第三章 控制系统的时域分析方法

合集下载

控制工程基础第三章

控制工程基础第三章
特征方程: D(s)=a0sn+a1sn-1+…+an-1s+an=0
特征根: 特征方程的根,即D(s)=0的解。
时域分析有关概念----主要概念
3.系统的零点、极点和零极点分布图 Xo(s) = M(s)
闭环零点: 闭环传递函数中M(s)=0的解
Xi (s) D(s)
闭环极点: 闭环传递函数中D(s)=0的解,等价特征根 开环零极点与开环传递函数相对应
f1
稳定性分析 s
s s
n n n
系12 统的特aab征011 方程aba为-223--D -代( s ) a数b a34a 5(0 劳s n 斯a a1 as )76n 稳 1 定 性 a b判n b 121 s 据 a aan 11a a240 aa11aa00aa35
4(s 2) G(s) s2 s
稳定
临界稳定
例 单位反馈系统的开环传递函数如下,判断系统是否稳定?
G(s) s 5 (s 2)
不稳定
稳定性分析----代数(劳斯)稳定性判据
系统的特征方程为 D ( s ) a 0 s n a 1 s n 1 a n 1 s a n 0
时域分析有关概念----典型输入信号
1.阶跃(位置)信号
a,t 0 x(t) 0,t 0
a为常数,a =1时为单位 阶跃信号,记为1(t)。
2.斜坡(速度)信号
at,t 0
x(t)


0,t

0
a为常数,a =1时为单位 斜坡信号,记为t·1(t)。
时域分析有关概念----典型输入信号
3.抛物线(加速度)信号
at2,t 0 x(t) 0, t 0

第3章控制系统的时域分析法[3.1-3.3]

第3章控制系统的时域分析法[3.1-3.3]

第3章 控制系统的时域分析法 章
3.2.2 一阶系统的单位阶跃响应
1 R(s) = s
1 1 C (s) = Φ(s) R(s) = Ts + 1 s
1 1 1 1 1 1 c(t ) = L =L Ts + 1 s s s+ 1 T
稳态分量 瞬态分量
c (t ) = 1 e
峰值时间t p:c ( t ) 达到第一个峰值的时间
大连民族学院机电信息工程学院
自动控制原理
第3章 控制系统的时域分析法 章
动态性能指标
最大超调量 σ %: c max c ( ∞ ) σ% = × 100% c (∞ )
调 节 时 间 t s: 响 应 达 到 允 许 误 差 并 维 持 在 此 范 围 内 所 需 的 时 间 . = 2% 或 = 5%
特点: 特点:
可用时间常数T去度量系统输出量的数值.如当 可用时间常数 去度量系统输出量的数值.如当t=T时, 去度量系统输出量的数值 时 h(T)=0.632;而当 0.632; 分别等于终值的86.5%, 0.632 而当t=2T,3T和4T时, h(.) 分别等于终值的 , 和 时 %, 95%和98.2%.根据这一特点,可用实验方法测定一阶系统的时间常 %.根据这一特点 % %.根据这一特点, 或判定系统是否属于一阶系统. 数,或判定系统是否属于一阶系统.
大连民族学院机电信息工程学院
自动控制原理
第3章 控制系统的时域分析法 章
3.2.1 一阶系统的数学模型
dc (t ) RC + c (t ) = r (t ) dt
d c (t ) T + c (t ) = r (t ) dt dt
C ( s) 1 G ( s) = = R( s ) 1 + Ts

自动控制原理第3章

自动控制原理第3章
间常数“T”。
12
一阶系统分析
3、单位抛物线响应
y(t)的特点:
y(t)1t2T tT2(1eT t) t0 2
输入与输出之间存在误差为无穷大,这意味着一阶系
统是不能跟踪单位抛物线输入信号的。
4、单位脉冲响应
t
y(t)TeT t0
当 t时, y()0
13
一阶系统分析
对一阶系统典型输入响应的两点说明: 1、输入信号为单位抛物线信号时,输出无法跟踪输入 2、三种响应之间的关系:
38
稳定性分析及代数判据
劳斯判据:
系统稳定的必要条件:特征方程所有系数均为正。
系统稳定的充分条件:特征方程所有系数组成劳斯表,其第 一列元素必须为正。
具体步骤:
1、先求出系统的特征方程
a n S n a n 1 S n 1 a 1 S a n0
注意:
(1) s要降阶排列 (2) 所有系数必须大于0
阶跃响应:
p 2 j1 2 n
Y sss22 n2 n s n2A s1s2 A 2 2 s n s A 3 n
yt 11 12e n t sin 1 2n t
y(t)
ξ=0.3
1
ξ=0.5
20
0
t
二阶系统分析
3、临界阻尼( =1 )
特征根
p1,2 n
阶跃响应:
yt 1 e n t1 n t
42
稳定性分析及代数判据
解:系统闭环特征方程为 s36s25sK0
列劳斯表
s3
1
5
s2
6
K
s 30 K 0
6
s0
K
稳定必须满足
30 K 0 6

自动控制原理-第3章-时域分析法

自动控制原理-第3章-时域分析法
系统响应达到峰值所需要的时间。
调节时间
系统响应从峰值回到稳态值所需的时间。
振荡频率
系统阻尼振荡的频率,反映系统的动态性能。
系统的阶跃响应与脉冲响应
阶跃响应
系统对阶跃输入信号的响应,反映系 统的动态性能和稳态性能。
脉冲响应
系统对脉冲输入信号的响应,用于衡 量系统的冲激响应能力和动态性能。
03
一阶系统时域分析
01
单位阶跃响应是指系统在单位阶跃函数作为输入时的
输出响应。
计算方法
02 通过将单位阶跃函数作为输入,代入一阶系统的传递
函数中,求出系统的输出。
特点
03
一阶系统的单位阶跃响应是等值振荡的,其最大值为1,
达到最大值的时间为T,且在时间T后逐渐趋于0。
一阶系统的单位脉冲响应
定义
单位脉冲响应是指系统在单 位脉冲函数作为输入时的输
无法揭示系统结构特性
时域分析法主要关注系统的动态行为和响应,难以揭示系统的结构特 性和稳定性。
对初值条件敏感
时域分析法的结果对系统的初值条件较为敏感,初值条件的微小变化 可能导致计算结果的较大偏差。
感谢您的观看
THANKS
计算简便
时域分析法通常采用数值积分方法进 行计算,计算过程相对简单,易于实 现。
时域分析法的缺点
数值稳定性问题
对于某些系统,时域分析法可能存在数值稳定性问题,例如数值积分 方法的误差累积可能导致计算结果失真。
计算量大
对于高阶系统和复杂系统,时域分析法需要进行大量的数值积分计算, 计算量较大,效率较低。
自动控制原理-第3章-时域 分析法
目录
• 时域分析法概述 • 时域分析的基本概念 • 一阶系统时域分析 • 二阶系统时域分析 • 高阶系统时域分析 • 时域分析法的优缺点

控制系统时域分析法

控制系统时域分析法

(四)脉冲信号 单位脉冲信号旳体现式为: (3.4) 其图形如图3-4所示。是一宽度为e ,高度为1/e 旳矩形脉冲,当e 趋于零时就得理想旳单位脉冲信号(亦称d(t) 函数)。 (3.5)
3. 上升时间tr——它有几种定义: (1) 响应曲线从稳态值旳10%到90%所需时间; (2) 响应曲线从稳态值旳5%到95%所需时间; (3) 响应曲线从零开始至第一次到达稳态值所需旳时间。 一般对有振荡旳系统常用“(3)”,对无振荡旳系统常用“(1)”。4. 峰值时间tp——响应曲线到达第一种峰值所需旳时间,定义为峰值时间。 5. 调整时间ts——响应曲线从零开始到进入稳态值旳95%~105%(或98%~102%)误差带时所需要旳时间,定义为调整时间。
由式(3.9),很轻易找到系统输出值与时间常数T旳相应关系:从中能够看出,响应曲线在经过3T(5%误差)或4T(2%误差)旳时间后进入稳态。
t = T, c(1T) = 0.632 c(∞)t = 2T, c(2T) = 0.865c(∞)t = 3T, c(3T) = 0.950c(∞)t = 4T, c(4T) = 0.982c(∞)
下面分别对二阶系统在0< z <1,z =1,和z >1三种情况下旳阶跃响应进行讨论。 1. 0<z <1,称为欠阻尼情况 按式(3.14),系统传递函数可写为 GB(s)= (3.17) 它有一对共轭复数根 (3.18) 式中 称为有阻尼振荡频率。
假如系统响应曲线以初始速率继续增长,如图3-9中 旳c1(t)所示,T还可定义为c1(t)曲线到达稳态值所需要 旳时间。
(3.13)
所以
当t= T时,c1(t)曲线到达稳态值,即
所以
(二)二阶系统旳阶跃响应 在工程实际中,三阶或三阶以以上旳系统,常能够近似或降阶为二阶系统处理。

自动控制原理-第3章

自动控制原理-第3章

响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法

第三章 控制系统稳定性的时域分析

第三章 控制系统稳定性的时域分析
i 1 k 1 q r
(3-1)
式中
dk nk 1 2
式(3-1)表明 当系统特征方程的根都具有负实部时,则各瞬态分量 都是衰减的,且有 lim C (t ) 0 ,此时系统是稳定的。
t
如果特征根中有一个或一个以上具有正实部,则该根 对应的瞬态分量是发散的,此时有 lim C (t ) ,系统是 t 不稳定的。
t
该系统就是稳定的。 系统稳定的充要条件? 设系统的闭环传递函数为
bm s m bm1 s m1 ... b0 ( s ) a n s n a n 1 s n 1 ... a0
特征方程为 如果特征方程的所有根互不相同,且有q个实 数根 i 和r对共轭复数根 k nk j nk 1 2 ,则在 单位脉冲函数 (t ) 的作用下,系统输出量为
C ( s) K r (s Z j )
j 1 2 2 ( s P ) ( s 2 s nk ) i k nk i 1 k 1 q r m
an s n an1 s n1 ... a0 0
1
将上式用部分分式法展开并进行拉氏反变换得
C (t ) i e it e k nkt ( k cos dk t C k sin dk t )
e2
计算劳斯表的各系数
a n 1 a n 4 a n a n 5 b2 a n 1 a n1a n6 a n a n7 b3 a n1
……
a n1a n2 a n a n3 b1 a n1
bi
系数的计算一直进行到其余的b值全部等于零为止。 用同样的前两行系数交叉相乘的方法,可以计算c , d, … …e , f , g各行的系数。

控制系统的时域分析

控制系统的时域分析

第三章 控制系统的时域分析
⑵ 无阻尼 0 无阻尼时,二阶系统的特征根为两个共轭纯虚根,根 s1,2 jn 如图所示。
无阻尼状态下的闭环极点
故 h t 1 cos nt
n 2 1 1 s H s 2 s n 2 s s s 2 n 2
第三章 控制系统的时域分析
在建立了系统数学模型(动态微微分方程、传递函数) 的基础上,就可以分析评价系统的动静(暂、稳) 态特性,并进而寻求改进系统性能的途径。 经典控制理论中,时域分析法、根轨迹法、频率特性 法是分析控制系统特性常用的三种方法,其中的时 域分析法适用于低阶次(三阶以下)系统,比较准 确直观,又称直接分析法,可提供输出响应随时间 变化的全部信息。 时域分析法就是一种在给定输入条件下,分析系统输 出随时间变化的方法,通常用暂态响应性能指标来 衡量。
第三章 控制系统的时域分析
3.3 一阶系统的动态响应 用一阶微分方程描述的系统称为一阶系统。一些控制 元部件及简单系统如RC网络、液位控制系统都可用 一阶系统来描述。 一阶系统的传递函数为:

C s 1 G s R s Ts 1
其中 T称为一阶系统的时间常数,它是唯一表征一阶 系统特征的参数,所以一阶系统时间响应的性能指 标与 密切相关。一阶系统如果作为复杂系统中的一 个环节时称为惯性环节。
当初始条件为零时,则有
上式表明,对系统的斜坡响应求导得系统的阶跃响应,对系统的阶跃响 应求导即为系统的脉冲响应。对于线形定常数系统上述结论均成立, 即系统对输入信号导数(或积分)的响应,等于系统对输入信号响应 的导数(或积分)。
第三章 控制系统的时域分析
3.4 二阶系统的动态响应
为了兼顾控制系统的稳定性和快速性相矛盾 的瞬态指标,我们总希望系统阶跃响

第三章控制系统的时域分析法11

第三章控制系统的时域分析法11

Routh稳定判据
(4)Routh表中第一列元素都是正数 实部为正数的根的个数等于Routh表的第一列元素符号 改变的次数
由此可知e.g.1的(3)是稳定的。
Routh稳定判据的应用
e.g.3 某系统的特征方程为a3S3+a2S2+a1S+a0=0,判 断系统稳定的充要条件。
解: (1) 必要性:ai>0,i=0,1,2,3
3.1 引言
➢ 传递函数:建立的数学模型
➢ 性能分析:稳定性、动态性能和稳态性能分析
➢ 分析方法:时域分析法、根轨迹法、频域分析法
➢ 时域分析法:直接在时间域中对系统进行分析, 具有直观,准确的优点,可以提供系统时间响应 的全部信息
适用范围
拉氏变换
系统微分方程(t)
传递函数(S)
稳定性
拉氏变换
输入信号(t)
b2
b3
S n3
c1
c2
c3
S n4 d1
d2
d3
S2
e1
e2
S1
f1
S0
g1
Routh稳定判据
Routh计算表的前两行元素由多项式的系数所组成。 从第三行开始,各行元素按下列公式计算:
an an2
b1
an1 an3 an1
an1 an3
c1
b1 b2 b1
b1 b2
d1
c1 c2 c1
(2) 列Routh表如下 S 4 1 3 2 S3 3 3 S2 2 2 S1 0 S0 0 0
? (3)
Routh稳定判据的应用
Key:如果Routh表第一列元素出现0,则可以用一个小的
正数 代替它,然后继续计算其他元素

自动控制原理 第三章时域分析方法

自动控制原理 第三章时域分析方法
位脉冲响应,由此可以求得系统的传递函数。
总结与分析:
一阶系统对典型试验信号的响应 输入信号x(t) 输出响应y(t)
1 2 3
t
1() δ(t)
t T Te t / T
1 et /T
1 T
et /T
l 线性定常系统对输入信号导数的响应,可以通过 把系统对输入信号的响应进行微分求得; l 系统对输入信号积分的响应,可以通过把系统对原 输入信号的响应进行积分求得,而积分常数则由初 始条件决定。
3.1.1 控制系统的输入信号
● 在分析和设计控制系统时,需要有一个对各种
系统性能进行比较的基础。
● 从实际应用中抽象出一些典型的输入信号,它
们具有广泛的代表性和实际意义。
● 通过比较各类系统对这些典型试验信号的响
应来分析它们的性能。
常用的典型试验信号:
r(t) A t (a) 阶跃信号
r(t)
1 E
实验方法求取一阶系统的传递函数:
63.2% T
1 Ts 1
对一阶系统的单位阶跃响应曲线, 1、直接从达到稳态值的63.2%对应的时间求出一阶 系统的时间常数;
2、从t=0处的切线斜率求得系统的时间常数。 思考题:
若系统增益K不等于1,系统的稳态值应是多少?如何用实
验方法从响应曲线中求取K值?
3.2.2单位斜坡响应
2、系统的稳态响应为y(∞)=t-T,是一个与输入斜 坡函数斜率相同但时间迟后T的斜坡函数。
3、输出总是小于输入,误差逐步从零增大到时间 常数T并保持不变,因此T也是稳态误差。系统 的时间常数T越愈小,系统跟踪输入信号的稳态 误差也越小。
3.2.3 单位脉冲响应
1 R( s) L[ ( t )] 1 Y ( s) G ( s) R( s) G (s ) Ts 1 系统输出量的拉氏变换式就是系统的传递函数

控制系统的时域分析

控制系统的时域分析

L-1
1 s3
其中:A
-
[
T +T2 s2 s
1 s3( Ts
- T3 Ts + 1
1 ) s3 ]s=0
1
1 2
t2
- Tt + T 2 - T 2e -t/T
d
1
B ds [ s3(Ts 1 )
s3
]s=0
T
s1,2,3 0
C
1 {
( 3 1 )
d 31 ds 31
[
1 s3( Ts 1 )
=- 1 T
s(Ts
+
1)
(Ts
+
1)
p2
=
-
1 T
=
1
= -T
红河学院自动化系
T
自动控制原理
单位阶跃
慣性
拉氏反变换:
c(t) = L-1 C(s)
=
L-1
1 s
-
s
1 + 1/T
=
1
-
-t
eT
一阶系统没有超调,
c(t)
系统的动态性能指标为 调节时间:
ts = 3T (±5%)
单位阶跃响应曲线
一、时域分析法及其特点
时域分析法——控制系统在一定输入作用下,根 据输出量的时域表达式,分析系统的稳定性、瞬 态过程性能和稳态误差。 特点:
(1) 直接在时间域中对系统进行分析校正,直观、 准确; (2) 可以提供系统时间响应的全部信息; (3) 基于求解系统输出的解析解,比较烦琐。
红河学院自动化系
自动控制原理
二、常用的典型输入信号
红河学院自动化系
自动控制原理 三、线性系统时域性能指标 总要求

控制系统的时域分析方法

控制系统的时域分析方法

150
100
50
0
-50
-100
-150
-200
0
1
2
3
4
5
6
7
8
9
10
Tim e (s ec .)
Im p u ls e R e s p o n s e
From: U(1) 7
6
5
4
3
2
1
0
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
Tim e (s ec .)
2、二阶系统响应性能指标
<1> 上升时间 Tr
由曲线进一步知道: 1、阻尼比 越大,超调量越小,响应越平稳。
反之, 越小,超调量越大,振荡越强。 2、当取 =0.707左右时,Ts和%都相对较小,
故一般称 = 0.707为最佳阻尼比。 3、二阶系统的单位阶跃响应不存在稳态误差。
• 闭环极点坐标与阻尼比的关系
n d n
1 等阻尼线
2 cos 3 横坐标n 4 纵坐标d 5 距原点n
Accuracy
Ess
Transient Response Specification
3-1 典型的输入信号
• 系统的数学模型由本身的结构和参数决定; • 系统的输出由系统的数学模型、系统的初始
状态和系统的输入信号形式决定; • 典型的输入信号有:阶跃信号;斜坡信号;
等加速度信号;脉冲信号;正弦信号; • 典型输入信号的特点:数学表达简单,便于分
A m p litu d e To : Y (1 )
A m p litu d e To : Y (1 )

第 三 章 控制系统的时域分析

第 三 章 控制系统的时域分析

lim c(t) 0
t
反之,若特征根中有一个或多个根具有正实部 时,则暂态响应将随时间的推移而发散,即
lim c(t)
t
这样的系统就是不稳定的。 综上所述,系统稳定的充分必要条件是
系统特征根的实部均小于零,或系统的特征根 均在根平面的左半平面。
三 劳斯判据
设n阶系统的特征方程为 D(s)=a0sn+a1sn-1+…+an-1s+an =a0(s-p1)(s-p2)…(s-pn)=0
本章重点内容
●稳定性的概念、系统稳定的充要条件及稳 定判据
●稳态误差的定义和计算方法 ●控制系统时域性能指标 ●一阶系统和典型二阶系统的阶跃响应
3-1 控制系统的稳定性
一.稳定性的概念
c a
b
b
如小球平衡位置b点,受外界扰动作用,从b
点到 b点 ,外力作用去掉后,小球围绕b点
作几次反复振荡,最后又回到b点,这时小球 的运动是稳定的。
有系数均大于零。
五.系统参数对稳定性的影响
应用代数判据不仅可以判断系统的稳定性,还 可以用来分析系统参数对系统稳定性的影响。
例 系统结构图如图所示,试确定系统稳定时K的 取值范围。
解 系统的闭环传递函数
C(s)
K

R(s) s3 6s2 5s K
其特征方程式为 D(s) s3 6s2 5s K 0
特 征 根 s1,2 1 j2
设线性定常系统的输出信号c(t)对干扰信号n(t) 的闭环传递函数为
f
(s)

C(s) N (s)

K (s z1)(s z2 ) (s p1)(s p2 )

自动控制原理与系统第3章 自动控制系统的时域分析法

自动控制原理与系统第3章 自动控制系统的时域分析法

【例3-2】 求典型一阶系统的单位斜坡响应。 典型一阶系统惯性环节的微分方程为
T dc(T) c(t) r(t) dt
上式的拉氏式为 TsC(s) C(s) R(s)
由于为单位斜坡输入,即r(t)=t,因此,R(s) 1 , s2
代入上式有
TsC(s)

C(s)

1 s2
由上式有
【例3-1】 设典型一阶系统的微分方程为:
T dc(t(t) 为输入信号;c(t) 为输出信号;T称为间
常数,其初始条件为零。 解 1) 对微分方程两边进行拉氏变换有:
TsC(s)+C(s)=R(s)
由题意可知,系统的输入信号为单位阶跃信号,
即r(t)=1(t),则 R(s) 1 ,代入上式有:
(3 9)
由式(3-9)可画出如图3-3中ξ =1所示的曲线。此曲
4) 当ξ >1(过阻尼)时:
特征方程的根 s1,2 n n 2 1
是两个不相等的负实根。 过阻尼时的阶跃响应也为单调上升曲线。不过其上 升的斜率较临界阻尼更慢。 由以上的分析可见,典型二阶系统在不同的阻尼比 的情况下,它们的阶跃响应输出特性的差异是很大 的。若阻尼比过小,则系统的振荡加剧,超调量大 幅度增加;若阻尼比过大,则系统的响应过慢,又 大大增加了调整时间。因此,怎样选择适中的阻尼 比,以兼顾系统的稳定性和快速性,便成了研究自 动控制系统的一个重要的课题。
由上式可知,响应曲线在起点的斜率m为时间常数T
的倒数,T愈大,m愈小,上升过程愈慢。
② 过渡过程时间。由图2-3可见,在t经历T、2T、3T、 4T和5T的时间后,其响应的输出分别为稳态值的 63.2%、86.5%、95%、98.2%和99.3%。由此可见,对 典型一阶系统,它的过渡过程时间大约为(3~5)T, 到达稳态值的95%~99.3%。

自动控制原理 第3章时域分析

自动控制原理 第3章时域分析
该曲线的特点是:在t=0处曲线的斜率最大,其值为 1/T。若系统保持初始响应的变化率不变,则当t=T时输出 就能达到稳态值,而实际上只上升到稳态值的63.2%,经过 4T的时间,响应达到稳态值的98%。显然,时间常数T反映 了系统的响应速度。
16
1)暂态性能指标 tr=2.2T (按第二种定义) ts=4T (Δ=±2%) 2)稳态性能指标
ess
lim[r(t)
t
c(t)]
0
17
3.2.3 单位脉冲响应
对于单位脉冲输入r(t)=δ(t),R(s)=1,于是
C(s)
1 Ts 1
1 T
s
1 1
T
因此
(3-7)
g(t)
c(t)
1
t
eT
(t 0)
(3-8)
T
18
响应曲线如图3-5所示。该曲线在t=0时等于1/T,正好 与单位阶跃响应在t=0时的变化率相等,这表明单位脉冲响 应是单位阶跃响应的导数,而单位阶跃响应是单位脉冲响
3
3.1 控制系统的时域性能指标
评价一个系统的优劣,总是用一定的性能指标来衡量。
系统的时域性能指标是根据系统的时间响应来定义的。
控制系统的时间响应通常分为两部分:稳态响应和暂
态响应。如果以c(t)表示时间响应,那么其一般形式可写为
c(t)=css(t)+ct(t)
式中:css(t)为稳态响应;ct(t)为暂态响应。
(3-1)
4
稳态响应由稳态性能描述,而暂态响应由暂态性能描 述。因此,系统的性能指标由稳态性能指标和暂态性能指 标两部分组成。
5
3.1.1 暂态性能指标
控制系统常用的输入信号有脉冲函数、阶跃函数、斜 坡函数、抛物线函数以及正弦函数等。通常,系统的暂态 性能指标是根据阶跃响应曲线来定义的,如图3-1所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a6 a7 c43


s n 1
s n2

s n 3
c44

s n4

c45

s2 s1 s0
c1,n1 c1,n
c1,n1 an
c2,n1
例 3.2:设系统特征方程为 s 2s 3s 4s 5 0 ,判定系统的稳定性,并
4 3 2
确定系统右半复平面上特征根的个数。 解:列写劳斯表如下。
块 的 平 衡 位 置 , 现 在 假 设 系 统 的 初 始 条 为 y(0) y0 , y (0) v0 , F (t ) A sin t 。
0 y
k
F (t )
m
f
描述系统运动的微分方程为
my F (t ) fy ky
由此得到系统的传递函数为
Y ( s) 1 2 F ( s) ms fs k
2 4 2 1 1 1 0.5 2 1 2 0 1
1 1




1

0.5 1 1
0.5 2 0.5

0.5 1 1
s
0

0
0.5
1
劳斯表中第一列中的元素不全为正,有正到负以及负到正的两次符号的变化,故系统不稳定,有 2 个特征根在右半复平面。
二、典型输入信号 控制系统中常用的典型信号有单位阶跃函数、单位斜坡(速度)函数、单 位加速度(抛物线)函数、单位脉冲函数和正弦函数,典型信号作用下系统的 响应是对系统实际运行情况的一种近似和模拟。 三、典型响应 系统在零初始条件下的响应是最为基本的, 零初始条件下系统对典型输入 信号的响应称为典型响应。 脉冲响应、 阶跃响应、 斜坡响应是最为重要的三种响应过程, 分别用 k (t ) 、
C ( s) RC ( s) R( s) NC ( s) N ( s)
B1 ( s) B ( s) R( s ) 2 N ( s ) A( s) A( s)
分别为由参考输入到输出以及由扰动输入到输出的传递函数。式中
A(s) sn a1sn1 an1s an 为系统的特征多项式, n 为系统的阶次, A( s) 0 或 1 Gc (s)G0 (s) H (s) 0 为系统的特征方程, B1 ( s) 、 B2 (s) 为阶次 n 1 的 s 的多项式。
t
§3-2 控制系统的稳定性和代数判据
一、稳定性的定义 下图所示的凹凸面由位置 1 到位置 2 间的水平面,位置 3 处的凸台,位 置 4 处的凹坑,位置 5 处的凸台组成,凸台 5 略高于凸台 3,铁球与凹凸面 之间有一定的滚动摩擦。 下面通过对铁球的三种运动状态和三种平衡状态的 说明,来阐述运动稳定性的概念。
%
h(t p ) h() h( )
100%
控制系统的抗扰性能一般用脉冲扰动或阶跃扰动作用下系统的调节特性来考察。
c(t )
c() c() c()
c ( ) c()
cm
5%c()
0
ts
t
最大偏移量 cm :扰动作用下系统输出的最大波动量。
稳态偏移量 c() :扰动作用下的稳态波动量,即 c() c() c() 。 扰动调节时间 t s :扰动响应到达并保持在系统稳态输出的 5% 或 2% 误差带内所需 的最短时间。 五、稳态性能指标 控制系统的稳态指标是系统控制精度的一种度量。设控制系统希望输出与实际输出的 差为 e(t ) ,稳态误差为误差信号的稳态值,用 ess 表示, ess lim e(t ) e() 。若 ess 0 , 则系统称为无静差的,反之称为有静差的。
h(t ) 、 (t ) 表示,设系统的传递函数为 G ( s ) ,则三种响应依次有
k (t ) L1 G(s)
1 h(t ) L G( s) s
1
(t ) L1 G( s)

1 s2
四、动态性能指标
h(t )
h ( ) 0.9h()
若系统的初始条件不为零,则
C (s)
B ( s) B1 ( s) B (s) R( s ) 2 N (s) 3 A( s) A( s) A( s)
式 中 B3 (s) sn1c(0 ) sn2[a1c(0 ) c(0 )] an1c(0 ) an2c(0 ) c( n1) (0 ) 是 阶 次小于等于 n 1 的多项式。
外部冲击力
3
5
1
2
4
c(t )
c(t )
0
t
0
t
(a)
c(t ) c(t )
(b)
1
0
t
0
t
二、线性定常系统稳定的充分必要条件 闭环控制系统的典型框图如下图所示。
N (s)
R( s)
Gc ( s ) G0 ( s )
C (s)
H (s)
若系统的初始条件为零,则参考输入和扰动输入共同作用下系统的输出为
例 3.4:设系统特征方程为 s s 6s 5s 9s 4s 4 0 ,判定系统的稳定性,并确定系统
6 5 4 3 2
右半复平面上特征根的个数。 解:列写劳斯表如下。
s6 s5 s4 s3
1 1 1 0
6 5 5 0
9 4 4 4
s2 s1 s0
4 10 2.5 4 3.6 4
5%h()
0.1h()
0
td tr
tp
tr td
ts
t
延迟时间 t d :响应从零第一次到达稳态值 10% 所需的时间。 上升时间 t r :对于单调无超调响应,上升时间定义为从稳态值的 10% 上升到稳态值的 90% 的时间,对于有超调的振荡响应,上升时间则定义为响应从零开始第一次到达稳态值的时间。 峰值时间 t p :响应从零超过稳态值到达第一个峰值所需的时间。 调节时间 t s :响应到达并保持在规定误差带(终值的 5% 或 2% )内所需的最短时间。 超调量 % :响应曲线第一个峰值和稳态值之差与稳态值之比的百分数,即
s4 s3 s2 s1 s0
1 2 2 3 1 4 1 2 1 4 2 5 6 1 6 5 1 0 5 6
3 5 4 0 2 5 1 0 5 0 2 0 0 0 0
劳斯表中第一列中的元素不全为正,故系统不稳定。第一列元素变号两次,故 有 2 个特征根在右半复平面。
(t ) ,即 N ( s) 1 ,有
NC ( s) N ( s) B2 ( s) A( s)
分析方法同上,系统能够自动恢复到原来工作状态的充分必要条件,也是系统特征方 程 A( s) 0 的所有特征根的实部都小于零。
下图给出了平面上弹簧质量块系统的例子, f 0 为质量块与平面间 的摩擦系数, k 0 为弹簧的弹性系数, m 0 为质量块的质量, F (t ) 为外 力输入, y 为质量块的位移输出。图中横轴的零点为作用力 F (t ) 0 时质量
系统是稳定的; f 0 时,特征方程 ms k 0 有两个共轭虚根,零输入
2
响应为等幅振荡,不随时间趋于零,系统是临界稳定的。
y (t )
10
y (t )
20 10
5
0
0
-10 -20
-5 0 5 10 15 20
t
0
10
20
30
40
50
t
古尔维茨代数判据 设系统的特征方程为
A(s) a0 sn a1sn1 an1s an
r
c(t ) B j e 2 Ck e k t cos k t Ck
si t j 1 k 1
q
r
系统零输入响应随时间趋于零的充分必要条件是, 特征方程 A( s) 0 的所有特征根的实部 都小于零。 为考察扰动输入去除之后系统的自动恢复能力,可以假设扰动输入为单位脉冲函数
根据上面的讨论,非零初始条件下系统输出的拉氏变换为
y0 s a1 y0 v0 1 A Y ( s) 2 2 2 ms fs k s ms 2 fs k
式中,等号左边第一项为系统的零状态换,容易看出 f 0 时特征方程 ms fs k 0 的两个根 有负的实部,零输入响应随时间趋于零,系统响应随时间趋于零状态响应,

a2 a3
a a a a c23 1 4 0 5 a1 c a a c c24 13 5 1 33 c13 c c c c c25 14 33 13 34 c14

a4 a5
a a a a c33 1 6 0 7 a1 c a a c c34 13 7 1 43 c13 c c c c c35 14 43 13 44 c14
根据上述稳定性的定义和线性系统的性质,只考虑零输入响应项,即有
C ( s)
部分分式展开得
B3 ( s) A( s)
Ck Ck C ( s) s s j k 1 s ( k jk ) s ( k jk ) j 1 q
Bj
劳斯表中第一列中的元素全为正,故和 s 平面原点对称的根全都位于虚轴上,这些根可以利用辅助 方程求得。本例中,用全为零的上一行的元素作为系数构成的辅助方程为
s 4 5s 2 4 0
利用它求得和 s 平面原点对称的两对共轭虚根为 s1,2 j , s3,4 2 j 。系统特征方程的另外两个 特征根为 s5,6
劳斯稳定性判据:设系统特征方程为 a0 sn a1s n1 an1s an 0 ,式中 a0 0 。用特征方程的系数 组成一个(n+1)行的表称为劳斯表。
相关文档
最新文档