MAX3093ECPE+中文资料

合集下载

DFK 33GP1300e 技术手册说明书

DFK 33GP1300e 技术手册说明书

技术细节1.要件速览 42.尺寸图 6 2.1DFK 33GP1300e 带脚架适配器的C型接口 (6)2.2DFK 33GP1300e 不带脚架适配器的C型接口 (7)2.3DFK 33GP1300e 带脚架适配器的CS型接口 (8)2.4DFK 33GP1300e 不带脚架适配器的CS型接口 (9)3.I/O 连接器 10 3.16-pin I/O 连接器 (10)3.1.1TRIGGER_IN (10)3.1.2STROBE_OUT (11)4.光谱特征 12 4.1红外截止滤波器 (12)4.2光谱灵敏度 - P1300 (12)5.相机控制 13 5.1传感器读出控制 (13)5.1.1像素格式 (13)8-Bit Bayer Raw (13)5.1.1.15.1.1.212-Bit Packed Bayer Raw (14)16-Bit Bayer Raw (14)5.1.1.35.1.1.4YUV 4:2:2 (14)5.1.1.5YUV 4:1:1 (14)5.1.1.6RGB24 (14)5.1.2分辨率 (15)5.1.3读出模式 (15)帧速率 (16)5.1.45.1.5局部扫描偏移 (17)5.2图像传感器控制 (18)5.2.1曝光时间 (18)5.2.2增益 (18)5.3自动曝光及增益控制 (19)5.3.1自动曝光 (19)自动增益 (19)5.3.25.3.3自动参考值 (20)5.3.4强光缩减 (20)5.3.5自动曝光限制 (20)5.3.6自动增益限制 (21)5.4触发 (21)触发模式 (21)5.4.15.4.2触发极性 (22)5.4.3软件触发 (22)5.4.4触发脉冲计数 (22)5.4.5触发源 (23)5.4.6触发重叠 (23)5.5触发定时参数 (23)触发延迟 (23)5.5.15.5.2触发去抖时间 (24)5.5.3触发遮罩时间 (24)5.5.4触发噪声抑制时间 (24)5.6数字I/O (25)5.6.1通用输入 (25)5.6.2通用输出 (25)5.7频闪 (26)5.7.1频闪启用 (26)5.7.2频闪极性 (26)频闪操作 (26)5.7.35.8白平衡 (26)5.8.1自动白平衡 (27)5.8.2白平衡模式 (27)5.8.3手动白平衡 (28)5.9图像处理 (29)5.9.1伽玛 (29)5.9.2查找表 (30)5.10色彩处理 (31)色调 (31)5.10.15.10.2饱和 (31)5.10.3色彩校正矩阵 (32)5.11自动功能感兴趣的区域 (34)5.11.1自动功能ROI启用 (34)5.11.2自动功能ROI预设 (34)5.11.3自动功能ROI自定义矩形 (35)5.12用户设置 (36)用户设置选择器 (36)5.12.15.12.2加载用户设置 (36)5.12.3保存用户设置 (36)默认用户配置 (37)5.12.46.R e v i s i o n H i story 381要件速览2尺寸图2.1DFK 33GP1300e 带脚架适配器的C型接口2.4DFK 33GP1300e 不带脚架适配器的CS型接口3I/O 连接器3.16-pin I/O 连接器相机后视图1开极闸M OS F E T最大限制0.2A(ID)!2启动电流最低条件3.5mA!3 G:地O:输出I:输入3.1.1TR IGG ER_I NTRIGGER_IN线可用于将曝光时间的开始与外部事件同步。

MAX3232ECPE中文资料

MAX3232ECPE中文资料

MAX3222EEPN -40°C to +85°C 18 Plastic DIP —
MAX3232ECAE 0°C to +70°C 16 SSOP

MAX3232ECWE 0°C to +70°C 16 Wide SO —
MAX3232ECPE 0°C to +70°C 16 Plastic DIP —
Next-Generation Device Features
♦ For Space-Constrained Applications MAX3228E/MAX3229E: ±15kV ESD-Protected, +2.5V to +5.5V, RS-232 Transceivers in UCSP
*Dice are tested at TA = +25°C, DC parameters only. **EP = Exposed paddle.
Ordering Information continued at end of data sheet.
Pin Configurations, Selector Guide, and Typical Operating Circuits appear at end of data sheet.
MAX3222EETP
20 Thin QFN-40°C to +85°C EP** (5mm x
5mm)
T2055-5
MAX3222EEUP -40°C to +85°C 20 TSSOP

MAX3222EEAP -40°C to +85°C 20 SSOP

MAX3222EEWN -40°C to +85°C 18 Wide SO —

MAX1239MEEE中文资料

MAX1239MEEE中文资料

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
MAX1236–MAX1239
♦ ♦
Applications
Hand-Held Portable Applications Medical Instruments Battery-Powered Test Equipment Solar-Powered Remote Systems Received-Signal-Strength Indicators System Supervision
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .

MAX13089EESD+中文资料

MAX13089EESD+中文资料

General DescriptionThe MAX13080E–MAX13089E +5.0V, ±15kV ESD-protect-ed, RS-485/RS-422 transceivers feature one driver and one receiver. These devices include fail-safe circuitry,guaranteeing a logic-high receiver output when receiver inputs are open or shorted. The receiver outputs a logic-high if all transmitters on a terminated bus are disabled (high impedance). The MAX13080E–MAX13089E include a hot-swap capability to eliminate false transitions on the bus during power-up or hot insertion.The MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The MAX13083E/MAX13084E/MAX13085E also feature slew-rate-limited drivers but allow transmit speeds up to 500kbps. The MAX13086E/MAX13087E/MAX13088E driver slew rates are not limited, making transmit speeds up to 16Mbps possible. The MAX13089E slew rate is pin selectable for 250kbps,500kbps, and 16Mbps.The MAX13082E/MAX13085E/MAX13088E are intended for half-duplex communications, and the MAX13080E/MAX13081E/MAX13083E/MAX13084E/MAX13086E/MAX13087E are intended for full-duplex communica-tions. The MAX13089E is selectable for half-duplex or full-duplex operation. It also features independently programmable receiver and transmitter output phase through separate pins.The MAX13080E–MAX13089E transceivers draw 1.2mA of supply current when unloaded or when fully loaded with the drivers disabled. All devices have a 1/8-unit load receiver input impedance, allowing up to 256transceivers on the bus.The MAX13080E/MAX13083E/MAX13086E/MAX13089E are available in 14-pin PDIP and 14-pin SO packages.The MAX13081E/MAX13082E/MAX13084E/MAX13085E/MAX13087E/MAX13088E are available in 8-pin PDIP and 8-pin SO packages. The devices operate over the com-mercial, extended, and automotive temperature ranges.ApplicationsUtility Meters Lighting Systems Industrial Control Telecom Security Systems Instrumentation ProfibusFeatures♦+5.0V Operation♦Extended ESD Protection for RS-485/RS-422 I/O Pins±15kV Human Body Model ♦True Fail-Safe Receiver While Maintaining EIA/TIA-485 Compatibility ♦Hot-Swap Input Structures on DE and RE ♦Enhanced Slew-Rate Limiting Facilitates Error-Free Data Transmission(MAX13080E–MAX13085E/MAX13089E)♦Low-Current Shutdown Mode (Except MAX13081E/MAX13084E/MAX13087E)♦Pin-Selectable Full-/Half-Duplex Operation (MAX13089E)♦Phase Controls to Correct for Twisted-Pair Reversal (MAX13089E)♦Allow Up to 256 Transceivers on the Bus ♦Available in Industry-Standard 8-Pin SO PackageMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers________________________________________________________________Maxim Integrated Products 1Ordering Information19-3590; Rev 1; 4/05For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Selector Guide, Pin Configurations, and Typical Operating Circuits appear at end of data sheet.Ordering Information continued at end of data sheet.M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSDC ELECTRICAL CHARACTERISTICS(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.(All Voltages Referenced to GND)Supply Voltage (V CC ).............................................................+6V Control Input Voltage (RE , DE, SLR,H/F , TXP, RXP)......................................................-0.3V to +6V Driver Input Voltage (DI)...........................................-0.3V to +6V Driver Output Voltage (Z, Y, A, B).............................-8V to +13V Receiver Input Voltage (A, B)....................................-8V to +13V Receiver Input VoltageFull Duplex (A, B)..................................................-8V to +13V Receiver Output Voltage (RO)....................-0.3V to (V CC + 0.3V)Driver Output Current.....................................................±250mAContinuous Power Dissipation (T A = +70°C)8-Pin SO (derate 5.88mW/°C above +70°C).................471mW 8-Pin Plastic DIP (derate 9.09mW/°C above +70°C).....727mW 14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW 14-Pin Plastic DIP (derate 10.0mW/°C above +70°C)...800mW Operating Temperature RangesMAX1308_EC_ _.................................................0°C to +75°C MAX1308_EE_ _..............................................-40°C to +85°C MAX1308_EA_ _............................................-40°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________3DC ELECTRICAL CHARACTERISTICS (continued)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.) (Note 1)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 4_______________________________________________________________________________________DRIVER SWITCHING CHARACTERISTICSMAX13080E/MAX13081E/MAX13082E/MAX13089E WITH SRL = UNCONNECTED (250kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13080E/MAX13081E/MAX13082E/MAX13089E WITH SRL = UNCONNECTED (250kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________5DRIVER SWITCHING CHARACTERISTICSMAX13083E/MAX13084E/MAX13085E/MAX13089E WITH SRL = V CC (500kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13083E/MAX13084E/MAX13085E/MAX13089E WITH SRL = V CC (500kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 6_______________________________________________________________________________________DRIVER SWITCHING CHARACTERISTICSMAX13086E/MAX13087E/MAX13088E/MAX13089E WITH SRL = GND (16Mbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13086E/MAX13087E/MAX13088E/MAX13089E WITH SRL = GND (16Mbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)Note 2:∆V OD and ∆V OC are the changes in V OD and V OC , respectively, when the DI input changes state.Note 3:The short-circuit output current applies to peak current just prior to foldback current limiting. The short-circuit foldback outputcurrent applies during current limiting to allow a recovery from bus contention.MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________70.800.901.501.101.001.201.301.401.60-40-10520-253550958011065125SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (m A )0201040305060021345OUTPUT CURRENTvs. RECEIVER OUTPUT-HIGH VOLTAGEM A X 13080E -89E t o c 02OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )20104030605070021345OUTPUT CURRENTvs. RECEIVER OUTPUT-LOW VOLTAGEM A X 13080E -89E t o c 03OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )4.04.44.24.84.65.25.05.4RECEIVER OUTPUT-HIGH VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T H I G H V O L T A G E (V )-40-10520-2535509580110651250.10.70.30.20.40.50.60.8RECEIVER OUTPUT-LOW VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T L O W V O L T A G E (V )-40-10520-25355095801106512502040608010012014016012345DRIVER DIFFERENTIAL OUTPUT CURRENT vs. DIFFERENTIAL OUTPUT VOLTAGEDIFFERENTIAL OUTPUT VOLTAGE (V)D I F FE R E N T I A L O U T P U T C U R R E N T (m A )2.02.82.43.63.24.44.04.8DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURED I F FE R E N T I A L O U T P U T V O L T A G E (V )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140180160200-7-5-4-6-3-2-1012354OUTPUT CURRENT vs. TRANSMITTEROUTPUT-HIGH VOLTAGEOUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )60402080100120140160180200042681012OUTPUT CURRENT vs. TRANSMITTEROUTPUT-LOW VOLTAGEOUTPUT-LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )Typical Operating Characteristics(V CC = +5.0V, T A = +25°C, unless otherwise noted.)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 8_______________________________________________________________________________________21543679810SHUTDOWN CURRENT vs. TEMPERATUREM A X 13080E -89E t o c 10S H U T D O W N C U R R E N T (µA )-40-10520-253550958011065125TEMPERATURE (°C)600800700100090011001200DRIVER PROPAGATION DELAY vs. TEMPERATURE (250kbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)300400350500450550600DRIVER PROPAGATION DELAY vs. TEMPERATURE (500kbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)1070302040506080DRIVER PROPAGATION DELAY vs. TEMPERATURE (16Mbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140160180RECEIVER PROPAGATION DELAYvs. TEMPERATURE (250kpbs AND 500kbps)R E C E I V E R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140160180RECEIVER PROPAGATION DELAYvs. TEMPERATURE (16Mbps)R EC E I V E R P R O P A G AT I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)2µs/div DRIVER PROPAGATION DELAY (250kbps)DI 2V/divV Y - V Z 5V/divR L = 100Ω200ns/divRECEIVER PROPAGATION DELAY(250kbps AND 500kbps)V A - V B 5V/divRO 2V/divTypical Operating Characteristics (continued)(V CC = +5.0V, T A = +25°C, unless otherwise noted.)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________9Test Circuits and Waveforms400ns/divDRIVER PROPAGATION DELAY (500kbps)DI 2V/divR L = 100ΩV Y - V Z 5V/div10ns/div DRIVER PROPAGATION DELAY (16Mbps)DI 2V/divR L = 100ΩV Y 2V/divV Z 2V/div40ns/divRECEIVER PROPAGATION DELAY (16Mbps)V B 2V/divR L = 100ΩRO 2V/divV A 2V/divTypical Operating Characteristics (continued)(V CC = +5.0V, T A = +25°C, unless otherwise noted.)Figure 2. Driver Timing Test CircuitM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 10______________________________________________________________________________________Test Circuits and Waveforms (continued)Figure 4. Driver Enable and Disable Times (t DHZ , t DZH , t DZH(SHDN))DZL DLZ DLZ(SHDN)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversTest Circuits and Waveforms (continued)Figure 6. Receiver Propagation Delay Test CircuitM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E/MAX13083E/MAX13086EMAX13081E/MAX13084E/MAX13086E/MAX13087EFunction TablesM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers MAX13082E/MAX13085E/MAX13088EFunction Tables (continued)MAX13089EDetailed Description The MAX13080E–MAX13089E high-speed transceivers for RS-485/RS-422 communication contain one driver and one receiver. These devices feature fail-safe circuit-ry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted, or when they are connected to a terminated transmission line with all dri-vers disabled (see the Fail-Safe section). The MAX13080E/MAX13082E/MAX13083E/MAX13085E/ MAX13086E/MAX13088E/MAX13089E also feature a hot-swap capability allowing line insertion without erroneous data transfer (see the Hot Swap Capability section). The MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflec-tions caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The MAX13083E/MAX13084E/MAX13085E also offer slew-rate limits allowing transmit speeds up to 500kbps. The MAX13086E/MAX13087E/MAX13088Es’ driver slew rates are not limited, making transmit speeds up to 16Mbps possible. The MAX13089E’s slew rate is selectable between 250kbps, 500kbps, and 16Mbps by driving a selector pin with a three-state driver.The MAX13082E/MAX13085E/MAX13088E are half-duplex transceivers, while the MAX13080E/MAX13081E/ MAX13083E/MAX13084E/MAX13086E/MAX13087E are full-duplex transceivers. The MAX13089E is selectable between half- and full-duplex communication by driving a selector pin (H/F) high or low, respectively.All devices operate from a single +5.0V supply. Drivers are output short-circuit current limited. Thermal-shutdown circuitry protects drivers against excessive power dissi-pation. When activated, the thermal-shutdown circuitry places the driver outputs into a high-impedance state.Receiver Input Filtering The receivers of the MAX13080E–MAX13085E, and the MAX13089E when operating in 250kbps or 500kbps mode, incorporate input filtering in addition to input hysteresis. This filtering enhances noise immunity with differential signals that have very slow rise and fall times. Receiver propagation delay increases by 25% due to this filtering.Fail-Safe The MAX13080E family guarantees a logic-high receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with all drivers disabled. This is done by setting the receiver input threshold between -50mV and -200mV. If the differential receiver input voltage (A - B) is greater than or equal to -50mV, RO is logic-high. If (A - B) is less than or equal to -200mV, RO is logic-low. In the case of a terminated bus with all transmitters disabled, the receiv-er’s differential input voltage is pulled to 0V by the termi-nation. With the receiver thresholds of the MAX13080E family, this results in a logic-high with a 50mV minimumnoise margin. Unlike previous fail-safe devices, the-50mV to -200mV threshold complies with the ±200mVEIA/TIA-485 standard.Hot-Swap Capability (Except MAX13081E/MAX13084E/MAX13087E)Hot-Swap InputsWhen circuit boards are inserted into a hot or powered backplane, differential disturbances to the data buscan lead to data errors. Upon initial circuit board inser-tion, the data communication processor undergoes itsown power-up sequence. During this period, the processor’s logic-output drivers are high impedanceand are unable to drive the DE and RE inputs of these devices to a defined logic level. Leakage currents up to±10µA from the high-impedance state of the proces-sor’s logic drivers could cause standard CMOS enableinputs of a transceiver to drift to an incorrect logic level. Additionally, parasitic circuit board capacitance couldcause coupling of V CC or GND to the enable inputs. Without the hot-swap capability, these factors could improperly enable the transceiver’s driver or receiver.When V CC rises, an internal pulldown circuit holds DElow and RE high. After the initial power-up sequence,the pulldown circuit becomes transparent, resetting thehot-swap tolerable input.Hot-Swap Input CircuitryThe enable inputs feature hot-swap capability. At theinput there are two NMOS devices, M1 and M2 (Figure 9). When V CC ramps from zero, an internal 7µstimer turns on M2 and sets the SR latch, which alsoturns on M1. Transistors M2, a 1.5mA current sink, andM1, a 500µA current sink, pull DE to GND through a5kΩresistor. M2 is designed to pull DE to the disabledstate against an external parasitic capacitance up to100pF that can drive DE high. After 7µs, the timer deactivates M2 while M1 remains on, holding DE low against three-state leakages that can drive DE high. M1 remains on until an external source overcomes the required input current. At this time, the SR latch resetsand M1 turns off. When M1 turns off, DE reverts to a standard, high-impedance CMOS input. Whenever V CCdrops below 1V, the hot-swap input is reset.For RE there is a complementary circuit employing two PMOS devices pulling RE to V CC. MAX13080E–MAX13089E+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversM A X 13080E –M A X 13089EMAX13089E ProgrammingThe MAX13089E has several programmable operating modes. Transmitter rise and fall times are programma-ble, resulting in maximum data rates of 250kbps,500kbps, and 16Mbps. To select the desired data rate,drive SRL to one of three possible states by using a three-state driver: V CC , GND, or unconnected. F or 250kbps operation, set the three-state device in high-impedance mode or leave SRL unconnected. F or 500kbps operation, drive SRL high or connect it to V CC .F or 16Mbps operation, drive SRL low or connect it to GND. SRL can be changed during operation without interrupting data communications.Occasionally, twisted-pair lines are connected backward from normal orientation. The MAX13089E has two pins that invert the phase of the driver and the receiver to cor-rect this problem. F or normal operation, drive TXP and RXP low, connect them to ground, or leave them uncon-nected (internal pulldown). To invert the driver phase,drive TXP high or connect it to V CC . To invert the receiver phase, drive RXP high or connect it to V CC . Note that the receiver threshold is positive when RXP is high.The MAX13089E can operate in full- or half-duplex mode. Drive H/F low, leave it unconnected (internal pulldown), or connect it to GND for full-duplex opera-tion. Drive H/F high for half-duplex operation. In full-duplex mode, the pin configuration of the driver and receiver is the same as that of a MAX13080E. In half-duplex mode, the receiver inputs are internally connect-ed to the driver outputs through a resistor-divider. This effectively changes the function of the device’s outputs.Y becomes the noninverting driver output and receiver input, Z becomes the inverting driver output and receiver input. In half-duplex mode, A and B are still connected to ground through an internal resistor-divider but they are not internally connected to the receiver.±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges encountered during handling and assembly. The driver outputs and receiver inputs of the MAX13080E family of devices have extra protection against static electricity. Maxim’s engineers have devel-oped state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD struc-tures withstand high ESD in all states: normal operation,shutdown, and powered down. After an ESD event, the MAX13080E–MAX13089E keep working without latchup or damage.ESD protection can be tested in various ways. The transmitter outputs and receiver inputs of the MAX13080E–MAX13089E are characterized for protec-tion to the following limits:•±15kV using the Human Body Model•±6kV using the Contact Discharge method specified in IEC 61000-4-2ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test setup, test methodology, and test results.Human Body ModelFigure 10a shows the Human Body Model, and Figure 10b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,which is then discharged into the test device through a 1.5k Ωresistor.IEC 61000-4-2The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. However, it does not specifically refer to integrated circuits. The MAX13080E family of devices helps you design equip-ment to meet IEC 61000-4-2, without the need for addi-tional ESD-protection components.+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversThe major difference between tests done using the Human Body Model and IEC 61000-4-2 is higher peak current in IEC 61000-4-2 because series resistance is lower in the IEC 61000-4-2 model. Hence, the ESD with-stand voltage measured to IEC 61000-4-2 is generally lower than that measured using the Human Body Model. Figure 10c shows the IEC 61000-4-2 model, and Figure 10d shows the current waveform for IEC 61000-4-2 ESD Contact Discharge test.Machine Model The machine model for ESD tests all pins using a 200pF storage capacitor and zero discharge resis-tance. The objective is to emulate the stress caused when I/O pins are contacted by handling equipment during test and assembly. Of course, all pins require this protection, not just RS-485 inputs and outputs.Applications Information256 Transceivers on the BusThe standard RS-485 receiver input impedance is 12kΩ(1-unit load), and the standard driver can drive up to 32-unit loads. The MAX13080E family of transceivers has a1/8-unit load receiver input impedance (96kΩ), allowingup to 256 transceivers to be connected in parallel on one communication line. Any combination of these devices,as well as other RS-485 transceivers with a total of 32-unit loads or fewer, can be connected to the line.Reduced EMI and ReflectionsThe MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to250kbps. The MAX13083E/MAX13084E/MAX13085Eoffer higher driver output slew-rate limits, allowing transmit speeds up to 500kbps. The MAX13089E withSRL = V CC or unconnected are slew-rate limited. WithSRL unconnected, the MAX13089E error-free data transmission is up to 250kbps. With SRL connected toV CC,the data transmit speeds up to 500kbps. MAX13080E–MAX13089E+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversM A X 13080E –M A X 13089ELow-Power Shutdown Mode (Except MAX13081E/MAX13084E/MAX13087E)Low-power shutdown mode is initiated by bringing both RE high and DE low. In shutdown, the devices typically draw only 2.8µA of supply current.RE and DE can be driven simultaneously; the devices are guaranteed not to enter shutdown if RE is high and DE is low for less than 50ns. If the inputs are in this state for at least 700ns, the devices are guaranteed to enter shutdown.Enable times t ZH and t ZL (see the Switching Characteristics section) assume the devices were not in a low-power shutdown state. Enable times t ZH(SHDN)and t ZL(SHDN)assume the devices were in shutdown state. It takes drivers and receivers longer to become enabled from low-power shutdown mode (t ZH(SHDN), t ZL(SHDN))than from driver/receiver-disable mode (t ZH , t ZL ).Driver Output ProtectionTwo mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention.The first, a foldback current limit on the output stage,provides immediate protection against short circuits over the whole common-mode voltage range (see the Typical Operating Characteristics ). The second, a thermal-shut-down circuit, forces the driver outputs into a high-imped-ance state if the die temperature exceeds +175°C (typ).Line LengthThe RS-485/RS-422 standard covers line lengths up to 4000ft. F or line lengths greater than 4000ft, use the repeater application shown in Figure 11.Typical ApplicationsThe MAX13082E/MAX13085E/MAX13088E/MAX13089E transceivers are designed for bidirectional data commu-nications on multipoint bus transmission lines. F igures 12 and 13 show typical network applications circuits. To minimize reflections, terminate the line at both ends in its characteristic impedance, and keep stub lengths off the main line as short as possible. The slew-rate-lim-ited MAX13082E/MAX13085E and the two modes of the MAX13089E are more tolerant of imperfect termination.Chip InformationTRANSISTOR COUNT: 1228PROCESS: BiCMOS+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversFigure 11. Line Repeater for MAX13080E/MAX13081E/MAX13083E/MAX13084E/MAX13086E/MAX13087E/MAX13089E in Full-Duplex Mode+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E–MAX13089EM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversPin Configurations and Typical Operating CircuitsMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers______________________________________________________________________________________21Pin Configurations and Typical Operating Circuits (continued)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 22______________________________________________________________________________________Ordering Information (continued)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers______________________________________________________________________________________23Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。

MAX3095ESE+中文资料

MAX3095ESE+中文资料

________________________Applications
Telecommunications Equipment Rugged RS-422/RS-485/RS-423 Bus Receiver Receivers for ESD-Sensitive Applications Level Translators
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
________________Functional Diagram
VCC
Байду номын сангаасG G A1
MAX3095 MAX3096
Y1
Pin Configuration
TOP VIEW
B1 1 A1 2 Y2 Y1 3 G 4 Y3 Y2 5 A2 6 Y4 B2 7 GND 8 16 VCC 15 B4 14 A4
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .

MAX13089EEPD中文资料

MAX13089EEPD中文资料

General DescriptionThe MAX13080E–MAX13089E +5.0V, ±15kV ESD-protect-ed, RS-485/RS-422 transceivers feature one driver and one receiver. These devices include fail-safe circuitry,guaranteeing a logic-high receiver output when receiver inputs are open or shorted. The receiver outputs a logic-high if all transmitters on a terminated bus are disabled (high impedance). The MAX13080E–MAX13089E include a hot-swap capability to eliminate false transitions on the bus during power-up or hot insertion.The MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The MAX13083E/MAX13084E/MAX13085E also feature slew-rate-limited drivers but allow transmit speeds up to 500kbps. The MAX13086E/MAX13087E/MAX13088E driver slew rates are not limited, making transmit speeds up to 16Mbps possible. The MAX13089E slew rate is pin selectable for 250kbps,500kbps, and 16Mbps.The MAX13082E/MAX13085E/MAX13088E are intended for half-duplex communications, and the MAX13080E/MAX13081E/MAX13083E/MAX13084E/MAX13086E/MAX13087E are intended for full-duplex communica-tions. The MAX13089E is selectable for half-duplex or full-duplex operation. It also features independently programmable receiver and transmitter output phase through separate pins.The MAX13080E–MAX13089E transceivers draw 1.2mA of supply current when unloaded or when fully loaded with the drivers disabled. All devices have a 1/8-unit load receiver input impedance, allowing up to 256transceivers on the bus.The MAX13080E/MAX13083E/MAX13086E/MAX13089E are available in 14-pin PDIP and 14-pin SO packages.The MAX13081E/MAX13082E/MAX13084E/MAX13085E/MAX13087E/MAX13088E are available in 8-pin PDIP and 8-pin SO packages. The devices operate over the com-mercial, extended, and automotive temperature ranges.ApplicationsUtility Meters Lighting Systems Industrial Control Telecom Security Systems Instrumentation ProfibusFeatures♦+5.0V Operation♦Extended ESD Protection for RS-485/RS-422 I/O Pins±15kV Human Body Model ♦True Fail-Safe Receiver While Maintaining EIA/TIA-485 Compatibility ♦Hot-Swap Input Structures on DE and RE ♦Enhanced Slew-Rate Limiting Facilitates Error-Free Data Transmission(MAX13080E–MAX13085E/MAX13089E)♦Low-Current Shutdown Mode (Except MAX13081E/MAX13084E/MAX13087E)♦Pin-Selectable Full-/Half-Duplex Operation (MAX13089E)♦Phase Controls to Correct for Twisted-Pair Reversal (MAX13089E)♦Allow Up to 256 Transceivers on the Bus ♦Available in Industry-Standard 8-Pin SO PackageMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers________________________________________________________________Maxim Integrated Products 1Ordering Information19-3590; Rev 1; 4/05For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Selector Guide, Pin Configurations, and Typical Operating Circuits appear at end of data sheet.Ordering Information continued at end of data sheet.M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSDC ELECTRICAL CHARACTERISTICS(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.(All Voltages Referenced to GND)Supply Voltage (V CC ).............................................................+6V Control Input Voltage (RE , DE, SLR,H/F , TXP, RXP)......................................................-0.3V to +6V Driver Input Voltage (DI)...........................................-0.3V to +6V Driver Output Voltage (Z, Y, A, B).............................-8V to +13V Receiver Input Voltage (A, B)....................................-8V to +13V Receiver Input VoltageFull Duplex (A, B)..................................................-8V to +13V Receiver Output Voltage (RO)....................-0.3V to (V CC + 0.3V)Driver Output Current.....................................................±250mAContinuous Power Dissipation (T A = +70°C)8-Pin SO (derate 5.88mW/°C above +70°C).................471mW 8-Pin Plastic DIP (derate 9.09mW/°C above +70°C).....727mW 14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW 14-Pin Plastic DIP (derate 10.0mW/°C above +70°C)...800mW Operating Temperature RangesMAX1308_EC_ _.................................................0°C to +75°C MAX1308_EE_ _..............................................-40°C to +85°C MAX1308_EA_ _............................................-40°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________3DC ELECTRICAL CHARACTERISTICS (continued)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.) (Note 1)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 4_______________________________________________________________________________________DRIVER SWITCHING CHARACTERISTICSMAX13080E/MAX13081E/MAX13082E/MAX13089E WITH SRL = UNCONNECTED (250kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13080E/MAX13081E/MAX13082E/MAX13089E WITH SRL = UNCONNECTED (250kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________5DRIVER SWITCHING CHARACTERISTICSMAX13083E/MAX13084E/MAX13085E/MAX13089E WITH SRL = V CC (500kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13083E/MAX13084E/MAX13085E/MAX13089E WITH SRL = V CC (500kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 6_______________________________________________________________________________________DRIVER SWITCHING CHARACTERISTICSMAX13086E/MAX13087E/MAX13088E/MAX13089E WITH SRL = GND (16Mbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13086E/MAX13087E/MAX13088E/MAX13089E WITH SRL = GND (16Mbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)Note 2:∆V OD and ∆V OC are the changes in V OD and V OC , respectively, when the DI input changes state.Note 3:The short-circuit output current applies to peak current just prior to foldback current limiting. The short-circuit foldback outputcurrent applies during current limiting to allow a recovery from bus contention.MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________70.800.901.501.101.001.201.301.401.60-40-10520-253550958011065125SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (m A )0201040305060021345OUTPUT CURRENTvs. RECEIVER OUTPUT-HIGH VOLTAGEM A X 13080E -89E t o c 02OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )20104030605070021345OUTPUT CURRENTvs. RECEIVER OUTPUT-LOW VOLTAGEM A X 13080E -89E t o c 03OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )4.04.44.24.84.65.25.05.4RECEIVER OUTPUT-HIGH VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T H I G H V O L T A G E (V )-40-10520-2535509580110651250.10.70.30.20.40.50.60.8RECEIVER OUTPUT-LOW VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T L O W V O L T A G E (V )-40-10520-25355095801106512502040608010012014016012345DRIVER DIFFERENTIAL OUTPUT CURRENT vs. DIFFERENTIAL OUTPUT VOLTAGEDIFFERENTIAL OUTPUT VOLTAGE (V)D I F FE R E N T I A L O U T P U T C U R R E N T (m A )2.02.82.43.63.24.44.04.8DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURED I F FE R E N T I A L O U T P U T V O L T A G E (V )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140180160200-7-5-4-6-3-2-1012354OUTPUT CURRENT vs. TRANSMITTEROUTPUT-HIGH VOLTAGEOUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )60402080100120140160180200042681012OUTPUT CURRENT vs. TRANSMITTEROUTPUT-LOW VOLTAGEOUTPUT-LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )Typical Operating Characteristics(V CC = +5.0V, T A = +25°C, unless otherwise noted.)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 8_______________________________________________________________________________________21543679810SHUTDOWN CURRENT vs. TEMPERATUREM A X 13080E -89E t o c 10S H U T D O W N C U R R E N T (µA )-40-10520-253550958011065125TEMPERATURE (°C)600800700100090011001200DRIVER PROPAGATION DELAY vs. TEMPERATURE (250kbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)300400350500450550600DRIVER PROPAGATION DELAY vs. TEMPERATURE (500kbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)1070302040506080DRIVER PROPAGATION DELAY vs. TEMPERATURE (16Mbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140160180RECEIVER PROPAGATION DELAYvs. TEMPERATURE (250kpbs AND 500kbps)R E C E I V E R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140160180RECEIVER PROPAGATION DELAYvs. TEMPERATURE (16Mbps)R EC E I V E R P R O P A G AT I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)2µs/div DRIVER PROPAGATION DELAY (250kbps)DI 2V/divV Y - V Z 5V/divR L = 100Ω200ns/divRECEIVER PROPAGATION DELAY(250kbps AND 500kbps)V A - V B 5V/divRO 2V/divTypical Operating Characteristics (continued)(V CC = +5.0V, T A = +25°C, unless otherwise noted.)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________9Test Circuits and Waveforms400ns/divDRIVER PROPAGATION DELAY (500kbps)DI 2V/divR L = 100ΩV Y - V Z 5V/div10ns/div DRIVER PROPAGATION DELAY (16Mbps)DI 2V/divR L = 100ΩV Y 2V/divV Z 2V/div40ns/divRECEIVER PROPAGATION DELAY (16Mbps)V B 2V/divR L = 100ΩRO 2V/divV A 2V/divTypical Operating Characteristics (continued)(V CC = +5.0V, T A = +25°C, unless otherwise noted.)Figure 2. Driver Timing Test CircuitM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 10______________________________________________________________________________________Test Circuits and Waveforms (continued)Figure 4. Driver Enable and Disable Times (t DHZ , t DZH , t DZH(SHDN))DZL DLZ DLZ(SHDN)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversTest Circuits and Waveforms (continued)Figure 6. Receiver Propagation Delay Test CircuitM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E/MAX13083E/MAX13086EMAX13081E/MAX13084E/MAX13086E/MAX13087EFunction TablesM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers MAX13082E/MAX13085E/MAX13088EFunction Tables (continued)MAX13089EDetailed Description The MAX13080E–MAX13089E high-speed transceivers for RS-485/RS-422 communication contain one driver and one receiver. These devices feature fail-safe circuit-ry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted, or when they are connected to a terminated transmission line with all dri-vers disabled (see the Fail-Safe section). The MAX13080E/MAX13082E/MAX13083E/MAX13085E/ MAX13086E/MAX13088E/MAX13089E also feature a hot-swap capability allowing line insertion without erroneous data transfer (see the Hot Swap Capability section). The MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflec-tions caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The MAX13083E/MAX13084E/MAX13085E also offer slew-rate limits allowing transmit speeds up to 500kbps. The MAX13086E/MAX13087E/MAX13088Es’ driver slew rates are not limited, making transmit speeds up to 16Mbps possible. The MAX13089E’s slew rate is selectable between 250kbps, 500kbps, and 16Mbps by driving a selector pin with a three-state driver.The MAX13082E/MAX13085E/MAX13088E are half-duplex transceivers, while the MAX13080E/MAX13081E/ MAX13083E/MAX13084E/MAX13086E/MAX13087E are full-duplex transceivers. The MAX13089E is selectable between half- and full-duplex communication by driving a selector pin (H/F) high or low, respectively.All devices operate from a single +5.0V supply. Drivers are output short-circuit current limited. Thermal-shutdown circuitry protects drivers against excessive power dissi-pation. When activated, the thermal-shutdown circuitry places the driver outputs into a high-impedance state.Receiver Input Filtering The receivers of the MAX13080E–MAX13085E, and the MAX13089E when operating in 250kbps or 500kbps mode, incorporate input filtering in addition to input hysteresis. This filtering enhances noise immunity with differential signals that have very slow rise and fall times. Receiver propagation delay increases by 25% due to this filtering.Fail-Safe The MAX13080E family guarantees a logic-high receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with all drivers disabled. This is done by setting the receiver input threshold between -50mV and -200mV. If the differential receiver input voltage (A - B) is greater than or equal to -50mV, RO is logic-high. If (A - B) is less than or equal to -200mV, RO is logic-low. In the case of a terminated bus with all transmitters disabled, the receiv-er’s differential input voltage is pulled to 0V by the termi-nation. With the receiver thresholds of the MAX13080E family, this results in a logic-high with a 50mV minimumnoise margin. Unlike previous fail-safe devices, the-50mV to -200mV threshold complies with the ±200mVEIA/TIA-485 standard.Hot-Swap Capability (Except MAX13081E/MAX13084E/MAX13087E)Hot-Swap InputsWhen circuit boards are inserted into a hot or powered backplane, differential disturbances to the data buscan lead to data errors. Upon initial circuit board inser-tion, the data communication processor undergoes itsown power-up sequence. During this period, the processor’s logic-output drivers are high impedanceand are unable to drive the DE and RE inputs of these devices to a defined logic level. Leakage currents up to±10µA from the high-impedance state of the proces-sor’s logic drivers could cause standard CMOS enableinputs of a transceiver to drift to an incorrect logic level. Additionally, parasitic circuit board capacitance couldcause coupling of V CC or GND to the enable inputs. Without the hot-swap capability, these factors could improperly enable the transceiver’s driver or receiver.When V CC rises, an internal pulldown circuit holds DElow and RE high. After the initial power-up sequence,the pulldown circuit becomes transparent, resetting thehot-swap tolerable input.Hot-Swap Input CircuitryThe enable inputs feature hot-swap capability. At theinput there are two NMOS devices, M1 and M2 (Figure 9). When V CC ramps from zero, an internal 7µstimer turns on M2 and sets the SR latch, which alsoturns on M1. Transistors M2, a 1.5mA current sink, andM1, a 500µA current sink, pull DE to GND through a5kΩresistor. M2 is designed to pull DE to the disabledstate against an external parasitic capacitance up to100pF that can drive DE high. After 7µs, the timer deactivates M2 while M1 remains on, holding DE low against three-state leakages that can drive DE high. M1 remains on until an external source overcomes the required input current. At this time, the SR latch resetsand M1 turns off. When M1 turns off, DE reverts to a standard, high-impedance CMOS input. Whenever V CCdrops below 1V, the hot-swap input is reset.For RE there is a complementary circuit employing two PMOS devices pulling RE to V CC. MAX13080E–MAX13089E+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversM A X 13080E –M A X 13089EMAX13089E ProgrammingThe MAX13089E has several programmable operating modes. Transmitter rise and fall times are programma-ble, resulting in maximum data rates of 250kbps,500kbps, and 16Mbps. To select the desired data rate,drive SRL to one of three possible states by using a three-state driver: V CC , GND, or unconnected. F or 250kbps operation, set the three-state device in high-impedance mode or leave SRL unconnected. F or 500kbps operation, drive SRL high or connect it to V CC .F or 16Mbps operation, drive SRL low or connect it to GND. SRL can be changed during operation without interrupting data communications.Occasionally, twisted-pair lines are connected backward from normal orientation. The MAX13089E has two pins that invert the phase of the driver and the receiver to cor-rect this problem. F or normal operation, drive TXP and RXP low, connect them to ground, or leave them uncon-nected (internal pulldown). To invert the driver phase,drive TXP high or connect it to V CC . To invert the receiver phase, drive RXP high or connect it to V CC . Note that the receiver threshold is positive when RXP is high.The MAX13089E can operate in full- or half-duplex mode. Drive H/F low, leave it unconnected (internal pulldown), or connect it to GND for full-duplex opera-tion. Drive H/F high for half-duplex operation. In full-duplex mode, the pin configuration of the driver and receiver is the same as that of a MAX13080E. In half-duplex mode, the receiver inputs are internally connect-ed to the driver outputs through a resistor-divider. This effectively changes the function of the device’s outputs.Y becomes the noninverting driver output and receiver input, Z becomes the inverting driver output and receiver input. In half-duplex mode, A and B are still connected to ground through an internal resistor-divider but they are not internally connected to the receiver.±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges encountered during handling and assembly. The driver outputs and receiver inputs of the MAX13080E family of devices have extra protection against static electricity. Maxim’s engineers have devel-oped state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD struc-tures withstand high ESD in all states: normal operation,shutdown, and powered down. After an ESD event, the MAX13080E–MAX13089E keep working without latchup or damage.ESD protection can be tested in various ways. The transmitter outputs and receiver inputs of the MAX13080E–MAX13089E are characterized for protec-tion to the following limits:•±15kV using the Human Body Model•±6kV using the Contact Discharge method specified in IEC 61000-4-2ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test setup, test methodology, and test results.Human Body ModelFigure 10a shows the Human Body Model, and Figure 10b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,which is then discharged into the test device through a 1.5k Ωresistor.IEC 61000-4-2The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. However, it does not specifically refer to integrated circuits. The MAX13080E family of devices helps you design equip-ment to meet IEC 61000-4-2, without the need for addi-tional ESD-protection components.+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversThe major difference between tests done using the Human Body Model and IEC 61000-4-2 is higher peak current in IEC 61000-4-2 because series resistance is lower in the IEC 61000-4-2 model. Hence, the ESD with-stand voltage measured to IEC 61000-4-2 is generally lower than that measured using the Human Body Model. Figure 10c shows the IEC 61000-4-2 model, and Figure 10d shows the current waveform for IEC 61000-4-2 ESD Contact Discharge test.Machine Model The machine model for ESD tests all pins using a 200pF storage capacitor and zero discharge resis-tance. The objective is to emulate the stress caused when I/O pins are contacted by handling equipment during test and assembly. Of course, all pins require this protection, not just RS-485 inputs and outputs.Applications Information256 Transceivers on the BusThe standard RS-485 receiver input impedance is 12kΩ(1-unit load), and the standard driver can drive up to 32-unit loads. The MAX13080E family of transceivers has a1/8-unit load receiver input impedance (96kΩ), allowingup to 256 transceivers to be connected in parallel on one communication line. Any combination of these devices,as well as other RS-485 transceivers with a total of 32-unit loads or fewer, can be connected to the line.Reduced EMI and ReflectionsThe MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to250kbps. The MAX13083E/MAX13084E/MAX13085Eoffer higher driver output slew-rate limits, allowing transmit speeds up to 500kbps. The MAX13089E withSRL = V CC or unconnected are slew-rate limited. WithSRL unconnected, the MAX13089E error-free data transmission is up to 250kbps. With SRL connected toV CC,the data transmit speeds up to 500kbps. MAX13080E–MAX13089E+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversM A X 13080E –M A X 13089ELow-Power Shutdown Mode (Except MAX13081E/MAX13084E/MAX13087E)Low-power shutdown mode is initiated by bringing both RE high and DE low. In shutdown, the devices typically draw only 2.8µA of supply current.RE and DE can be driven simultaneously; the devices are guaranteed not to enter shutdown if RE is high and DE is low for less than 50ns. If the inputs are in this state for at least 700ns, the devices are guaranteed to enter shutdown.Enable times t ZH and t ZL (see the Switching Characteristics section) assume the devices were not in a low-power shutdown state. Enable times t ZH(SHDN)and t ZL(SHDN)assume the devices were in shutdown state. It takes drivers and receivers longer to become enabled from low-power shutdown mode (t ZH(SHDN), t ZL(SHDN))than from driver/receiver-disable mode (t ZH , t ZL ).Driver Output ProtectionTwo mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention.The first, a foldback current limit on the output stage,provides immediate protection against short circuits over the whole common-mode voltage range (see the Typical Operating Characteristics ). The second, a thermal-shut-down circuit, forces the driver outputs into a high-imped-ance state if the die temperature exceeds +175°C (typ).Line LengthThe RS-485/RS-422 standard covers line lengths up to 4000ft. F or line lengths greater than 4000ft, use the repeater application shown in Figure 11.Typical ApplicationsThe MAX13082E/MAX13085E/MAX13088E/MAX13089E transceivers are designed for bidirectional data commu-nications on multipoint bus transmission lines. F igures 12 and 13 show typical network applications circuits. To minimize reflections, terminate the line at both ends in its characteristic impedance, and keep stub lengths off the main line as short as possible. The slew-rate-lim-ited MAX13082E/MAX13085E and the two modes of the MAX13089E are more tolerant of imperfect termination.Chip InformationTRANSISTOR COUNT: 1228PROCESS: BiCMOS+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversFigure 11. Line Repeater for MAX13080E/MAX13081E/MAX13083E/MAX13084E/MAX13086E/MAX13087E/MAX13089E in Full-Duplex Mode+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E–MAX13089EM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversPin Configurations and Typical Operating CircuitsMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers______________________________________________________________________________________21Pin Configurations and Typical Operating Circuits (continued)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 22______________________________________________________________________________________Ordering Information (continued)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers______________________________________________________________________________________23Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。

MAX2605-MAX2609中文资料

MAX2605-MAX2609中文资料

General DescriptionThe MAX2605–MAX2609 evaluation kits (EV kits) simplify evaluation of this family of voltage-controlled oscillators (VCOs). These kits enable testing of the devices’ per-formance and require no additional support circuitry.Both signal outputs use SMA connectors to facilitate connection to RF test equipment.These EV kits are fully assembled and tested. Their oscil-lation frequencies are set to approximately the midrange of the respective VCOs.Featureso Easy Evaluationo Complete, Tunable VCO Test Board with Tank Circuit o Low Phase Noiseo Fully Assembled and TestedEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits19-1673 Rev 0; 9/00Ordering InformationComponent SuppliersFor free samples and the latest literature, visit or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.MAX2606 Component ListMAX2605 Component ListE v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits 2_______________________________________________________________________________________Quick StartThe MAX2605–MAX2609 evaluation kits are fully assembled and factory tested. Follow the instructions in the Connections a nd Setup section for proper device evaluation.Test Equipment Required•Low-noise power supplies (these are recommended for oscillator noise measurement). Noise or ripple will frequency-modulate the oscillator and cause spectral spreading. Batteries can be used in place of power supplies, if necessary.– Use a DC power supply capable of supplying +2.7V to +5.5V. Alternatively, use two or three 1.5V batteries.– Use a DC power supply capable of supplying +0.4V to +2.4V, continuously variable, for TUNE.Alternatively, use two 1.5V batteries with a resistive voltage divider or potentiometer.•An RF spectrum analyzer that covers the operating frequency range of the MAX2605–MAX2609• A 50Ωcoaxial cable with SMA connectors •An ammeter (optional)Connections and Setup1)Connect a DC supply (preset to +3V) to the V CC and GND terminals (through an ammeter, if desired) on the EV kit.2)Turn on the DC supply. If used, the ammeter readingMAX2607 Component ListMAX2608 Component ListEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits_______________________________________________________________________________________3approximates the typical operating current specified in the MAX2605–MAX2609 data sheet.3)Connect the VCO output (OUT+ or OUT-) to a spec-trum analyzer with a 50Ωcoaxial cable.4)Apply a positive variable DC voltage between 0.4V and 2.4V to TUNE.5)Check the tuning bandwidth on the spectrum analyz-er by varying the tuning voltage (+0.4V to +2.4V).Layout ConsiderationsThe EV kit PC board can serve as a guide for laying out a board using the MAX2605–MAX2609. Generally, the VCC pin on the PC board should have a decoupling capacitor placed close to the IC. This minimizes noisecoupling from the supply. Also, place the VCO as far away as possible from the noisy section of a larger sys-tem, such as a switching regulator or digital circuits.The VCO ’s performance is strongly dependent on the availability of the external tuning inductor. For best per-formance, use high-Q components and choose their val-ues carefully. To minimize the effects of parasitic ele-ments, which degrade circuit performance, place the tuning inductor and C BYP close to the VCO. For higher-frequency versions, include the parasitic PC board inductance and capacitance when calculating the oscillation frequency. In addition, remove the ground plane around and under the tuning inductor to minimize the effect of parasitic capacitance.Noise on TUNE translates into FM noise on the outputs;therefore, keep the trace between TUNE and the control circuitry as short as possible. If necessary, use an RC filter to further suppress noise, as done on the EV kits.E v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits 4_______________________________________________________________________________________Figure 2. MAX2608/MAX2609 EV Kits SchematicFigure 1. MAX2605/MAX2606/MAX2607 EV Kits SchematicEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits_______________________________________________________________________________________5Figure 3. MAX2605/MAX2606/MAX2607 EV Kits ComponentPlacement Guide—Top Silk ScreenFigure 4. MAX2608/MAX2609 EV Kits Component PlacementGuide—Top Silk ScreenFigure 5. MAX2605/MAX2606/MAX2607 EV Kits PC BoardLayout—Component SideFigure 6. MAX2608/MAX2609 EV Kits PC Board Layout—Component SideMa xim ca nnot a ssume responsibility for use of a ny circuitry other tha n circuitry entirely embodied in a Ma xim product. No circuit pa tent licenses a re implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.6_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2000 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.E v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits Figure 7. MAX2605/MAX2606/MAX2607/MAX2608/MAX2609EV Kits PC Board Layout—Ground Plane。

MAX691AEWE中文资料

MAX691AEWE中文资料

ELECTRICAL CHARACTERISTICS
(MAX691A, MAX800L: VCC = +4.75V to +5.5V, MAX693A, MAX800M: VCC = +4.5V to +5.5V, VBATT = 2.8V, TA = TMIN to TMAX, unless otherwise noted.)
BATT ON 5 LOW LINE 6
OSC IN 7 OSC SEL 8
MAX691A MAX693A MAX800L MAX800M
16 RESET 15 RESET 14 WDO 13 CE IN 12 CE OUT 11 WDI 10 PFO 9 PFI
DIP/SO
SuperCap is a registered trademark of Baknor Industries. MaxCap is a registered trademark of The Carborundum Corp.
元器件交易网
19-0094; Rev 7a; 12/96
Microprocessor Supervisory Circuits
MAX691A/MAX693A/MAX800L/MAX800M
_______________General Description
The MAX691A/MAX693A/MAX800L/MAX800M microprocessor (µP) supervisory circuits are pin-compatible upgrades to the MAX691, MAX693, and MAX695. They improve performance with 30µA supply current, 200ms typ reset active delay on power-up, and 6ns chipenable propagation delay. Features include write protection of CMOS RAM or EEPROM, separate watchdog outputs, backup-battery switchover, and a RESET output that is valid with VCC down to 1V. The MAX691A/ MAX800L have a 4.65V typical reset-threshold voltage, and the MAX693A/MAX800M’s reset threshold is 4.4V typical. The MAX800L/MAX800M guarantee power-fail accuracies to ±2%.

MAX3095中文资料

MAX3095中文资料

MAX3095/MAX3096
_______________Ordering Information
PART MAX3095CPE MAX3095CSE MAX3095CEE MAX3095EPE MAX3095ESE MAX3095EEE MAX3096CPE MAX3096CSE MAX3096CEE MAX3096EPE MAX3096ESE MAX3096EEE TEMP. RANGE 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C PIN-PACKAGE 16 Plastic DIP 16 Narrow SO 16 QSOP 16 Plastic DIP 16 Narrow SO 16 QSOP 16 Plastic DIP 16 Narrow SO 16 QSOP 16 Plastic DIP 16 Narrow SO 16 QSOP
±15kV ESD-Protected, 10Mbps, 3V/5V, Quad RS-422/RS-485 Receivers MAX3095/MAX3096
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC) ...............................................................7V Control Input Voltage (G, G).......................-0.3V to (VCC + 0.3V) Receiver Input Voltage (A_, B_)...........................................±25V Receiver Output Voltage (Y_).....................-0.3V to (VCC + 0.3V) Continuous Power Dissipation (TA = +70°C) Plastic DIP (derate 10.5mW/°C above +70°C) ............762mW SO (derate 8.7mW/°C above +70°C) ...........................696mW QSOP (derate 8.3mW/°C above +70°C) ......................667mW Operating Temperature Ranges MAX309_C_ _ .....................................................0°C to +70°C MAX309_E_ _...................................................-40°C to +85°C Storage Temperature Range .............................-65°C to +160°C Lead Temperature (soldering, 10sec) .............................+300°C

MAX3094EESE中文资料

MAX3094EESE中文资料

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
元器件交易网
MAX3093E/MAX3094E
_______________Ordering Information
PART MAX3093ECUE MAX3093ECSE MAX3093ECPE MAX3093EEUE MAX3093EESE MAX3093EEPE MAX3094ECUE MAX3094ECSE MAX3094ECPE MAX3094EEUE MAX3094EESE MAX3094EEPE TEMP RANGE 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C PIN-PACKAGE 16 TSSOP 16 Narrow SO 16 Plastic DIP 16 TSSOP 16 Narrow SO 16 Plastic DIP 16 TSSOP 16 Narrow SO 16 Plastic DIP 16 TSSOP 16 Narrow SO 16 Plastic DIP
________________________Applications

AO4459中文资料

AO4459中文资料

AO4459中⽂资料SymbolTyp Max 33406275R θJL 1824Maximum Junction-to-Lead CSteady-State°C/WThermal Characteristics ParameterUnits Maximum Junction-to-AmbientAt ≤ 10s R θJA °C/W Maximum Junction-to-Ambient ASteady-State °C/W AO4459AO4459SymbolMin TypMaxUnits BV DSS -30V -1T J =55°C-5I GSS ±100nA V GS(th)-1.5-1.85-2.5V I D(ON)-30A 3846T J =125°C53685872m ?g FS 11S V SD -0.78-1V I S-3.5A C iss 668830pF C oss 126pF C rss 92pF R g69?Q g (10V)12.716nC Q g (4.5V) 6.4nC Q gs 2nC Q gd 4nC t D(on)7.7ns t r 6.8ns t D(off)20ns t f 10ns t rr 2230ns Q rr15nCTHIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,FUNCTIONS AND RELIABILITY WITHOUT NOTICE.DYNAMIC PARAMETERS Maximum Body-Diode Continuous CurrentGate resistanceV GS =0V, V DS =0V, f=1MHzV GS =0V, V DS =-15V, f=1MHz Input Capacitance Output Capacitance Turn-On Rise Time Turn-Off DelayTime V GS =-10V, V DS =-15V, R L =2.5?, R GEN =3?Turn-Off Fall TimeTurn-On DelayTime SWITCHING PARAMETERSTotal Gate Charge (4.5V)Gate Source Charge Gate Drain Charge Total Gate Charge (10V)V GS =-10V, V DS =-15V, I D =-6.5Am ?V GS =-4.5V, I D =-5AI S =-1A,V GS =0V V DS =-5V, I D =-6.5AR DS(ON)Static Drain-Source On-ResistanceForward TransconductanceDiode Forward VoltageI DSS µA Gate Threshold Voltage V DS =V GS I D =-250µA V DS =-24V, V GS =0VV DS =0V, V GS =±20V Zero Gate Voltage Drain Current Gate-Body leakage current Electrical Characteristics (T J =25°C unless otherwise noted)STATIC PARAMETERS ParameterConditions Body Diode Reverse Recovery Time Body Diode Reverse Recovery ChargeI F =-6.5A, dI/dt=100A/µsDrain-Source Breakdown Voltage On state drain currentI D =-250µA, V GS =0V V GS =-10V, V DS =-5V V GS =-10V, I D =-6.5AReverse Transfer Capacitance I F =-6.5A, dI/dt=100A/µs A: The value of R θJA is measured with the device mounted on 1in 2FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.B: Repetitive rating, pulse width limited by junction temperature.C. The R θJA is the sum of the thermal impedence from junction to lead R θJL and lead to ambient.D. The static characteristics in Figures 1 to 6 are obtained using < 300µs pulses, duty cycle 0.5% max.E. These tests are performed with the device mounted on 1 in 2FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The SOA curve provides a single pulse rating. Rev0 Sept 2006AO4459AO4459。

MAX3096中文资料

MAX3096中文资料
元器件交易网
19-0498; Rev 0; 3/98
±15kV ESD-Protected, 10Mbps, 3V/5V, Quad RS-422/RS-485 Receivers
________________General Description
The MAX3095/MAX3096 are rugged, low-power, quad, RS-422/RS-485 receivers with electrostatic discharge (ESD) protection for use in harsh environments. All receiver inputs are protected to ±15kV using IEC 10004-2 Air-Gap Discharge, ±8kV using IEC 1000-4-2 Contact Discharge, and ±15kV using the Human Body Model. The MAX3095 operates from a +5V supply, while the MAX3096 operates from a +3.3V supply. Receiver propagation delays are guaranteed to within ±8ns of a predetermined value, thereby ensuring device-to-device matching across production lots. Complementary enable inputs can be used to place the devices in a 1nA low-power shutdown mode in which the receiver outputs are high impedance. When active, these receivers have a fail-safe feature that guarantees a logic-high output if the input is open circuit. They also feature a quarter-unit-load input impedance that allows 128 receivers on a bus. The MAX3095/MAX3096 are pin-compatible, low-power upgrades to the industry-standard ’26LS32. They are available in a space-saving QSOP package.

MAX809M中文资料

MAX809M中文资料

MAX809M中文资料General Description The MAX803/MAX809/MAX810 are microprocessor (μP) supervisory circuits used to monitor the power supplies in μP and digital systems. They provide excellent circuit reliability and low cost by eliminating external compo-nents and adjustments when used with +5V, +3.3V, +3.0V, or +2.5V-powered circuits.These circuits perform a single function: they assert a reset signal whenever the V CC supply voltage declines below a preset threshold, keeping it asserted for at least 140ms after V CC has risen above the reset thresh-old. Reset thresholds suitable for operation with a vari-ety of supply voltages are available.The MAX803 has an open-drain output stage, while the MAX809/MAX810 have push-pull outputs. The MAX803’s open-drain RESET output requires a pull-up resistor that can be connected to a voltage higher than V CC. The MAX803/MAX809 have an active-low RESET output, while the MAX810 has an active-high RESET output. The reset comparator is designed to ignore fast transients on V CC, and the outputs are guaranteed to be in the correct logic state for V CC down to 1V.Low supply current makes the MAX803/MAX809/ MAX810 ideal for use in portable equipment. The MAX803 is available in a 3-pin SC70 package, and the MAX809/MAX810 are available in 3-pin SC70 or SOT23 packages.Applications ComputersControllersIntelligent InstrumentsCritical μP and μC Power MonitoringPortable/Battery-Powered EquipmentAutomotive ____________________________Features o Precision Monitoring of +2.5V, +3V, +3.3V, and +5V Power-Supply Voltages o Fully Specified Over Temperatureo Available in Three Output ConfigurationsOpen-Drain RESET Output (MAX803)Push-Pull RESET Output (MAX809)Push-Pull RESET Output (MAX810)o140ms min Power-On Reset Pulse Widtho12μA Supply Currento Guaranteed Reset Valid to V CC= +1Vo Power Supply Transient Immunityo No External Components o3-Pin SC70 and SOT23 Packages MAX803L/M/R/S/T/Z, MAX809J/L/M/R/S/T/Z, MAX810L/M/R/S/T/Z3-Pin Microprocessor Reset Circuits____________________________________________________________ ____Maxim Integrated Products1Pin Configuration Typical Operating Circuit19-0344; Rev 4; 12/99Note: These parts are offered in 2.5k or 10k reels, and must beordered in 2.5k or 10k increments. Order MAX803_EXR-T for2.5k reels and MAX803_EXR-T10 for 10k reels. Insert thedesired suffix letter from the Selector Guide into the blank to complete the part number. All versions of these products maynot be available at the time of announcement. Contact factory foravailability.For free samples & the latest literature: , or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.Ordering InformationM A X 803L /M /R /S /T /Z , M A X 809J /L /M /R /S /T /Z , M A X 810L /M /R /S /T /Z3-Pin Microprocessor Reset CircuitsABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = full range, T A = -40°C to +105°C, unless otherwise noted. Typical va lues are at T A = +25°C, V CC = 5V for L/M/J versions, V CC = 3.3V for T/S versions, V CC = 3V for R version, and V CC = 2.5V for Z version.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. T hese are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Terminal Voltage (with respect to GND)V CC ....................................................................-0.3V to +6.0V RESET, RESET (push-pull).....................-0.3V to (V CC + 0.3V)RESET (open drain)...........................................-0.3V to +6.0V Input Current, V CC ..............................................................20mA Output Current, RESET, RESET ..........................................20mA Rate of Rise, V CC ............................................................100V/μsContinuous Power Dissipation (T A = +70°C)3-Pin SC70 (derate 2.17mW/°C above +70°C)............174mW 3-Pin SOT23 (derate 4mW/°C above +70°C)...............320mW Operating Temperature Range .........................-40°C to +105°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX803L/M/R/S/T/Z, MAX809J/L/M/R/S/T/Z, MAX810L/M/R/S/T/Z3-Pin Microprocessor Reset Circuits________________________________________________________________ _______________________3A Note 2:RESET output for MAX803/MAX809; RESET output for MAX810.POWER-DOWN RESET DELAY vs. TEMPERATURE (MAX8_ _R/S/T/Z)80100TEMPERATURE (°C)P O W E R -D O W N R E S E T D E L A Y (μs )402060-408520-2006040Typical Operating Characteristics(V CC = full range, T A = -40°C to +105°C, unless otherwise noted. Typical values are at T A = +25°C, V CC = +5V for L/M/J versions,V CC = +3.3V for T/S versions, V CC = +3V for R version, and V CC = +2.5V for Z version.)ELECTRICAL CHARACTERISTICS (continued)(V CC = full range, T A = -40°C to +105°C, unless otherwise noted. Typical values are at T A = +25°C, V CC = 5V for L/M/J versions, V CC = 3.3V for T/S versions, V CC = 3V for R version, and V CC = 2.5V for Z version.) (Note 1)-402040-206085SUPPLY CURRENT vs. TEMPERATURE(SC70 PACKAGE, NO LOAD)TEMPERATURE (°C)S U P P L Y C U R R E N T (μA )051015M A X 803L /M /R /S /T /Z , M A X 809J /L /M /R /S /T /Z , M A X 810L /M /R /S /T /Z3-Pin Microprocessor Reset Circuits 4________________________________________________________________ _______________________Typical Operating Characteristics (continued)(V CC = full range, T A = -40°C to +105°C, unless otherwise noted. Typical values are at T A = +25°C, V CC = +5V for L/M/J versions,V CC = +3.3V for T/S versions, V CC = +3V for R version, and V CC = +2.5V for Z version.)225POWER-UP RESET TIMEOUTvs. TEMPERATURE245250TEMPERATURE (°C)P O W E R -U P R E S E T T I M E O U T (m s )235230240-408520-2060400.997NORMALIZED RESET THRESHOLDvs. TEMPERATURE1.0011.0021.003M A X 803-T O C 6TEMPERATURE (°C)N O R M A L I Z E D T H R E S H O L D0.9990.9981.000-408520-206040Selector Guide0POWER-DOWN RESET DELAY vs. TEMPERATURE (MAX8_ _J/L/M)80100120140TEMPERATURE (°C)P O W E R -D O W N R E S E T D E L A Y (μs )402060-408520-2006040MAX803L/M/R/S/T/Z, MAX809J/L/M/R/S/T/Z, MAX810L/M/R/S/T/Z________________________________________________________________ _______________________5Detailed DescriptionA microprocessor’s (μP’s) reset input starts the μP in a known state. The MAX803/MAX809/MAX810 assert reset to prevent code-execution errors during power-up, power-down, or brownout conditions. They assert a reset signal whenever the V CC supply voltage declines below a preset threshold, keeping it asserted for at least 140ms after V CC has risen above the reset thresh-old. The MAX803 uses an open-drain output, and the MAX809/MAX810 have a push-pull output stage.Connect a pull-up resistor on the MAX803’s RESET out-put to any supply between 0 and 6V.Applications InformationNegative-Going V CC TransientsIn addition to issuing a reset to the μP duri ng power-up,power-down, and brownout conditions, the MAX803/MAX809/MAX810 are relatively immune to short-duration negative-going V CC transients (glitches).Figure 1 shows typical transient duration vs. reset com-parator overdrive, for which the MAX803/MAX809/MAX810 do not generate a reset pulse. The graph was generated using a negative-going pulse applied to V CC ,starting 0.5V above the actual reset threshold and end-ing below it by the magnitude indicated (reset compara-tor overdrive). The graph indicates the maximum pulse width a negative-going V CC transient can have without causing a reset pulse. As the magnitude of the transient increases (goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, for the MAX8__L and MAX8__M, a V CC transient that goes 100mV below the reset threshold and lasts 20μs or less will not cause a reset pulse. A 0.1μF bypass capacitor mounted as close as possible to the V CC pin provides additional transient immunity.Ensuring a Valid Reset OutputDown to V CC = 0When V CC falls below 1V, the MAX809 RESET output no longer sinks current—it becomes an open circuit.Therefore, high-impedance CMOS logic inputs con-nected to RESET can drift to undetermined voltages.This presents no problem in most applications since most μP and other circuitry is inoperative with V CC below 1V. However, in applications where RESET must be valid down to 0V, adding a pull-down resistor to RESET causes any stray leakage currents to flow to3-Pin Microprocessor Reset CircuitsFigure 2. RESET Valid to V CC = Ground Circuit_____________________Pin DescriptionFigure 1. Maximum Transient Duration Without Causing a Reset Pulse vs. Reset Comparator OverdriveM A X 803L /M /R /S /T /Z , M A X 809J /L /M /R /S /T /Z , M A X 810L /M /R /S /T /Zground, holding RESET low (Figure 2). R1’s value is not critical; 100k ?is large enough not to load RESET and small enough to pull RESET to ground.A 100k ?pull-up resistor to V CC is also recommended for the MAX810 if RESET is required to remain valid for V CC < 1V.Interfacing to μPs with Bidirectional Reset PinsSince the RESET output on the MAX803 is open drain,this device interfaces easily with μPs that have bidirec-tional reset pins, such as the Motorola 68HC11.Connecting the μP supervisor’s RESET output directly to the microcontroller’s (μC’s) RESET pin with a single pull-up resistor allows either device to assert reset (Figure 3).MAX803 Open-Drain RESET Output Allows Use with Multiple SuppliesG enerally, the pull-up connected to the MAX803 will connect to the supply voltage that is being monitored at the IC’s V CC pin. However, some systems may use the open-drain output to level-shift from the monitored sup-ply to reset circuitry powered by some other supply (Figure 4). Note that as the MAX803’s VCC decreases below 1V, so does the IC’s ability to sink current at RESET . Also, with any pull-up, RESET will be pulled high as V CC decays toward 0. The voltage where this occurs depends on the pull-up resistor value and the voltage to which it is connected.Benefits of Highly AccurateReset ThresholdMost μP supervisor ICs have reset threshold voltages between 5% and 10% below the value of nominal sup-ply voltages. This ensures a reset will not occur within 5% of the nominal supply, but will occur when the sup-ply is 10% below nominal.When using ICs rated at only the nominal supply ±5%,this leaves a zone of uncertainty where the supply is between 5% and 10% low, and where the reset may or may not be asserted.The MAX8__L/T/Z use highly accurate circuitry to ensure that reset is asserted close to the 5% limit, and long before the supply has declined to 10% below nominal.3-Pin Microprocessor Reset Circuits 6___________________________________________________________________ ____________________Figure 4. MAX803 Open-Drain RESET Output Allows Use with Multiple SuppliesFigure 3. Interfacing to μPs with Bidirectional Reset I/OTRANSISTOR COUNT:275 (SOT23)380 (SC70)___________________Chip InformationMAX803L/M/R/S/T/Z, MAX809J/L/M/R/S/T/Z, MAX810L/M/R/S/T/Z3-Pin Microprocessor Reset Circuits____________________________________________________________ ___________________________7Package InformationM A X 803L /M /R /S /T /Z , M A X 809J /L /M /R /S /T /Z , M A X 810L /M /R /S /T /Z3-Pin Microprocessor Reset Circuits Maxim cannot assume responsibility for use of any circuitry other than circuitry entirelyembodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.8_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600?1999 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information (continued)。

MAX3097EEEE中文资料

MAX3097EEEE中文资料

General DescriptionThe MAX3097E/MAX3098E feature three high-speed RS-485/RS-422 receivers with fault-detection circuitry and fault-status outputs. The receivers’ inputs have fault thresholds that detect when the part is not in a valid state.The MAX3097E/MAX3098E indicate when a receiver input is in an open-circuit condition, short-circuit condi-tion, or outside the common-mode range. They also generate a fault indication when the differential input voltage goes below a preset threshold. See Ordering Information or the Electrical Characteristics for thresh-old values.The fault circuitry includes a capacitor-programmable delay to ensure that there are no erroneous fault condi-tions even at slow edge rates. Each receiver is capable of accepting data at rates up to 32Mbps.________________________ApplicationsRS-485/RS-422 Receivers for Motor-Shaft EncodersHigh-Speed, Triple RS-485/RS-422 Receiver with Extended Electrostatic Discharge (ESD)Triple RS-485/RS-422 Receiver with Input Fault IndicationTelecommunications Embedded SystemsFeatureso Detects the Following RS-485 Faults:Open-Circuit Condition Short-Circuit ConditionLow Differential Voltage Signal Common-Mode Range Violationo ESD Protection±15kV—Human Body Model±15kV—IEC 1000-4-2, Air-Gap Discharge Method±8kV—IEC 1000-4-2, Contact Discharge Method o Single +3V to +5.5V Operationo -10V to +13.2V Extended Common-Mode Range o Capacitor-Programmable Delay of Fault Indication Allows Error-Free Operation at Slow Data Rates o Independent and Universal Fault Outputs o 32Mbps Data Rateo 16-Pin QSOP is 40% Smaller than Industry-Standard 26LS31/32 SolutionsMAX3097E/MAX3098E±15kV ESD-Protected, 32Mbps, 3V/5V ,T riple RS-422/RS-485Receivers with Fault Detection________________________________________________________________Maxim Integrated Products1Pin ConfigurationTypical Application Circuit19-1727; Rev 0; 7/00For free samples and the latest literature, visit or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.Ordering InformationOrdering Information continued at end of data sheet.M A X 3097E /M A X 3098E±15kV ESD-Protected, 32Mbps, 3V/5V ,T riple RS-422/RS-485Receivers with Fault Detection 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V CC ).............................................................+7V Receiver Input Voltage (A, A , B, B , Z, Z ).............................±25V Output Voltage (OUT_, ALARM_)...............-0.3V to (V CC + 0.3V)DELAY........................................................-0.3V to (V CC + 0.3V)Continuous Power Dissipation (T A = +70°C)16-Pin QSOP (derate 8.3mW/°C above +70°C)............667mW 16-Pin SO (derate 8.7mW/°C above +70°C).................696mW 16-Pin Plastic DIP (derate 10.53mW/°Cabove +70°C).............................................................762mWOperating Temperature RangesMAX3097EC_E...................................................0°C to +70°C MAX3098E_C_E.................................................0°C to +70°C MAX3097E_E_E..............................................-40°C to +85°C MAX3098E_E_E..............................................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Junction Temperature......................................................+150°C Lead Temperature (soldering, 10s).................................+300°CMAX3097E/MAX3098E±15kV ESD-Protected, 32Mbps, 3V/5V ,T riple RS-422/RS-485Receivers with Fault Detection_______________________________________________________________________________________3SWITCHING CHARACTERISTICSIN Note 3:A differential terminating resistor is required for proper function of open-circuit fault detection (see Applications Information ).Note 4:See Applications Information for a discussion of the receiver common-mode voltage range and the operating conditions for fault indication.Note 5:Applies to the individual channel immediate-fault outputs (ALARM_) and the general delayed-fault output (ALARMD) whenthere is no external capacitor at DELAY.Note 6:Equivalent pulse test: 1.3V / (t DFLH - t DFHL ) ≥SR D .Note 7:Equivalent pulse test: 0.62V / (t DFLH - t DFHL ) ≥SR D .DELAYED ALARM OUTPUTM A X 3097E /8E t o c 0620µs/divCH 1CH 2CH 3GNDGNDGNDCH1: V A , 5V/divCH2: V ALARMA , 5V/div CH3: V ALARMD , 5V/div V = GND, C DELAY = 270pFM A X 3097E /M A X 3098E±15kV ESD-Protected, 32Mbps, 3V/5V ,T riple RS-422/RS-485Receivers with Fault Detection 4_______________________________________________________________________________________Typical Operating Characteristics(Typical values are at V CC = +5V and T A = +25°C.)110010100010,000110010100010,000ALARMD OUTPUT DELAY vs. CAPACITANCECAPACITANCE (pF)A L A R M D O U T P U T D E L A Y (µs )3040506070-40-20204060RECEIVER PROPAGATION DELAYvs. TEMPERATURETEMPERATURE (°C)R E C E I V E R P R O P A G A T I O N D E L A Y (n s )8013245SUPPLY CURRENT vs. TEMPERATURES U P P L Y C U R R E N T (m A )-40-20204060TEMPERATURE (°C)800.51.01.52.02.53.53.04.54.05.0-45-35-40-30-25-20-15-10-5RECEIVER OUTPUT LOW VOLTAGEvs. OUTPUT CURRENTOUTPUT CURRENT (mA)O U T P U T L O W V O L T A G E (V )0124356010515203025RECEIVER OUTPUT HIGH VOLTAGEvs. OUTPUT CURRENTOUTPUT CURRENT (mA)O U T P U T H I G H V O L T A G E (V )MAX3097E/MAX3098E±15kV ESD-Protected, 32Mbps, 3V/5V ,T riple RS-422/RS-485Receivers with Fault Detection_______________________________________________________________________________________5CH 3CH 2GND CH 1COMMON-MODE VOLTAGE FAULT(HIGH SIDE)M A X 3097E /8E t o c 07a2ms/divCH1: V A + AC(60Hz), 10V/div CH2: V OUTA , 5V/div CH3: V ALARMA , 5V/div V CC = 3VGND GNDCOMMON-MODE VOLTAGE FAULT(LOW SIDE)M A X 3097E /8E t o c 07bCH 3CH 2GND CH 12ms/divCH1: V A + AC(60Hz), 10V/div CH2: V OUTA , 5V/div CH3: V ALARMA , 5V/div V CC = 3VGND GNDTypical Operating Characteristics (continued)(Typical values are at V CC = +5V and T A = +25°C.)MAX3097ELOW DIFFERENTIAL INPUT FAULTM A X 3097E /8E t o c 08CH 2GNDGNDCH 1100µs/divCH1: V A , 200mV/div CH2: V ALARMA , 5V/div V = GNDSLEW-RATE FAULTM A X 3097E /8E t o c 09CH 2GNDGNDCH 1CH1: V A , 5V/divCH2: V ALARMA , 5V/div SLEW RATE = 0.05V/µs V A = GND-8-440812-100-5510FAULT-DETECTION RECEIVER DIFFERENTIALTHRESHOLD VOLTAGE SHIFT vs.COMMON-MODE VOLTAGE (V)T H R E S H O L D S H I F T (m V )M A X 3097E /M A X 3098E±15kV ESD-Protected, 32Mbps, 3V/5V ,T riple RS-422/RS-485Receivers with Fault Detection 6_______________________________________________________________________________________MAX3097E/MAX3098E±15kV ESD-Protected, 32Mbps, 3V/5V ,T riple RS-422/RS-485Receivers with Fault Detection_______________________________________________________________________________________7Figure 1. Typical Receiver Test CircuitFigure 2. Propagation DelayFigure 3. Fault-Detection TimingFigure 4. Common-Mode Fault Propagation DelayTest Circuits and WaveformsDetailed DescriptionThe MAX3097E/MAX3098E feature high-speed, triple RS-485/RS-422 receivers with fault-detection circuitry and fault-status outputs. The fault outputs are active push-pull, requiring no pull-up resistors. The fault cir-cuitry includes a capacitor-programmable delayed FAULT_ output to ensure that there are no erroneous fault conditions even at slow edge rates (see Delayed Fault Output ). The receivers operate at data rates up to 32Mbps.The MAX3097E/MAX3098E are designed for motor-shaft encoders with standard A, B, and Z outputs (see Using the M AX3097E/M AX3098E as Shaft Encoder Receivers ). The devices provide an alarm for open-cir-cuit conditions, short-circuit conditions, data nearing the minimum differential threshold conditions, data below the minimum threshold conditions, and receiver inputs outside the input common-mode range. Tables 1and 2 are functional tables for each receiver.M A X 3097E /M A X 3098E±15kV ESD-Protected, 32Mbps, 3V/5V ,T riple RS-422/RS-485Receivers with Fault Detection 8_______________________________________________________________________________________Note 1:ALARMD indicates fault for any receiver.Note 2:Receiver output may oscillate with this differential input condition.Note 3:See Applications Information for conditions leading to input range fault condition.X = Don ’t careNote 1:ALARMD indicates fault for any receiver.Note 2:Receiver output may oscillate with this differential input condition.Note 3:See Applications Information for conditions leading to input range fault condition.X = Don ’t care; for B-grade functionality, replace V ID input values in Table 2 with B-grade parameters from Electrical Characteristics.MAX3097E/MAX3098E±15kV ESD-Protected, 32Mbps, 3V/5V ,T riple RS-422/RS-485Receivers with Fault Detection_______________________________________________________________________________________9±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against ESD encountered during handling and assembly. The MAX3097E/MAX3098E receiver inputs have extra pro-tection against static electricity found in normal opera-tion. Maxim ’s engineers developed state-of-the-art structures to protect these pins against ±15kV ESD without damage. After an ESD event, the MAX3097E/MAX3098E continue working without latchup.ESD protection can be tested in several ways. The receiver inputs are characterized for protection to the following:•±15kV using the Human Body Model•±8kV using the Contact Discharge method specified in IEC 1000-4-2 (formerly IEC 801-2)•15kV using the Air-Gap Discharge method specified in IEC 1000-4-2 (formerly IEC 801-2)ESD Test ConditionsESD performance depends on a number of conditions.Contact Maxim for a reliability report that documents test setup, methodology, and results.Human Body ModelFigure 5a shows the H uman Body Model, and Figure 5b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of inter-est, which is then discharged into the device through a 1.5k Ωresistor.IEC 1000-4-2Since January 1996, all equipment manufactured and/or sold in the European community has been required to meet the stringent IEC 1000-4-2 specification. The IEC 1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifically refer to inte-grated circuits. The MAX3097E/MAX3098E help you design equipment that meets Level 4 (the highest level)of IEC 1000-4-2, without additional ESD-protection com-ponents.The main difference between tests done using the H uman Body Model and IEC 1000-4-2 is higher peak current in IEC 1000-4-2. Because series resistance is lower in the IEC 1000-4-2 ESD test model (Figure 6a), the ESD-withstand voltage measured to this standard is gen-erally lower than that measured using the Human Body Model. Figure 6b shows the current waveform for the ±8kV IEC 1000-4-2 Level 4 ESD Contact Discharge test.The Air-Gap test involves approaching the device with a charge probe. The Contact Discharge method connects the probe to the device before the probe is energized.Machine ModelThe Machine Model for ESD testing uses a 200pF stor-age capacitor and zero-discharge resistance. It mimics the stress caused by handling during manufacturing and assembly. All pins (not just RS-485 inputs) require this protection during manufacturing. Therefore, the Machine Model is less relevant to the I/O ports than are the Human Body Model and IEC 1000-4-2.Figure 5a. Human Body ESD Test ModelFigure 5b. Human Body Model Current Waveform___________Applications InformationUsing the MAX3097E/MAX3098E as ShaftEncoder ReceiversThe MAX3097E/MAX3098E are triple RS-485 receivers designed for shaft encoder receiver applications. A shaft encoder is an electromechanical transducer that converts mechanical rotary motion into three RS-485differential signals. Two signals, A (A and A) and B (B and B) provide incremental pulses as the shaft turns,while the index signal, Z (Z and Z) occurs only once per revolution to allow synchronization of the shaft to a known position. Digital signal processing (DSP) tech-niques are used to count the pulses and provide feed-back of both shaft position and shaft velocity for a stable positioning system.Shaft encoders typically transmit RS-485 signals over twisted-pair cables since the signal often has to travel across a noisy electrical environment (Figure 7).Detecting FaultsSignal integrity from the shaft encoder to the DSP is essential for reliable system operation. Degraded sig-nals could cause problems ranging from simple mis-counts to loss of position. In an industrial environment,many problems can occur within the three twisted pairs. The MAX3097E/MAX3098E can detect various types of common faults, including a low-input-level sig-nal, open-circuit wires, short-circuit wires, and an input signal outside the common-mode input voltage range of the receiver.Detecting Short CircuitsIn Figure 8, if wires A and A are shorted together, then A and A will be at the same potential, so the difference in the voltage between the two will be approximately 0. This causes fault A to trigger since the difference between A -A is less than the differential fault threshold.Detecting Open-Circuit ConditionsDetecting an open-circuit condition is similar to detect-ing a short-circuit condition and relies on the terminat-ing resistor being across A and A . For example, if the wire drops out of the A terminal, A pulls A through the terminating resistor to look like the same signal. In this condition, V ID is approximately 0 and a fault occurs.M A X 3097E /M A X 3098E±15kV ESD-Protected, 32Mbps, 3V/5V ,T riple RS-422/RS-485Receivers with Fault Detection 10______________________________________________________________________________________Figure 7. Typical Shaft Encoder OutputFigure 6a. IEC 1000-4-2 ESD Test ModelFigure 6b. IEC 1000-4-2 ESD Generator Current WaveformMAX3097E/MAX3098E±15kV ESD-Protected, 32Mbps, 3V/5V ,T riple RS-422/RS-485Receivers with Fault Detection______________________________________________________________________________________11Common-Mode RangeThe MAX3097E/MAX3098E contain circuitry that de-tects if the input stage is going outside its useful com-mon-mode range. If the received data could be unreliable, a fault signal is triggered.Detecting Low Input DifferentialDue to cable attenuation on long wire runs, it is possi-ble that V ID < 200mV, and incorrect data will be received. In this condition, a fault will be indicated.Delayed Fault OutputThe delayed fault output provides a programmable blanking delay to allow transient faults to occur without triggering an alarm. Such faults may occur with slow signals triggering the receiver alarm through the zero crossover region.Figure 9 shows the delayed alarm output.ALARMD performs a logic OR of ALARMA, ALARMB,and ALARMZ (Figure 10). A NOR gate drives an N-channel MOSFET so that in normal operation with no faults, the current source (10µA typ) is shunted toground. Upon activation of any alarm from receiver A,B, or Z, the MOSFET is turned off, allowing the current source to charge C DELAY . When V DELAY exceeds the DELAY threshold, the comparator output, ALARMD,goes high. ALARMD is reset when all receiver alarms go low, quickly discharging C DELAY to ground.Setting Delay TimeALARMD ’s delay time is set with a single capacitor connected from DELAY to GND. The delay comparator threshold varies with supply voltage, and the C DELAY value can be determined for a given time delay period from the Capacitance vs. ALARMD Output Delay graph in the Typical Operating Characteristics or using the following equations:t D = 15 + 0.33 x C DELAY (for V CC = 5V)andt D = 10 + 0.187 x C DELAY (for V CC = 3V)where t D is in µs and C DELAY is in pF.M A X 3097E /M A X 3098E±15kV ESD-Protected, 32Mbps, 3V/5V ,T riple RS-422/RS-485Receivers with Fault Detection 12______________________________________________________________________________________Chip InformationTRANSISTOR COUNT: 675PROCESS: CMOSMAX3097E/MAX3098E±15kV ESD-Protected, 32Mbps, 3V/5V ,T riple RS-422/RS-485Receivers with Fault Detection______________________________________________________________________________________13Package InformationM A X 3097E /M A X 3098E±15kV ESD-Protected, 32Mbps, 3V/5V ,T riple RS-422/RS-485Receivers with Fault Detection 14______________________________________________________________________________________Package Information (continued)MAX3097E/MAX3098E±15kV ESD-Protected, 32Mbps, 3V/5V ,T riple RS-422/RS-485Receivers with Fault Detection______________________________________________________________________________________15Package Information (continued)M A X 3097E /M A X 3098E±15kV ESD-Protected, 32Mbps, 3V/5V ,T riple RS-422/RS-485Receivers with Fault Detection M axim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a M axim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.16____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2000 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.NOTES。

Maxcell称重显示器使用说明书

Maxcell称重显示器使用说明书

.................................. 37
1
Maxcell
2-3-12 RS485 ID 输入 (选配功能)
............................................. 38

命令格式说明 ...................................................................................................................... 39
2-3-9 RS232 一般或简易输出重量 6 位或 7 位选择
..................... 35
2-3-10 RTC 时间调整
............................................................... 36
2-3-11 调整打印时年月日或日月年显示方式
2-3-3 输出格式选择
.................................................................... 29
2-3-4 传送方式设定
.................................................................... 30
使用前之准备工作
一. 请将本机放置于稳固且平坦之桌面上使用,勿放于摇动或振动之台架上。 二. 避免将本机放置于温度变化过大或空气流动剧烈之场所,如日光直射或冷气机之出风口。 三. 请使用独立之电源插座,以避免其它电器用品干扰。 四. 打开电源时,秤盘上请勿放置任何东西。 五. 产品使用时,秤物之重心须位于秤盘之中心点,且秤物不超出秤盘范围,以确保其准确度。 六. 使用本机前,请先温机 15 ~ 20 分钟。 七. 请注意当低电源警示之符号( )闪烁时,则表示须再行充电。 八. 如对本产品有任何建议,请不吝指正。

MAX3077EESA中文资料

MAX3077EESA中文资料
The MAX3070E/MAX3071E/MAX3072E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The MAX3073E/MAX3074E/MAX3075E also feature slewrate-limited drivers but allow transmit speeds up to 500kbps. The MAX3076E/MAX3077E/MAX3078E driver slew rates are not limited, making transmit speeds up to 16Mbps possible. The MAX3079E slew rate is pin selectable for 250kbps, 500kbps, and 16Mbps.
The MAX3072E/MAX3075E/MAX3078E are intended for half-duplex communications, and the MAX3070E/ MAX3071E/MAX3073E/MAX3074E/MAX3076E/MAX307 7E are intended for full-duplex communications. The MAX3079E is selectable for half-duplex or full-duplex operation. It also features independently programmable receiver and transmitter output phase through separate pins.

MAX3093ECUE+T中文资料

MAX3093ECUE+T中文资料

DC ELECTRICAL CHARACTERISTICS—MAX3093E
(VCC = +5V ±5%, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VCC = +5.0V, TA = +25°C.) (Note 1)
MAX3093E/MAX3094E
±15kV ESD-Protected, 10Mbps, 3V/5V, Low-Power Quad RS-422/RS-485 Receivers
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC).............................................................+7V Control Input Voltage (ENAC, ENBD).........-0.3V to (VCC + 0.3V) Receiver Input Voltage (_+, _-)............................................±25V Receiver Output Voltage (Y_).....................-0.3V to (VCC + 0.3V) Output Short-Circuit Duration (Y_, one output) ..........Continuous Continuous Power Dissipation (TA = +70°C)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

3093M32 操作手册说明书

3093M32 操作手册说明书

Dytran Instruments, Inc.21592 Marilla St. Chatsworth, CA 91311 Ph: 818-700-7818 Fax: 818-700-7880email:***************OG3093M32.docxREV A ECN 11436 12/29/14OPERATING GUIDEMODEL 3093M32 MINIATURE HIGH SENSITIVITYTRIAXIAL LIVM™ ACCELEROMETERWITH SINGLE 4-PIN CONNECTORINTERNALLY CASE GROUND ISOLATEDNOTE: LIVM™ is Dytran's trademark for its line of L ow I mpedance V oltage M ode sensors with built-in amplifiers operating from constant current sources over two wires. LIVM instruments are compatible with othermanufacturers’ comparable systems designated IEPE .OPERATING GUIDEMODEL 3093M32 TRIAXIAL ACCELEROMETER INTRODUCTIONModel 3093M32 is a miniature three-axis accelerometer using the latest in piezoceramic planar shear technology coupled with 2-wire internal LIVM (IEPE) electronics.This instrument contains three miniature piezoceramic planar shear mode accelerometer elements mounted to a single ground-isolated support and welded into titanium alloy housing. The three elements are mounted orthogonal to each other so that they can measure the complete motion of a point.Model 3093M32 is stud mounted into very small spaces since its vertical dimension is .59 in. It weighs only 10 grams.LIVM (IEPE) design means that three miniature charge amplifiers are built into the instrument, one for each axis, to lower the impedance of the piezoceramic elements by many orders of magnitude. This technique allows the driving of long cables without affecting sensitivity and the use of very simple constant current type power units.All elements are internally isolated from the outer case and are enclosed by a faraday shield for improved noise immunity.DESCRIPTIONRefer to the outline/installation drawing 127-3093M32 for the dimensions of Model 3093M32.The electrical connections from the charge amplifiers for each element are brought out to the contacts of a single four-pin connector mounted transversely to one vertical face of the housing. The three signal/power connections to the elements are connected to each of three pins while the three ground returns for the elements are tied together to one common pin of the four-pin connector. The case of this instrument is electrically isolated from electricalsignal/power ground.The performance specifications and criteria for Model 3093M32 are delineated on the specification sheet included with this operating guide.INSTALLATIONThis accelerometer is designed for stud mounting. If the accelerometer is mounted on any other surface, its calibration cannot be guaranteed.Select a smooth surface approx of 0.7 in. in diameter and clean off all oil, debris and any contaminants or foreign matter that would preclude a good coupling.The selected (or prepared) mounting area should be flat to within .001 in TIR for best high frequency response.NOTE: Before mounting, be sure to clean themounting surface thoroughly to avoid inclusionof machining chips and other debris betweenmating surfaces. Intimate contact betweenmating surfaces is important for bestperformance.If a fair amount of motion is expected during the test, it is good practice to tie the cable down to a stationary point as close as possible to the accelerometer (but not closer than 1 inch) to avoid potentially damaging cable whip.You are now ready to connect the 3093M32 to the power unit.OPERATIONThe Dytran power unit specifically designed to power the Model 3093M32 is the Model 4114B1. This line-powered unit has a 4-pin connector jack similar to that on the 3093M32. Cable Model 6811AXX connects the 3093M32 to the power unit. (‘XX’ is the cable length in feet)Connect the 6811XX cable to Model 3093M32 by first rotationally aligning the locating tab, then engaging the rotating threaded collar and threading the collar on, hand tight.Connect the other end of the cable to the 4-pin connector on the power unit and tighten threaded collar hand tight. As previously noted, tie cable down within 1 inch or so of the instrument if excessive displacement of the accelerometer is expected.Apply power to the power unit and allow several seconds for coupling capacitors to fully charge. Rotate the channel selector knob through the first three positions to monitor the bias voltage of each of the three accelerometer element assemblies to check for normal operation. The bias voltage level appears on the front panel mounted voltmeter on the 4114B1.Consult the paper, "Low Impedance Voltage Mode (LIVM) Theory and Operation", included as part of this manual, for instructions in using the bias monitoring voltmeter on the power unit as a check for normal operation and as an effective trouble shooting aid.Although only one axis of the 3093M32 may be monitored with the front panel meter on the4114B1, each axis is continuously outputting data at the respective output jack at all times. Selecting a channel for bias monitoring does not affect the signal from that channel.Connect each of the three BNC ‘Output’ jacks of the power unit to the readout instrument or data collector and proceed with the measurement. The sensitivities of each of the three axes are directly in mV/G and are specified precisely in the calibration certificate supplied with each instrument.Be sure to check the orientation of each axis with the markings on the instrument in theoutline/installation drawing supplied with the Operating Guide. The arrows indicate the direction of acceleration that will produce positive-going output signals. The vertical axis, axis 3, produces positive-going output voltage when the accelerometer is accelerated upward, i.e., away from the mounting surface.REMOVAL (OR UN-INSTALLATION)It is very important when removing this instrument to remember that, although it is built to be very rugged, it is a sensitive measuring instrument and as such should be treated gently when being removed from its installation. Never strike the unit to break it free from its mounting surface. Simply grip two opposing flats with an adjustable or open-end wrench and gently twist the instrument. This method avoids any trauma to the instrument and will help ensure a long life for the accelerometer.MAINTENANCE AND REPAIRThis instrument is not field repairable. No maintenance is required, or possible. If a problem occurs, contact the factory for help. You will be assigned a Returned Material Authorization (RMA) number should the instrument have to be returned to the factory for evaluation. A short note describing the problem will facilitate the repair procedure.There is no charge for evaluation of the instrument and we will perform no repair work until you are notified of any charges.It is good practice to return the instrument to the factory for recalibration from time to time with frequency of recalibration dependent on usage intensity and frequency.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

________________General DescriptionThe MAX3093E/MAX3094E are rugged, low-power,quad, RS-422/RS-485 receivers featuring electrostatic discharge (ESD) protection for use in harsh environ-ments. All receiver inputs are protected to ±15kV using IEC 1000-4-2 Air-Gap Discharge, ±8kV using IEC 1000-4-2 Contact Discharge, and ±15kV using the Human Body Model. The MAX3093E operates from a +5V sup-ply, while the MAX3094E operates from a +3.3V supply.Receiver propagation delays are guaranteed to within ±8ns of a predetermined value, thereby ensuring device-to-device matching across production lots.The devices feature a 1nA low-power shutdown mode in which the receiver outputs are high impedance.When active, these receivers have a fail-safe feature that guarantees a logic-high output if the input is open circuit. They also have a quarter-unit-load input imped-ance that allows 128 receivers on a bus.The MAX3093E/MAX3094E are pin-compatible, low-power upgrades to the industry-standard ’34C86. They are available in space-saving TSSOP, narrow SO, and PDIP packages.________________________ApplicationsTelecommunications EquipmentRugged RS-422/RS-485/RS-423 Bus Receiver Receivers for ESD-Sensitive Applications Level Translators____________________________Features♦ESD Protection±15kV—IEC 1000-4-2 Air-Gap Discharge ±8kV—IEC 1000-4-2 Contact Discharge ±15kV—Human Body Model♦Guaranteed Propagation-Delay Tolerance Between All ICs±8ns (MAX3093E)±10ns (MAX3094E)♦Single +3V Operation (MAX3094E)Single +5V Operation (MAX3093E)♦16-Pin TSSOP ♦10Mbps Data Rate♦Allow up to 128 Receivers on the Bus ♦1nA Low-Power Shutdown Mode ♦2.4mA Operating Supply Current ♦Pin-Compatible Upgrades to ’34C86MAX3093E/MAX3094E±15kV ESD-Protected, 10Mbps, 3V/5V , Low-Power Quad RS-422/RS-485 Receivers________________________________________________________________Maxim Integrated Products1Pin Configuration________________Functional Diagram19-1779; Rev 2; 10/02_______________Ordering InformationFor pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .M A X 3093E /M A X 3094E±15kV ESD-Protected, 10Mbps, 3V/5V , Low-Power Quad RS-422/RS-485 Receivers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSDC ELECTRICAL CHARACTERISTICS—MAX3093E(V CC = +5V ±5%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V, T A = +25°C.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V CC ).............................................................+7V Control Input Voltage (ENAC, ENBD).........-0.3V to (V CC + 0.3V)Receiver Input Voltage (_+, _-)............................................±25V Receiver Output Voltage (Y_).....................-0.3V to (V CC + 0.3V)Output Short-Circuit Duration (Y_, one output)..........Continuous Continuous Power Dissipation (T A = +70°C)TSSOP (derate 9.4mW/°C above +70°C)....................755mW SO (derate 8.7mW/°C above +70°C)...........................696mW Plastic DIP (derate 10.5mW/°C above +70°C)............762mWOperating Temperature RangesMAX309_EC_ _..................................................0°C to +70°C MAX309_EE_ _...............................................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10s).................................+300°CMAX3093E/MAX3094E±15kV ESD-Protected, 10Mbps, 3V/5V , Low-Power Quad RS-422/RS-485 Receivers_______________________________________________________________________________________3DC ELECTRICAL CHARACTERISTICS—MAX3094E(V CC = +3.0V to +3.6V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +3.3V, T A = +25°C.) (Note 1)SWITCHING CHARACTERISTICS—MAX3093E(V= +5V ±5%, T = T to T , unless otherwise noted. Typical values are at V = +5.0V, T = +25°C.)M A X 3093E /M A X 3094E±15kV ESD-Protected, 10Mbps, 3V/5V , Low-Power Quad RS-422/RS-485 Receivers 4_______________________________________________________________________________________DC ELECTRICAL CHARACTERISTICS—MAX3094E (continued)(V = +3.0V to +3.6V, T = T to T , unless otherwise noted. Typical values are at V = +3.3V, T = +25°C.) (Note 1)SWITCHING CHARACTERISTICS—MAX3094E(V = +3.0V to +3.6V, T = T to T , unless otherwise noted. Typical values are at V = +3.3V, T = +25°C.)Note 1:All currents into the device are positive; all currents out of the device are negative. All voltages are referred to deviceground, unless otherwise noted.Note 2:Receiver inputs (_+, _-).MAX3093E/MAX3094E±15kV ESD-Protected, 10Mbps, 3V/5V , Low-Power Quad RS-422/RS-485 Receivers_______________________________________________________________________________________50-10-20-30-40-5021345OUTPUT CURRENT vs.OUTPUT LOW VOLTAGEOUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )15105202530021345OUTPUT CURRENT vs.OUTPUT HIGH VOLTAGEOUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )0.30.20.10.40.50.60.70.80.91.0-4010-15356085OUTPUT LOW VOLTAGE vs. TEMPERATURETEMPERATURE (°C)O U T P U T L O W V O L T A G E (V )013245-4010-15356085OUTPUT HIGH VOLTAGE vs. TEMPERATURETEMPERATURE (°C)O U T P U T H I G H V O L T A G E (V )708010090110120-4010-15356085MAX3093EPROPAGATION DELAY vs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )2.02.22.62.42.83.0-4010-15356085SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (m A )05101520-4010-15356085SHUTDOWN SUPPLY CURRENTvs. TEMPERATURETEMPERATURE (°C)S H U T D O W N S U P P L Y C U R R E N T (n A )8011010090120130140-4010-15356085MAX3094EPROPAGATION DELAY vs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )Typical Operating Characteristics(V CC = +5V for MAX3093E, V CC = +3.3V for MAX3094E, T A = +25°C, unless otherwise noted.)M A X 3093E /M A X 3094E±15kV ESD-Protected, 10Mbps, 3V/5V , Low-Power Quad RS-422/RS-485 ReceiversPin DescriptionTIME (200ns/div)SHUTDOWN TIMINGMAX3093/94E TOC09MAX3093E Y VOLTAGE5V/div2V/div2V/divMAX3094E Y VOLTAGE G VOLTAGECIRCUIT OF FIGURE 3,S1 OPEN, S2 CLOSED, S3 = 1VTypical Operating Characteristics (continued)(V CC = +5V for MAX3093E, V CC = +3.3V for MAX3094E, T A = +25°C, unless otherwise noted.)MAX3093E/MAX3094E±15kV ESD-Protected, 10Mbps, 3V/5V , Low-Power Quad RS-422/RS-485 Receivers_______________________________________________________________________________________7Figure 2. Receiver Propagation DelayFigure 1. Receiver V OH and V OLFigure 3. Receiver Enable and Disable Times_______________Detailed Description±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against ESDs encoun-tered during handling and assembly. The MAX3093E/MAX3094E receiver inputs have extra protection against static electricity found in normal operation. Maxim’s engineers have developed state-of-the-art structures to protect these pins against ±15kV ESD without damage. After an ESD event, the MAX3093E/MAX3094E continue working without latchup.ESD protection can be tested in several ways. The receiver inputs are characterized for protection to the following:•±15kV using the Human Body Model•±8kV using the Contact Discharge Method specifiedin IEC 1000-4-2 (formerly IEC 801-2)•±15kV using the Air-Gap Method specified inIEC 1000-4-2 (formerly IEC 801-2)ESD Test ConditionsESD performance depends on a number of conditions.Contact Maxim for a reliability report that documents test setup, methodology, and results.Human Body ModelFigure 4a shows the Human Body Model, and Figure 4b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,which is then discharged into the device through a 1.5k Ωresistor.IEC 1000-4-2Since January 1996, all equipment manufactured and/or sold in the European community has been required to meet the stringent IEC 1000-4-2 specification. The IEC 1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifically refer to inte-grated circuits. The MAX3093E/MAX3094E help you design equipment that meets Level 4 (the highest level) of IEC 1000-4-2, without additional ESD-protection compo-nents.The main difference between tests done using the Human Body Model and IEC 1000-4-2 is higher peak current in IEC 1000-4-2. Because series resistance is lower in the IEC 1000-4-2 ESD test model (Figure 5a), the ESD-withstand voltage measured to this standard is gen-erally lower than that measured using the Human Body Model. Figure 5b shows the current waveform for the ±8kV IEC 1000-4-2 Level 4 ESD Contact Discharge test.The Air-Gap test involves approaching the device with a charge probe. The Contact-Discharge method connects the probe to the device before the probe is energized.Machine ModelThe Machine Model for ESD testing uses a 200pF stor-age capacitor and zero-discharge resistance. It mimics the stress caused by handling during manufacturing and assembly. All pins (not just RS-485 inputs) require this protection during manufacturing. Therefore, the Machine Model is less relevant to the I/O ports than are the Human Body Model and IEC 1000-4-2.Low-Power Shutdown ModeThe function tables show the functionality of the enable inputs. The MAX3093E/MAX3094E enter shutdown when ENAC and ENBD are low. In shutdown, all out-puts go high impedance and the devices typically draw less than 1nA. The devices exit shutdown by taking either ENAC or ENBD high. The typical shutdown exit time is 600ns.M A X 3093E /M A X 3094E±15kV ESD-Protected, 10Mbps, 3V/5V , Low-Power Quad RS-422/RS-485 ReceiversX = don’t care, High-Z = high impedance8_______________________________________________________________________________________MAX3093E/MAX3094E±15kV ESD-Protected, 10Mbps, 3V/5V , Low-Power Quad RS-422/RS-485 Receivers_______________________________________________________________________________________9Figure 4a. Human Body ESD Test Model Figure 5b. IEC 1000-4-2 ESD-Generator Current WaveformFigure 5a. IEC 1000-4-2 ESD Test ModelApplications InformationPropagation-Delay MatchingThe MAX3093E/MAX3094E exhibit propagation delays that are closely matched from one device to another,even between devices from different production lots. This feature allows multiple data lines to receive data and clock signals with minimal skewing with respect to each other. The MAX3093E receiver propagation delays are trimmed to a predetermined value ±8ns, while the MAX3094E delays are trimmed to a predetermined value ±10ns.128 Receivers on the BusThe standard RS-485 input impedance is 12k Ω(one-unit load). The standard RS-485 transmitter can drive 32 unit loads. The MAX3093E/MAX3094E present a 1/4-unit-load input impedance (48k Ω), which allows up to 128 receivers on a bus. Any combination of these RS-485 receivers with a total of 32-unit loads can be con-nected to the same bus.Fail-Safe ImplementationThe MAX3093E/MAX3094E receiver inputs guarantee a logic high output when the inputs are open circuit (no termination resistor used). This occurs when the trans-mitter is removed from the bus or when all transmitter outputs are high impedance. However, when the line is terminated and the transmitters are disabled, the differ-ential voltage between the _+ and _- inputs falls below the ±200mV RS-485 sensitivity threshold. Consequent-ly, the outputs become undefined. To maintain a fail-safe receiver output while using a terminating resistor,input _+ must be biased at least 200mV above input B.The resistor-divider network shown in Figure 6 is rec-ommended.M A X 3093E /M A X 3094E±15kV ESD-Protected, 10Mbps, 3V/5V , Low-Power Quad RS-422/RS-485 Receivers 10______________________________________________________________________________________Chip InformationTRANSISTOR COUNT: 676Figure 6. External Fail-Safe ImplementationMAX3093E/MAX3094E±15kV ESD-Protected, 10Mbps, 3V/5V , Low-Power Quad RS-422/RS-485 Receivers______________________________________________________________________________________11Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)M A X 3093E /M A X 3094E±15kV ESD-Protected, 10Mbps, 3V/5V , Low-Power Quad RS-422/RS-485 Receivers 12______________________________________________________________________________________Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600_____________________13©2002 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.±15kV ESD-Protected, 10Mbps, 3V/5V , Low-Power Quad RS-422/RS-485 ReceiversMAX3093E/MAX3094EPackage Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages.)。

相关文档
最新文档