高三试卷—2018海淀高三(上)期末数学(文科)试题及答案

合集下载

2018年高考文科数学全国卷1(含详细答案)

2018年高考文科数学全国卷1(含详细答案)

数学试题 第1页(共22页)数学试题 第2页(共22页)绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A =,,{}21012B =--,,,,,则A B =( )A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设121iz i i-=++,则z =( ) A .0 B .12C .1 D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为()2,0,则C 的离心率( ) A .13B .12CD5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A.B .12πC.D .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC -C .3144AB AC +D .1344AB AC +8.已知函数()222cos sin 2f x x x =-+,则( ) A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A.B.C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( )A .8B.C.D.11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且2cos 23α=,则a b -=( )A .15BCD .1-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试题 第3页(共22页)数学试题 第4页(共22页)12.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________. 16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。

(完整版)北京市海淀区2018年高三二模数学(文科)试卷及答案

(完整版)北京市海淀区2018年高三二模数学(文科)试卷及答案

海淀区高三年级第二学期期末练习数学(文科)2018.5第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知全集{1,2,3,4,5,6},U = 集合{1,2,4},{1,3,5}A B ==,则()U A B I ð= (A ){1} (B ){3,5} (C ){1,6} (D ){1,3,5,6} (2)已知复数z 在复平面上对应的点为(1,1)-,则(A ) 1i z =-+ (B ) 1i z =+ (C ) +i z 是实数 (D ) +i z 是纯虚数 (3)若直线0x y a ++=是圆2220x y y +-=的一条对称轴,则a 的值为 (A ) 1 (B ) 1- (C ) 2 (D ) 2- (4)已知0x y >>,则 (A )11x y>(B ) 11()()22x y >(C ) cos cos x y >(D ) ln(1)ln(1)x y +>+(5)如图,半径为1的圆内有一阴影区域,在圆内随机撒入一大把豆子,共n 颗,其中落在阴影区域内的豆子共m 颗,则阴影区域的面积约为(A )m n (B ) n m (C )m n π (D ) n mπ(6)设C 是双曲线,则 “C 的方程为2214y x -=”是“C 的渐近线方程为2y x =±”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(7)某校为了解高一年级300名学生对历史、地理学科的选课情况,对学生进行编号,用1,2,……300表示,并用(,i i x y )表示第i 名学生的选课情况.其中01,i i i x ⎧=⎨⎩第名学生不选历史第名学生选历史,,01,i i i y ⎧=⎨⎩第名学生不选地理第名学生选地理., 根据如图所示的程序框图,下列说法中错误的是 (A )m 为选择历史的学生人数 (B )n 为选择地理的学生人数(C )S 为至少选择历史、地理一门学科的学生人数(D )S 为选择历史的学生人数与选择地理的学生人数之和(8)如图,已知直线y kx =与曲线()y f x =相切于两点,函数()(0)g x kx m m =+>,则函数()()()F x g x f x =- (A )有极小值,没有极大值 (B )有极大值,没有极小值(C )至少有两个极小值和一个极大值 (D )至少有一个极小值和两个极大值第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2018北京市海淀区高三数学(文科)(上)期末

2018北京市海淀区高三数学(文科)(上)期末

2018北京市海淀区高三数学(文科)(上)期末 2018.1本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将答题纸交回。

第一部分(选择题,共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1) 已知i 是虚数单位,若i(i)1i a +=-+,则实数a 的值为 (A) (B ) (C )(D )(2) 已知,a b ∈R ,若a b <,则(A) 2a b <(B ) 2ab b <(C )1122a b < (D )33a b <(3) 执行如图所示的程序框图,输出的k 值为(A )4 (B ) 5 (C) 6 (D )7(4) 下面的茎叶图记录的是甲、乙两个班级各5个同学在一次数学测试中的选择题的成绩(单位:分,每道题5分,共8道题) :(A ) 0,0(B ) 0,5(C ) 5,0 (D )5,5(5)已知直线0-+=x y m 与圆22:1+=O x y 相交于,A B 两点,且∆OAB 为正三角形,则实数m 的值为(A )23 (B )2(C )23或23- (D )26或26- (6) 设a ∈R ,则“1a =”是 “直线10ax y +-=与直线10x ay ++=平行”的(A )充分不必要条件(B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件(7) 在∆ABC 中,1==AB AC ,D 是AC 边的中点,则⋅BD CD 的取值范围是(A) 31(,)44-(B) 1(,)4-∞ (C )3(,+)4-∞ (D )13()44,(8)已知正方体1111-ABCD A B C D 的棱长为2,,M N 分别是棱11、BC C D 的中点,点P 在平面1111A B C D 内,点Q 在线段1A N 上.若=PM PQ 长度的最小值为1 (B(C1 (D)5第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。

2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题纸上,写在本试卷上无效。

3.考试结束后,将本试卷和答题纸一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。

$(-4,-3)$B。

$[-4,-3]$C。

$(-\infty,-3)\cup(4,+\infty)$D。

$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。

$-\frac{2}{5}+\frac{1}{5}i$B。

$-\frac{2}{5}-\frac{1}{5}i$C。

$\frac{2}{5}+\frac{1}{5}i$D。

$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。

$\frac{2}{3}$B。

$\frac{1}{5}$C。

$\frac{2}{5}$D。

$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。

2018海淀区高中数学(理)一模试卷及答案

2018海淀区高中数学(理)一模试卷及答案

海淀区高三年级第二学期期中练习数学(理科)2018. 4本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将答题纸交回。

第一部分(选择题,共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合{0,},{12}A a B x x ==-<< | ,且A B ⊆,则a 可以是 (A)1- (B) 0 (C) 1 (D) 2(2)已知向量(1,2),(1,0)==-a b ,则+2=a b(A) (1,2)- (B) (1,4)- (C) (1,2) (D) (1,4) (3)执行如图所示的程序框图,输出的S 值为 (A) 2 (B) 6 (C) 8 (D) 10(4)如图,网格纸上小正方形的边长为1,若四边形ABCD 及其内部的点组成的集合记为,M 且(,)P x y 为M 中任意一点,则y x -的最大值为(A) 1 (B) 2(C) 1- (D) 2-(5)已知a ,b 为正实数,则“1a >,1b >”是“lg lg 0a b +>”的( )(A)充分而不必要条件(B) 必要而不充分条件(C)充分必要条件(D) 既不充分也不必要条件(6)如图所示,一个棱长为1的正方体在一个水平放置的转盘上转动,用垂直于竖直墙面的水平光线照射,该正方体在竖直墙面上的投影的面积记作S ,则S 的值不可能是(A) 1 (B)65(C)43(D)32(7)下列函数()f x 中,其图象上任意一点(,)P x y 的坐标都满足条件y x ≤的函数是(A) 3()f x x = (B) ()f x = (C) ()e 1x f x =- (D) ()ln(1)f x x =+(8)已知点M 在圆221:(1)(1)1C x y -+-=上,点N 在圆222:(1)(1)1C x y +++=上,则下列说法错误的是(A )OM ON ⋅u u u u r u u u r的取值范围为[3--(B )||OM ON +u u u u r u u u r的取值范围为[0,(C )||OM ON -u u u u r u u u r的取值范围为2,2]+(D )若OM ON λ=u u u u r u u u r,则实数λ的取值范围为[33---+第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。

湖南省常德市2018届高三上学期检测考试(期末)数学(文)试题Word版含答案

湖南省常德市2018届高三上学期检测考试(期末)数学(文)试题Word版含答案

湖南省常德市2018届高三上学期检测考试(期末)数学(文)试题Word版含答案常德市2017-2018学年度上学期高三数学(文科)检测考试第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.已知集合$A=\{1,2,3\},B=\{2,3,4,5\}$,则$A\cap B$中元素的个数为()。

A.2.B.3.C.4.D.5.2.在复平面内,复数$z=1+2i$($i$为虚数单位)对应的点所在的象限为()。

A.第一象限。

B.第二象限。

C.第三象限。

D.第四象限。

3.在某学校图书馆的书架上随意放着有编号为1,2,3,4,5的五本史书,若某同学从中任意选出两本史书,则选出的两本史书编号相连的概率为()。

A.$\frac{1}{10}$。

B.$\frac{1}{5}$。

C.$\frac{2}{5}$。

D.$\frac{1}{2}$。

4.元朝著名数学家XXX《四元玉鉴》中有一首诗:“我有一壶酒,携着XXX走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”其意思为:“诗人带着装有一倍分酒的壶去春游,先遇到酒店就将酒添加一倍,后遇到朋友饮酒一斗,如此三次先后遇到酒店和朋友,壶中酒恰好饮完,问壶中原有多少酒?”用程序框图表达如图所示,即最终输出的$x=$,那么在这个空白框中可以填入()。

A.$x=x-1$。

B.$x=2x-1$。

C.$x=2x$。

D.$x=2x+1$。

5.已知向量$a=(x,y),b=(1,2),c=(-1,1)$,若满足$a\parallel b,b\perp(a-c)$,则向量$a$的坐标为()。

A.$(\frac{5}{11},\frac{5}{11})$。

B.$(-\frac{5}{11},-\frac{5}{11})$。

C.$(\frac{6}{11},\frac{3}{11})$。

D.$(\frac{5}{11},\frac{6}{11})$。

北京市海淀区2018届高三上学期期中考试数学(理)试题Word版含解析

北京市海淀区2018届高三上学期期中考试数学(理)试题Word版含解析

海淀区高三年级第一学期期中练习数学(理科)第一部分(选择题,共40 分)一、选择题共 8 小题,每题 5 分,共 40 分。

在每题列出的四个选项中,选出切合题目要求的一项。

1.若会合,,则()A. B.C. D.【答案】 C【分析】由于会合,,因此,应选 C.2. 以下函数中,既是偶函数又在区间上单一递加的是()A. B.C. D.【答案】 A【分析】对于A, , 是偶函数,且在区间上单调递加,切合题意;对于B, 对于对于 C,是奇函数,不合题意;对于不合题意,只有合题意,应选3. 已知向量,,则既不是奇函数,又不是偶函数,不合题意;D,在区间上单一递减,A.()A. B.C. D.【答案】 D【分析】向量错误;错误;错误;,4. 已知数列知足正确,应选,则D.()A. B.C. D.【答案】 D【分析】依据条件获得:可设,,故两式做差获得:,故数列的每一项都为0,故 D 是正确的。

A , B, C,都是不正确的。

故答案为 D 。

5. 将的图象向左平移个单位,则所得图象的函数分析式为()A. B.C. D.【答案】 B【分析】将函数的图象向左平移个单位,获得函数的图象 ,所求函数的分析式为,应选 B.6. 设,则“ 是第一象限角”是“”的()A. 充足而不用要条件B. 必需而不充足条件C. 充足必需条件D. 既不充足也不用要条件【答案】 C【分析】充足性:若是第一象限角,则, ,可得,必需性:若,不是第三象限角,,,则是第一象限角,“ 是第一象限角”是“”的充足必需条件,应选 C.【方法点睛】此题经过随意角的三角函数主要考察充足条件与必需条件,属于中档题.判断充要条件应注意:第一弄清条件和结论分别是什么,而后直接依照定义、定理、性质试试.对于带有否认性的命题或比较难判断的命题,除借助会合思想化抽象为直观外,还可利用原命题和逆否命题、抗命题和否命题的等价性,转变为判断它的等价命题;对于范围问题也能够转变为包括关系来办理.7. 设(),则以下说法不正确的选项是()A.为上偶函数B.为的一个周期C.为的一个极小值点D.在区间上单一递减【答案】 D【分析】对于 A ,,为上偶函数,A正确;对于B, , 为的一个周期 ,B 正确;对于 C,), ,, 为的一个极小值点 ,C 正确,综上,切合题意的选项为D, 应选 D.8. 已知非空会合知足以下两个条件:(ⅰ ),;(ⅱ )的元素个数不是中的元素,的元素个数不是中的元素,则有序会合对的个数为()A. B. C. D.【答案】 A【分析】若会合中只有个元素,则会合中只有个元素,则,即,此时有,同理,若会合中只有个元素,则会合中只有个元素,有,若会合中只有个元素,则,即,此时有,,同理,若会合中只有个元素,则会合中只有个元素,有,若会合中只有个元素,则会合中只有个元素,则,不知足条件,因此知足条件的有序会合对的个数为,应选 A.【方法点睛】此题主要考察会合的交集、并集及会合与元素的关系、分类议论思想的应用 . 属于难题 .分类议论思想解决高中数学识题的一种重要思想方法,是中学数学四种重要的数学思想之一,特别在解决含参数问题发挥着奇异功能,大大提升认识题能力与速度.运用这类方法的重点是将题设条件研究透,这样才能迅速找准打破点. 充足利用分类议论思想方法能够使问题条理清楚,从而顺利解答,希望同学们能够娴熟掌握并应用与解题中间.第二部分(非选择题,共110 分)二、填空题共 6 小题,每题 5 分,共 30 分。

(完整版)2018年高考全国卷1文科数学试题及含答案

(完整版)2018年高考全国卷1文科数学试题及含答案

2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己の姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目の答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出の四个选项中,只有一项是符合题目要求の。

1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年の新农村建设,农村の经济收入增加了一倍.实现翻番.为更好地了解该地区农村の经济收入变化情况,统计了该地区新农村建设前后农村の经济收入构成比例.得到如下饼图:则下面结论中不正确の是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入の总和超过了经济收入の一半4.已知椭圆C :22214x y a +=の一个焦点为(20),,则C の离心率为A .13B .12C .22D .2235.已知圆柱の上、下底面の中心分别为1O ,2O ,过直线12O O の平面截该圆柱所得の截面是面积为8の正方形,则该圆柱の表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处の切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上の中线,E 为AD の中点,则EB =u u u rA .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则 A .()f x の最小正周期为π,最大值为3 B .()f x の最小正周期为π,最大值为4 C .()f x の最小正周期为2π,最大值为3 D .()f x の最小正周期为2π,最大值为49.某圆柱の高为2,底面周长为16,其三视图如右图.圆柱表面上の点M 在正视图上の对应点为A ,圆柱表面上の点N 在左视图上の对应点为B ,则在此圆柱侧面上,从M 到N の路径中,最短路径の长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成の角为30︒,则该长方体の体积为 A .8B .62C .82D .8311.已知角αの顶点为坐标原点,始边与x 轴の非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -=A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<のx の取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+の最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC の内角A B C ,,の对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC の面积为________.三、解答题:共70分。

(word完整版)2018北京市海淀区高三数学(文科)(上)期末

(word完整版)2018北京市海淀区高三数学(文科)(上)期末

2018北京市海淀区高三数学(文科)(上)期末 2018.1本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将答题纸交回。

第一部分(选择题,共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1) 已知i 是虚数单位,若i(i)1i a +=-+,则实数a 的值为 (A) 1 (B ) 0 (C ) −1(D ) −2(2) 已知,a b ∈R ,若a b <,则(A) 2a b <(B ) 2ab b <(C )1122a b < (D )33a b <(3) 执行如图所示的程序框图,输出的k 值为(A )4 (B ) 5 (C) 6 (D )7(4) 下面的茎叶图记录的是甲、乙两个班级各5个同学在一次数学测试中的选择题的成绩(单位:分,每道题5分,共8道题) :(A ) 0,0(B ) 0,5(C ) 5,0 (D )5,5(5)已知直线0-+=x y m 与圆22:1+=O x y 相交于,A B 两点,且∆OAB 为正三角形,则实数m 的值为(A )23 (B )2(C )23或23- (D )26或26- (6) 设a ∈R ,则“1a =”是 “直线10ax y +-=与直线10x ay ++=平行”的(A )充分不必要条件(B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件(7) 在∆ABC 中,1==AB AC ,D 是AC 边的中点,则⋅u u u r u u u rBD CD 的取值范围是(A) 31(,)44-(B) 1(,)4-∞ (C )3(,+)4-∞ (D )13()44,(8)已知正方体1111-ABCD A B C D 的棱长为2,,M N 分别是棱11、BC C D 的中点,点P 在平面1111A B C D 内,点Q 在线段1A N 上. 若5=PM ,则PQ 长度的最小值为(A) 21- (B )2 (C )351- (D )355第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。

2018届高三上学期期末联考数学(理)试题有答案-精品

2018届高三上学期期末联考数学(理)试题有答案-精品

2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。

2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

关注公众号”一个高中僧“获取更多高中资料
第 3 页(共 28 页)
18.(12 分)如图,在平行四边形 ABCM 中,AB=AC=3,∠ACM=90°,以 AC 为 折痕将△ACM 折起,使点 M 到达点 D 的位置,且 AB⊥DA.
(1)证明:平面 ACD⊥平面 ABC; (2)Q 为线段 AD 上一点,P 为线段 BC 上一点,且 BP=DQ= DA,求三棱锥
A.12 π
B.12π
C.8 π
D.10π
【考点】LE:棱柱、棱锥、棱台的侧面积和表面积. 菁优网版权所有
【专题】11:计算题;35:转化思想;49:综合法;5F:空间位置关系与距离.
【分析】利用圆柱的截面是面积为 8 的正方形,求出圆柱的底面直径与高,然后
求解圆柱的表面积.
【解答】解:设圆柱的底面直径为 2R,则高为 2R,
(2)估计该家庭使用节水龙头后,日用水量小于 0.35m3 的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 365 天计算,
同一组中的数据以这组数据所在区间中点的值作代表)
20.(12 分)设抛物线 C:y2=2x,点 A(2,0),B(﹣2,0),过点 A 的直线 l 与 C 交于 M,N 两点.
参考答案与试题解析
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选 项中,只有一项是符合题目要求的。
1.(5 分)已知集合 A={0,2},B={﹣2,﹣1,0,1,2},则 A∩B=( )
A.{0,2}
B.{1,2}
C.{0}
D.{﹣2,﹣1,0,1,2}
【考点】1E:交集及其运算. 菁优网版权所有
问题解决问题的能力.

2018年文科数学全国三卷真题及答案)

2018年文科数学全国三卷真题及答案)

WORD 格式精心整理2018 年数学试题 文(全国卷 3)一、选择题(本题共 12 小题,每小题 5 分,共 60 分.在每小题给的四个选项中,只有一项符合题目要求的 . )1.已知集合 A x | x 1≥ 0 , B0 ,1,2 ,则 A B () A . 0B . 1C . 1,2D . 0 ,1,22. 1 i 2 i ()A . 3 iB . 3 iC . 3 iD . 3 i3.中国古建筑借助榫卯将木构件连接起来, 构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 ( ) 4.若 sin1,则3 cos2()A . 8B . 7C . 7. 899 9D95.若某群体中的成员只用现金支付的概率为 0.45 ,既用现金支付也用非现金支付的概率为 0.15 ,则不用现金支付的概率为( )A .0.3B .0.4C .0.6D .0.76.函数 f x tan x 2 的最小正周期为( ) 1 tan xA .B .2C .D . 2 47.下列函数中,其图像与函数 y ln x 的图像关于直线 x1 对称的是( ) A . y ln 1 x B . y ln2 x C . y ln 1 xD . y ln 2 x精心整理精心整理x y 2分别与x轴,y轴交于 A , B 两点,点 P 在圆 x 22 22 上,则 ABP.直线y面积的取值范围是()A. 2,6 B. 4,8 C.2,3 2 D.22,32 9.函数 y x4x22的图像大致为()10.已知双曲线 C:x2 22y2 1( a 0 ,b 0 )的离心率为 2 ,则点 4 ,0 到 C 的a b渐近线的距离为()A. 2 B. 2C.3 2D.2 2211.ABC C a b c ABC的面积为a2b2c2的内角 A ,B ,的对边分别为,,.若4,则 C ()A.B.C.4 D.62 3 12.设 A , B , C , D 是同一个半径为 4 的球的球面上四点, ABC 为等边三角形且其面积为 9 3 ,则三棱锥 D ABC 体积的最大值为()A.12 3 B.18 3 C.24 3 D.54 3 二、填空题(本题共 4 小题,每小题 5 分,共 20 分)13.已知向量a = 1,2 ,b= 2, 2 ,c= 1,λ.若c∥ 2a + b,则________..4某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是.5.若变量2 x y 3≥0 ,1满足约束条件 x 2 y 4 0则 z y 的最大值是.xx ,y≥ ,3________x 2≤ 0.6.已知函数 f x ln 1 x2 x 1 , f a 4 ,则 f a .________ 精心整理WORD格式精心整理三、解答题(共 70 分,解答应写出文字说明、证明过程或演算步骤,第17~31 题为必考题,每个试考生都必须作答,第 22、23 题为选考题,考生根据要求作答.)(一)必考题:共60 分。

北京海淀区2018-2019学年上学期高三数学文科期末试卷附答案解析

北京海淀区2018-2019学年上学期高三数学文科期末试卷附答案解析

(A) 4
(B)10
(C) 20
(4)已知向量 a (2,0),b (t,1) ,且 a b | a |,则 a b
(D) 40
(A) (1,1)
(B) (1, 1)
(C) (1,1)
(D) (1,1)
(5)直线 y kx 1 被圆 x2 y2 2 截得的弦长为 2 ,则 k 的值为
(13)设关于 x, y 的不等式组 x 4, 表示的平面区域为 ,若 A(1,2), B(3,0),C(2,3) 中有且仅有两个点
y kx 2
在 内,则 k 的最大值为

(14)已知函数 f (x) e | xt | , g(x) x e , h(x) ma x{ f (x), g(x)} ,其中 ma x{a, b}表示 a, b 中最大
(A)函数 f (x) 的值域与 g(x) 的值域不同
(B)存在 x0 ,使得函数 f (x) 和 g(x) 都在 x0 处取得最值
(C)把函数
f
(x) 的图象向左平移
π 2
个单位,就可以得到函数
g(x)
的图象
(D)函数 f (x) 和 g(x) 在区间 (0, π ) 上都是增函数 2
1
(8)已知集合 I {1,2,3,4,5,6}, A {(s,t) | s I,t I}. 若 B A ,且对任意的 (a,b) B,(x, y) B ,均有
15.解:(Ⅰ)因为 a1 2 , an an1 2n1(n 2)
所以 a2 a1 2 4 , a3 a2 4 8 , a4 a3 8 16
因为 an an1 2n1(n 2)

人教版数学高三期末测试精选(含答案)4

人教版数学高三期末测试精选(含答案)4

人教版数学高三期末测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=L )A .1624B .1024C .1198D .1560【来源】2020届湖南省高三上学期期末统测数学(文)试题 【答案】B2.在ABC ∆中,若222sin sin sin A B C +<,则ABC ∆的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .不能确定【来源】海南省文昌中学2018-2019学年高一下学期段考数学试题 【答案】A3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ﹣b =c cos B ﹣c cos A ,则△ABC 的形状为( ) A .等腰三角形 B .等边三角形C .直角三角形D .等腰三角形或直角三角形【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】D4.已知圆C 1:(x +a )2+(y ﹣2)2=1与圆C 2:(x ﹣b )2+(y ﹣2)2=4相外切,a ,b 为正实数,则ab 的最大值为( )A .B .94C .32D .2【来源】安徽省安庆市五校联盟2018-2019学年高二(上)期中数学(理科)试题 【答案】B5.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( )【来源】甘肃省兰州市第一中学2016-2017学年高二下学期期末考试数学(文)试题 【答案】A6.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的17是最小的两份之和,则最小的一份的量是 ( ) A .116B .103C .56D .53【来源】湖南省湘南三校联盟2018-2019学年高二10月联考文科数学试卷 【答案】D7.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形【来源】广东省中山市第一中学2019-2020学年高二上学期10月月考数学试题 【答案】C8.若不等式22log (5)0x ax -+>在[4,6]x ∈上恒成立,则a 的取值范围是( )A .(,4)-∞)B .20(,)3-∞ C .(,5)-∞D .29(,)5-∞【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题 【答案】C9.港珠澳大桥通车后,经常往来于珠港澳三地的刘先生采用自驾出行.由于燃油的价格有升也有降,现刘先生有两种加油方案,第一种方案:每次均加30升的燃油;第二种方案,每次加200元的燃油,则下列说法正确的是( ) A .采用第一种方案划算 B .采用第二种方案划算 C .两种方案一样D .无法确定【来源】2020届广东省珠海市高三上学期期末数学(文)试题 【答案】B10.已知正项等比数列{}n a 的前n 项和为n S ,12a =,23434a a a +=,则5S =( )【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】A11.在ABC ∆中3AB =,5BC =,7AC =,则边AB 上的高为( )A B C D 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B12.不等式220ax bx ++>的解集是()1,2-,则a b -=( ) A .3-B .2-C .2D .3【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B13.各项均为正数的数列{}n a ,其前n 项和为n S ,若224n n n a S a -=,则2019S 为( )A .BC .2019D .4038【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A14.设m ,n 为正数,且2m n +=,则2312m n m n +++++的最小值为( ) A .176B .145 C .114D .83【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B15.已知数列{}n a 的前n 项和为n S ,且314n n S a +=,则使不等式1000成立的n 的最大值为( )A .7B .8C .9D .10【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】C16.ABC ∆中角A ,B ,C 的对边分别是a ,b ,c ,若1a =,b =4B π=,则A =( )A .6π B .56π C .6π或56πD .23π【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A17.等差数列{}n a 前n 项和为n S ,已知46a =,36S =,则( ) A .410n a n =-B .36n a n =-C .2n S n n =-D .224n S n n =-【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】C18.在等差数列{}n a 中,652a a =,则17a a +=( ) A .0B .1C .2-D .3【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题 【答案】A19.若0,0,a b c d >><<则一定有( ) A .a b c d> B .a b c d< C .a b d c> D .a b d c< 【来源】2014年全国普通高等学校招生统一考试理科数学(四川卷带解析) 【答案】D20.已知平面上有四点O ,A ,B ,C ,向量,,OA OB OC u u u r u u u r u u u r 满足:0OA OB OC ++=u u u r u u u r u u u r r1OA OB OB OC OC OA ⋅=⋅=⋅=-u u u v u u u v u u u v u u u v u u u v u u u v,则△ABC 的周长是( )A .B .C .3D .6【来源】福建省晋江市季延中学2017-2018学年高一下学期期末考试数学试题 【答案】A21.在ABC ∆中,60A =︒,1b =,则sin sin sin a b c A B C ++++的值为( )A .1B .2C D .【来源】辽宁省实验中学分校2016-2017学年高一下学期期末数学(文)试题 【答案】B二、填空题22.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【来源】2018年全国普通高等学校招生统一考试数学(江苏卷) 【答案】923.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知5a =8b ,A =2B ,则sin B =_____.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】3524.如图,为测得河对岸塔AB 的高,先在河岸上选一点C,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D,测得∠BDC =45°,则塔AB 的高是_____.【来源】2014届江西省南昌大学附属中学高三第三次月考理科数学试卷(带解析) 【答案】1025.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 【来源】智能测评与辅导[文]-等比数列 【答案】6426.设x ,y 满足约束条件20260,0x y x y x y +-≥⎧⎪+≤⎨⎪≥≥⎩,则23z x y =-+的最小值是______.【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】9-27.已知数列{}n a 是等差数列,且公差0d <,()11a f x =+,20a =,()31a f x =-,其中()242f x x x =-+,则{}n a 的前10项和10S =________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】70-28.若x ,y 满足约束条件22020x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩,则3z x y =-的最小值为________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】2-29.已知数列{}n a 满足11a =,()13N n n n a a n *+⋅=∈,那么数列{}n a 的前9项和9S =______.【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】24130.设a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边.已知2cos cos a B C=,则222a cb ac+-的取值范围为______.【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】()()0,2U三、解答题31.如图,在平面四边形ABCD 中,BC =3,CD =5,DA 2=,A 4π=,∠DBA 6π=.(1)求BD 的长: (2)求△BCD 的面积.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】(1)7;(2 32.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且 210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(I )求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(II)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【来源】湖北省四校(襄州一中、枣阳一中、宜城一中、曾都一中)2018-2019学年高一下学期期中联考数学试题【答案】(Ⅰ)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩(Ⅱ)2020年产量为100(千部)时,企业所获利润最大,最大利润是9000万元. 33.设集合A={x|x 2<9},B={x|(x-2)(x+4)<0}. (1)求集合A∩B ;(2)若不等式2x 2+ax+b <0的解集为A ∪B ,求a ,b 的值.【来源】2013-2014学年广东阳东广雅、阳春实验中学高二上期末文数学卷(带解析) 【答案】(1){x |3x 2}-<<(2)2,24a b ==- 34.已知数列{}n a 满足11a =,()111n n n a na n ++-=+. (1)求数列{}n a 的通项公式; (2)n S 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求证:223n S ≤<. 【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题【答案】(1)12n n a +=(2)证明见解析 35.在ABC V 中,a ,b ,c 分别为内角A ,B ,C的对边,且满()(sin sin )sin )b a B A c B C -+=-.(1)求A 的大小;(2)再在①2a =,②4B π=,③=c 这三个条件中,选出两个使ABC V 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC V 的面积. 【来源】2020届山东省滨州市高三上学期期末考试数学试题 【答案】(1)6A π=;(2)见解析36.设函数()22sin cos 3x x f x π⎛⎫=+⎪⎝⎭. (1)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的单调递增区间;(2)在ABC ∆中,1AB =,2AC =,()2f A =-,且A 为钝角,求sin C 的值. 【来源】2020届浙江省嘉兴市高三上学期期末考试数学试题【答案】(1)5,122ππ⎡⎤⎢⎥⎣⎦(2)1437.在四边形ABCD 中,120BAD ︒∠=,60BCD ︒∠=,1cos 7D =-,2AD DC ==.(1) 求cos DAC ∠及AC 的长; (2) 求BC 的长.【来源】2020届宁夏石嘴山市第三中学高三上学期期末考试数学(文)试题【答案】(1) cos 7DAC ∠=,7AC =;(2) 3 38.在ABC V 中,内角A B C ,,所对的边分别为a b c ,,,已知sin cos 2sin cos A B c bB A b-=.(1)求A ;(2)设5b =,ABC S =V 若D 在边AB 上,且3AD DB =,求CD 的长. 【来源】2020届福建省莆田市(第一联盟体)学年上学期高三联考文科数学试题【答案】(1)3π;(239.在ABC ∆中,45,B AC ︒∠==cos C =. (1)求BC 边长;(2)求AB 边上中线CD 的长.【来源】北京101中学2018-2019学年下学期高一年级期中考试数学试卷【答案】(1)(240.已知函数2()2()f x x mx m R =-++∈,()2x g x =. (1)当2m =时,求2()(log )f x g x >的解集;(2)若对任意的1[1,1]x ∈-,存在2[1,1]x ∈-,使不等式12()()f x g x ≥成立,求实数m 的取值范围.【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题【答案】(1)(0,2)(2)11[,]22-41.已知1x =是函数2()21g x ax ax =-+的零点,()()g x f x x=. (Ⅰ)求实数a 的值;(Ⅱ)若不等式(ln )ln 0f x k x -≥在2,x e e ⎡⎤∈⎣⎦上恒成立,求实数k 的取值范围;(Ⅲ)若方程()3213021xxf k k ⎛⎫⎪-+-= ⎪-⎝⎭有三个不同的实数解,求实数k 的取值范围.【来源】天津市滨海新区2018-2019学年高一上学期期末检测数学试题【答案】(Ⅰ)1;(Ⅱ)(],0-∞;(Ⅲ)103k -<<.42.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,cos sin C c B =. (1)求角C 的大小(2)若c =ABC ∆的面积为,求ABC ∆的周长.【来源】天津市蓟州等部分区2019届高三上学期期末联考数学(文)试题【答案】(Ⅰ)3C π=.(Ⅱ)10+43.已知等差数列{}n a 中,首项11a =,523a a =.(1)求{}n a 的通项公式;(2)若等比数列{}n b 满足13b =,2123b a a a =++,求{}n b 的前n 项和n S . 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n a n =-;(2) 1332n n S +-= 44.对于正项数列{}n a ,定义12323nn a a a na G n+++⋅⋅⋅+=为数列{}n a 的“匀称”值.(1)若当数列{}n a 的“匀称”值n G n =,求数列{}n a 的通项公式; (2)若当数列{}n a 的“匀称”值2n G =,设()()128141n n nb n a +=--,求数列{}n b 的前2n 项和2n S 及2n S 的最小值.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n n a n -=;(2)21141n S n =-+,4545.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且2sin tan c B b C =.(1)求角C 的值;(2)若c =3a b =,求ABC ∆的面积.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1)3C π=,(2)ABC S ∆=46.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足1cos cos a cB C b b-=-. (1)求角C 的大小;(2)若2c =,a b +=ABC V 的面积.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题【答案】(1)3C π=;(2)447.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos a B A =. (1)求A ;(2)若a =,ABC V 的面积为ABC V 的周长.【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题试卷第11页,总11页 【答案】(1)3A π=(2)7+48.在正项数列{}n a中,11a =,()()2211121n n n n a a a a ++-=-,1n n nb a a =-. (1)求数列{}n a 与{}n b 的通项公式;(2)求数列(){}22n n n a b -的前n 项和nT . 【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】(1)22n n a +=,2n n b =,(2)()()13144219n n n T n n +-+=++49.在ABC ∆中,10a b +=,cos C 是方程22320x x --=的一个根,求ABC ∆周长的最小值。

福州市2017-2018学年第一学期高三期末考试文科数学试卷(有答案)

福州市2017-2018学年第一学期高三期末考试文科数学试卷(有答案)

福州市2017-2018学年第一学期高三期末考试文科数学试卷(有答案)福州市2017-2018学年第一学期高三期末考试文科数学试卷(有答案)本试题卷共23题,分为第I卷和第II卷,共计150分,考试时间120分钟。

第I卷一、选择题(共12小题,每小题5分,共60分)1.已知集合A={x(x-6)(x+1)0},则A∩B=(C)。

2.若复数z=a1为纯虚数,则实数a=(B)。

3.已知a=(12),b=(-1,1),c=2a-b,则|c|=(B)。

4.3cos15°-4sin215°cos15°=(D)。

5.已知双曲线C的两个焦点F1F2都在x轴上,对称中心为原点,离心率为3,若点M在C 上,且MF1MF2M到原点的距离为3,则C的方程为(C)。

6.已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于(B)。

7.右面的程序框图的算法思路源于我国古代著名的《孙子剩余定理》。

图中的Mod(N,m)=n表示正整数N除以正整数m后的余数为n,例如Mod(10,3)=1.执行该程序框图,则输出的i等于(C)。

8.将函数y=2sinx+cosx的图象向右平移1个周期后,所得图象对应的函数为(D)。

二、填空题(共3小题,每小题10分,共30分)9.已知函数y=ln(1-x),则y''=(B)。

10.已知函数f(x)=x+sinx,则f'(π)的值为(C)。

11.已知函数f(x)=x+sinx,则f(x)在[0,π]上的最小值为(A)。

三、解答题(共8小题,每小题10分,共80分)12.解方程log2(x+1)+log2(x-1)=1.13.已知函数f(x)=x^3-3x^2+2x+1,求f(x)的单调递减区间。

14.已知函数f(x)=x^3-3x^2+2x+1,求f(x)的极值和极值点。

15.已知函数f(x)=x^3-3x^2+2x+1,求f(x)的图象在点(1,1)处的切线方程。

北京市海淀区2018届高三上学期期末考试数学(文)试题(图片版)

北京市海淀区2018届高三上学期期末考试数学(文)试题(图片版)

海淀区高三年级第一学期期末练习参考答案数学(文科)一、选择题:本大题共8小题,每小题5分,共40分. 题号 1 2 3 4 5 6 7 8 选项ADBBDCAC二、填空题:本大题共6小题,每小题5分,共30分.(有两空的小题第一空3分) 9.110.211.2或23 12.3213.1[0,)+∞14.5 A 三、解答题: 本大题共6小题,共80分. 15(本题共13分)解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d⎩⎨⎧+=+=+da d a d a 6335111,解得31=a ,2=d ------------------------3分 由d n a a n )(11-+=,则12+=n a n ------------------------5分 因此,通项公式为12+=n a n .(Ⅱ)由(Ⅰ)可知:12+=n a n ,则122+=n n b422121121==++++n n n n b b )(------------------------7分 因为3128b ==,------------------------8分所以{}n b 是首项为8,公比为4=q 的等比数列.------------------------9分 记{}n n b a +的前n 项和为n T ,则)()()(n n n b a b a b a T ++⋅⋅⋅++++=2211)()(n n b b b a a a +⋅⋅⋅++++⋅⋅⋅++=2121------------------------10分qq b a a n n n --++=11211)()(------------------------12分314822)(-++=n n n ---------------------13分16(本题共13分) 解:(Ⅰ)24π+π≠π-k x ,Z k ∈------------------------2分 解得:43π+π≠k x ,Z k ∈------------------------3分所以,函数的定义域为⎭⎬⎫⎩⎨⎧∈π+π≠Z k k x x ,|43------------------------4分 (Ⅱ))tan(cos )(42π-⋅=x x x f xx x x tan tan )sin (cos +-⋅-=1122------------------------6分xx xx x x x x sin cos cos sin )sin )(cos sin (cos +-⋅+-=------------------------8分2)sin (cos x x --=12-=x x cos sin12-=x sin ------------------------9分因为3,4x k k Z ππ≠+∈,所以32,2x k k Z ππ≠+∈,所以sin 21x ≠-,------------------------11分所以,函数()f x 的值域为],(02-.------------------------13分 17.(本题共13分)解:(Ⅰ)1X2X3X4X5X6X7X8X9X10X11X12X124624421647所以i X 等于1有2次,i X =2有3次,i X =4有4次,i X =6有2次,i X =7有1次, 则数据12312,,...X X X X 的众数为4------------------------5分(Ⅱ)设事件D =“品牌A 的测试结果恰有一次大于品牌B 的测试结果”.满足4i X =的测试共有4次,其中品牌A 的测试结果大于品牌B 的测试结果有2次即测试3和测试7,不妨用M ,N 表示.品牌A 的测试结果小于品牌B 的测试结果有2次即测试6和测试11,不妨用P ,Q 表示.从中随机抽取两次,共有MN ,MP ,MQ ,NP ,NQ ,PQ 六种情况,其中事件D 发生,指的是MP ,MQ ,NP ,NQ 四种情况.故42()63P D ==. ------------------------10分 (Ⅲ)本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,阅卷时按照标准酌情给分.给出明确结论,1分,结合已有数据,能够运用以下两个标准中的任何一个陈述得出该结论的理由,2分.标准1: 分别比较两种不同测试的结果,根据数据进行阐述 标准2:会用测试结果的平均数进行阐述 ------------------------13分可能出现的作答情况举例,及对应评分标准如下: 结论一:,品牌B 处理器对含有文字与表格的文件的打开速度快一些,品牌A 处理器对含有文字与图片的文件的打开速度快一些。

2018-2019学年北京市海淀区高三(上)期末数学试卷(文科)

2018-2019学年北京市海淀区高三(上)期末数学试卷(文科)

2018-2019学年北京市海淀区高三(上)期末数学试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(★)双曲线的左焦点坐标为()A.(-2,0)B.C.(-1,0)D.(-4,0)2.(★★)已知等比数列{a n}满足a 1=2,且a 1,a 2,6成等差数列,则a 4=()A.6B.8C.16D.323.(★)若lga-2lg2=1,则a=()A.4B.10C.20D.404.(★)已知向量=(2,0),=(t,1),且=| |,则=()A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)5.(★★★)直线y=kx+1被圆x 2+y 2=2截得的弦长为2,则k的值为()A.0B.±C.±1D.±6.(★)已知函数,则“a<0”是“函数f(x)在区间(1,+∞)上存在零点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(★★)已知函数f(x)=sinx-cosx,g(x)是f(x)的导函数,则下列结论中正确的是()A.函数f(x)的值域与g(x)的值域不同B.存在x0,使得函数f(x)和g(x)都在x0处取得极值点C.把函数f(x)的图象向左平移个单位,就可以得到函数g(x)的图象D.函数f(x)和g(x)在区间(0,上都是增函数8.(★)已知集合I={1,2,3,4,5,6},A={(s,t)|s∈I,t∈I}.若B⊆A,且对任意的(a,b)∈B,(x,y)∈B,均有(a-x)(b-y)<0,则集合B中元素个数的最大值为()A.5B.6C.11D.13二、填空题共6小题,每小题5分,共30分.9.(★★)抛物线y 2=4x的准线方程是.10.(★★)执行如图所示的程序框图,当输入的M值为7,n值为2时,输出的S值为.11.(★★)某三棱锥的三视图如图所示,则这个三棱锥中的体积为.12.(★★★)在△ABC中,,且sin2A=sinB,则cosA= ,∠C= .13.(★)设关于x,y的不等式组表示的平面区域为Ω,若点A(1,-2),B(3,0),C(2,-3)中有且仅有两个点在Ω内,则k的最大值为.14.(★★★)已知函数f(x)=e |x-t|,g(x)=-x+e,h(x)=max{f(x),g(x)},其中max{a,b}表示a,b中最大的数.(Ⅰ)若t=1,则h(0)= .(Ⅱ)若h(x)>e对x∈R恒成立,则t的取值范围是.三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程.15.(★★)已知数列{a n}满足a 1=2,(Ⅰ)求a 2,a 3,a 4的值和{a n}的通项公式;(Ⅱ)设b n=2log 2a n-1,求数列{b n}的前n项和.16.(★★)已知函数f(x)=asinx-cos2x.(Ⅰ)比较和的大小;(Ⅱ)当a=-6时,求函数f(x)的最小值.17.(★★)为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记X表示学生的考核成绩,并规定X≥85为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:(Ⅰ)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;(Ⅱ)从图中考核成绩满足X∈[80,89]的学生中任取2人,求至少有一人考核优秀的概率;(Ⅲ)记P(a≤X≤b)表示学生的考核成绩在区间[a,b]的概率,根据以往培训数据,规定当时培训有效.请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由.18.(★★★)在四棱锥P-ABCD中,平面ABCD⊥平面PCD,底面ABCD为梯形,AB∥CD,AD⊥DC.(Ⅰ)求证:AB∥平面PCD;(Ⅱ)求证:AD⊥平面PCD;(Ⅲ)若点M是棱PA的中点,求证:对于棱BC上任意一点F,MF与PC都不平行.19.(★★)已知点B(0,-2)和椭圆M:.直线l:y=kx+1与椭圆M交于不同两点P,Q.(Ⅰ)求椭圆M的离心率;(Ⅱ)若,求△PBQ的面积;(Ⅲ)设直线PB与椭圆M的另一个交点为C,当C为PB中点时,求k的值.20.(★★)已知函数,其中a>0.(Ⅰ)当a=3时,求曲线y=f(x)在点(-1,f(-1))处的切线方程;(Ⅱ)求证:当x>0时,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注:不写 k Z 扣 1 分,只扣一次;(Ⅰ)(Ⅱ)结果有一个写了集合符号,不扣分,都没写集合
符号,统一扣 1 分.
(Ⅱ)
f
(x)
cos 2x
tan(x
4
)
(
c
o2 sx
s
i
n2
x)
t 1
a
nx 1 t a nx
------------------------8 分
( c oxs s i nx) ( c oxs s i nx) s i nx c o sx c o sx s i nx
2018 北京市海淀区高三(上)期末
数学(文科)
2018.1
本试卷共 4 页,150 分。考试时长 120 分钟。考生务必将答案答在答题纸上,在试卷上作答无效。考试结束后, 将答题纸交回。
第一部分(选择题,共 40 分)
一、选择题共 8 小题,每小题 5 分,共 40 分。在每小题列出的四个选项中,选出符合题目要求的一项。
5
19. (本小题 14 分)
已知椭圆 C : x2 y2 1 ,直线 l : x y 2 0 与椭圆 C 相交于 P ,Q 两点,与 x 轴交于点 B,点 P,Q 3m m
与点 B 不重合. (Ⅰ)求椭圆 C 的离心率; (Ⅱ)当 SOPQ 2 时,求椭圆 C 的方程;
(Ⅲ)过原点 O 作直线 l 的垂线,垂足为 N. 若 PN BQ ,求 的值.
五名中占据两席. 其中,超算全球第一“神威·太湖之光”完全使用了国产处理器. 为了了解国产品牌处理器打开 文件的速度,某调查公司对两种国产品牌处理器进行了 12 次测试,结果如下:(数.值.越.小.,速.度.越.快.,单位是 MIPS)
测试 测试 测试 测试 测试 测试 测试 测试 测试 测试 测试 测试
6
20. (本小题 13 分)
已知函数 f (x) (x 1)ex ax2 . (Ⅰ)求曲线 y f (x) 在点 (0, f (0)) 处的切线方程; (Ⅱ)求证:“ a 0 ”是“函数 f (x) 有且只有一个零点”的充分不必要条件.
7
数学试题答案
一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.
Q 在线段 A1N 上. 若 PM 5 ,则 PQ 长度的最小值为
(A) 2 1
(B) 2
(C) 3 5 1 5
(D) 3 5 5
第二部分(非选择题,共 110 分) 二、填空题共 6 小题,每小题 5 分,共 30 分。
(9)已知双曲线 ax2 y2 1的一条渐近线方程为 y x ,则实数 a 的值为
题号
1
2
3
4
5
6
7
8
选项 A
D
B
B
D
C
A
C
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.(有两空的小题第一空 3 分)
9. 1
10. 2
11. 2 或 2 3 (答对一个给 3 分)
12. 3 2
13. 1 [0, )
14. 5 A
三、解答题: 本大题共 6 小题,共 80 分. 15.(本题共 13 分)
1
2
3
4
5
6
7
8
9 10 11 12
品牌 A 3
6
9 10 4
1 12 17 4
6
6 14
品牌 B 2
8
5
4
2
5
8 15 5 12 10 21
设 ai 、 bi 分别表示第 i 次测试中品牌 A 和品牌 B 的测试结果,记 Xi ai bi ( i 1, 2,...,12 )
(Ⅰ)求数据 X1, X2, X3,...X12 的众数;
(Ⅱ)从满足 Xi 4 的测试中随机抽取两次,求品牌 A 的测试结果恰有一次大于品牌 B 的测试结果的概率;
(Ⅲ)经过了解,前 6 次测试是打开含有文字与表格的文件,后 6 次测试是打开含有文字与图片的文件.请你根据 表中数,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.
4
(18) (本小题 14 分)
(D) a3 b3
开始 a=1,k=1
a > 10 是 否
a = 2a
k = k +1
输出 k
结束
(4) 下面的茎叶图记录的是甲、乙两个班级各 5 个同学在一次数学测试中的选择题的成绩(单位:分,每道题 5 分,
共 8 道题) :
甲班
乙班
5
2
x
5
3
0y0 5
0
0
4
0
已知两组数据的平均数相等,则 x, y 的值分别为
是 MP,MQ,NP,NQ 四种情况. 故 P(D) 4 2 . 63
------------------------10 分
(Ⅲ)本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,阅卷时按照
标准酌情给分.
9
给出明确结论,1 分,结合已有数据,能够运用以下两个标准中的任何一个陈述得出该结论的理由,
(Ⅱ)由(Ⅰ)可知: an 2n 1 ,则 bn 22n1
------------------------6 分
bn1 bn
2 2( n 1) 1 22n1
4
因为 b1 23 8 ,
所以bn 是首项为 8,公比为 q 4 的等比数列.
------------------------7 分
标准 2: 会用前 6 次测试品牌 A、品牌 B 的测试结果的方差与后 6 次测试品牌 A、品牌 B 的 测试结果的方差进行阐述(这两种品牌的处理器打开含有文字与表格的文件的测试结果的方差均小于 打开含有文字和图片的文件的测试结果的方差;这两种品牌的处理器打开含有文字与表格的文件速度 的波动均小于打开含有文字和图片的文件速度的波动)
n2
2n
8(4n 1) 3
16(本题共 13 分)
解:(Ⅰ)
x
4
k
2

k
Z
---------------------13 分
------------------------2 分
8
解得:
x
k
3 4

k
Z
所以,函数的定义域为
x
|
x
k
3 4
,
k
Z
------------------------4 分
解:(Ⅰ)设等差数列 an 的首项为 a1 ,公差为 d .
a1 d 3a1 3d
5
a1
6d
,解得 a1
3,d
2
------------------------3 分
由 an a1 (n 1)d ,则 an 2n 1
------------------------5 分
因此,通项公式为 an 2n 1 .
和这 5 道题的得分:
1
2
3
4
5
得分

C
C
A
B
B
4

C
C
B
B
C
3

B
C
C
B
B
2
则甲同学答错的题目的题号是
;此正确的选项是
.
2
2
2
2
主视图
俯视图
2 2
左视图
2
三、解答题共 6 小题,共 80 分。解答应写出文字说明、演算步骤或证明过程。 (15) (本小题 13 分)
已知等差数列 an 的前 n 项和为 Sn ,且 a2 5 , S3 a7 .
记 an bn 的前 n 项和为Tn ,则
Tn (a1 b1 ) (a2 b2 ) (an bn )
(a1 a2 an ) (b1 b2 bn )
n(a1 2
an )
b1 (1 qn ) 1 q
------------------------11 分
(A)充分不必要条件
(B)必要不充分条件
(C)充分必要条件
(D)既不充分也不必要条件
1
(7) 在 ABC 中, AB AC 1, D 是 AC 边的中点,则 BD CD 的取值范围是
(A) ( 3 , 1) 44
(B) (, 1) 4
(C) ( 3 , +) 4
(D) (1 ,3) 44
(8)已知正方体 ABCD A1B1C1D1 的棱长为 2, M , N 分别是棱 BC、C1D1 的中点,点 P 在平面 A1B1C1D1 内,点
(Ⅰ)求数列{an} 的通项公式;
(Ⅱ)若 bn 2an ,求数列an bn的前 n 项和.
(16) (本小题 13 分)
已知函数 f (x) cos 2x tan(x ) . 4
(Ⅰ)求函数 f (x) 的定义域; (Ⅱ)求函数 f (x) 的值域.
3
(17) (本小题 13 分)
据中国日报网报道,2017 年 11 月 13 日,TOP500 发布了最新一期全球超级计算机 500 强榜单,中国超算在前
------------------------10 分 ------------------------11 分
- -----------------------13 分
注:结果写成[2, 0]扣两分.
17. (本题共 13 分) 解:(Ⅰ)
X1
X2
X3
X4
X5
X6
X7
X8
X9
X 10
X 11
X 12
x 0, 的最大值为
相关文档
最新文档