣3﹣9,合并同类项,得:﹣4x<﹣12,系数化为1,得:x>3,将不等式的解集表示如下:故选:B.6.解:∵BC=4,AD=2,∴BD=CD=2,∴AD=BD,AD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=180°÷2=90°,即△ABC是直角三角形,设AB=x,则AC=3+﹣x,根据勾股定理得x2+(3+﹣x)2=42,解得x=3或,∴AB=3或,AC=或3,=×3×=.∴S△ABC故选:D.7.解:∵一次函数图象与直线y=2x﹣3无交点,∴设一次函数的解析式为y=2x+b,把A(1,1)代入得1=2+b,∴b=﹣1,∴一次函数的解析式为y=2x﹣1,把B(﹣1,m)代入得m=﹣3,∴B(﹣1,﹣3),∴点B(﹣1,m)关于y轴对称的点是(1,﹣3),故选:D.8.解:∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,又∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=;∴DE=8﹣,故选:C.9.解:如图,作直径AD,连接BD;∵AB=AC,∴=,∴AD⊥BC,BE=CE=4;∵OE⊥AB,∴AE=BE,而OA=OB,∴OE为△ABD的中位线,∴BD=2OE=5;由勾股定理得:DF2=BD2﹣BF2=52﹣42,∴DF=3;∵AD为⊙O的直径,∴∠ABD=90°,由射影定理得:BD2=DF•AD,而BD=5,DE=3,∴AD=,⊙O半径=.故选:C.10.解:∵y=ax2﹣4ax+2,∴对称轴为直线x=﹣=2,A(0,2),∵点B(3,6)关于二次函数对称轴的对称点为点C,∴C(1,6),∴BC∥x轴,∴∠ADB=90°,∴tan∠CBA===,故选:B.二、填空题11.解:x2﹣y2﹣2x+2y=(x2﹣y2)﹣(2x﹣2y)=(x+y)(x﹣y)﹣2(x﹣y)=(x﹣y)(x+y﹣2).故答案为:(x﹣y)(x+y﹣2).12.解:∵BA=BD,∴∠A=∠BDA,设∠A=∠BDA=x,∠ABD=∠ECD=y,则有,解得x=85°,故答案为85°.13.解:∵AB=2,0A⊥OB,∠ABO=60°,∴OA=AB÷cos60°=4,作AD⊥OB于点D,∴AD=AB×sin60°=,BD=AB×cos60°=1,∴OD=OA﹣BD=3,∴点B的坐标为(3,),∵B 是双曲线y =上一点,∴k =xy =3. 故答案为:3.14.解:如图,过点A 作AF ⊥CD 交CD 的延长线于F ,连接AC ,则∠ADF +∠ADC =180°,∵∠ABC +∠ADC =180°,∴∠ABC =∠ADF ,∵在△ABE 和△ADF 中,∴△ABE ≌△ADF (AAS ),∴AF =AE =17,∴S 四边形ABCD =S △ABC +S △ACD =×8×17+×6×17=119故答案为:119三、解答题15.解:原式=﹣+1+﹣1=. 16.解:方程两边同乘(x +2)(x ﹣2)得 x ﹣2+4x ﹣2(x +2)=x 2﹣4,整理,得x 2﹣3x +2=0,解这个方程得x 1=1,x 2=2,经检验,x 2=2是增根,舍去,所以,原方程的根是x =1.17.解:如图所示,点P 即为所求.18.证明:如图,连结PB.∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP=45°.∵在△CBP和△CDP中,,∴△CBP≌△CDP(SAS).∴DP=BP.∵PM⊥AB,PN⊥BC,∠MBN=90°∴四边形BNPM是矩形.∴BP=MN.∴DP=MN.19.解:(1)本次抽取的女生总人数是:10÷20%=50(人),第四小组的人数为:50﹣4﹣10﹣16﹣6﹣4=10(人),第六小组人数占总人数的百分比是:×100%=8%.补全图形如下:故答案是:50人、8%;(2)因为总人数为50,所以中位数是第25、26个数据的平均数,而第25、26个数据都落在第三组,所以中位数落在第三组,故答案为:三;(3)随机抽取的样本中,不低于130次的有20人,则总体560人中优秀的有560×=224(人),答:估计该校九年级女生“一分钟跳绳”成绩的优秀人数为224人.20.解:∵CD⊥BF,AB⊥BF,∴CD∥AB,∴△CDF∽△ABF,∴=,同理可得=,∴=,∴=,解得BD=6,∴=,解得AB=5.1.答:路灯杆AB高5.1m.21.解:(1)由图象得:甲乙两地相距600千米;故答案为:600;(2)由题意得:慢车总用时10小时,∴慢车速度为(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时;设出发x小时后,两车相距300千米.①当两车没有相遇时,由题意得:60x+90x=600﹣300,解得:x=2;②当两车相遇后,由题意得:60x+90x=600+300,解得:x=6;即两车2或6小时时,两车相距300千米;(3)由图象得:(小时),60×400(千米),时间为小时时快车已到达甲地,此时慢车走了400千米,∴两车相遇后y与x的函数关系式为y=.22.解:(1)甲选择A部电影的概率=;(2)画树状图为:共有8种等可能的结果数,其中甲、乙、丙3人选择同1部电影的结果数为2,所以甲、乙、丙3人选择同1部电影的概率==.23.解:(1)∵AD是圆O的切线,∴∠DAB=90°.∵AB是圆O的直径,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB.∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==2.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA.∴,即.解得:DE=.∴AE=AD﹣DE=.24.解:(1)将点C坐标代入函数表达式得:y=x2+bx﹣3,将点A的坐标代入上式并解得:b=﹣2,故抛物线的表达式为:y=x2﹣2x﹣3;(2)令y=x2﹣2x﹣3=0,则x=3或﹣1,即点B(3,0),函数的对称轴为x=1,m=﹣2时,n=4+4﹣3=5,m<3,函数的最小值为顶点纵坐标的值:﹣4,故﹣4≤n≤5;(3)点D与点C(0,﹣3)关于点M对称,则点D(2,3),在x轴上方的P不存在,点P只可能在x轴的下方,如下图当点P在对称轴右侧时,点P为点D关于x轴的对称点,此时△ABP与△ABD全等,即点P(2,﹣3);同理点C(P′)也满足△ABP′与△ABD全等,即点P′(0,﹣3);故点P的坐标为(0,﹣3)或(2,﹣3).25.解:(1):∵四边形ABCD是矩形,∴∠D=90°=∠ABC,AB=CD=4,BC=AD=8,∵E为CD中点,∴DE=CE=2,在Rt△ADE中,由勾股定理得:AE===2,即△APE的边AE的长一定,要△APE的周长最小,只要AP+PE最小即可,延长AB到M,使BM=AB=4,则A和M关于BC对称,连接EM交BC于P,此时AP+EP的值最小,∵四边形ABCD是矩形,∴AB∥CD,∴△ECP∽△MBP,∴∴∴CP=故答案为:(2)点A向右平移2个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,此时MQ+EQ最小,∵PQ=3,DE=CE=2,AE=2,∴要使四边形APQE的周长最小,只要AP+EQ最小就行,即AP+EQ=MQ+EQ,过M作MN⊥BC于N,∴MN∥CD∴△MNQ∽△FCQ,∴∴∴NQ=4∴BP=BQ﹣PQ=4+2﹣2=4(3)如图,作点P关于AB的对称点G,作点P关于AC的对称点H,连接GH,交AB,AC 于点M,N,此时△PMN的周长最小.∴AP=AG=AH=100米,∠GAM=∠PAM,∠HAN=∠PAN,∵∠PAM+∠PAN=60°,∴∠GAH =120°,且AG =AH ,∴∠AGH =∠AHG =30°,过点A 作AO ⊥GH ,∴AO =50米,HO =GO =50米, ∴GH =100米,∴S △AGH =GH ×AO =2500平方米, ∵S 四边形AMPN =S △AGM +S △ANH =S △AGH ﹣S △AMN ,∴S △AMN 的值最小时,S 四边形AMPN 的值最大,∴MN =GM =NH =时∴S 四边形AMPN =S △AGH ﹣S △AMN =2500﹣=平方米.中学数学二模模拟试卷一、选择题(每小题3分,计30分)1.若a 是绝对值最小的有理数,b 是最大的负整数,c 是倒数等于它本身的自然数,则代数式a ﹣b +c 的值为( )A .0B .1C .2D .32.如图是一个全封闭的物体,则它的俯视图是( )A .B .C .D .3.若点A (1,a )和点B (4,b )在直线y =﹣x +m 上,则a 与b 的大小关系是( )A .a >bB .a <bC .a =bD .与m 的值有关4.一副三角板如图摆放,边DE ∥AB ,则∠1=( )A.135°B.120°C.115°D.105°5.不等式9﹣3x<x﹣3的解集在数轴上表示正确的是()A.B.C.D.等于()6.如图,在△ABC中,BC=4,BC边上的中线AD=2,AB+AC=3+,则S△ABCA.B.C.D.7.一次函数图象经过A(1,1),B(﹣1,m)两点,且与直线y=2x﹣3无交点,则下列与点B(﹣1,m)关于y轴对称的点是()A.(﹣1,3)B.(﹣1,﹣3)C.(1,3)D.(1,﹣3)8.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5 B.C.D.9.已知:⊙O为△ABC的外接圆,AB=AC,E是AB的中点,连OE,OE=,BC=8,则⊙O 的半径为()A.3 B.C.D.510.二次函数y=ax2﹣4ax+2(a≠0)的图象与y轴交于点A,且过点B(3,6)若点B关于二次函数对称轴的对称点为点C,那么tan∠CBA的值是()A.B.C.2 D.二、填空题(每小题3分,计12分)11.因式分解:x2﹣y2﹣2x+2y=.12.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC =105°,则∠A的度数是.13.如图,点B是双曲线y=(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB,若∠BAO=60°,则k=.14.如图,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E,若AE=17,BC=8,CD=6,则四边形ABCD的面积为.三、解答题15.(5分)计算;﹣tan30°+(π﹣1)0+16.(5分)解方程: +﹣=1.17.(5分)如图,在四边形ABCD中,AB=AD.在BC上求作一点P使△ABP≌△ADP.(要求:用尺规作图,不写作法,保留作图痕迹)18.(5分)如图,点P是正方形ABCD的对角线AC上的一点,PM⊥AB,PN⊥BC,垂足分别为点M,N,求证:DP=MN.19.(7分)为了解某中学去年中招体育考试中女生“一分钟跳绳”项目的成绩情况,从中抽取部分女生的成绩,绘制出如图所示的频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据下列统计图中提供的信息解决下列问题:(1)本次抽取的女生总人数为,第六小组人数占总人数的百分比为,请补全频数分布直方图;(2)题中样本数据的中位数落在第组内;(3)若“一分钟跳绳”不低于130次的成绩为优秀,这个学校九年级共有女生560人,请估计该校九年级女生“一分钟跳绳”成绩的优秀人数.20.(7分)如图,河对岸有一路灯杆AB,在灯光下,小亮在点D处测得自己的影长DF=3m,沿BD方向从D后退4米到G处,测得自己的影长GH=5,如果小亮的身高为1.7m,求路灯杆AB的高度.21.(7分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地的距离是千米;(2)两车行驶多长时间相距300千米?(3)求出两车相遇后y与x之间的函数关系式.22.(7分)有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).23.(8分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的长.24.(10分)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0)、B两点,与y轴交于点C (0,﹣3).(1)求抛物线的函数解析式;(2)已知点P(m,n)在抛物线上,当﹣2≤m<3时,直接写n的取值范围;(3)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线上是否存在点P,使△ABP与△ABD全等?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.25.(12分)问题提出;(1)如图1,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P为BC上的动点,CP=时,△APE的周长最小.(2)如图2,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P、点Q为BC上的动点,且PQ=2,当四边形APQE的周长最小时,请确定点P的位置(即BP的长)问题解决;(3)如图3,某公园计划在一片足够大的等边三角形水域内部(不包括边界)点P处修一个凉亭,设计要求PA长为100米,同时点M,N分别是水域AB,AC边上的动点,连接P、M、N的水上浮桥周长最小时,四边形AMPN的面积最大,请你帮忙算算此时四边形AMPN面积的最大值是多少?参考答案一、选择题1.解:根据题意得:a=0,b=﹣1,c=1,则a﹣b+c=0﹣(﹣1)+1=2,故选:C.2.解:从上面观察可得到:.故选:D.3.解:因为k=﹣1<0,所以在函数y=﹣x+m中,y随x的增大而减小.∵1<4,∴a>b.故选:A.4.解:∵DE∥AB,∴∠D+∠DAB=180°,又∵∠D=45°,∠BAC=30°,∴∠1=180°﹣∠D﹣∠BAC=105°,故选:D.5.解:移项,得:﹣3x﹣x<﹣3﹣9,合并同类项,得:﹣4x<﹣12,系数化为1,得:x>3,将不等式的解集表示如下:故选:B.6.解:∵BC=4,AD=2,∴BD=CD=2,∴AD=BD,AD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=180°÷2=90°,即△ABC是直角三角形,设AB=x,则AC=3+﹣x,根据勾股定理得x2+(3+﹣x)2=42,解得x=3或,∴AB=3或,AC=或3,=×3×=.∴S△ABC故选:D.7.解:∵一次函数图象与直线y=2x﹣3无交点,∴设一次函数的解析式为y=2x+b,把A(1,1)代入得1=2+b,∴b=﹣1,∴一次函数的解析式为y=2x﹣1,把B(﹣1,m)代入得m=﹣3,∴B(﹣1,﹣3),∴点B(﹣1,m)关于y轴对称的点是(1,﹣3),故选:D.8.解:∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,又∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=;∴DE=8﹣,故选:C.9.解:如图,作直径AD,连接BD;∵AB=AC,∴=,∴AD⊥BC,BE=CE=4;∵OE⊥AB,∴AE=BE,而OA=OB,∴OE为△ABD的中位线,∴BD=2OE=5;由勾股定理得:DF2=BD2﹣BF2=52﹣42,∴DF=3;∵AD为⊙O的直径,∴∠ABD=90°,由射影定理得:BD2=DF•AD,而BD=5,DE=3,∴AD=,⊙O半径=.故选:C.10.解:∵y=ax2﹣4ax+2,∴对称轴为直线x=﹣=2,A(0,2),∵点B(3,6)关于二次函数对称轴的对称点为点C,∴C(1,6),∴BC∥x轴,∴∠ADB=90°,∴tan∠CBA===,故选:B.二、填空题11.解:x2﹣y2﹣2x+2y=(x2﹣y2)﹣(2x﹣2y)=(x+y)(x﹣y)﹣2(x﹣y)=(x﹣y)(x+y﹣2).故答案为:(x﹣y)(x+y﹣2).12.解:∵BA=BD,∴∠A=∠BDA,设∠A=∠BDA=x,∠ABD=∠ECD=y,则有,解得x=85°,故答案为85°.13.解:∵AB=2,0A⊥OB,∠ABO=60°,∴OA=AB÷cos60°=4,作AD⊥OB于点D,∴AD=AB×sin60°=,BD=AB×cos60°=1,∴OD=OA﹣BD=3,∴点B的坐标为(3,),∵B 是双曲线y =上一点,∴k =xy =3. 故答案为:3.14.解:如图,过点A 作AF ⊥CD 交CD 的延长线于F ,连接AC ,则∠ADF +∠ADC =180°,∵∠ABC +∠ADC =180°,∴∠ABC =∠ADF ,∵在△ABE 和△ADF 中,∴△ABE ≌△ADF (AAS ),∴AF =AE =17,∴S 四边形ABCD =S △ABC +S △ACD =×8×17+×6×17=119故答案为:119三、解答题15.解:原式=﹣+1+﹣1=. 16.解:方程两边同乘(x +2)(x ﹣2)得 x ﹣2+4x ﹣2(x +2)=x 2﹣4, 整理,得x 2﹣3x +2=0,解这个方程得x 1=1,x 2=2,经检验,x 2=2是增根,舍去,所以,原方程的根是x =1.17.解:如图所示,点P 即为所求.18.证明:如图,连结PB.∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP=45°.∵在△CBP和△CDP中,,∴△CBP≌△CDP(SAS).∴DP=BP.∵PM⊥AB,PN⊥BC,∠MBN=90°∴四边形BNPM是矩形.∴BP=MN.∴DP=MN.19.解:(1)本次抽取的女生总人数是:10÷20%=50(人),第四小组的人数为:50﹣4﹣10﹣16﹣6﹣4=10(人),第六小组人数占总人数的百分比是:×100%=8%.补全图形如下:故答案是:50人、8%;(2)因为总人数为50,所以中位数是第25、26个数据的平均数,而第25、26个数据都落在第三组,所以中位数落在第三组,故答案为:三;(3)随机抽取的样本中,不低于130次的有20人,则总体560人中优秀的有560×=224(人),答:估计该校九年级女生“一分钟跳绳”成绩的优秀人数为224人.20.解:∵CD⊥BF,AB⊥BF,∴CD∥AB,∴△CDF∽△ABF,∴=,同理可得=,∴=,∴=,解得BD=6,∴=,解得AB=5.1.答:路灯杆AB高5.1m.21.解:(1)由图象得:甲乙两地相距600千米;故答案为:600;(2)由题意得:慢车总用时10小时,∴慢车速度为(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时;设出发x小时后,两车相距300千米.①当两车没有相遇时,由题意得:60x+90x=600﹣300,解得:x=2;②当两车相遇后,由题意得:60x+90x=600+300,解得:x=6;即两车2或6小时时,两车相距300千米;(3)由图象得:(小时),60×400(千米),时间为小时时快车已到达甲地,此时慢车走了400千米,∴两车相遇后y与x的函数关系式为y=.22.解:(1)甲选择A部电影的概率=;(2)画树状图为:共有8种等可能的结果数,其中甲、乙、丙3人选择同1部电影的结果数为2,所以甲、乙、丙3人选择同1部电影的概率==.23.解:(1)∵AD是圆O的切线,∴∠DAB=90°.∵AB是圆O的直径,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB.∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==2.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA.∴,即.解得:DE=.∴AE=AD﹣DE=.24.解:(1)将点C坐标代入函数表达式得:y=x2+bx﹣3,将点A的坐标代入上式并解得:b=﹣2,故抛物线的表达式为:y=x2﹣2x﹣3;(2)令y=x2﹣2x﹣3=0,则x=3或﹣1,即点B(3,0),函数的对称轴为x=1,m=﹣2时,n=4+4﹣3=5,m<3,函数的最小值为顶点纵坐标的值:﹣4,故﹣4≤n≤5;(3)点D与点C(0,﹣3)关于点M对称,则点D(2,3),在x轴上方的P不存在,点P只可能在x轴的下方,如下图当点P在对称轴右侧时,点P为点D关于x轴的对称点,此时△ABP与△ABD全等,即点P(2,﹣3);同理点C(P′)也满足△ABP′与△ABD全等,即点P′(0,﹣3);故点P的坐标为(0,﹣3)或(2,﹣3).25.解:(1):∵四边形ABCD是矩形,∴∠D=90°=∠ABC,AB=CD=4,BC=AD=8,∵E为CD中点,∴DE=CE=2,在Rt△ADE中,由勾股定理得:AE===2,即△APE的边AE的长一定,要△APE的周长最小,只要AP+PE最小即可,延长AB到M,使BM=AB=4,则A和M关于BC对称,连接EM交BC于P,此时AP+EP的值最小,∵四边形ABCD是矩形,∴AB∥CD,∴△ECP∽△MBP,∴∴∴CP=故答案为:(2)点A向右平移2个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,此时MQ+EQ最小,∵PQ=3,DE=CE=2,AE=2,∴要使四边形APQE的周长最小,只要AP+EQ最小就行,即AP+EQ=MQ+EQ,过M作MN⊥BC于N,∴MN∥CD∴△MNQ∽△FCQ,∴∴∴NQ=4∴BP=BQ﹣PQ=4+2﹣2=4(3)如图,作点P关于AB的对称点G,作点P关于AC的对称点H,连接GH,交AB,AC 于点M,N,此时△PMN的周长最小.∴AP=AG=AH=100米,∠GAM=∠PAM,∠HAN=∠PAN,∵∠PAM+∠PAN=60°,∴∠GAH =120°,且AG =AH ,∴∠AGH =∠AHG =30°,过点A 作AO ⊥GH ,∴AO =50米,HO =GO =50米, ∴GH =100米,∴S △AGH =GH ×AO =2500平方米, ∵S 四边形AMPN =S △AGM +S △ANH =S △AGH ﹣S △AMN ,∴S △AMN 的值最小时,S 四边形AMPN 的值最大,∴MN =GM =NH =时∴S 四边形AMPN =S △AGH ﹣S △AMN =2500﹣=平方米.中学数学二模模拟试卷一、选择题(每小题3分,计30分)1.若a 是绝对值最小的有理数,b 是最大的负整数,c 是倒数等于它本身的自然数,则代数式a ﹣b +c 的值为( )A .0B .1C .2D .32.如图是一个全封闭的物体,则它的俯视图是( )A .B .C .D .3.若点A (1,a )和点B (4,b )在直线y =﹣x +m 上,则a 与b 的大小关系是( )A .a >bB .a <bC .a =bD .与m 的值有关4.一副三角板如图摆放,边DE ∥AB ,则∠1=( )A.135°B.120°C.115°D.105°5.不等式9﹣3x<x﹣3的解集在数轴上表示正确的是()A.B.C.D.等于()6.如图,在△ABC中,BC=4,BC边上的中线AD=2,AB+AC=3+,则S△ABCA.B.C.D.7.一次函数图象经过A(1,1),B(﹣1,m)两点,且与直线y=2x﹣3无交点,则下列与点B(﹣1,m)关于y轴对称的点是()A.(﹣1,3)B.(﹣1,﹣3)C.(1,3)D.(1,﹣3)8.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5 B.C.D.9.已知:⊙O为△ABC的外接圆,AB=AC,E是AB的中点,连OE,OE=,BC=8,则⊙O 的半径为()A.3 B.C.D.510.二次函数y=ax2﹣4ax+2(a≠0)的图象与y轴交于点A,且过点B(3,6)若点B关于二次函数对称轴的对称点为点C,那么tan∠CBA的值是()A.B.C.2 D.二、填空题(每小题3分,计12分)11.因式分解:x2﹣y2﹣2x+2y=.12.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC =105°,则∠A的度数是.13.如图,点B是双曲线y=(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB,若∠BAO=60°,则k=.14.如图,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E,若AE=17,BC=8,CD=6,则四边形ABCD的面积为.三、解答题15.(5分)计算;﹣tan30°+(π﹣1)0+16.(5分)解方程: +﹣=1.17.(5分)如图,在四边形ABCD中,AB=AD.在BC上求作一点P使△ABP≌△ADP.(要求:用尺规作图,不写作法,保留作图痕迹)18.(5分)如图,点P是正方形ABCD的对角线AC上的一点,PM⊥AB,PN⊥BC,垂足分别为点M,N,求证:DP=MN.19.(7分)为了解某中学去年中招体育考试中女生“一分钟跳绳”项目的成绩情况,从中抽取部分女生的成绩,绘制出如图所示的频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据下列统计图中提供的信息解决下列问题:(1)本次抽取的女生总人数为,第六小组人数占总人数的百分比为,请补全频数分布直方图;(2)题中样本数据的中位数落在第组内;(3)若“一分钟跳绳”不低于130次的成绩为优秀,这个学校九年级共有女生560人,请估计该校九年级女生“一分钟跳绳”成绩的优秀人数.20.(7分)如图,河对岸有一路灯杆AB,在灯光下,小亮在点D处测得自己的影长DF=3m,沿BD方向从D后退4米到G处,测得自己的影长GH=5,如果小亮的身高为1.7m,求路灯杆AB的高度.21.(7分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地的距离是千米;(2)两车行驶多长时间相距300千米?(3)求出两车相遇后y与x之间的函数关系式.22.(7分)有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).23.(8分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的长.24.(10分)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0)、B两点,与y轴交于点C (0,﹣3).(1)求抛物线的函数解析式;(2)已知点P(m,n)在抛物线上,当﹣2≤m<3时,直接写n的取值范围;(3)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线上是否存在点P,使△ABP与△ABD全等?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.25.(12分)问题提出;(1)如图1,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P为BC上的动点,CP=时,△APE的周长最小.(2)如图2,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P、点Q为BC上的动点,且PQ=2,当四边形APQE的周长最小时,请确定点P的位置(即BP的长)问题解决;(3)如图3,某公园计划在一片足够大的等边三角形水域内部(不包括边界)点P处修一个凉亭,设计要求PA长为100米,同时点M,N分别是水域AB,AC边上的动点,连接P、M、N的水上浮桥周长最小时,四边形AMPN的面积最大,请你帮忙算算此时四边形AMPN面积的最大值是多少?参考答案一、选择题1.解:根据题意得:a=0,b=﹣1,c=1,则a﹣b+c=0﹣(﹣1)+1=2,故选:C.2.解:从上面观察可得到:.故选:D.3.解:因为k=﹣1<0,所以在函数y=﹣x+m中,y随x的增大而减小.∵1<4,∴a>b.故选:A.4.解:∵DE∥AB,∴∠D+∠DAB=180°,又∵∠D=45°,∠BAC=30°,∴∠1=180°﹣∠D﹣∠BAC=105°,故选:D.5.解:移项,得:﹣3x﹣x<﹣3﹣9,合并同类项,得:﹣4x<﹣12,系数化为1,得:x>3,将不等式的解集表示如下:故选:B.6.解:∵BC=4,AD=2,∴BD=CD=2,∴AD=BD,AD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=180°÷2=90°,即△ABC是直角三角形,设AB=x,则AC=3+﹣x,根据勾股定理得x2+(3+﹣x)2=42,解得x=3或,∴AB=3或,AC=或3,=×3×=.∴S△ABC故选:D.7.解:∵一次函数图象与直线y=2x﹣3无交点,∴设一次函数的解析式为y=2x+b,把A(1,1)代入得1=2+b,∴b=﹣1,∴一次函数的解析式为y=2x﹣1,把B(﹣1,m)代入得m=﹣3,∴B(﹣1,﹣3),∴点B(﹣1,m)关于y轴对称的点是(1,﹣3),故选:D.8.解:∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,又∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=;∴DE=8﹣,故选:C.9.解:如图,作直径AD,连接BD;∵AB=AC,∴=,∴AD⊥BC,BE=CE=4;∵OE⊥AB,∴AE=BE,而OA=OB,∴OE为△ABD的中位线,∴BD=2OE=5;由勾股定理得:DF2=BD2﹣BF2=52﹣42,∴DF=3;∵AD为⊙O的直径,∴∠ABD=90°,由射影定理得:BD2=DF•AD,而BD=5,DE=3,∴AD=,⊙O半径=.故选:C.10.解:∵y=ax2﹣4ax+2,∴对称轴为直线x=﹣=2,A(0,2),∵点B(3,6)关于二次函数对称轴的对称点为点C,∴C(1,6),∴BC∥x轴,∴∠ADB=90°,∴tan∠CBA===,故选:B.二、填空题11.解:x2﹣y2﹣2x+2y=(x2﹣y2)﹣(2x﹣2y)=(x+y)(x﹣y)﹣2(x﹣y)=(x﹣y)(x+y﹣2).故答案为:(x﹣y)(x+y﹣2).12.解:∵BA=BD,∴∠A=∠BDA,设∠A=∠BDA=x,∠ABD=∠ECD=y,则有,解得x=85°,故答案为85°.13.解:∵AB=2,0A⊥OB,∠ABO=60°,∴OA=AB÷cos60°=4,作AD⊥OB于点D,∴AD=AB×sin60°=,BD=AB×cos60°=1,∴OD=OA﹣BD=3,∴点B的坐标为(3,),∵B 是双曲线y =上一点,∴k =xy =3. 故答案为:3.14.解:如图,过点A 作AF ⊥CD 交CD 的延长线于F ,连接AC ,则∠ADF +∠ADC =180°,∵∠ABC +∠ADC =180°,∴∠ABC =∠ADF ,∵在△ABE 和△ADF 中,∴△ABE ≌△ADF (AAS ),∴AF =AE =17,∴S 四边形ABCD =S △ABC +S △ACD =×8×17+×6×17=119故答案为:119三、解答题15.解:原式=﹣+1+﹣1=. 16.解:方程两边同乘(x +2)(x ﹣2)得 x ﹣2+4x ﹣2(x +2)=x 2﹣4, 整理,得x 2﹣3x +2=0,解这个方程得x 1=1,x 2=2,经检验,x 2=2是增根,舍去,所以,原方程的根是x =1.17.解:如图所示,点P 即为所求.18.证明:如图,连结PB.∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP=45°.∵在△CBP和△CDP中,,∴△CBP≌△CDP(SAS).∴DP=BP.∵PM⊥AB,PN⊥BC,∠MBN=90°∴四边形BNPM是矩形.∴BP=MN.∴DP=MN.19.解:(1)本次抽取的女生总人数是:10÷20%=50(人),第四小组的人数为:50﹣4﹣10﹣16﹣6﹣4=10(人),第六小组人数占总人数的百分比是:×100%=8%.补全图形如下:故答案是:50人、8%;(2)因为总人数为50,所以中位数是第25、26个数据的平均数,而第25、26个数据都落在第三组,所以中位数落在第三组,故答案为:三;(3)随机抽取的样本中,不低于130次的有20人,则总体560人中优秀的有560×=224(人),答:估计该校九年级女生“一分钟跳绳”成绩的优秀人数为224人.20.解:∵CD⊥BF,AB⊥BF,∴CD∥AB,∴△CDF∽△ABF,∴=,同理可得=,∴=,∴=,解得BD=6,∴=,解得AB=5.1.答:路灯杆AB高5.1m.21.解:(1)由图象得:甲乙两地相距600千米;故答案为:600;(2)由题意得:慢车总用时10小时,∴慢车速度为(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时;设出发x小时后,两车相距300千米.①当两车没有相遇时,由题意得:60x+90x=600﹣300,解得:x=2;②当两车相遇后,由题意得:60x+90x=600+300,解得:x=6;即两车2或6小时时,两车相距300千米;(3)由图象得:(小时),60×400(千米),时间为小时时快车已到达甲地,此时慢车走了400千米,∴两车相遇后y与x的函数关系式为y=.22.解:(1)甲选择A部电影的概率=;(2)画树状图为:共有8种等可能的结果数,其中甲、乙、丙3人选择同1部电影的结果数为2,。

2023年河南省郑州市中考二模数学试题(含答案解析)

2023年河南省郑州市中考二模数学试题(含答案解析)

2023年河南省郑州市中考二模数学试题学校:___________姓名:___________班级:___________考号:___________A.知4.某校开展了丰富多彩的学雷锋志愿服务活动,为了了解同学们所做志愿者服务活动的情况,数学兴趣小组的同学在全校范围内随机抽查了部分同学,A.200B5.如图,一副三角尺按如图所示的方式放置,若A .75︒B .6.一元二次方程223x x -+A .有两个相等的实数根C .无实数根7.凸透镜成像的原理如图所示,焦点1F 的距离与焦点2F 到凸透镜的中心线称)()A .32B .238.如图,已知点()2A a ,在反比例函数14y =为B ,连接OA ,将AOB 沿OA 翻折,点B 的对应点上,则k 的值为()A .3B .3-9.在平面直角坐标系中,边长为2的等边三角形将AOP 绕点O 顺时针旋转60︒,得到11A OP ,得到22A OP ,再将22A OP 绕点O 顺时针旋转二、填空题15.黄金分割比是让无数科学家、数学家、艺术家为之着迷的数字.黄金矩形的长宽之比为黄金分割比,即矩形的短边为长边的倍.黄金分割比能够给画面带来美感,令人愉悦,在很多艺术品以及大自然中都能找到它.比如蜗牛壳的螺旋中就隐藏了黄金分割比.如下图,用黄金矩形三、解答题16.(1)计算:(43-(2)解不等式组:122 3x x-⎧⎪-⎨⎪⎩17.郑州是一座将少林文化、黄帝文化、商都文化、黄河文化融为一体的域内留存了丰富的文化遗产.为弘扬郑州地域文化,某校七、八年级开展了郑州兴郑州”知识竞赛,竞赛后,学生的成绩用x来表示,分四个等级:90100D x≤≤.,并绘制了如下统计图表.信息1:抽样调查的20名八年级学生成绩的频数直方图为:信息2:抽样调查的20名八年级学生的成绩在80,81,82,82,85,86,86,88,89,89,89信息3:七、八年级抽取的学生竞赛成绩相关统计结果年级七年级八年级平均数85.8586.25(1)请判断四边形BOEF的形状,并说明理由;(1)在点E的运动过程中,点G的位置也随之改变,则点在,请给出证明,如果不在,请说明理由;(2)当点E 在AD 边上运动时,BHG 的面积如何变化?请写出研究过程.23.如图,抛物线2y x bx c =-++与x 轴,y 轴分别交于A ,B 两点,点B 坐标为()05,,抛物线的顶点为C ,点B 关于对称轴直线2x =的对称点为点D .(1)求该抛物线的表达式;(2)当14x -<<时,求函数值y 的取值范围;(3)将抛物线在点D 下方的图象沿着直线BD 向上翻折,抛物线的其余部分保持不变,得到一个新图象,当直线y x n =+与新图象有2个公共点时,请直接写出n 的值.参考答案:∴180606060B OD '∠=︒-︒-︒=在Rt B DO '△中,30DB O '∠=︒∵AOP 为等边三角形,且边长为∴2OP OA ==,112OB OA ==∴223PB OP OB =-=,∴点()13P -,,∵将AOP 绕点O 顺时针旋转∴点P 与点1P 关于y 轴对称,在Rt ABE △中,∴tan tan BE AE A ==在Rt DBE 中,∠tan tan BE BEDE D ==∴AD AE DE =+∵DAE B∠=∠,∥,∴AE BC∠=∠,∴EAC C即当实际拓展活动中,开展6个“能量传输”类项目,4个“鱼跃龙门”类项目,能使所用的时间最少.【点睛】本题主要考查二元一次方程组解决实际问题,一次函数与实际问题.正确理解题意,找出题中的数量关系是解题的关键.20.(1)见解析(2)140秒(3)见解析【分析】(1)从表格中可以看出,增加相同的时间时,跳绳运动中心率的增加更多;或者从比较函数解析式中10.35109y =+与20.44111y x =+,0.440.35>,跳绳运动心率心率随时间的变化更快.(2)把158y =代入函数10.35109y x =+,即可求出运动时间;(3)随着慢跑运动时间的增加,心率不会一直增加,也不会出现明显的下降,但心率增加的速度会减慢,所以用图2中函数拟合更合理.【详解】(1)跳绳这项运动中心率随时间的变化更快.(理由不唯一,可以从表格或k 的值等方面说明)(2)当1158y =时,1580.35109x =+,解得140x =即甲同学运动的时间大约为140秒.(3)随着慢跑运动时间的增加,心率不会一直增加,也不会出现明显的下降,但心率增加的速度会减慢,所以用图2中函数拟合更合理.(理由充分即可)【点睛】本题主要考查运动时间与心率的函数关系,正确理解两个变量之间的关系是解题的关键.21.(1)四边形BOEF 是菱形,理由见解析(2)18AB =【分析】(1)由切线的性质可得出90OEC ∠=︒,即可证明OE ∥AB ,得出BFO FOE ∠=∠.再根据OF DE P ,即得出BOF ODE FOE OED ∠=∠∠=∠,,结合等边对等角即得出ODE OED ∠=∠,从而推出BFO BOF ∠=∠,再根据等角对等边推出BF BO =,进而可间接∵四边形ABCD 和四边形∴A ABC BCD ∠=∠=∠=∴ABC EBC EBG ∠-∠=∠∴()SAS ABE CBG ≌ ,∴90BCG A ∠=∠=︒,∵90BCD ∠=︒,∴180BCD BCG ∠+∠=︒,即D ,C ,G 三点共线,∴点G 始终在直线DC 上;(2)解:如图,连接BH设AE x =,∵四边形ABCD 和四边形∴90A D BEF ∠=∠=∠=∴ABE AEB DEH ∠+∠=∠∴ABE DEH ∠=∠,∴ABE DEH ∽ ,∴AB AE DE DH =,∴44x x DH=-,∴244x x DH -+=,∴241644x x HC -+=-=由(1)可知,CG AE =∴21644x x HG CG +-=+∴1122BHG S BC HG =⋅⋅= ∵0x >且当点E 从点A ∴BHG 的面积随x 的增大而增大.即当点E 从点A 运动到点【点睛】本题主要考查了正方形的性质,质,二次函数的性质,熟练掌握正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,二次函数的性质是解题的关键.23.(1)245y x x =-++(2)09y <≤(3)1n =或294n =。

2020-2021学年河南省郑州市中考数学第二次模拟试题及答案解析

2020-2021学年河南省郑州市中考数学第二次模拟试题及答案解析

最新河南省中考数学二模试卷一、选择题(本题共8小题,每小题3分,共24分)1.在实数-2任、0、-5、3中,最小的实数是()A. - 275B. 0 C . - 5 D. 32.下列计算正确的是()A . 3x2 - 4x2 = - 1B . 3x+x=3x 2C. 4x?x=4x2D. - 4x6+2x2= - 2x33.某市今年预计建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A. 14X104B. 1.4X105 C . 1.4X106 D . 0.14X1064.如图是由6个同样大小的正方体摆成的几何体. 将正方体①移走后,所得几何体()A.主视图改变,左视图改变C.俯视图改变,左视图改变B.俯视图不变,左视图不变D.主视图改变,左视图不变5.如图,直线11//12// 13,直线AC分别交11, 12, 13于点A, B, C;直线DF分别交11,12, 13于点D, E, F. AC 与DF 相交于点H,且AH=2 , HB=1 ,DEBC=5 ,则■的值为6.如图,在。

中,AB为直径,BC为弦,CD为切线,连接OC .若/ BCD=50A. 40 °B. 50° C . 80° D. 100°7.如图,四边形ABCD 中,/ C=50 ° , / B=/D=90 ° , E、F分别是BC、DC上的点, 当△ AEF 的周长最小时,/ EAF的度数为()A. 50°B. 60° C . 70 ° D, 80 °8.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P-D-Q运动,点E、F的运动速度相同.设点E的运动路程为x, 4AEF的面积为V,能大致刻画y与x的函数关系的图象是()二、填空题(本题共7小题,每小题3分,共21分)9.计算:|正—4| —(y)2=.10.若正多边形的一个内角等于120° ,则这个正多边形的边数是 .11.在一个不透明的盒子中装有16个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是则黄球的个数为 .12.如图,在平面直角坐标系中,点A的坐标为(0,4), AOAB沿x轴向右平移后得到△ O' A' B',点A的对应点A'是直线y=*x上一点,则点B与其对应点B'间的距离为.13.如图,点A在双曲线y=2U5 (x>0)上,点B在双曲线y=— (x>0)上(点B在点I 支A的右侧),且AB//x轴.若四边形OABC是菱形,且/ AOC=60 ° ,则k=.14.如图矩形ABCD中,AD=1 , CD=JZ,连接AC,将线段AC、AB分别绕点A顺时针旋转90°至AE、AF,线段AE与弧BF交于点G ,连接CG ,则图中阴影部分面积为15.如图,在RtAABC 中,/ ACB=90 ° , AC=4 , BC=6,点D 是边BC 的中点,点E 是边AB 上的任意一点(点E不与点B重合),沿DE翻折△ DBE使点B落在点F处,连接AF,则线段AF的长取最小值时,BF的长为.三、解答题(本题共小题,共75分)16.先化简,再求值:二一2 1+ ( m+2 - _ _ 9 ) -其中m是方程x2+3x - 1=0的根. 3m "bin皿17.为推广阳光体育“大课间”活动,我县某中学决定在学生中开设A:实心球.B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图. 请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.10C-----②B①C18.如图,AB是。

备考练习:2022年河南省郑州市中考数学二模试题(含答案详解)

备考练习:2022年河南省郑州市中考数学二模试题(含答案详解)

2022年河南省郑州市中考数学二模试题 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、已知二次函数()2625y x =-+,则关于该函数的下列说法正确的是( ) A .该函数图象与y 轴的交点坐标是()0,5 B .当2x >时,y 的值随x 值的增大而减小C .当x 取1和3时,所得到的y 的值相同D .将26y x =的图象先向左平移两个单位,再向上平移5个单位得到该函数图象 2、一圆锥高为4cm ,底面半径为3cm ,则该圆锥的侧面积为( ) A .29cm π B .212cm π C .215cm π D .216cm π 3、现有四张卡片依次写有“郑”“外”“加”“油”四个字(四张卡片除字不同外其他均相同),把四张卡片背面向上洗匀后,从中随机抽取两张,则抽到的汉字给好是“郑”和“外”的概率是( )A .13B .14C .16D .56 4、如图,点C ,D 为线段AB 上两点,12AC BD +=,且65AD BC AB +=,设CD t =,则关于x 的方·线○封○密○外程37(1)2(3)x x t x --=-+的解是( )A .2x =B .3x =C .4x =D .5x =5、将正方体的表面分别标上数字1,2,3,并在它们的对面分别标上一些负数,使它的任意两个相对面的数字之和为0,将这个正方体沿某些棱剪开,得到以下的图形,这些图形中,其中的x 对应的数字是﹣3的是( )A .B .C .D .6、如图,小玲将一个正方形纸片剪去一个宽为2cm 的长条后,再从剩下的长方形纸片上剪去一个宽为3cm 的长条,如果两次剪下的长条面积正好相等,那么原正方形的边长为( )cm .A .4B .6C .12D .187、如图,线段8AB =,延长AB 到点C ,使2BC AB =,若点M 是线段AC 的中点,则线段BM 的长为( )A .3B .4C .5D .1282272π中无理数有( ) A .4个B .3个C .2个D .1个 9、下列命题,是真命题的是( ) A .两条直线被第三条直线所截,内错角相等B .邻补角的角平分线互相垂直C .相等的角是对顶角D .若a b ⊥,b c ⊥,则a c ⊥ 10、如图,AB 与CD 交于点O ,AOE ∠与AOC ∠互余,20AOE ∠=︒,则BOD ∠的度数为( ) A .20︒B .70︒C .90︒D .110︒第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、抛物线y =y 2+y 与x 轴的两个交点之间的距离为4,则t 的值是______. 2、若关于x 的二次三项式y 2−2(y +1)y +4是完全平方式,则k =____.3、如图所示,已知直线y ∥y ,且这两条平行线间的距离为5个单位长度,点y 为直线y 上一定点,以y 为圆心、大于5个单位长度为半径画弧,交直线y 于y 、y 两点.再分别以点y 、y 为圆心、大于12yy 长为半径画弧,两弧交于点y ,作直线yy ,交直线y 于点y .点H 为射线yy 上一动点,作点y 关于直线yy 的对称点y ′,当点y ′到直线y 的距离为4个单位时,线段yy 的长度为______.·线○封○密○外4、一个实数的平方根为3y+3与1x-,则这个实数是________.5、已知圆弧所在圆的半径为36cm.所对的圆心角为60°,则该弧的长度为______cm.三、解答题(5小题,每小题10分,共计50分)1、如图,二次函数y=a(x﹣1)2﹣4a(a≠0)的图像与x轴交于A,B两点,与y轴交于点C(0,.(1)求二次函数的表达式;(2)连接AC,BC,判定△ABC的形状,并说明理由.2、如图,边长为1的正方形ABCD中,对角线AC、BD相交于点O,点Q、R分别在边AD、DC上,BR⊥,QP交BD于点E.交线段OC于点P,QP BP(1)求证:APQ DBR ;(2)当∠QED 等于60°时,求AQ DR 的值. 3、下列是我们常见的几何体,按要求将其分类(只填写编号). (1)如果按“柱”“锥球”来分,柱体有______,椎体有______,球有______;(2)如果按“有无曲面”来分,有曲面的有______,无曲面的有______.4、如图,AB 为⊙O 的直径,C 、D 为圆上两点,连接AC 、CD ,且AC =CD ,延长DC 与BA 的延长线相交于E 点.(1)求证:△EAC ∽△ECO ;(2)若3tan 4EOC ∠=,求EC EO 的值. 5、如图,点D 、E 分别为ABC 的边AB 、BC 的中点,3DE =,则AC =______. ·线○封○密·○外-参考答案-一、单选题1、C【分析】把0x =,代入()2625y x =-+,即可判断A ,由二次函数()2625y x =-+的图象开口向上,对称轴是直线2x =,即可判断B ,当x 取1和3,代入()2625y x =-+,即可判断C ,根据函数图象的平移规律,即可判断D .【详解】∵二次函数()2625y x =-+的图象与y 轴的交点坐标是()0,29, ∴A 选项错误;∵二次函数()2625y x =-+的图象开口向上,对称轴是直线2x =,∴当2x >时,y 的值随x 值的增大而增大,∴B 选项错误;∵当x 取1和3时,所得到的y 的值都是11,∴C 选项正确;∵将26y x =的图象先向左平移两个单位,再向上平移5个单位得到()26+25y x =+的图象,∴D 选项错误.故选:C .【点睛】本题主要考查二次函数的图象和性质,理解二次函数的性质是解题的关键.2、C【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,扇形的面积公式求解. 【详解】 解: ∵一圆锥高为4cm ,底面半径为3cm , ∴圆锥母线5, ∴圆锥的侧面积=1523152ππ⨯⨯⨯=(cm 2). 故选C . 【点睛】 本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 3、C 【分析】 列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可. 【详解】 解:列表如下:·线○封○密○外由表可知,共有12种等可能结果,其中抽到的汉字恰好是“郑”和“外”的有2种结果, 所以抽到的汉字恰好是“郑”和“外”的概率为21=126. 故选:C .【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.4、D【分析】先根据线段的和差运算求出t 的值,再代入,解一元一次方程即可得.【详解】解:12,AC BD CD t +==, 12122,AD BC AC CD BD CD t AB t ∴=+=+++=++,65AD BC AB +=, 6122(12)5t t ∴+=+, 解得3t =,则关于x 的方程37(1)2(3)x x t x --=-+为37(1)32(3)x x x --=-+,解得5x ,故选:D .【点睛】本题考查了线段的和差、一元一次方程的应用,熟练掌握方程的解法是解题关键.5、A【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,求出各选项的x 的值即可.【详解】解: A .x =-3 B .x =-2 C .x =-2 D .x =-2 故答案为:A 【点睛】 本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题. 6、B【分析】设正方形的边长为x cm ,则第一个长条的长为x cm ,宽为2cm ,第二个长条的长为(x -2)cm ,宽为3cm ,根据两次剪下的长条面积正好相等列方程求解. 【详解】 解:设正方形的边长为x cm ,则第一个长条的长为x cm ,宽为2cm ,第二个长条的长为(x -2)cm ,宽为3cm , ·线○封○密○外依题意得:2x =3(x -2),解得x =6故选:B .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正值列出一元一次方程是解题的关键.7、B【分析】先求出24AC =,再根据中点求出12AM =,即可求出BM 的长.【详解】解:∵8AB =,∴216BC AB ==,16824AC BC AB =+=+=,∵点M 是线段AC 的中点, ∴1122AM AC ==,4BM AM AB =-=, 故选:B .【点睛】本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.8、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】,是整数,属于有理数;227是分数,属于有理数; 无理数有2π,共3个. 故选:B .【点睛】此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 9、B 【分析】 利用平行线的性质、邻补角的定义及性质、对顶角的定义等知识分别判断后即可确定正确的选项. 【详解】 解:A 、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意; B 、邻补角的角平分线互相垂直,正确,是真命题,符合题意; C 、相等的角不一定是对顶角,故错误,是假命题,不符合题意; D 、平面内,若a b ⊥,b c ⊥,则//a c ,故原命题错误,是假命题,不符合题意, 故选:B . 【点睛】 考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及性质、对顶角的定义等知识,难度不大. 10、B 【分析】 先由AOE ∠与AOC ∠互余,求解70,AOC 再利用对顶角相等可得答案. ·线○封○密○外【详解】解:AOE ∠与AOC ∠互余,90AOE AOC ∴∠+∠=︒,20AOE ∠=︒,70AOC ∴∠=︒,70BOD AOC ∴∠=∠=︒,故选:B .【点睛】本题考查的是互余的含义,角的和差关系,对顶角的性质,掌握“两个角互余的含义”是解本题的关键.二、填空题1、−4【分析】设抛物线y =y 2+y 与x 轴的两个交点的横坐标为y 1,y 2, 则y 1,y 2是y 2+y =0的两根,且y <0, 再利用两个交点之间的距离为4列方程,再解方程可得答案.【详解】解:设抛物线y =y 2+y 与x 轴的两个交点的横坐标为y 1,y 2,∴y 1,y 2是y 2+y =0的两根,且y <0,∴y 1=√−y ,y 2=−√−y ,∵两个交点之间的距离为4,∴√−y −(−√−y )=4,∴2√−y =4,解得:y =−4, 经检验:y =−4是原方程的根且符合题意,故答案为:−4.【点睛】本题考查的是二次函数与y 轴的交点坐标,两个交点之间的距离,掌握“求解二次函数与y 轴的交点坐标”是解本题的关键. 2、﹣3或1【分析】根据y 2+22这个基础,结合安全平方公式有和、差两种形式,配齐交叉项,根据恒等变形的性质,建立等式求解即可. 【详解】解:∵二次三项式y 2−2(y +1)y +4是完全平方式,∴y 2−2(y +1)y +4=22(2)44x x x -=-+或y 2−2(y +1)y +4=(y +2)2=y 2+4y +4, ∴−2(y +1)=4或−2(y +1)=−4,解得k =﹣3或k =1,故答案为:﹣3或1.【点睛】本题考查了完全平方公式的应用,正确理解完全平方公式有和与差两种形式是解题的关键. 3、5√10或5√103 【分析】 根据勾股定理求出PE =3,设OH =x ,可知,DH =(x -3)或(3- x ),勾股定理列出方程,求出x 值即可. 【详解】解:如图所示,过点y ′作直线y 的垂线,交m 、n 于点D 、E ,连接O H ', 由作图可知,yy ⊥y ,yy =yy ′=5,点y ′到直线y 的距离为4个单位,即yy ′=4, ·线○封○密·○外yy=√yy′2−yy′2=3,则yy=yy=3,y′y=yy−y′y=1,设OH=x,可知,DH=(3- x),(3−y)2+12=y2,解得,y=53;yy=√yy2+yy2=5√103如图所示,过点y′作直线y的垂线,交m、n于点D、E,连接O H',由作图可知,yy⊥y,yy=yy′=5,点y′到直线y的距离为4个单位,即yy′=4,yy=√yy′2−yy′2=3,则yy=yy=3,y′y=yy+y′y=9,设OH=x,可知,DH=(x-3),222-+=(3)9x x解得,y=15,yy=√yy2+yy2=5√10;故答案为:5√10或5√103【点睛】本题考查了勾股定理和轴对称,解题关键是画出正确图形,会分类讨论,设未知数,根据勾股定理列方程. 4、94 【分析】 根据平方根的性质,一个正数的平方根有两个,互为相反数,0的平方根是它本身,即可得到结果. 【详解】 解:根据题意得:①这个实数为正数时:3x +3+x -1=0,∴x =-12,∴(x -1)2=94, ②这个实数为0时: 3x +3=x -1, ∴x =-2,·线○封○密·○外∵x-1=-3≠0,∴这个实数不为0.故答案为:94.【点睛】本题考查了平方根的性质,分类讨论并进行取舍是本题的关键.5、12y【分析】根据弧长公式直接计算即可.【详解】∵圆的半径为36cm.所对的圆心角为60°,∴弧的长度为:yyy180=60×y×36180=12π,故答案为:12π.【点睛】本题考查了弧长的计算,熟练掌握弧长公式及其使用条件是解题的关键.三、解答题1、(1)21)y x=-(2)直角三角形,理由见解析.【分析】(1)将点C的坐标代入函数解析式,即可求出a的值,即得出二次函数表达式;(2)令0y=,求出x的值,即得出A、B两点的坐标.再根据勾股定理,求出三边长.最后根据勾股定理逆定理即可判断ABC 的形状.(1) 解:将点C (0,代入函数解析式得:2(01)4a a =--,解得:a =故该二次函数表达式为:21)y x =- (2) 解:令0y =21)0x --=, 解得:11x =-,23x =. ∴A 点坐标为(-1,0),B 点坐标为(3,0). ∴OA =1,OC3(1)4B A AB x x =-=--=,∴2AC ==,BC ===∵22224+=,即222BC AC AB +=, ∴ABC 的形状为直角三角形. 【点睛】 本题考查利用待定系数法求函数解析式,二次函数图象与坐标轴的交点坐标,勾股定理逆定理.根据点C 的坐标求出函数解析式是解答本题的关键. 2、 (1)见解析 ·线○封○密○外(2【分析】⊥,可得(1)根据正方形的性质,可得∠CAD=∠BDC=45°,∠OBP+∠OPB=90°,再由QP BP∠OBP=∠OPE,即可求证;(2)设OE=a,根据∠QED等于60°,可得∠BEP=60°,然后利用锐角三角函数,可得BD=2OB=6a,(=+=,然后根据相似三角形的对应边成比例,即可求解.AP OA OP a3(1)证明:在正方形ABCD中,∠CAD=∠BDC=45°,BD⊥AC,∴∠BOC=90°,∴∠OBP+∠OPB=90°,⊥,∵QP BP∴∠BPQ=90°,∴∠OPE+∠OPB=90°,∴∠OBP=∠OPE,∴APQ DBR;(2)解:设OE=a,在正方形ABCD中,∠POE=90°,OA=OB=OD,∵∠QED等于60°,∴∠BEP=60°,△中,在Rt OEP2cos60OE PE a ==︒,tan 60OP OE =⋅︒=, ∵QP BP ⊥,∠BEP =60°, ∴∠PBE =30°, ∴24BE PE a ==,tan 60BP PE =⋅︒= ,∴OA =OB =BE -OE =3a ,∴BD =2OB =6a ,∴(33AP OA OP a a =+=+= ,∵APQ DBR ,∴(36a AQ AP DR BD a ===. 【点睛】 本题主要考查了相似三角形的判定和性质,解直角三角形,熟练掌握相似三角形的判定和性质定理,特殊角锐角三角函数值是解题的关键. 3、 (1)①②⑥;③④;⑤ (2)②③⑤;①④⑥【分析】(1)根据立体图形的特点从柱体的形状特征考虑.(2)根据面的形状特征考虑.(1)解:∵(1)是四棱柱,(2)是圆柱,(3)是圆锥,(4)是棱锥,(5)是球,(6)是三棱柱, ∴柱体有(1),(2),(6),锥体有(3),(4),球有(5),·线○封○密○外故答案为:(1),(2),(6);(3),(4);(5);(2)∵(2)(3)(5)有曲面,其它几何体无曲面,∴按“有无曲面”来分,有曲面的有(2),(3),(5),无曲面的有:(1),(4),(6),故答案为:(2),(3),(5);(1),(4),(6).【点睛】本题考查了认识立体图形,解决本题的关键是认识柱体的形状特征.4、(1)见解析(2【分析】(1)由题意可证得△AOC ≌△DOC ,从而可得对应边、对应角都相等,再由△ECO 、△EDO 的内角和定理,可证得∠=∠ECA EOC ,从而可得△EAC ∽△ECO ;(2)过点C 作CF ⊥EO ,由3tan 4EOC ∠=,可设CF =3x ,则可得OF =4x ,OC =5x =OA ,故可得AF =x ,可求AC,,从而可得=AC OC ,即为EC EO 的值. (1)证明:∵AB 为⊙O 的直径,C 、D 为圆上两点,连接AC 、CD ,且AC =CD ,∴在△CAO 与△CDO 中:OD OA OC OC CD CA =⎧⎪=⎨⎪=⎩∴△CAO ≌△CDO ,∴,∠=∠∠=∠=∠=∠AOC DOC ODC OAC OCA OCD ,在△ECO 与△EDO 中,180∠+∠+∠+∠=︒E ECA OCA EOC , 180∠+∠+∠+∠=︒E EOC ODC DOC , ∴∠=∠=∠ECA DOC AOC , 在△EAC 与△ECO 中, ∠=∠ECA EOC ,E E ∠=∠, ∴△EAC ∽△ECO . (2) 解:过点C 作CF ⊥EO , ∵3tan 4EOC ∠=, ∴34=CF OF , 设CF =3x ,则OF =4x , ∴OC5x =OA , ∴AF =5x -4x = x ,∴AC, ·线○封○密·○外∴=AC OC 由(1)得△EAC ∽△ECO , ∴=EC AC EO OC,∴=EC EO 【点睛】本题考查了三角形相似的判定及性质,三角函数的应用,解题的关键是作出辅助线,利用好数形结合的思想.5、6【分析】根据三角形中位线定理解答即可.【详解】解:∵D ,E 分别是△ABC 的边AB ,BC 的中点,∴DE 是△ABC 的中位线,∴AC =2DE =6,故答案为:6.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新华师大版九年级上册数学摸底试卷(十八)郑州市九年级二摸试卷 C 卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 如表是郑州市2019年1月1日零点到三点的天气情况,从零点到三点最高温度与最低温度差是 【 】 (A )2℃ (B )3℃ (C )4℃ (D )5℃2. 如图所示,该几何体的左视图是 【 】(A ) (B ) (C ) (D )3. 下列运算正确的是 【 】 (A )632623a a a -=⋅- (B )()236326a a a -=-÷ (C )()623a a =- (D )()623ab ab =4. 如图所示,一把直尺的边缘AB 经过一块三角板DCB 的直角顶点B ,交斜边CD 于点A ,直尺的边缘EF 分别交CD 、BD 于点E 、F ,若∠D =60°,∠ABC =20°,则∠1的度数为 【 】 (A )25° (B )40° (C )50° (D )80°5. 某校九年级“经典咏流传”朗诵比赛中,有15名学生参加比赛,他们比赛的成绩各不相同,其中一名学生想知道自己能否进入前8名,不仅要了解自己的成绩,还要了解这15名学生成绩的统计量是 【 】 (A )中位数 (B )众数 (C )平均数 (D )方差6. 如图所示,在△ABC 中,∠ABC =90°,AB =4 cm,BC =3 cm.动点P 、Q 分别从点A 、B 同时开始移动(移动方向如图所示),点P 的速度为21cm/s,点Q 的速度为1 cm/s,点Q 移动到点C 后停止,点P 也随之停止运动.若使△PBQ 的面积为415cm 2,则点P 运动的时间是 【 】 (A )2 s (B )3 s (C )4 s (D )5 s1A BCDEFA BCP7. 不等式组23539x x +⎧⎨-<⎩≤的解集在数轴上表示正确的是 【 】(A )(B)(C)(D)8. 如图所示,在△ABC 中,AD 平分∠BAC ,按如下步骤作图:①分别以点A 、D 为圆心,以大于21AD 的长为半径在AD 两侧作弧,分别交于M 、N 两点;②作直线MN ,分别交AB 、AC 于点E 、F ;③连接DE 、DF .若BD =8,AF =5,CD =4,则下列说法中正确的是 【 】 (A )DF 平分∠ADC (B )AF =3CF (C )DA =DB (D )BE =10M NF EDCBA9. 如图所示,弹性小球从点()1,0P 出发,沿所示方向运动,每当小球碰到正方形DABCA 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时,碰到的点为()0,21-P ,第2次碰到正方形的边时,碰到的点为2P ……,第n 次碰到正方形的边时,碰到的点为n P ,则点2019P 的坐标是 【 】 (A )()1,0 (B )()1,4- (C )()0,2- (D )()3,010. 如图1所示,四边形ABCD 中,AD AC B CD AB =︒=∠,90,//.动点P 从点B 出发,沿折线B →A →D →C 方向以每秒1个单位长度的速度匀速运动,在整个运动过程中,△BCP 的面积S 与运动时间t (s )之间的函数关系的图象如图2所示(当点P 、B 、C 共线时,不妨设0=S ),则AD 的长度为 【 】DCBA P 图1图2(A )5 (B )34 (C )8 (D )32 二、填空题(每小题3分,共15分) 11. 计算:=-+29_________.12. 汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为 3 : 4.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为_________.BEFDCBA13. 若关于x 的一元二次方程04932=--x kx 有实数根,则实数k 的取值范围是__________. 14. 如图所示,在△ABC 中,CA =CB ,∠ACB =90°,AB =4,点D 为AB 的中点,以点D 为圆心作圆,半圆恰好经过△ABC 的直角顶点C ,以点D 为顶点,作∠EDF =90°,与半圆分别交于点E 、F ,则图中阴影部分的面积是__________.15. 如图所示,在矩形ABCD 中,AB =6,AD =3,E 是AB 边上一点,AE =2,F 是直线CD 上一动点,将△AEF 沿直线EF 折叠,点A 的对应点为点A ′,当点E 、A ′、C 三点在一条直线上时,DF 的长度为___________. 三、解答题(共75分)16.(8分)先化简,再求值:21212--÷⎪⎭⎫ ⎝⎛+-x x x x ,其中x 是方程022=-x x 的根.17.(9分)“安全教育平台”是中国教育学会为方便家长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解九年级家长和学生参与“青少年不良行为的知识”的主题情况,在本校九年级学生中随机抽取部分学生作调查,把收集的数据分为以下四类情形: A .仅学生自己参与; B .家长和学生一起参与; C .仅家长自己参与; D .家长和学生都未参与;各类情况条形统计图类别A BCD 40%各类情况扇形统计图请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了_________名学生;(2)补全条形统计图,并在扇形统计图中计算B 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该年级600名学生中“家长和学生都未参与”的人数.18.(9分)如图所示,AB 是⊙O 的直径,且,12=AB 点M 为⊙O 外一点,且MA 、MC 均为⊙O 的切线,切点分别为点A 、C ,点D 是线段BC 与AM 的延长线的交点,连结OC . (1)求证:点M 是AD 的中点;(2)①当=CM _________时,四边形AOCM 是正方形;②当=CM _________时,△CDM 为等边三角形.19.(9分)如图所示,一次函数()0≠+=k b kx y 的图象与反比例函数()0≠=a xay 的图象交于点A 、C ,与x 轴交于点()0,1-E ,点A 的横坐标为3-,过点A 作x AB ⊥轴于点B ,过点C 作x CD ⊥轴于点D ,连结AD 、BC ,△ABE 的面积是2.(1)求一次函数和反比例函数的解析式; (2)求四边形ABCD 的面积.20.(9分)五星红旗作为中华民族五千年历史上第一面代表全体人民意志的民族之旗、胜利之旗、希望之旗、吉祥之旗,是中华人民共和国的标志和象征.某校九年级综合实践小组开展了测量学校五星红旗旗杆AB 高度的活动.如图所示,他们在地面D 处竖直放置标杆CD ,并在地面上水平放置一个平面镜E ,使得B 、E 、D 在同一水平线上.该小组在标杆的F 处通过平面镜E 恰好观测到旗杆顶点A (此时FED AEB ∠=∠),在F 处分别测得旗杆顶点A 的仰角为︒40、平面镜E 的俯角为︒45,5.1=FD m,问旗杆AB 的高度约为多少.(结果保留整数.参考数据:4.1185tan ,19.150tan ,84.040tan ≈︒≈︒≈︒)21.(10分)郑州市创建国家生态园林城市实施方案已经出台,到2019年6月底,市区主城区要达到或超过《国家生态园林城市标准》各项指标要求,郑州市林荫路推广率要超过85%.在推进此活动中,郑州市某小区决定购买A 、B 两种乔木树,经过调查,获取信息如下:如果购买50棵,B 种树木50棵,那么需付款10 500元.(1)A 种树木与B 种树木的单价各为多少元?(2)经过测算,需要购置A 、B 两种树木共100棵,其中B 种树木的数量不多于A 种树木数量的31,如何购买付款最少?最少费用是多少元?请说明理由.22.(10分)已知△ABC 是等腰直角三角形,∠ACB =90°,动点P 在斜边AB 所在的直线上,以PC 为直角边作等腰直角三角形PCQ ,其中∠PCQ =90°,探究并解决下列问题: (1)如图1,若点P 在线段AB 上,且22,6==PA AC . ①填空:PB =_________,PC =_________;②直接写出P A 2、PB 2、PC 2三者之间的数量关系:________________;(2)如图2,若点P 在AB 的延长线上,在(1)中所猜想的结论仍然成立,请你利用图2给出证明过程;(3)若动点P 满足41=AB PA ,则BCPC的值为_________. Q CPB A图1QCPB A图2备用图CBA23.(11分)如图1,在平面直角坐标系中,点O 是坐标原点.点A 在x 轴的正半轴上,且坐标为()0,10.抛物线214y x bx c =-++经过O 、A 、B 三点,直线AB 的表达式为152y x =-+,且与抛物线的对称轴交于点Q . (1)求拋物线的表达式;(2)如图2,在A 、B 两点之间的抛物线上有一动点P ,连接AP 、BP ,设点P 的横坐标为m ,△ABP 的面积为S ,求当S 取得最大值时点P 的坐标;(3)如图3,将△OAB 沿射线BA 方向平移得到△DEF (平移距离大于0).在平移过程中,以A 、D 、Q 为顶点的三角形能否成为等腰三角形?如果能,请直接写出此时点E 的坐标;如果不能,请说明理由.图1图2图3新华师大版九年级上册数学摸底试卷(十八)郑州市九年级二摸试卷 C 卷 参考答案一、选择题(每小题3分,共24分)二、填空题(每小题3分,共21分) 11. 5 12.252413. k ≥1-且0≠k 14. 2-π 15. 1或11 部分选择题、填空题答案解析8. 如图,在△ABC 中,AD 平分∠BAC ,按如下步骤作图:①分别以点A 、D 为圆心,以大于21AD 的长为半径在AD 两侧作弧,分别交于M 、N 两点;②作直线MN ,分别交AB 、AC 于点E 、F ;③连接DE 、DF .若BD =8,AF =5,CD =4,则下列说法中正确的是 【 】 (A )DF 平分∠ADC (B )AF =3CF (C )DA =DB (D )BE =10M NF EDCBA解析:本题考查尺规作图的原理,是河南中考的常考内容,多以选择题和填空题形式考查,要求学生必须掌握五种基本作图.由作图可知:直线MN 是线段AD 的垂直平分线∴DF AF DE AE ==, ∴EDA EAD ∠=∠ ∵AD 平分∠BAC ∴FAD EAD ∠=∠ ∴FAD EDA ∠=∠ ∴AF DE // 同理可证:DF AE // ∴四边形AEDF 为菱形 ∴5====DF DE AE AF∵AC DE // ∴4885,+=+=BE BE BC BD BA BE 解之得:10=BE .∴选择答案【 D 】.9. 如图所示,弹性小球从点()1,0P 出发,沿所示方向运动,每当小球碰到正方形DABCA 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时,碰到的点为()0,21-P ,第2次碰到正方形的边时,碰到的点为2P ……,第n 次碰到正方形的边时,碰到的点为n P ,则点2019P 的坐标是 【 】 (A )()1,0 (B )()1,4- (C )()0,2- (D )()3,0解析:本题考查图形与坐标. 由题意和图形可知:()0,21-P ,()1,42-P ,()3,03P ,()4,24-P , ()3,45-P ,()1,06P ,…….可知小球第6次碰到正方形的边时回到了出发点P ,故每经过6次反弹完成一个循环. ∵333662019Λ=÷∴点2019P 的坐标与点3P 的坐标相同,坐标为()3,0∴选择答案【 D 】. 10. 如图1所示,四边形ABCD中,AD AC B CD AB =︒=∠,90,//.动点P 从点B 出发,沿折线B →A →D →C 方向以每秒1个单位长度的速度匀速运动,在整个运动过程中,△BCP 的面积S 与运动时间t (s )之间的函数关系的图象如图2所示(当点P 、B 、C 共线时,不妨设0=S ),则AD 的长度为 【 】DCBA P 图1图2(A )5 (B )34 (C )8 (D )32解析:本题考查几何图形中的动点问题与函数图像,难度较高,在解决问题时,要抓住动点的特殊位置与函数图象上特殊点的对应关系,从而获得解决问题的突破口.由题意可知,当3=t s 时,点P 运动到点A 的位置∴3=AB过点A 作CD AE ⊥,如下页图3所示. ∵︒=∠90,//B CD AB ∴四边形ABCE 为矩形.图 3EDCB( P )A∴BC AE CE AB ===,3 ∵CD AE AD AC ⊥=, ∴62==CE CD显然,当点P 运动到点D 的位置时,△BCP 的面积S 最大,为15 ∴15621=⨯BC ∴5==AE BC在Rt △ADE 中,由勾股定理得:34352222=+=+=DE AE AD∴选择答案【 B 】. 14.如图所示,在△ABC中,CA =CB ,∠ACB =90°,AB =4,点D 为AB 的中点,以点D 为圆心作圆,半圆恰好经过△ABC 的直角顶点C ,以点D 为顶点,作∠EDF =90°,与半圆分别交于点E 、F ,则图中阴影部分的面积是__________.B解析:本题考查与扇形有关的阴影部分面积的计算,是河南中考必考题型.连结OC ,如上图所示. 在等腰Rt △ABC 中 ∵点D 是AB 的中点 ∴221====AB CD BD AD AB CD DAG DCH ⊥︒=∠=∠,45∵︒=∠+∠90CDG CDH ︒=∠+∠90CDG ADG ∴ADG CDH ∠=∠ ∴△CDH ≌△ADG (ASA )∴ADG CDH S S ∆∆= ∵CDF ADE S S 扇形扇形=∴BDC BDC BFC S S S S ∆-==扇形弓形阴影222213602902-=⨯⨯-⨯=ππ.15. 如图所示,在矩形ABCD中,AB =6,AD =3,E 是AB 边上一点,AE =2,F 是直线CD 上一动点,将△AEF 沿直线EF 折叠,点A 的对应点为点A ′,当点E 、A ′、C 三点在一条直线上时,DF 的长度为___________.解析:本题考查几何图形的折叠与动点问题,难度较高,对大多数学生不作要求.EFDCBA本题分为两种情况:①当点'A 落在线段CE 上时,如图1所示.图 1∵2,6==AE AB ∴4=BE在Rt △BCE 中,由勾股定理得:5342222=+=+=BC BE CE∵CD AB // ∴AEF CFE ∠=∠由折叠可知:CEF AEF ∠=∠ ∴CEF CFE ∠=∠ ∴5==CE CF∴156=-=-=CF CD DF ;②当点'A 落在线段CE 的延长线上时,如图2所示.由折叠可知:EF A AEF '∠=∠ ∴AEH EF A AEG AEF ∠-∠=∠-∠' (AEH AEG ∠=∠)图 2∴BEF CEF ∠=∠ ∵CD AB // ∴BEF CFE ∠=∠∴CFE CEF ∠=∠ ∴5==CF CE∴1156=+=+=CF CD DF . 综上所述,DF 的长度为1或11. 三、解答题(共75分)16.(8分)先化简,再求值:21212--÷⎪⎭⎫ ⎝⎛+-x x x x ,其中x 是方程022=-x x 的根.解:21212--÷⎪⎭⎫ ⎝⎛+-x x x x()()()()()1122121121222-+-⋅--=--+÷-+-=x x x x x x x x x x x 11+-=x x …………………………………5分 解方程022=-x x 得:2,021==x x ……………………………………………6分 当0=x 时 原式11010-=+-=. ………………………8分 注意分式有意义的条件.17.(9分)“安全教育平台”是中国教育学会为方便家长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解九年级家长和学生参与“青少年不良行为的知识”的主题情况,在本校九年级学生中随机抽取部分学生作调查,把收集的数据分为以下四类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与;各类情况条形统计图类别AB CD 40%各类情况扇形统计图请根据图中提供的信息,解答下列问题: (1)在这次抽样调查中,共调查了_________名学生;(2)补全条形统计图,并在扇形统计图中计算B 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该年级600名学生中“家长和学生都未参与”的人数. 解:(1)200; ……………………………2分 提示:200%4080=÷(名). (2)B 类情形的学生人数为:40206080200=---(名)补全条形统计图略.……………………………………………4分 B 类所对应扇形的圆心角的度数为:︒=⨯︒7220040360;………………………6分 (3)6006020020=⨯(名)答:估计该年级600名学生中“家长和学生都未参与”的有60人.……………………………………………9分 18.(9分)如图所示,AB 是⊙O 的直径,且,12=AB 点M 为⊙O 外一点,且MA 、MC 均为⊙O 的切线,切点分别为点A 、C ,点D 是线段BC 与AM 的延长线的交点,连结OC . (1)求证:点M 是AD 的中点;(2)①当=CM _________时,四边形AOCM是正方形;②当=CM _________时,△CDM 为等边三角形.(1)证明:∵MA 、MC 均为⊙O 的切线 ∴MC OC AD AB ⊥⊥, ∴︒=∠=∠90OCM OAM 在Rt △AOM 和Rt △COM 中∵⎩⎨⎧==OM OM OC OA∴Rt △AOM ≌Rt △COM (HL ) ∴CM AM = ∵OC OB = ∴2∠=∠B∵︒=∠+∠︒=∠+∠9021,90B D ∴1∠=∠D ∴DM CM =∵CM AM =,DM CM = ∴DM AM = 即点M 是AD 的中点;……………………………………………5分 (2)① 6 ; ……………………………7分②32.…………………………9分 19.(9分)如图所示,一次函数()0≠+=k b kx y 的图象与反比例函数()0≠=a xay 的图象交于点A 、C ,与x 轴交于点()0,1-E ,点A 的横坐标为3-,过点A 作x AB ⊥轴于点B ,过点C 作x CD ⊥轴于点D ,连结AD 、BC ,△ABE 的面积是2. (1)求一次函数和反比例函数的解析式; (2)求四边形ABCD 的面积.解:(1)∵3-=A x ,()0,1-E ∴3=OB ,1=OE ∴2=-=OE OB BE ∵x AB ⊥轴,2=∆ABE S ∴2,2221==⨯AB AB ∴()2,3-A把()2,3-A 、()0,1-E 分别代入b kx y +=得:⎩⎨⎧=+-=+-023b k b k ,解之得:⎩⎨⎧-=-=11b k ∴一次函数的表达式为1--=x y .……………………………………………3分 把()2,3-A 代入xay =得: 623-=⨯-=a∴反比例函数的表达式为xy 6-=; ……………………………………………5分(2)解方程16--=-x x得:2,321=-=x x ∴()3,2-C ∵x CD ⊥轴∴3,2==CD OD∴5=+=OD OB BD ∴BCD ABD ABCD S S S ∆∆+=四边形22535215221=⨯⨯+⨯⨯=. ……………………………………………9分 20.(9分)五星红旗作为中华民族五千年历史上第一面代表全体人民意志的民族之旗、胜利之旗、希望之旗、吉祥之旗,是中华人民共和国的标志和象征.某校九年级综合实践小组开展了测量学校五星红旗旗杆AB 高度的活动.如图所示,他们在地面D 处竖直放置标杆CD ,并在地面上水平放置一个平面镜E ,使得B 、E 、D 在同一水平线上.该小组在标杆的F 处通过平面镜E 恰好观测到旗杆顶点A (此时FED AEB ∠=∠),在F 处分别测得旗杆顶点A 的仰角为︒40、平面镜E 的俯角为︒45,5.1=FD m,问旗杆AB 的高度约为多少.(结果保留整数.参考数据:4.1185tan ,19.150tan ,84.040tan ≈︒≈︒≈︒)解:作AB FH ⊥,则有︒=∠=∠=∠︒=∠45,40AEB FED EFH AFH ∴︒=︒-︒-︒=∠904545180AEF︒=︒+︒=∠854540AFE……………………………………………1分在Rt △DEF 中 ∵︒=∠45FED ∴2232==DF EF m ……………………………………………4分 在Rt △AEF 中 ∵EFAE=︒85tan ∴︒=︒=85tan 22385tan EF AE m ……………………………………………7分 在Rt △ABE 中 ∵︒=∠45AEB∴︒==85tan 232AE AB 174.1123≈⨯≈m 答:旗杆AB 的高度约为17m.…………………………………………10分 解法二:作AB FH ⊥,则有5.1==BH DF m,FH BD =︒=∠=∠︒=∠45,40AEB FED AFH∴5.1==DF DE m,BE AB =……………………………………………2分 设x AB =m,则()5.1-=x AH m,BD FH =()5.1+=x m在Rt △AFH 中 ∵FHAH=︒40tan ∴︒=+-40tan 5.15.1x x∴()()84.0184.015.140tan 140tan 15.1-+⨯≈︒-︒+=x 17≈∴17≈AB m.…………………………10分 答:旗杆AB 的高度约为17m.21.(10分)郑州市创建国家生态园林城市实施方案已经出台,到2019年6月底,市区主城区要达到或超过《国家生态园林城市标准》各项指标要求,郑州市林荫路推广率要超过85%.在推进此活动中,郑州市某小区决定购买A 、B 两种乔木树,经过调查,获取信息如下:么需付款11 400元;如果购买A 种树木50棵,B 种树木50棵,那么需付款10 500元. (1)A 种树木与B 种树木的单价各为多少元?(2)经过测算,需要购置A 、B 两种树木共100棵,其中B 种树木的数量不多于A 种树木数量的31,如何购买付款最少?最少费用是多少元?请说明理由.解:(1)设A 种树木与B 种树木的单价分别为x 元、y 元,由题意可列方程组得:⎩⎨⎧=⨯+⨯=⨯+10500509.0508.011400609.040y x y x 解之得:⎩⎨⎧==100150y x .答: A 种树木的单价为150元,B 种树木的单价为100元; ……………………………4分 (2)设购买A 种树木m 棵,则购买B 种树木()m -100棵,由题意可得:m -100≤m 31,解之得:m ≥75设总费用为W 元,则有()10000201001001508.0+=-+⨯=m m m W ……………………………………………7分 ∵020>∴W 随m 的增大而增大 ∴当75=m 时,W 最小11500100007520min =+⨯=W (元)2575100=-(棵)答:购买A 种树木75棵,B 种树木25棵,可使付款最少,最少费用为11500元.…………………………………………10分 22.(10分)已知△ABC 是等腰直角三角形,∠ACB =90°,动点P 在斜边AB 所在的直线上,以PC 为直角边作等腰直角三角形PCQ ,其中∠PCQ =90°,探究并解决下列问题: (1)如图1,若点P 在线段AB 上,且22,6==PA AC .①填空:PB =_________,PC =_________; ②直接写出P A 2、PB 2、PC 2三者之间的数量关系:________________;(2)如图2,若点P 在AB 的延长线上,在(1)中所猜想的结论仍然成立,请你利用图2给出证明过程; (3)若动点P 满足41=AB PA ,则BCPC的值为_________.Q CPB A图1QCP BA图2备用图CBA解:(1)①24,52;…………………2分 ②2222PC PB PA =+;…………………3分 提示②:如图3所示,连结BQ.图 3∵︒=∠=∠90PCQ ACB∴PCB PCQ PCB ACB ∠-∠=∠-∠ ∴21∠=∠在△ACP 和△BCQ 中∵⎪⎩⎪⎨⎧=∠=∠=CQ CP BCAC 21 ∴△ACP ≌△BCQ (SAS ) ∴︒=∠=∠=45,CBQ CAP BQ AP ∴︒=︒+︒=∠904545PBQ 在Rt △PBQ 中,由勾股定理得:222PQ PB BQ =+∴222PQ PB PA =+∵△PCQ 为等腰直角三角形 ∴PC PQ 2=∴()222222PC PC PB PA ==+.注意 两个共顶角顶点的等腰三角形所组成的图形中,存在全等三角形.(2)证明:连结BQ ,如图4所示.图 4∵︒=∠=∠90PCQ ACB∴PCB PCQ PCB ACB ∠+∠=∠+∠ ∴BCQ ACP ∠=∠在△ACP 和△BCQ 中∵⎪⎩⎪⎨⎧=∠=∠=CQ CP BCQ ACP BC AC ∴△ACP ≌△BCQ (SAS ) ∴︒=∠=∠=45,CBQ CAP BQ AP ∴︒=︒+︒=∠904545ABQ 在Rt △PBQ 中,由勾股定理得:222PQ PB BQ =+∴222PQ PB PA =+ ∵△PCQ 为等腰直角三角形∴PC PQ 2= ∴()222222PC PC PB PA ==+;……………………………………………8分(3)410或426.……………………10分 提示:以点A 为圆心,以AB 41的长为半径作圆,与直线AB 有两个交点,如图5所示,所以分为两种情况:图 5①当点P 在线段AB 上时,如图3所示. ∵41=AB PA ∴不妨设4,1==AB PA ,则3=PB . ∵△ABC 为等腰直角三角形∴22242===AB BC由(1)中结论:2222PC PB PA =+ ∴10312222=+=PC ∴5=PC∴410225==BC PC ; ②当点P 在线段BA 的延长线上时,如图6所示,作AB CD ⊥.图 6则221===AB CD AD ∴3=+=AD PA PD 在Rt △PCD 中,由勾股定理得:13232222=+=+=CD PD PC∴4262213==BC PC . 综上所述,BCPC的值为410或426.23.(11分)如图1,在平面直角坐标系中,点O 是坐标原点.点A 在x 轴的正半轴上,且坐标为()0,10.抛物线214y x bx c =-++经过O 、A 、B 三点,直线AB 的表达式为152y x =-+,且与抛物线的对称轴交于点Q .(1)求拋物线的表达式;(2)如图2,在A、B两点之间的抛物线上有一动点P,连接AP、BP,设点P的横坐标为m,△ABP的面积为S,求当S取得最大值时点P的坐标;(3)如图3,将△OAB沿射线BA方向平移得到△DEF(平移距离大于0).在平移过程中,以A、D、Q为顶点的三角形能否成为等腰三角形?如果能,请直接写出此时点E的坐标;如果不能,请说明理由.图1图2图3解:(1)把()0,0O,A()0,10分别代入抛物线的解析式得: ⎩⎨⎧=++-=1025cbc,解之得:⎪⎩⎪⎨⎧==25cb.∴抛物线的表达式为xxy25412+-=; ……………………………………………3分图 4(2)过点P作xPC⊥轴于点C,交直线AB 于点E,如图4所示.令52125412+-=+-xxx解之得:10,221==xx∴()4,2B∵点P的横坐标为m∴⎪⎭⎫⎝⎛+-mmmP2541,2,⎪⎭⎫⎝⎛+-521,mmE∴52125412-++-=-=mmmyyPEEP53412-+-=mm(102<<m)∴()BAPAEPBExxPESSS-⋅=+=∆∆21()⎪⎭⎫⎝⎛-+-⨯-⨯=5341210212mm20122-+-=mm∴()1662+--=mS∴当6=m 时,S 取得最大值,16max =S66256412=⨯+⨯-∴()6,6P ; ………………………………7分(3)能,点E 的坐标为⎪⎭⎫ ⎝⎛-211,21,⎪⎭⎫ ⎝⎛-25,15,⎪⎭⎫⎝⎛-411,231,()3,16-.……………………11分提示:平面内两点之间的距离公式 在平面直角坐标系中,已知点()11,y x A ,()22,y x B ,则()()212212y y x x AB -+-=.本题,由平移的性质可知,点D 在射线x y 21-=上移动,且10==OA DE ∴可设点D 的坐标为⎪⎭⎫ ⎝⎛-a a 21,∴()2224110a a AD +-= ∵点Q 为直线521+-=x y 与抛物线的对称轴的交点∴⎪⎭⎫⎝⎛25,5Q∴()22225215⎪⎭⎫ ⎝⎛--+-=a a DQ4125425252=+=AQ 分为三种情况:①当AQ AD =时,22AQ AD = ∴()4125411022=+-a a 解之得:5,1121==a a当11=a 时,⎪⎭⎫ ⎝⎛-211,11D ,⎪⎭⎫ ⎝⎛-211,21E ;(注意: 10==OA DE ,且x DE //轴)当5=a 时,⎪⎭⎫ ⎝⎛-25,5D ,⎪⎭⎫ ⎝⎛-25,15E ;②当QD AD =时,22QD AD = ∴()()2222252154110⎪⎭⎫ ⎝⎛--+-=+-a a a a 解之得:211=a ∴⎪⎭⎫ ⎝⎛-411,211D ,⎪⎭⎫ ⎝⎛-411,231E ;③当DQ AQ =时,22DQ AQ =∴()41252521522=⎪⎭⎫ ⎝⎛--+-a a解之得:0,621==a a (不符合题意,舍去) ∴()3,6-D ,()3,16-E .综上所述,以A 、D 、Q 为顶点的三角形能成为等腰三角形,点E 的坐标为:⎪⎭⎫ ⎝⎛-211,21,⎪⎭⎫ ⎝⎛-25,15,⎪⎭⎫ ⎝⎛-411,231,()3,16-.学生整理用图。

相关文档
最新文档