2016年01月24日4相似三角形的性质与判定4

合集下载

相似三角形的判定与性质

相似三角形的判定与性质

相似三角形的判定与性质相似三角形是初中数学中重要的概念之一,它们具有相同的形状但是大小不同。

在初中数学学习中,我们需要学会如何判定两个三角形是否相似,以及相似三角形具有哪些性质。

本文将对相似三角形的判定方法与性质进行详细介绍。

一、相似三角形的判定要判定两个三角形是否相似,有三种常用的方法:AA判定法、SAS判定法和SSS判定法。

1. AA判定法:如果两个三角形的两个角分别相等,则这两个三角形相似。

具体而言,如果两个三角形中的两个角分别相等,即对应角相等,那么这两个三角形就是相似的。

2. SAS判定法:如果两个三角形中,一个角相等,并且两个边的比值相等,那么这两个三角形相似。

具体而言,如果两个三角形中,某个角相等,并且两边之比也相等,那么这两个三角形就是相似的。

3. SSS判定法:如果两个三角形的三边之比相等,则这两个三角形相似。

具体而言,如果两个三角形的对应边的比值相等,那么这两个三角形就是相似的。

以上三种判定法是判断相似三角形最常用的方法,通过使用其中的任意一种判定法,我们可以准确地判断两个三角形是否相似。

二、相似三角形的性质相似三角形有一些重要的性质,包括比例关系、角度关系和面积关系。

1. 边的比例关系:相似三角形的对应边之比相等。

如果两个三角形相似,那么它们的对应边的比值是相等的。

例如,若两个相似三角形的两个边的比值分别为a:b,c:d,那么它们的第三边的比值也是相等的,即比值为a/c=b/d。

2. 角度关系:相似三角形的对应角相等。

如果两个三角形相似,那么它们的对应角是相等的。

具体而言,如果一个角分别相等,则这两个三角形的对应角也相等。

3. 面积关系:相似三角形的面积比等于边长比的平方。

如果两个三角形相似,那么它们的面积比等于边长比的平方。

具体而言,若两个相似三角形的对应边的长度比为a:b,那么它们的面积比为a^2:b^2。

相似三角形的性质在数学中应用广泛。

例如,在测量中,我们可以利用相似三角形的边长比关系求取难以测量的长度。

相似三角形的判定与性质

相似三角形的判定与性质

相似三角形的判定与性质相似三角形是数学几何中的一个重要概念,它在解决实际问题和证明定理时起着关键作用。

相似三角形的判定是基于其边比和角相等的条件,而相似三角形的性质则涉及到各个角的对应关系和边的比例关系。

本文将详细介绍相似三角形的判定方法和性质。

一、相似三角形的判定方法在确定两个三角形是否相似时,常用的判定方法有以下几种:1. AA判定法(角-角判定法):如果两个三角形的两个角分别相等,那么它们是相似三角形。

具体来说,如果两个三角形的一个角相等,且对应边的夹角也相等,那么它们是相似的。

2. SSS判定法(边-边-边判定法):如果两个三角形的三边分别成比例,那么它们是相似三角形。

具体来说,如果两个三角形的对应边的长度之比相等,那么它们是相似的。

3. SAS判定法(边-角-边判定法):如果两个三角形的一个角相等,且两个角的对边成比例,那么它们是相似三角形。

这些判定方法是相似三角形性质的基础,通过判定可以确定两个三角形是否相似。

二、相似三角形的性质1. 两个相似三角形的对应角相等,即相应的角相等。

这是相似三角形定义的直接性质,对应角相等是相似三角形的必要条件。

2. 两个相似三角形的对应边成比例。

如果两个三角形相似,则它们的对应边的长度之比等于任意两个对应边的长度之比。

具体来说,设两个相似三角形的对应边分别为AB和A'B'、AC和A'C'、BC和B'C',则有AB/A'B' = AC/A'C' = BC/B'C'。

3. 两个相似三角形的高线成比例。

如果两个相似三角形的高线分别为h和h',那么h/h'等于相应的边的长度之比。

4. 两个相似三角形的面积之比等于对应边长度之比的平方。

设两个相似三角形的面积分别为S和S',对应边的长度之比为k,则有S/S' = k^2。

5. 两个相似三角形的周长之比等于对应边长度之比。

相似三角形的性质和判定知识点

相似三角形的性质和判定知识点

相似三角形的性质和判定知识点相似三角形是初中数学中的重要概念,它在几何学中具有广泛的应用。

相似三角形的性质和判定是学习和解题的基础,本文将详细介绍相似三角形的性质和判定的知识点。

一、相似三角形的定义相似三角形是指具有相同形状但不同大小的三角形。

两个三角形相似的条件是它们对应角相等,即对应边的比例相等。

二、相似三角形的性质相似三角形有一些重要的性质,如下:1. 对应角相等性质:如果两个三角形相似,它们的对应角相等。

2. 对应边成比例性质:如果两个三角形相似,它们的对应边成比例,即对于第一个三角形的一条边与第二个三角形的相应边的比等于第一个三角形的另一条边与第二个三角形的相应边的比。

3. 半角性质:如果两个三角形相似,它们的角的一半也相等。

4. 高线成比例性质:如果两个三角形相似,它们的高线与底边之比等于相应边之比。

5. 中线成比例性质:如果两个三角形相似,它们的中线与底边之比等于相应边之比。

这些性质对于判断和解决相似三角形的问题非常有用。

三、相似三角形的判定判定两个三角形是否相似有几个常用的方法,如下:1. AAA相似判定:如果两个三角形的对应角相等,则它们相似。

2. AA相似判定:如果两个三角形的一个角相等,并且两个角分别对应两个角相等,则它们相似。

3. SSS相似判定:如果两个三角形的对应边成比例,则它们相似。

4. SAS相似判定:如果两个三角形的一个角相等,并且两个角的相邻边的比相等,则它们相似。

这些判定方法能够帮助我们快速确定两个三角形是否相似,从而解决相关问题。

四、相似三角形的实际应用相似三角形的概念和性质在几何学中有广泛的应用。

下面介绍一些实际应用的例子:1. 相似三角形的测量:通过测量一个三角形的边长和角度,可以利用相似三角形的性质计算出其他三角形的边长和角度。

2. 地图比例尺:地图上的比例尺是通过相似三角形的性质确定的。

通过观察地图上的两个相似三角形,可以计算出地图上的实际距离。

3. 光学测距:在实际测量中,通过利用相似三角形的性质可以测量较远距离的物体高度、距离等。

相似三角形的性质及判定方法

相似三角形的性质及判定方法

相似三角形的性质及判定方法相似三角形是指具有相同形状但可能不同大小的两个或多个三角形。

在几何学中,相似三角形具有一些特定的性质和判定方法。

本文将探讨相似三角形的性质以及如何判定两个三角形是否相似。

一、相似三角形的性质1. 对应角相等性质:如果两个三角形的对应角相等,那么它们是相似的。

具体而言,如果两个三角形的对应角分别相等,则它们是相似的。

记为AA相似性质。

2. 对应边的比例性质:如果两个三角形的两对对应边的比例相等,那么它们是相似的。

具体而言,如果两个三角形的对应边所对应的长度比例相等,则它们是相似的。

记为SSS相似性质。

3. 角和对边的比例性质:如果两个三角形的对应角相等且对应边的长度比例相等,那么它们是相似的。

具体而言,如果两个三角形的对应角相等且对应边的长度比例相等,则它们是相似的。

记为SAS相似性质。

二、相似三角形的判定方法1. AA判定法:如果两个三角形的两个角分别相等,则它们一定是相似的。

即,如果两个三角形的两个角分别相等,则它们的第三个角也必然相等,从而满足AA相似性质。

2. SSS判定法:如果两个三角形的三对对应边的长度比例相等,则它们一定是相似的。

即,如果两个三角形的三对对应边的长度比例相等,则它们满足SSS相似性质。

3. SAS判定法:如果两个三角形的一个对应角相等,且对应边的长度比例相等,则它们一定是相似的。

即,如果两个三角形的一个对应角相等,且对应边的长度比例相等,则它们满足SAS相似性质。

三、实例分析为了更好地理解相似三角形的判定方法,我们来看一个实例。

已知三角形ABC和三角形DEF,已知∠A=∠D,∠B=∠E,且AB/DE = BC/EF = CA/FD,我们需要判定这两个三角形是否相似。

根据给定条件可知,∠A=∠D,∠B=∠E,且BC/EF = CA/FD。

根据SAS判定法,如果对应角相等且对应边的长度比例相等,则两个三角形相似。

由此得出结论,三角形ABC和三角形DEF是相似的。

相似三角形的性质与判定

相似三角形的性质与判定

相似三角形的性质与判定相似三角形在几何学中是一个重要的概念,它们具有一些特殊的性质和判定条件。

本文将介绍相似三角形的性质和判定方法。

一、相似三角形的性质相似三角形是指具有相同形状但可能不同大小的三角形。

相似三角形的性质有以下几个方面:1. 对应角相等:如果两个三角形的对应角相等,那么它们一定是相似的。

具体来说,如果两个三角形的三个内角两两相等,那么它们是相似的。

2. 对应边成比例:如果两个三角形的对应边成比例,那么它们一定是相似的。

具体来说,如果两个三角形的三条边各自成比例,那么它们是相似的。

3. 高度比例相等:如果两个相似三角形之间的高度比例相等,那么它们的面积比例也相等。

换句话说,如果两个三角形的高度比例相等,那么它们的面积比例也相等。

二、相似三角形的判定方法判定两个三角形是否相似有以下几种方法:1. AA判定法:如果两个三角形的两个对应角分别相等,那么它们是相似的。

这是相似三角形的基本判定法。

2. AAA判定法:如果两个三角形的三个内角两两相等,那么它们是相似的。

这是相似三角形的充要条件,也是最常用的判定法。

3. SSS判定法:如果两个三角形的三条边各自成比例,那么它们是相似的。

这是相似三角形的另一种判定法。

4. SAS判定法:如果两个三角形的两个对应边成比例,且夹角也相等,那么它们是相似的。

三、应用示例下面通过一个具体的示例来说明相似三角形的性质和判定方法。

假设有两个三角形ABC和XYZ,已知∠A = ∠X,∠B = ∠Y,且AB/XY = BC/YZ。

根据AA判定法可知,∠A = ∠X 和∠B = ∠Y,所以三角形ABC 与三角形XYZ相似。

根据对应边成比例可知,AB/XY = BC/YZ,所以三角形ABC与三角形XYZ相似。

因此,根据相似三角形的性质和判定方法,可以得出三角形ABC 与三角形XYZ是相似的。

结论:相似三角形具有相同形状但可能不同大小的特点。

判定两个三角形是否相似可以使用AA判定法、AAA判定法、SSS判定法和SAS判定法。

相似三角形的判定与性质

相似三角形的判定与性质
证明结论:证明了相似三角形的性质定理,为后续的判定定理证明提供了基础
汇报人:XX
感谢观看
地理学中的应用:测量距离、确定位置等
航海学中的应用:确定船只的位置、航向等
04
相似三角形的判定定理与性质定理的证明
判定定理的证明
定义法:利用相似三角形的定义,通过比较对应边和对应角来证明两个三角形相似。
平行线法:利用平行线的性质,通过比较对应边和对应角来证明两个三角形相似。
角平分线法:利用角平分线的性质,通过比较对应边和对应角来证明两个三角形相似。
适用情况:适用于已知三角形角度和边长的情况
注意事项:在应用定义法时,需要仔细检查对应角和对应边的比例关系,以避免出现误差
平行线法
添加标题
添加标题
添加标题
添加标题
适用范围:适用于直角三角形和非直角三角形
定义:利用平行线性质,通过比较对应边和角的比例关系来判定两个三角形是否相似
证明方法:利用平行线的性质和相似三角形的定义进行证明
应用举例:在几何问题中,常常利用平行线法来判定两个三角形是否相似
角角角法
性质:相似三角形的对应角相等,对应边成比例
应用:在几何、代数、三角函数等领域有广泛的应用
定义:如果两个三角形的两个对应角相等,则这两个三角形相似
判定方法:如果两个三角形的两个对应角相等,则这两个三角形相似
边边边法
证明方法:利用相似三角形的性质和判定定理进行证明
证明:根据相似三角形的定义,可以通过相似比推导出对应角相等
对应边成比例
性质定义:相似三角形的对应边长比例相等
性质推论:相似三角形的对应高、中线、角平分线等比例
性质应用:在几何证明和计算中,利用对应边成比例的性质可以简化问题

《相似三角形的性质》 知识清单

《相似三角形的性质》 知识清单

《相似三角形的性质》知识清单相似三角形是初中数学中的重要知识点,具有许多独特的性质。

掌握这些性质对于解决相关的几何问题具有关键作用。

下面我们就来详细梳理一下相似三角形的性质。

一、相似三角形的定义如果两个三角形的对应角相等,对应边成比例,那么这两个三角形就叫做相似三角形。

二、相似三角形的判定方法1、两角对应相等的两个三角形相似。

2、两边对应成比例且夹角相等的两个三角形相似。

3、三边对应成比例的两个三角形相似。

三、相似三角形的性质1、对应角相等相似三角形的对应角是相等的。

例如,如果三角形 ABC 相似于三角形 A'B'C',那么∠A =∠A',∠B =∠B',∠C =∠C'。

2、对应边成比例相似三角形的对应边是成比例的。

即如果三角形 ABC 相似于三角形 A'B'C',那么 AB/A'B' = BC/B'C' = AC/A'C'。

3、对应高的比等于相似比相似三角形对应高的比等于相似比。

设三角形 ABC 相似于三角形A'B'C',AD 和 A'D'分别是它们的高,那么 AD/A'D' =相似比。

4、对应中线的比等于相似比相似三角形对应中线的比等于相似比。

中线是连接三角形一个顶点和它所对边中点的线段。

5、对应角平分线的比等于相似比相似三角形对应角平分线的比等于相似比。

角平分线将一个角平均分成两个相等的角。

6、周长的比等于相似比两个相似三角形的周长比等于它们的相似比。

若三角形 ABC 相似于三角形 A'B'C',其相似比为 k,则三角形 ABC 的周长与三角形A'B'C'的周长之比也为 k。

7、面积的比等于相似比的平方相似三角形面积的比等于相似比的平方。

假设三角形 ABC 相似于三角形 A'B'C',相似比为 k,那么它们面积的比为 k²。

相似三角形的判定与性质

相似三角形的判定与性质

相似三角形的判定与性质相似三角形是指具有相同形状但不一定相同大小的两个三角形。

在几何学中,相似三角形是一种重要的概念,它帮助我们理解和解决很多与三角形相关的问题。

本文将介绍相似三角形的判定方法以及它们的性质。

一、相似三角形的判定方法1. AAA判定法:如果两个三角形的对应角度相等,则这两个三角形相似。

即如果两个三角形的各个内角对应相等(即对应角相等),那么它们是相似的。

2. AA判定法:如果两个三角形的两个内角分别相等,并且它们的对应边成比例,则这两个三角形相似。

即如果两个三角形的两个角对应相等,并且对应边成比例,那么它们是相似的。

3. SAS判定法:如果两个三角形的一组对边成比例,并且其中一组对边夹角相等,则这两个三角形相似。

即如果两个三角形的两组对边成比例,并且夹角对应相等,那么它们是相似的。

二、相似三角形的性质1. 边长比:在相似三角形中,任意两对对应边的比值相等。

换句话说,如果两个三角形相似,那么它们的三条边的比值是相等的。

2. 高度比:在相似三角形中,任意两对对应高度的比值相等。

两个相似三角形的高度比等于对应边长比的倒数。

3. 面积比:在相似三角形中,任意两对对应面积的比值等于边长比的平方。

4. 角度比:在相似三角形中,任意一对对应角的比值相等。

换句话说,如果两个三角形相似,那么它们的三个角的比值是相等的。

5. 相似三角形的角平分线三等分:在相似三角形中,若一个角的两边与另一个角的两边成比例,则这两个角的角平分线相互平行。

6. 重心的性质:在相似三角形中,两个相似三角形的重心在同一直线上。

7. 相似三角形的垂心:在相似三角形中,两个相似三角形的垂心在同一直线上。

8. 相似三角形的外心:在相似三角形中,两个相似三角形的外心在同一直线上。

三、应用举例1. 比例问题:利用相似三角形的性质可以解决很多比例问题。

例如,已知一座塔的阴影与杆子的阴影的比值等于塔的高度与杆子高度的比值,通过相似三角形的比例关系可以求解塔的高度。

相似三角形及其判定

相似三角形及其判定

相似三角形及其判定相似三角形是初中数学中的一个重要概念,它是指两个或多个三角形的对应角相等,对应边成比例。

在实际问题中,利用相似三角形的特性可以简化求解过程,加深对三角形性质的理解。

本文将介绍相似三角形的定义、判定条件以及相关性质。

一、相似三角形的定义相似三角形的定义是指两个或多个三角形的对应角相等,对应边成比例。

简而言之,相似三角形是指两个三角形具有对应的角度相等,并且对应的两边之比相等。

对于两个三角形ABC和DEF来说,如果∠A=∠D,∠B=∠E,∠C=∠F,并且AB/DE=BC/EF=AC/DF,那么可以判定两个三角形相似。

二、相似三角形的判定条件相似三角形的判定有三种常见的条件:AAA判定、AA判定、SAS 判定。

下面将依次介绍这三种判定条件。

1. AAA判定当两个三角形的三个内角分别相等时,可以判定它们相似。

这是相似三角形最简单也最常见的判定条件。

例如,已知三角形ABC和DEF,∠A=∠D,∠B=∠E,∠C=∠F,那么可以得出结论:三角形ABC与DEF相似。

2. AA判定当两个三角形的两个内角分别相等,并且对应的某一边之比相等时,可以判定它们相似。

例如,已知三角形ABC和DEF,∠A=∠D,∠B=∠E,并且AB/DE=AC/DF,那么可以得出结论:三角形ABC与DEF相似。

3. SAS判定当两个三角形的一对对应边之比相等,并且这对对应边之间的夹角相等时,可以判定它们相似。

例如,已知三角形ABC和DEF,AB/DE=BC/EF,并且∠ABC=∠DEF,那么可以得出结论:三角形ABC与DEF相似。

三、相似三角形的性质相似三角形有很多有趣的性质,下面介绍其中几个常见的性质。

1. 对应角相等性质相似三角形中,对应的角都相等,即∠A=∠D,∠B=∠E,∠C=∠F。

2. 对应边成比例性质相似三角形中,对应边之比相等,即AB/DE=BC/EF=AC/DF。

3. 高度成比例性质相似三角形中,对应边的高度也成比例。

中考复习相似三角形的性质与判定

中考复习相似三角形的性质与判定

中考复习相似三角形的性质与判定相似三角形是中考数学中的重要内容之一。

在几何学中,相似三角形是指具有相同形状但尺寸不同的两个或多个三角形。

掌握相似三角形的性质与判定方法对于解题有着重要的作用。

本文将详细介绍中考复习相似三角形的性质与判定方法,帮助同学们更好地应对考试。

一、相似三角形的性质1. 对应角相等性质:如果两个三角形的对应角分别相等,则这两个三角形是相似的。

即如果∠A=∠D,∠B=∠E,∠C=∠F,则△ABC∽△DEF。

2. 对应边成比例性质:如果两个三角形的对应边的比值相等,则这两个三角形是相似的。

即如果AB/DE=BC/EF=AC/DF,则△ABC∽△DEF。

3. 角平分线定理:如果一条直线分别平分两个三角形的一个内角,并且与该角的两条边相交,则这两个三角形是相似的。

4. 比例线段定理:在一个三角形中,如果一条直线把两边分成相等比例的线段,则这条直线平行于第三边,并且与其他两边成相似比例。

二、相似三角形的判定方法1. 对应角相等判定:当两个三角形的对应角相等时,可以判定这两个三角形是相似的。

2. 三边成比例判定:当两个三角形的三边的比值相等时,可以判定这两个三角形是相似的。

3. 一个角与两边成比例判定:当一个角与另一三角形的两边成比例时,可以判定这两个三角形是相似的。

为了方便判定,通常角与两边的比例用字母表示,例如如果∠A:∠D=AB:DE=AC:DF,可以判定△ABC∽△DEF。

三、相似三角形的应用1. 比较边长:利用相似三角形的性质,可以通过已知三角形的边长比例,求解未知三角形的边长。

2. 测量高度:通过观察两个相似三角形的边长比例,可以测量难以到达的高度,例如房屋或者某一地标的高度。

3. 解决实际问题:相似三角形在实际问题中有着广泛的应用,例如通过测量手机的高度与距离,可以计算出高楼的实际高度。

总结:相似三角形的性质与判定方法是中考数学中的重要知识点,对于解决与比例相关的数学题目有着重要的作用。

相似三角形的性质与判定

相似三角形的性质与判定

相似三角形的性质与判定相似三角形是初中数学中一个重要的概念,理解相似三角形的性质和判定方法对于解题和应用数学非常有帮助。

本文将介绍相似三角形的性质,并讨论如何判定两个三角形是否相似。

一、相似三角形的性质1. 边长比例:两个三角形相似的充分必要条件是它们对应边长之比相等。

设两个三角形分别为ABC和DEF,若满足以下条件,则可判断它们为相似三角形:AB/DE = BC/EF = AC/DF2. 角度相等:两个三角形相似的另一个重要性质是它们对应角度相等。

即若三角形ABC和DEF满足以下条件,则可以判断它们为相似三角形:∠A = ∠D, ∠B = ∠E, ∠C = ∠F3. 高度比例:相似三角形的高度之比等于对应边长之比。

假设ABC 和DEF为相似三角形,且BC和EF为对应边,h1和h2为它们的高度,则有以下关系:h1/h2 = BC/EF二、相似三角形的判定方法1. AA(角-角)判定法:若两个三角形的两个角相等,则这两个三角形相似。

即若∠A = ∠D,∠B = ∠E,可判断三角形ABC与DEF相似。

2. SAS(边-角-边)判定法:若两个三角形的两个对应边的比例相等,并且这两个边夹角相等,则这两个三角形相似。

假设AB/DE =BC/EF,∠B = ∠E,可判断三角形ABC与DEF相似。

3. SSS(边-边-边)判定法:若两个三角形的三个对应边的比例相等,则这两个三角形相似。

即若AB/DE = BC/EF = AC/DF,可判断三角形ABC与DEF相似。

三、相似三角形的应用1. 测量高度:利用相似三角形的性质,可以测量高度。

例如,根据两个相似三角形的高度比例,可以利用已知的高度和对应的边长,求解未知高度的长度。

2. 图形放缩:相似三角形的性质使得我们能够进行图形的缩放。

通过改变相似三角形的边长比例,可以将图形按照一定的比例进行放大或缩小。

3. 建模与设计:相似三角形的应用还可以用于建模和设计。

例如,在设计模型中,可以利用相似三角形的概念,按照一定的比例来缩放和调整图形的形状。

相似三角形的性质与判定

相似三角形的性质与判定

相似三角形的性质与判定相似三角形是指具有相等对应角度的三角形,它们的对应边长之比也相等。

相似三角形不仅在几何学中具有重要意义,而且在实际生活中应用广泛。

本文将介绍相似三角形的性质及其判定方法。

一、相似三角形的性质1. 相似三角形的对应角度相等:对于两个三角形ABC和DEF,若∠A=∠D、∠B=∠E、∠C=∠F,则可以判断这两个三角形相似。

2. 相似三角形的对应边长比相等:对于两个相似三角形ABC与DEF,若AB/DE = AC/DF = BC/EF,则可以判断这两个三角形相似。

二、判定相似三角形的方法1. AA判定法(角-角判定法):如果两个三角形的两个角分别对应相等(即两个角的对应边平行),则可以判断这两个三角形相似。

例如,已知两个三角形ABC与DEF,已知∠A = ∠D,∠C = ∠F,并且∠B与∠E不相等,但∠B与∠E之间没有已知的关系。

根据AA判定法,可以得出结论这两个三角形相似。

2. SAS判定法(边-角-边判定法):如果两个三角形的一个角和两边分别相等,则可以判断这两个三角形相似。

例如,已知两个三角形ABC与DEF,已知∠A = ∠D,并且AB/DE = AC/DF。

根据SAS判定法,可以得出结论这两个三角形相似。

3. SSS判定法(边-边-边判定法):如果两个三角形的三条边的比例相等,则可以判断这两个三角形相似。

例如,已知两个三角形ABC与DEF,已知AB/DE = BC/EF =AC/DF。

根据SSS判定法,可以得出结论这两个三角形相似。

4. RHS判定法(直角边-斜边-直角边判定法):如果两个直角三角形的一个直角边和斜边的比例相等,则可以判断这两个三角形相似。

例如,已知两个直角三角形ABC与DEF,已知∠C = ∠F = 90°,并且AB/DE = AC/DF。

根据RHS判定法,可以得出结论这两个三角形相似。

三、实际应用相似三角形的性质及判定方法在实际生活中有广泛的应用。

《相似三角形的性质》 知识清单

《相似三角形的性质》 知识清单

《相似三角形的性质》知识清单相似三角形是初中数学中的重要内容,具有许多独特的性质。

掌握这些性质对于解决相关的数学问题至关重要。

以下是关于相似三角形性质的详细知识清单。

一、相似三角形的定义如果两个三角形的对应角相等,对应边成比例,那么这两个三角形就叫做相似三角形。

二、相似三角形的判定1、两角分别相等的两个三角形相似。

2、两边成比例且夹角相等的两个三角形相似。

3、三边成比例的两个三角形相似。

三、相似三角形的性质1、对应角相等相似三角形的对应角相等,这是相似三角形的最基本性质。

比如,若△ABC 与△A'B'C'相似,那么∠A =∠A',∠B =∠B',∠C =∠C'。

2、对应边成比例相似三角形的对应边成比例。

设相似比为k,若△ABC∽△A'B'C',则 AB : A'B' = BC : B'C' = AC : A'C' = k。

3、周长之比等于相似比两个相似三角形的周长之比等于它们的相似比。

假设△ABC 与△A'B'C'相似,相似比为 k,那么它们的周长之比为:(AB + BC +AC) :(A'B' + B'C' + A'C')= k 。

4、面积之比等于相似比的平方相似三角形的面积之比等于相似比的平方。

若△ABC 与△A'B'C'相似,相似比为 k,则它们的面积之比为:S△ABC : S△A'B'C' = k²。

5、对应线段的比等于相似比相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。

例如:若△ABC∽△A'B'C',AD 是△ABC 的高,A'D'是△A'B'C'的高,那么 AD : A'D' = k 。

相似三角形的性质和推论

相似三角形的性质和推论

相似三角形的性质和推论
三角分别相等,三边成比例的两个三角形叫做相似三角形。

接下来分享相似三角形的性质和推论,供大家参考。

相似三角形的性质
1. 相似三角形对应角相等,对应边成比例。

2. 相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

3. 相似三角形周长的比等于相似比。

4. 相似三角形面积的比等于相似比的平方。

由 4 可得:相似比等于面积比的算术平方根。

5. 相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
6. 若a/b =b/c,即b²=ac,b叫做a,c的比例中项
7. a/b=c/d等同于ad=bc.
8. 不必是在同一平面内的三角形里。

推论
推论一:腰和底对应成比例的两个等腰三角形相似。

推论二:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。

推论三:如果一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

三角形的相似性质与判定方法总结

三角形的相似性质与判定方法总结

三角形的相似性质与判定方法总结相似三角形是指两个三角形的对应角度相等,对应边比例相等的三角形。

在几何学中,相似性质是研究三角形形状和大小关系的重要基础。

本文将总结相似三角形的性质和判定方法,帮助读者更好地理解和应用相关概念。

一、相似三角形的性质:1. 对应角相等性质:如果两个三角形的内角分别相等,则这两个三角形是相似的。

2. 对应边比例相等性质:如果两个三角形的对应边的比例相等,则这两个三角形是相似的。

3. 侧角定理:如果两个三角形的两个内角和对应的两条边比例相等,则这两个三角形是相似的。

4. 相似三角形的比例性质:相似三角形的对应边比例相等,可以用一个等式表示:a/b = c/d = e/f。

二、相似三角形的判定方法:1. AA判定法:如果两个三角形的两个角分别相等,则这两个三角形是相似的。

证明方法:在两个相等的角旁边,做一条平行线,构成平行四边形。

通过平行线相交定理可证明对应边比例相等。

2. SAS判定法:如果两个三角形的两个边比例相等,并且夹角相等,则这两个三角形是相似的。

证明方法:通过侧角定理,可以证明这两个三角形的三个角相等,从而满足相似性质。

3. SSS判定法:如果两个三角形的三个边比例相等,则这两个三角形是相似的。

证明方法:通过使用数学定理证明较困难,一般通过构造平行线或使用其他的相似三角形进行证明。

4. 边角边(SAB)判定法:如果两个三角形的一个角相等,另外两边分别与另一个三角形的两边成比例,则这两个三角形是相似的。

证明方法:通过使用带线绘制、角分割和平行线等方法,可以将问题转化为其他简单的相似性质而得出结论。

在实际应用中,我们可以根据以上的相似性质和判定方法解决一些几何问题,例如计算简单的边长和角度,求解高度和面积等。

总结一下,相似三角形的性质及判定方法是解决几何问题重要的工具,通过对角度和边比例的分析与计算,我们可以得出两个三角形是否相似的结论。

了解和应用这些性质和方法,有助于我们更好地理解和解决几何学中的各种问题。

相似三角形的性质与判定

相似三角形的性质与判定

相似三角形的性质与判定相似三角形是初中数学中的一个重要概念,它在几何学知识体系中有着重要的地位。

相似三角形是指两个或更多个三角形在形状上相似的特殊三角形。

它们的边长比例相等,对应的角度也相等。

通过研究相似三角形的性质和判定条件,我们可以在解决实际问题时更好地应用相似三角形的概念。

首先,我们来介绍一些相似三角形的性质。

相似三角形具有以下性质:1. 对应角相等性质。

如果两个三角形的对应角相等,那么它们是相似三角形。

具体而言,如果两个三角形的三个角分别相等,那么它们一定是相似三角形。

这是相似三角形的性质中最重要的一条。

2. 对应边比例相等性质。

如果两个三角形的对应边的长度比例相等,那么它们是相似三角形。

具体而言,如果两个三角形的三条边的对应长度比例相等,那么它们一定是相似三角形。

这个性质可以直接从三角形的定义和角相等性质推导出来。

其次,我们来介绍一些相似三角形的判定条件。

判定两个三角形是否相似主要有以下几种方法:1. AA 判定法。

如果两个三角形的两个角分别相等,那么它们一定是相似三角形。

2. SSS 判定法。

如果两个三角形的三个边的长度比例相等,那么它们一定是相似三角形。

3. SAS 判定法。

如果两个三角形的一个角相等,而且两个边的长度比例相等,那么它们一定是相似三角形。

4. 等腰三角形判定法。

如果两个三角形的两条边长比例相等且夹角相等,那么它们一定是相似三角形。

相似三角形的性质和判定条件在解决实际问题时非常有用。

例如,在测量高楼的高度时,我们可以利用相似三角形的性质,通过测量实际的距离和角度,计算出高楼的高度。

又如,在地图上测量两个城市之间的直线距离时,我们可以利用相似三角形的判定条件,通过测量两个城市之间的实际距离和角度,计算出直线距离。

这些都是利用相似三角形的性质和判定条件解决实际问题的典型例子。

总的来说,相似三角形是一个重要的几何概念,它涉及到对角、边长比例的研究。

相似三角形的性质和判定条件在解决实际问题时非常有用,能够帮助我们计算出实际的距离和角度,解决实际问题。

相似三角形的性质和判定

相似三角形的性质和判定

相似三角形的性质和判定
三角分别相等,三边成比例的两个三角形叫做相似三角形。

接下来分享相似三角形的性质和判定,供大家参考。

相似三角形的性质
1. 相似三角形对应角相等,对应边成比例。

2. 相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

3. 相似三角形周长的比等于相似比。

4. 相似三角形面积的比等于相似比的平方。

由 4 可得:相似比等于面积比的算术平方根。

5. 相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
6. 若a/b =b/c,即b²=ac,b叫做a,c的比例中项
7. a/b=c/d等同于ad=bc.
8. 不必是在同一平面内的三角形里。

相似三角形的判定
类比全等三角形的判定定理,可以得出下列结论:
定理:两角分别对应相等的两个三角形相似。

定理:两边成比例且夹角相等的两个三角形相似。

定理:三边成比例的两个三角形相似。

定理:一条直角边与斜边成比例的两个直角三角形相似。

根据以上判定定理,可以推出下列结论:
推论:三边对应平行的两个三角形相似。

推论:一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

相似三角形的判定与性质

相似三角形的判定与性质

相似三角形的判定与性质相似三角形是指具有相同形状但尺寸不同的两个或多个三角形。

相似性是几何学中的基本概念之一,研究相似三角形的判定与性质对于解决与三角形相关的问题具有重要意义。

本文将从判定相似三角形的条件和相似三角形的性质两个方面进行论述。

一、判定相似三角形的条件1. AAA判定法:如果两个三角形的对应角度相等,则这两个三角形是相似的。

例如,若三角形ABC和三角形XYZ满足∠A = ∠X,∠B = ∠Y,∠C = ∠Z,则可以判定三角形ABC与三角形XYZ相似。

2. AA判定法:如果两个三角形的两个角度分别相等,则这两个三角形是相似的。

例如,若三角形ABC和三角形XYZ满足∠A = ∠X,∠B = ∠Y,则可以判定三角形ABC与三角形XYZ相似。

3. SAS判定法:如果两个三角形的一个角度相等,且两个对应边的比值相等,则这两个三角形是相似的。

例如,若三角形ABC和三角形XYZ满足∠A = ∠X,AB/XY = BC/YZ = AC/XZ(其中AB表示边AB 的长度),则可以判定三角形ABC与三角形XYZ相似。

4. SSS判定法:如果两个三角形的三个对应边的比值相等,则这两个三角形是相似的。

例如,若三角形ABC和三角形XYZ满足AB/XY = BC/YZ = AC/XZ,则可以判定三角形ABC与三角形XYZ相似。

二、相似三角形的性质1. 对应边比值相等性质:相似三角形的对应边的比值相等。

即,若三角形ABC与三角形XYZ相似,则有AB/XY = BC/YZ = AC/XZ。

2. 对应角度相等性质:相似三角形的对应角度相等。

即,若三角形ABC与三角形XYZ相似,则有∠A = ∠X,∠B = ∠Y,∠C = ∠Z。

3. 定理一:如果一个三角形的一个角较大,那么它对应的边也较大。

4. 定理二:如果两个三角形的对应边比值相等(即相似),则它们的对应角度也相等。

5. 定理三:如果两个角相等,则它们所对应的边的比值相等。

相似三角形的性质

相似三角形的性质

相似三角形的性质什么是相似三角形在数学中,相似三角形是指具有相同形状但大小不同的三角形。

这意味着两个三角形的对应角度相等,并且对应边的长度之间存在一定的比例关系。

相似三角形的判定条件要判断两个三角形是否相似,有以下几种常见的方法:1. AAA判定法如果两个三角形的三个内角对应相等,那么它们一定是相似的。

这就是AAA相似判定法。

2. AA判定法如果两个三角形的两个对应角度相等,并且一个对应边的比例与另一个对应边的比例相等,那么它们一定是相似的。

这就是AA相似判定法。

3. SAS判定法如果两个三角形的一个角对应相等,并且两个对应边的比例相等,那么它们一定是相似的。

这就是SAS相似判定法。

4. SSS判定法如果两个三角形的三个对应边的比例相等,那么它们一定是相似的。

这就是SSS相似判定法。

相似三角形的性质当两个三角形相似时,它们具有一些重要的性质,下面是其中一些常见的性质:1. 边长比例当两个三角形相似时,它们对应边的长度之间的比例是相等的。

例如,如果两个三角形的某一对对应边的长度分别为a和b,而它们的比例为k,那么其他对应边的长度分别是ka和kb。

2. 高度比例当两个三角形相似时,它们对应边的高度之间的比例也是相等的。

如果两个三角形的某一对对应边的高度分别为h1和h2,而它们的比例为k,那么其他对应边的高度分别是kh1和kh2。

3. 面积比例当两个三角形相似时,它们的面积之间的比例等于对应边的长度之间的比例的平方。

也就是说,如果两个三角形的某一对对应边的长度分别为a和b,而它们的比例为k,那么它们的面积比例为k^2。

4. 内角对应当两个三角形相似时,它们的内角是一一对应的。

也就是说,两个相似三角形的对应角度分别相等。

总结相似三角形是具有相同形状但大小不同的三角形。

判定两个三角形相似的方法有AAA判定法、AA判定法、SAS判定法和SSS判定法。

相似三角形具有边长比例、高度比例、面积比例和内角对应等性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年01月24日4相似三角形的性质与判定4一.选择题(共9小题)1.(2015•甘南州)如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD的面积为m,△OEB的面积为,则下列结论中正确的是()A.m=5 B.m=4C.m=3D.m=102.(2015•株洲)如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A.B.C.D.3.(2015•青海)在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则等于()A.B.C.D.4.(2015•济南)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD 于M、N两点.若AM=2,则线段ON的长为()A.B.C.1 D.5.(2015•哈尔滨)如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()A.=B.=C.=D.=6.(2015•宁波)如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A 落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC的距离记为h2015,到BC的距离记为h2015.若h1=1,则h2015的值为()A.B.C.1﹣D.2﹣7.(2015•绵阳)如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C 与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()A.B.C.D.8.(2015•恩施州)如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4 B.7 C.3 D.129.(2015•毕节市)在△ABC中,DE∥BC,AE:EC=2:3,DE=4,则BC等于()A.10 B.8 C.9 D.6二.填空题(共21小题)10.(2016•静安区一模)如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.11.(2016•闵行区一模)如图,在△ABC中,∠ACB=90°,点F在边AC的延长线上,且FD⊥AB,垂足为点D,如果AD=6,AB=10,ED=2,那么FD=.12.(2016•徐汇区一模)点D在△ABC的边AB上,AC=3,AB=4,∠ACD=∠B,那么AD的长是.13.(2015•天津)如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为.14.(2015•泰州)如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为.15.(2015•金华)如图,直线l1、l2、…l6是一组等距的平行线,过直线l1上的点A作两条射线,分别与直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是.16.(2015•常州)如图,在△ABC中,DE∥BC,AD:DB=1:2,DE=2,则BC的长是.17.(2015•连云港)如图,在△ABC中,∠BAC=60°,∠ABC=90°,直线l1∥l2∥l3,l1与l2之间距离是1,l2与l3之间距离是2,且l1,l2,l3分别经过点A,B,C,则边AC的长为.18.(2015•河池)如图,菱形ABCD的边长为1,直线l过点C,交AB的延长线于M,交AD的延长线于N,则+=.19.(2015•长沙)如图,在△ABC中,DE∥BC,,DE=6,则BC的长是.20.(2015•柳州)如图,矩形EFGH内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF=EH,那么EH的长为.21.(2015•盘锦)如图,已知△ABC中,AB=5,AC=3,点D在边AB上,且∠ACD=∠B,则线段AD的长为.22.(2015•娄底)一块直角三角板ABC按如图放置,顶点A的坐标为(0,1),直角顶点C的坐标为(﹣3,0),∠B=30°,则点B的坐标为.23.(2015•盐城)设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB 的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则S n可表示为.(用含n的代数式表示,其中n为正整数)24.(2015•盘锦)如图,在平面直角坐标系中,等腰△OBC的边OB在x轴上,OB=CB,OB边上的高CA与OC边上的高BE相交于点D,连接OD,AB=,∠CBO=45°,在直线BE上求点M,使△BMC与△ODC 相似,则点M的坐标是.25.(2015•贺州)如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B,C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=,有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或;④0<BE≤,其中正确的结论是(填入正确结论的序号)26.(2015•镇江)如图,△ABC和△DBC是两个具有公共边的全等三角形,AB=AC=3cm.BC=2cm,将△DBC沿射线BC平移一定的距离得到△D1B1C1,连接AC1,BD1.如果四边形ABD1C1是矩形,那么平移的距离为cm.27.(2015•宁波一模)如图,已知∠AOB=60°,点P在边OA上,OP=10,点M,N在边OB上,PM=PN,点C为线段OP上任意一点,CD∥ON交PM、PN分别为D、E.若MN=3,则的值为.28.(2015秋•闸北区期中)如图,AB∥EF∥CD,AB=3,CD=7,AE:ED=1:3,则EF的长度为.29.(2015秋•剑河县校级月考)如图,△ABC中,BC=1.若AD1=AB,且D1E1∥BC,则D1E1=;照这样继续下去,D1D2=D1B,且D2E2∥BC;D2D3=D2B,且D3E3∥BC;…;D n﹣1D n=D n﹣1B,且D n E n∥BC,则D n E n=(用含n的式子表示).30.(2014秋•上海校级期末)如图,已知l1∥l2∥l3,如果AB:BC=2:3,DE=4,则EF的长是.2016年01月24日4相似三角形的性质与判定4参考答案与试题解析一.选择题(共9小题)1.(2015•甘南州)如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD的面积为m,△OEB的面积为,则下列结论中正确的是()A.m=5 B.m=4C.m=3D.m=10【考点】相似三角形的判定与性质;平行四边形的性质.【分析】先根据平行四边形的性质求出△OCD∽△OEB,再根据相似三角形的性质解答即可.【解答】解:∵AB∥CD,∴△OCD∽△OEB,又∵E是AB的中点,∴2EB=AB=CD,∴=()2,即=()2,解得m=4.故选B.【点评】本题考查的是相似三角形的判定与性质,涉及到平行四边形的性质等知识,难度适中.2.(2015•株洲)如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A.B.C.D.【考点】相似三角形的判定与性质.【分析】易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得=,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【解答】解:∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选C.【点评】本题主要考查的是相似三角形的判定与性质,发现+=1是解决本题的关键.3.(2015•青海)在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则等于()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据题意得出△DEF∽△BCF,那么=;由AE:ED=2:1可设ED=k,得到AE=2k,BC=3k;得到=,即可解决问题.【解答】解:如图,∵四边形ABCD为平行四边形,∴ED∥BC,BC=AD,∴△DEF∽△BCF,∴=,设ED=k,则AE=2k,BC=3k;∴==,故选A.【点评】本题主要考查了相似三角形的判定与性质,平行四边形的性质等几何知识点及其应用问题;得出△DEF∽△BCF是解题的关键.4.(2015•济南)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD 于M、N两点.若AM=2,则线段ON的长为()A.B.C.1 D.【考点】相似三角形的判定与性质;角平分线的性质;正方形的性质.【专题】计算题.【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2OC=AC=+1,所以CH=AC﹣AH=2+,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.【解答】解:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴=,即=,∴ON=1.故选C.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.5.(2015•哈尔滨)如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()A.=B.=C.=D.=【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据相似三角形的判定和性质进行判断即可.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BF,BE∥DC,AD=BC,∴,,,故选C.【点评】此题考查相似三角形的判定和性质,关键是根据相似三角形的判定和性质来分析判断.6.(2015•宁波)如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A 落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC的距离记为h2015,到BC的距离记为h2015.若h1=1,则h2015的值为()A.B.C.1﹣D.2﹣【考点】相似三角形的判定与性质;三角形中位线定理;翻折变换(折叠问题).【专题】规律型.【分析】根据中点的性质及折叠的性质可得DA=DA'=DB,从而可得∠ADA'=2∠B,结合折叠的性质,∠ADA'=2∠ADE,可得∠ADE=∠B,继而判断DE∥BC,得出DE是△ABC的中位线,证得AA1⊥BC,得到AA1=2,求出h1=2﹣1=1,同理h2=2﹣,h3=2﹣=2﹣,于是经过第n次操作后得到的折痕D n﹣1E n﹣1到BC的距离h n=2﹣,求得结果h2015=2﹣.【解答】解:连接AA1,由折叠的性质可得:AA1⊥DE,DA=DA1,又∵D是AB中点,∴DA=DB,∴DB=DA1,∴∠BA1D=∠B,∴∠ADA1=2∠B,又∵∠ADA1=2∠ADE,∴∠ADE=∠B,∴DE∥BC,∴AA1⊥BC,∴AA1=2,∴h1=2﹣1=1,同理,h2=2﹣,h3=2﹣=2﹣,…∴经过第n次操作后得到的折痕D n﹣1E n﹣1到BC的距离h n=2﹣,∴h2015=2﹣,故选D.【点评】本题考查了相似三角形的判定和性质,三角形中位线的性质,平行线等分线段定理,找出规律是解题的关键.7.(2015•绵阳)如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C 与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()A.B.C.D.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【专题】压轴题.【分析】借助翻折变换的性质得到DE=CE;设AB=3k,CE=x,则AE=3k﹣x;根据相似三角形的判定与性质即可解决问题.【解答】解:设AD=k,则DB=2k,∵△ABC为等边三角形,∴AB=AC=3k,∠A=∠B=∠C=∠EDF=60°,∴∠EDA+∠FDB=120°,又∵∠EDA+∠AED=120°,∴∠FDB=∠AED,∴△AED∽△BDF,∴,设CE=x,则ED=x,AE=3k﹣x,设CF=y,则DF=y,FB=3k﹣y,∴,∴,∴=,∴CE:CF=4:5.故选:B.解法二:解:设AD=k,则DB=2k,∵△ABC为等边三角形,∴AB=AC=3k,∠A=∠B=∠C=∠EDF=60°,∴∠EDA+∠FDB=120°,又∵∠EDA+∠AED=120°,∴∠FDB=∠AED,∴△AED∽△BDF,由折叠,得CE=DE,CF=DF∴△AED的周长为4k,△BDF的周长为5k,∴△AED与△BDF的相似比为4:5∴CE:CF=DE:DF=4:5.故选:B.【点评】主要考查了翻折变换的性质及其应用问题;解题的关键是借助相似三角形的判定与性质(用含有k的代数式表示);对综合的分析问题解决问题的能力提出了较高的要求.8.(2015•恩施州)如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4 B.7 C.3 D.12【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由EF∥AB,根据平行线分线段成比例定理,即可求得,则可求得AB的长,又由四边形ABCD是平行四边形,根据平行四边形对边相等,即可求得CD的长.【解答】解:∵DE:EA=3:4,∴DE:DA=3:7∵EF∥AB,∴,∵EF=3,∴,解得:AB=7,∵四边形ABCD是平行四边形,∴CD=AB=7.故选B.【点评】此题考查了平行线分线段成比例定理与平行四边形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.9.(2015•毕节市)在△ABC中,DE∥BC,AE:EC=2:3,DE=4,则BC等于()A.10 B.8 C.9 D.6【考点】相似三角形的判定与性质.【分析】根据相似三角形的对应边成比例,即可求得BC的长.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴BC=10.故选A.【点评】此题考查了相似三角形的性质.此题比较简单,解题的关键是掌握相似三角形的对应边成比例定理的应用,注意数形结合思想的应用.二.填空题(共21小题)10.(2016•静安区一模)如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.【考点】相似三角形的判定与性质.【分析】由DE∥BC,证得△ADE∽△ABC,根据相似三角形的性质得到=,由于△DEF∽△BCF,根据相似三角形的性质即可得到结论.【解答】解:∵AE=1,CE=2,∴AC=3,∵DE∥BC,∴△ADE∽△ABC,∴=,∵DE∥BC,∴△DEF∽△BCF,∴=,故答案为:1:3.【点评】本题考查了相似三角形的判定和性质,熟练正确相似三角形的判定和性质是解题的关键.11.(2016•闵行区一模)如图,在△ABC中,∠ACB=90°,点F在边AC的延长线上,且FD⊥AB,垂足为点D,如果AD=6,AB=10,ED=2,那么FD=12.【考点】相似三角形的判定与性质.【分析】根据垂直的定义得到∠BDE=∠ADF=90°,根据三角形的内角和得到∠F=∠B,推出△ADF∽△BDE,根据相似三角形的性质得到,代入数据即可得到结论.【解答】解:∵FD⊥AB,∴∠BDE=∠ADF=90°,∵∠ACB=90°,∠CEF=∠BED,∴∠F=∠B,∴△ADF∽△BDE,∴,即,解得:DF=12,故答案为:12.【点评】本题考查了直角三角形的性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.12.(2016•徐汇区一模)点D在△ABC的边AB上,AC=3,AB=4,∠ACD=∠B,那么AD的长是.【考点】相似三角形的判定与性质.【分析】由∠A=∠A,∠ACD=∠B,得到△ABC∽△ACD,根据相似三角形的性质得到,代入数据即可得到结论.【解答】解:∵∠A=∠A,∠ACD=∠B,∴△ABC∽△ACD,∴,即:,∴AD=.故答案为:.【点评】本题考查了相似三角形的性质和判定的应用,注意:①相似三角形的对应边的比相等,②有两角对应相等的两三角形相似.13.(2015•天津)如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为 3.6.【考点】相似三角形的判定与性质.【分析】根据平行线得出△ADE∽△ABC,根据相似得出比例式,代入求出即可.【解答】解:∵AD=3,DB=2,∴AB=AD+DB=5,∵DE∥BC,∴△ADE∽△ABC,∴,∵AD=3,AB=5,BC=6,∴,∴DE=3.6.故答案为:3.6.【点评】本题考查了相似三角形的性质和判定,关键是求出相似后得出比例式,题目比较典型,难度适中.14.(2015•泰州)如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为5.【考点】相似三角形的判定与性质.【分析】易证△BAD∽△BCA,然后运用相似三角形的性质可求出BC,从而可得到CD的值.【解答】解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴=.∵AB=6,BD=4,∴=,∴BC=9,∴CD=BC﹣BD=9﹣4=5.故答案为5.【点评】本题主要考查的是相似三角形的判定与性质,由角等联想到三角形相似是解决本题的关键.15.(2015•金华)如图,直线l1、l2、…l6是一组等距的平行线,过直线l1上的点A作两条射线,分别与直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是5.【考点】相似三角形的判定与性质.【分析】由直线l1、l2、…l6是一组等距的平行线,得到△ABC∽△AEF,推出比例式求得结果.【解答】解:∵l3∥l6,∴BC∥EF,∴△ABC∽△AEF,∴=,∵BC=2,∴EF=5.【点评】本题考查了相似三角形的判定和性质,平行线等分线段定理,熟记定理是解题的关键.16.(2015•常州)如图,在△ABC中,DE∥BC,AD:DB=1:2,DE=2,则BC的长是6.【考点】相似三角形的判定与性质.【分析】由平行可得对应线段成比例,即AD:AB=DE:BC,再把数值代入可求得BC.【解答】解:∵DE∥BC,∴,∵AD:DB=1:2,DE=2,∴,解得BC=6.故答案为:6.【点评】本题主要考查平行线分线段成比例的性质,掌握平行线分线段成比例中的对应线段是解题的关键.17.(2015•连云港)如图,在△ABC中,∠BAC=60°,∠ABC=90°,直线l1∥l2∥l3,l1与l2之间距离是1,l2与l3之间距离是2,且l1,l2,l3分别经过点A,B,C,则边AC的长为.【考点】相似三角形的判定与性质;平行线之间的距离;勾股定理.【专题】压轴题.【分析】过点B作EF⊥l2,交l1于E,交l3于F,在Rt△ABC中运用三角函数可得=,易证△AEB∽△BFC,运用相似三角形的性质可求出FC,然后在Rt△BFC中运用勾股定理可求出BC,再在Rt△ABC中运用三角函数就可求出AC的值.【解答】解:如图,过点B作EF⊥l2,交l1于E,交l3于F,如图.∵∠BAC=60°,∠ABC=90°,∴tan∠BAC==.∵直线l1∥l2∥l3,∴EF⊥l1,EF⊥l3,∴∠AEB=∠BFC=90°.∵∠ABC=90°,∴∠EAB=90°﹣∠ABE=∠FBC,∴△BFC∽△AEB,∴==.∵EB=1,∴FC=.在Rt△BFC中,BC===.在Rt△ABC中,sin∠BAC==,AC===.故答案为.【点评】本题主要考查了相似三角形的判定与性质、三角函数、特殊角的三角函数值、勾股定理、平行线的判定与性质、同角的余角相等等知识,构造K型相似是解决本题的关键.18.(2015•河池)如图,菱形ABCD的边长为1,直线l过点C,交AB的延长线于M,交AD的延长线于N,则+=1.【考点】相似三角形的判定与性质;菱形的性质.【专题】压轴题.【分析】根据四边形ABCD是菱形得到BC∥AD,从而得到=,根据CD∥AM得到,从而得到==1,代入菱形的边长为1即可求得结论.【解答】证明:∵四边形ABCD是菱形,∴BC∥AD,CD∥AM,∴=,,∴==1,又∵AB=AD=1,∴+=1.故答案为:1.【点评】本题主要考查了相似三角形的判定与性质、菱形的判定及平行线分线段成比例定理,根据这个定理可以把线段的比进行转化.19.(2015•长沙)如图,在△ABC中,DE∥BC,,DE=6,则BC的长是18.【考点】相似三角形的判定与性质.【分析】由平行可得到DE:BC=AD:AB,由DE=6可求得BC.【解答】解:∵DE∥BC,∴DE:BC=AD:AB=,即6:BC=1:3,∴BC=18.故答案为:18.【点评】本题主要考查平行线分线段成比例定理,掌握平行线分线段所得线段对应成比例是解题的关键.20.(2015•柳州)如图,矩形EFGH内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF=EH,那么EH的长为.【考点】相似三角形的判定与性质;矩形的性质.【专题】应用题;压轴题.【分析】设EH=3x,表示出EF,由AD﹣EF表示出三角形AEH的边EH上的高,根据三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,即为EH的长.【解答】解:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴=,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,∴=,解得:x=,则EH=.故答案为:.【点评】此题考查了相似三角形的判定与性质,以及矩形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.21.(2015•盘锦)如图,已知△ABC中,AB=5,AC=3,点D在边AB上,且∠ACD=∠B,则线段AD的长为.【考点】相似三角形的判定与性质.【分析】由已知先证△ABC∽△ACD,再根据相似三角形的性质,相似三角形的对应边成比例,即可求出AD的值.【解答】解:∵∠A=∠A,∠ACD=∠B,∴△ABC∽△ACD,∴=,∵AB=5,AC=3,∴=,∴AD=.故答案为.【点评】本题考查相似三角形的判定和性质.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的值.22.(2015•娄底)一块直角三角板ABC按如图放置,顶点A的坐标为(0,1),直角顶点C的坐标为(﹣3,0),∠B=30°,则点B的坐标为(﹣3﹣,3).【考点】相似三角形的判定与性质;坐标与图形性质.【专题】压轴题.【分析】过点B作BD⊥OD于点D,根据△ABC为直角三角形可证明△BCD∽△COA,设点B坐标为(x,y),根据相似三角形的性质即可求解.【解答】解:过点B作BD⊥OD于点D,∵△ABC为直角三角形,∴∠BCD+∠CAO=90°,∴△BCD∽△COA,∴=,设点B坐标为(x,y),则=,y=﹣3x﹣9,∴BC==,AC==,∵∠B=30°,∴==,解得:x=﹣3﹣,则y=3.即点B的坐标为(﹣3﹣,3).故答案为:(﹣3﹣,3).【点评】本题考查了全等三角形的判定与性质以及坐标与图形的性质,解答本题的关键是作出合适的辅助线,证明三角形的相似,进而求解.23.(2015•盐城)设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB 的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则S n可表示为.(用含n的代数式表示,其中n为正整数)【考点】相似三角形的判定与性质.【专题】压轴题;规律型.【分析】连接D1E1,设AD1、BE1交于点M,先求出S△ABE1=,再根据==得出S△ABM:S△ABE1=(n+1):(2n+1),最后根据S△ABM:=(n+1):(2n+1),即可求出S n.【解答】解:如图,连接D1E1,设AD1、BE1交于点M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=,∵==,∴=,∴S△ABM:S△ABE1=(n+1):(2n+1),∴S△ABM:=(n+1):(2n+1),∴S n=.故答案为:.【点评】此题考查了相似三角形的判定与性质,用到的知识点是相似三角形的判定与性质、平行线分线段成比例定理、三角形的面积,关键是根据题意作出辅助线,得出相似三角形.24.(2015•盘锦)如图,在平面直角坐标系中,等腰△OBC的边OB在x轴上,OB=CB,OB边上的高CA与OC边上的高BE相交于点D,连接OD,AB=,∠CBO=45°,在直线BE上求点M,使△BMC与△ODC 相似,则点M的坐标是(1,﹣1)或(﹣,).【考点】相似三角形的判定与性质;一次函数图象上点的坐标特征.【专题】压轴题.【分析】根据等腰三角形的性质,线段垂直平分线的性质,可得△ODC是等腰三角形,先根据等腰直角三角形的性质和勾股定理得到AC,BC,OB,OA,OC,AD,OD,CD,BD的长度,再根据相似三角形的判定与性质分两种情况得到BM的长度,进一步得到点M的坐标.【解答】解:∵OB=CB,OB边上的高CA与OC边上的高BE相交于点D,AB=,∠CBO=45°,∴AB=AC=,OD=CD,∠BOC==67.5°,在Rt△BAC中,BC==2,∴OB=2,∴OA=OB﹣AB=2﹣,在Rt△OAC中,OC==2,在Rt△OAD中,OA2+AD2=OD2,(2﹣)2+AD2=(﹣AD)2,解得:AD=2﹣,∴OA=AD,∠DOA=45°,∴OD=CD=2﹣2,在Rt△BAD中,BD==2,①如图1,△BMC∽△CDO时,过M点作MF⊥AB于F,=,即=,解得BM=,∵MF⊥AB,CA是OB边上的高,∴MF∥DA,∴△BMF∽△BDA,∴==,即==,解得BF=1,MF=﹣1,∴OF=OB﹣BF=1,∴点M的坐标是(1,﹣1);②如图2,△BCM∽△CDO时,过M点作MF⊥AB于F,=,即=,解得BM=2,∵MF⊥AB,CA是OB边上的高,∴MF∥DA,∴△BMF∽△BDA,∴==,即==,解得BF=2+,MF=,∴OF=BF﹣OB=,∴点M的坐标是(﹣,).综上所述,点M的坐标是(1,﹣1)或(﹣,).故答案为:(1,﹣1)或(﹣,).【点评】考查了相似三角形的判定与性质,一次函数图象上点的坐标特征,等腰三角形的性质,线段垂直平分线的性质,等腰直角三角形的性质和勾股定理,关键是得到BM的长度,注意分类思想的应用.25.(2015•贺州)如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B,C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=,有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或;④0<BE≤,其中正确的结论是②③(填入正确结论的序号)【考点】相似三角形的判定与性质;全等三角形的判定与性质.【专题】压轴题.【分析】①根据有两组对应角相等的三角形相似即可证明;②由CD=9,则BD=15,然后根据有两组对应角相等且夹边也相等的三角形全等,即可证得;③分两种情况讨论,通过三角形相似即可求得;④依据相似三角形对应边成比例即可求得.【解答】解:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①错误;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=,∴=,∴=,∴cosα=,∵AB=AC=15,∴BG=12,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD与△DBE中,,∴△ACD≌△BDE(ASA).故②正确;③当∠BED=90°时,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=,AB=15,∴=∴BD=12.当∠BDE=90°时,易证△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=,AC=15,∴cosC==,∴CD=.∵BC=24,∴BD=24﹣=即当△DCE为直角三角形时,BD=12或.故③正确;④易证得△BDE∽△CAD,由②可知BC=24,设CD=y,BE=x,∴=,∴=,整理得:y2﹣24y+144=144﹣15x,即(y﹣12)2=144﹣15x,∴0<x≤,∴0<BE≤.故④错误.故正确的结论为:②③.故答案为:②③.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,三角函数的定义,不等式的性质.进行分类讨论是解决③的关键.26.(2015•镇江)如图,△ABC和△DBC是两个具有公共边的全等三角形,AB=AC=3cm.BC=2cm,将△DBC沿射线BC平移一定的距离得到△D1B1C1,连接AC1,BD1.如果四边形ABD1C1是矩形,那么平移的距离为7cm.【考点】相似三角形的判定与性质;等腰三角形的性质;矩形的性质;平移的性质.【专题】压轴题.【分析】作AE⊥BC于E,根据等腰三角形的性质和矩形的性质求得∠BAE=∠AC1B,∠AEB=∠BAC1=90°,从而证得△ABE∽△C1BA,根据相似三角形对应边成比例求得BC1=9,即可求得平移的距离即可.【解答】解:作AE⊥BC于E,∴∠AEB=∠AEC1=90°,∴∠BAE+∠ABC=90°∵AB=AC,BC=2,∴BE=CE=BC=1,∵四边形ABD1C1是矩形,∴∠BAC1=90°,∴∠ABC+∠AC1B=90°,∴∠BAE=∠AC1B,∴△ABE∽△C1BA,∴=∵AB=3,BE=1,∴=,∴BC1=9,∴CC1=BC1﹣BC=9﹣2=7;即平移的距离为7.故答案为7.【点评】本题考查了等腰三角形的性质,矩形的性质,三角形相似的判定和性质,作出辅助线构建相似三角形是解题的关键.27.(2015•宁波一模)如图,已知∠AOB=60°,点P在边OA上,OP=10,点M,N在边OB上,PM=PN,点C为线段OP上任意一点,CD∥ON交PM、PN分别为D、E.若MN=3,则的值为.【考点】平行线分线段成比例.【分析】过P作PQ垂直于MN,利用三线合一得到Q为MN中点,求出MQ的长,在直角三角形OPQ 中,利用30度所对的直角边等于斜边的一半求出OQ的长,由OQ﹣MQ求出OM的长,然后根据平行线分线段成比例即可得到结论.【解答】解:过P作PQ⊥MN,∵PM=PN,∴MQ=NQ=,在Rt△OPQ中,OP=10,∠AOB=60°,∴∠OPQ=30°,∴OQ=5,则OM=OQ﹣QM=,∵CD∥ON,∴,∴==,故答案为;.【点评】此题考查了平行线分线段成比例,勾股定理,等腰三角形的性质,以及含30度直角三角形的性质,熟练掌握勾股定理是解本题的关键.28.(2015秋•闸北区期中)如图,AB∥EF∥CD,AB=3,CD=7,AE:ED=1:3,则EF的长度为4.【考点】平行线分线段成比例.【分析】过点A作AM∥BC,交EF于点M,交CD于点N.由平行线分线段成比例定理得出比例式即可求解.【解答】解:过点A作AM∥BC,交EF于点M,交CD于点N.如图所示:则NC=MF=AB=3.DN=CD﹣CN=7﹣3=4.∵EF∥CD,∴=,∴EM=DN=1.∴EF=EM+MF=1+3=4;故答案为:4.【点评】本题主要考查了平行线分线段成比例定理,可以通过作平行线转化为三角形的问题解决.29.(2015秋•剑河县校级月考)如图,△ABC中,BC=1.若AD1=AB,且D1E1∥BC,则D1E1=;照这样继续下去,D1D2=D1B,且D2E2∥BC;D2D3=D2B,且D3E3∥BC;…;D n﹣1D n=D n﹣1B,且D n E n∥BC,则D n E n=1﹣()n(用含n的式子表示).【考点】平行线分线段成比例.【专题】规律型.【分析】由D1E1∥BC,可得△AD1E1∽△ABC,然后由相似三角形的对应边成比例,证得,继而求得D1E1的长,又由D1D2=D1B,可得AD2=AB,继而求得D2E2的长,同理可求得D3E3的长,则可求得答案.【解答】解:∵D1E1∥BC,∴△AD1E1∽△ABC,∴,∵BC=1,AD1=AB,∴D1E1=;∵D1D2=D1B,∴AD2=AB,同理可得:D2E2==1﹣=1﹣()2,D3E3==1﹣()3,∴D n E n=1﹣()n.故答案为:,1﹣()n.【点评】此题考查了相似三角形的判定与性质.注意得到规律:D n E n=1﹣()n是关键.30.(2014秋•上海校级期末)如图,已知l1∥l2∥l3,如果AB:BC=2:3,DE=4,则EF的长是6.【考点】平行线分线段成比例.【分析】由平行线l1∥l2∥l3,可得,再结合题干中的数据,进而可求解EF的长.【解答】解:∵l1∥l2∥l3,∴,又AB:BC=2:3,DE=4,∴EF=6.故答案为:6.【点评】本题主要考查了平行线分线段成比例的性质问题,能够熟练运用其性质求解一些简单的计算问题.。

相关文档
最新文档