Laboratory Preliminaries and Data Acquisition Using LabVIEW
临床实验数据英文翻译
临床实验数据英文翻译Clinical Experimental Data TranslationIntroduction:Clinical experimental data plays a crucial role in the field of medical research. Accurate translation of such data from different languages, particularly from Chinese to English, is of paramount importance for effective communication and collaboration among researchers globally. This article aims to provide guidelines and techniques for translating clinical experimental data from Chinese to English.1. Understanding the Context:Before starting the translation process, it is essential to have a comprehensive understanding of the experimental data. Familiarize yourself with the specific medical terminology, research objectives, methodology, and statistical analysis involved in the study. This background knowledge will facilitate accurate and coherent translation.2. Maintain Consistency:Consistency in terminology is vital to ensure clarity and coherence in the translated data. Create a glossary of terms to be used throughout the translation process. This will help maintain uniformity and avoid confusion. Additionally, make sure to adhere to the standard conventions of medical terminology in English.3. Accuracy in Translating Numbers:Translating numerical data accurately can be challenging. Pay careful attention to the conversion of units, decimals, percentages, and fractions. Ensure that the numerical values are consistent with the original data. Use appropriate conversions, such as Celsius to Fahrenheit, or milliliters to ounces, while maintaining accuracy.4. Translating Graphs and Figures:Many clinical experimental data include graphs, charts, and figures. These visual representations aid in conveying the findings effectively. When translating, make sure to accurately label all axes, captions, and legends. Consider cultural differences and ensure that the translated visual elements are easily understood by the target audience.5. Descriptive Text Translation:Translating descriptive text, such as abstracts, methodology, and results, requires attention to detail. Ensure the translated text is concise, coherent, and clearly conveys the intended meaning. Pay close attention to grammar, sentence structure, and appropriate use of medical terminology.6. Statistical Analysis:Clinical experimental data often involves statistical analysis. Translate statistical terms accurately and use appropriate English terminology for statistical methods and measures. Maintain clarity and ensure that the translated statistical analysis is understood by English-speaking researchers.7. Proofreading and Editing:Once the translation is complete, thoroughly proofread and edit the translated text. Check for any grammatical errors, inconsistencies, or mistranslations. Ensure that the translated text corresponds accurately to the original data and the intended meaning is conveyed effectively.Conclusion:Accurate translation of clinical experimental data from Chinese to English is crucial for effective communication and collaboration in medical research. Following the guidelines provided in this article, such as maintaining consistency, precision in numerical translations, and attention to detail during the translation process, will result in clear and accurate English translations. Ultimately, this will contribute to the dissemination of valuable medical knowledge and promote scientific advancements worldwide.。
基因测序研究报告
行业报告 | 行业深度研究
内容目录
1. 基因测序,正本清源追溯疾病起因...........................................................................................4 2. 仰望翘楚,基因测序界的苹果 Illumina...................................................................................4
1. 上游把握话语权:上游垄断行业命脉,导致成本掌控力不在服务企业, 因此对于上游的布局将是未来披荆斩棘必要的通路;
2. 目前基因检测临床应用最为广泛的是无创产前基因检测(NIPT),NIPT 细分行业的增长将成就第一波龙头企业,如华大、贝瑞、安诺优达等;
3. 基因测序是平台,在下一个应用领域的快速布局,才能保证下一个成长
2.1. Illumina 投资界的神话,13 年 300 倍涨幅.............................................................................4 2.2. 18 年时间,Illumina 造就的测序成本超摩尔定律神话......................................................5 3. 基因测序界繁华热闹,逐浪者前仆后继 ..................................................................................9 4. 快速增长的基因检测行业,带动下一代投资风口................................................................10 4.1. 2016 年全球基因检测 70 亿美金市场,保持 15-20%高速增长....................................10 4.2. 中国作为新兴国家,测序行业发展速度已与全球接轨 ..................................................11 4.3. 国内测序公司上下游产业链,呈现金字塔型.....................................................................12 4.4. 伴随着基础科研发展,测序 65 年历史是一场惊世骇俗的技术变革.........................15 4.5. 测序技术相比于其他技术的优势............................................................................................17 4.6. 测序成本占比,未来将随着产业化的发展而发生结构性变化.....................................17
临床试验常用术语缩写
临床试验常用术语缩写临床试验是评估新药物、治疗方法或医疗器械安全性和有效性的重要手段之一。
在临床试验中,使用术语缩写是常见的做法,这有助于简化文献或记录中的表达,提高效率。
本文将介绍一些临床试验中常用的术语缩写,旨在帮助读者更好地理解和应用这些术语。
一、患者入组与排除标准在临床试验中,患者的入组和排除标准是非常重要的。
入组标准指定了患者必须满足的条件才能参与试验,排除标准则列举了不适合参与试验的条件。
常见的术语缩写包括:I/E标准(Inclusion/Exclusion criteria)、CI(Criteria Inclusion)、CE(Criteria Exclusion)等。
二、随机化与盲法随机化是临床试验中常见的分组方法,它可以减少选择性偏倚,确保结果的可靠性。
在随机化的基础上,盲法可以进一步减少观察者和患者的主观干预。
常见的术语缩写包括:RCT(Randomized Controlled Trial)、SST(Single-Blind Study)和DBRCT(Double-Blind Randomized Controlled Trial)等。
三、试验组与对照组在临床试验中,试验组和对照组是最基本的分组形式。
试验组接受新的治疗方法或药物,对照组则接受现有的标准治疗或安慰剂。
常见的术语缩写包括:Tx组(Treatment Group)、C组(Control Group)、P组(Placebo Group)等。
四、终点指标与临床意义终点指标是衡量临床试验效果的主要指标,它通常与疾病的治疗效果或生存率相关。
临床意义则涉及到这些指标对患者生活质量的影响。
常见的术语缩写包括:PFS(Progression-Free Survival)、OS(Overall Survival)、ORR(Objective Response Rate)、QoL(Quality of Life)等。
五、统计分析与结果解读统计分析是临床试验中不可或缺的环节,它可以从收集到的数据中提取有用的信息。
PCR中英对照自己总结背诵用
Chapter 9Quantitative Analysis of Periodontal Pathogens by ELISA and Real-Time Polymerase Chain Reaction通过ELISA和实时-聚合酶联反应对牙周病病原菌进行定量分析Of the plethora of methodologies reported in the literature, the enzyme-linked immunosorbent assay (ELISA), which combines the specificity of antibody with the sensitivity of simple enzyme assays结合了抗体的特异性和单独酶试验的敏感性and the polymerase chain reaction (PCR), has been widely utilized in both laboratory and clinical applications.Although conventional PCR does not allow quantitation of the target organism, real-time PCR (rtPCR) has the ability to detect amplicons扩增子as they accumulate in “real time”allowing subsequent quantitation.These methods enable the accurate quantitation of as few as 102 (using rtPCR) to 104 (using ELISA) periodontopathogens in dental plaque samples.Key words: Polymerase chain reaction (PCR), real-time PCR (rtPCR), enzyme-linked immunosorbent assay (ELISA), periodontitis, periodontal disease, oral periodontopathogens.What is PCR (polymerase chain reaction)?PCR (polymerase chain reaction) is a method to analyze a short sequence of DNA (or RNA) even in samples containing only minute quantities of DNA or RNA. PCR is used to reproduce (amplify) selected sections of DNA or RNA.Previously, amplification扩增of DNA involved cloning the segments of interest into vectors for expression in bacteria, and took weeks. But now, with PCR done in test tubes, it takes only a few hours.PCR is highly efficient in that untold numbers of copies can be made of the DNA. Moreover, PCR uses the same molecules that nature uses for copying DNA:Definition:Polymerase chain reaction (PCR) is a method of detecting specific sequences of DNA or RNA (types of genetic material) even when only a tiny amount is available. That's because PCR targets sections of the DNA or RNA, and then reproduces and amplifies them. The process is performed in a test tube and takes only a few hours.It's common to come across this term in chronic fatigue syndrome research that involves testing for pathogens, such as viruses or bacteria. When used in this way, PCR allows scientists to identify the source of the genetic material and therefore identify which pathogens are present.Two "primers", short single-stranded DNA(单链DNA)sequences that are synthesized to correspond to the beginning and ending of the DNA stretch to be copied;An enzyme called polymerase that moves along the segment of DNA, reading its code and assembling a copy; andA pile of DNA building blocks that the polymerase聚合酶needs to make that copy.How is PCR (polymerase chain reaction) done?As illustrated in the animated picture of PCR, three major steps are involved in a PCR. These three steps are repeated for 30 or 40 cycles. The cycles are done on an automated cycler, a device which rapidly heats and cools the test tubes containing the reaction mixture. Each step -- denatauration变性(alteration of structure), annealing退火(joining), and extension延伸-- takes place at a different temperature:Denaturation: At 94 C, the double-stranded双链DNA melts and opens into two pieces of single-stranded单链DNA.Annealing退火: At medium temperatures, around 54 C, the primers引物pair up (anneal) with the single-stranded单链"template模板" (The template引物is the sequence of DNA to be copied.) On the small length of double-stranded DNA (the joined primer and template), the polymerase聚合酶attaches and starts copying the template.Extension: At 72 C, the polymerase聚合酶works best, and DNA building blocks complementary to the template are coupled to the primer, making a double stranded DNA molecule.With one cycle, a single segment of double-stranded DNA template is amplified into two separate pieces of double-stranded DNA. These two pieces are then available for amplification in the next cycle. As the cycles are repeated, more and more copies are generated and the number of copies of the template is increased exponentially.What is the purpose of doing a PCR (polymerase chain reaction)?To do PCR, the original DNA that one wishes to copy need not be pure or abundant. It can be pure but it also can be a minute part of a mixture of materials. So, PCR has found widespread and innumerable uses -- to diagnose genetic diseases, do DNA fingerprinting, find bacteria and viruses, study human evolution, clone the DNA of an Egyptian mummy, establish paternity or biological relationships, etc.. Accordingly, PCR has become an essential tool for biologists, DNA forensics labs, and many other laboratories that study genetic material.How was PCR (polymerase chain reaction) discovered?PCR was invented by Kary Mullis. At the time he thought up PCR in 1983, Mullis was working in Emeryville, California for Cetus, one of the first biotechnology companies. There, he was charged with making short chains of DNA for other scientists. Mullis has written that he conceived of PCR while cruising along the Pacific Coast Highway 128 one night on his motorcycle. He was playing in his mind with a new way of analyzing changes (mutations) in DNA when he realized that he had instead invented a method of amplifying any DNA region. Mullis has said that before his motorcycle trip was over, he was already savoring the prospects of a Nobel Prize. He shared the Nobel Prize in chemistry with Michael Smith in 1993.As Mullis has written in the Scientific American: "Beginning with a single molecule of the genetic material DNA, the PCR can generate 100 billion similar molecules in an afternoon. The reaction is easy to execute执行,完成. It requires no more than a test tube, a few simple reagents, and a source of heat."What is RT PCR?RT-PCR (Reverse transcriptase-polymerase chain reaction) is a highly sensitive technique for the detection and quantitation of mRNA (messenger RNA).逆转录PCR是一种高度敏感的用于信使RNA检测和定量的高度敏感的技术。
PDA TR 80《制药实验室数据完整性管理体系》(中英文对照版)
PDA TR 80《制药实验室数据完整性管理体系》(中英文对照版)PDA TR 80《制药实验室数据完整性管理体系》现已全文翻译完毕,大家可以点击文末“阅读原文”链接下载中英文对照版全文。
由于微信篇幅关系,这里只放出微生物实验室数据完整性的内容:5.0 Data Integrity in the Pharmaceutical Microbiology Laboratory5.0 微生物实验室的数据完整性5.1 General Considerations and Risks一般原则及风险The approaches used to investigate the occurrence of suspected data integrity issues that h recently occurred in a pharmaceutical microbiology laboratory can be challenging and, in some cases, may bevery different than those used to evaluate similar occurrences in an analytical chemistry laboratory, Many microbiological methods are performed manually;subsequently, the recorded results are often based on the visual observations by an individual scientist performing the tests.制药企业微生物实验室对可疑数据完整性问题的调查方法,越来越成为一个挑战,并且在一些情况下,与同样发生可疑数据的化学分析实验室的调查方法完全不同。
很多微生物测试方法都是手动操作,以及所有的测试结果都由微生物测试人员人工检查并记录。
试验室检测数据整理流程
试验室检测数据整理流程英文回答:Lab testing data organization process:1. Data Collection:Collect all relevant data from the laboratory experiments.Ensure that the data is accurate and complete.Use appropriate tools and techniques for data collection, such as sensors, instruments, or manual recording.2. Data Entry:Enter the collected data into a computer system or a designated software program.Double-check the entered data for any errors or inconsistencies.Validate the data entry process to ensure accuracy.3. Data Cleaning:Review the entered data for any outliers, missing values, or inconsistencies.Remove or correct any errors or inconsistencies in the data.Apply data cleaning techniques like interpolation or imputation to fill in missing values.4. Data Transformation:Perform necessary calculations or transformations on the data.Convert units if required.Apply statistical or mathematical operations to derive new variables or indicators.5. Data Analysis:Use statistical software or programming languages like R or Python to analyze the data.Apply appropriate statistical techniques, such as hypothesis testing, regression analysis, or data visualization.Interpret the results and draw conclusions based on the analysis.6. Data Reporting:Prepare a comprehensive report summarizing the findings from the data analysis.Include relevant tables, charts, and graphs to present the results visually.Provide explanations and interpretations of the results in a clear and concise manner.7. Data Storage and Archiving:Store the collected and analyzed data in a secure and organized manner.Use appropriate data storage systems or databases to ensure data integrity and accessibility.Follow data archiving protocols to maintain data for future reference or replication.中文回答:试验室检测数据整理流程:1. 数据收集:从实验室实验中收集所有相关数据。
药物研发的流程和数据库
①研发筛选(R&D Screening) 包括市场与专利凋查(Survey)②临床前研究(Preclincal Studies)③临床阶段(Clinical Phases)④新药批准上市(New Drug Approval)DIALOG 系统具有600 多个数据库,其中和制药相关的数据达200 个,这些数据库在为制药企业提供各个环节数据和信息的同时, 还利用其功能庞大的指令检索系统为企业提供了优秀的信息和情报的解决方案.1 研发筛选阶段药物的研究开发途径主要包括: 合理药物设计, 组合化学技术, 从天然产物中寻找新药, 仿制安全,有效,市场需要的国外新药,开发新制剂,新剂型,新药用辅料等.在此阶段可选择下列数据库.1.1 Current Contents (科研近期报道)1.2 Chemical Abstracts (美国化学文摘) 该数据库主要收载生物化学,有机化学,大分子化学, 应用化学, 化学工程,物理化学, 分析化学,理论化学,环境化学,农业化学,化合物和化学物质性质与反应,技术与操作规程,材料,仪器设备,理论与应用等信息.1.3 Beilstein (贝尔斯坦文摘) 该数据库提供了900 多万个有机化合物的结构资料和一千多万个化学反应资料以及两千万有机物性质和相关文献, 包含可供检索的化学结构和化学反应, 相关的化学和物理性质, 以及详细的药理学和生态学数据在内的最全面的信息资源. 收录的资料有分子的结构, 物理化学性质,制备方法,生物活性,化学反应和参考文献来源.其中收录的性质数值资料达3000 万条,化学反应超过500 万种.1.4 Biosis Previews (美国生物文摘数据库) 该数据库收录了1969 年以来的《生物学文摘》(BA)和《生物学文摘综述,技术报告, 会议文献》(BA/RRM)以及BA/RRM 1980 年创刊时的前身检索刊物《生物研究索引》(Biobesearch Index) .内容涉及细胞学,动物学,基因学,植物学,微生物学以及相关学科: 包括生物化学,生物工程,农业,生态学,食品科学与研究,医学,生物技术,环境研究及药理学等. 1.5 Incidence &- Prevalence (发病率与患病率) 该数据库提供流行病学,发病率,患病率,死亡率,疾病趋势,花费,风险因素,以及疾病分类等信息.在药物筛选阶段,还应该进行市场调查(Market Survey)和专利调查(Patent Survey) . 在市场调查阶段,使用Dialog Newsroom 和Dialog Profoud 数据库可以获得全球超过10,000 种新闻期刊和来自130 多个市场研究机构超过20 万份市场调研报告.我们也可选择以下数据库资源: ①Pharmaco-economics 药物经济学) ②SCRIP ( ; (World PharmaceuticalNews 世界制药新闻)等期刊.③FREEDONIA(Freedonia Market Research) (美)国际市场研究;④DATAMONITOR(Dtamonitor Market Research) (英)国际市场研究等. 专利调查:在药物筛选阶段,应全面系统地做好药物专利的调研分析工作.由于药品的特殊性,药物专利的查询需要从化合物专利,制剂专利,应用专利,甚至是近似专利等多方面进行.同时还需要对相关专利做好侵权分析,技术分析,权利要求分析,法律状态分析等深入的调研工作.因此,在此阶段可选择下列数据库: ①IMS Patent Focus (IMS 药物专利数据库) 该数据库提供了超过1,000 种商业药品及其相关产品的专利申请状况,市场动态和III 期临床试验之后的信息,包括药品的属名,药厂编号,CAS 注册号,化学名称,同义词, 治疗说明,专利文摘,发展历史,世界范围发展的最新阶段,商业潜力和公司活动. ②Derwent World Patents Index(WPI,德温特世界专利索引) 该数据库是Thomson Derwent 公司的产品. 每条数据记录除了都包含相关的同族专利信息,还包括由各个行业的技术专家进行重新编写后的专利信息,如新颖性,技术关键,优点等.该数据库的重点在于专利的重新改写和修复,把模糊的技术信息明确化,把冗长复杂的专利信息简单化,方便信息人员了解和掌握专利的核心信息. ③ INPADOC (同族专利/法律状态数据库) INPADOC 同族专利/法律状态数据库是欧洲专利局的产品.数据来自66 个国家和组织的专利信息.记录内容除了相关专利完整的同族专利,还包含27 个国家的详细法律状态记录.该数据库重点在专利的全球同族专利及专利的详细法律状态. ④全球主要国家专利信息美国专利(全文) 欧洲专利(全文) 德国专利(全文) PCT 专利(全文) 日本专利(摘要) 中国专利(摘要)2 临床前研究阶段新药的临床前研究包括:药物的制备工艺,理化性质,纯度,检验方法,处方筛选,剂型,稳定性,质量标准,药理,毒理,动物药代动力学等研究.在此阶段可选择下列数据库: 2.1 Derwent Drug File (德温特药物文档) 该数据库收录1983 年至今几乎所有关于药物科学的文献, 年收录量约10 万条, 数据来源于1200 种科学出版物,包括世界范围内的期刊和会议录. 内容涉及药品开发, 生产制备, 药物评价等方面;包括分析化学,生物化学, 内分泌,免疫学,医学,微生物学,制剂学,药理学,生理学,毒理学等. 2.2 Embase (荷兰医学文摘) 该数据库每年收录50 万条记录,其中80%附有文摘.和其它医学文摘不同的是,该数据库收录了更多药学方面的信息,50%以上的内容来源于欧洲地区的期刊.EMBASE 对每一条记录都进行了分类,医学研究专家还可以使用EMTREE 中的关键词查找所需文献, EMTREE 是一种比较先进的分类表和可控词汇表,由46,000 个词语和20 万个同义词组成, 涉及药学,毒物,临床,实验医学,生物,公卫,环境,精神,法医,生医等诸多学科. 2.3 Medline (美国医学文摘) 该数据库收录了1966 年以来美国和70 多个国家出版的近4000 种国际性杂志的文献, 内容涉及基础医学,临床医学,环境医学,营养卫生,职业病学,卫生管理,医学保健等领域.目前,有70%以上的记录带有原著者自撰的摘要,每周更新一次,年更新量达36 万多条记录.3 临床研究阶段新药的临床研究包括临床试验和生物等效性试验.临床试验分为Ⅰ, Ⅱ,Ⅲ,Ⅳ期. Ⅰ期临床试验: 为初步的临床药理学及人体安全性评价试验. 观察人体对于新药的耐受程度和药物代谢功力学,为制定给药方案提供依据.Ⅱ期临床试验:为随机盲法对照临床试验. 对新药有效性及安全性作出初步评价,推荐临床给药剂量.Ⅲ期临床试验:为扩大的多中心临床试验.遵循随机对照原则,进一步评价药物的有效性及安全性.Ⅳ期临床试验:为新药上市后监测.在广泛使用条件下考察疗效和不良反应.在此阶段可选择下列数据库: 3.1 ADIS R&D Insight (ADIS 药物研究与开发数据库) 该数据库偏重药物的商业信息, 信息来源于药物公司调研, 高层访谈和官方发布的资料, 还包括一些医学期刊, 国际会议, 科学论文和专利文献等. 数据库内容包括每种药品的属名, 药厂编号,CAS 注册号,化学名称,同义词,治疗说明,专利文摘,发展历史,世界范围发展的最新阶段,商业潜力,公司活动,科研进展和专利信息. 3.2 Pharmaproject (PJB,药物/生物技术项目数据库) 该数据库的信息来源包括非公开渠道和公开渠道, 非公开渠道来自与药物公司相关人员的访谈,国际会议和各种调研活动;公开渠道包括期刊,学术资料和会议论文等文献.数据库内容包括正在研制的药品, 和已经广泛投放市场的药品, 以及由于毒性或商业而终止发展的药品数据,数据记录包含行业名称,化学名称和同义词,治疗说明,药学机理,发行公司与登记号,发展状况等. 3.3 IMS R&D Focus (IMS 药物研究与开发数据库) 该数据库偏重药物的商业信息, 信息来源于药物公司调研, 高层访谈和官方发布的资料, 还包括一些医学期刊, 国际会议, 科学论文和专利文献等. 数据库内容包括每种药品的属名, 药厂编号,CAS 注册号,化学名称,同义词,治疗说明,专利文摘,发展历史,世界范围发展的最新阶段,商业潜力,公司活动,科研进展和专利信息. 3.4 Medline (美国医学文摘数据库) 3.5 Embase (荷兰医学文摘数据库) 4 新药上市批准(申报与审批) 新药批准上市之前,为了保障上市药品的安全,需要对药物进行不良反应进行监测,评价和预防,其最终目的是提高临床合理,安全用药水平,保障公众用药安全.通过以下数据库可以实现这些方面信息的查询和监控. 4.1 Toxfile (毒理学数据库) 该数据库收录了1964 年至今有关化学品,药物和试剂对生命系统的副作用信息,部分数据来源于《美国医学索引》(Medline)中派生的《毒物学目录》(TOXBIB)于文档.内容包括毒物学,药理学,生化学,药品化学反应,药物不良反应,致癌作用,突变性,畸形性, 辐射,环境污染,食物污染等. 4.2 Embase Alert (荷兰医学文摘警示) 该数据库提供最新的生物医学和有关药物研发方面的文献,包括药理毒理,不良反应, 药物相互作用等诸多方面的内容.文摘型数据库,信息每周更新一次. 4.3 International Pharmaceutical Abstracts (IPA,国际药学文摘) 该数据库收录了1970 年以来全世界750 多种药学核心期刊文献,总记录接近40 万条, 每半个月更新一次.内容包括药物副作用,生物药理学,药物分析,药物评估,药物相互作用,药物代谢和体内分布,药物稳定性,历史,信息进展和文献;公共药物实验,调查研究的药物,立法,法律和法规;方法学和药物测试,药物化学,制药学,药物经济学,生物学, 制药试验,药理学,社会学,经济学和伦理学,毒理学等诸多方面. 4.4 ADIS R&D Insight (ADIS 药物研究与开发数据库) 4.5 Derwent Drug File (德温特药物文档) 4.6 Medline (美国医学文摘数据库) 4.7 Embase (荷兰医学文摘数据库).。
检验前质量管理
检验前质量管理分析前阶段(preanalytical phase)即检验前过程(pre-examination processes),是指按时间顺序自医生申请至分析检验启动的过程,包括检验申请、患者准备和识别、原始样品采集、运送和实验室内传递等。
检验前质量保证是保证临床检验结果准确性的重要基础。
检验前影响因素具有复杂性、隐蔽性、不可控性及责任不确定性四大特点,实验室应制定检验前活动的程序和信息,至少应包括对医师、护理人员及患者的信息指导、检验申请、样品采集、样品转运、样品接收、不合格样品的处理、样品的存放、稳定性及前处理等内容。
实验室应对样品运送和交接的过程进行有效监控,应对样品采集、运送和交接过程中出现的问题进行定期评估,提出切实可行的整改措施,持续改进分析前的质量。
实验室应对分析前过程涉及的人员和岗位进行必要的培训和考核。
第一节实验室服务信息的提供为了改善实验室服务,提高实验室服务质量,实验室应为患者和临床医护人员提供实验室服务的信息,使其知情了解。
包括以下几方面。
一、检验项目和检验手册实验室应向患者和临床提供实验室可以提供的检验项目目录和(或)检验手册,包括委托给其他实验室的检验项目。
实验室不应将国家卫健委明确规定废止及淘汰的项目和方法、临床价值不明确的项目和方法或尚未经卫生行政部门批准收费的项目和方法列入实验室开展的项目范围。
检验手册的内容至少应包括项目名称和英文缩写、样品的类型、使用的检验方法、参考区间、临床意义、完成检验需要的时间、样品接收和拒收标准、患者自采样说明、样品运送说明、相关临床资料(临床诊断或主要症状、用药情况,如血栓性疾病或出血性疾病时,须注明抗凝药物使用情况)。
微生物检验项目还应包括适应证,样品采集部位,样品采集、转运所需要的装置/容器和转运培养基,样品采集方法,样品的体积或质量,转运时限、贮存条件,样品的标识方法,重复检验频率,生物安全防护信息。
二、患者准备的说明由于患者受到各种内在和外界因素的影响,可对检验结果产生或大或小的误差。
临床试验以及实验室中常见的中英文名词及缩写
Good manufacture practice, GMP
药品生产质量管理规范
Good non—clinical laboratory practice, GLP
药物非临床研究质量管理规范
Group sequential design
成组序贯设计
Health economic evaluation, HEV
新化学实体
NIH
NationalInstitutesofHealth
国家卫生研究所(美国)
缩略语
英文全称
中文全称
PI
PrincipalInvestigator
主要研究者
PL
ProductLicense
产品许可证
PMA
Pre—marketApproval(Application)
上市前许可(申请)
PSI
Clinicalstudy
临床研究
Clinicalstudyreport
临床试验的总结报告
Clinicaltrial
临床试验
ClinicaltrialapplicationCTA
临床试验申请
ClinicaltrialexemptionCTX
临床试验免责
ClinicaltrialprotocolCTP
阳性对照活性对照
Adversedrugreaction,ADR
药物不良反应
Adverseevent,AE
不良事件
Adversemedicalevents
不良医学事件
Adversereaction
药物不良反应
Alb
白蛋白
ALD(ApproximateLethalDose)
glp pre-clinical study
glp pre-clinical studyGLP前临床研究是什么?GLP前临床研究是指在进行药物临床试验之前,对药物进行一系列动物实验以评估其安全性和有效性的过程。
GLP(Good Laboratory Practice)即良好实验室规范,是一种国际通用的质量管理体系,旨在确保科学研究的准确性、可重复性和可靠性。
这一规范通常由药品监管机构在临床试验申请之前要求执行。
GLP前临床研究的目的是什么?GLP前临床研究的主要目的是为了保证药物在人体内的使用安全。
通过在动物模型中进行的一系列实验,可以评估药物的毒性、代谢和药效,为其在人体内的使用提供重要数据和指导。
GLP前临床研究的步骤是什么?GLP前临床研究通常包括以下几个步骤:1. 药物设计和制备:根据药物的理论基础和目标效应,制备出符合GLP 要求的药物供实验使用。
2. 毒性实验:在动物模型中进行短期和长期毒性实验,评估药物在不同剂量下对组织和器官的损伤情况。
这些实验一般包括急性毒性、亚慢性毒性和慢性毒性实验。
3. 药物代谢实验:通过分析药物在动物体内的代谢产物,评估药物的代谢途径和代谢动力学。
这可以帮助预测药物在人体内的代谢情况和潜在的代谢产物。
4. 药物药效实验:评估药物在动物模型中的疗效和作用机制。
这些实验可以通过观察药物对疾病模型的影响以及药物与特定受体、通路之间的相互作用来完成。
5. 安全性评估:综合以上实验结果,对药物的安全性进行综合评估。
这需要考虑药物的毒性潜力、剂量依赖性、潜在的不良反应和药物与其他药物之间的相互作用等因素。
为什么要进行GLP前临床研究?进行GLP前临床研究的主要目的是为了确保药物使用的安全性和有效性。
通过在动物模型中评估药物的毒性和代谢情况,可以预测其在人体内的潜在风险和疗效。
这些评估结果对于人体临床试验的设计和药物开发的决策起到重要的指导作用。
GLP前临床研究的意义在于通过系统评估药物在动物体内的表现,可以有效避免一些潜在的负面效应和风险。
医疗研究团队成员及其分工
医疗研究团队成员及其分工引言医疗研究团队的成功与否很大程度上取决于团队成员的分工和合作。
本文将介绍医疗研究团队常见的成员角色及其分工,以帮助团队高效进行研究工作。
研究团队成员及其分工1. 首席研究员(Principal Investigator)首席研究员(Principal Investigator)- 负责整个研究项目的设计、规划和执行。
- 提供研究的指导和领导。
- 协调团队成员的工作。
- 分析和解释研究结果,并撰写相关的研究报告和论文。
2. 合作者(Collaborators)合作者(Collaborators)- 协助首席研究员进行研究工作。
- 提供专业知识和技术支持。
- 参与研究设计和数据分析。
- 共同撰写研究报告和论文。
3. 研究助理(Research Assistant)研究助理(Research Assistant)- 收集和整理研究所需的数据。
- 协助研究设计和实施。
- 进行数据分析和统计。
- 协助撰写研究报告和论文。
4. 数据管理员(Data Manager)数据管理员(Data Manager)- 负责数据的收集、管理和存储。
- 确保数据的完整性和安全性。
- 协助研究团队进行数据分析。
- 提供数据报告和统计。
- 负责审查和监督研究项目的伦理合规性。
- 确保研究过程符合伦理原则和法律要求。
- 提供伦理方面的建议和指导。
6. 财务管理员(Finance Manager)财务管理员(Finance Manager)- 管理研究项目的预算和经费。
- 协助申请经费和编制预算计划。
- 监督项目经费的使用和报销。
- 提供财务报告和统计。
7. 数据分析师(Data Analyst)数据分析师(Data Analyst)- 负责研究数据的分析和解释。
- 使用统计软件进行数据处理和建模。
- 提供数据分析报告和结果解读。
8. 研究顾问(Research Consultant)研究顾问(Research Consultant)- 提供专业领域的咨询和建议。
采核酸相关英语词汇
采核酸相关英语词汇摘要:1.核酸采集的基本概念2.核酸采集的流程与步骤3.相关英语词汇及释义4.注意事项与实用技巧正文:随着新冠疫情的全球蔓延,核酸检测成为了疫情防控的重要手段。
在进行核酸检测的过程中,了解相关英语词汇对于沟通和理解检测流程具有重要意义。
以下是一些常见的核酸采集相关英语词汇及释义:1.nucleic acid test(NAAT):核酸检测,又称nucleic acid amplification test(NAAT)。
2.polymerase chain reaction(PCR):聚合酶链式反应,用于扩增核酸检测样本中的目标基因。
3.RT-PCR:实时定量聚合酶链式反应(real-time quantitative PCR),用于实时监测核酸扩增过程。
4.swab:采样拭子,用于采集鼻腔或口腔黏膜细胞样本。
5.specimen:样本,指采集到的鼻腔或口腔拭子。
6.transportation:运输,指将核酸样本从采集点运输到检测机构的过程。
7.extraction:提取,指从样本中提取核酸的过程。
8.quantification:定量,指对核酸进行定量检测的过程。
9.detection:检测,指通过PCR扩增和检测目标核酸序列的过程。
10.result:检测结果,指核酸检测后得到的阳性或阴性结果。
进行核酸检测时,有以下几点注意事项:1.空腹:采集前请勿进食,以免影响检测结果。
2.佩戴口罩:前往采集点时,请务必佩戴口罩,保持社交距离。
3.携带身份证:出示身份证以便工作人员登记信息。
4.遵循指引:听从工作人员指导,配合完成采样过程。
在实际操作中,以下实用技巧有助于顺利完成核酸检测:1.提前预约:避开高峰时段,减少等待时间。
2.了解流程:提前了解核酸检测流程,心中有数。
3.舒缓情绪:放松心情,减轻焦虑。
4.保持清洁:采集后注意手部清洁,避免接触眼鼻口。
掌握这些核酸采集相关英语词汇,有助于大家更好地了解核酸检测过程,为抗击疫情贡献自己的力量。
纯化研究岗位职责
纯化研究岗位职责
纯化研究岗位一般要求人员具有化学或生物学等相关专业背景,具有严谨的科学研究精神和较高的科研能力,能够独立或协作完成
科研项目的设计与实施,在纯化技术方面有较强的理论知识和实践
经验。
以下是纯化研究岗位的职责:
1. 研究纯化工艺路线设计和优化:负责研究和探索生物大分子
的分离纯化制备技术,对目标分子进行分析和评估,制定生产纯化
工艺流程并进行调试,不断进行工艺优化和改进。
2. 制备实验工作:根据实验方案进行样品采集、分析和处理,
控制各种因素的作用,确保实验数据准确性和稳定性,保证数据的
可重复性,建立有效的实验记录系统。
3. 检测方法的研究和改进:研究和开发新的检测方法,对纯化
分析技术进行改进和提高,对现有技术进行改进、完善。
4. 组织并参与相关科研项目:作为项目负责人或项目成员,承接、策划和组织各种科研项目和论文撰写工作,为研究院和公司制
定技术发展计划和市场推广策略提供支持。
5. 实验室管理:负责实验室日常管理,确保实验室设备的正常
运行和维护,做好实验室的环境卫生、安全保障和规章制度的执行。
6. 学术交流与合作:积极参加学术会议、展览会等行业交流活动,与其他研究机构和企业建立联系,进行技术合作,共同推动纯
化技术的发展。
总的来说,纯化研究岗位的职责是要保证制定出的纯化工艺流
程能真正发挥其应有的作用,如提高产品的质量、稳定性和效益等。
因此,这一岗位在研究和处理生物大分子过程中,需要有严谨的实
验态度和科学的研究方法,同时还需要时刻保持对前沿科技的关注和了解,为所在企业赢得更多的技术和商业机会。
CAP实验室认可计划-检查流程总览(中英文对照)
Central America & Caribbean: Bermuda, Cuba, Mexico
Germany, Iceland, Irish Republic,
Italy, Lithuania, Portugal, United Kingdom, Spain, Sweden, Switzerland, Turkey. 19
7
为什么要认可?
参与一个自愿的实验室认可计划可 提高对病人服务的质量.
8
Laboratory Accreditation in the US
State Licensure – Minimum requirements set by a regulatory body. – May require accreditation in addition. Certification – Assurance that a quality system is in place and is consistent with certain standards (e.g.. ISO 9000). Accreditation – Demonstration that an organization has met standards of quality as defined by the profession.
13
美国的实验室认可机构
– 美国病理学家学院 (CAP)
– 医疗卫生机构认可联合委员会 (JCAHO)
– COLA – 美国血库协会(AABB) – 美国整骨疗法协会 (AOA) – 美国组织配型和免疫遗传协会 (ASHI)
14
CAP Laboratory Accreditation Program: History
Laboratory Operations, Data Validation, and Fraud
ADaPT Libraries (General Information)
Every time you run a module in ADaPT, you must first select a library.
Project library is a reference database that is set up by the user (i.e., laboratory, project manager/data generator, governing entity, or partnership between any of these groups) Analytical methods Target analytes Quality Control and Data Review Requirements specified by
the project
Any project specific library can be created but must be created from an existing library in ADaPT (e.g., DEP Master Library).
General Steps in ADaPT
3. Lab fixes and/or comments “errors”. 4. EDD and Error Report from the CCS Module are
sent to the project manager.
General Steps in ADaPT
5. Project manager reviews error report and runs CCS module again to ensure EDD is in compliance.
临床试验数据管理工作技术指南
附件临床试验数据管理工作技术指南一、概述临床试验数据质量是评价临床试验结果的基础。
为了确保临床试验结果的准确可靠、科学可信,国际社会和世界各国都纷纷出台了一系列的法规、规定和指导原则,用以规范临床试验数据管理的整个流程。
同时,现代新药临床试验的发展和科学技术的不断进步,特别是计算机、网络的发展又为临床试验及其数据管理的规范化提供了新的技术支持,也推动了各国政府和国际社会积极探索临床试验及数据管理新的规范化模式。
(一)国内临床试验数据管理现状我国的《药物临床试验质量管理规范》(Good Clinical Practice,GCP)对临床试验数据管理提出了一些原则要求,但关于具体的数据管理操作的法规和技术规定目前还处于空白。
由于缺乏配套的技术指导原则,我国在药物临床试验数据管理方面的规范化程度不高,临床试验数据管理质量良莠不齐,进而影响到新药有效性和安全性的客观科学评价。
此外,国内临床试验中电子化数据管理系统的开发和应用尚处于起步阶段,临床试验的数据管理模式大多基于纸质病例报告表(Case Report Form,CRF)的数据采集阶段,电子化数据采集与数据管理系统应用有待推广和普及。
同时,由于缺乏国家数据标准,同类研究的数据库之间难以做到信息共享。
(二)国际临床试验数据管理简介国际上,人用药品注册技术要求国际协调会议的药物临床研究质量管理规范(以下简称ICH E6 GCP)对临床试验数据管理有着原则性要求。
对开展临床试验的研究者、研制厂商的职责以及有关试验过程的记录、源数据、数据核查等都直接或间接地提出了原则性的规定,以保证临床试验中获得的各类数据信息真实、准确、完整和可靠。
各国也颁布了相应的法规和指导原则,为临床试验数据管理的标准化和规范化提供具体的依据和指导。
如:美国21号联邦法规第11部分(21 CFR Part 11)对临床试验数据的电子记录和电子签名的规定(1997年),使得电子记录、电子签名与传统的手写记录与手写签名具有同等的法律效力,从而使得美国食品药品管理局(FDA)能够接受电子化临床研究材料。
临床试验中有关风险比RR,OR,AR,HR的区别之欧阳音创编
临床试验中RR,OR,AR,HR 的区别一、相对危险度(RR)——队列研究中分析暴露因素与发病的关联程度队列研究是选择暴露及未暴露于某一因素的两组人群,追踪其各自的发病结局,比较两组发病结局的差异,从而判定暴露因素与疾病有无关联及关联大小的一种观察性研究。
通常,暴露可以指危险因素,比如吸烟、高血压,也可指服用某种药物。
而事件可以是疾病发生,比如肺癌、心血管病,也可指服药后的治疗效果。
RR也叫危险比(risk ratio)或率比(rate ratio),是反映暴露与发病(死亡)关联强度的最有用的指标。
RR适用于队列研究或随机对照试验。
RR表明暴露组发病或死亡的危险是非暴露组的多少倍。
RR值越大,表明暴露的效应越大,暴露与结局关联的强度越大。
即暴露组发病率或死亡率与非暴露组发病率或死亡率之比。
例题:Doll和Hill从1970年至1974年随访观察英国医生的吸烟情况,得到如下资料:重度吸烟者为160/10万,非吸烟者为8/10万,所有英国医生为80/10万。
假设肺癌死亡率可反映肺癌发病率。
RR的计算公式是:RR=暴露组的发病或死亡率/ 非暴露组的发病或死亡率本例中,与非吸烟者相比,重度吸烟者患肺癌的相对危险度是:RR=160/8=20二、归因危险度(AR)又叫特异危险度、率差(rate difference, RD)和超额危险度(excess risk),是暴露组发病率与对照组发病率相差的绝对值,它表示危险特异地归因于暴露因素的程度。
相对危险度指暴露组发病率与非暴露组的发病率之比,它反映了暴露与疾病的关联强度,说明暴露使个体发病的危险比不暴露高多少倍,或者说暴露组的发病危险是非暴露组的多少倍。
暴露对疾病的病因学意义较大。
归因危险度指暴露组发病率与非暴露组发病率之差,它反映发病归因于暴露因素的程度,表示暴露可使人群比未暴露时增加的超额发病的数量,如果暴露去除,则可使发病率减少多少(AR的值)。
减少暴露对疾病的预防作用较大。
美国临床实验室标准化委员会(NCCLS)标准与指南
美国临床实验室标准化委员会(NCCLS)标准与指南1. AST2-A,床旁(Point-of-Care)体外诊断(IVD)检测:批准指南(1999)。
本文件为临床实验室以外的体外诊断(IVD)设备的用户提供产生可靠结果的指南。
2. C12-A,血气和pH分析相关的量和换算的定义:批准标准(1994)。
C12-A讨论特定的术语并给出血气和pH分析计算的统计解释(参见相关出版物C25-A和C27-A)。
3. C21-A,测量血样品pO2和pCO2设备的性能特征:批准标准(1992)。
由美国国家标准研究院(ANSI)批准。
C21-A探讨了为测量血中CO2和O2部分压力而设计仪器的性能和方法学(参见相关出版物C27-A)。
4. C24-A2,定量测定统计质量控制:原理和定义:批准指南(1999)。
本指南提供了分析区间的定义;质量控制方法的计划以及质量控制应用的指南。
5. C27-A,血气分析前考虑因素:标本收集,校准及控制:批准指南(1993)。
由美国国家标准研究院(ANSI)批准。
C27-A为pH和血气分析提供了动脉的血标本收集和处理的指南;讨论血气分析仪器的校准以及包含可接受的质量控制程序的建议(参见相关出版物C12-A,C21-A,H11-A2及M29-A)。
6. C28-A2,如何确定临床检验的参考区间:批准指南(2000)。
本文件是确定定量临床检验项目的参考值及参考区间的指南。
7. C29-A2,钠钾离子选择的电极系统的标准化:批准标准(2000)。
本标准包含子在未稀释血清、血浆、或全血中用离子选择的电极测量钠、钾离子活度结果表达的建议。
8. C30-A,急性和慢性疾病保健机构辅助(床旁)血葡萄糖的检测:批准指南(1994)。
本文件提供床旁血葡萄糖检测性能的指南。
该文件强调了质量控制、培训、及行政管理职能。
9. C31-A,离子钙测定:采样前变异、标本选择、采样及处理:批准指南(1995)。
本文件讨论影响离子钙测定准确度及临床利用的分析前考虑因素,如病人状况、标本选择、采样及处理。
nab医学检验参数
nab医学检验参数摘要:一、前言二、NAB医学检验简介1.NAB医学检验的定义2.NAB医学检验的发展历程三、NAB医学检验参数的种类1.一般参数2.特殊参数四、NAB医学检验参数的作用1.辅助诊断2.疗效评估3.疾病风险评估五、NAB医学检验参数的应用1.临床应用2.科研应用六、NAB医学检验参数的未来发展趋势1.精准医学2.个体化医疗正文:一、前言随着科学技术的不断发展,医学检验在临床诊断和治疗中发挥着越来越重要的作用。
其中,NAB医学检验(临床实验室自建项目)作为一种个性化的检验方法,逐渐受到医学界的关注。
本文将对NAB医学检验的参数进行概述和分析。
二、NAB医学检验简介1.NAB医学检验的定义AB医学检验,即临床实验室自建项目(Clinical Laboratory Developed Test,简称CLD),是指在医疗机构的临床实验室内,根据临床需求自行研究、开发、验证和应用的检测项目。
它区别于传统的商品化检验项目,具有更高的针对性和个性化。
2.NAB医学检验的发展历程AB医学检验起源于20世纪初,随着医学科技的进步,其逐渐在全球范围内得到推广和应用。
我国在20世纪80年代开始引入NAB医学检验,并在近年来取得了显著的发展。
三、NAB医学检验参数的种类1.一般参数一般参数主要包括血常规、尿常规、肝功能、肾功能、血脂、血糖等常规检测项目。
这些参数对临床诊断和治疗具有重要的参考价值。
2.特殊参数特殊参数是根据特定疾病或临床需求而开发的检测项目,如肿瘤标志物、基因检测等。
这些参数对于疾病的早期发现、诊断和治疗具有重要的意义。
四、NAB医学检验参数的作用1.辅助诊断AB医学检验参数可以为临床医生提供丰富的诊断信息,帮助医生更准确地判断患者的病情,从而制定更合理的治疗方案。
2.疗效评估在治疗过程中,NAB医学检验参数可以动态监测患者的生理指标,评估治疗效果,为临床调整治疗方案提供依据。
3.疾病风险评估AB医学检验参数可以对疾病风险进行评估,如基因检测可以预测遗传性疾病的发病风险,有助于提前采取预防和干预措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Experiment-0Laboratory Preliminaries and Data Acquisition Using LabVIEW Introduction The objectives of the first part of this experiment are to introduce thelaboratory transformer and to show how to operate the oscilloscope as a curvetracer, displaying either a voltage transfer curve (VTC) or a current-voltage (I-V) characteristic. Other procedures are designed to better acquaint you withthe test equipment in the laboratory.The objectives of the second part of this experiment are to become acquaintedwith using computer-conrolled instrumentation for data acquisition.LabVIEW, a program developed by National Instruments, is the industrystandard for programming computer-controlled instruments, and it will beused in this experiment as well as others to measure and record sensorreadings and to characterize various electrical systems and devices.LabVIEW is a graphical programming environment. Unlike C/C++ whereyou write the programs in text, in LabVIEW you create a Virtual Instrument(VI) by graphically composing it from different elements and structures thatyou place like the blocks of a block diagram and interconnect with wires toindicate the intended signal flow paths. This is referred to as “G-code” for thegraphical language that it uses. The most important aspect of understandingLabVIEW virtual instruments (VIs) is that they are data-driven, meaning thatthe execution of the block diagram procedes along the same path as which thedata propagates through the block diagram. A new block is not executed untilthe new data arrives at its input. This is quite different from the event-drivenprogramming of Windows, or the more familiar procedure-drivenprogramming of FORTRAN, Pascal, or C/C++. A complete tutorial forprogramming in LabVIEW will not be presented in this laboratory handbooksince other excellent references exist for this purpose. A very usefulintroduction to LabVIEW is provided by National Instruments and can bedownloaded from their website:/devzone/learningcenter.nsf/03f7c60f17aad210862567a90054a26c/60c2782788a811c986256cd50001a0a6?OpenDocument.This experiment will introduce opening and running virtual instruments inLabVIEW and using it to control a data acquisition (DAQ) card for makingelectrical measurements. In addition, some simple modifications to the virtualinstruments will be performed to gain some experience with using theLabVIEW graphical interface and programming language. These basicoperation skills will be useful starting points for developing more complexdata acquisition instruments in later experiments, and will form the basis forautomated measurement of semiconductor device characteristics. One of theimportant advantages of computer-based instruments is that recordingmeasurement data becomes very easy, and some of this will be introduced inthis experiment also.Precautions Procedure 2 in this experiment requires you to run a resistor far above its rated power limit. This will cause the resistor to heat up excessively and the dangerto the operator is a thermal burn. Please handle the resistor in this sectionwith caution, allowing it to cool after use before it is handled.Procedure 1Transformer voltagesComment The two outputs of the lab transformer are nominally rated at ±6.3 VAC, rmswith respect to the neutral terminal. This value of output voltage applieswhen the output current is at its full rated value of 2.0 Amps. In an unloadedcondition the output voltage is closer to ±7.5 VAC, rms (about a 10.6 Vamplitude sinusoid) with respect to the neutral terminal. Because the twooutputs are rated ±6.3 VAC, rms with respect to the common neutral terminal,they are also rated at 12.6 VAC, rms with respect to each other with a 2.0Amp load current. They produce 15.0 VAC, rms (about a 21.2 V amplitudesinusoid) in an unloaded condition. Your measured voltages may be a littledifferent from these.Set-Up For this procedure you only need the laboratory transformer, the oscilloscope,a DC power supply, and some hook-up leads. When you perform thisprocedure, connect both the common terminal of the DC supply and theoscilloscope ground lead to the lab transformer ground terminal (green) andconnect the power supply output to the appropriate lab transformer output. Bevery careful to maintain only one ground point in your circuit! Vary the DCoutput voltage to get the desired offset voltages. If your sine wave does nothave the specified amplitude, then adjust the offset voltages.GROUND COMMON0 to -20V0 to +20V0 to +6V CASE GROUNDCASE GROUND EE-331 LABORATORY TRANSFORMER TRIPLE OUTPUT DC POWER SUPPLY6.3 VAC 6.3 VACFigure E0.1Measurement-1 Display (and printout) on the screen of your oscilloscope the following outputsinusoids from the lab transformer:- A 10.6 V amplitude sinusoid with a –10.6 V offset voltage- A 10.6 V amplitude sinusoid with a 0.0 V offset voltage- A 21.2 V amplitude sinusoid with a 0.0 V offset voltage- A 21.2 V amplitude sinusoid with a +21.2 V offset voltageTo do this, set the center line of the oscilloscope display so that it correspondsto zero volts and set the oscilloscope coupling to DC. As with all requiredoscilloscope printouts in this course, paste, tape, or staple the printout intoyour lab notebook and include any important information about the situation(instrument settings, etc.) under which the data was taken.Comment Because the input is DC coupled to the oscilloscope, the only way to produce these waveforms is by connecting the power supply to the appropriate outputterminal. This sets the terminal to the DC voltage output by the supply. Youcan do this because the three lab transformer output terminals have a fixedvoltage relative to each other, but no fixed voltage relative to ground; there isno connection between any of the secondary windings and anything elseexcept via the flux linkages to the primary of the transformer. When one ofthe secondary outputs is set to a DC value, the other voltages remain at theirrelative potentials, shifting up or down to accommodate the one fixedpotential.Question-1 (a) In producing the above waveforms, how much DC current flows through the ground connection (the green binding post) when it is connected to the DCpower supply? You should be able to deduce what this current is; however,you can also measure it with an ammeter. Explain why the current is what itis.(b) How pure is the power line sinusoid? Describe any deviations that yousee.Procedure 2 Internal resistance of the lab transformerComment This procedure will dissipate more power in the 100 Ω load resistor than its rated value of 1/4 W, resulting in a very hot resistor. It is possible that theresistor may get hot enough to burn your fingers should you try to handle itwhile it is connected to the power supply (or immediately after the currentthrough the resistor has been turned off). When performing this procedure,use the solderless breadboard to hold the resistor and control the currentthrough the resistor via the lab transformer power switch. Try to minimize thetime that the current flows through the resistor in order to minimize itsheating.Set-Up For this procedure you will use the lab transformer and a 100 Ω, 1/4 Wresistor from your lab kit. Disconnect all wires from the outputs of the labtransformer, turn it off and plug it into a 120 VAC receptacle.Figure E0.2DMM (+) DMM (-)Measurement-2 Use the red and black output terminals of the lab transformer to produce the largest possible sinusoid. With no load present, turn on the transformer andmeasure precisely the rms output voltage of the lab transformer with a DMM(set to AC volts) and record this value in your notebook.Turn off the transformer and connect the selected outputs to a 100 Ω resistormounted on the breadboard (see Fig. E0.2). Connect the DMM across theresistor and configure the DMM to read AC volts, turn on the power and readthe voltage across the resistor. Turn off the power immediately after themeasurement in concluded and record the value of the voltage across theresistor in your lab notebook.Question-2 (a) Assuming that the load resistor does not change its resistance when it heats up (it does somewhat), how much power is dissipated in the resistor?(b) Using the data that you have taken, what is the effective source resistance of the lab transformer when it is configured to output its largest voltage? (c) What is the smallest 1/4 W resistor in your lab kit that can be hooked up to the lab transformer between the red and black terminals without exceeding the resistor’s power rating?Procedure 3 Create a curve tracer with your oscilloscope!Comment In this procedure you will use a standard oscilloscope and the laboratory transformer to display the current-voltage (I-V) characteristics of twocomponents: a diode and a resistor. This procedure relies upon the ability tofloat the transformer output at a potential which is different from the groundof the oscilloscope.Set-Up Connect the circuit as shown in Fig. E0.3 using the following componentsR1 = 1 kΩ 1% 1/4 W resistorDUT (Device Under Test) = 1 kΩ 1% 1/4W resistor or a 1N4007 diode Connect up only one component as the DUT at any time. For the diode, notethat the banded end is the cathode which corresponds to the bar end on thecircuit symbol. When a diode is used as the DUT, connect its cathode end toR1.Figure E0.3SCOPE GROUND (X-INPUT)SCOPE CHANNEL-(Y-INPUT)SCOPE CHANNEL-Measurement-3 Turn the lab transformer power switch off and plug it into a 120 VACreceptacle. Connect one lead from the black terminal (+6.3 VAC) of the labtransformer to the DUT (select the 1N4007 diode first) and then connectanother lead from the red terminal (−6.3 VAC) of the lab transformer to theresistor R1 on the breadboard as indicated in Fig. E0.3. This will establish a21.2 V amplitude, 60 Hz sinusoidal input to the circuit.Next, configure the oscilloscope to display the I-V curve as follows. Attachthe channel-1 oscilloscope probe to the DUT (at the same end as the powerconnection) and connect its ground lead to the point between the DUT and theresistor. Attach the channel-2 oscilloscope probe to the resistor R1 (at thesame end as the power connection) and also connect its ground lead to thepoint between the DUT and the resistor. Configure the oscilloscope for an X-Y display and invert the signal on channel-2. Make sure that the DUT voltageappears as the X-axis and the resistor R1 voltage as the Y-axis. Since thevoltage across the resistor is linearly proportional to the current through it andthe DUT, the vertical (Y) axis also represents the diode current with a scalingfactor of 1 Volt per milliamp.Turn on the transformer and display the DUT I-V characteristic on youroscilloscope. Make sure that the oscilloscope coupling to each channel is setto DC. Calibrate the curve by aligning the displayed I-V characteristic to theorigin of the screen display. Sketch a copy of the I-V characteristic in yournotebook using 1 V/div for the X-axis and 1 mA/div for the Y-axis. Recordany extra information that you think may be important.Repeat this procedure for the resistor.Question-3 Which of the above DUTs is a linear circuit element?Procedure 4 Oscilloscope input resistanceComment All voltage measurement devices, such as the DMM and oscilloscope, draw some current from the circuit to which they are connected. For a high qualityinstrument, the key is to minimize this current so that the voltmeter affects thecircuit as little as possible. In this procedure the input resistance of theoscilloscope and its probes will be measured.Set-Up For this procedure you will need the following componentR1 = 10 MΩ 5% 1/4W resistorwhich is connected as shown in Fig. E0.4.Figure E0.4SCOPE CHANNEL-SCOPE GROUND SCOPE CHANNEL-Measurement-4 Set both channels on the oscilloscope to DC coupling and to either 5 or 2 V per division. Using simple 1X probes, record the voltages as measured byeach channel. You can read the voltage off the display or use one of theoptions from the measurement menu of the oscilloscope. Repeat themeasurements using 10X probes for the oscilloscope.Question-4 Using the data you recorded and the fact that the internal resistance of the laboratory transformer is quite small compared to the 10 MΩ resistor,calculate the input resistance of the oscilloscope with a 1X and with a 10Xprobe, assuming that both channels have the same input resistance.Procedure 5When is a wire not a wire?CommentA common frustration is that the components indicated in text books and in schematics represent ideal elements, and yet there are no such things as ideal resistors, inductors, or capacitors. Every real component has at least a little of each! The purpose of this procedure is to illustrate a situation where two common components behave quite differently from their ideal forms.Set-UpFor this procedure you will need the following components:R1 = 100 Ω 5% 1/4 W resistorR2 = an 8 inch length of hook-up wireC1 = 10 µF electrolytic capacitor.These components are to be connected as shown in Fig. E0.5.SCOPE GROUND SCOPE CHANNEL-1 SCOPE CHANNEL-2 SCOPE CHANNEL-2 Figure E0.5Measurement-5Configure the function generator to output a 5.0 V amplitude, 10 MHz sinewave. Construct the circuit on your breadboard as shown above, connecting both channel-1 (V A ) and channel-2 (V B ) to the leads of resistor R1. Be sure to use only one piece of hook-up wire and to connect the ground of the function generator and oscilloscope probes directly to the capacitor lead. If the capacitor lead is too short to allow all of these connections to it, then use a short piece of hook-up wire (less than an inch long) plugged into the breadboard next to the capacitor and connect your grounds to that.Channel-1 gives the total voltage applied to the circuit. Measure the magnitude of each sinusoid and the phase of V B relative to V A . Switch the channel-2 probe to the capacitor lead as shown above and measure the magnitude and phase of V C (relative to V A ).CommentPhasor analysis can be used to treat linear circuits with sinusoidal excitations under steady-state conditions. The phasor voltages V A , V B , and V C all containboth magnitude and phase information. The current through each element isthe same, since they are in a series connection, and equal to I = (V A – V B)/ R1.Knowing the current phasor, the impedance of the wire and capacitor can becalculated as Zwire = (V B – V C)/ I and Zcap = V C / I.Question-5 Using the data you recorded and the above equations, answer the following:(a) What is the impedance of the wire? Is it predominantly inductive,resistive, or capacitive?(b) What is the impedance of the capacitor? Is it predominantly inductive,resistive, or capacitive?(c) Using a few well-chosen sentences, summarize what you have learned inthe form of “advice” you would give a friend about how to make a circuit thatoperates at 10 MHz.Procedure 6 Temperature measurement using LabVIEW and a DAQ card Comment The goal of this procedure is to get LabVIEW up and running and open an existing VI which can be used to measure and log the ambient temperatureusing an LM35DZ integrated circuit temperature sensor.Set-Up The first step is to set up the hardware for the National Instruments DAQ card.Inside the computer at each laboratory workbench, there has been installed aNational Instruments model PCI-6251M DAQ card which provides 16 analoginputs with up to 500 kS/s sampling, 2 analog outputs, a 12-bit multifunctiondigital I/O block, and a built-in timer and counter module. This is a veryversatile DAQ card, although only a few of its functions will be used in thisexperiment. Into this DAQ card is connected a shielded 68-conductor cable(model SHC68-68-EP) which runs up to the work surface of the laboratorybench.On the bench, the free end of the 68-conductor cable can be be connected toeither (1) a model BNC-2120 connector block, (2) a model CB-68LP screwterminal connector block, or (3) a model CB-68LPR screw terminal connectorblock. All of this hardware is maintained by the room 137 laboratory staff, sothe only thing that you might need to do is simply connect the 68-pin cable onthe laboratory bench to the appropriate connector block. If any of these partsare missing, see the staff in the EE Stores. This experiment is written upassuming that the CB-68LPR connector block is being used. If the CB-68LPconnector block is used instead, the location of the terminals on the board willbe different, but the name of the terminals (printed in white on the greenboards) will be the same.The BNC-2120 connector block is a more complex unit which has standardBNC shielded coaxial connectors for the analog inputs and outputs, and it willnot be used in this experiment. The BNC-2120 connector block happens tohave an LM35DZ built into it, and this can be accessed using analog inputchannel AI-0 on the connector block and by setting the slide switch above theAI-0 BNC connector to the “Temp. Ref.” position. Using the BNC-2120connector block in place of the CB-68LP or CB-68LPR connector blocks willautomatically wire the LM35DZ temperature sensor into the measurement VI,and produce the same results.A very simple and quick method to test that the DAQ card is connected andworking properly is to use the Measurement and Automation Explorer. FromWindows, launch the Measurement and Automation Explorer (MAX) fromthe Start Menu by clicking on Start > All Programs > National Instruments >Measurement and Automation. After MAX opens, on the left hand side of thewindow is a configuration panel. Click on the expand button [+] besideDevices and Interfaces. Then click on the expand button beside NI-DAQmxDevices. Then select the NI DAQcard 6251M. Toward the center of the MAX window, click on a toolbar button called “Self-Test.” This should return a small message window saying that the device has passed its self test. This indicates that the DAQ card is properly plugged into the computer PCI chassis, that Windows has properly recognized the device and has loaded its drivers, and that LabVIEW has properly registered the device so that it can be accessed by various VIs that call it. This self-test only tests the card, not the cable or the BNC connector block. If you wish to test the system further, the toolbar button to the right of Self-Test is “Test Panels…” and this provides a more detailed set of commands which directly control the DAQ card and can be used to insure that the card, cable, and connector block are each working properly. If you are satisfied that the DAQ card is working properly, you can EXIT MAX at this point.The next step is to launch LabVIEW and start up a VI which has already been written for making a simple temperature measurement. From the Windows Start Menu, click on Start > All Programs > National Instruments LabVIEW 7.1. A little welcome window may open; if so, just click on Continue to bring up the main LabVIEW navigation window. This window has four main buttons on the right hand side: New, Open, Configure, and Help. To open the temperature measurement VI, click on File > Open… > and then browse to the location where the TempSensorReadout.vi is located. Click to open this file. LabVIEW will first open the front panel window for this VI which is from where the virtual instrument is controlled. If you wish to view the internal G-code for this instrument, click on Window > Show Block Diagram (or type Ctrl+E). This is a relatively simple VI, and the block diagram shows how the voltage reading from the DAQ card is first multiplied by a factor of 100 and then sent to a waveform chart for display. The temperature readings are taken each 500 milliseconds, and a STOP button is set up to end the program.The DAQ block inside the VI has been set up to read the voltage from Analog Input #0 (AI-0) as a differential mode measurement. This means that the instrumentation amplifier inside the DAQ card will amplify the difference between its (+) input (the AI-0 terminal, pin #68 on the connector block) and its (−) input (the AI-8 terminal, pin #34 on the connector block). The analog ground voltage reference is the AI-GND terminal, which is pin #67 on the connector block.The ambient temperature is measured by an LM35DZ temperature sensor which is a small 3-lead part in a TO-92 case. A DC voltage of 4-20 Volts is supplied between the VS and GND pins, and the device will output a DC voltage between the VOUT and GND pins which is proportional to the ambient temperature in degrees Celsius. The conversion factor for theLM35DZ is 100 mV/°C, and it is calibrated so that 0°C will produce 0.0 Volts output. Looking at the LM35DZ with its labeled flat side facing you and itsleads pointing downward, the pin on the left is VS, the pin in the middle is VOUT, and the pin on the right is GND. A +5 Volt DC power supply can be obtained from the connector block itself, using the +5V terminal, pin #14, and the digital ground terminal DGND, pin #13. These two leads can be used to power up the LM35DZ temperature sensor. For a stable output, the LM35DZ should have a 200 Ω load attached to it. The output voltage is then taken across this 200 Ω load. The connections for using the LM35DZ on either the CB-68LP or CB-68LPR connector blocks is shown in Figure E0.6 below. Most of the connections can be made right on the connector block itself using short jumper wires. The actual connections to the LM35DZ for both the CB-68LP and CB-68LPR connector blocks are shown in Figs. E0.6a and E0.6b.Figure E0.6AI-834AI-068DGND13AI-GND67 +5V14Figure E0.6aLM35DZ temperature sensor on the CB-68LP connector block.Figure E0.6bLM35DZ temperature sensor on the CB-68LPR connector block.Measurement-6 To start the temperature measurement VI, make the front panel window active by either clicking on it somewhere or select it from the open window tab atthe bottom of the screen. Click on the run button, which is shaped like aright-pointing arrow on the toolbar. The front panel appearance will changefrom the grid pattern to a solid pattern, and the stop sign will turn to brightershade of red. The waveform chart will start scanning and you should soon seea signal waveform appear that represents the running output of the LM35DZtemperature sensor being sampled every 500 milliseconds.After the measurement has been running for a few seconds, press your fingertip onto the top of the LM35DZ temperature sensor and you should see themeasured temperature rise by a few degrees Celsius. After removing yourfinger tip, you should similarly see the measured temperature fall back toclose to its original value. Once you have finished running the VI, you canstop it by simply clicking on the rectangular STOP button on the front panel.If for some reason this does not work, you can stop the VI by clicking on thered stop sign button in the toolbar. The results of a rising temperature areshown in the screen shot of Figure. E0.6c.Figure E0.6cComment Generally, it is always best to stop a running VI by using the STOP button that is part of the VI front panel. Using the red stop sign button to stop the VIis a more drastic measure which sometimes leaves LabVIEW in a lesspredictable state. The red stop sign is really a program abort, which should beused as a last resort.Question-6 Explain the time dependent behavior of the measured voltage that youobserved in the above. Speculate on what factors determine how fast thetemperature sensor will react to a change in its case temperature. Suggestsome ways of speeding this up, or for slowing it down.The waveform chart attempts to display the data from the temperature sensoras a “real-time” signal that moves across the display. From the sampling at500 ms intervals, you should notice some corners in the waveform as the chartconnects the data points by straight lines. Describe how the sampling rateaffects (or does not affect) the response time of the temperature measurementsystem.Procedure 7 Adding a Celsius to Fahrenheit conversionComment This next procedure will modify the previous VI to add a Celsius toFahrenheit conversion, allowing the measured result to be displayedsimultaneously on both temperature scales.Set-up If the previous TempSensorReadout.vi was closed, re-open it. Open the block diagram for this VI by clicking on Window > Show Block Diagram, or typingCtrl+E.A sub-VI has already been written which performs the C to F conversion.Place this sub-VI inside the while loop by selecting All Functions from thepallet and then selecting Select a VI… Browse to where you find the ConvertC to F.vi and open this. With the mouse, click on the block diagram to dropthe sub-VI into place, somewhere inside the while loop. Click on the toolspallet to change the cursor to the wiring tool (this looks like a small bobbin)and click on the left side of the Convert C to F sub-VI to connect to its inputand then drag the wire over to the output from the 100X mulplier and clickthere to make the connection.From the functions pallet, select the “Convert to Dynamic Data” and drop thisinto the block diagram to the right of the Convert C to F sub-VI. The“Convert to Dynamic Data” function block is located under the “SignalManipulation” menu. Use the wiring tool to connect the output of the ConvertC to F sub-VI to the input of the Convert to Dynamic Data function.Switch to the front panel window and make it active. From the controlspallet, select the “Waveform Chart” and drop this into the front panel belowthe existing waveform chart for the Celsius measurement. You may need toresize the front panel window to create enough space to do this. Position andresize the waveform chart to your liking. Switch back to the block diagramwindow and use the wiring tool to connect the output of the Convert toDynamic Data function to the input of the new Waveform Chart.Using File > Save As … , save the modified VI with a new name “Experiment0 Procedure 7.vi” in your own directory.Measurement-7 Switch back again to the front panel window. Click the run button on the front panel and observe that both waveform charts show the correcttemperature behavior. Click on the STOP button to halt the program. Question-7 Describe how you would create another VI that would display the temperature in degrees Kelvin. You do not need to write another VI for this unless youwant to; just describe in general terms how you would go about doing so.Procedure 8 Saving measurement results to spreadsheet filesComment This next procedure will modify the temperature measurement VI once more to add the capability to store the measurement results in a spreadsheet file.Set-Up Open the VI that you modified and saved in Procedure 7, if it is not open already, and open its block diagram window.From the functions pallet, select All Functions > File I/O > Write ToSpreadsheet File, and use the mouse to drop this function into the blockdiagram to the right of, and outside of, the while loop. Change the cursor tothe wiring tool and click on the output of the Convert C to F sub-VI and dragthe wire to the right edge of the while loop. A small box will appear at thistermination. Use the wiring tool to click on this small box and extend thewire to the 1D Data input of the Write To Spreadsheet File function. Rightclick on the small box to pop up the options, and select “Enable Indexing.”This should make the small box appear with braces ([ ]) inside it. The orangewire inside the while loop should be a thin one, indicating a simple doubleprecision value, and the orange wire outside the while loop should be a thickone, indicating that the output from the while loop is now an array of values.Once the STOP button is pressed, the while loop will end, and all of themeasurements that have been taken up to this point will then be passed to theWrite To Spreadsheet File function as one array of values.Using File > Save As … , save the modified VI with a new name “Experiment0 Procedure 8.vi” in your own directory.Measurement-8 Make the front panel window for the new modified VI active and click on the run button to start its operation. The Celsius and Fahrenheit waveform chartsshould both begin displaying the running temperature data. After a fewminutes, click on the STOP button. A Save As … dialog window will open inwhich you can specify the location to where the new Excel (.xls) file will bewritten. Enter a new file name, such as “Experiment0Procedure8.xls” andclick on “OK.” After the file has been written, use Excel to open this file andverify that the correct data values have been written there in the first columnof the worksheet. You might also create a plot within Excel and compare thisto what you saw displayed on the waveform chart for the Fahrenheittemperatures.Question-8 If the new VI is kept running for 5 minutes, how many Fahrenheit temperature readings will be stored in the spreadsheet file?。