初等变换应用与矩阵的秩结论
矩阵的秩与初等变换
对于 n 阶矩阵 A,当 |A|≠0 时 R(A)=n, |A|=0 时 R(A)<n。
当 R(A)=r时,即 A 中所有的 r+1 阶子式全等于 0,则A中 所有高于 r+1 阶的子式 = ?
这些子式必0 的子式的最高阶数。
在 B 中总能找到与D相对应的 r 阶子式 D1,且有 D1=D 或 D1 = -D 或 D1 = kD,
因此 D1≠0,从而 R(B) ≥ r = R(A)。 2) 把某行的倍数加到另一行的初等变换。
由于对交换两行的初等变换已经证明结论成立,故只需证明 把第二行的某个倍数加到第一行时,秩不减即可。
即经过一系列初等行变换后,有
重复以上的作法。如果原来矩阵 A中第一列的元素全为零, 那么就依次考虑它的第二列元素,等等。
如此作下去直到变成行阶梯形为止。 上边的叙述可按归纳法给予严格的证明。
定理:初等变换不改变矩阵的秩。 证明:先证明若 A 经一次初等行变换变为 B,则 R(A) ≤ R(B); 设 R(A)=r,且 A 的某个 r 阶子式 D≠0。 1) 对交换两行与把某一行乘以非0常数k的初等变换,比如
注意行阶梯形矩阵与上三角矩阵的关系。
二 初等变换与矩阵秩的求法
定义 下面三种变换称为矩阵的初等行变换:
(i) 对调两行(对调 i, j 两行,记作
);
(ii) 以数 k≠0乘某一行中的所有元素(第i行乘k,记作ri×k);
(iii) 把某一行所有元素的 k 倍加到另一行对应的元素上去
(第 j 行的 k 倍加到第 i 行上,记作
R(A) ≤R(B).
又注意到 B 亦可经由一次初等行变换变为 A,故 R(B) ≤ R(A),
矩阵初等变换及其在线性代数中的应用
矩阵初等变换及其在线性代数中的应用线性代数是一门重要的数学分支,它研究的是线性变换及其代数分析性质。
其中,矩阵是线性代数中非常重要的工具,它可以把线性方程组转化成一个更简单的形式,使得我们可以更容易地进行求解。
而矩阵的初等变换则是在求解线性方程组时必须要用到的一种基本技巧。
本篇文章将深入探讨矩阵初等变换及其在线性代数中的应用。
矩阵初等变换到底是什么?矩阵初等变换是指对于一个矩阵来说,可以通过三种基本变换操作得到新的矩阵。
这三种操作分别是:交换矩阵的任意两行或两列;用一个非零常数 k 乘以矩阵的某一行或某一列;将矩阵的某一行或某一列加上另一行或另一列的 k 倍。
这三种操作称为矩阵的行初等变换或列初等变换。
首先来看一个示例,假设有如下矩阵:$$\begin{bmatrix}1 &2 \\3 &4 \\\end{bmatrix}$$对于这个矩阵,我们可以进行如下初等变换:①交换第一行和第二行$$\begin{bmatrix}3 &4 \\1 &2 \\\end{bmatrix}$$②将第二行乘以2$$\begin{bmatrix}1 &2 \\6 & 8 \\\end{bmatrix}$$③将第二行减去第一行的两倍$$\begin{bmatrix}1 &2 \\4 & 4 \\\end{bmatrix}$$通过这三种基本变换,我们可以将原始矩阵变换成一个新的矩阵。
这个过程通常用矩阵的运算符号表示,比如将第二行减去第一行两倍的操作可以表示为:$$\begin{bmatrix}1 & 0 \\-2 & 1 \\\end{bmatrix}\begin{bmatrix}1 &2 \\3 &4 \\\end{bmatrix}=\begin{bmatrix}1 &2 \\1 & 0 \\\end{bmatrix}$$其中,左侧的矩阵就是一个变换矩阵,它表示了对原矩阵的操作。
矩阵的初等变换与矩阵的秩
15
例3
求矩阵
A
1 2
2 3
3 5
的秩.
4 7 1
解
在 A 中,1
2 0.
23
又 A的 3 阶子式只有一个 A,且 A 0,
R( A) 2.
16
2 1 0 3 2
例4
求矩阵
B
0 0
3 0
1 0
2 4
5 3
的秩.
0 0 0 0 0
ri rj;
ri
(1) k
或
ri
k;
ri (k)rj 或 ri krj .
3
定义 如果矩阵 A 经有限次初等变换变成矩阵 B, 就称矩阵 A 与 B 等价,记作 A B. 等价关系的性质: (1) 反身性 A A;
(2)对称性 若 A B ,则 B A; (3)传递性 若 A B,B C,则 A C.
k n),位于这些行列交叉 处的个 k 2 元素,不改
变它们在 A中所处的位置次序而得 的k阶行列式,
称为矩阵 A 的 k 阶子式.
1 2 3 0
12 3 2 3 0
例如
A
2 4
3 7
5 1
2 4
,
则
2 4
3 7
5 ,3 17
-5 1
-2 4
1 3 0 12 0 2 -5 -2 ,2 3 -2 都是A的全部4个3阶子式. 4 1 4 47 4
Br13 r4
22r1 332r1
01 03 06
21 51 39
12 15 73
2 2 23 9 4
r3 r4
36032rr11
矩阵的秩及初等变换
1 2
3
4 1 2
( B1 )
2 3 4
3 21 31
3
4
( B2 )
1 2 2 3 52 4 32
x1 x2 2 x3 x4 4, x x x 0, 2 3 4 2 x 4 6, x 4 3, x1 x2 2 x3 x4 4, x x x 0, 2 3 4 x4 3, 0 0,
二、矩阵的初等变换
定义1 下面三种变换称为矩阵的初等行变换:
1 对调两行(对调 i , j 两行, 记作ri rj); 2 以数 k 0 乘以某一行的所有元素;
3 把某一行所有元素的 k 倍加到另一行
对应的元素上去(第 j 行的 k 倍加到第 i 行上 记作ri krj) .
显然,非零行的行数为2,
R A 2.
此方法简单!
四、矩阵秩的求法
因为对于任何矩阵Amn , 总可经过有限次初 等行变换把他变为行阶梯形.
问题:经过变换矩阵的秩变吗?
定理 1 若 A ~ B, 则 R A R B .
证 先证明:若A经一次初等行变换变为B, 则R( A) R( B ).
4 2 B 1 2 9
2 r2 r31 1 1 1 2 1 r3 22 r1 0 B1 0 3 5 1 r4 32 r1 3 0 9 6 3
1 2 4 1 1 2 2 2 1 5 2 3 7 3 9 4
2
变它们在 A 中所处的位置次序而得 的k阶行列式, 称为矩阵 A 的 k 阶子式.
k k m n 矩阵 A 的 k 阶子式共有 Cm Cn 个.
有关矩阵的秩及其应用
r (AB)≤min {r (A), r (B)}
定理 3 设 A 是 m×n 矩阵,P 是 m 阶可逆矩阵,Q 是 n 阶可逆矩阵,则
r (A) = r (PA) = r (AQ) = r (PAQ) 推论 设 A 是是 m×n 矩阵,则 r (A) = r,当且仅当存在 m 阶可逆矩阵 P 和 n 阶可逆矩阵 Q,
r
A− O
C
AB B
− −
CD D
=
r(
A
−
C
)
+
r(B
−
D)
。
定理 6 (Frobenius 不等式)
设 A 是 m×n 矩阵,B 是 n×s 矩阵,C 是 s×t 矩阵。则
r (ABC)≥r (AB) + r (BC) – r (B)
证明:由分块矩阵的乘法得
AB B
ABC O
证明:由定理 1 得
r( A1 + A2 + " + Ak ) ≤ k
r( A1 + A2 + " + Ak ) ≤ r( A1 ) + r( A2 + A3 + " + Ak ) ≤ r( A1 ) + r( A2 ) + r( A3 + A4 + " + Ak ) "" ≤ r( A1 ) + r( A2 ) + " + r( Ak ) =k 定理 2 矩阵的乘积的秩不超过各因子的秩。即:设 A 是 m×n 矩阵,B 是 n×s 矩阵,则
a1
A2
=
a2
矩阵的秩和初等变换.
本节先建立矩阵的秩的概念,讨论矩阵的初等变换,
并提出求秩的有效方法.
再利用矩阵的秩来研究齐次线性方程组有非零解
的充分必要条件,并介绍用初等变换解线性方程
组的方法.
内容丰富,难度较大.
1矩阵的秩
2矩阵的初等变换
3用初等变换求矩阵的秩
4线性方程组与矩阵的初等变换
一.矩阵的秩
定义1 在 m n 矩阵 A中任取k行与 k 列(k m, k n) , 位于这些行列交叉处k2 个元素不改变它们在A中 所处的位置次序而得的k 阶行列式称为矩阵 A 的 k 阶子式.
下面的定理对此作出肯定回答.
定理 1:初等变换不改变矩阵的
秩
(即若 A B , 则 R( A) R(B) .)
初等变换求矩阵秩的方法:
把矩阵用初等变换变成为行阶梯形矩阵,
行阶梯形矩阵中非零行的行数就是矩阵的秩.
3 2 0 5 0
例2
设
A
3 2 1
2 0 6
3 1 4
6 5 1
413求矩阵 A的秩 .
1 0 0
1 0 0
1 1 0
0 03
B1
可见用初等行变换可把矩阵B化为行阶梯形矩阵 B1
由前例可知,对于一般的矩阵当行数与列数较高 时,按定义求秩是很麻烦的. 对于行阶梯形矩阵, 它的秩就等于非零行的行数。
因此可用初等变换把矩阵B化为行阶梯形矩阵.
可用初等变换把矩阵B化为行阶梯形矩阵 B1
但两个等价矩阵的秩是否相等?
定义 3 下面三种变换称为矩阵的初等行变换:
()对调两行(对调 i , j两行记作 ri rj ) ; ( )以数 k o 乘某一行中所有元素(第 i 行乘 k ,记
矩阵秩的计算问题经过初等变换后
注意:
(1) 对于 AT,显然有 r( AT ) r( A).
(2) r( Amn ) min( m, n). (3) 若A有一个k阶子式不为零,则 r( A) k.
(4) 若A的所有k 1阶子式均为零,则r( A) k.
1 6 4 1 4 r34(1) 0 4 3 1 1
0 0 0 4 8 0 0 0 0 0
(1)由阶梯形矩阵有三个非零行可知
r( A) 3.
(2) 再求 A的一个最高阶子式 .
取第一,二,三行及一,二,四列得
1 6 1 4 1 0对应矩阵A 4
1 6 4 1 4 0 4 3 1 1 0 12 9 7 11 0 16 12 8 12
r13 ( 2) r14 ( 3)
1 6 4 1 4 0 4 3 1 1 0 12 9 7 11 0 16 12 8 12
2 0 1 2 0 5 0 1 5 2 1 5
0.
rA 2.
另解
对矩阵
A
1 0
3 2
2 1
2 3
做初等变换,
2 0 1 5
得
1 0
3 2 2 1 3 2 2 2 1 3 ~ 0 2 1 3,
2 0 1 5 0 0 0 0
显然,非零行的行数为2,
rA 2.
问题:
此方法简单!
这种方法到底对不对?若对,有没有理论根据?
二、矩阵秩的计算
定义3 称满足以下两个条件的 m n 矩阵为 行阶梯形矩阵:
(1) 每行的非零元(如果有的话)前的零元 个数比其上一行这种零元个数多;
矩阵的秩的性质以及矩阵运算和矩阵的秩的关系
高等代数第二次大作业1120133839 周碧莹30011303班矩阵的秩的性质1.阶梯型矩阵J的行秩和列秩相等,它们都等于J的非零行的数目;并且J的主元所在的列构成列向量的一个极大线性无关组。
2.矩阵的初等行变换不改变矩阵的行秩。
证明:设矩阵A的行向量组是a1,…,as.设A经过1型初等行变换变成矩阵B,则B的行向量组是a1,…,ai,kai+aj,…,as.显然a1,…,ai,kai+aj,…,as可以由a1,…,as线性表处。
由于aj=1*(kai+aj)-kai,因此a1,…,as可以由a 1,…,ai,kai+aj,…,as线性表处。
于是它们等价。
而等价的向量组由相同的秩,因此A的行秩等于B的行秩。
同理可证2和3型初等行变换使所得矩阵的行向量组与原矩阵的行向量组等价,从而不改变矩阵的行秩。
3.矩阵的初等行变换不改变矩阵的列向量组的线性相关性。
证明:一是为什么初等行变换不改变列向量的线性相关性?二是列向量进行初等行变换后,为什么可以根据行最简形矩阵写出不属于极大无关组的向量用极大无关组表示的表示式?第一个问题:设α1,α2,…,αn是n个m维列向量,则它们的线性相关性等价于线性方程组AX=0(其中A=(α1,α2,…,αn),X=(x1,x2,…,xn)T)是否有非零解,即α1,α2,…,αn线性相关等价于AX=0有非零解,α1,α2,…,αn 线性无关等价于AX=0只有零解。
而对A进行三种行初等变换分别相当于对线性方程组中的方程进行:两个方程交换位置,对一个方程乘一个非零常数,将一个方程的常数倍对应加到另一个方程上。
显然进行三种变换后所得方程组与原方程组同解,若设所得方程组为BX=0,则B即为对A进行行初等变换后所得矩阵。
B 的列向量的线性相关性与BX=0是否有解等价,也就是与AX=0是否有解等价,即与A的列向量的线性相关性等价!第二个问题以一个具体例子来说明。
例:设矩阵,求A的列向量组的一个极大无关组,并把不属于极大无关组的列向量用极大无关组线性表示。
矩阵的秩与矩阵的初等变换
(1)Dr中不含第i行; (2)Dr中同时含第i行和第j行; (3)Dr中含第i行但不含第j行;
湘潭大学数学与计算科学学院 王文强
11 上一页 下一页 返 回
对 (1),(2) 两种情形,显然B 中与 Dr 对应的 子式 Dr Dr 0,故 R(B) r.
对情形 (3),
Dr ri rj ri rj Dr Dˆ r ,
m
n
矩阵
A的
k
阶子式共有
Ck m
Ck n
个.
湘潭大学数学与计算科学学院 王文强
2 上一页 下一页 返 回
定义5.2 矩阵 A 中不为零子式的最高阶数称为 矩阵 A 的秩,记作 R( A) 或r( A). 规定:零矩阵的秩等于零,即R(o) 0. 由定义5.2可得下列结论; 1、 R( AT ) R( A).
湘潭大学数学与计算科学学院 王文强
10 上一页 下一页 返 回
当A ri rj B或 A ri B时, 在 B 中总能找到与Dr 相对应的子式 Dr ,.
由于 Dr Dr 或 Dr Dr 或 Dr Dr ,
因此 Dr 0,从而 R(B) r. 当A ri rj B时,分三种情况讨论:
7 上一页 下一页 返 回
二、矩阵的初等变换
定义12 下面三种变换称为矩阵的初等行变换:
1 互换两行(互换i, j 两行,记作ri rj);
2以数 0 乘以某一行
(第 i 行乘 ,记作 ri)
3 把某一行各元素乘 后加到另一行对应
的元素上去(第 j 行乘 加到第 i 行上去, 记作ri rj).
R( A) R(B). 综上,若 A 经初等变换变为 B,则 R( A) R(B).
证毕
矩阵的初等变换及应用的总结
矩阵的初等变换及应用内容摘要:矩阵是线性代数的重要研究对象。
矩阵初等变换是线性代数中一种重要的计算工具,利用矩阵初等变换,可以求行列式的值,求解线性方程组,求矩阵的秩,确定向量组向量间的线性关系。
一矩阵的概念定义:由于m×n个数aij(i=1,2,….,m;j=1,2,….,n)排成的m行n列的数表,称为m行n列,简称m×n矩阵二矩阵初等变换的概念定义:矩阵的初等行变换与初等列变换,统称为初等变换1.初等行变换矩阵的下列三种变换称为矩阵的初等行变换:(1) 交换矩阵的两行(交换两行,记作);(2) 以一个非零的数乘矩阵的某一行(第行乘数,记作);(3) 把矩阵的某一行的倍加到另一行(第行乘加到行,记为).1.初等列变换把上述中“行”变为“列”即得矩阵的初等列变换3 ,如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A 与矩阵B等价,记作A~B矩阵之间的等价关系具有下列基本性质:(1) 反身性;(2) 对称性若,则;(3) 传递性若,,则.三矩阵初等变换的应用1.利用初等变换化矩阵为标准形定理:任意一个m×n矩阵A,总可以经过初等变换把它化为标准形2.利用初等变换求逆矩阵求n阶方阵的逆矩阵:即对n×2n矩阵(A¦E)施行初等行变换,当把左边的方阵A变成单位矩阵E的同时,右边的单位矩阵也就变成了方阵A的逆矩阵A^(-1)即(A|E)经过初等变换得到(E|A^(-1))这种计算格式也可以用来判断A是否可逆,当我们将A化为行阶梯形矩阵时,若其中的非零行的个数等于n时,则A可逆,否则A不可逆。
设矩阵可逆,则求解矩阵方程等价于求矩阵,为此,可采用类似初等行变换求矩阵的逆的方法,构造矩阵,对其施以初等行变换将矩阵化为单位矩阵,则上述初等行变换同时也将其中的单位矩阵化为,即.这样就给出了用初等行变换求解矩阵方程的方法.同理, 求解矩阵方程等价于计算矩阵亦可利用初等列变换求矩阵. 即.3.利用矩阵初等变换求矩阵的秩矩阵的秩的概念是讨论向量组的线性相关性、深入研究线性方程组等问题的重要工具. 从上节已看到,矩阵可经初等行变换化为行阶梯形矩阵,且行阶梯形矩阵所含非零行的行数是唯一确定的, 这个数实质上就是矩阵的“秩”,鉴于这个数的唯一性尚未证明,在本节中,我们首先利用行列式来定义矩阵的秩,然后给出利用初等变换求矩阵的秩的方法.定理:矩阵的初等变换不改变矩阵的秩,即若A~B则R(A)=R(B)为求矩阵的秩,只要把矩阵用初等行变换变成阶梯矩阵解体矩阵中非零行的行数即是该矩阵的秩利用矩阵值得概念,能够讨论线性方程组有解的条件,然后通过研究向量组的线性相关性,向量组的秩等重要概念,讨论线性方程组的结构。
求矩阵的秩有下列基本方法(1)用初等变换.即用矩阵的初等行(.
(2) XA B
~
A 初等列变换
B
E BA1
X
BA1
或者
初等行变换
~ ( AT BT)
( E (AT )1BT )
X T (AT )1BT X BA1
例 3.设
A
103
0 1 1
104 , 且AX
A
2 X , 求矩阵X .
解:AX A 2X (A - 2E)X A
X
(A - 2E)1 A
1 1 1 1 1 0 1 0
A~
1
1 3
2 1 2
1 1 3
2 11
~
0
0 0
1 0 0
0 0 0
0
0 1
从而得方程组的通解为
x1 1
x
x2 x3 x4
k
0 1 0
(k为任意常数)
当a 2 时,把系数矩阵A化为行最简矩阵为
A~
1
1
1 3
1 2 1 2
1 1 2 3
1 2
1 a 3
2 a1
~
0 0 0
1 2 5
0 a 1
0
1 a23
1 1 1 1
~
0
0 0
1 0 0
0 a 1
0
1
a
0
2
当a 1 or a 2 时,R( A) 4,此时方程组
有非零解,可仿照解法一求出它的通解。
四、解矩阵方程的初等变换法
(1) AX B
初等行变换
~ (A B)
(E A1B) X A1B
1 1 1 1 1 1 1 1
解一:A
1 1
矩阵的初等行变换与矩阵的秩
矩阵的初等行变换与矩阵的秩一、矩阵的初等行变换矩阵的初等行变换是指对矩阵进行下列三种变换:1.互换矩阵两行的位置(对换变换);2.用非0常数遍乘矩阵的某一行(倍乘变换);3.将矩阵的某一行遍乘一个常数k加到另一行(倍加变换)上。
二、阶梯形矩阵满足下列条件的矩阵称为阶梯形矩阵1.各个非0行(元素不全为0的元素)的第一个非0元素的列标随着行标的递增而严格增大;2.如果矩阵有0行,0行在矩阵的最下方。
例如重要定理一任意一个矩阵经过若干次初等行变换可以化成阶梯形矩阵。
例题注意:一个矩阵的阶梯形矩阵不唯一例如:三、矩阵的秩矩阵A的阶梯形矩阵非0行的行数称为矩阵A的秩,记作秩(A)或r(A) 例如下列矩阵的秩分别为2、3、4⎪⎪⎪⎭⎫⎝⎛--000049201321、⎪⎪⎪⎭⎫ ⎝⎛--100980201、⎪⎪⎪⎪⎪⎭⎫⎝⎛---50000301000783013002例题 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛----=35222232111201107033A 秩及秩(TA ) 解⎪⎪⎪⎪⎪⎭⎫⎝⎛----=35222232111201107033A ()⎪⎪⎪⎪⎪⎭⎫⎝⎛----−−→−35222232110703312011,②① ⎪⎪⎪⎪⎪⎭⎫⎝⎛--−−−−→−-+-+-+11200112003100012011)2()1()3(①④①③①② ⎪⎪⎪⎪⎪⎭⎫⎝⎛--−−−→−-+00000112003100012011)1(③④()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--−−→−00000310001120012011,③② 所以,秩(A)=3⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=32105327220021132113A T⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛−−−−→−-⨯++32101101220000002113)2(①④①②⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛−−→−00002113220032101101,,⑤②④①⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--−−−−→−-⨯+00001210220032101101)3(①④⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--−−−−→−-⨯+00004400220032101101)1(②④⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛−−−→−⨯+000000002200321011012③④所以,()3AT=秩可以证明:对于任意矩阵A ,()()TA A 秩秩=;矩阵的秩是唯一的。
第三节矩阵的秩和初等变换
根据定义不难证明,矩阵的等价满足下述性质: a) 反身性:A~A; b) 对称性:若A~B,则B~A; c)传递性:若A~B,而B~C,则A~C。
定理1 如果A~B,则R(A)=R(B)。 即初等变换不改变矩阵的秩。
证明思想:只需证明任何一种初等
变换对行列 式是否为0没有影响即可。
如果我们经过初等变换将矩阵A变成 阶梯型矩阵B,得到矩阵B的秩,则由定 理1知,矩阵A的秩就等于矩阵B的秩。
例: 求R(A),其中
解:
⎡1 0 −1 2⎤ A = ⎢⎢1 −1 2 3⎥⎥
⎢⎣2 −2 4 6⎥⎦
⎡1 A= ⎢⎢1
0 −1
−1 2
2⎤ 3⎥⎥
⎯r⎯r32−−2r1⎯r1→⎡⎢⎢10
解:
可以验证,A中有一个二阶子式不为0,而 其所有的3阶子式全为0,故R(A)=2。
对于B,显然R(B)=3。
上例中的B这种类型的矩阵称为行阶梯型矩 阵。其特点为:
1.元素全为零的行(如果有的话),位于矩阵的 最下面;
2.自上而下各行中的第一个非零元素左边的零的 个数,随着行数的增加而增加。
以后,我们一般都是用初等变换的方法把矩阵化
为这种行阶梯型矩阵,再求秩。
矩阵的初等变换(Elementary operation)
定义3 下面的三种变换称为矩阵的初等行变换:
(i). 对调两行(对调i、j行,记作ri↔rj) (ii). 以非0数乘以某一行的所有元素;
(第i行乘k,记作kri) (iii).把某一行所有元素的k倍加到另一行对应的元素上
0 −1
−1 3
2⎤ 1⎥⎥
⎢⎣2 −2 4 6⎥⎦
矩阵初等行变换矩阵秩
矩阵的初等行变换与矩阵的秩一、矩阵的初等行变换矩阵的初等行变换是指对矩阵进行下列三种变换:1.互换矩阵两行的位置(对换变换);2.用非0常数遍乘矩阵的某一行(倍乘变换);3.将矩阵的某一行遍乘一个常数k加到另一行(倍加变换)上。
二、阶梯形矩阵满足下列条件的矩阵称为阶梯形矩阵1.各个非0行(元素不全为0的元素)的第一个非0元素的列标随着行标的递增而严格增大;2.如果矩阵有0行,0行在矩阵的最下方。
例如重要定理一任意一个矩阵经过若干次初等行变换可以化成阶梯形矩阵。
例题注意:一个矩阵的阶梯形矩阵不唯一例如:三、矩阵的秩矩阵A的阶梯形矩阵非0行的行数称为矩阵A的秩,记作秩(A)或r(A) 例如下列矩阵的秩分别为2、3、4⎪⎪⎪⎭⎫⎝⎛--000049201321、⎪⎪⎪⎭⎫ ⎝⎛--100980201、⎪⎪⎪⎪⎪⎭⎫⎝⎛---50000301000783013002例题 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛----=35222232111201107033A 秩及秩(TA ) 解⎪⎪⎪⎪⎪⎭⎫⎝⎛----=35222232111201107033A ()⎪⎪⎪⎪⎪⎭⎫⎝⎛----−−→−35222232110703312011,②① ⎪⎪⎪⎪⎪⎭⎫⎝⎛--−−−−→−-+-+-+11200112003100012011)2()1()3(①④①③①② ⎪⎪⎪⎪⎪⎭⎫⎝⎛--−−−→−-+00000112003100012011)1(③④()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--−−→−00000310001120012011,③② 所以,秩(A)=3⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=32105327220021132113A T⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛−−−−→−-⨯++32101101220000002113)2(①④①②⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛−−→−00002113220032101101,,⑤②④①⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--−−−−→−-⨯+00001210220032101101)3(①④⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--−−−−→−-⨯+00004400220032101101)1(②④⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛−−−→−⨯+000000002200321011012③④所以,()3AT=秩可以证明:对于任意矩阵A ,()()TA A 秩秩=;矩阵的秩是唯一的。
第六节 利用初等变换求矩阵的秩
其中 β i = α i + kα j .
∴ B 可由 A 线性表示 . Q α i = β i − kα j ,
∴ A 可由 B 线性表示 .
∴ A 与 B 等价 .
∴ 行向量组等价 则行秩相等 行向量组等价, 则行秩相等.
{ 从而行秩 = 列秩 = R(A) = R(B) }.
证毕. 证毕
对于任何矩阵Am×n ,总可经过有限次初等行 变换把他变为行阶梯形和行最简形.
12
返回
初等变换求矩阵秩的方法: 初等变换求矩阵秩的方法:
把矩阵用初等行变换变成为行阶梯形矩阵, 把矩阵用初等行变换变成为行阶梯形矩阵, 行阶梯形矩阵中非零行的行数就是矩阵的秩. 行阶梯形矩阵中非零行的行数就是矩阵的秩
例如: 例如
返回
1 −2 2 3
−2 −1 0 2 4 2 6 −6 . −1 0 2 3 3 3 3 4 4×5 ×
解: A
r2 + 2r1 r3 − 2r1
r4 − 3r1
1 − 2 − 1 0 0 0 2 0 3 0 9 6 1 − 2 − 1 r2 ↔ r3 0 3 2 r3 ↔ r4 0 9 6 0 0 0
1 3 − 2 2 1 3 − 2 2 ∴ 0 2 − 1 3 ~ 0 2 − 1 3 , − 2 0 1 5 0 0 0 0
显然,非零行的行数为 , 显然,非零行的行数为2,
∴ R ( A ) = 2.
14
此方法简单! 此方法简单!
20
返回
L L L L L L L
a1 n L a in L a jn L a mn m × n
矩阵秩常用公式和结论证明
矩阵秩常用公式和结论证明
1. 矩阵秩有以下性质:
(1)矩阵A的秩等于其列向量组的极大线性无关组中向量的
个数,也等于其行向量组的极大线性无关组中向量的个数。
(2)矩阵A的秩等于其非零子式(行列式不为0的子矩阵)
的最高阶数。
(3)如果R(A)=r,则A可以表示为r个秩为1的矩阵
之和,即A=A1+A2+…+Ar。
其中,A1、A2、…、Ar都是秩为1的矩阵。
2. 计算矩阵秩的常用公式
(1)初等变换法:对矩阵进行初等变换,使其化为阶梯形矩阵,阶梯上非零行数就是矩阵的秩。
(2)行列式法:计算矩阵的所有阶数的子式的行列式,其中
最高阶数的非零子式的阶数就是矩阵的秩。
(3)矩阵秩的性质法:通过矩阵秩的性质使用相关公式求解。
(4)Gauss-Jordan消元法:通过高斯消元及矩阵初等变换的
方法将矩阵化为行最简形矩阵,其行数即为矩阵的秩。
以上是矩阵秩常用公式和结论的介绍,希望能对您有所帮助。
初等变换内容总结
初等变换内容总结初等变换是线性代数中的重要概念,它是指通过一系列基本操作来改变矩阵的形态。
在本文中,我们将以人类的视角来描述初等变换的内容,并探讨其在实际问题中的应用。
一、初等变换的概念及基本操作初等变换是指通过三种基本操作对矩阵进行变换,这三种基本操作分别是:交换两行(列)的位置、某一行(列)乘以一个非零常数、某一行(列)的倍数加到另一行(列)。
这些操作可以改变矩阵的行列式、秩以及解的个数。
二、初等变换的应用初等变换在线性方程组的求解、矩阵的求逆以及线性相关性的判断等问题中都有广泛的应用。
下面我们将分别介绍这些应用。
1. 线性方程组的求解通过初等变换,我们可以将线性方程组转化为行阶梯形或简化行阶梯形矩阵,从而求解方程组的解。
通过交换行、乘以非零常数、行的倍数加到另一行等操作,我们可以将方程组转化为更加简单的形式,使得解的求解更加方便。
2. 矩阵的求逆通过初等变换,我们可以将一个方阵转化为单位矩阵,从而求得其逆矩阵。
逆矩阵在计算机图形学、电路分析等领域中有着重要的应用。
3. 线性相关性的判断通过初等变换,我们可以判断向量组的线性相关性。
通过将向量组转化为行阶梯形或简化行阶梯形矩阵,我们可以得到向量组的秩,从而判断其线性相关性。
三、初等变换的实例分析为了更好地理解初等变换的应用,我们将通过一个实际问题进行分析。
假设有一家电子公司生产A、B、C三种产品,每天生产的数量分别为a、b、c。
已知每个产品的销售价格分别为x、y、z,该公司每天的总收入为ax+by+cz。
现在,该公司决定调整产品的生产数量,以提高总收入。
通过初等变换,我们可以得到以下结论:- 如果将A产品的生产数量增加一个单位,总收入将增加x个单位。
- 如果将B产品的生产数量增加一个单位,总收入将增加y个单位。
- 如果将C产品的生产数量增加一个单位,总收入将增加z个单位。
基于以上分析,我们可以优化产品的生产方案,使得总收入最大化。
通过初等变换,我们可以得到一个线性规划问题,进一步求解出最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数 第三章
5
第七讲:初等变换应用与矩阵的秩
( 3 )用初等变换求逆矩阵 对分块矩阵 ( A, E )施 行 一 系 列 初 等 行 变 , 换即 左 乘 一 可逆矩阵 A1由 结 论 1: ( A, E ) ~ A1 ( A, E ) ( A1 A, A1 E ) ( E , A1 )
对于方程AX B, 有X A1 B.因此 : 用初等行变换表示就是: ( A, b) ~ A1 ( A, b) ( E , A1b) ( E , X )
r
注意另外一类同系数矩 阵方程组 : AX 1 b1 , AX 2 b2 , AX k bk .对应的解为: X 1 A1b1 , X 2 A1b2 , X k A1bk .
线性代数 第三章
3
第六讲:初等变换与初等矩阵
2)必要性:设A可逆,因任何矩阵经初等变换均可变成初等 矩阵,设其标准形矩阵为 F,则 F 经有限次初等变换可以变成 A ,由定理1,即存在有限个初等矩阵
P1 P2 Pl , 使得: A P1 P2 Ps FPs1 Pl
因A可逆,初等矩阵可逆, P1 P2 Pl 可逆,所以 F可逆
线性代数 第三章
8
第七讲:初等变换应用与矩阵的秩
令 : X ( X 1 , X 2 ,, X k ), B (b1 , b2 ,, bk ), 则得k个方程组的组合方程组: AX B, 其解为 : X ( X 1 , X 2 ,, X k ) A1 B A1 (b1 , b2 ,, bk ) ( A1b1 , A1b2 ,, A1bk ).用初等行变换表示即:
1 0 0 1 3 0 1 0 2 0 0 1 1
7
第七讲:初等变换应用与矩阵的秩
1 3 2 3 5 1 所以 A 3 . 2 2 1 1 1 (5)用初等变换求解方程组 我们采用利用初等变换求逆矩阵同样的办法求解线性方 程组AX=b,这里,假定A是方阵且可逆
Er 0 设F 0 0 , 其 中r n; 若r n, 则 F 0, 与F可 逆 矛 盾 ; 若 r n, 则F E, 即 :A P1 P2 Pl
线性代数 第三章
4
第七讲:初等变换应用与矩阵的秩
2.逆矩阵表示初等变换的结论与应用
( 1 )结论 1:A ~ B的 充 要 条 件 是 存 在 可 矩 逆 阵P , 使 得
1 2 3 1 0 0 r 2r 1 2 3 1 2 1 A | E 2 2 1 0 1 0 0 2 5 2 r 3 r 1 3 4 3 0 0 1 3 0 2 6 3
1 0 2 1 1 r3 r2 0 2 5 2 1 r1 r2 0 0 1 1 1
内容概括
转置变换乘逆阵恒等加上部分整体、合 并最小的不等式组成了秩的性质。从方 程组的最简型开始,定义同解方程组的 自由变量的值即得解的矩阵向量形式
1
线性代数 第三章
第七讲:初等变换应用与矩阵的秩 本次课讲第三章第二节的应用,并讲授 第三章第三节第四节, 下次上课讲第三章第四节和第四章第一 节。 下次上课前完成作业19页到21页,交作 业19页到20页
0 r 2r 0 1 3 1 r 5r
2
3
1 0 0 1 3 2 0 2 0 3 6 5 0 0 1 1 1 1
2 5 3 2 1 1 3
1 0 0 1 3 2 r2 2 0 2 0 3 6 5 0 0 1 1 1 1 r3 1 线性代数 第三章
r
同样讨论列的情况:可得到如下结论:
A E
初等列变换
E A 1
线性代数 第三章
6
第七讲:初等变换应用与矩阵的秩
例1 设
解
1 A 2 3 2 2 4 3 1 , 求 A 1 . 3
0 0 1 0 0 1
r B PA, 或 可 叙 述 成 A ~ PA c 同理: A ~ B的 充 分 必 要 条 件 是 存 可 在逆 的 Q, r
使 得AQ B, ( A ~ AQ )
c
( 2 )结论 2: 由 结 论 1及 其 推 论 , 易 得 如 下 论 结: m n矩 阵A ~ B的 充 分 必 要 条 件 是 , 在 存m阶 可 逆 矩 阵P及n阶 可 逆 矩 阵 Q, 使 得 PAQ B
第七讲:初等变换应用与矩阵的秩
班级: 时间: 年 月 日 ;星期
教学目的
理解秩的性质,掌握、记住并会应用秩 的等式与不等式,掌握方程组秩的解法 定理。 秩的不等式及其应用 1 页 T6-10,其 中交 P19-20
重点 难点 媒体
讲授内容主 转置、变换均恒等,还有不等式,方程 线 组秩的判定定理,定理的证明、过程及 其解法
证: 1)充分性: 若存在有限个初等矩阵 P1 P2 Pl 使得:A P1 P2 Pl .
因初等矩阵皆可逆,则 : Pl 1 P21 P11 A Pl 1 P21 P11 P1 P2 Pl E
由逆矩阵定义,即得 A1 Pl 1 P21 P11
线性代数 第三章
2
第六讲:初等变换与初等矩阵
一、初等变换应用
推论:对Amn 施行k次初等行(列)变换, 相当于在A的 左(右)边乘上相当于 k个初等矩阵之积P P1 P2 Pk
1.任一可逆矩阵均是k个初等矩阵之积 定理:方阵 A 可逆的充要条件是存在有限个初等矩阵
P1 P2 Pl
使得:A P1 P2 Pl .