佛山市七年级(下)期末数学同步检测(六)及答案

合集下载

初中数学(新人教版)七年级下册同步测试:第六章测评(同步测试)【含答案及解析】

初中数学(新人教版)七年级下册同步测试:第六章测评(同步测试)【含答案及解析】

第六章测评(时间:45分钟,满分:100分)一、选择题(本大题共8小题,每小题5分,共40分.下列各题给出的四个选项中,只有一项符合题意)1.四个实数1,0,√3,-3中,最大的数是( )A.1B.0C.√3D.-32.下列计算正确的是( )A.√(-3)2=-3B.√-53=√53C.√36=±6D.-√0.36=-0.63.√83的算术平方根是( )A .2B .±2C .√2D .±√2 4.满足-√2<x<√3的整数共有( )A.4个B.3个C.2个D.1个 5.实数2 √10介于( )A.4和5之间B.5和6之间C.6和7之间D.7和8之间6.若|x-2y|+√y +2=0,则xy 的值为( )A .8B .2C .5D .-6 7.若√a 3+√b 3=0,则下列等式成立的是( )A.a=b=0B.a=bC.a+b=0D.ab=08.如图,数轴上表示1,√3的对应点分别为点A ,B ,若AB=AC ,则点C 所表示的实数为( )A .√3-1B .1-√3C .2-√3D .√3-2二、填空题(每小题5分,共20分)9.已知非零整数x ,y 满足√x +√y 3=0,请写出一对符合条件的x ,y 的值: .10.以下判断:①数轴上任一点都表示一个有理数;②√23是分数;③任何非负实数都可以进行开平方运算;④因为√2,√3,√5都是无理数,所以无理数都是有根号的数.其中说法正确的是 .(填序号)11.比较大小:√5-3 √5-22.(填“>”“<”或“=”)12.若x ,y 都是实数,且√x +y +|x+√2|=0,则y 的相反数是 .三、解答题(共40分)13.(10分)计算:(1)√49+√9+16−√144;(2)√2163−√-3-383×√400.14.(10分)求下列各式中x 的值:(1)x 3+827=0;(2)(x-1)2-1=8.15.(10分)如图所示,在这个漂亮的螺旋图中,所有的三角形都是直角三角形.已知直角三角形有如下性质:直角三角形两直角边的平方和等于斜边的平方,如图中有结论OA 2+AB 2=OB 2,OB 2+BC 2=OC 2等.根据图中所标数据,试求出x ,y ,z ,w 的值,并指出其中的无理数.16.(10分)阅读下列解题过程.若5+√11的小数部分为a ,5-√11的小数部分为b ,求a+b 的值.解 ∵3<√11<4,∴5+√11的整数部分为8,5-√11的整数部分为1.∴5+√11的小数部分a=5+√11-8=√11-3,5-√11的小数部分b=5-√11-1=4-√11.∴a+b=√11-3+4-√11=1.阅读后,请解答下列问题:若6+√10的整数部分为a ,小数部分为b ,求2a-(√10+1)+b+2 019的值.答案:一、选择题1.C2.D3.C4.B5.C6.A7.C8.C 由题意,得AB=√3-1.∵AB=AC ,∴点C 表示的实数为1-(√3-1)=2-√3.二、填空题9.答案不唯一,如x=1,y=-1 10.③11.< ∵4<5<9,∴√4<√5<√9,即2<√5<3,∴√5-3<0,√5-22>0,即√5-3<√5-22. 12.-√2三、解答题13.解 (1)原式=7+5-12=0.(2)原式=6-√-2783×√400 =6-(-32)×20=6+30=36.14.解 (1)x=√-8273=-23.(2)因为(x-1)2=9,x-1=±3,所以x=4或x=-2.15.解 根据题意,得x 2=12+12=2,y 2=x 2+12=3,z 2=y 2+12=4,w 2=z 2+12=5, 由算术平方根的意义,得x=√2,y=√3,z=√4=2,w=√5,其中√2,√3,√5是无理数.16.解 ∵3<√10<4, ∴6+√10的整数部分a=9,6+√10的小数部分b=6+√10-9=√10-3.∴2a-(√10+1)+b+2 019=2×9-√10-1+√10-3+2 019=2 033.。

佛山市七年级下册末数学试卷及答案

佛山市七年级下册末数学试卷及答案

一、填空题1.若20212a -=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.答案:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵,且,均为整数,又∵,,∴可分为以下几种情况:①,,解得:,;②,,解得:或,;③,解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.2.如图,直线//MN PQ ,MN 与直线AB ,AC 分别交于D ,E ,PQ 与直线AB ,AC 分别交于F ,G ,若75C ∠=︒,26BGF ∠=︒,则AEN ∠=_________度.答案:131【分析】过点C 作CH ∥MN ,根据平行线的性质求出∠NEC 即可.【详解】解:过点C 作CH ∥MN ,∵,∴CH ∥PQ ,∴,∵,∴,∵CH ∥MN ,∴,∴故答案为:131.解析:131【分析】过点C 作CH ∥MN ,根据平行线的性质求出∠NEC 即可.【详解】解:过点C 作CH ∥MN ,∵//MN PQ ,∴CH ∥PQ ,∴26HCB BGF ∠=∠=︒,∵75ACB ∠=︒,∴49ACH ∠=︒,∵CH ∥MN ,∴49CEN ACH ∠=∠=︒,∴131180CEN AEN ∠︒∠==︒-故答案为:131.【点睛】本题考查了平行线的性质与判定,解题关键是恰当作平行线,根据平行线的性质进行推理计算.3.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A1,第2次移动到A2,…第n次移动到A n,则A2021的坐标是___________.答案:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,2021÷4=505•••1,所以A2021的坐标为(505×2+1,0),则A2021的坐标是(1011,0).故答案为:(1011,0).【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.4.如图,在平面直角坐标系中,有若干个整数点(纵横坐标都是整数的点),其顺序按图中“→”方向排列如(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)…根据这个规律探索可得,第2021个点的坐标为_____.答案:(45,5)【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐解析:(45,5)【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形1y =直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐标是偶数时,以偶数为横坐标,纵坐标为右下角横坐标的偶数的点结束,根据此规律解答即可.【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于1y =直线上最右边的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,211=,右下角的点的横坐标为2时,如下图点(2,1)A ,共有4个,242=,右下角的点的横坐标为3时,共有9个,293=,右下角的点的横坐标为4时,如下图点(4,1)B ,共有16个,2164=,⋯右下角的点的横坐标为n 时,共有2n 个, 2452025=,45是奇数,∴第2025个点是(45,1),202520214-=,点是(45,1)向上平移4个单位,∴第2021个点是(45,5).故答案为:(45,5).【点睛】本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键.5.如图,动点P在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点(2,2),第2次运动到点(4,0)A,第3次接着运动到点(6,1)按这样的运动规律,经过第2021次运动后动点P的坐标是________.答案:【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.【详解】解:根据动点在平面直角坐标系中按图中箭头所示方向运动解析:(4042,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.【详解】解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(2,2),第2次接着运动到点(4,0),第3次接着运动到点(6,1),∴第4次运动到点(8,0),第5次接着运动到点(10,2),⋯,∴横坐标为运动次数的2倍,经过第2021次运动后,动点P的横坐标为4042,纵坐标为2,0,1,0,每4次一轮,∴经过第2021次运动后,202145051÷=⋅⋅⋅,故动点P的纵坐标为2,∴经过第2021次运动后,动点P的坐标是(4042,2).故答案为:(4042,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.6.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排行,如(0,1),(0,2),(1,2),(1,3),(0,3),(-1,3),......根据这个规律探索可得,第40个点的坐标为_____________.答案:(1,9)【分析】观察可知,纵坐标的数值与点的个数相等,然后求出第40个点的纵坐标,以及在这一坐标中的序数,再根据纵坐标是奇数的从右到左计数,纵坐标是偶数的从左到右计数,然后解答即可.【详解】解析:(1,9)【分析】观察可知,纵坐标的数值与点的个数相等,然后求出第40个点的纵坐标,以及在这一坐标中的序数,再根据纵坐标是奇数的从右到左计数,纵坐标是偶数的从左到右计数,然后解答即可.【详解】解:(0,1),共1个,(0,2),(1,2),共2个,(1,3),(0,3),(-1,3),共3个,…,依此类推,纵坐标是n的共有n个坐标,1+2+3+…+n =()12n n +, 当n =9时,()9912+=45,所以,第40个点的纵坐标为9,45-40-(9-1)÷2=1,∴第40个点的坐标为(1,9).故答案为:(1,9).【点睛】本题考查了点的坐标与规律变化问题,观察出纵坐标的数值与相应的点的坐标的个数相等是解题的关键.7.在数轴上,点M ,N 分别表示数m ,n ,则点M ,N 之间的距离为|m ﹣n |.(1)若数轴上的点M ,N 分别对应的数为2M ,N 间的距离为 ___,MN 中点表示的数是 ___.(2)已知点A ,B ,C ,D 在数轴上分别表示数a ,b ,c ,d ,且|a ﹣c |=|b ﹣c |=23|d ﹣a |=1(a ≠b ),则线段BD 的长度为 ___.答案:2【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c|=|b ﹣c|与a≠解析:2【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c |=|b ﹣c |与a ≠b 推出C 为AB 的中点,然后根据题意分类讨论求解即可.【详解】解:(1)由题意,M ,N 间的距离为(222==;∵2MN =, ∴112MN =, 由题意知,在数轴上,M 点在N 点右侧,∴MN 的中点表示的数为1;(2)∵1a c b c -=-=且a b ,∴数轴上点A 、B 与点C 不重合,且到点C 的距离相等,都为1,∴点C 为AB 的中点,2AB =, ∵213d a -=, ∴32d a -=, 即:数轴上点A 和点D 的距离为32,讨论如下: 1>若点A 位于点B 左边: ①若点D 在点A 左边,如图所示:此时,37222BD AD AB =+=+=; ②若点D 在点A 右边,如图所示:此时,31222BD AB AD =-=-=; 2>若点A 位于点B 右边:①若点D 在点A 左边,如图所示:此时,31222BD AB AD =-=-=; ②若点D 在点A 右边,如图所示:此时,37222BD AD AB =+=+=; 综上,线段BD 的长度为12或72, 故答案为:2;21;12或72. 【点睛】本题考查数轴上两点间的距离,以及与线段中点相关的计算问题,理解数轴上点的特征以及两点间的距离表示方法,灵活根据题意分类讨论是解题关键.8.请先在草稿纸上计算下列四个式子的值:313312+333123++33331234+++333312326++++=__________.答案:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】+3n++=1+2+3+n∴3+=35126++=1+2+326故答案为:351【点睛】本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.9.现定义一种新运算:对任意有理数a、b,都有a⊗b=a2﹣b,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.答案:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.我们可以用符号f(a)表示代数式.当a是正整数时,我们规定如果a为偶数,f(a)=0.5a;如果a为奇数,f(a)=5a+1.例如:f(20)=10,f(5)=26.设a1=6,a2=f(a1),a3=f(a2)…;依此规律进行下去,得到一列数:a1,a2,a3,a4…(n为正整数),则2a1﹣a2+a3﹣a4+a5﹣a6+…+a2013﹣a2014+a2015=_____.答案:7【分析】本题可以根据代数式f(a)的运算求出a1,a2,a3,a4,a5,a6 ,a7的值,根据规律找出部分an的值,进而发现数列每7个数一循环,根据数的变化找出变化规律,依照规律即可得出结论解析:7【分析】本题可以根据代数式f(a)的运算求出a1,a2,a3,a4,a5,a6,a7的值,根据规律找出部分a n的值,进而发现数列每7个数一循环,根据数的变化找出变化规律,依照规律即可得出结论.【详解】解:观察,发现规律:a1=6,a2=f(a1)=3,a3=f(a2)=16,a4=f(a3)=8,a5=f(a4)=4,a6=f(a5)=2,a7=f(a6)=1,a8=f(a7)=6,…,∴数列a1,a2,a3,a4…(n为正整数)每7个数一循环,∴a1-a2+a3-a4+…+a13-a14=0,∵2015=2016-1=144×14-1,∴2a1-a2+a3-a4+a5-a6+…+a2013-a2014+a2015=a1+a2016+(a1-a2+a3-a4+a5-a6+…+a2015-a2016)=a1+a7=6+1=7.故答案为7.【点睛】本题考查了规律型中的数字的变化类以及代数式求值,解题的关键是根据数的变化找出变换规律,并且巧妙的借助了a1-a2+a3-a4+…+a13-a14=0来解决问题.11.若[x]表示不超过x的最大整数.如[π]=3,[4]=4,[﹣2.4]=﹣3.则下列结论:①[﹣x]=﹣[x];②若[x]=n,则x的取值范围是n≤x<n+1;③x=﹣2.75是方程4x﹣[x]+5=0的一个解;④当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2.其中正确的结论有 ___(写出所有正确结论的序号).答案:②④【分析】根据若表示不超过的最大整数,①取验证;②根据定义分析;③直接将代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x=2.5时,[﹣2.5]=﹣3,﹣[2.5]解析:②④【分析】代根据若[]x表示不超过x的最大整数,①取 2.5x验证;②根据定义分析;③直接将 2.75入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x=2.5时,[﹣2.5]=﹣3,﹣[2.5]=﹣2,∴此时[﹣x]与﹣[x]两者不相等,故①不符合题意;②若[x]=n,∵[x]表示不超过x的最大整数,∴x的取值范围是n≤x<n+1,故②符合题意;③将x=﹣2.75代入4x﹣[x]+5,得:4×(﹣2.75)﹣(﹣3)+5=﹣3≠0,故③不符合题意;④当﹣1<x<1时,若﹣1<x<0,[1+x]+[1﹣x]=0+1=1,若x=0,[1+x]+[1﹣x]=1+1=2,若0<x<1,[1+x]+[1﹣x]=1+0=1;故④符合题意;故答案为:②④.【点睛】本题主要考查取整函数的定义,是一个新定义类型的题,解题关键是准确理解定义求解.12.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2,则圆与数轴的公共点到原点的距离最远时,该点所表示的数是_______.答案:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4解析:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4(周),滚动第3次,所对应的周数为0﹣3﹣1+2=﹣2(周), 滚动第4次,所对应的周数为0﹣3﹣1+2﹣1=﹣3(周), 滚动第5次,所对应的周数为0﹣3﹣1+2﹣1+3=0(周), 滚动第6次,所对应的周数为0﹣3﹣1+2﹣1+3+2=2(周),所以圆与数轴的公共点到原点的距离最远是﹣4周,即该点所表示的数是﹣8π, 故答案为:﹣8π. 【点睛】题目主要考察数轴上的点及圆的滚动周长问题,确定相应滚动周数是解题关键.13.若()220a -=.则a b =______.答案:1 【分析】根据平方数和算术平方根的非负性即可求得a 、b 的值,再带入求值即可. 【详解】 ∵, ∴,∴a-2=0, b+1=0, ∴a=2,b =-1, ∴=, 故答案为:1 【点睛】 本题主要考解析:1 【分析】根据平方数和算术平方根的非负性即可求得a 、b 的值,再带入a b 求值即可. 【详解】∵()220a -,∴()220a -==,∴a -2=0, b +1=0, ∴a =2,b =-1, ∴a b =2(1)1-=, 故答案为:1 【点睛】本题主要考查非负数的性质,解题的关键是掌握偶次乘方的非负性和算数平方根的非负性. 14.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点1(0,1)A ,()21,1A ,()31,0A ,()42,0A ,…,那么点2021A 的坐标为__________.答案:【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An 的一般规律,从而可求得结果. 【详解】 ∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,, 解析:()1010,1【分析】由题意可知,每隔四次移动重复一次,继续得出A 5,A 6,A 7,A 8,…,归纳出点A n 的一般规律,从而可求得结果. 【详解】∵1(0,1)A ,()21,1A ,()31,0A ,()42,0A∴根据点的平移规律,可分别得:()52,1A ,()63,1A ,()73,0A ,()84,0A ,()94,1A ,()105,1A ,()115,0A ,()126,0A ,…,()4322,1n A n --,()4221,1n A n --,()4121,0n A n --,()42,0n A n∵2021=505×4+1∴2021A 的横坐标为2×505=1010,纵坐标为1 即2021(1010,1)A 故答案为:()1010,1 【点睛】本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律. 15.31y -312x -xy的值是____. 答案:【分析】首先根据与互为相反数,可得+=0,进而得出,然后用含的代数式表示,再代入求值即可. 【详解】解:∵与互为相反数, ∴+=0,∴ ∴ ∴.故答案为:. 【点睛】本题主要考查了实数 解析:12【分析】,进而得出1120-+-=y x ,然后用含x 的代数式表示y ,再代入求值即可. 【详解】解:∵∴,∴1120-+-=y x ∴2y x = ∴1=22x x y x =. 故答案为:12. 【点睛】本题主要考查了实数的运算以及相反数,根据相反数的概念求得y 与x 之间的关系是解题关键.16.教材在第七章复习题的“拓广探索”中,曾让同学们探索发现:在平面直角坐标系中,线段中点的横坐标(纵坐标)分别等于对应线段的两个端点的横坐标(纵坐标)和的一半.例如:点(1,1)A 、点(5,1)B ,则线段AB 的中点M 的坐标为(3,1).请利用以上结论解决问题:在平面直角坐标系中,点(3,)E a a +,(,1)F b a b ++,若线段EF 的中点G 恰好在x 轴上,且到y 轴的距离是2,则a b -=______答案:或19 【分析】根据线段的中点坐标公式即可得求出、的值,从而可得到答案. 【详解】 解:点,, 中点,,中点恰好位于轴上,且到轴的距离是2, ,解得:或, 或19;故答案为:或19. 【点睛解析:5-或19 【分析】根据线段的中点坐标公式即可得求出a 、b 的值,从而可得到答案. 【详解】解:点(3,)E a a +,(,1)F b a b ++,∴中点3(2a b G ++,1)2a ab +++, 中点G 恰好位于x 轴上,且到y 轴的距离是2,∴1023||22a ab a b +++⎧=⎪⎪⎨++⎪=⎪⎩, 解得:23a b =-⎧⎨=⎩或613a b =⎧⎨=-⎩,5a b ∴-=-或19; 故答案为:5-或19. 【点睛】本题考查坐标与图形性质,中点坐标公式,解题的关键是根据线段的中点坐标公式求出a 、b 的值.17.已知M是满足不等式a <NM N +的平方根为__________.答案:±3 【分析】先通过估算确定M 、N 的值,再求M+N 的平方根. 【详解】 解:∵, ∴, ∵, ∴, ∵, ∴,∴a 的整数值为:-1,0,1,2, M=-1+0+1+2=2, ∵, ∴, N=7解析:±3 【分析】先通过估算确定M 、N 的值,再求M+N 的平方根. 【详解】解:∵< ∴221,∵∴23<,∵a < ∴23a -<<,∴a 的整数值为:-1,0,1,2, M=-1+0+1+2=2, ∵∴78<,N=7, M+N=9, 9的平方根是±3; 故答案为:±3. 【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.18.规定:用符号[x ]表示一个不大于实数x 的最大整数,例如:[3.69]=3,=2,[﹣2.56]=﹣3,[=﹣2.按这个规定,[1]=_____.答案:-5 【详解】 ∵3<<4, ∴−4<−<−3, ∴−5<−−1<−4, ∴[−−1]=−5. 故答案为−5.点睛:本题考查了估算无理数的大小的应用,解决此题的关键是求出的范围.解析:-5 【详解】 ∵,∴,∴,∴故答案为−5.点睛:本题考查了估算无理数的大小的应用,解决此题的关键是求出13的范围. 19.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点,若:5:2BAE CAE ∠∠=,则CAE ∠的度数为__________.(用含α的代数式表示).答案:或 【分析】根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再由,,列出等量关系求解即可得出结论;②若点运动到下方,根据解析:41203α︒-或36047α︒-【分析】根据题意可分两种情况,①若点E 运动到1l 上方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再由5:2BAE CAE ∠∠=,BAE BAC CAE ∠=∠+∠,列出等量关系求解即可得出结论;②若点E运动到1l 下方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再由5:2BAE CAE ∠∠=,BAE BAC CAE ∠=∠-∠列出等量关系求解即可得出结论. 【详解】解:如图,若点E 运动到l 1上方,//AC BD ,CBD ACB α∴∠=∠=,BC 平分ABD ∠,22ABD CBD α∴∠=∠=, 1801802BAC ABD α∴∠=︒-∠=︒-,又5:2BAE CAE ∠∠=,5():2BAC CAE CAE ∴∠+∠∠=,5(1802):2CAE CAE α︒-+∠∠=, 解得180241205312CAE αα︒-∠==︒--; 如图,若点E 运动到l 1下方,//AC BD ,CBD ACB α∴∠=∠=,BC 平分ABD ∠,22ABD CBD α∴∠=∠=, 1801802BAC ABD α∴∠=︒-∠=︒-,又5:2BAE CAE ∠∠=,5():2BAC CAE CAE ∴∠-∠∠=, 5(1802):2CAE CAE α︒--∠∠=, 解得180236045712CAE αα︒-︒-∠==+. 综上CAE ∠的度数为41203α︒-或36047α︒-. 故答案为:41203α︒-或36047α︒-. 【点睛】本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补.两直线平行,内错角相等,合理应用平行线的性质是解决本题的关键. 20.一副直角三角只如图①所示叠成,含45︒角的三角尺ADE 固定不动,将含30角的三角尺ABC 绕顶点A 顺时针转动,使BC 与三角形ADE 的一边平行,如图②,当15BAD ∠=︒时,//BC DE ,则()90360BAD BAD ∠︒<∠<︒其他所有符合条件的度数为________.答案:105°、195°、240°和285°【分析】根据题意画出图形,再由平行线的性质定理即可得出结论.【详解】解:如图,当BC∥AE时,∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB解析:105°、195°、240°和285°【分析】根据题意画出图形,再由平行线的性质定理即可得出结论.【详解】解:如图,当BC∥AE时,∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当BC∥DE时,延长BA,交DE于F,则∠AFE=∠B=60°,∴∠DAF=∠AFE-∠D=60°-45°=15°,∴∠DAB=15°+180°=195°;如图,当BC∥AD时,∠CAD=∠C=30°,∴∠BAD=360°-30°-90°=240°;如图,当BC∥AE时,∠CAE=∠C=30°,∴∠CAD=45°-30°=15°,锐角∠DAB=90°-∠CAD=75°,∴旋转角∠DAB=360°-75°=285°,故答案为:105°、195°、240°和285°.【点睛】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.21.如图,△ABC中,∠C=90︒,AC=5cm,CB=12cm,AB=13cm,将△ABC沿直线CB向右平移3cm得到△DEF,DF交AB于点G,则点C到直线DE的距离为______cm.答案:【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD、CD,作CH⊥DE于H,依题意可得AD=BE=3cm,∵梯形ACED解析:7513 【分析】 根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD 、CD ,作CH ⊥DE 于H ,依题意可得AD=BE=3cm ,∵梯形ACED 的面积()()2131235452S cm =⨯++⨯=, ∴()1153134522ADC DCE S S CH +=⨯⨯+⨯⋅=, 解得7513CH =; 故答案为:7513. 【点睛】 本题考查的是图形的平移和点到直线的距离,注意图形平移前后的形状和大小不变,以及平移前后对应点的连线相等.22.如图,在平面内,两条直线1l ,2l 相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.答案:4【分析】到的距离是2的点,在与平行且与的距离是2的两条直线上;同理,点在与的距离是1的点,在与平行,且到的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:解析:4【分析】到1l的距离是2的点,在与1l平行且与1l的距离是2的两条直线上;同理,点M在与2l的距离是1的点,在与2l平行,且到2l的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:到1l的距离是2的点,在与1l平行且与1l的距离是2的两条直线上;到2l的距离是1的点,在与2l平行且与2l的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.【点睛】本题主要考查了到直线的距离等于定长的点的集合.23.一副三角尺按如图所示叠放在一起,其中点,B D重合,若固定三角形AOB,将三角形ACD绕点A顺时针旋转一周,共有 _________次出现三角形ACD的一边与三角形AOB的某一边平行.答案:【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分10种情况讨论:(1)如图1,AD边与OB边平行时,∠BAD=45°或135°;;解析:8【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分10种情况讨论:(1)如图1,AD边与OB边平行时,∠BAD=45°或135°;;(2)如图2,当AC边与OB平行时,∠BAD=90°+45°=135°或45°;(3)如图3,DC边与AB边平行时,∠BAD=60°+90°=150°,(4)如图4,DC边与OB边平行时,∠BAD=135°+30°=165°,(5)如图5,DC边与OB边平行时,∠BAD=45°﹣30°=15°;(6)如图6,DC边与AO边平行时,∠BAD=15°+90°=105°(7)如图7,DC边与AB边平行时,∠BAD=30°,(8)如图8,DC边与AO边平行时,∠BAD=30°+45°=75°;综上所述:∠BAD的所有可能的值为:15°,30°,45°,75°,105°,135°,150°,165°.故答案为:8.【点睛】本题考查了平行线的性质及判定,画出所有符合题意的示意图是解决本题的关键.24.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)答案:【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠解析:【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠GFI=80°所以,∠HGK=150°-∠KGF=70°所以,∠JHG=∠HGK=70°同理,∠2=90°-∠JHG=20°所以,∠1=90°-∠2=70°故答案为70【点睛】本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等.25.如图①:MA1∥NA2,图②:MA11NA3,图③:MA1∥NA4,图④:MA1∥NA5,……,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1______.(用含n的代数式表示)答案:【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2解析:n180︒【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2×180∘,如图③中,∠A1+∠A2+∠A3+∠A4=540∘=3×180∘,…,第n个图, ∠A1+∠A2+∠A3+…+∠A n+1学会从=n180︒,故答案为180n︒.点睛:平行线的性质.26.如图,直线,将含有角的三角板的直角顶点放在直线上,若,则的度数为________答案:【解析】试题分析:过B作BE∥m,则根据平行公理及推论可知l∥BE,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.解析:【解析】试题分析:过B作BE∥m,则根据平行公理及推论可知l∥BE,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.27.已知:如图,直线AB 、CD 相交于点O ,OA 平分∠EOC ,若∠EOC :∠EOD =2:3,则∠BOD 的度数为________.答案:36°【分析】先设∠EOC =2x ,∠EOD =3x ,根据平角的定义得2x+3x =180°,解得x =36°,则∠EOC =2x =72°,根据角平分线定义得到∠AOC ∠EOC72°=36°,然后根据对顶解析:36°【分析】先设∠EOC =2x ,∠EOD =3x ,根据平角的定义得2x +3x =180°,解得x =36°,则∠EOC =2x =72°,根据角平分线定义得到∠AOC 12=∠EOC 12=⨯72°=36°,然后根据对顶角相等得到∠BOD =∠AOC =36°.【详解】解:设∠EOC =2x ,∠EOD =3x ,根据题意得2x +3x =180°,解得x =36°,∴∠EOC =2x =72°,∵OA 平分∠EOC ,∴∠AOC 12=∠EOC 12=⨯72°=36°, ∴∠BOD =∠AOC =36°.故答案为:36°【点睛】考查了角的计算,角平分线的定义和对顶角的性质.解题的关键是明确:1直角=90°;1平角=180°,以及对顶角相等.28.已知:如图,CD 平分ACB ∠,12180∠+∠=︒,3A ∠=∠,440∠=︒,则CED ∠=___.答案:100°【分析】先由同位角相等,证得,进而证得,再由平行线的性质得出与的数量关系,然后由已知条件求得,最后用减去,即可求得答案.【详解】解:,平分,故答案为:.【点睛解析:100°【分析】先由同位角相等,证得//EF AB ,进而证得//AC DE ,再由平行线的性质得出CED ∠与ACB ∠的数量关系,然后由已知条件求得ACB ∠,最后用180︒减去ACB ∠,即可求得答案.【详解】解:12180∠+∠=︒,1180BDC ∠+∠=︒2BDC ∴∠=∠//EF AB ∴3BDE ∴∠=∠3A ∠=∠A BDE ∴∠=∠//AC DE ∴180ACB CED ∴∠+∠=︒ CD 平分ACB ∠,440∠=︒2424080ACB ∴∠=∠=⨯︒=︒180********CED ACB ∴∠=︒-∠=︒-︒=︒故答案为:100︒.【点睛】本题考查了平行线的判定与性质,解题的关键是熟练掌握相关判定定理与性质定理. 29.如图,将长方形ABCD 沿EF 折叠,点D 落在AB 边上的H 点处,点C 落在点G 处,若30AEH ∠=︒,则EFC ∠等于______︒.答案:105°【分析】根据折叠得出∠DEF=∠HEF ,求出∠DEF 的度数,根据平行线的性质得出∠DEF+∠EFC=180°,代入求出即可.【详解】解:∵将长方形ABCD 沿EF 折叠,点D 落在AB 边上解析:105°【分析】根据折叠得出∠DEF =∠HEF ,求出∠DEF 的度数,根据平行线的性质得出∠DEF +∠EFC =180°,代入求出即可.【详解】解:∵将长方形ABCD 沿EF 折叠,点D 落在AB 边上的H 点处,点C 落在点G 处, ∴∠DEF =∠HEF ,∵∠AEH =30°, ∴1180752DEF HEF AEH ∠=∠=︒-∠=︒(), ∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DEF +∠EFC =180°,∴∠EFC =180°-75°=105°,故答案为:105°.【点睛】本题考查了平行线的性质,折叠的性质等知识点,能求出∠DEF =∠HEF 和∠DEF +∠EFC =180°是解此题的关键.30.将1236按如图方式排列.若规定m ,n 表示第m 排从左向右第n 个数,则()7,3所表示的数是___________.答案:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列6【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1,1+2+3+4+5+6+3=24,24÷4=6,则(7,36,6.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.31.某景区游船码头派车原定于8点整准时到达景区入口接工作人员,由于汽车在路上因故障导致8:10时车还未到达景区入口,于是工作人员步行前往码头.走了一段时间后遇到了前来接他的汽车,他上车后汽车立即掉头继续前进.到达码头时已经比原计划迟到了20min.已知汽车的速度是工作人员步行速度的6倍,则汽车在路上因故障耽误的时间为____min.答案:【解析】【分析】正常8:00到景区,出故障后,耽误t分钟,8点t分到景区,他在景区等了10分钟,车没来,就走了a分钟,在8点(10+a)分时遇到了车,他走a分钟的路程,车走分钟就走完,也就是在解析:【解析】【分析】正常8:00到景区,出故障后,耽误t分钟,8点t分到景区,他在景区等了10分钟,车。

佛山市七年级(下)期末数学6

佛山市七年级(下)期末数学6

广东省佛山市七年级(下)期末数学同步检测(六)一、选择题(共10小题,每小题3分,满分30分)1.下列运算正确的是()A.(a+b)(b-a)=a2-b2B.(a-2)2=a2-4C.a3+a3=2a6D.(-3a2)2=9a42.为了做一个试管架,在长为acm(a>6cm)的木板上钻3个小孔(如图),每个小孔的直径为2cm,则x等于()A.a-3 4 cm B.a+34cmC.a-64cmD.a+64cm 3.如图,直线a与直线b互相平行,则|x-y|的值是()A.20 B.80 C.120 D.1804.如图,直线EO⊥BC于点O,∠BOC=3∠1,OD平分∠AOC,则∠2的度数是()A.30°B.40°C.60°D.以上结果都不正确5.下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为50°和20°的三角形一定是钝角三角形,④直角三角形中两锐角的和为90°,其中判断正确的有()A.1个B.2个C.3个D.4个6.某班在组织学生讨论怎样测量1张纸大约有多厚时,出现了以下四种观点,你认为较合理且可行的观点是()A.直接用三角尺测量1张纸的厚度B.先用三角尺测量同类型的2张纸的厚度C.先用三角尺测量同类型的100张纸的厚度D.先用三角尺测量同类型的1000000张纸的厚度7.随意抽一张扑克牌(这副牌中无大小王,A 作1,K作13),则抽到奇数的可能性和偶数的概率哪个大()A.奇数概率大B.偶数概率大C.奇数和偶数概率一样D.不能确定8.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为()A.B.C.D.9.如图,四边形ABCD中,BC∥AD,AB=CD,BE=DF,图中全等三角形的对数是()A.5 B.6 C.3 D.410.如图,在Rt△ABC中,∠C=90°,BD是∠ABC的平分线交AC于D,若CD=m,AB=n,则△ABD的面积是()A.mn B.12mnC.13mnD.2mn二、填空题(共5小题,每小题3分,满分15分)11.若x2y m-1是七次单项式,则m=.12.已知∠AOB=40°,OC平分∠AOB,则∠AOC的补角等于度.13.△ABC中,∠A+∠B=∠C,∠A的平分线交BC于点D,过D作DE⊥AB于E.若CD=2cm,则DE为cm.14.如图,△ABC的角平分线AD、BE交于点F,点F到边BC的距离为2cm,那么点F到边AC的距离为cm.15.A、B两地相距90千米,甲乙二人同时出发,从A地到B地.所用时间x(时)与所行路程y(千米)的关系如图所示.则先到达B地的是.三、解答题(共10小题,满分75分)16.已知x2-2x=2,求代数式(x-1)2+(x+3)(x-3)+(x-3)(x-1)的值.17.在公式(a+b)2=a2+2ab+b2中,如果我们把a+b,a2+b2,ab分别看做一个整体,那么只要知道其中两项的值,就可以求出第三项的值.已知a+b=6,ab=-27,求下列的值.(1)a2+b2;(2)a2+b2-ab;(3)(a-b)2.18.观察下列各式:1×2×3×4+1=52=(12+3×1+1)2,2×3×4×5+1=112=(22+3×2+1)2,3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,…(1)根据你观察、归纳、发现的规律,写出8×9×10×11+1的结果;(2)试猜想:n(n+1)(n+2)(n+3)+1是哪一个数的平方?并说明理由.19.一游泳池长90米,甲乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,请根据图形回答:(1)甲、乙两人分别游了几个来回?(2)甲、乙两人在整个游泳过程中,谁曾休息过?休息过几次?(3)甲游了多长时间?游泳的速度是多少?(4)在整个游泳过程中,甲、乙两人相遇了几次?20.如图,是一个可以自由转动的转盘,转盘被分成了6个扇形,其中标有数字1的扇形及圆心角(即∠AOB)为90°;标有数字2,4及6的扇形(即扇形BOC,扇形DOE,扇形FOA)其圆心角(即(∠COD,∠EOF)均为45度.利用这个转盘甲,乙两人做下列游戏:自由转动转盘,指针指向奇数则甲获胜,而指针指向偶数则乙获胜,你认为这个游戏对甲,乙双方公平吗?为什么?21.如图,将长为50cm,宽为10cm的长方形白纸粘合起来,粘合部分宽为2cm.(1)求5张白纸粘合后的长度;(2)高x张白纸粘合后的长度为ycm,写出y与x的关系式,并求出当x=10时,y的值.22.如图,∠ABD和∠BDC的平分线相交于点E,BE交CD于F,∠1+∠2=90°,试问:直线AB、CD在位置上有什么关系?∠2与∠3在数量上有什么关系?23.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.24.如图,AB=AC,AD⊥BC于点D,AD=AE,AB平分∠DAE交DE于点F,请你写出图中三对全等三角形,并选取其中一对加以证明.25.已知:如图,AD=BC,AC=BD.试判断OD、OC的数量关系,并说明理由.。

【3套打包】佛山市七年级下册数学期末考试试题(含答案)(6)

【3套打包】佛山市七年级下册数学期末考试试题(含答案)(6)

最新七年级(下)数学期末考试试题【答案】一、选择题(共10小题,每小题3分,满分30分)1.下列实数中,属于无理数的是( )A 、227B 、3.14CD 、0 答案:C考点:无理数的概念。

解析是无限不循环的小数,所以,是无理数。

2.下面调查中,适宜采用全面调查方式的是( )A 、调查某批次汽车的抗撞击能力B 、调查市场上某种食品的色素含量是否符合国家标准 C 、了解某班学生的视力情况 D 、调查春节联欢晚会的收视率答案:C考点:统计。

解析:A 、B 、D 的样本容易大,不适宜采用全面调查方式,只有C ,某班学生的数量是有限的,全面调查可行。

3.如图,直线a ∥b ,直角三角形的直角顶点在直线b 上,已知∠1=48°,则∠2的度数是( )A 、42°B 、52°C 、48°D 、58°答案:A考点:两直线平行的性质,平角的概念。

解析:如下图,依题意,有:∠1+90°+∠3=180°,因为∠1=48°,所以,∠3=42°,因为a ∥b ,所以,∠2=∠3=42°,选A 。

4.若m >n ,则下列不等式变形错误的是( )A 、m ﹣5>n ﹣5B 、6m >6nC 、﹣3m >﹣3nD 、21m x +>21n x + 答案:C考点:不等式的性质。

解析:A 、不等式的两边同时减去一个数,不等号方向不改变,故正确;B 、不等式的两边同时乘以一个正数6,不等号方向不改变,故正确;C 、不等式的两边同时乘以一个负数,不等号方向要改变,故错误;D 、不等式的两边同时除以一个正数(2x +1),不等号方向不改变,故正确;选C 。

5.方程组3759y x x y =+⎧⎨+=⎩的解是( ) A 、1272x y ⎧=⎪⎪⎨⎪=⎪⎩ B 、1252x y ⎧=-⎪⎪⎨⎪=⎪⎩ C 、41x y =-⎧⎨=-⎩ D 、21x y =⎧⎨=-⎩ 答案:B考点:二元一次方程组。

2022届广东省佛山市七年级第二学期期末质量跟踪监视数学试题含解析

2022届广东省佛山市七年级第二学期期末质量跟踪监视数学试题含解析

2022届广东省佛山市七年级第二学期期末质量跟踪监视数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每题只有一个答案正确)1.以下列各组线段为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .4cm ,6cm ,8cmC .5cm ,6cm ,12cmD .2cm ,3cm ,5cm 【答案】B【解析】【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【详解】A. 1+2<4,故不能组成三角形,错误;B. 4+6>8,故能组成三角形,正确;C. 5+6<12,故不能组成三角形,错误;D. 2+3=5,故不能组成三角形,错误.故选B.【点睛】本题考查三角形三边关系,解题的关键是掌握三角形三边关系.2.如图,五架轰炸机组成了一个三角形飞行编队,且每架飞机都在边长等于1正方形网格格点上,其中A 、B 两架轰炸机对应点的坐标分别为()2,1A -和()2,3B --,那么轰炸机C 对应点的坐标是( )A .()2,1-B .()4,2-C .()4,2D .()2,0【答案】A【解析】【分析】 根据A (﹣2,1)和B (﹣2,﹣3)的坐标以及与C 的关系进行解答即可.【详解】因为A (﹣2,1)和B (﹣2,﹣3),所以建立如图所示的坐标系,可得轰炸机C 的坐标为(2,﹣1).故选A .【点睛】本题考查了坐标问题,关键是根据A (﹣2,1)和B (﹣2,﹣3)的坐标确定坐标轴的位置.3.解方程11132x --=,去分母正确的是( ) A .2-(x-1)=1B .2-3(x-1)=6C .2-3(x-1)=1D .3-2(x-1)=6 【答案】B【解析】【分析】两边都乘以各分母的最小公倍数6即可.【详解】11132x --=, 两边都乘以各分母的最小公倍数6得,2-3(x-1)=6.故选B.【点睛】解一元一次方程去分母的方法是两边都乘各分母的最小公倍数,一是不要漏乘不含分母的项,二是去掉分母后要把多项式的分子加括号.4.如图是一张长条形纸片,其中AB CD ∥,将纸片沿EF 折叠,A 、D 两点分别与'A 、'D 对应,若12∠=∠,则'D FC ∠的度数为( )A.72B.36C.60D.65【答案】C【解析】【分析】依据平行线的性质以及折叠的的性质,即可得到∠A'EF=60°,∠1=60°,再根据平行线的性质,即可得到∠D′FC的度数.【详解】解:∵AB∥CD,∴∠1=∠AEF,由折叠可得∠A'EF=∠AEF,又∵∠1=∠2,∴∠AEF=∠A'EF=∠2,∵∠AEB=180°,∴∠A'EF=60°,∠1=60°,∵A'E∥D'F,∴∠A'EF+∠D'FE=180°,∴∠D'FC=180°-60°-60°=60°,故选:C.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.5.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上【答案】D【解析】【详解】试解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.∵OP 平分∠AOB ,∴∠EOP=∠POF=60°,∵OP=OE=OF ,∴△OPE ,△OPF 是等边三角形,∴EP=OP ,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN ,在△PEM 和△PON 中,PEM PON PE PO EPM OPN ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△PEM ≌△PON .∴PM=PN ,∵∠MPN=60°,∴△PNM 是等边三角形,∴只要∠MPN=60°,△PMN 就是等边三角形,故这样的三角形有无数个.故选D .6.若﹣12a≥b ,则a≤﹣2b ,其根据是( ) A .不等式的两边都加上(或减去)同一个整式,不等号的方向不变B .不等式的两边都乘(或除以)同一个正数,不等号的方向不变C .不等式的两边都乘(或除以)同一个负数,不等号的方向改变D .不等式的两边都乘(或除以)同一个负数,不等号的方向不变【答案】C【解析】【分析】根据不等式的性质分析即可.【详解】 ∵把﹣12a≥b 的两边都乘以-2,可得a≤﹣2b , ∴其根据是:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.故选C.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.a-=,则a的值是()7.已知20A.2-C.2D.1.414±B.2【答案】A【解析】【分析】先把原式化为|a|2=,再根据绝对值的定义求出a的值即可.【详解】∵|a|2=,即则a=±2.-=0,∴|a|2故选A.【点睛】本题考查了绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0;互为相反数的绝对值相等.8.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是()A.SSS B.SAS C.ASA D.AAS【答案】C【解析】【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【详解】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点睛】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.9.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.a cb b <【答案】B【解析】【分析】先由数轴观察a、b、c的正负和大小关系,然后根据不等式的基本性质对各项作出正确判断. 【详解】由数轴可以看出a<b<0<c,因此,A、∵a<b,∴a﹣c<b﹣c,故选项错误;B、∵a<b,∴a+c<b+c,故选项正确;C、∵a<b,c>0,∴ac<bc,故选项错误;D、∵a<c,b<0,∴a cb b>,故选项错误.故选B.【点睛】此题主要考查了不等式的基本性质及实数和数轴的基本知识,比较简单.10.某校对学生上学方式进行一次抽样调查,并根据调查结果绘制了不完整的扇形统计图,其中其他部分对应的圆心角是36°,则步行部分所占百分比是()A.10% B.35% C.36% D.40%【答案】D【解析】【分析】先根据“其他”部分所对应的圆心角是36°,算出“其他”所占的百分比,再计算“步行”部分所占百分比即可.【详解】∵其他部分对应的百分比为:36360×100%=10%,∴步行部分所占百分比为1﹣(35%+15%+10%)=40%,故选:D.【点睛】熟知“扇形统计图中各部分所占百分比的计算方法和各部分所占百分比间的关系”是解答本题的关键.二、填空题11.在同一平面内,不重合的两条直线的位置关系有_____.【答案】相交或平行【解析】【分析】根据同一平面内,不重合的两条直线的位置关系可知.【详解】在同一平面内,不重合的两条直线有2种位置关系,它们是相交或平行.故答案为相交或平行【点睛】本题是基础题型,主要考查了在同一平面内,不重合的两条直线的两种位置关系.12.如图,直线m∥n,若∠1=70°,∠2=25°,则∠A等于_____.【答案】45°【解析】【分析】首先根据平行线的性质求出∠3的度数,然后根据三角形的外角的知识求出∠A的度数.【详解】如图,∵直线m∥n,∴∠1=∠3,∵∠1=70°,∴∠3=70°,∵∠3=∠2+∠A,∠2=25°,∴∠A=45°,故答案为45°.【点睛】本题考查了平行线的性质和三角形的外角性质,解决问题的关键是求出∠3的度数.13.已知12xy=⎧⎨=-⎩是方程2x﹣ay=3的一个解,则a的值是_____.【答案】1 2【解析】∵1{2xy==-是方程2x−ay=3的一个解,∴2×1−(−2)×a=3,解得a=12,故答案为:1 2 .14.已知等边三角形ABC的高为6,在这个三角形所在的平面内有一个点P,若点P到AB的距离是1,点P到AC的距离是2,则点P到BC的最小距离与最大距离分别是_______.【答案】3和1【解析】【分析】根据题意画出相应的图形,直线DM与直线NF都与AB的距离为1,直线NG与直线ME都与AC的距离为2,当P与N重合时,HN为P到BC的最小距离;当P与M重合时,MQ为P到BC的最大距离,根据题意得到△NFG与△MDE都为等边三角形,利用锐角三角函数定义及特殊角的三角函数值求出DB与FB 的长,以及CG与CE的长,进而由DB+BC+CE求出DE的长,由BC-BF-CG求出FG的长,求出等边三角形NFG与等边三角形MDE的高,即可确定出点P到BC的最小距离和最大距离.【详解】解:根据题意画出相应的图形,直线DM与直线NF都与AB的距离为1,直线NG与直线ME都与AC的距离为2,当P与N重合时,HN为P到BC的最小距离;当P与M重合时,MQ为P到BC的最大距离,根据题意得到△NFG与△MDE都为等边三角形,∵等边三角形ABC的高为6∴等边三角形ABC的边长:BC=3∴DB=FB23=,CE=CG43=,∴DE=DB+BC+CE=233+43433+=63, FG=BC-BF-CG=23434323--= ∴NH=3,MQ=1则点P 到BC 的最小距离和最大距离分别是3,1.故答案为3,1.【点睛】此题考查了等边三角形的性质,以及平行线间的距离,作出相应的图形是解本题的关键.15.如果|x ﹣2y+1|+|x+y ﹣5|=0,那么xy =_____.【答案】6【解析】【分析】根据两个非负数之和为0,则这两个数都为0,建立关于x 、y 的方程组,解方程组求出x 、y 的值,然后代入代数式求值即可.【详解】解:∵2150x y x y -+++-=∴21050x y x y -+=⎧⎨+-=⎩ 解之:32x y =⎧⎨=⎩∴xy=3×2=6故答案为6【点睛】本题考查的是绝对值非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键. 16.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=30米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为______米.【答案】1【解析】∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB ,铅直距离等于(AD-1)×2, 又∵长AB=50米,宽BC=25米,∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50+(25-1)×2=1米, 故答案为1.17.已知2P m m =-,1Q m =-(m 为任意实数),则P 、Q 的大小关系为________.【答案】P≥Q【解析】【分析】用求差比较法比较大小:若P -Q >0,则P >Q ;若P -Q =0,则P =Q ;若P -Q <0,则P <Q .【详解】∵P -Q = m 2-m -(m -1)=m 2-2m+1=2m 1-(), ∵2m 1-()≥0, 故答案为P≥Q.【点睛】本题主要考查的是比较大小的常用方法,掌熟练握比较大小的常用方法是本题的解题的关键.三、解答题18.观察下列式子,探索它们的规律并解决问题:111122=-⨯,1112323=-⨯,1113434=-⨯,…… (1)试用正整数n 表示这个规律,并加以证明;(2)运用(1)中得到的规律解方程: ()()()()()()()111111122320172018x x x x x x x x x+++⋯+=+++++++ 【答案】(1)()11111n n n n =-++,证明见解析;(2)分式方程无解. 【解析】【分析】(1)由已知等式知连续整数乘积的倒数等于各自倒数的差,据此可得;(2)利用所得规律化简原分式方程,解之可得.【详解】(1)()11111n n n n =-++∵左边()11n n =+, 右边()()()()1111111n n n n n n n n n n n +-=-==++++, ∴左边=右边∴()11111n n n n =-++; (2)根据(1)中的规律方程变形为:1111111+11220172018x x x x x x x-+-+⋯-=+++++, 1112018x x x-=+, 两边都乘以()2018x x +,得:20182018x x x +-=+,解得:0x =,检验:0x =时,()20180x x +=,是分式方程的增根,所以分式方程无解.【点睛】此题考查规律型:数字的变化类,解题关键在于掌握运算法则.19.计算:(1)23()a -·(b 3)2·()ab 4 (2)2(3)x y -·243x xy -() (3)(22)(22)x y x y +-++ (4)2(5)(2)(3)x x x +---【答案】:(1)1010a b - ;(2)() 1333129x y x y -+;(3)22444x xy y ++-;(4)1519x +. 【解析】【分析】(1)先计算幂的乘方与积的乘方,现进行单项式相乘即可;(2)根据单项式乘以多项式的运算法则进行计算即可得解;(3)先运用平方差公式进行计算,再运用完全平方公式进行计算即可得解;(4)分别运用完全平方公式和多项式乘以多项式的运算法则进行计算,最后合并同类项即可得解.【详解】(1)原式66441010a b a b a b =-⋅⋅=-(2)原式()2223333433129x y x x y xyx y x y =-⨯-⨯-=-+; (3)原式222(2)4444x y x xy y =+-=++-;(4)原式221025561519x x x x x =++-+-=+.【点睛】本题考查了整式的混合运算,解答本题的关键在于熟练整式的各种运算法则与计算公式.20.已知:如图,∠1+∠2=180°,∠3=∠B .求证:∠AED =∠C .【答案】证明见解析【解析】试题分析:∵∠1+∠2=180°,∠DFE +∠1=180°∴∠2=∠DFE∴AB//FE∴∠ADE=∠3又∵∠3=∠B∴∠ADE=∠B∴DE//BC∴∠AED=∠C考点:同角的补角相等,平行线的判定和性质点评:平行线的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考的热点,一般难度不大,要熟练掌握.21.按要求解方程(组)(1)11132x x x +-+=- (2)325257x y x y +=⎧⎨+=⎩①②【答案】(1)5x =;(2)11x y =⎧⎨=⎩. 【解析】【分析】(1)去分母、去括号、移项、合并同类项、系数化为1,据此求出一元一次方程的解即可;(2)应用加减消元法,求出方程组的解是多少即可.【详解】(1)去分母,可得:()()216631x x x ++=--,去括号,可得:226633x x x ++=-+,移项,可得:263326x x x -+=--,合并同类项,可得:5x -=-,系数化为1,可得:5x =;(2)52⨯-⨯①②,得:1111x =,解得:1x =,将1x =代入①,得:3125y ⨯+=,解得:1y =,∴则方程组的解为11x y =⎧⎨=⎩. 【点睛】此题主要考查了解一元一次方程的方法,以及解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.22.解不等式组243(1)17252x x x x -≤+⎧⎪⎨+->⎪⎩,并写出不等式组的最大整数解. 【答案】-4【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】 解:解不等式243(1)x x -+得:7x -, 解不等式17252x x +->得:113x <-, ∴不等式组的解集是1173x -<-, ∴该不等式组的最大整数解为4-. 【点睛】本题考查了解一元一次不等式(组),不等式组的整数解的应用,解此题的关键是求出不等式组的解集. 23.先化简,再求值:[(2x +y)2-y(y +4x)-8xy]÷(2x),其中x =2,y =-1.【答案】2x -4y; 8【解析】试题分析:先利用整式的乘法公式展开得到原式=(4x 2+4xy +y 2-y 2-4xy -8xy)÷(2x),再把括号内合并得到原式=(4x 2-8xy)÷(2x),然后进行整式的除法运算,再把x 与y 的值代入计算即可. 试题解析:原式=(4x 2+4xy +y 2-y 2-4xy -8xy)÷(2x)=(4x 2-8xy)÷(2x)=2x -4y.当x =2,y =-1时,原式=2×2-4×(-1)=4+4=8.故答案为2x -4y; 8.点睛:本题考查了整式的混合运算-化简求值:先计算整式的乘除,然后合并同类项,有括号先算括号,再把满足条件的字母的值代入计算得到对应的整式的值.24.已知4y =,计算x ﹣y 2的值. 【答案】-1142【解析】【分析】【详解】 由题意得:230320x x -≥⎧⎨-≥⎩, 解得:x=32,把x=32代入﹣4,得y=﹣4, 当x=32,y=﹣4时x ﹣y 2=32﹣16=﹣1412. 25.用适当的方法解下列方程组:(1)522y x x y =-⎧-=⎨⎩; (2)233327x y x y -=⎧-=⎨⎩【答案】 (1){4 1x y ==;(2){31x y ==【解析】【分析】(1)用代入法解方程组;(2)用加减法解方程组.【详解】 ()5122y x x y ①②=-⎧-=⎨⎩解:把①代入②得 ()252x x --=, 解得4x =把4x =代入得①,541y =-=, ∴原方程组的解为{41x y ==; ()2332327x y x y -=⎧-=⎨⎩①② 解:由①得 699x y -= ③ 由②得 6414x y -= ④-③④得55y -=-,解得 1y =,把1y =代入①得 233x -=, 解得1x =∴原方程组的解为{31x y ==.【点睛】本题考核知识点:解方程组.解题关键点:熟记方程组的解法.。

优质佛山市七年级下册末数学试卷及答案

优质佛山市七年级下册末数学试卷及答案

一、解答题1.如图,在平面直角坐标系中,直线AB 与x 轴交于点(,0)B b ,与y 轴交于点(0,)A a ,且2(2)|4|0a b -+-=(1)求AOBS;(2)若(,)P x y 为直线AB 上一点.①APO △的面积不大于BPO △面积的23,求P 点横坐标x 的取值范围;②请直接写出用含x 的式子表示y .(3)已知点(,2)Q m m -,若ABQ △的面积为6,请直接写出m 的值. 解析:(1)4;(2)①80x -≤<或805x <≤;②122y x =-+;(3)23或143.【分析】(1)先根据偶次方和绝对值的非负性求出,a b 的值,从而可得点,A B 的坐标和,OA OB 的长,再利用直角三角形的面积公式即可得;(2)①分0x <和04x <<两种情况,先分别求出APO △和BPO △的面积,再根据已知条件建立不等式,解不等式即可得;②分4x <和4x ≥两种情况,利用APO △、BPO △和AOB 的面积关系建立等式,化简即可得;(3)过点Q 作y 轴的平行线,交直线AB 于点C ,从而可得1(,2)2C m m -+,再分0m <、04m ≤≤和4m >三种情况,分别利用三角形的面积公式建立方程,解方程即可得.【详解】解:(1)由题意得:20,40a b -=-=, 解得2,4a b ==, (0,2),(4,0)A B ∴,2,4OA OB ∴==, x 轴y ⊥轴,1124422AOBSOA OB ∴=⋅=⨯⨯=; (2)①APO △的面积不大于BPO △面积的23,APO ∴的面积小于BPO △的面积,则分以下两种情况: 如图,当0x <时,则122APOSx x =⨯=-,4BPOAOBAPOS SSx =+=-,因此有2(4)3x x -≤-,解得8x ≥-,此时x 的取值范围为80x -≤<; 如图,当04x <<时,则122APOSx x =⨯=,4BPOAOBAPOS SSx =-=-,因此有2(4)3x x ≤-,解得85x ≤,此时x 的取值范围为805x <≤, 综上,P 点横坐标x 的取值范围为80x -≤<或805x <≤; ②当4x <时,则0y >,1422BPOS y y =⨯=, 由(2)①可知,4BPOS x =-,则24y x =-, 即122y x =-+; 如图,当4x ≥时,则0y ≤,122APOSx x =⨯=,1422BPOS y y =⨯=-, BPOAOBAPOSSS+=,24y x ∴-+=,解得122y x =-+, 综上,122y x =-+; (3)过点Q 作y 轴的平行线,交直线AB 于点C , 由(2)②可知,1(,2)2C m m -+,则132(2)422CQ m m m =-+--=-,由题意,分以下三种情况: ①如图,当0m <时,则1313(4)4()42222ABQBCQ ACQSSSm m m m =-=----⋅-, 32(4)62m =-=,解得203m =>,不符题设,舍去; ②如图,当04m ≤≤时,则1313(4)442222ABQBCQACQS SSm m m m =+=--+⋅-, 32462m =-=, 解得23m =或1443m =>(不符题设,舍去);③如图,当4m >时,则13134(4)42222ABQACQBCQSSSm m m m =-=⋅----, 32(4)62m =-=,解得143m =,符合题设, 综上,m 的值为23或143.【点睛】本题考查了偶次方和绝对值的非负性、坐标与图形等知识点,较难的是题(3),正确分三种情况讨论是解题关键.2.直线AB ∥CD ,点P 为平面内一点,连接AP ,CP .(1)如图①,点P 在直线AB ,CD 之间,当∠BAP =60°,∠DCP =20°时,求∠APC 的度数;(2)如图②,点P 在直线AB ,CD 之间,∠BAP 与∠DCP 的角平分线相交于K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由;(3)如图③,点P 在直线CD 下方,当∠BAK =23∠BAP ,∠DCK =23∠DCP 时,写出∠AKC 与∠APC 之间的数量关系,并说明理由.解析:(1)80°;(2)∠AKC=12∠APC,理由见解析;(3)∠AKC=23∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,进而得到∠AKC=12∠APC;(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23∠APC,进而得到∠BAK﹣∠DCK=23∠APC.【详解】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=12∠APC.理由:如图2,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,∴∠AKC=12∠APC;(3)∠AKC=23∠APC理由:如图3,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=23∠BAP,∠DCK=23∠DCP,∴∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23(∠BAP﹣∠DCP)=23∠APC,∴∠AKC=23∠APC.【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.3.综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.已知:AM∥CN,点B为平面内一点,AB⊥BC于B.问题解决:(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC=.解析:(1)90A C ∠+∠=︒;(2)见解析;(3)105° 【分析】(1)通过平行线性质和直角三角形内角关系即可求解. (2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解. (3)利用(2)的结论,结合角平分线性质即可求解. 【详解】解:(1)如图1,设AM 与BC 交于点O ,∵AM ∥CN , ∴∠C =∠AOB , ∵AB ⊥BC , ∴∠ABC =90°, ∴∠A +∠AOB =90°, ∠A +∠C =90°,故答案为:∠A +∠C =90°;(2)证明:如图2,过点B 作BG ∥DM ,∵BD ⊥AM , ∴DB ⊥BG , ∴∠DBG =90°, ∴∠ABD +∠ABG =90°, ∵AB ⊥BC ,∴∠CBG +∠ABG =90°, ∴∠ABD =∠CBG , ∵AM ∥CN , ∴∠C =∠CBG , ∴∠ABD =∠C ;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案为:105°.【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键.4.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,①试判断PM与MN的位置关系,并说明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM+∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决.【详解】解:(1)①PM⊥MN,理由见解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ +∠QMN=90°,∴PM⊥MN;②过点N作NH∥CD,∵AB//CD,∴AB// NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,∴∠MNQ +∠MNH +∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度数为125°;(2)当点M,N分别在射线QC,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,∴∠APM +∠QMN=90°;当点M,N分别在射线QC,线段PQ上时,如图:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ -∠QMN=90°,∴∠APM -∠QMN=90°;当点M,N分别在射线QD,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM -∠QMN=90°;综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.5.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣11 22 aβ+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数;②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数.【详解】解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B;EF;CD;∠D;(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=12∠ABC=30°,∠EDC=12∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED =∠EDC .∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 6.如图1,MN ∥PQ ,点C 、B 分别在直线MN 、PQ 上,点A 在直线MN 、PQ 之间. (1)求证:∠CAB =∠MCA +∠PBA ;(2)如图2,CD ∥AB ,点E 在PQ 上,∠ECN =∠CAB ,求证:∠MCA =∠DCE ;(3)如图3,BF 平分∠ABP ,CG 平分∠ACN ,AF ∥CG .若∠CAB =60°,求∠AFB 的度数.解析:(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A 作AD ∥MN ,根据两直线平行,内错角相等得到∠MCA =∠DAC ,∠PBA =∠DAB ,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到∴、∠CAB +∠ACD =180°,由邻补角定义得到∠ECM +∠ECN =180°,再等量代换即可得解;(3)由平行线的性质得到,∠FAB =120°﹣∠GCA ,再由角平分线的定义及平行线的性质得到∠GCA ﹣∠ABF =60°,最后根据三角形的内角和是180°即可求解.【详解】解:(1)证明:如图1,过点A 作AD ∥MN ,∵MN ∥PQ ,AD ∥MN ,∴AD ∥MN ∥PQ ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如图2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.7.如图①,将一张长方形纸片沿EF对折,使AB落在''A B的位置;(1)若1∠的度数为a,试求2∠的度数(用含a的代数式表示);C D的位置.(2)如图②,再将纸片沿GH对折,使得CD落在''①若//'EF C G ,1∠的度数为a ,试求3∠的度数(用含a 的代数式表示);②若''B F C G ⊥,3∠的度数比1∠的度数大20︒,试计算1∠的度数.解析:(1)1902a ︒- ;(2)①1454a ︒+ ;②50︒ 【分析】(1)由平行线的性质得到4'B FC a ∠=∠=,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;(2) ①由(1)知,1902BFE a ∠=︒-,根据平行线的性质得到1BFE C'GB 902a ∠=∠=︒- ,再由折叠的性质及平角的定义求解即可;②由(1)知,∠BFE = 19012EFB '∠=︒-∠,由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,再根据条件和折叠的性质得到''11402190B FC FGC +=∠+∠=∠︒-∠︒,即可求解.【详解】解:(1)如图,由题意可知'//'A E B F ,∴14a ∠=∠=,∵//AD BC ,∴4'B FC a ∠=∠=,180BFB a '∴∠=︒-,∴由折叠可知1129022BFE BFB a '∠=∠=∠=︒-.(2)①由题(1)可知1902BFE a ∠=︒- ,∵//'EF C G ,1902BFE C'GB a ∴∠=∠=︒-,再由折叠可知:113180180909022HGC C GB a a ⎛⎫∠+∠=︒-∠=︒-︒-=︒+ ⎪⎝⎭',13454HGC a ∴∠=∠=︒+;②由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,由(1)知19012BFE ∠=︒-∠, 11802180290112B FC BFE ⎛⎫'∴∠=︒-∠=︒-︒-∠=∠ ⎪⎝⎭, 又3∠的度数比1∠的度数大20︒,∴3=1+20∠∠︒,()18023180212014021FGC '∴∠=︒-∠=︒-∠+︒=︒-∠,''11402190B FC FGC +=∴∠+∠=∠︒-∠︒,1=50∴∠︒.【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.8.如图1,已知直线m ∥n ,AB 是一个平面镜,光线从直线m 上的点O 射出,在平面镜AB 上经点P 反射后,到达直线n 上的点Q .我们称OP 为入射光线,PQ 为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB .(1)如图1,若∠OPQ =82°,求∠OPA 的度数;(2)如图2,若∠AOP =43°,∠BQP =49°,求∠OPA 的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m 和n 上,另一块在两直线之间,四块平面镜构成四边形ABCD ,光线从点O 以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ 和∠ORQ 的数量关系,并说明理由.解析:(1)49°,(2)44°,(3)∠OPQ =∠ORQ【分析】(1)根据∠OPA =∠QP B .可求出∠OPA 的度数;(2)由∠AOP =43°,∠BQP =49°可求出∠OPQ 的度数,转化为(1)来解决问题;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.【详解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×12=(180°-82°)×12=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×12=(180°-92°)×1244°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.9.如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足2(a2)b20+-,过C作CB x⊥轴于B,(1)求a,b的值;(2)在y轴上是否存在点P,使得△ABC和△OCP的面积相等,若存在,求出点P坐标,若不存在,试说明理由.(3)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,图3,①求:∠CAB+∠ODB的度数;②求:∠AED的度数.解析:(1)a=-2,b=2;(2)P (0,-4)或(0,4);(3)①∠CAB +∠ODB=90°;②∠AED=45°.【分析】(1)根据非负数的性质即可求得a 、b 的值;(2)先求得S △ABC =4,设P (0,t ),根据S △OPC =12OP×2=12×t ×2=4求得t 值,即可求得点P 的坐标;(3)①已知BD ∥AC ,根据两直线平行,内错角相等可得∠CAB=∠OBD ,由∠OBD +∠ODB=90°,即可得∠CAB +∠ODB=90°;②根据角平分线的定义及①中的结论,可求得∠3+∠4=45°;过点E 作EF ∥AC ,即可得EF ∥BD ∥AC ,根据平行线的性质可得∠3=∠1,∠2=∠4,由此求得∠AED=∠1+∠2=∠4+∠3=45°.【详解】(1)∵()2220a b +-=,∴a+2=0,b-2=0,∴a=-2,b=2;(2)∵a=-2,b=2,∴A (-2,0),C (2,2),∴S △ABC =12 AB•BC=12×4×2=4;设P (0,t ),∴S △OPC =12OP×2=12×t ×2=t =4;∴t=4或t=-4,∴P (0,-4)或(0,4).(3)①∵BD ∥AC ,∴∠CAB=∠OBD ,∵∠OBD +∠ODB=90°,∴∠CAB +∠ODB=90°;②∵AE ,DE 分别平分∠CAB ,∠ODB ,∴∠3=12CAB ∠,∠4=12ODB ∠, ∵∠CAB +∠ODB=90°,∴∠3+∠4=12CAB ∠+12ODB ∠=45°, 过点E 作EF ∥AC ,∵BD ∥AC ,∴EF ∥BD ∥AC ,∴∠3=∠1,∠2=∠4,∴∠AED=∠1+∠2=∠4+∠3=45°.【点睛】本题考查了坐标与图形性质,熟知非负数的性质、三角形的面积公式及平行线的性质是解决问题的关键.10.已知,//AB CD .点M 在AB 上,点N 在CD 上.(1)如图1中,BME ∠、E ∠、END ∠的数量关系为: ;(不需要证明);如图2中,BMF ∠、F ∠、FND ∠的数量关系为: ;(不需要证明)(2)如图 3中,NE 平分FND ∠,MB 平分FME ∠,且2180E F ∠+∠=,求FME ∠的度数;(3)如图4中,60BME ∠=,EF 平分MEN ∠,NP 平分END ∠,且//EQ NP ,则FEQ ∠的大小是否发生变化,若变化,请说明理由,若不变化,求出么FEQ ∠的度数.解析:(1)∠BME =∠MEN −∠END ;∠BMF =∠MFN +∠FND .(2)120°(3)∠FEQ 的大小没发生变化,∠FEQ =30°.【分析】(1)过E 作EH //AB ,易得EH //AB //CD ,根据平行线的性质可求解;过F 作FH //AB ,易得FH //AB //CD ,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME +∠END )+∠BMF −∠FND =180°,可求解∠BMF =60°,进而可求解;(3)根据平行线的性质及角平分线的定义可推知∠FEQ =12∠BME ,进而可求解.【详解】解:(1)过E作EH//AB,如图1,∴∠BME=∠MEH,∵AB//CD,∴HE//CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN−∠END.如图2,过F作FH//AB,∴∠BMF=∠MFK,∵AB//CD,∴FH//CD,∴∠FND=∠KFN,∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF−∠FND=180°,∴2∠BME+2∠END+∠BMF−∠FND=180°,即2∠BMF+∠FND+∠BMF−∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=12∠MEN=12(∠BME+∠END),∠ENP=12∠END,∵EQ//NP,∴∠NEQ =∠ENP ,∴∠FEQ =∠FEN −∠NEQ =12(∠BME +∠END )−12∠END =12∠BME , ∵∠BME =60°, ∴∠FEQ =12×60°=30°. 【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键.11.如图1,C 点是第二象限内一点, CB y ⊥轴于B ,且()0,B b 是y 轴正半轴上一点,(),0A a 是x 轴负半x 轴上一点,且()2230, 9AOBC a b S ++-==四边形.(1)A ( ),B ( )(2)如图2,设D 为线段OB 上一动点,当AD AC ⊥时,ODA ∠的角平分线与CAE ∠的角平分线的反向延长线交于点P ,求APD ∠的度数: (注: 三角形三个内角的和为180) (3)如图3,当D 点在线段OB 上运动时,作DM AD ⊥交CB 于,,M BMD DAO ∠∠的平分线交于N ,当D 点在运动的过程中,N ∠的大小是否变化?若不变,求出其值;若变化,请说明理由.解析:(1)A (-2,0)、B (0,3);(2)∠APD=90°;(3)∠N 的大小不变,∠N=45° 【分析】(1)利用非负数的和为零,各项分别为零,求出a ,b 的值;(2)如图,作DM ∥x 轴,结合题意可设∠ADP=∠OAP=x ,∠EAF=∠CAF=∠OAP=y ,根据平角的定义可知∠OAD=90°-2y ,由平行线的性质可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,进而可得出x=y ,再结合图形即可得出∠APD 的度数;(3)∠N 的大小不变,∠N=45°,如图,过D 作DE ∥BC ,过N 作NF ∥BC ,根据平行线的性质可知∠BMD+∠OAD=∠ADM=90°,然后根据角平分线的定义和平行线的性质,可得∠ANM=12∠BMD+12∠OAD ,据此即可得到结论.【详解】(1)由()2230a b ++-=,可得20a 和230b ,解得2,3a b =-=∴A 的坐标是(-2,0)、B 的坐标是(0,3); (2)如图,作DM ∥x 轴根据题意,设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x轴,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°(3)∠N的大小不变,∠N=45°理由:如图,过D作DE∥BC,过N作NF∥BC.∵BC∥x轴,∴DE∥BC∥x轴,NF∥BC∥x轴,∴∠EDM=∠BMD,∠EDA=∠OAD,∵DM⊥AD,∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,∵MN平分∠BMD,AN平分∠DAO,∴∠BMN=12∠BMD,∠OAN=12∠OAD,∴∠ANM=∠BMN+∠OAN=12∠BMD+12∠OAD=12×90°=45°.【点睛】本题考查了坐标与图形性质:利用点的坐标计算出相应的线段的长和判断线段与坐标轴的位置关系.也考查了三角形内角和定理和三角形外角性质.12.某水果店到水果批发市场采购苹果,师傅看中了甲、乙两家某种品质一样的苹果,零售价都为8元/千克,批发价各不相同,甲家规定:批发数量不超过100千克,全部按零价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠,乙家的规定如下表:(1)如果师傅要批发240千克苹果选择哪家批发更优惠?x ),问师傅应怎样选择两家批发商所花费用更少?(2)设批发x千克苹果(100解析:(1)在乙家批发更优惠;(2)当x=200时他选择任何一家批发所花费用一样多;当100<x<200时,师傅应选择甲家批发商所花费用更少;当x>200时,师傅应选择乙家批发商所花费用更少.【分析】(1)分别求出在甲、乙两家批发240千克苹果所需费用,比较后即可得出结论;(2)分两种情况:①若100<x≤150时,②若x>150时,分别用含x的代数式表示出在甲、乙两家批发x千克苹果所需费用,再比较大小,列出不等式,求出x的范围,即可得到结论.【详解】(1)在甲家批发所需费用为:240×8×85%=1632(元),在乙家批发所需费用为:50×8×95%+(150−50)×8×85%+(240−150)×8×75%=1600(元),∵1632>1600,∴在乙家批发更优惠;(2)①若100<x≤150时,在甲家批发所需费用为:8×85%x=6.8x,在乙家批发所需费用为:50×8×95%+(x−50)×8×85%=6.8x+40,∵6.8x<6.8x+40,∴师傅应选择甲家批发商所花费用更少;②若x>150时,在甲家批发所需费用为:8×85%x=6.8x,在乙家批发所需费用为:50×8×95%+(150−50)×8×85%+(x−150)×8×75%=6x+160,当6.8x=6x+160时,即x=200时,师傅选择两家批发商所花费用一样多,当6.8x>6x+160时,即x>200时,师傅应选择乙家批发商所花费用更少,当6.8x<6x+160时,即150<x<200时,师傅应选择甲家批发商所花费用更少.综上所得:当x=200时他选择任何一家批发所花费用一样多;当100<x<200时,师傅应选择甲家批发商所花费用更少;当x>200时,师傅应选择乙家批发商所花费用更少.【点睛】本题主要考查代数式,一元一次方程,一元一次不等式的综合实际应用,理清数量关系,列出代数式,不等式或方程,是解题的关键.13.两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大990.若设较大的两位数为x ,较小的两位数为y ,回答下列问题: (1)可得到下列哪一个方程组?A .68,1010990.x y x y y x +=⎧⎨+-+=⎩ B .()()68,1010990.x y x y y x +=⎧⎨+-+=⎩C .()()68,100100990.x y x y y x +=⎧⎨+-+=⎩D .()()1068,100100990.x y x y y x +=⎧⎨+-+=⎩ (2)解所确定的方程组,求这两个两位数. 解析:(1)C ;(2)39和29 【分析】(1)首先设较大的两位数为x ,较小的两位数为y ,根据题意可得等量关系:①两个两位数的和为68,②100x y +比100y x +大990,根据等量关系列出方程组; (2)利用加减消元法解方程组即可. 【详解】解:(1)解:设较大的两位数为x ,较小的两位数为y ,根据题意,得()()68,100100990.x y x y y x +=⎧⎨+-+=⎩故选:C ;(2)化简()()68,100100990.x y x y y x +=⎧⎨+-+=⎩得6810x y x y +=⎧⎨-=⎩①②,①+②,得278x =,即39x =. ①-②,得258y =,即29y =. 所以这两个数分别是39和29. 【点睛】此题主要考查了由实际问题抽象出二元一次方程组和解二元一次方程组,关键是弄清题目意思,表示出“较小的两位数写在较大的两位数的右边,得到一个四位数为100y x +”,把较小的两位数写在较大的两位数的左边,得到另一个四位数为100x y +.14.一列快车长70米,慢车长80米,若两车同向而行,快车从追上慢车到完全离开慢车,所用时间为20秒.若两车相向而行,则两车从相遇到离开时间为4秒,求两车每秒钟各行多少米?解析:快车每秒行22.5米,慢车每秒行15米. 【分析】设快车每秒行x 米,慢车每秒行y 米,根据若两车同向而行,快车从追上慢车到完全离开慢车,所用时间为20秒.若两车相向而行,则两车从相遇到离开时间为4秒,列出方程组,解方程组即可求得. 【详解】设快车每秒行x 米,慢车每秒行y 米,根据题意得,20207080447080x y x y -=+⎧⎨+=+⎩ 解得22.515x y =⎧⎨=⎩答:快车每秒行22.5米,慢车每秒行15米. 【点睛】本题考查了二元一次方程组的应用,根据题意列出方程组是解题的关键. 15.阅读下面资料:小明遇到这样一个问题:如图1,对面积为a 的△ABC 逐次进行以下操作:分别延长AB 、BC 、CA 至A 1、B 1、C1,使得A 1B =2AB ,B 1C =2BC ,C1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1,求S 1的值.小明是这样思考和解决这个问题的:如图2,连接A 1C 、B 1A 、C 1B ,因为A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,根据等高两三角形的面积比等于底之比,所以11∆∆=A BC B CA S S =11∆∆=A BC C AB S S =2S △ABC =2a ,由此继续推理,从而解决了这个问题.(1)直接写出S 1= (用含字母a 的式子表示). 请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P 为△ABC 内一点,连接AP 、BP 、CP 并延长分别交边BC 、AC 、AB 于点D 、E 、F ,则把△ABC 分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC 的面积.(3)如图4,若点P 为△ABC 的边AB 上的中线CF 的中点,求S △APE 与S △BPF 的比值. 解析:(1)19a ;(2)315;(3)23.【解析】 【分析】(1)首先根据题意,求得S △A1BC =2S △ABC ,同理可求得S △A1B1C =2S △A1BC ,依此得到S △A1B1C1=19S △ABC ,则可求得面积S 1的值;(2)根据等高不等底的三角形的面积的比等于底边的比,求解,从而不难求得△ABC 的面积;(3)设S △BPF =m ,S △APE =n ,依题意,得S △APF =S △APC =m ,S △BPC =S △BPF =m .得出23APE BPF S S ∆∆=,从而求解. 【详解】解:(1)连接A 1C ,∵B 1C=2BC ,A 1B=2AB , ∴122BCA ABCS Sa ==,122BCA ABCSSa ==,1112A B CBCA SS=,∴1144A B C ABCS S a ==, ∴1166A B BABCSSa ==,同理可得出:11116A AC CB C SSa ==,∴S 1=6a+6a+6a+a=19a ; 故答案为:19a ;(2)过点C 作CG BE ⊥于点G ,设BPF S x ∆=,APE S y ∆=,1·702BPC S BP CG ∆==;1·352PCE S PE CG ∆==, ∴1·7022135·2BPCPCEBP CGS S PE CG ∆∆===.∴2BPEP=,即2BP EP =. 同理,APB APE S BPS PE∆∆=. 2APB APE S S ∆∆∴=.842x y ∴+=.①8440APB BPD S AP x S PD ∆∆+==,3530APC PCD S AP y S PD ∆∆+==, ∴84354030x y ++=.② 由①②,得5670x y =⎧⎨=⎩,315ABC S ∆∴=.(3)设BPF S m ∆=,APE S n ∆=,如图所示.依题意,得APF APC S S m ∆∆==,BPC BPF S S m ∆∆==. PCE S m n ∆∴=-.BPCAPBAPE PCESS BPS S PE∆∆∆∆==,∴2m mn m n=-.2()m m n mn∴-=,m≠,22m n n∴-=.∴23nm=.∴23APEBPFSS∆∆=.【点睛】此题考查了三角形面积之间的关系.(2)的关键是设出未知三角形的面积,然后根据等高不等底的三角形的面积的比等于底边的比列式求解.16.平面直角坐标系中,A(a,0),B(0,b),a,b满足2(25)220a b a b++++-=,将线段AB平移得到CD,A,B的对应点分别为C,D,其中点C在y轴负半轴上.(1)求A,B两点的坐标;(2)如图1,连AD交BC于点E,若点E在y轴正半轴上,求BE OEOC-的值;(3)如图2,点F,G分别在CD,BD的延长线上,连结FG,∠BAC的角平分线与∠DFG 的角平分线交于点H,求∠G与∠H之间的数量关系.解析:(1)(40),(03)A B-,,;(2)1BE OEOC-=;(3)G∠与H∠之间的数量关系为2180G H∠=∠-︒.【分析】(1)根据非负数的性质和解二元一次方程组求解即可;(2)设(0,),(0,)C c E y,先根据平移的性质可得(43)D c+,,过D作DP x⊥轴于P,再根据三角形ADP的面积得出8(3)44(3)222c y y c+++=+,从而可得32cy+=,然后根据线段的和差可得BE OE c OC-=-=,由此即可得出答案;(3)设AH与CD交于点Q,过H,G分别作DF的平行线MN,KJ,设,BAH CAH DFH GFHαβ∠=∠=∠=∠=,由平行线的性质可得180(),1802()QHF DGF αβαβ∠=︒-+∠=︒-+,由此即可得出结论.【详解】(1)∵20,(25)220a b a b ≥+++-≥,且2(25)220a b a b ++++-=∴250220a b a b ++=⎧⎨+-=⎩解得:43a b =-⎧⎨=⎩则(40),(03)A B -,,; (2)设(0,),(0,)C c E y∵将线段AB 平移得到CD ,(40),(03)A B -,, ∴由平移的性质得(43)D c +,如图1,过D 作DP x ⊥轴于P∴4,3,,AO OP DP c OE y OC c ===+==- ∵ADPAOEOEDP S SS =+梯形∴()222AP DP OA OE OE DP OP ⋅⋅+⋅=+ 即8(3)44(3)222c y y c +++=+ 解得32cy +=∴()232BE OE BO OE OE BO OE y c -=--=-=-=-∴1BE OE cOC c--==-;(3)G ∠与H ∠之间的数量关系为2180G H ∠=∠-︒,求解过程如下: 如图2,设AH 与CD 交于点Q ,过H ,G 分别作DF 的平行线MN ,KJ ∵HD 平分BAC ∠,HF 平分DFG ∠∴设,BAH CAH DFH GFH αβ∠=∠=∠=∠= ∵AB 平移得到CD ∴//,//AB CD BD AC∴BAH AQC FQH α∠=∠=∠=,180BAC ACD BDC ACD ∠+∠=︒=∠+∠ ∴2BAC BDC FDG α∠=∠=∠= ∵//MN FQ∴,MHQ FQH NHF DFH αβ∠=∠=∠=∠= ∴180180()QHF MHQ NHF αβ∠=︒-∠-∠=︒-+ ∵//KJ DF∴2,2DGK FDG DFG FGJ αβ∠=∠=∠=∠= ∴1801802()DGF DGK FGJ αβ∠=︒-∠-∠=︒-+ ∴2180DGF QHF ∠=∠-︒.【点睛】本题属于一道较难的综合题,考查了解二元一次方程组、平移的性质、平行线的性质等知识点,较难的是题(3),通过作两条辅助线,构造平行线,从而利用平行线的性质是解题关键.17.一个四位正整数,若其千位上与百位上的数字之和等于十位上与个位上的数字之和,都等于k ,那么称这个四位正整数为“k 类诚勤数”,例如:2534,因为25347+=+=,所以2534 是“7类诚勤数”.(1)请判断7441和5436是否为“诚勤数”并说明理由;(2)若一个四位正整数A 为“5类诚勤数”且能被13整除,请求出的所有可能取值. 解析:(1)7441不是“诚勤数”; 5463是“诚勤数”;(2)满足条件的A 为:2314或5005或3250. 【分析】(1)直接利用定义进行验证,即可得到答案;(2)由题意,设这个四位数的十位数是a ,千位数是b ,则个位数为(5-a ),百位数为(5-b ),然后根据13的倍数关系,以及“5类诚勤数”的定义,利用分类讨论的进行分析,即可得到答案. 【详解】解:(1)在7441中,7+4=11,4+1=5, ∵11≠5,∴7441不是“诚勤数”;在5436中,∵5+4=6+3=9,∴5463是“诚勤数”;(2)根据题意,设这个四位数的十位数是a ,千位数是b ,则个位数为(5-a ),百位数为(5-b ),且05a ≤≤,15b ≤≤,∴这个四位数为:1000100(5)10(5)9009505b b a a b a +-++-=++,∵90013693=⨯,505133811=⨯,∴9009505(13693)9133811b a b a ++=⨯+++⨯+13(6938)3911b b a =⨯++++,∵这个四位数是13的倍数,∴3911b a ++必须是13的倍数;∵05a ≤≤,15b ≤≤,∴39b a +在5a b ==时,取到最大值60,∴39b a +可以为:2、15、28、41、54,∵393(3)b a b a +=+,则39b a +是3的倍数,∴3915b a +=或3954b a +=,∴35b a +=或318b a +=;①当35b a +=时,53b a -=, ∵15b ≤≤,且a 为非负整数,∴50b -=或53b -=,∴5b =或2b =,若5b =,则0a =,此时90095055005b a ++=;若2b =,则1a =,此时90095052314b a ++=;②当318b a +=时,183b a -=, ∵15b ≤≤,且a 为非负整数,∴18b -是3的倍数,且131817b ≤-≤,∴1815b -=,∴3b =,则5a =,∴90095053250b a ++=;综合上述,满足条件的A 为:2314或5005或3250.【点睛】本题考查了二元一次方程,新定义的运算法则,解题的关键是熟练掌握题意,正确列出二元一次方程,结合新定义,利用分类讨论的思想进行解题.18.某校为了丰富同学们的课外活动,决定给全校20个班每班配4副乒乓球拍和若干乒乓球,两家体育用品商店对同一款乒乓球拍和乒乓球推出让利活动,甲商店买一副乒乓球拍送10个乒乓球,乙商店所有商品均打九折(按标价的90%)销售,已知2副乒乓球拍和10个乒乓球110元,3副乒乓球拍和20个乒乓球170元。

佛山市人教版七年级下册数学全册单元期末试卷及答案-百度文库

佛山市人教版七年级下册数学全册单元期末试卷及答案-百度文库
(1)如图1,M为△ABC的AB上一点,且BM=2AM.若△ABC的面积为a,若△CBM的面积为S,则S=_______(用含a的代数式表示).
(结论应用)(2)如图2,已知△CDE的面积为1, , ,求△ABC的面积.
(迁移应用)(3)如图3.在△ABC中,M是AB的三等分点( ),N是BC的中点,若△ABC的面积是1,请直接写出四边形BMDN的面积为________.
(2)根据以上式子的规律,写出第n个式子,并用所学知识说明第n个等式成立.
28.如图①所示,在三角形纸片 中, , ,将纸片的一角折叠,使点 落在 内的点 处.
(1)若 , ________.
(2)如图①,若各个角度不确定,试猜想 , , 之间的数量关系,直接写出结论.
②当点 落在四边形 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立, , , 之间又存在什么关系?请说明.
(1)画出△ABC先向右平移5个单位长度,再向上平移2个单位长度所得的△A1B1C1;
(2)画出△ABC的中线AD;
(3)画出△ABC的高CE所在直线,标出垂足E:
(4)在(1)的条件下,线段AA1和CC1的关系是
27.已知下列等式:
①32-12=8,
②52-32=16,
③72-52=24,

(1)请仔细观察,写出第5个式子;
(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的 和是________.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【分析】
根据三角形的高的概念判断.
【详解】
解:AC边上的高就是过B作垂线垂直AC交AC的延长线于D点,因此只有C符合条件,

佛山市七年级下学期期末数学试题题

佛山市七年级下学期期末数学试题题

佛山市七年级下学期期末数学试题题一、选择题 1.4 =( )A .1B .2C .3D .42.当x 取2时,代数式(1)2x x -的值是( ) A .0B .1C .2D .33.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .4.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠5.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π6.计算32a a ⋅的结果是( ) A .5a ; B .4a ; C .6a ; D .8a . 7.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() mA .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯8.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( ) A .50°B .130°C .50°或 90°D .50°或 130°9.下列方程变形正确的是( ) A .方程110.20.5x x --=化成1010101025x x--= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1 C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2 D .方程23t=32,未知数系数化为 1,得t=1 10.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =11.下列方程的变形正确的有( ) A .360x -=,变形为36x = B .533x x +=-,变形为42x = C .2123x -=,变形为232x -= D .21x =,变形为2x =12.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元二、填空题13.若|x |=3,|y |=2,则|x +y |=_____.14.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.15.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__. 16.5535______.17.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________. 18.当a=_____时,分式13a a --的值为0. 19.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ;20.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.21.若a 、b 是互为倒数,则2ab ﹣5=_____.22.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 23.当x= 时,多项式3(2-x )和2(3+x )的值相等.24.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm .三、压轴题25.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.26.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.27.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.28.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.29.如图,己知数轴上点A表示的数为8,B是数轴上一点,且AB=22.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数____,点P表示的数____(用含t的代数式表示);(2)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问秒时P、Q之间的距离恰好等于2(直接写出答案)(4)思考在点P的运动过程中,若M为AP的中点,N为PB的中点.线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.30.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.31.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

【初中数学】广东省佛山市2011-2012学年七年级(下)期末数学同步检测试卷(共6份) 人教版3

【初中数学】广东省佛山市2011-2012学年七年级(下)期末数学同步检测试卷(共6份) 人教版3

佛山专版七年级同步检测期末测试题(五)时间:———— 满分:100分 姓名:————一、选择题(每小题3分,共30分) 1.下列各式运算正确的是( ). A.235a a a += B.235a a a =C.236()ab ab =D.1025a a a ÷=2.若3232106549242m x x x n x x x =-+-=-++,,则3219892x x x -+-等于( ). A.2m n + B.m n - C.32m n - D.m n +3.已知:如图,∠A0B 的两边 0A 、0B 均为平面反光镜,∠A0B=40.在0B 上有一点P ,从P 点射出一束光线经0A 上的Q 点反射 后,反射光线QR 恰好与0B 平行,则∠QPB 的度数是( )A .60°B .80°C .100 °D .120°4.下列说法中,正确的是( ).A.若∠1+∠2+∠3=180°,则∠1、∠2、∠3互为补角B.若∠1是∠2的补角,则∠1一定是钝角C.若∠1是∠2的余角,则∠1一定是锐角D.若∠1是∠2的余角,则∠1一定小于∠25.李明用6个球设计一个摸球游戏,共有四种方案,肯定不能成功的方案是( ). A.摸到黄球,红球的概率都是12B.摸到黄球、红球、白球的概率都是13C.摸到黄球、红球、白球的概率分别是12,13,16D.摸到黄球的概率是23,摸到红球、白球的概率都是136.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图刻画( ).7.如图2,在等边△ABC 中,取BD =CE =AF ,且D ,E ,F 非所在边中点,由图中找出3个全等三角形组成一组,这样的全等三角形的组数有( ). A.2 B.3 C.4 D.5A B C D O A B P QR图18.如图3,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为( ).A.212m mn +B.22mn m -C.22m mn +D.222m n +s9.△ABC 底边BC 边上的高为8cm ,当C 沿BC 向B 运动,这时边长为x cm ,则三角形的面积y cm 可表示为( ). A.4y x =B.24y x =C.8y x =D.28y x =10.要使2(5)4a -为整数,a 只需为( ).A.奇数B.偶数C.5的倍数D.个位是5的数二、填空题(每小题3分,共15分) 11.若227()38x=,则x = . 12.两根木棒的长分别为2cm 和8cm ,要选择第三根木棒,将它们钉成一个三角形,若第三根木棒的长为偶数,则第三根木棒的长为 cm.13.如图4 ,已知l 1∥l 2,∠1=40°,∠2=65°,则∠3-∠4的度数为 .14.小颖看小明是北偏东30°,那么小明看小颖时,它的方向是 .15.如图5,△ABC 的角平分线AD 、BE 交于点F ,点F 到边BC 的距离为2cm ,那么点F 到边AC 的距离为 cm. 三、解答题(本大题共75分)16.(6分)先化简,再求值:2(32)(32)5(1)(21)x x x x x +-----,其中13x =-.图4 31 43 l 2 l 1图5 A B D CE F17.(6分)已知A =x -y +1,B = x +y +1,C =(x +y )(x -y )+2x ,两同学对x 、y 分别取了不同的值,求出的A 、B 、C 的值不同,但A ×B -C 的值却总是一样的.因此两同学得出结论:无论x 、y 取何值,A ×B -C 的值都不发生变化.你认为这个结论正确吗?请你说明理由.18.(6分)小颖要计算一个L 形花坛的面积,在动手测量前她依花坛形状画了如下示意图,并用字母表示了将要测量的边长(如图6所标示),她在列式进行面积计算时,发现还需要再测量一条边的长度,你认为她还需测哪条边的长度?请你在图中标出来,并用字母n 表示,然后再求出这个花坛的面积.19.(6分)小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图7所示).(1)图象表示了哪两个变量的关系?(2)10时,他离家多远? (3)他到达离家最远的地方是什么时间?离家多远? (4)他可能在哪段时间内休息,并吃午餐?(5)他由离家最远的地方返回时的平均速度是多少?图6图720.(6分)在口袋中装有23个号码球,分别标有1~23共23个数字,各小球除了号码不同外完全相同,现在从中随意取出两个小球,求: (1)第一次取出的小球号码大于9的概率; (2)第一次取出的小球号码小于30的概率;(3)如果第一次取出的小球是3,不放回,求第二次取出的小球号码大于9的概率; (4)如果第一次取出的小球是6,也不放回,再求第二次取出的小球号码是偶数的概率.21.(8分)如图8:(1)已知两组直线平行,∠1=115°,求∠2、∠3的度数; (2)利用(1)的结论解答:如果两个角的两边分别平行,其中一个角是另一个角的两倍,求这两个角的大小.22.(8分)如图9,在△ABC 和△ABD 中,BC =BD ,点E 是BC 的中点,点F 是BD 的中点.连接AE 、AF . 若∠ABC=∠ABD ,请你说明△ABE ≌△ABF .图9 A C DB E F 图823.(8分)图10-1是一个长为2m 、宽为2n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图7的形状拼成一个正方形.(1)你认为图10-2中的阴影部分的正方形的边长等于多少? (2)请用两种不同的方法求图6中阴影部分的面积.(3)观察图10-2你能写出下列三个代数式之间的等量关系吗?代数式:(m +n )2,(m -n )2,mn .(4)根据(3)题中的等量关系,解决如下问题:若a +b =7,ab =5,则(a -b )2= .24.(10分)如图11,已知在Rt △ABC 中,∠A =90°,BD 是∠B 的平分线,DE 是BC 的垂直平分线. 试说明BC =2AB .25.(11分)如图12-1,点O 是线段AD 上的一点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC . (1)求∠AEB 的大小;(2)如图12-2,△OAB 固定不动,保持△OCD 的形状和大小不变,将△OCD 绕着点O 旋转(△OAB 和△OCD 不能重叠),求∠AEB 的大小.A DC E图11 O图12-1 A 图12-2 图10-1 图10-2参考答案一、1. B 2.D 3.B 4.C 5.D 6.B 7.D 8.C 9.A 10.A 二、11. -3 12. 8 13. 30°14. 南偏西30° 15. 2三、16.原式22294(55)(441)x x x x x =-----+2229455441x x x x x =--+-+-95x =-.当13x =-时,原式1959()53x =-=⨯--35=--8=-. 17.解:正确 A ×B -C =(x -y +1)(x +y +1)-〔(x +y )(x -y )+2x 〕 =22(1)(1)(2)x y x y x y x +-++--+ =2222212x x y x y x ++--+-=1所以x 、y 的取值与A ×B -C 的值无关.18.还需要测AF (或ED )的长度.标在图中略.若AF =n ,这个花坛的面积为am bn mn +-. 19.(1)距离与时间;(2)10时离家15千米;(3)到达离家最远的时间是12时,离家30千米; (4)他可能在12时到13时间休息,吃午餐; (5)共用了2时,因此平均速度为15千米/时. 20.(1)1423;(2)1;(3)1422;(4)51121.(1)∠2=115°,∠3=65°;(2)60°或120°.22.解:因为BC =BD ,点E 是BC 的中点,点F 是BD 的中点, 所以BE =BF .又∠ABC =∠ABD ,AB =AB ,所以△ABE ≌△ABF . 23.(1)m n -;(2)方法1:2()m n -,方法2:2()4m n mn +-; (3)22()()4m n m n mn -=+-; (4)2()29a b -=24.解:因为DE 是BC 的垂直平分线,所以BE=EC,DE⊥BC.因为∠A=90°,所以DA⊥AB.又BD是∠B的平分线,所以DA=DE.又BD=BD. 所以△ABD≌△EBD.所以AB=BE.所以BC=2AB.25.解:(1)因为△CDO和△ABO都是等边三角形,所以OD=OC,OB=OA,∠DOC=∠AOB=60°.所以∠DOB=∠COA. 所以△OAC≌△OBD. 所以∠OAC=∠OBD.因为∠EGB=∠OGA. 又∠OBD+∠AEB+∠BGE=∠AOB+∠OAC+∠OGA=180°.所以∠AEB=∠AOB=60°.(2)随着△OCD绕着点O的旋转,△OAC和△OBD始终全等,理由同(1),因此∠AEB=∠AOB=60°.。

【初中数学】广东省佛山市2011-2012学年七年级(下)期末数学同步检测试卷(共6份) 人教版5

【初中数学】广东省佛山市2011-2012学年七年级(下)期末数学同步检测试卷(共6份) 人教版5

佛山专版七年级同步检测期末测试题(四)时间:———— 满分:100分 姓名:————一、选择题(每小题3分,共30分) 1.下列运算中结果正确的是( ).A.5510x x x ⋅= B.8243(3)x x x ÷= C .236()xy xy = D.222()x y x y +=+2.某市今年第一季度累计完成地方一般预算收入216.58亿元,数据216.58亿元精确到( ). A.百亿位 B.亿位 C.百万位 D.百分位3.如图1,下列条件①∠1=∠2;②∠3=∠4;③∠3+∠4=180°;④∠1+∠2=180°;⑤∠1+∠2=90°;⑥∠3+∠4=90°;⑦∠1=∠4 中,能判断直线12l l ∥的条件有( ).A.②④B.①②⑦C.③④D.②③⑥4.某水库在6月1日至6月10日下闸蓄水期间,水库水位由66米升至95米.假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h (米)随时间 t (天)变化的是( ).5.若2244b mab a +-是完全平方式,则m 的值为( ).A.1B.2C.2或-2D.1或-1 6.某地区植树造林2009年达到2万公顷,预计从2010年开始以后每年比前一年多植树1万公顷(2010年为第一年),则年植树面积y (万亩)与年数x (年)的关系是( ). A.y =2+0.5x B.y =2+x C.y =2+2x D.y =2x7.如图2-1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀如图2-2摆放,从中任意翻开一张是汉字“自”的概率是( ). A.21 B.31 C.32D.61图2-1图2-295 66 t (天)A 95 66 t (天) B95 66 t (天)C 95 66 t (天)D8.下列说法中正确的是( ).A.两个形状大小完全一样的三角形组成一个轴对称图形B.两个全等图形一定关于某直线对称C.轴对称图形是由两个图形组成的D.正方形是有4条对称轴的轴对称图形9.一个均匀的立方体六个面上分别标有数字1,2,3,4,5,6,如图3是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数恰好是朝下一面的数的21的概率是( ).A.21B.31C.32D.6110.如图4,在△ABC 中,∠A =52°,∠ABC 与∠ACB 的角平分线交于点D 1,∠ABD 1与∠ACD 1的角平分线交于点D 2,依次类推,∠ABD 4与∠ACD 4的角平分线交于点D 5,则∠BD 5C 的度数是( ).A.60°B.56°C.94°D.68°二、填空题(每小题3分,共15分) 11.若多项式34n n xx ++-是六次三项式,则n = .12.某市水质监测部门2009年全年共监测水量达28909.6万吨,将数字28909.6用科学计数法(保留两个有效数字)表示为 .13.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车牌号码如图5所示,则该汽车的号码是 .14.如图6,△ABC 中,BC =5cm ,BP 、CP 分别是∠ABC 和∠ACB 的平分 线且PD ∥AB ,PE ∥AC ,则△PED 的周长为 cm. 15.单项选择题是数学试题的重要组成部分,当你遇到不会做的题时,如果采取随便选一个答案的方法(假设题目有4个选项),那么你答对的概率为 . 三、解答题(本大题共75分) 16.(6分)计算:2[()()()2(2)](2)x y x y x y y x y y +--+--÷-图3ABCD 1D 2 图4A B D EC P图6 图517.(6分)当xy =33时,求22(5)(5)x y x y +--的值.18.(6分)如图7,是一张正方形的纸片,如果把它沿着各边都剪去3cm 宽的一条,那么所得小正方形的面积比原正方形的面积减少51cm 2,求原正方形的边长.19.(6分)若3915()n m a b b a b =,求2m n +的值.20.(6分)如图8,在△ABC 和△DCB 中,AC 与BD 相交于点O ,AB =DC ,AC =BD . (1)试说明: △ABC ≌△DCB ;(2)△OBC 的形状是 .21.(8分)如图9,在等腰△ABC 中,AB =AC ,∠BAC =120°,AD 为BC 边上的高,过点D 作DE ∥AB ,交AC 于点E ,图中除△ABC 外,还有等腰三角形吗?若有,请指出,并说明理由.图7A B C DO 图8图922.(8分)现有12张卡片,分别标有1、2、3、4、5、6、7、8、9、10、11、12,小明和小刚合作完成一个游戏,规则定小明先随意抽取一张,然后让小刚猜这个数,如果猜对了,则小刚获胜,如果猜错了,则小明获胜. (1)这个游戏对双方公平吗?为什么?(2)现在还有几种游戏规则,你认为公平吗?①猜是奇数还是偶数,②猜是3的倍数,③猜是大于6的数,④猜不大于7的数.(3)如果你是小刚,你为了获胜,你选择上面哪一种猜法?23.(8分)如图10,在△ABC 中,∠ACB =90°,∠A =30°,BD 平分∠ABC ,DE ⊥AB 于E ,AC =12cm ,求AD ,DC ,DE 的长.24.(10分)如图11,将一等腰直角三角形ABC 的直角顶点置于直线l 上,且过A 、B 两点分别作l 的垂线,垂足分别为D 、E, 请你仔细观察后,在图中找出一对全等三角形,并说明理由.D 图10A CE B 图1125.(11分)“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系,请你根据图12中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中的路程与时间的关系,线段OD表示赛跑过程中的路程与时间的关系.赛跑的全程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?t(分钟)图12参考答案一、1. A 2.C 3.C 4.B 5.D 6.B 7.A 8.D 9. D 10.B 二、11.3 12.2.9×104 13.B6395 14. 5 15.41 三、16. 2y x -+17. 解:22(5)(5)x y x y +--=22222510(2510)x xy y x xy y ++--+=20xy 当xy =33时,原式=20×33=66018.解:设原正方形的边长为x cm ,据题意,得22(3)51x x --=.解得x =10.所以原正方形的边长为10cm. 19. 128 20.解:(1)在△ABC 和△DCB 中,AB DCAC DB BC CB =⎧⎪=⎨⎪=⎩所以△ABC ≌△DCB (SSS ) (2)等腰三角形21.解:△ADE 是等边三角形;△DEC 为等腰三角形.理由:因为AB =AC ,∠BAC =120°,所以∠B =∠C =30°. 因为DE ∥AB ,所以∠EDC =∠B =30°.因为AD ⊥BC ,所以∠DAE =12∠BAC =12×120°=60°. 因为∠ADC =90°,所以∠ADE =60°. 所以△ADE 是等边三角形. 22.解:(1)不公平,小明获胜的概率为1211小刚获胜的概率仅为121. (2)①公平,②不公平,③公平,④不公平.(3)选④.23.解:因为DE ⊥AB ,所以∠AED =90°.因为∠A =30°,所以DE =12AD . 因为∠ACB =90°,所以DC ⊥BC .又因为BD 平分∠ABC ,所以DE =DC .所以AC=AD+DC=AD+DE=12cm.所以AD=8cm,DC=DE=4cm.24.解:△ACD≌△CBE,理由:因为AD⊥CE, 所以∠CAD+∠ACD=90º.因为∠ACB=90º, 所以∠BCE+∠ACD=90º.所以∠CAD=∠BCE,又BE⊥CE, 所以∠BEC=∠ADC=90º,因为AC=BC, 所以△ACD≌△CBE.25.解:(1)兔子;乌龟;1500(2)兔子在起初每分钟跑700米.1500÷30=50(米)乌龟每分钟爬50米.(3)700÷50=14(分钟)乌龟用了14分钟追上了正在睡觉的兔子.(4)48千米=48000米48000÷60=800(米/分)(1500-700)÷800=1(分钟)30+0.5-1×2=28.5(分钟)兔子中间停下睡觉用了28.5分钟.。

最新广东省佛山市-七年级(下)期末数学试卷(含答案)

最新广东省佛山市-七年级(下)期末数学试卷(含答案)

2017-2018学年广东省佛山市顺德区七年级(下)期末数学试卷副标题题号-一--二二三四总分得分1. 已知等腰△ABC 中,ZA=40。

,则底角的大小为()A.B.C. D. 或2. 下列运算正确的是()A. B.C.D.3.如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A 处垂直拉至起跳线I 的点B 处,然后记录AB 的长 度,这样做的理由是()BA.两点之间,线段最短B.过两点有且只有一条直线D.过一点可以作无数条直线如图,把一块三角板的直角顶点放在直尺的一边上,如果Z2=58 °那么Z 1的大小是()A. B. C. D.5.将常温中的温度计插入一杯60C 的热水中,温度计的度数与时间的关系可用下列_ 2 2 、7. 要使x+mx+4= (x+2) 成立,那么 m4.C.垂线段最短A. 4B.C. 2D. 8.人体内的淋巴细胞直径约是 0.0000051米,将0.0000051用科学记数法表示为()A.B. C.9.如图,AD 是△ABC 的角平分线,点 E 是AB 边上一点,AE=AC,EF //BC,交AC 于点F .下列结论正确的是()①/ADE = /ADC ;②A CDE 是等腰三角形; ③CE 平分 ZDEF ;④AD 垂直平分 CE ;⑤AD = CE .12. _____________________________________________ 已知 m+n=2019, m-n=—,贝U m-n 的值为 __________________________ 13. __________________________________________________ 如图,已知AD 是等腰△ABC 底边BC 上的中线,BC=6cm ,AD=9cm , 点E 、F 是AD 的三等分点,则阴影部分的面积为 _____________________ .14. 计算:(2a+5)( a-3) = _________ 15.如图,把两根钢条 AA'、BB'的中点连在一起,可以 做成一个测量内槽宽的工具(卡钳),若测得A B =8厘米,则工件内槽 AB 宽为 ______________ 厘米.三、计算题(本大题共 4小题,共25.0分)16.如图,已知 BC 是A ABD 的角平分线,BC=DC ,Z /E=30 ° ZD=50 °(1) 写出AB=DE 的理由; (2)求ZBCE 的度数.2 217. 先化简,再求值:[(x-2y ) - (x+y )(x-y ) -7y ]乞y ,其中 x-, y=-2 .份数X (份) 1 2 3 4收入y (元)0.51.01.52.0A.①②⑤B.①②③④C.②④⑤二、填空题(本大题共 6小题,共24.0分)10. 计算:(-2) 3X22= _______ . 11.下表是某种数学报纸的销售份数 x (份)与价钱y (元)的统计表,观察下表:则买48份这种报纸应付 _______________ 元.D.D BD.①③④⑤18. 计算:(-3a4) 2-a?i3?Aa10P2119. 计算:|-卜2- - ( n2018)四、解答题(本大题共5小题,共41.0分)20. 一个不透明的盒子里装有30个除颜色外其它均相同的球,其中红球有m个,白球有3m个,其它均为黄球•现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜.(1)当m=4时,求小李摸到红球的概率是多少?(2)当m为何值时,游戏对双方是公平的?21. 某公司技术人员用沿直线AB折叠检验塑胶带两条边缘线a、b是否互相平行(1)如图1,测得/仁Z2,可判定a /b吗?请说明理由;(2)如图2,测得/仁/2,且Z3= Z4,可判定a/b吗?请说明理由;(3)如图3,若要使a/b,贝U Z1与Z2应该满足什么关系式?请说明理由.22. 如图,已知AC 侶D . (1)作ZBAC 的平分线,交BD 于点M (尺规作图, 留作图痕迹,不用写作法); (2)在(1)的条件下,试说明 ZBAM = Z AMB .23. 已知点A 、D 在直线I 的同侧.(1) 如图1,在直线I 上找一点C .使得线段AC+DC 最小(请通过画图指出点 C 的位置);(2) 如图2,在直线I 上取两点B 、E ,恰好能使△ABC 和A DCE 均为等边三角形.M 、N 分别是线段 AC 、BC 上的动点,连结 DN 交AC 于点G ,连结EM 交CD 于点F .① 当点M 、N 分别是AC 、BC 的中点时,判断线段 EM 与DN 的数量关系,并说明 理由;② 如图3,若点M 、N 分别从点A 和B 开始沿AC 和BC 以相同的速度向点 C 匀速 运动,当M 、N 与点C 重合时运动停止,判断在运动过程中线段 GF 与直线1的位 置关系,并说明理由.24. 24.我们在小学已经学过了对边分别平行的四边形叫做平行四边形”,如图1,平行四边形MNPQ 的一边PQ 作左右平移,图2反映它的边NP 的长度(cm )随时间t ( s ) 变化而变化的情况,请解答下列问题: Hlb B(1)在这个变化过程中,自变量是_______________ ,因变量是___________ ;(2)观察图2,PQ向左平移前,边NP的长度是__________________ cm,请你根据图象呈现的规律写出0至5秒间I与t的关系式;()填写下表,并根据表中呈现的规律写出至秒间与的关系式.PQ边的运动时间/s 891011121314NP的长度/cm 181512630答案和解析1. 【答案】D【解析】解:当40°的角是底角时,三角形的底角就是40°;当40°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是70°.故选:D.等腰三角形的两个底角相等,已知一个内角是40°,则这个角可能是底角也可能是顶角.要分两种情况讨论.本题考查了等腰三角形的性质;全面思考,分类讨论是正确解答本题的关键.2. 【答案】A【解析】解:A、m2?m3=m5,正确;B、(mn)2 = m 2 n2,错误;3 2 6C、(m )=m ,错误;6 2 4D、m苛n =m ,错误;故选:A.根据同底数幂的乘法、积的乘方、幂的乘方与同底数幂的除法逐一计算即可得.本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、积的乘方、幂的乘方与同底数幂的除法的运算法则.3. 【答案】C【解析】解:这样做的理由是垂线段最短.故选:C.垂线段的性质:垂线段最短.考查了垂线段最短•垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.4. 【答案】D【解析】解:如图所示:•••2=58° ,•••2=58 °,•••2=90 -58 =32 °.故选:D.直接利用平行线的性质结合互余的性质得出答案.此题主要考查了平行线的性质,正确得出同位角是解题关键.5. 【答案】B【解析】解:将常温中的温度计插入一杯60C的热水中,温度计的度数与时间的关系,图象是B;故选:B.根据温度计上升到一定的温度后不变,可得答案;本题考查了函数图象,注意温度计的温度升高到60度时温度不变.6. 【答案】B【解析】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.7. 【答案】A【解析】解:X+2)2=x2+4x+4,5=4,根据完全平方公式:a2坐ab+b2= a±)可得答案.此题主要考查了公式法因式分解,关键是掌握完全平方公式.8. 【答案】C【解析】解:0.0000051=5.1 10-6, 故选:C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为axi0-n,与较大数的科学记数法不同的是其所使用的是负指数幕,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a X10-n,其中K |牡10, n为由原数左边起第一个不为零的数字前面的0的个数所决定.9. 【答案】B【解析】解:①V AD是△ABC的角平分线,•••EAD= /CAD,在△AED和△ACD中,AE=AC£EAD=Z.CAD,AD=AD/.zAED ^△X CD SAS),•••/DE= /ADC故①正确;②•••△AED^△X CD,.•ED=DC,•••ZCDE是等腰三角形;故②正确;@V DE=DC,•••/EC= ZDCE,••EF/BC, •••/CE=/CEF, •••/EC= /CEF,精品文档••CE平分/DEF,故③ 正确;®V DE=DC,••点D在线段EC的垂直平分线上,••AE=AC ,••点A在线段EC的垂直平分线上,••AD垂直平分CE.故④ 正确;⑤AD垂直平分CE,但无法确定AD=CE ,故⑤ 不正确;故选:B.根据三角形全等和等腰三角形的判定、垂直平分线的判定进行依次判断即可. 此题考查了全等三角形的判定与性质,等腰三角形的性质、线段垂直平分线的性质以及平行线的性质.此题难度适中,注意掌握数形结合思想的应用.10. 【答案】-32【解析】【分析】本题主要考查实数的运算,解题的关键是掌握乘方的运算法则与实数的运算顺序.先计算立方和平方,再计算乘法即可得.【解答】解:原式=-8 >4=-32 ,故答案为-32.11. 【答案】24 【解析】解:由统计表知这种报纸每份0.5元,则买48份这种报纸应付48X).5=24元,故答案为:24.由统计表得出每份0.5元,据此可得.本题主要考查统计表,解题的关键是根据统计表得出解题所需的数据.12. 【答案】2018【解析】 IJI) 1 U解:'.m+n=2019, m-n=2【1宙/m 2-n 2= m+n ) (-n )=2018.故答案为:2018.直接利用平方差公式将原式 变形进而得出答案.此题主要考查了平方差公式,正确将原式 变形是解题关键.13. 【答案】9cm 2【解析】 • BD=DC=3cm , AD IBC ,.//ABC 关于直线AD 对称, ••B 、C 关于直线AD 对称,• zCEF 和 ABEF 关于直线AD 对称, •°S A AF C =S A AF B ,••点E 、F 是AD 的三等分点,_ _ l•'S AAFB =S A BED = S /XBD2 2 I o••图中阴影部分的面 积是S®X BD = ・x X 3 X 9=9cm 2.故答案为:9cm 2.根据等腰三角形性 质求出BD=DC=3cm , AD I BC ,推出A CEF 和 ABEF 关于直 线AD 对称,得出S A AFC =S A AFB ,根据图中阴影部分的面 积是.S ^ABD 求出即 ■I J 可.本题考查了等腰三角形的性 质和轴对称的性质.通过观察可以发现是轴对称 图形,其中看出A CEF 和A BEF 关于直线AD 对称,面积相等是解决本题的关 键.214. 【答案】2a-a-15【解析】=2019x BA2019解:iBC=6cm,AD 是△ABC 的中线,A解:原式=2a2-6a+5a-15=2s?-a-15,故答案为:2a2-a-15.根据多项式乘以多项式的运算法则计算可得.本题主要考查多项式乘多项式,解题的关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.15.【答案】8【解析】解:连接A B;••两根钢条AA'、BB'的中点连在一起,:OA=OA,OB=OB ,r 扼在△AOB和△ 0沖,緘富=X爐;隱I BO=BO•••/AOB望△<、OB'SAS).••AB=A‘ B、厘米,故答案为:8.连接A B;可判定/AOB也4V 0B,根据全等三角形的性质可得AB=A B' =8 厘米. 本题考查全等三角形的应用.在实际生活中,对于难以实地测量的线段,常常通过两个全等三角形,转化需要测量的线段到易测量的边上或者已知边上来,从而求解.16. 【答案】解:(1)--BC是4ABD的角平分线,•••zCBD= Z CBA,••BC=DC,•••zCBD= ZD=50 °•••zCBD= Z CBA,在4CDE和4CBA中,•••©DE 也4CBA,••DE=AB ;(2)由(1)知,ZCBD = ZD=50°,•••z6CD=80 °•••Z\CB=100 °由(1)知,4CDE 也△:BA,•••zDCE= ZBCA,•••zBCD= Z ACE=80 °•••zBCE= ZACB-ZACE=20 °【解析】1) 先判断出ZCBD= ZCBA , ZCBD= ZD=50,进而得出ZCBD= ZCBA,判断出△CDE^A^BA即可得出结论;2) 先求出ZACB=100,在求出ZACE=80,即可得出结论.此题主要考查了全等三角形的判断和性质,等边对等角,三角形的外角的性质,判断出A CDE也43BA是解本题的关键.2 2 2 2 217. 【答案】解:原式=(x -4xy+4y -x +y -7y )吃y2=(-4xy-2y )吃y=-2x-y,当x=_、y=-2 时,原式=-2 X+2=-1+2=1 .【解析】先根据整式混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得. 本题主要考查整式的混合运算-化简求值,解题的关键是掌握整式混合运算顺序和运算法则..- _ 8 8 8 818. 【答案】解:原式=9a -a -a =7a .【解析】先计算幕的乘方与积的乘方、同底数幕的乘法、同底数幕的除法,再合并即可得. 本题主要考查幕的运算,解题的关键是掌握幕的乘方与积的乘方、同底数幕的乘法、同底数幕的除法的运算法贝・19. 【答案】解:|-卜2-1- ( n-2018) 0=-1 .【解析】本题涉及零指数幕、负整数指数幕、绝对值3个考点•在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型•解决此类题目的关键是熟练掌握负整数指数幕、零指数幕、绝对值等考点的运算. 20. 【答案】解:(1 )当m=4时,红球有4个、白球有12个、黄球有14个,则小李摸到红球的概率是一=—;(2)若要是双方摸到红球和黄球的概率相等,则袋子中红球和黄球的数量相等,即m=30-m-3m,解得:m=6,即当m=6时,游戏对双方是公平的.【解析】1)由当m=4时,红球有4个、白球有12个、黄球有14个,用红球数量除以球的总数即可得;2)若要是双方摸到红球和黄球的概率相等知袋子中红球和黄球的数量相等, 据此列出关于m的方程,解之可得.本题主要考查游戏的公平性,判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.21. 【答案】解:(1)a/b,理由是:•••/ = Z2,•'a /b (内错角相等,两直线平行);(2)能,理由是:•••/ =亠,Z3= 74,Z1+ Z2=180°,/3+ 74=180°,•••/ = /2=90 ° 73= 74=90 °• 7 = 74,•'a /b;图3(3) 71+2 72=180°,理由是:根据折叠得:■•a /b,•••/ + /3+ /4=180 ° Z2= Z4,•••/+272=180 °【解析】1)根据平行线的判定得出即可;2)求出Z1和74的度数,再根据平行线的判定推出即可;3)根据折叠得出Z3=Z4,根据平行线的性质得出71 +Z3+74=180°, Z2=Z4, 即可得出答案.本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键.22. 【答案】解:(1)如右图所示;(2) -.AM 平分/BAC,•••zCAM= /BAM ,••AC /BD ,•••zCAM= ZAMB ,•••zBAM= Z AMB .【解析】1)根据角平分线的作法可以解答本题;2)根据角平分线的性质和平行线的性质可以解答本题.本题考查基本作图、角平分线的性质、平行线的性质,解答本题的关键是明确题意,画出相应的图形,利用数形结合的思想解答.23. 【答案】解:(1)如图1所示,点C就是所求作;(2)① EM = DN,理由:••点M、N分别是AC、BC的中点,••CM=-AC, CN=-BC,•/BC是等边三角形,•••ZXCB=60 ° AC=BC,•••JECM=120 : CM = CN,• ©DE是等边三角形,•••zDCE=60 °CE = CD, /-z NCD=120 °在△CDN和△CEM中,•••©DN也MEM ,••EM=DN ;②FG 化理由:如图3,连接FG , 由运动知,AM=BN , ••AC=BC ,••CM=BN ,在△CDN 和△CEM 中, •••©DN 也MEM ,•••zCDN = /CEM ,Vz ACB= /DCE=60 ° •••/\CD=60 ° ZDCE ,在ADCG 和AECF 中,• ZDCG ^△E CF ,••CF = CG ,•••/CG=60 °•©FG 是等边三角形,• zCFG=60 ° ZECF , ••FG /BC ,即:FG / .【解析】1) 先作出点A 关于直线I 的对称点A'连接DA'交直线l 于点C ;2) ①先判断出CM=CN , ZDCN= ZECM=120,进而判断出△CDN 也ZCEM , 即可得出结论;②同①的方法判断出△CDN 也ZCEM ,得出ZCDN= /CEM ,进而判断出△DCG ^△E CF ,得出CF=CG ,得出△CFG 是等边三角形即可得出结论. 此题是三角形综合题,主要考查了中垂线的作法,等边三角形的性质和判定, 全等三角形的判定和性 质,平行线的判定,判断出△CDN 也©EM 是解本题的 关键.24. 【答案】t ; NP ;( 2t+8); 9【解析】解:10这个变化过程中,自变量是时间t 、因变量NP 的长度, 故答案为:t ,NP ;2)咽2知,0至5秒间图象呈现的是一段线段,且过点0,8),5,(18),设此线段的解析式为NP=kt+8 0<t 菊5,•••18=5k+8,••k=2,••线段的解析式 为NP=2t+8 0< t 买5AB NC E 圉3故答案为2t+8);3)搁2知,8至14秒间图象呈现的也是一段线段,由表知,此线段过点8,佝,14,0),设此线段的解析式为NP=k't+b 8<t <14,{心+5=压:1: : :I ,.J —7-- 2,••NP=-3t+42 8< t <14当t=11 时,NP=-3X 11+42=9,故答案为9.1)根据自变量和因变量的概念即可得出结论;2)利用待定系数法即可得出结论;3)利用待定系数法即可得出结论.此题是一次函数综合题,主要考查了待定系数法,函数的概念,根据图形的变换和图2的函数图象求出函数关系式是解本题的关键.。

2020-2021学年广东省佛山市南海区七年级(下)期末数学试卷(附答案详解)

2020-2021学年广东省佛山市南海区七年级(下)期末数学试卷(附答案详解)

2020-2021学年广东省佛山市南海区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列各式运算中正确的是()A. a3−a2=aB. a2+a3=a5C. a3⋅a3=2a6D. (a2)4=a82.人体内一种细胞的直径约为0.00000156m,数据0.00000156用科学记数法表示为()A. 1.56×10−5B. 1.56×10−6C. 15.6×10−7D. −1.56×1063.下列垃圾分类的图标中,是轴对称图形的是()A. B. C. D.4.下列事件中的必然事件是()A. 车辆随机经过一个有交通信号灯的路口,遇到红灯B. 购买100张中奖率为1%的彩票一定中奖C. 380人中至少有两人的生日在同一天D. 掷一枚质地均匀的骰子,掷出的点数是奇数5.适合条件∠A:∠B:∠C=2:3:5的△ABC是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形6.肥料的施用量与产量之间有一定的关系.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:氮肥施用03467101135202259336404471量/kg土豆产量15.1821.3625.7232.2934.0339.4543.1543.4640.8339.45/t根据表格可知,下列说法正确的是()A. 氮肥施用量越大,土豆产量越高B. 氮肥施用量是110kg时,土豆产量为34tC. 氮肥施用量是自变量,土豆产量是因变量D. 土豆产量为39.45t时,氮肥的施用量一定是202kg7.下列每组数表示三根木棒的长度,将它们首尾相接后,能摆成三角形的是()A. 2,3,6B. 3,4,8C. 7,4,3D. 3,3,48.如图,直线l1,l2,l3交于一点,直线l4//l1,若∠1=120°,∠2=80°,则∠3的度数为()A. 20°B. 30°C. 40°D. 50°9.如图,测量河两岸相对的两点A,B的距离时,先在AB的垂线BF上取两点C,D,使CD=BC,再过点D画出BF的垂线DE,当点A,C,E在同一直线上时,可证明△EDC≌△ABC,从而得到ED=AB,则测得ED的长就是两点A,B的距离.判定△EDC≌△ABC的依据是()A. “边边边”B. “角边角”C. “全等三角形定义”D. “边角边”10.如图,在正方形ABMF中剪去一个小正方形CDEM,动点P从点A出发,沿A→B→C→D→E→F的路线绕多边形的边匀速运动到点F时停止,则△APF的面积S随着时间t变化的图象大致是()A.B.C.D.二、填空题(本大题共7小题,共28.0分)11.计算(x2)3÷x4的结果是______.12.一个角的补角等于30°,则这个角等于______.13.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8529865279316044005发芽频率0.8500.7450.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为______(精确到0.1).14.已知等腰三角形的两边长分别是4和9,则周长是______.15.如图,△ABC中,∠B=90°,AC边上的垂直平分线DE交AB于D,交AC于E,且CD平分∠ACB,则∠A的度数等于______.16.如图,把一幅七巧板按如图所示进行①~⑦编号,①~⑦号分别对应着七巧板的七块,如果编号①对应的面积等于2,则由这幅七巧板拼得的“天鹅”的面积等于______.17.如图,AF和BE是△ABC的中线,则以下结论①AE=CE;②O是△ABC的重心;③△ACF与△ABE面积相等;④过点C、点O的直线平分线段AB.其中正确的是______(填序号).三、解答题(本大题共8小题,共62.0分))−2.18.计算:−12020+(π−3.14)0−(−1219.如图,△ABC中,AB=AC,利用尺规作图,作出△ABC的对称轴.(不写作法,保留作图痕迹)20.“五⋅一”期间,某书城为了招徕顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元图书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得40元、35元、30元的购书券,凭购书券可以在书城继续购书.(1)求出任意转动一次转盘获得购书券的概率.(2)直接写出任意转动一次转盘获得40元、35元、30元的概率.21.先化简,再求值:[(x+2y)²−(x+y)(x−y)]÷2y,其中x=−1,y=2.22.如图,△ABC和△DEF中,AB=DE,AC=DF,BE=CF;(1)试说明△ABC≌△DEF.(2)若∠ABC=38°,求∠DEF.23.如图,AB//CD,定点E、F分别在直线AB、CD上.(1)如图1,若∠PEB=70°,∠PFD=60°,则∠EPF=______.(2)如图2,若∠BEQ=13∠BEP,∠DFQ=13∠DFP,探究∠EPF与∠EQF的数量关系,请说明理由.24.在学习完全平方公式:后,我们对公式的运用进一步探讨.(1)若ab=30,a+b=10,则a2+b2的值为______.(2)“若y满足(40−y)(y−20)=50,求(40−y)2+(y−20)2的值”.阅读以下解法,并解决相应问题.解:设40−y=a,y−20=b则a+b=(40−y)+(y−20)=20ab=(40−y)(y−20)=50这样就可以利用(1)的方法进行求值了.若x满足(40−x)(x−20)=−10,求(40−x)²+(x−20)²的值.(3)若x满足(30+x)(20+x)=10,求(30+x)²+(20+x)²的值.25.如图,在△ABC中,BC=4cm,AE//BC,AE=4cm,点N从点C出发,沿线段CB以2cm/s的速度连续做往返运动,点M从点A出发沿线段AE以1cm/s的速度运动至点E.M、N两点同时出发,连结MN,MN与AC交于点D,当点M到达点E时,M、N两点同时停止运动,设点M的运动时间为t(s).(1)当t=3时,线段AM的长度=______cm,线段BN的长度=______cm.(2)当BN=AM时,求t的值.(3)当△ADM≌△CDN时,求出所有满足条件的t值.答案和解析1.【答案】D【解析】解:A、a3与a2不是同类项,不能合并计算,故此选项不符合题意;B、a2与a3不是同类项,不能合并计算,故此选项不符合题意;C、a3⋅a3=a6,故此选项不符合题意;D、(a2)4=a8,正确,故此选项符合题意;故选:D.根据合并同类项,同底数幂的乘法,幂的乘方运算法则进行计算,然后作出判断.本题考查合并同类项,同底数幂的乘法,幂的乘方运算,理解运算法则是解题基础.2.【答案】B【解析】解:小数0.00000156在小数点左边有5个0,故0.00000156可用科学记数法表示为1.56×10−6,故选:B。

佛山市七年级下学期期末数学试题及答案

佛山市七年级下学期期末数学试题及答案

佛山市七年级下学期期末数学试题及答案一、选择题1.把一块直尺与一块含30°的直角三角板如图放置,若∠1=34°,则∠2的度数为( )A .114°B .126°C .116°D .124° 2.下列计算中正确的是( )A .2352a a a +=B .235a a a +=C .235a a a =D .236a a a = 3.不等式3x+2≥5的解集是( )A .x≥1B .x≥73C .x≤1D .x≤﹣14.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +5.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠1 6.下列等式从左到右的变形属于因式分解的是( ) A .a 2﹣2a+1=(a ﹣1)2B .a (a+1)(a ﹣1)=a 3﹣aC .6x 2y 3=2x 2•3y 3D .211()x x x x +=+ 7.x 2•x 3=( )A .x 5B .x 6C .x 8D .x 9 8.若x 2+kx +16是完全平方式,则k 的值为( )A .4B .±4C .8D .±89.如图,在△ABC 中,CE ⊥AB 于 E ,DF ⊥AB 于 F ,AC ∥ED ,CE 是∠ACB 的平分线, 则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .610.如图,在下列给出的条件下,不能判定AB ∥DF 的是( )A .∠A+∠2=180°B .∠A=∠3C .∠1=∠4D .∠1=∠A 二、填空题 11.若关于x 、的方程()2233b a ax b y -+++=是二元一次方程,则b a =_______12.已知m a =2,n a =3,则2m n a -=_______________.13.已知30m -=,7m n +=,则2m mn +=___________.14.计算24a a ⋅的结果等于__.15.已知()223420x y x y -+--=,则x=__________,y=__________.16.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.17.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABC S=,则图中阴影部分的面积是 ________.18.如图,在三角形纸片ABC 中剪去∠C 得到四边形ABDE ,且∠C =40°,则∠1+∠2的度数为_____.19.如图,将长方形纸片ABCD 沿着EF ,折叠后,点D ,C 分别落在点D ,C '的位置,ED '的延长线交BC 于点G .若∠1=64°,则∠2等于_____度.20.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.三、解答题21.已知关于x 、y 的二元一次方程组21322x y x y k +=⎧⎪⎨-=-⎪⎩(k 为常数). (1)求这个二元一次方程组的解(用含k 的代数式表示);(2)若()2421y x +=,求k 的值; (3)若14k ≤,设364m x y =+,且m 为正整数,求m 的值. 22.先化简,再计算:(2a +b )(b -2a )-(a -b )2,其中a =-1,b =-223.如图,在方格纸内将△ABC 经过一次平移得到A B C ''',图中标出了点B 的对应点B '.(1)在给定的方格纸中画出平移后的A B C ''';(2)画出BC 边上的高AE ;(3)如果P 点在格点上,且满足S △PAB =S △ABC (点P 与点C 不重合),满足这样条件的P 点有 个.24.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由; (2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若∠A =50°,则∠ABX+∠ACX=°;②如图3,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =50°,∠DBE =130°,求∠DCE 的度数;③如图4,∠ABD ,∠ACD 的10等分线相交于点G 1、G 2…、G 9,若∠BDC =140°,∠BG 1C =77°,求∠A 的度数.25.水果商贩老徐上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.老徐购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)老徐有甲、乙两家店铺,每出售一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓a 箱,苹果b 箱,其余均分配给乙店,由于他口碑良好,两家店都很快卖完了这批水果.①若老徐在甲店获利600元,则他在乙店获利多少元?②若老徐希望获得总利润为1000元,则a b +=?26.解下列方程组(1)29321x y x y +=⎧⎨-=-⎩. (2)34332(1)11x y x y ⎧+=⎪⎨⎪--=⎩.27.如图,甲长方形的两边长分别为1m +,7m +;乙长方形的两边长分别为2m +,4m +.(其中..m 为.正整数...)(1)图中的甲长方形的面积1S ,乙长方形的面积2S ,比较: 1S 2S (填“<”、“=”或“>”);(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S 与图中的甲长方形面积1S 的差(即1S S )是一个常数,求出这个常数;(3)在(1)的条件下,若某个图形的面积介于1S 、2S 之间(不包括1S 、2S )并且面积为整数,这样的整数值有且只有16个,求m 的值.28.如图,一个三角形的纸片ABC ,其中∠A=∠C ,(1)把△ABC 纸片按 (如图1) 所示折叠,使点A 落在BC 边上的点F 处,DE 是折痕.说明 BC ∥DF ;(2)把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 内时 (如图2),探索∠C 与∠1+∠2之间的大小关系,并说明理由;(3)当点A 落在四边形BCED 外时 (如图3),探索∠C 与∠1、∠2之间的大小关系.(直接写出结论)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用平行线的性质求出∠3即可解决问题.【详解】如图,∵a ∥b ,∴∠2=∠3,∵∠3=∠1+90°,∠1=34°,∴∠3=124°,∴∠2=∠3=124°,故选:D .【点睛】此题考查平行线的性质,三角形的外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.2.C解析:C【分析】根据同底数幂的加法和乘法法则进行计算判断即可.【详解】解:A 、23a a +无法合并,故A 选项错误;B 、23a a +无法合并,故B 选项错误;C 、235a a a =,故C 选项正确;D 、235a a a =,故D 选项错误.故选:C【点睛】此题考查同底数幂的运算法则,同底数幂的加减必须是同类项才可以进行加减,同底数幂的乘除底数不变,指数相加减.3.A解析:A【解析】分析:根据一元一次不等式的解法即可求出答案.详解:3x+2≥5,3x≥3,∴x≥1.故选A .点睛:本题考查了一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.4.D解析:D【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .5.D解析:D【分析】直接根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A 、∠C=∠1不能判定任何直线平行,故本选项错误;B 、∠A=∠2不能判定任何直线平行,故本选项错误;C 、∠C=∠3不能判定任何直线平行,故本选项错误;D 、∵∠A=∠1,∴EB ∥AC ,故本选项正确.故选:D .【点睛】本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.6.A解析:A【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是因式分解,故A 正确;B 、是整式的乘法运算,故B 错误;C 、是单项式的变形,故C 错误;D 、没把一个多项式转化成几个整式积的形式,故D 错误;故选:A .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.7.A解析:A【分析】根据同底数幂乘法,底数不变指数相加,即可.【详解】x 2•x 3=x 2+3=x 5,故选A.【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.8.D解析:D【分析】利用完全平方公式的结构特征判断即可求出k 的值.【详解】∵216x kx ++是完全平方式,∴8k =±,故选:D .【点睛】本题考查完全平方式,熟悉完全平方式的结构特征并能灵活运用是解答的关键.9.B解析:B【解析】分析:推出DF∥CE,推出∠FDB=∠ECB,∠EDF=∠CED,根据DE∥AC推出∠ACE=∠DEC,根据角平分线得出∠ACE=∠ECB,即可推出答案.详解:∵CE⊥AB,DF⊥AB,∴DF∥CE,∴∠ECB=∠FDB,∵CE是∠ACB的平分线,∴∠ACE=∠ECB,∴∠ACE=∠FDB,∵AC∥DE,∴∠ACE=∠DEC=∠FDB,∵DF∥CE,∴∠DEC=∠EDF=∠FDB,即与∠FDB相等的角有∠ECB、∠ACE、∠CED、∠EDF,共4个,故选B.点睛:本题考查了平行线的性质:两直线平行,内错角相等、同位角相等,同旁内角互补;解决此类题型关键在于正确找出内错角、同位角、同旁内角.10.D解析:D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A、∵∠A+∠2=180°,∴AB∥DF,故本选项错误;B、∵∠A=∠3,∴AB∥DF,故本选项错误;C、∵∠1=∠4,∴AB∥DF,故本选项错误;D、∵∠1=∠A,∴AC∥DE,故本选项正确.故选:D.【点睛】点评:本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.二、填空题11.1【解析】根据题意得:,解得:b=3或−3(舍去),a=−1,故答案是:−1. 解析:1【解析】根据题意得:2121{30baab-=+=≠+≠,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.12.【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:am-2n=am÷a2n=am÷(an)2=2÷9=故答案为【点睛】本题考查了同底数幂的除法和幂的解析:2 9【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:a m-2n=a m÷a2n=a m÷(a n)2=2÷9=2 9故答案为2 9【点睛】本题考查了同底数幂的除法和幂的乘方与积的乘方,解答本题的关键在于熟练掌握各知识点的运算法则.【分析】由得,再将因式分解可得, 然后将、代入求解即可.【详解】解:∵,∴,又∵∴,故答案为:.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 解析:21【分析】由30m -=得3m =,再将2m mn +因式分解可得()m m n +, 然后将3m =、7m n +=代入求解即可.【详解】解:∵30m -=,∴3m =,又∵7m n +=∴2()3721m mn m m n +=+=⨯=,故答案为:21.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 14..【分析】直接利用同底数幂的乘法运算法则求出答案.【详解】原式.故答案为:.【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键. 解析:6a .【分析】直接利用同底数幂的乘法运算法则求出答案.【详解】原式246a a +==.故答案为:6a .【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.15..【解析】试题分析:因,所以,解得.考点:和的非负性;二元一次方程组的解法.解析:⎩⎨⎧==12y x .【解析】 试题分析:因()223420x y x y -+--=,所以⎩⎨⎧=--=-024302y x y x ,解得⎩⎨⎧==12y x . 考点:a 和2a 的非负性;二元一次方程组的解法.16.65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解解析:65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥C D ,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.17.【分析】利用三角形重心的性质证明图中个小三角形的面积相等即可得到答案.【详解】解: 三边的中线AD 、BE 、CF 的公共点为G ,图中阴影部分的面积是故答案为:6.【点睛】解析:6.【分析】利用三角形重心的性质证明图中6个小三角形的面积相等即可得到答案.【详解】 解: ABC 三边的中线AD 、BE 、CF 的公共点为G ,,,,GBDGCD GCE AGE AGF BGF S S S S S S ∴=== 2,BG GE = 2,BGCGEC S S ∴= ,DGC CGE S S ∴=GBD GCD GCE AGE AGF BGF S S S S S S ∴=====∴ 图中阴影部分的面积是182 6.6⨯= 故答案为:6.【点睛】 本题考查的是三角形中线的性质,三角形重心的性质,掌握以上知识解决三角形的面积问题是解题的关键.18.220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CE解析:220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CED+∠EDC=180°,∠C=40°,∴∠1+∠2=180°+40°=220°,故答案为:220°.【点睛】本题考查剪纸问题,三角形内角和定理,三角形的外角的性质等知识,熟悉相关性质是解题的关键.19.128【分析】由ADBC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵A解析:128【分析】由AD//BC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵AD//BC,∠1=64°,∴∠DEF=∠1=64°,由折叠的性质可得∠FEG=∠DEF=64°,∴∠2=∠1+∠EFG=64°+64°=128°.故答案为:128.【点睛】本题主要考察两直线平行的性质、折叠的性质以及矩形的性质,重点在于利用已知条件找到角度之间的关系.20.【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式,去括号,得,移项,得,合并同类项,得,系数化为1,得,则最小的整数解为- 解析:72【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式()()325416x x -+<-+,去括号,得365446-+<-+x x ,移项,得344665-<-++-x x ,合并同类项,得3x -<,系数化为1,得3x >-,则最小的整数解为-2.把2x =-代入23x ax -=中,得423a -+=, 解得:72a =. 故答案为72. 【点睛】本题主要考查了一元一次方程的解与一元一次不等式的整数解,准确计算是解题的关键.三、解答题21.(1)218524k x ky -⎧=⎪⎪⎨-⎪=⎪⎩;(2)52k =或12k =-;(3)1或2. 【分析】(1)根据题意直接利用加减消元法进行计算求解即可;(2)由题意根据01(0)a a =≠和11n =以及2(1)1n -=(n 为整数)得到三个关于k 的方程,求出k 即可;(3)根据题意用含m 的代数式表示出k ,根据14k ≤,确定m 的取值范围,由m 为正整数,求得m 的值即可.【详解】 解:(1)21322x y x y k ⎧+=⎪⎪⎨⎪-=-⎪⎩①②, ①+②得:3412x k =+-,解得:218k x -=, ①-②得:3212y k =-+,解得:524k y -=, ∴二元一次方程组的解为:218524k x k y -⎧=⎪⎪⎨-⎪=⎪⎩. (2)∵01(0)a a =≠,2(42)1y x +=,∴20y =,即52204k -⨯=,解得:52k =; ∵11n =,2(42)1y x +=,∴421x +=,即214218k -⨯+=,解得:12k =-; ∵2(1)1n -=(n 为正整数),2(42)1y x +=,∴4212x y +=-,为偶数,即214218k -⨯+=-,解得:52k =-; 当52k =-时,3532115222y k =-+=++=,为奇数,不合题意,故舍去. 综上52k =或12k =-. (3)∵215213643647842k k m x y k --=+=⨯+⨯=+,即172m k =+, ∴2114m k -=, ∵14k ≤, ∴211144m k -=≤,解得94m ≤,∵m 为正整数,∴m=1或2.【点睛】本题考查解二元一次方程组以及解一元一次不等式,根据题意列出不等式是解题的关键.22.-5a 2+2ab ,-1【分析】先利用平方差公式和完全平方公式进行计算,然和合并同类项,最后把a ,b 的值代入即可.【详解】()()()22222()=4222b a a a b b a ab b a b --++----2222=42b a a b ab ---+252a ab =-+,当a =-1,b =-2时,原式=-1.【点睛】本题考查了整式的化简求值,解题的关键是熟练掌握混合运算的顺序和整式的乘法公式.23.(1)见解析;(2)见解析;(3)8【分析】(1)由点B 及其对应点B′的位置得出平移的方向和距离,据此作出点A 、C 平移后的对应点,再首尾顺次连接即可得;(2)根据三角形高线的概念作图即可;(3)由S △PAB =S △ABC 知两个三角形共底、等高,据此可知点P 在如图所示的直线m 、n 上,再结合图形可得答案.【详解】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,垂线段AE 即为所求;(3)如图所示,满足这样条件的点P 有8个,故答案为:8.【点睛】本题主要考查作图-平移变换,解题的关键是掌握平移变换的定义和性质,据此得出变换后的对应点及三角形高线的概念、共底等高的三角形面积问题.24.(1)∠BDC=∠A+∠B+∠C,理由见解析;(2)①40°;②90°;③70°.【分析】(1)根据题意观察图形连接AD并延长至点F,根据一个三角形的外角等于与它不相邻的两个内角的和可证∠BDC=∠BDF+∠CDF;(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=12(∠ADB+∠AEB)+∠A,易得答案.③由②方法,进而可得答案.【详解】解:(1)连接AD并延长至点F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;∵∠BDC=∠BDF+∠CDF,∴∠BDC=∠BAD+∠B+∠C+∠CAD.∵∠BAC=∠BAD+∠CAD;∴∠BDC=∠BAC +∠B+∠C;(2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,又因为∠A=50°,∠BXC=90°,所以∠ABX+∠ACX=90°﹣50°=40°;②由(1)的结论易得∠DBE=∠DAE +∠ADB+∠AEB,∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB=80°;∴∠DCE=12(ADB+∠AEB)+A=40°+50°=90°;③由②知,∠BG1C=110(ABD+∠ACD)+A,∵∠BG1C=77°,∴设∠A为x°,∵∠ABD+∠ACD=140°﹣x°,∴110(40﹣x)x=77,∴14﹣110x+x=77,∴x =70,∴∠A 为70°.【点睛】本题考查三角形外角的性质,三角形的内角和定理的应用,能求出∠BDC=∠A+∠B+∠C 是解答的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.25.(1)草莓35箱,苹果25箱;(2)①340元,②53或52【分析】(1)抓住题中关键的已知条件,老徐购得草莓和苹果共60箱,刚好花费3100元,设未知数列方程组,求解方程即可;(2)①由题意列二元一次方程,可得到34120a b +=,列式求出他在乙店获利;②根据老徐希望获得总利润为1000元,建立关于a 、b 的二元一次方程,整理可得18034a b -=,再根据a 、b 的取值范围及a 一定是4的整数倍,即可求出结果; 【详解】 (1)解:设草莓购买了x 箱,苹果购买了y 箱,根据题意得:6060403100x y x y ⎧+=⎨+=⎩, 解得3525x y ⎧=⎨=⎩.答:草莓购买了35箱,苹果购买了25箱;(2)解:①若老徐在甲店获利600元,则1520600ab +=, 整理得:34120a b +=,他在乙店的获利为:()()12351625a b -+-, =()820434a b -+,=820-4120⨯,=340元;②根据题意得:()()1520123516251000a b a b ++-+-=, 整理得:34180ab +=, 得到18034ab -=,∵a、b 均为正整数,∴a 一定是4的倍数,∴a 可能是0,4,8…,∵035a ≤≤,025b ≤≤, ∴当且仅当a=32,b=21或a=25,b=24时34180a b +=成立, ∴322153a b +=+=或28+24=52.故答案为340元;53或52.【点睛】本题主要考查了二元一次方程组的应用,根据题意列式是解题的关键.26.(1)272x y =⎧⎪⎨=⎪⎩;(2)692x y =⎧⎪⎨=⎪⎩【分析】(1)根据加减消元法,即可求解;(2)先去分母,去括号,移项,合并同类项,再通过加减消元法,即可求解.【详解】(1)29321x y x y +=⎧⎨-=-⎩①②, +①②得:48x =.解得:2x =, 把2x =代入①得:229y +=,解得:72y =, ∴方程组的解为272x y =⎧⎪⎨=⎪⎩; (2)原方程可化为3436329x y x y +=⎧⎨-=⎩①②, ①-②得:627y =,解得:92y =, 把92y =代入②得:399x -=,解得:6x =, ∴方程组的解为692x y =⎧⎪⎨=⎪⎩. 【点睛】本题主要考查解二元一次方程组,掌握加减消元法,是解题的关键.27.(1)>;(2)9;(3)9.【分析】(1)根据矩形的面积公式计算即可;(2)根据矩形和正方形的周长和面积公式即可得到结论;(3)根据题意列出不等式,然后求解即可得到结论.【详解】解:(1)图①中长方形的面积21(7)(1)87S m m m m , 图②中长方形的面积22(4)(2)68S m m m m , 1221S S m ,m 为正整数,m 最小为1,2110m ,12S S ∴>;(2)依题意得,正方形的边长为:2(71)44m m m ; 则:221(4)(87)9S S m m m ,是一个定值;(3)由(1)得,1221S S m ,根据某个图形的面积介于1S 、2S 之间(不包括1S 、2S )并且面积为整数,这样的整数值有且只有16个,∴当162117m 时, ∴1792m , m 为正整数,9m ∴=.【点睛】本题考查了完全平方方公式的几何背景,多项式的乘法,整式的混合运算,一元一次不等式,熟记相关运算法则是解题的关键.28.(1)见解析;(2)∠1+∠2=2∠C ;(3)∠1-∠2=2∠C.【分析】(1)根据折叠的性质得∠DFE=∠A ,由已知得∠A=∠C ,于是得到∠DFE=∠C ,即可得到结论;(2)先根据四边形的内角和等于360°得出∠A+∠A′=∠1+∠2,再由图形翻折变换的性质即可得出结论;(3)∠A′ED=∠AED (设为α),∠A′DE=∠ADE (设为β),于是得到∠2+2α=180°,∠1=β-∠BDE=β-(∠A+α),推出∠2-∠1=180°-(α+β)+∠A ,根据三角形的内角和得到∠A=180°-(α+β),证得∠2-∠1=2∠A ,于是得到结论.【详解】解:(1) 由折叠知∠A=∠DFE,∵∠A=∠C ,∴∠DFE=∠C ,∴BC ∥DF ;(2)∠1+∠2=2∠A.理由如下:∵∠1+2∠AED =180°, ∠2+2∠ADE =180°,∴∠1+∠2+2(∠ADE +∠AED)=360°.∵∠A +∠ADE +∠AED =180°,∴∠ADE +∠AED =180°-∠A ,∴∠1+∠2+2(180°-A)=360°,即∠1+∠2=2∠C.(3)∠1-∠2=2∠A.∵2∠AED +∠1=180°,2∠ADE -∠2=180°,∴2(∠ADE+∠AED)+∠1-∠2=360°.∵∠A+∠ADE+∠AED=180°,∴∠ADE+∠AED=180°-∠A,∴∠1-∠2+2(180°-∠A)=360°,即∠1-∠2=2∠C.【点睛】考查了翻折变换的性质,三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和等于180°,综合题,但难度不大,熟记性质准确识图是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

佛山专版七年级同步检测期末测试题(六)时间:———— 满分:100分 姓名:————一、选择题(每小题3分,共30分) 1.下列运算正确的是( ). A.22()()a b a b a b +--=- B.22(3)9a a +=+ C.2242a a a +=D.224(2)4a a -=2.为了做一试管架,在长为a cm (a >6cm )的木板上钻3个小孔(如图1),每个小孔的直径为2cm ,则x 等于( ). A.34a -cm B.34a +cm C.64a - cm D.64a +cm3.如图2,直线a 与直线b 互相平行,则|x y -|的值是( ).A.20B.80C.120D.1804.如图3,直线EO ⊥BC 于点O ,∠BOC =3∠1,OD 平分∠AOC ,则∠2的度数是( ). A.30° B.40° C.60° D.以上结果都不正确5.下列判断:①三角形的三个内角中,最多有一个是钝角;②三角形的三个内角中,至少有两个是锐角;③两内角为50°和20°三角形一定是钝角三角形;④直角三角形中两锐角的和为90°.其中,判断正确的有( ). A.1个 B.2个 C.3个 D.4个6.某班在组织学生议一议:测量1张纸大约有多厚.出现了以下四种观点,你认为较合理且可行的观点是( ).A.直接用三角尺测量1张纸的厚度B.先用三角尺测量同类型的2张纸的厚度C.先用三角尺测量同类型的50张纸的厚度D.先用三角尺测量同类型的500张纸的厚度 7.随意抽一张扑克牌(这副牌中无大小王,A 作1,K 作13),则抽到奇数的可能性和偶数的概率哪个大( ). A.奇数概率大 B.偶数概率大 C.奇数和偶数概率一样 D.不能确定8.打开某洗衣机开关(洗衣机内无水),在洗涤衣服时,洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x (分钟)之间的关系,用图象表示大致为( ).图1图2图3A B C D· Oyx· Oyx· Oyx· Oyx9.如图4,已知四边形ABCD 中,AB ∥CD ,BC ∥AD ,点E ,F 在BD 上,且BE =DF ,图中全等三角形的对数是( ). A .3B.4C.5D.610.如图5,在Rt △ABC 中,∠C =90°,BD 是∠ABC 的平分线交AC 于D ,若CD =m ,AB =n ,则△ABD 的面积是( ). A.mn B.12mn C.13mn D.2mn二、填空题(每小题3分,共15分)11.若12-m y x 是七次单项式,则m = .12.己知∠AOB =40°,OC 平分∠AOB ,则∠AOC 的补角等于 .13.△ABC 中,∠A +∠B =∠C ,∠A 的平分线交BC 于点D ,过D 作DE ⊥AB 于E .若CD =2cm ,则DE 为 cm.14.如图6,△ABC 的角平分线AD 、BE 交于点F ,点F 到边BC 的距离为2cm ,那么点F 到边AC 的距离为 cm.15.A 、B 两地相距90千米,甲乙二人同时出发,从A 地到B 地.所用时间x (时)与所行路程y (千米)的关系如图7所示. 则先到达B 地的是 . 三、解答题(本大题共75分)16.(6分)已知222x x -=,将下式先化简,再求值:()()()()()213331x x x x x -++-+--.图5 C B D A 图6 A B D C EF图7y /千米 x/时 甲乙 图417.(6分)在公式(a+b)2=a2+2ab+b2中,如果我们把a+b,a2+b2,ab分别看做一个整体,那么只要知道其中两项的值,就可以求出第三项的值.已知a+b=6,ab=-27.求下列的值:(1)a2+b2(2)a2+b2-ab(3) (a-b)218.(6分)观察下列各式:1×2×3×4+1=52=(12+3×1+1)2,2×3×4×5+1=112=(22+3×2+1)2,3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,……(1)根据你观察、归纳、发现的规律,写出8×9×10×11+1的结果;(2)试猜想:n(n+1)(n+2)(n+3)+1是哪一个数的平方?并说明理由.19.(6分)一游泳池长90米,甲乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图8中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,请根据图形回答:(1)甲、乙两人分别游了几个来回?(2)甲、乙两人在整个游泳过程中,谁曾休息过?休息过几次?(3)甲游了多长时间?游泳的速度是多少?(4)在整个游泳过程中,甲、乙两人相遇了几次?20.(6分)如图9是一个可以自由转动的转盘,转盘被分成了6个扇形,其中标有数字1的扇形的圆心角为90°;标有数字2、4及6的扇形的圆心角均为60°;标有数字3、5的扇形的圆心角均为45°.利用这个转盘甲、乙两人开始做下列游戏:自由转动转盘,指针指向奇数则甲获胜,而指针指向偶数则乙获胜,你认为这个游 戏对甲、乙双方公平吗?为什么?21.(8分)如图10,将长为50cm ,宽为10cm 的长方形白纸粘合起来,粘合部分宽为2cm. (1)求5张白纸粘合后的长度;(2)高x 张白纸粘合后的长度为ycm ,写出y 与x 的关系式,并求出当x =10时,y 的值.22.(8分)如图11,∠ABD 和∠BDC 的平分线相交于点E ,BE 交CD 于F ,∠1+∠2=90º,试问:直线AB 、CD 在位置上有什么关系?∠2与∠3在数量上有什么关系?图9 图1050cm B A CF D2E 31 图1123.(8分)如图12,在RtΔABC 中,∠ACB =90°,AC =BC ,BE ⊥CE ,AD ⊥CE ,垂足分别为E 、D ,AD =2.6cm ,DE =1.2cm ,求BE 的长.24.(10分)如图13,AB =AC ,AD ⊥BC ,AD =AE .,AB 平分∠DAE 于点F ,请你写出图中三对..全等三角形,并选取其中一对加以说明.25.(11分)已知:如图14,AD =BC ,AC =BD . 试判断OD 、OC 的数量关系,并说明理由.图12C B ED A图14DAOCBB D CF AE 图13参考答案一、1. D 2.C 3.A 4.A 5. D 6.D7.A8.D9.A10.B二、11.612.160°13.214. 215.乙三、16.化简为:2--,值为1365x x17.(1)90 (2)117 (3)14418.(1)289;(2)22n n n n n n++++=++(1)(2)(3)1(31)理由略19.(1)甲游了3个来回,乙游了2个来回;(2)乙曾休息了两次;(3)甲游了180秒,游泳的速度是3米/秒;(4)甲、乙相遇了5次.20. 公平,因为奇数对应的扇形圆心角度数之和等于偶数所对应的扇形圆心角度数之和21.解:(1)5052(51)242⨯-⨯-=.所以5张白纸粘合后的长度为240cm.(2)502(1)482=--=+.y x x x所以y与x的关系式为482=+.y x当x=10时,y=482.所以当x=10时,y的值为482cm.22.解:AB∥CD,∠2+∠3=90°.理由如下:因为BE、DE分别平分∠ABD、∠CDB,所以∠ABD=∠1,∠BDC=∠2.因为∠2+∠1=90°,所以∠ABD+∠CDB=180°. 所以AB∥CD.所以∠3=∠ABF.因为∠1=∠ABF.因为∠2+∠1=90°.所以∠2+∠3=90°.23.解:因为BE⊥CE,AD⊥CE,所以∠BEC=∠CDA=90°.所以∠DCA+∠DAC=90°.因为∠ACB=∠ACD+∠BCD=90°.所以∠BCD=∠CAD. 又因为BC=CA,所以ΔADC≌ΔCEB(AAS).所以CE=AD=2.6cm,所以BE=CD=CE-DE=2.6cm-1.2cm=1.4cm.24.解:(1)△ADB ≌△ADC 、△ABD ≌△ABE 、△AFD ≌△AFE 、△BFD ≌△BFE 、△ABE ≌△ACD (写出其中的三对即可).(2)以△ADB ≌△ADC 为例说明.因为AD ⊥BC ,所以∠ADB =∠ADC =90°. 在Rt △ADB 和Rt △ADC 中,因为AB =AC ,AD =AD ,所以Rt △ADB ≌Rt △ADC. 25.解:OD =OC理由:连接AB.在△ADB 与△ACB 中A DBC A B B A A C BD =⎧⎪=⎨⎪=⎩所以△ADB ≌△ACB 所以∠D =∠C在△ADO 与△BCO 中D C D O A C O B A D B C ∠=∠⎧⎪∠=∠⎨⎪=⎩所以△ADO ≌△CBO 所以OC =OD.。

相关文档
最新文档