MAX3971AUGP-T中文资料
MAX391CPE中文资料
MAX391/MAX392/MAX393Precision, Quad, SPST Analog Switches________________________________________________________________Maxim Integrated Products 1_____________________Pin Configurations/Functional Diagrams/Truth Tables19-0236; Rev 3; 8/06Ordering Information continued on last page.*Contact factory for dice specifications.†EP = Exposed pad.Ordering Information_______________General DescriptionThe MAX391/MAX392/MAX393 are precision, quad,single-pole/single-throw (SPST) analog switches designed to operate at +3V, +5V, or ±5V. The MAX391has four normally closed (NC) switches, and the MAX392 has four normally open (NO) switches. The MAX393 has two NO and two NC switches. All three devices offer low leakage (100pA max) and fast switch-ing speeds (t ON ≤130ns, t OFF ≤75ns). Power con-sumption is just 1µW—ideal for battery-operated equip-ment. All devices operate from a single +3V to +15V supply or from dual ±3.0V to ±8V supplies.With ±5V supplies, the MAX391/MAX392/MAX393 offer guaranteed 2Ωmax channel-to-channel matching, 30Ωmax on-resistance (R ON ), and 4Ωmax R ON flatness over the specified range.These switches are also fully specified for single +5V operation, with 2Ωmax R ON match, 60Ωmax R ON, and 6Ωmax flatness.These low-voltage switches also offer 5pC max charge injection, and ESD protection is greater than 2000V, per method 3015.7.________________________ApplicationsBattery-Operated Systems Sample-and-Hold Circuits Heads-Up Displays Guidance and Control Systems Audio and Video Switching Military RadiosTest Equipment Communications Systems ±5V DACs and ADCsPBX, PABX____________________________Features♦Low On-Resistance, 20ΩTypical♦Guaranteed On-Resistance Match Between Channels, < 2Ω♦Guaranteed On-Resistance Flatness Over Signal Range, 4ΩMax♦Guaranteed Charge Injection, < 5pC ♦Improved Leakage Over Temperature,< 2.5nA at +85°C♦Electrostatic Discharge > 2000V per Method 3015.7♦Single-Supply Operation (+3V to +15V)Bipolar-Supply Operation (±3V to ±8V)♦Low Power Consumption, < 1µW ♦TTL/CMOS-Logic CompatibleFor pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,or visit Maxim's website at .M A X 391/M A X 392/M A X 393Precision, Quad, SPST Analog SwitchesVoltage Referenced to V-V+.......................................................................-0.3V to +17V GND....................................................................-0.3V to +17V GND..........................................................-0.3V to (V+ + 0.3V)V IN_, V COM_, V NC_, V NO_(Note 1)..................................V- to V+Current (any terminal).........................................................30mA Peak Current, COM_, NO_, NC_(pulsed at 1ms, 10% duty cycle max)..........................100mA ESD per Method 3015.7.................................................> 2000V Continuous Power Dissipation (T A = +70°C)Plastic DIP (derate 10.53mW/°C above+70°C)...........842mW Narrow SO (derate 8.70mW/°C above +70°C)............696mW TSSOP (derate 6.7mW/°C above +70°C)....................457mW CERDIP (derate 10.00mW/°C above +70°C)...............800mW QFN (derate 18.5mW/°C above +70°C)....................1481mW Operating Temperature RangesMAX39_C_ _.......................................................0°C to +70°C MAX39_E_ _.....................................................-40°C to +85°C MAX39_M_ _..................................................-55°C to +125°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CELECTRICAL CHARACTERISTICS—Dual Supplies(V+ = +5V ±10%, V- = -5V ±10%, GND = 0V, V INH = 2.4V, V INL = 0.8V, T A = T MIN to T MAX , unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Note 1:Signals on NC_, NO_, COM_, or IN_ exceeding V+ or V- are clamped by internal diodes. Limit forward diode current to maxi-mum current rating.ABSOLUTE MAXIMUM RATINGSMAX391/MAX392/MAX393Precision, Quad, SPST Analog Switches_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)(V+ = +5V ±10%, V- = -5V ±10%, GND = 0V, V INH = 2.4V, V INL = 0.8V, T A = T MIN to T MAX , unless otherwise noted.)M A X 391/M A X 392/M A X 393Precision, Quad, SPST Analog Switches 4_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS—Single +5V Supply(V+ = +5V ±10%, V- = 0V ±10%, GND = 0V, V INH = 2.4V, V INL = 0.8V, T A = T MIN to T MAX , unless otherwise noted.)MAX391/MAX392/MAX393Precision, Quad, SPST Analog Switches_______________________________________________________________________________________5ELECTRICAL CHARACTERISTICS—Single +3.3V Supply(V+ = +3.0V to +3.6V, GND = 0V, V INH = 2.4V, V INL = 0.8V, T A = T MIN to T MAX , unless otherwise noted.)Note 2:The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.Note 3:Guaranteed by design.Note 4:ΔR ON = ΔR ON max - ΔR ON min.Note 5:Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.Note 6:Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.Note 7:Off-isolation = 20 log 10[ V COM_⁄ (V NC_ or V NO_)], V COM_= output, V NC_ or V NO_= input to off switch.Note 8:Between any two switches.Note 9:Leakage testing at single supply is guaranteed by testing with dual singles.M A X 391/M A X 392/M A X 393Precision, Quad, SPST Analog Switches 6_________________________________________________________________________________________________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)10001000.01-4085FORWARD SHUTDOWN CURRENTvs. TEMPERATURE0.1110TEMPERATURE (°C)F O R W A R D S H U T D O W N C U R R E N T (n A )603510-1510-5.0-2.52.5R ON vs. V COM ANDTEMPERATURE (DUAL SUPPLIES)35V COM (V)R O N (Ω)0 5.0251530204048R ON vs. V COM (SINGLE SUPPLY)100V COM (V)R O N (Ω)6106020804012012213R ON vs. V COM ANDTEMPERATURE (SINGLE SUPPLY)100V COM (V)R O N (Ω)24602080401205-30-5.0CHARGE INJECTION vs. V COM20V COM (V)Q (p C)0 5.00-2010-1030-2.52.50.0001-75OFF-LEAKAGE CURRENT vs.TEMPERATURE10TEMPERATURE (°C)O F F L E A K A G E (n A )251250.10.00110.01100-25750.0001-75ON-LEAKAGE CURRENT vs.TEMPERATURE10TEMPERATURE (°C)O N L E A K AG E (n A )251250.10.00110.01100-25750.0001-75SUPPLY CURRENT vs. TEMPERATURE10TEMPERATURE (°C)I +, I -, (μA )251250.10.00110.01100MAX391/MAX392/MAX393Precision, Quad, SPST Analog Switches_______________________________________________________________________________________7__________Applications InformationOvervoltage ProtectionProper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maxi-mum ratings, because stresses beyond the listed rat-ings may cause permanent damage to the devices.Always sequence V+ on first, followed by V-, and then logic inputs. If power-supply sequencing is not possi-ble, add two small signal diodes in series with supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog signal range to 1V below V+and 1V below V-, but low switch resistance and low leakage characteristics are unaffected. Device opera-tion is unchanged, and the difference between V+ and V- should not exceed 17V.DiodesM A X 391/M A X 392/M A X 393Precision, Quad, SPST Analog Switches 8_______________________________________________________________________________________Figure 4. Charge InjectionFigure 2. Switching TimeFigure 3. Break-Before-Make Interval (MAX393 only)______________________________________________Test Circuits/Timing DiagramsMAX391/MAX392/MAX393Precision, Quad, SPST Analog Switches_______________________________________________________________________________________9Figure 6. CrosstalkFigure 5. Off-Isolation_________________________________Test Circuits/Timing Diagrams (continued)Figure 8. Channel On-CapacitanceFigure 7. Channel Off-CapacitanceM A X 391/M A X 392/M A X 393Precision, Quad, SPST Analog Switches 10________________________________________________________________________________________Ordering Information (continued)___________________Chip TopographyCOM30.067"(1.70mm)IN4IN3 "C""B"COM4TRANSISTOR COUNT: 76SUBSTRATE CONNECTED TO V+MAX391MAX392MAX393PIN NAME NAME PIN PIN *Contact factory for dice specifications.**Contact factory for availability and processing to MIL-STD-883.†EP = Exposed pad.MAX391/MAX392/MAX393Precision, Quad, SPST Analog SwitchesPackage Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)Pin Configurations/Functional Diagrams/Truth Tables (continued)M A X 391/M A X 392/M A X 393Precision, Quad, SPST Analog SwitchesPackage Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)MAX391/MAX392/MAX393Precision, Quad, SPST Analog SwitchesMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.13__________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600©2006 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)Revision HistoryPages changed at Rev 3: 1–11, 13。
MEMORY存储芯片MAX811TEUS+T中文规格书
General DescriptionThe MAX811/MAX812 are low-power microprocessor (μP) supervisory circuits used to monitor power supplies in μP and digital systems. They provide excellent circuit reliability and low cost by eliminating external compo-nents and adjustments when used with 5Vpowered or 3V-powered circuits. The MAX811/MAX812 also provide a debounced manual reset input.These devices perform a single function: They assert a reset signal whenever the V CC supply voltage falls below a preset threshold, keeping it asserted for at least 140ms after V CC has risen above the reset threshold. The only difference between the two devices is that the MAX811 has an active-low RESET output (which is guaranteed to be in the correct state for V CC down to 1V), while the MAX812 has an active-high RESET output. The reset comparator is designed to ignore fast transients on V CC. Reset thresholds are available for operation with a variety of supply voltages.Low supply current makes the MAX811/MAX812 ideal for use in portable equipment. The devices come in a 4-pin SOT143 package.Applications●Computers●Controllers●Intelligent Instruments●Critical μP and μC Power Monitoring●Portable/Battery-Powered Equipment Benefits and Features●Integrated Voltage Monitor Increases SystemRobustness with Added Manual Reset•Precision Monitoring of 3V, 3.3V, and 5VPower-Supply Voltages•140ms Min Power-On-Reset Pulse Width•RESET Output (MAX811), RESET Output(MAX812)•Guaranteed Over Temperature•Guaranteed RESET Valid to V CC = 1V (MAX811)•Power-Supply Transient Immunity●Saves Board Space•No External Components•4-Pin SOT143 Package●Low Power Consumption Simplifies Power-SupplyRequirements•6μA Supply Current*This part offers a choice of five different reset threshold voltages. Select the letter corresponding to the desired nominal reset threshold voltage, and insert it into the blank to complete the part number.Devices are available in both leaded and lead(Pb)-free packaging. Specify lead-free by replacing “-T” with “+T” when ordering.RESET THRESHOLDSUFFIX VOLTAGE (V)L 4.63M 4.38T 3.08S 2.93R2.63PART*TEMP RANGE PIN-PACKAGEMAX811_EUS-T-40°C to +85°C 4 SOT143MAX812_EUS-T-40°C to +85°C 4 SOT1431243V CCMR(RESET) RESETGNDMAX811MAX812SOT143TOP VIEW( ) ARE FOR MAX812NOTE: SEE PACKAGE INFORMATION FOR MARKING INFORMATION. MAX811/MAX8124-Pin μP Voltage Monitorswith Manual Reset InputPin ConfigurationOrdering InformationClick here for production status of specific part numbers.19-0411; Rev 6; 5/18Terminal Voltage (with respect to GND)V CC.....................................................................-0.3V to 6.0V All Other Inputs .....................................-0.3V to (V CC + 0.3V) Input Current, V CC, MR......................................................20mA Output Current, RESET or RESET ....................................20mA Continuous Power Dissipation (T A = +70°C)SOT143 (derate 4mW/°C above +70°C) .....................320mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range ............................-65°C to +160°C Lead Temperature (soldering, 10sec) .............................+300°C(V CC = 5V for L/M versions, V CC = 3.3V for T/S versions, V CC = 3V for R version, T A = -40°C to +85°C, unless otherwise noted. Typical values are at T A = +25°C.) (Note 1)PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITSOperating Voltage Range V CC T A = 0°C to +70°C 1.0 5.5V T A = -40°C to +85°C 1.2Supply Current I CC MAX81_L/M, V CC = 5.5V, I OUT = 0615µA MAX81_R/S/T, V CC = 3.6V, I OUT = 0 2.710Reset Threshold V TH MAX81_LT A = +25°C 4.54 4.63 4.72V T A = -40°C to +85°C 4.50 4.75MAX81_MT A = +25°C 4.30 4.38 4.46T A = -40°C to +85°C 4.25 4.50MAX81_TT A = +25°C 3.03 3.08 3.14T A = -40°C to +85°C 3.00 3.15MAX81_ST A = +25°C 2.88 2.93 2.98T A = -40°C to +85°C 2.85 3.00MAX81_RT A = +25°C 2.58 2.63 2.68T A = -40°C to +85°C 2.55 2.70Reset Threshold Tempco30ppm/°CV CC to Reset Delay (Note 2)V OD = 125mV, MAX81_L/M40µs V OD = 125mV, MAX81_R/S/T20Reset Active Timeout Period t RP V CC = V TH(MAX)140560ms MR Minimum Pulse Width t MR10µs MR Glitch Immunity (Note 3)100ns MR to Reset PropagationDelay (Note 2)t MD0.5µsMR Input Threshold V IHV CC > V TH(MAX), MAX81_L/M2.3V V IL0.8V IHV CC > V TH(MAX), MAX81_R/S/T0.7 x V CCV IL0.25 x V CCMR Pull-Up Resistance102030kΩRESET Output Voltage (MAX812)V OH I SOURCE = 150µA, 1.8V < V CC < V TH(MIN)0.8 x V CCV V OLMAX812R/S/T only, I SINK = 1.2mA,V CC = V TH(MAX)0.3MAX812L/M only, I SINK = 3.2mA,V CC = V TH(MAX)0.4MAX811/MAX8124-Pin μP Voltage Monitorswith Manual Reset Input Absolute Maximum RatingsStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Electrical Characteristics。
MAX-M10S u-blox M10高精度GNSS模块数据手册说明书
MAX-M10Su-blox M10 standard precision GNSS moduleData sheetAbstractThis document describes the features and application of the MAX-M10S,an ultra-low-power GNSS receiver for high-performance asset-trackingdevices.UBX-20035208 - R01C1-PublicDocument informationTitle MAX-M10SSubtitle u-blox M10 standard precision GNSS moduleDocument type Data sheetDocument number UBX-20035208Revision and date R0121-Dec-2020 Document status Objective specificationDisclosure restriction C1-PublicProduct status Corresponding content statusIn development /Objective specification Target values. Revised and supplementary data will be published later. prototypeEngineering sample Advance information Data based on early testing. Revised and supplementary data will bepublished later.Initial production Early production information Data from product verification. Revised and supplementary data may bepublished later.Mass production /Production information Document contains the final product specification.End of lifeThis document applies to the following products:Product name Type number Firmware version PCN referenceMAX-M10S MAX-M10S-00B-00SPG 5.00N/Au-blox reserves all rights to this document and the information contained herein. Products, names, logos and designs described herein may in whole or in part be subject to intellectual property rights. Reproduction, use, modification or disclosure to third parties of this document or any part thereof without the express permission of u-blox is strictly prohibited. The information contained herein is provided "as is" and u-blox assumes no liability for the use of the information. No warranty, either express or implied, is given with respect to, including but not limited to, the accuracy, correctness, reliability and fitness for a particular purpose of the information. This document may be revised by u-blox at any time. For most recent documents, please visit www.u .Copyright © 2020, u-blox AG.u-blox is a registered trademark of u-blox Holding AG in the EU and other countries.Contents1 Functional description (4)1.1 Overview (4)1.2 Performance (4)1.3 Supported GNSS constellations (5)1.4 Supported protocols (6)1.5 Firmware features (6)2 System description (7)2.1 Block diagram (7)3 Pin definition (8)3.1 Pin assignment (8)4 Electrical specification (10)4.1 Absolute maximum ratings (10)4.2 Operating conditions (10)4.3 Indicative power requirements (11)5 Communication interfaces (13)5.1 UART (13)5.2 I2C (13)5.3 Default interface settings (13)6 Mechanical specification (14)7 Labeling and ordering information (15)7.1 Product labeling (15)7.2 Explanation of product codes (15)7.3 Ordering codes (15)Related documents (17)Revision history (18)1 Functional description1.1 OverviewThe MAX-M10S module features the u-blox M10 standard precision GNSS platform and provides exceptional sensitivity and acquisition times for all L1 GNSS signals.The extremely low power consumption in continuous tracking mode allows great power autonomy for all battery-operated devices, such as asset trackers, without compromising on GNSS performance.The MAX-M10S supports concurrent reception of up to four GNSS (GPS, GLONASS, Galileo, and BeiDou). The high number of visible satellites enables the receiver to select the best signals. This maximizes the position accuracy, in particular under challenging conditions such as in deep urban canyons. In the firmware described here, however, the number of concurrently received GNSS is limited to three. u-blox Super-S (Super-Signal) technology offers great RF sensitivity.The MAX-M10S integrates an LNA followed by a SAW filter in the RF path for maximum sensitivity in passive antenna designs.The MAX-M10S offers backwards pin-to-pin compatibility with products from the previous u-blox generations, which saves the designer's effort and reduces costs when upgrading designs.The MAX-M10S is based on the u-blox M10 GNSS chip, which is qualified according to AEC-Q100, manufactured in IATF 16949 certified sites, and fully tested on a system level.1.2 PerformanceParameter SpecificationReceiver type u-blox M10 receiverAccuracy of time pulse signal RMS99%30 ns60 nsFrequency of time pulse signal 0.25 Hz to 10 MHz (configurable)Operational limits1Dynamics≤ 4 gAltitude80,000 mVelocity500 m/sVelocity accuracy20.05 m/sDynamic heading accuracy20.3 degGNSS GPS+GAL GPS+GLO GPS+BDS GPS+GLO+GAL GPS+GAL+BDSAcquisition3Cold startHot startAided start429 s1 s1 s26 s1 s1 s27 s1 s1 s24 s1 s1 s27 s1 s1 sNav. update rate PVT10 Hz10 Hz10 Hz10 Hz10 Hz1Assuming Airborne 4 g platform250% at 30 m/s for dynamic operation3Commanded starts. All satellites at -130 dBm. GPS always in combination with QZSS and SBAS. Measured at room temperature.4Dependent on the speed and latency of the aiding data connection, commanded starts.GNSS GPS+GAL GPS+GLO GPS+BDS GPS+GLO+GAL GPS+GAL+BDSSensitivity5Tracking and nav.ReacquisitionCold startHot start -166 dBm-160 dBm-148 dBm-160 dBm-167 dBm-160 dBm-148 dBm-160 dBm-167 dBm-160 dBm-148 dBm-160 dBm-167 dBm-160 dBm-148 dBm-160 dBm-166 dBm-160 dBm-148 dBm-160 dBmPosition accuracy PVT 2 m CEP 2 m CEP 2 m CEP 2 m CEP 2 m CEP Table 1: MAX-M10S typical performance in multi-constellation GNSS modesGNSS GPS GLONASS BEIDOU GALILEOAcquisition3Cold startHot startAided start429 s1 s1 s27 s1 s1 s30 s1 s1 s38 s1 s5 sNav. update rate PVT18 Hz18 Hz18 Hz18 HzSensitivity5Tracking and nav.ReacquisitionCold startHot start -166 dBm-160 dBm-148 dBm-160 dBm-166 dBm-154 dBm-147 dBm-156 dBm-160 dBm-158 dBm-146 dBm-159 dBm-159 dBm-154 dBm-141 dBm-154 dBmPosition accuracy PVT 2 m CEP 4 m CEP 3 m CEP 3 m CEPTable 2: MAX-M10S typical performance in single-GNSS modes1.3 Supported GNSS constellationsThe MAX-M10S is a concurrent GNSS receiver which can receive and track multiple GNSS systems. The single RF front-end architecture enables all major GNSS constellations to be received concurrently. The receiver can be configured for a sub-set of GNSS constellations to achieve lower power consumption.The following GNSS and their signals are supported:System SignalsGPS L1C/A (1575.42 MHz)Galileo E1-B/C (1575.42 MHz)GLONASS L1OF (1602 MHz + k*562.5 kHz, k = –7,..., 5, 6)BeiDou B1I (1561.098 MHz)Table 3: Supported GNSS and signals on MAX-M10SThe following GNSS assistance services are supported:Service SupportAssistNow™ Online SupportedAssistNow™ Offline SupportedAssistNow™ Autonomous SupportedTable 4: Supported Assisted GNSS (A-GNSS) servicesThe following augmentation systems are supported:5Demonstrated with a good external LNA. Measured at room temperature.System SupportSBAS EGNOS, GAGAN, MSAS and WAASQZSS L1S (SLAS)Table 5: Supported augmentation systemsThe augmentation systems SBAS and QZSS can be enabled only if GPS operation is also enabled.1.4 Supported protocolsThe MAX-M10S supports the following protocols:Protocol TypeUBX Input/output, binary, u-blox proprietaryNMEA versions 2.1, 2.3, 4.0, and 4.10. (default 4.10)Input/output, ASCIITable 6: Supported protocols1.5 Firmware featuresFeature DescriptionAntenna supervisor6Active antenna supervisor to detect short and open statusAssisted GNSS AssistNow Online, AssistNow Offline and AssistNow Autonomous supported Backup modes Hardware backup mode, hardware standby mode, software standby mode (similar toolder software backup mode), all with optional RTCData batching Autonomous tracking up to 5 minutes at 1 HzOdometer Measure traveled distance with support for different user profilesTable 7: Firmware featuresFeature DescriptionAnti-jamming RF interference and jamming detection and reporting; Active GNSS in-band filtering Anti-spoofing Spoofing detection and reportingMessage integrity All messages are cryptographically signed, JTAG debug interface disabled by default Table 8: Security features6External components required, some pins need to be reprogrammed as needed.2 System description2.1 Block diagramFigure 1: MAX-M10S block diagramThe GPIOs can be programmed for different uses like external interrupt, enable LNA, TX ready, data batching indicator, and antenna supervisor.3 Pin definition3.1 Pin assignmentThe pin assignment of the MAX-M10S module is shown below:Figure 2: MAX-M10S pin assignmentPin PIO no.I/O Description1GND--Connect to GND2TXD1O UART TX3RXD0I UART RX4TIMEPULSE4O Time pulse signal5EXTINT5I External interrupt6V_BCKP-I Backup voltage supply7V_IO-I IO voltage supply8VCC-I Main voltage supply9RESET_N-I System reset (active low)10GND--Connect to GND11RF_IN-I GNSS signal input12GND--Connect to GND13LNA_EN-O On/Off external LNA or active antenna 14VCC_RF-O Output voltage RF section15Reserved--Reserved16SDA2I/O I2C data17SCL3I I2C clockPin PIO no.I/O Description18SAFEBOOT_N-I Safeboot mode (leave OPEN) Table 9: MAX-M10S pin assignment4 Electrical specificationThe limiting values given are in accordance with the Absolute Maximum Rating System(IEC 134). Stress above one or more of the limiting values may cause permanent damageto the device. These are stress ratings only. Operation of the device at these or at any other conditions above those given below is not implied. Exposure to limiting values for extended periods may affect device reliability.Where application information is given, it is advisory only and does not form part of thespecification.4.1 Absolute maximum ratingsSymbol Parameter Min Max UnitVCC Supply voltage–0.3 3.6VVoltage ramp on VCC72535000µs/VV_IO Supply voltage, I/O–0.3 3.6VVoltage ramp on V_IO72535000µs/VV_BCKP Supply voltage, backup domain–0.3 3.6VVoltage ramp on V_BCKP725µs/VVin Input voltage, digital pins–0.3V_IO + 0.3V(max 3.6)Ipin Max source / sink current, digital pins8-1010mAICC_RF Max source current, VCC_RF100mAP rfin RF input power on RF_IN9+15dBmT amb Ambient temperature–40+85°CT s Storage temperature–40+85°CTable 10: Absolute maximum ratingsThe product is not protected against overvoltage or reversed voltages. Voltage spikesexceeding the power supply voltage specification, given in the table above, must be limited to values within the specified boundaries by using appropriate protection diodes.4.2 Operating conditionsTable 11shows the general operating conditions. Table 12shows the electrical parameters for digital I/O.Symbol Parameter Min Typical Max UnitsVCC Supply voltage 2.7 3.0 3.6VV_IO Supply voltage, I/O 2.7 3.0 3.6VV_BCKP Supply voltage, backup domain 1.65 3.6VVCC_RF VCC_RF output voltage VCC-0.1VICC_RF VCC_RF output current50mANF tot Receiver chain noise figure2dB7Exceeding the voltage ramp speed may permanently damage the device.8SAFEBOOT_N pin has an internal 1 kΩ series resistor. With a 3.3 V supply, the current is limited to 3.3 mA.9Test conditions TBCSymbol Parameter Min Typical Max UnitsExt_gain10External gain at RF_IN, low gain mode (default)TBD dBExternal gain at RF_IN, bypass mode TBD dBT opr Operating temperature-40+85°CTable 11: General operating conditionsSymbol Parameter Min Typical Max UnitsV in Input pin voltage range0V_IO VV il Low-level input voltage0.63VV ih High-level input voltage0.68 x V_IO VV ol Low-level output voltage, Iout = -2 mA0.4VV oh High-level output voltage, Iout = 2 mA V_IO - 0.4VR pu, IO Pull-up resistance, Digital IO1151772kΩR pu, SAFEBOOT_N Pull-up resistance, SAFEBOOT_N1251772kΩR pu, RESET_N Pull-up resistance, RESET_N71013kΩTable 12: Digital IOOperation beyond the specified operating conditions can affect device reliability.To trigger a reset, the minimum low period for RESET_N is 1 ms.4.3 Indicative power requirementsTable 13 lists examples of the total system supply current for VCC and V_IO. Table 14 shows current consumptions for the backup modes.These values are provided for customer information only, as an example of typical current requirements. They are characterized on samples using a cold start command. Actualpower requirements can vary depending on FW version used, external circuitry, number of satellites tracked, signal strength, type and time of start, duration, internal LNA gain mode, and test conditions.Symbol Parameter Conditions GPS GPS+GAL GPS+GAL+GLO GPS+GAL+BEIUnitI PEAK Peak current Acquisition25252525mAAcquisition 6.57.09.010.5mA I VCC13Current at VCCTracking(Continuous mode)6.0 6.07.08.0mAAcquisition 2.2 2.2 2.3 2.3mA I V_IO14Current at V_IOTracking(Continuous mode)2.2 2.2 2.3 2.3mA Table 13: Typical currents to calculate the indicative power requirementsSymbol Parameter Conditions Typ.Unit I V_BCKP Total current in hardware backup mode V_BCKP = 3.3 V / V_IO = VCC = 0 V32µA 10The internal LNA gain is configurable.11TXD, RXD, TIMEPULSE, EXTINT, SCL, SDA, and LNA_EN.12The SAFEBOOT_N pin has an additional 1 kΩ series resistor.13Voltage at VCC = 3.0 V. Internal LNA set to low gain. Simulated signal using power levels of -130 dBm.14Voltage at V_IO = 3.0 V.Symbol Parameter Conditions Typ.Unit Total current in hardware standby mode V_IO = 3.3 V / VCC = 0 V46µAI VCC, V_IO15Total current in software standby mode V_IO = 3.3 V / VCC = 3.3 V TBDµA Table 14: Backup currents to calculate the indicative power requirementsAll values in Table 13 and Table 14 are measured at 25 °C ambient temperature and with the internal LNA set to low gain.SBAS and QZSS are activated in all measurements.15I VCC, V_IO includes currents flowing into VCC and V_IO.5 Communication interfacesThe receiver allows communication over UART and I2C16 interface.All the inputs have internal pull-up resistors in normal operation and can be left open if not used. All the PIOs are supplied by V_IO, therefore all the voltage levels of the PIO pins are related to V_IO supply voltage.5.1 UARTThe UART interface supports configurable baud rates. Hardware flow control is not supported.Symbol Parameter Min Max UnitR u Baud rate4800921600bit/sΔTx Tx baud rate accuracy-1%+1%-ΔRx Rx baud rate tolerance-2.5%+2.5%-Table 15: UART specifications5.2 I2CAn I2C-compliant interface is available for communication with an external host CPU. The interface is compatible with the Fast-mode of the I2C industry standard, allowing a maximum bit rate of 400 kbit/s17.5.3 Default interface settingsInterface SettingsUART•9600 baud, 8 bits, no parity bit, 1 stop bit.•Input messages: NMEA and UBX.•Output messages: NMEA GGA, GLL, GSA, GSV, RMC, VTG and TXT.I2C•7-bit I2C address (0x42).•Input messages: NMEA and UBX.•Output messages: NMEA GGA, GLL, GSA, GSV, RMC, VTG and TXT.Table 16: Default interface settings16I2C is a registered trademark of Philips/NXP.17External pull-up resistors are needed to achieve 400 kbit/s communication speed as the internal pull-up resistance can be very large.6 Mechanical specificationFigure 3: MAX-M10S mechanical drawing7 Labeling and ordering informationThis section provides information about product labeling and ordering.7.1 Product labelingThe labeling of the MAX-M10S package provides product information and revision information. For more information contact u-blox sales.Figure 4: Location of product type number on MAX-M10S label7.2 Explanation of product codesThree product code formats are used. The Product name is used in documentation such as this data sheet and identifies all u-blox products, independent of packaging and quality grade. The Ordering code includes options and quality, while the Type number includes the hardware and firmware versions.Table 17 details these three different formats for the MAX-M10S.Format Structure Product codeProduct name PPP-TGGV MAX-M10SOrdering code PPP-TGGV-NNQ MAX-M10S-00BType number PPP-TGGV-NNQ-XX MAX-M10S-00B-00Table 17: Product code formatsThe parts of the product code are explained in Table 18 .Code Meaning ExamplePPP Product family MAXTGG Platform M10 = u-blox M10V Variant S = Standard precision, ROM, LNA, and SAW filterNNQ Option / Quality grade NN: Option [00...99]Q: Grade, A = Automotive, B = ProfessionalXX Product detail Describes hardware and firmware versionsTable 18: Part identification code7.3 Ordering codesOrdering code Product RemarkMAX-M10S-00B u-blox MAX-M10S module, professional gradeTable 19: Product ordering codesProduct changes affecting form, fit or function are documented by u-blox. For a list ofProduct Change Notifications (PCNs) see our website at: https:///en/product-resources.UBX-20035208 - R017 Labeling and ordering information Page 16 of 19Related documents[1]MAX-M10S Integration manual, UBX-20053088[2]u-blox M10 SPG 5.00 Interface description, UBX-20048810For regular updates to u-blox documentation and to receive product change notifications please register on our homepage https://.UBX-20035208 - R01Related documents Page 17 of 19Revision historyRevision Date Name Status / comments 0121-Dec-2020imar, jesk, msul, rmak Objective specificationContactFor complete contact information visit us at .u-blox OfficesNorth, Central and South America Headquarters Asia, Australia, PacificEurope, Middle East, Africau-blox America, Inc.u-blox AG u-blox Singapore Pte. Ltd.Phone:+1 703 483 3180Phone:+41 44 722 74 44Phone:+65 6734 3811E-mail:******************E-mail:***************E-mail:******************Support:******************Support:********************* Regional Office West Coast Regional Office AustraliaPhone:+1 408 573 3640 Phone:+61 3 9566 7255E-mail:****************** E-mail:*******************Support:********************* Technical Support Regional Office China (Beijing) Phone:+1 703 483 3185 Phone:+86 10 68 133 545E-mail:********************* E-mail:******************Support:********************* Regional Office China (Chongqing) Phone:+86 23 6815 1588E-mail:******************Support:********************* Regional Office China (Shanghai)Phone:+86 21 6090 4832E-mail:******************Support:********************* Regional Office China (Shenzhen) Phone:+86 755 8627 1083E-mail:******************Support:********************* Regional Office IndiaPhone:+91 80 4050 9200E-mail:******************Support:********************* Regional Office Japan (Osaka)Phone:+81 6 6941 3660E-mail:******************Support:********************* Regional Office Japan (Tokyo)Phone:+81 3 5775 3850E-mail:******************Support:********************* Regional Office KoreaPhone:+82 2 542 0861E-mail:******************Support:********************* Regional Office TaiwanPhone:+886 2 2657 1090E-mail:******************Support:*********************。
AT91SAM9G15 9G25 9G35 9X25 9X35 ARM 嵌入式评估板用户手册 V1.
MBS-SAM9G15/9G25 /9G35/9X25/9X35 User ManualRelease:V1.0 Date:2012.04.17Embest Info&Tech Co.,LTD.Revision historyRev Date Description by1.0 20120417 Initial version huangyin Note:This user guide introduces the ARM embedded evaluation board produced by Embest , based on A TMEL ARM926 -EJ-S-based processors as listed below:A T91SAM9G15A T91SAM9G25A T91SAM9G35A T91SAM9X25A T91SAM9X35The user guide pertains to the following kit references:MBS-SAM9G15MBS-SAM9G25MBS-SAM9G35MBS-SAM9X25MBS-SAM9X35The user guide gives design information on the kit and is made up of 4 sections:Section 1 includes a photo of the board, deliverables and applicable documents.Section 2 describes the hardware resource of the board.Section 3 describes the updating software list of the board.Section 4 provides the ways to contact us.This document copyright belongs to embest technology Co., LTD. © 2012In the passage , 9X5 serial general means 9G15,9G25,9G35,9X25,9X35.Section 1_Scope1.1 IntroductionThe MBS-SAM9X5 Series development board, which consists of two parts of the MBC-SAM9X5 core board and MBM-SAM9X5_9M10 main board, is the Embest launched based on the development board the A TMEL A T91SAM9X5. The core board is the smallest-sized 9X5 core board to help you as much as possible to reduce the product space, you can take advantage of the core board to complete product development easily and improve time to hit the market. Using industrial-grade connectors can achieve seamless connection with the custom main board, greatly improving the stability of the product.MBS-SAM9X5 SBC clocked up to 400MHz, the development board that supportsLinux-2.6.39 operating system debugging, angstrom, and the android-2.3.5_r1 file system test. With 256MB NandFlash, 128MB of DDR II, 4MB serial dataflash, 64KBserial eeprom, and a rich feature set expansion: high-speed USB 2.0 (480MHz), audio input, audio output, 10/100Mbps network, the JTAG debug interface, DBGU serial Micro SD card slot, SD/MMC card interface, CMOS camera interface, support for video data acquisition.1.2 Scope1.3 DeliverablesNO Items Qty Description Inspection1 MBS-SAM9X5 board 1 MBC + MBM SC2 Power Adapter (5V, 1.25A rating) 1 5V, 1.25A SC3 Micro USB Cable 1 Micro USB SC4 10/100 Ethernet Cable 1 Cross-over cable SC5 DB9-IDC10 Cable 1 Serial cable SC7 TFT LCD Panel 1 LCD with touch(4'', 7'')SCSection 2_Hardware2.1 Available resource for 9x5projects 9G15 9G25 9G35 9X25 9X35MPUs AT91SAM9G15/9G25/9G35/9X25/9X35(ARM926EJ-Score frequency400MHz) learn more <<memory 128MB SDRAMFlash256MB nandflash; 4MB serial dataflash;EEPROM64KB serial eeprom;256B 1-wire eeprom *2 (MBC+MBM)USBUSB HOST 2 2 2 2 2USB OTG 1 1 1 1 1 AudioAudio in 1 1 1 1 1Audio out 1 1 1 1 1 NET ETH 0 1 1 2 1 Camera Camera 0 1 0 0 0 UartUART interface 1 1 1 1 1USART interface 1 2 1 2 1 JTAG JTAG 1 1 1 1 1 RS485 RS485 2 2 2 2 2 CAN CAN 0 0 0 2 2 SD cardMicroSD 1 1 1 1 1SDCard 1 1 1 1 1 telephone telephone 1 1 1 1 1 LCD 4.3,7.0inch LCD 1 0 1 0 1button User button*2;Q touch button*41 1 1 1 1RTC Back up battery 1 1 1 1 1 Extended 30*2pin interface 1 1 1 1 1power 5V supply 1 1 1 1 1 2.2 Core Board2.2.1 ScopeFigure 2-1 core board frontFigure 2-2 core board back2.2.2 Structure2.2.3 Core board resourcesProcessor SAM9X5(SAM9G15/9G25/9G35/9X25/9X35)12MHz32.768MHz128MB DDR2 memory256MB nandflash memory with chip selection control switch4MB SPI Serial dataflash with chip selection control switch64KB EEPROM256B 1-wire EEPROMOn-board power regulationTwo user LEDsOptional PHYSDIOIMM200 card edge interface2.3 Function blocks for MBC-SAM9G15Here we make description about function blocks of the board with some parts of the schematic. For the whole schematic please refer to MBC-SAM9X5_REVB(embest).pdf and MBM_SAM9X5_9M10_RevA(embest).pdf (direct:)2.3.1 processorSAM9G15---ARM926EJ-S™ ARM® Thumb® Processor running at up to 400 MHz, System running at up to 133 MHz For more information about processor ATSAM9G15, please refer to SAM9G15 Complete.pdf or SAM9G15 Summary.pdf ()2.3.2 clock circuitryCrystal for internal clock, 12MHzCrystal for RTC clock, 32.768KHzCrystal for Ethernet clock RMII,50MHz2.3.4 Power supplies2.3.5 MemoryThe device serial processor features a DDR/SDR memory interface and an External Bus Interface to enable interfacing to a wide range of external memories and to almost any kind of parallel peripheral.The EBI is connected to two kinds of memory device:128MB DDR SDRAM256MB nandflash2.3.6 Dataflash(SPI controller)The serial processor provides two high-speed serial peripheral interface (SPI) controllers. One port is used to interface with the on-board serial Dataflash (4MB serial dateflash).2.3.7 EEPROM(TWI controller)The serial processor has a full speed(400KHz) master/slave TWI Serial Controller. The controller is mostly compatible with industry standard I2C and SMBus Interfaces. This port is used to interface with the on-board serial EEPROM,ISI, Qtouch device and audio codec interface.2.3.8 1-wire EEPROMThe board uses a 1-wire device as “firmware label”to store the information such as chip type, manufacturer’s name, production date etc.2.3.9 Optional PHYSome of the core boards (SAM9G15 not included) provide a location for a 10/100 Ethernet MAC/PHY interface. For more information about the Ethernet controller device, refer to the Dacvicom DM9161 controller manufacturer’s datasheet.2.3.10 SODIMM200 interface2.4 Main BoardThe main board is compatible with both the the 9m10 core board and 9x5 series core board.2.4.1 resourcesONE WIRE EPPROM(1024-bit);1 JTAG DEBUG interface;1 Camera interface(9m10 & 9G25);2 24-bit LCD interfaces(with touch);1 DBGU serial interface(3 wires);2 communication serial interfaces(5-wire & 3-wire);2 10/100Mb Ethernet interfaces;Note: 9m10 1; 9G15, 9G25, 9X35, 9G35 1; 9X25 22 RS485 interfaces;2 CANinterfaces;1 SmartDAA interface;2 USB 2.0 Host interfaces;Note: 9m10 1 (USB_A); 9x5 2 (USB_B & USB_C);1 USB high speed USB2.0 OTG interface;Note: 9m10(USB_B) and 9X5(USB_A) OTG interface;4 buttons (QTOUCH);2 buttons (reset, wakeup);1 Micro SD interface;1 SD card interface;3 LEDs;1 audio input and output interface;1 backup battery holder;User interface (50 GPIOs).2.4.2 Electrical CharacteristicsPower: 5V, 2A;Operating Temperature: 0~70C;Power Consumption: to be confirmed2.4.3 Mechanical and Physical CharacteristicsSize: 181x125mm;Board layer: 4;Board thickness: 6mm;Interface type: DIMM 200 Pins2.5 Function blocks for MBM-SAM9G152.5.1 Power supply2.5.2 AUDIOThe board includes a WM8731 CODEC for digital sound input and output. This interface includes audio jacks for line audio input and headphone line output.The SAM9 processor is configured in IIS slave mode to interface with the WM8731 Codec.2.5.3 Ethernet 0 interfaceEthernet 0 is available for the core board which has a optional PHY.2.5.4 Ethernet1Etherne1 is only available for SAM9X25, The PHY on Ethernet 1 is enabled by the SELCONFIG signal from a pull-down resistor on the core board.2.5.5 SD/MMC CardThe board has two high-speed Multi Media Card Interface. The first interface is used as a 4-bit interface (MCI0), connected to a MicroSD card slot. The second interface is used as a 4-bit Interface (MCI1), connected to an SD/MMCcard slot.2.5.6 1-wire EEPROM2.5.7 USB moduleThe board contains two USB HOST interfaces and an USB OTG interface.2.5.8 DBGUThe DBGU is connected to the DB-9 male socket through an RS-232 Transceiver (TXD and RXD only).2.5.9 USARTsThe USART0 and USART3 are used as serial communication ports. Both USARTs are buffered with an RS-232 Transceiver and connected to the DB-9 male socket. USART0 just own TXD and RXD signal, and USART3 equips addition handshake CTS/RTS control.The USART3 is only supported by SAM9G25 and SAM9X25 processors.USART0USART32.5.10 CANTwo boards(MBS-SAM9X35 and MBS-SAM9X25), feature two controller area network (CAN) ports with transceiver.2.5.11 RS485Two RS485 interfaces.2.5.12 JTAGSoftware debug is accessed by a standard 20-pin JTAG connection.2.5.13 Qtouch2.5.13 LCD interface 4.3 inch LCD interface7.0 inch LCD interface2.5.14 ISI Interface2.5.15 Telephone interfaceThe board features a smart DAA(DATA Access Arrangement) chip to drive an analog telephone line.2.5.16 Key2.5.17 RTC Power2.5.18 user interface2.6 Jumpers2.6.1 SW1 settingsNO. Setting 1 Nandflash enable 2 Dataflash enable2.6.2 SW2 settingsIt ’s used for matching Audio Lord the clock signal of the 9x5 core board NO. Settings 1 Do not care 2 Close 3 Open 4Close2.6.3 JP jumpersNO. settingsdefault JP1close :force powerclose JP2,JP3,JP4,JP5,JP6.JP7, close :enable RS485 terminal resistance open JP8,JP10close :enable CAN terminal resistance openJP9 close :DBGU available open : CAN availableNote: if you download image to the board throughUSB, you must close the jumperclose JP11close: enable camera interface (for 9G25)openJP12 Open: disable external flashClose: enable external flash closeJP14,JP15 1-2:RS485 for 9M10 core 2-3:RS485 for 9x5 coreSection 3_Software (updating)3.1 MDK resourcesARM9 productsprojects9G15 9G25 9G35 9x25 9x35 adc √√√√√can × × × √√dma √√√√√eeprom √√√√√Emac(eth1) × × × √×getting-started √√√√√Hsmci_multimedia_card √√√√√Hsmci_sdcard √√√√√Hsmci_sdio √√√√√LCD_4.3 √× √× √LCD_7.0 √× √× √LCD_10.2 √× √× √periph_protect √√√√√pmc_clock_switching √√√√√pwm √√√√√qtouch √√√√√Rs485_loopback √√√√√Rs485_twoport √√√√√Smc_nandflash √√√√√Spi_serialflash √√√√√Ssc_dma_audio √√√√√sysc √√√√√tc_capture_waveform √√√√√Touchscreen_4.3 √× √× √Touchscreen_7.0 √× √× √twi √√√√√Usart_serial_COM0 √√√√√Usart_serial_COM3 × √× √× Usart_hw_handshaking_COM3 × √× √× usb_audio_looprec √√√√√usb_cdc_serial √√√√√usb_core √√√√√usb_hid_keyboard √√√√√usb_hid_mouse √√√√√usb_hid_msd √√√√√usb_hid_transfer √√√√√usb_iad_cdc_cdc √√√√√usb_iad_cdc_hid √√√√√usb_iad_cdc_msd √√√√√usb_masstorage √√√√√3.2 Linux resourcesnote :(1) “√”--included, “×”-- not included; (2) Free and open CategoriesDrivers 9G159G259G359X259X359x5BootloaderAT91BootstrapLead Uboottested, free&openUboot1. NandFlash erasing ,reading and writing2.support network download images3. Support the establishment, save the environmentvariable4. Support the memory contents display, contrast,and modification5. Support bootm 、bootargs settingstested, free&openkernelnetETH0× √ √ √ √ tested, free&open ETH1 × × × √ × tested, free&open serialUSART0√ √ √ √ √ tested, free&open USART3 × √ × √ × tested, free&open DBGU √ √ √ √ √ tested, free&open CANCAN0× × × √ √ untested, providecodes CAN1 × × × √ √ untested, providecodes USBUSB_HOST*2 √ √ √ √ √ tested, free&open USB_OTG √ √ √ √ √ tested, free&open SMD 驱动√ √ √ √ √ provide hardware interface only SDcardMicroSD√ √ √ √ √ tested, free&open SDCard√ √ √ √ √ tested, free&open camera (ISI) × √ × × × untested, providecodes LCD+touch √ × √ × √ tested, free&open Zigbee√ √ √ √ √ provide hardware interface only SPI√√√√√reuse, unregistered equipmentTWI √√√√√tested, free&openQtouch √√√√√tested, free&openDMA √√√√√tested, free&openGPIO √√√√√tested, free&openAngstrom √√√√√provide file system File systemAndroid √× √× √provide file systemSection 4_Purchase and serviceIf you are interested in the board ,you may connect:Sales and marketing: **********************For Technical Support: ************************URL: /en/。
MEMORY存储芯片MAX823TEUK+T中文规格书
Manual Reset Input Many μP-based products require manual reset capabil -ity, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic low on MR asserts reset. Reset remains asserted while MR is low, and for the Reset Active Timeout Period (t RP ) after MR returns high. This input has an internal 20kΩ pull-up resistor, so it can be left open if it is not used. MR can be driven with TTL or CMOS-logic levels, or with open-drain/collector outputs. Connect a normally open momentary switch from MR to GND to create a manual-reset function; external debounce circuitry is not required. If MR is driven from long cables or if the device is used in a noisy environment, connecting a 0.1μF capacitor from MR to ground provides additional noise immunity.Reset Threshold Accuracy The MAX811/MAX812 are ideal for systems using a 5V ±5% or 3V ±5% power supply with ICs specified for 5V ±10% or 3V ±10%, respectively. They are designed to meet worst-case specifications over temperature. The reset is guaranteed to assert after the power supplyfalls out of regulation, but before power drops below theminimum specified operating voltage range for the systemICs. The thresholds are pre-trimmed and exhibit tight dis -tribution, reducing the range over which an undesirable reset may occur.PINNAME FUNCTION MAX811MAX81211GND Ground 2—RESET Active-Low Reset Output. RESET remains low while V CC is below the reset threshold or while MR is held low. RESET remains low for the Reset Active Timeout Period (t RP ) after the reset conditions are terminated.—2RESET Active-High Reset Output. RESET remains high while V CC is below the reset threshold or while MR is held low. RESET remains high for Reset Active Timeout Period (t RP ) after the reset conditions are terminated.33MR Manual Reset Input. A logic low on MR asserts reset. Reset remains asserted as long as MR is low and for 180ms after MR returns high. This active-low input has an internal 20kΩ pull-up resistor. It can be driven from a TTL or CMOS-logic line, or shorted to ground with a switch. Leave open if unused.44V CC +5V, +3.3V, or +3V Supply Voltage Detailed DescriptionReset OutputA microprocessor’s (μP’s) reset input starts the μP in aknown state. These μP supervisory circuits assert resetto prevent code execution errors during power-up, power-down, or brownout conditions.RESET is guaranteed to be a logic low for V CC > 1V.Once V CC exceeds the reset threshold, an internal timerkeeps RESET low for the reset timeout period; after thisinterval, RESET goes high.If a brownout condition occurs (V CC dips below the resetthreshold), RESET goes low. Any time V CC goes belowthe reset threshold, the internal timer resets to zero, andRESET goes low. The internal timer starts after V CC returns above the reset threshold, and RESET remainslow for the reset timeout period.The manual reset input (MR ) can also initiate a reset. See the Manual Reset Input section.The MAX812 has an active-high RESET output that is theinverse of the MAX811’s RESET output.MAX811/MAX8124-Pin μP Voltage Monitorswith Manual Reset InputPin DescriptionTerminal Voltage (with respect to GND)V CC.....................................................................-0.3V to 6.0V All Other Inputs .....................................-0.3V to (V CC + 0.3V) Input Current, V CC, MR......................................................20mA Output Current, RESET or RESET ....................................20mA Continuous Power Dissipation (T A = +70°C)SOT143 (derate 4mW/°C above +70°C) .....................320mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range ............................-65°C to +160°C Lead Temperature (soldering, 10sec) .............................+300°C(V CC = 5V for L/M versions, V CC = 3.3V for T/S versions, V CC = 3V for R version, T A = -40°C to +85°C, unless otherwise noted. Typical values are at T A = +25°C.) (Note 1)PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITSOperating Voltage Range V CC T A = 0°C to +70°C 1.0 5.5V T A = -40°C to +85°C 1.2Supply Current I CC MAX81_L/M, V CC = 5.5V, I OUT = 0615µA MAX81_R/S/T, V CC = 3.6V, I OUT = 0 2.710Reset Threshold V TH MAX81_LT A = +25°C 4.54 4.63 4.72V T A = -40°C to +85°C 4.50 4.75MAX81_MT A = +25°C 4.30 4.38 4.46T A = -40°C to +85°C 4.25 4.50MAX81_TT A = +25°C 3.03 3.08 3.14T A = -40°C to +85°C 3.00 3.15MAX81_ST A = +25°C 2.88 2.93 2.98T A = -40°C to +85°C 2.85 3.00MAX81_RT A = +25°C 2.58 2.63 2.68T A = -40°C to +85°C 2.55 2.70Reset Threshold Tempco30ppm/°CV CC to Reset Delay (Note 2)V OD = 125mV, MAX81_L/M40µs V OD = 125mV, MAX81_R/S/T20Reset Active Timeout Period t RP V CC = V TH(MAX)140560ms MR Minimum Pulse Width t MR10µs MR Glitch Immunity (Note 3)100ns MR to Reset PropagationDelay (Note 2)t MD0.5µsMR Input Threshold V IHV CC > V TH(MAX), MAX81_L/M2.3V V IL0.8V IHV CC > V TH(MAX), MAX81_R/S/T0.7 x V CCV IL0.25 x V CCMR Pull-Up Resistance102030kΩRESET Output Voltage (MAX812)V OH I SOURCE = 150µA, 1.8V < V CC < V TH(MIN)0.8 x V CCV V OLMAX812R/S/T only, I SINK = 1.2mA,V CC = V TH(MAX)0.3MAX812L/M only, I SINK = 3.2mA,V CC = V TH(MAX)0.4MAX811/MAX8124-Pin μP Voltage Monitorswith Manual Reset Input Absolute Maximum RatingsStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Electrical Characteristics。
TSE397新资料
Fast Cure, Non-Corrosive Silicone Adhesive Sealant TSE397Product Description TSE397 is a one-component,fast cure, non-corrosive silicone adhesive sealant that cures on exposure to atmospheric moisture to form an elastic silicone rubber . TSE397 has a pourable consistency and excellent corrosion-freeadhesion to metals, including copper , plastics, ceramics, glass, etc. without the use of primers.Momentive Performance Materialsprovides versatile materials as the starting point for our creative approach to ideas that help enable new developments across hundreds of industrial and consumer solve product, process, and performance problems; our silanes, fluids, elastomers, sealants, resins, adhesives, urethane additives, and other specialty products are delivering innovation in everything From helping to develop safer tires and keeping electronics cooler , to improving the feel of lipstick and ensuring thereliability of adhesives, our technologies and enabling solutions are at the frontlineKey Features and Typical Benefits• N on-corrosive to metals: meets MIL-A-46146B corrosion test • F ast cure • L ow odor: releases an alcohol vapor during cure • P rimerless adhesion to many substrates • E xcellent high and low temperature resistance: from –55°C to 200°C • E xcellent weatherability, ozone, and chemical resistance • E xcellent electrical insulation properties • U L94 HB recognized (File No: E56745): TSE397-B, TSE397-C, TSE397-W • S imple and easy-to-use one-component systemTypical Property Data (JIS K 6249)*2 In-house test methodTypical property data values should not be used as specifications.Potential Applications• I nsulating adhesive seal and coating for electrical and electronic parts • W aterproof sealant for electrical, electronic and communication equipment • G eneral adhesive for metals, glass, plastics, etc.Curing PropertiesShort-termLong-termo o o o o o 4321C u r eD e p t h m m01020Time h50 C, 30%RH30 C, 60%RH20 C, 60%RH30 C, 30%RH 20 C, 30%RH10 C, 30%RHo 876543210C u r e D e p t h m m5101520Time Days30 C, 60%RH20 C, 90%RH 20 C, 60%RH 20 C, 30%RH10 C, 60%RHooo oHeat Resistance3020100-10H a r d n e s s C h a n g e1101001000Time Dayso 200 Co 150 C403020100-10-20T e n s i l e S t r e n g t h C h a n g e %1101001000Time Dayso 200 Co 150 C43210T e n s i l e S t r e n g t h M P aH a r d n e s s (T y p e A ) x 100246810121416Time DaysE l o n g a t i o n %HardnessElongationTensile Strength5004003002001000Adhesion PerformanceTSE397 has excellent bonding properties and adheres to many materials without primers. However, for significantly better adhesion on difficult-to-bond substrates, use of a primer is suggested. The following list of materials shows the quality of adherence of TSE397 used with ME121, ME123, YP3941, XP80-A5363 or without a primer.Note:O: Excellent (Cohesive failure, 100%)∆: InsufficientX: Poor (Cohesive failure, 0%)*1: It shows good adhesion but solvent crack may occur depending on the application. A preliminary adhesion test is recommended to confirm.*2: YP9341*3: XP80-A5363Handling and Safety• W ear eye protection and protective gloves as required while handling the product.• M aintain adequate ventilation in the work place at all times. Storage• S tore in a cool, dry place out of direct sunlight.• K eep out of the reach of children.Packaging and ColorsPatent StatusNothing contained herein shall be construed to imply thenon e xistence of any relevant patents or to constitute the permission, inducement or recommendation to practice any invention covered by any patent, without authority from the owner of the patent.Product Safety, Handling and Storage Customers considering the use of this product should review the latest Material Safety Data Sheet and label for product safety information, handling instructions, personal protective equipment if necessary, and any special storage conditions required. Material Safety Data Sheets are available at or, upon request, from any Momentive Performance Materials representative. Use of other materialsin conjunction with Momentive Performance Materials products (for example, primers) may require additional precautions. Please review and follow the safety information provided by the manufacturer of such other materials.LimitationsCustomers must evaluate Momentive Performance Materials products and make their own determination as to fitness of use in their particular applications.Emergency ServiceMomentive Performance Materials maintains an around-the-clock emergency service for its products. The American Chemistry Council (CHEMTREC) and CareChem24 International also maintain an around-the-clock emergency service for all chemical products:Location Momentive Performance Materials Products All Chemical ProductsMainland U.S., Puerto Rico 518.233.2500 CHEMTREC: 800.424.9300Alaska, Hawaii 518.233.2500 CHEMTREC: 800.424.9300Canada 518.233.2500 CHEMTREC: 800.424.9300(UK)Europe +518.233.2500 +44.(0)208.762.8322(Albanian, Czech, Danish, Dutch, English, Finnish, French,German, Greek, Hungarian, Italian, Lithuanian, Norwegian,Polish, Portuguese, Romanian, Russian, Serbo-Croatian,Slovak, Spanish, Swedish, Turkish, Ukrainian)Middle East,All countries, except Israel +518.233.2500 +961.3.487.287 (Lebanon)Middle East, Israel +518.233.2500 +44.(0)208.762.8322 (UK)Latin America, Asia/Pacific, +518.233.2500 CHEMTREC: +1-703.527.3887 (collect)all other locations worldwideAt sea Radio U.S. Coast Guard, which can directly contactMomentive Performance Materials at 518.233.2500 orCHEMTREC at 800.424.9300.DO NOT WAIT. Phone if in doubt. You will be referred to a specialist for advice.Momentive and M-design logo are trademarks of Momentive Performance Materials Inc.‘The science behind the solutions’ is a trademark of Momentive Performance Materials Inc.Copyright 2009 Momentive Performance Materials Inc. All rights reserved. CUSTOMER SERVICE CENTERSNorth America E cs-na.silicones@• Specialty FluidsT +1.800.523.5862 F +1.304.746.1654• UA, Silanes and Specialty Coatings T +1.800.334.4674 F +1.304.746.1623 • RTVs and ElastomersT +1.800.332.3390 F +1.304.746.1623• Consumer Sealants & Construction T +1.877.943.7325F +1.304.746.1654Sealants and Adhesives Latin America E cs-la.silicones@• Argentina & Chile T +54.11.4862.9544 F +54.11.4862.9544 • Brazil T +55.11.4534.9650 F +55.11.4534.9660• Mexico & Central America T +52.55.2169.7670 F +52.55.2169.7699• Venezuela, Ecuador , Peru T +58.212.285.2149F +58.212.285.2149Colombia & CaribbeanEurope, Middle East, E cs-eur .silicones@ T +00.800.4321.1000Africa and India T +31.164.225350 Paci fi cE cs-ap.silicones@ T +1.800.820.0202F +81.276.31.6259T +0.81.276.20.6182 Worldwide Hotline T +1.607.786.8131 F +1.607.786.8309T +1.800.295.2392Visit us at THE MATERIALS, PRODUCTS AND SERVICES OF MOMENTIVE PERFORMANCE MATERIALS INC., MOMENTIVE PERFORMANCE MATERIALS USA INC., MOMENTIVE PERFORMANCE MATERIALS ASIA PACIFIC PTE. LTD., MOMENTIVE PERFORMANCE MATERIALS WORLDWIDE INC., MOMENTIVE PERFORMANCE MATERIALS GmbH, THEIR SUBSIDIARIES AND AFFILIATES DOING BUSINESS IN LOCAL JURISDICTIONS (collectively “SUPPLIERS”), ARE SOLD BY THE RESPECTIVE LEGAL ENTITY OF THE SUPPLIER SUBJECT TO SUPPLIERS’ STANDARD CONDITIONS OF SALE, WHICH ARE INCLUDED IN THE APPLICABLE DISTRIBUTOR OR OTHER SALES AGREEMENT, PRINTED ON THE BACK OF ORDER ACKNOWLEDGMENTS AND INVOICES, AND AVAILABLE UPON REQUEST. ALTHOUGH ANY INFORMATION, RECOMMENDATIONS, OR ADVICE CONTAINED HEREIN IS GIVEN IN GOOD FAITH, SUPPLIERS MAKE NO WARRANTY OR GUARANTEE, EXPRESS OR IMPLIED, (i) THAT THE RESULTS DESCRIBED HEREIN WILL BE OBTAINED UNDER END-USE CONDITIONS, OR (ii) AS TO THE EFFECTIVENESS OR SAFETY OF ANY DESIGN INCORPORATING SUPPLIERS’ PRODUCTS, MATERIALS, SERVICES, RECOMMENDATIONS OR ADVICE. AFOREMENTIONED EXCLUSIONS OR LIMITATION OF LIABILITY ARE NOT APPLICABLE TO THE EXTENT THAT THE END-USE CONDITIONS AND/OR INCORPORATION CONDITIONS CORRESPOND TO THE RECOMMENDED CONDITIONS OF USE AND/OR OF INCORPORATION AS DESCRIBED BY SUPPLIER IN ITS PRODUCT DATA SHEET AND/OR PRODUCT SPECIFICATIONS. EXCEPT AS PROVIDED IN SUPPLIERS’ STANDARD CONDITIONS OF SALE, SUPPLIERS AND THEIR REPRESENTATIVES SHALL IN NO EVENT BE RESPONSIBLE FOR ANY LOSS RESULTING FROM ANY USE OF ITS MATERIALS, PRODUCTS OR SERVICES DESCRIBED HEREIN.Each user bears full responsibility for making its own determination as to the suitability of Suppliers’ materials, services, recommendations, or advice for its own particular use. Each user must identify and perform all tests and analyses necessary to assure that its fi nished parts incorporating Suppliers’ products, materials, or services will be safe and suitable for use under end-use conditions. Nothing in this or any other document, nor any oral recommendation or advice, shall be deemed to alter, vary, supersede, or waive any provision of Suppliers’ Standard Conditions of Sale or this Disclaimer, unless any such modi fi cation is speci fi cally agreed to in a writing signed by Suppliers. No statement contained herein concerning a possible or suggested use of any material, product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right of Suppliers or any of its subsidiaries or af fi liates covering such use or design, or as a recommendation for the use of such material, product, service or design in the infringement of any patent or other intellectual property right.。
MAX1978中文数据手册
用于Peltier模块的集成温度控制器概论MAX1978 / MAX1979是用于Peltier热电冷却器(TEC)模块的最小, 最安全, 最精确完整的单芯片温度控制器。
片上功率FET和热控制环路电路可最大限度地减少外部元件, 同时保持高效率。
可选择的500kHz / 1MHz开关频率和独特的纹波消除方案可优化元件尺寸和效率, 同时降低噪声。
内部MOSFET的开关速度经过优化, 可降低噪声和EMI。
超低漂移斩波放大器可保持±0.001°C的温度稳定性。
直接控制输出电流而不是电压, 以消除电流浪涌。
独立的加热和冷却电流和电压限制提供最高水平的TEC保护。
MAX1978采用单电源供电, 通过在两个同步降压调节器的输出之间偏置TEC, 提供双极性±3A输出。
真正的双极性操作控制温度, 在低负载电流下没有“死区”或其他非线性。
当设定点非常接近自然操作点时, 控制系统不会捕获, 其中仅需要少量的加热或冷却。
模拟控制信号精确设置TEC 电流。
MAX1979提供高达6A的单极性输出。
提供斩波稳定的仪表放大器和高精度积分放大器, 以创建比例积分(PI)或比例积分微分(PID)控制器。
仪表放大器可以连接外部NTC或PTC热敏电阻, 热电偶或半导体温度传感器。
提供模拟输出以监控TEC温度和电流。
此外, 单独的过热和欠温输出表明当TEC温度超出范围时。
片上电压基准为热敏电阻桥提供偏置。
MAX1978 / MAX1979采用薄型48引脚薄型QFN-EP 封装, 工作在-40°C至+ 85°C温度范围。
采用外露金属焊盘的耐热增强型QFN-EP封装可最大限度地降低工作结温。
评估套件可用于加速设计。
应用光纤激光模块典型工作电路出现在数据手册的最后。
WDM, DWDM激光二极管温度控制光纤网络设备EDFA光放大器电信光纤接口ATE特征♦尺寸最小, 最安全, 最精确完整的单芯片控制器♦片上功率MOSFET-无外部FET♦电路占用面积<0.93in2♦回路高度<3mm♦温度稳定性为0.001°C♦集成精密积分器和斩波稳定运算放大器♦精确, 独立的加热和冷却电流限制♦通过直接控制TEC电流消除浪涌♦可调节差分TEC电压限制♦低纹波和低噪声设计♦TEC电流监视器♦温度监控器♦过温和欠温警报♦双极性±3A输出电流(MAX1978)♦单极性+ 6A输出电流(MAX1979)订购信息* EP =裸焊盘。
常用开关电源芯片大全之欧阳育创编
常用开关电源芯片大全第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT31142.低功耗开关型DC-DC电源转换器ADP30003.高效3A开关稳压器AP15014.高效率无电感DC-DC电源转换器FAN56605.小功率极性反转电源转换器ICL76606.高效率DC-DC电源转换控制器IRU30377.高性能降压式DC-DC电源转换器ISL64208.单片降压式开关稳压器L49609.大功率开关稳压器L4970A10.1.5A降压式开关稳压器L497111.2A高效率单片开关稳压器L497812.1A高效率升压/降压式DC-DC电源转换器L597013.1.5A降压式DC-DC电源转换器LM157214.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV15.3A降压单片开关稳压器LM2576/LM2576HV16.可调升压开关稳压器LM257717.3A降压开关稳压器LM259618.高效率5A开关稳压器LM267819.升压式DC-DC电源转换器LM2703/LM270420.电流模式升压式电源转换器LM273321.低噪声升压式电源转换器LM275022.小型75V降压式稳压器LM500723.低功耗升/降压式DC-DC电源转换器LT107324.升压式DC-DC电源转换器LT161525.隔离式开关稳压器LT172526.低功耗升压电荷泵LT175127.大电流高频降压式DC-DC电源转换器LT176528.大电流升压转换器LT193529.高效升压式电荷泵LT193730.高压输入降压式电源转换器LT195631.1.5A升压式电源转换器LT196132.高压升/降压式电源转换器LT343333.单片3A升压式DC-DC电源转换器LT343634.通用升压式DC-DC电源转换器LT346035.高效率低功耗升压式电源转换器LT346436.1.1A升压式DC-DC电源转换器LT346737.大电流高效率升压式DC-DC电源转换器LT378238.微型低功耗电源转换器LTC175439.1.5A单片同步降压式稳压器LTC187540.低噪声高效率降压式电荷泵LTC191141.低噪声电荷泵LTC3200/LTC3200-542.无电感的降压式DC-DC电源转换器LTC325143.双输出/低噪声/降压式电荷泵LTC325244.同步整流/升压式DC-DC电源转换器LTC340145.低功耗同步整流升压式DC-DC电源转换器LTC340246.同步整流降压式DC-DC电源转换器LTC340547.双路同步降压式DC-DC电源转换器LTC340748.高效率同步降压式DC-DC电源转换器LTC341649.微型2A升压式DC-DC电源转换器LTC342650.2A两相电流升压式DC-DC电源转换器LTC342851.单电感升/降压式DC-DC电源转换器LTC344052.大电流升/降压式DC-DC电源转换器LTC344253.1.4A同步升压式DC-DC电源转换器LTC345854.直流同步降压式DC-DC电源转换器LTC370355.双输出降压式同步DC-DC电源转换控制器LTC373656.降压式同步DC-DC电源转换控制器LTC377057.双2相DC-DC电源同步控制器LTC380258.高性能升压式DC-DC电源转换器MAX1513/MAX151459.精简型升压式DC-DC电源转换器MAX1522/MAX1523/MAX152460.高效率40V升压式DC-DC电源转换器MAX1553/MAX155461.高效率升压式LED电压调节器MAX1561/MAX159962.高效率5路输出DC-DC电源转换器MAX156563.双输出升压式DC-DC电源转换器MAX1582/MAX1582Y64.驱动白光LED的升压式DC-DC电源转换器MAX158365.高效率升压式DC-DC电源转换器MAX1642/MAX164366.2A降压式开关稳压器MAX164467.高效率升压式DC-DC电源转换器MAX1674/MAX1675/MAX167668.高效率双输出DC-DC电源转换器MAX167769.低噪声1A降压式DC-DC电源转换器MAX1684/MAX168570.高效率升压式DC-DC电源转换器MAX169871.高效率双输出降压式DC-DC电源转换器MAX171572.小体积升压式DC-DC电源转换器MAX1722/MAX1723/MAX172473.输出电流为50mA的降压式电荷泵MAX173074.升/降压式电荷泵MAX175975.高效率多路输出DC-DC电源转换器MAX180076.3A同步整流降压式稳压型MAX1830/MAX183177.双输出开关式LCD电源控制器MAX187878.电流模式升压式DC-DC电源转换器MAX189679.具有复位功能的升压式DC-DC电源转换器MAX194780.高效率PWM降压式稳压器MAX1992/MAX199381.大电流输出升压式DC-DC电源转换器MAX61882.低功耗升压或降压式DC-DC电源转换器MAX62983.PWM升压式DC-DC电源转换器MAX668/MAX66984.大电流PWM降压式开关稳压器MAX724/MAX72685.高效率升压式DC-DC电源转换器MAX756/MAX75786.高效率大电流DC-DC电源转换器MAX761/MAX76287.隔离式DC-DC电源转换器MAX8515/MAX8515A88.高性能24V升压式DC-DC电源转换器MAX872789.升/降压式DC-DC电源转换器MC33063A/MC34063A90.5A升压/降压/反向DC-DC电源转换器MC33167/MC3416791.低噪声无电感电荷泵MCP1252/MCP125392.高频脉宽调制降压稳压器MIC220393.大功率DC-DC升压电源转换器MIC229594.单片微型高压开关稳压器NCP1030/NCP103195.低功耗升压式DC-DC电源转换器NCP1400A96.高压DC-DC电源转换器NCP140397.单片微功率高频升压式DC-DC电源转换器NCP141098.同步整流PFM步进式DC-DC电源转换器NCP142199.高效率大电流开关电压调整器NCP1442/NCP1443/NCP1444/NCP1445100.新型双模式开关稳压器NCP1501101.高效率大电流输出DC-DC电源转换器NCP1550102.同步降压式DC-DC电源转换器NCP1570103.高效率升压式DC-DC电源转换器NCP5008/NCP5009 104.大电流高速稳压器RT9173/RT9173A105.高效率升压式DC-DC电源转换器RT9262/RT9262A106.升压式DC-DC电源转换器SP6644/SP6645107.低功耗升压式DC-DC电源转换器SP6691108.新型高效率DC-DC电源转换器TPS54350109.无电感降压式电荷泵TPS6050x110.高效率升压式电源转换器TPS6101x111.28V恒流白色LED驱动器TPS61042112.具有LDO输出的升压式DC-DC电源转换器TPS6112x 113.低噪声同步降压式DC-DC电源转换器TPS6200x114.三路高效率大功率DC-DC电源转换器TPS75003115.高效率DC-DC电源转换器UCC39421/UCC39422116.PWM控制升压式DC-DC电源转换器XC6371117.白光LED驱动专用DC-DC电源转换器XC9116118.500mA同步整流降压式DC-DC电源转换器XC9215/XC9216/XC9217119.稳压输出电荷泵XC9801/XC9802120.高效率升压式电源转换器ZXLB16001.2 线性/低压差稳压器121.具有可关断功能的多端稳压器BAXXX122.高压线性稳压器HIP5600123.多路输出稳压器KA7630/KA7631124.三端低压差稳压器LM2937125.可调输出低压差稳压器LM2991126.三端可调稳压器LM117/LM317127.低压降CMOS500mA线性稳压器LP38691/LP38693128.输入电压从12V到450V的可调线性稳压器LR8129.300mA非常低压降稳压器(VLDO)LTC3025130.大电流低压差线性稳压器LX8610131.200mA负输出低压差线性稳压器MAX1735132.150mA低压差线性稳压器MAX8875133.带开关控制的低压差稳压器MC33375134.带有线性调节器的稳压器MC33998135.1.0A低压差固定及可调正稳压器NCP1117136.低静态电流低压差稳压器NCP562/NCP563137.具有使能控制功能的多端稳压器PQxx138.五端可调稳压器SI-3025B/SI-3157B139.400mA低压差线性稳压器SPX2975140.五端线性稳压器STR20xx141.五端线性稳压器STR90xx142.具有复位信号输出的双路输出稳压器TDA8133143.具有复位信号输出的双路输出稳压器TDA8138/TDA8138A144.带线性稳压器的升压式电源转换器TPS6110x145.低功耗50mA低压降线性稳压器TPS760xx146.高输入电压低压差线性稳压器XC6202147.高速低压差线性稳压器XC6204148.高速低压差线性稳压器XC6209F149.双路高速低压差线性稳压器XC64011.3 基准电压源150.新型XFET基准电压源ADR290/ADR291/ADR292/ADR293151.低功耗低压差大输出电流基准电压源MAX610x152.低功耗1.2V基准电压源MAX6120153.2.5V精密基准电压源MC1403154.2.5V/4.096V基准电压源MCP1525/MCP1541155.低功耗精密低压降基准电压源REF30xx/REF31xx156.精密基准电压源TL431/KA431/TLV431A第2章AC-DC转换器及控制器1.厚膜开关电源控制器DP104C2.厚膜开关电源控制器DP308P3.DPA-Switch系列高电压功率转换控制器DPA423/DPA424/DPA425/DPA4264.电流型开关电源控制器FA13842/FA13843/FA13844/FA138455.开关电源控制器FA5310/FA53116.PWM开关电源控制器FAN75567.绿色环保的PWM开关电源控制器FAN76018.FPS型开关电源控制器FS6M07652R9.开关电源功率转换器FS6Sxx10.降压型单片AC-DC转换器HV-2405E11.新型反激准谐振变换控制器ICE1QS0112.PWM电源功率转换器KA1M088013.开关电源功率转换器KA2S0680/KA2S088014.电流型开关电源控制器KA38xx15.FPS型开关电源功率转换器KA5H0165R16.FPS型开关电源功率转换器KA5Qxx17.FPS型开关电源功率转换器KA5Sxx18.电流型高速PWM控制器L499019.具有待机功能的PWM初级控制器L599120.低功耗离线式开关电源控制器L659021.LINK SWITCH TN系列电源功率转换器LNK304/LNK305/LNK30622.LINK SWITCH系列电源功率转换器LNK500/LNK501/LNK52023.离线式开关电源控制器M51995A24.PWM电源控制器M62281P/M62281FP25.高频率电流模式PWM控制器MAX5021/MAX502226.新型PWM开关电源控制器MC4460427.电流模式开关电源控制器MC4460528.低功耗开关电源控制器MC4460829.具有PFC功能的PWM电源控制器ML482430.液晶显示器背光灯电源控制器ML487631.离线式电流模式控制器NCP120032.电流模式脉宽调制控制器NCP120533.准谐振式PWM控制器NCP120734.低成本离线式开关电源控制电路NCP121535.低待机能耗开关电源PWM控制器NCP123036.STR系列自动电压切换控制开关STR8xxxx37.大功率厚膜开关电源功率转换器STR-F665438.大功率厚膜开关电源功率转换器STR-G865639.开关电源功率转换器STR-M6511/STR-M652940.离线式开关电源功率转换器STR-S5703/STR-S5707/STR-S570841.离线式开关电源功率转换器STR-S6401/STR-S6401F/STR-S6411/STR-S6411F 442.开关电源功率转换器STR-S651343.离线式开关电源功率转换器TC33369~TC3337444.高性能PFC与PWM组合控制集成电路TDA16846/TDA1684745.新型开关电源控制器TDA1685046.“绿色”电源控制器TEA150447.第二代“绿色”电源控制器TEA150748.新型低功耗“绿色”电源控制器TEA153349.开关电源控制器TL494/KA7500/MB375950.Tiny SwitchⅠ系列功率转换器TNY253、TNY254、TNY25551.Tiny SwitchⅡ系列功率转换器TNY264P~TNY268G52.TOP Switch(Ⅱ)系列离线式功率转换器TOP209~TOP22753.TOP Switch-FX系列功率转换器TOP232/TOP233/TOP23454.TOP Switch-GX系列功率转换器TOP242~TOP25055.开关电源控制器UCX84X56.离线式开关电源功率转换器VIPer12AS/VIPer12ADIP57.新一代高度集成离线式开关电源功率转换器VIPer53第3章功率因数校正控制/节能灯电源控制器1.电子镇流器专用驱动电路BL83012.零电压开关功率因数控制器FAN48223.功率因数校正控制器FAN75274.高电压型EL背光驱动器HV8265.EL场致发光背光驱动器IMP525/IMP5606.高电压型EL背光驱动器/反相器IMP8037.电子镇流器自振荡半桥驱动器IR21568.单片荧光灯镇流器IR21579.调光电子镇流器自振荡半桥驱动器IR215910.卤素灯电子变压器智能控制电路IR216111.具有功率因数校正电路的镇流器电路IR216612.单片荧光灯镇流器IR216713.自适应电子镇流器控制器IR252014.电子镇流器专用控制器KA754115.功率因数校正控制器L656116.过渡模式功率因数校正控制器L656217.集成背景光控制器MAX8709/MAX8709A18.功率因数校正控制器MC33262/MC3426219.固定频率电流模式功率因数校正控制器NCP165320.EL场致发光灯高压驱动器SP440321.功率因数校正控制器TDA4862/TDA486322.有源功率因数校正控制器UC385423.高频自振荡节能灯驱动器电路VK05CFL24.大功率高频自振荡节能灯驱动器电路VK06TL第4章充电控制器1.多功能锂电池线性充电控制器AAT36802.可编程快速电池充电控制器BQ20003.可进行充电速率补偿的锂电池充电管理器BQ20574.锂电池充电管理电路BQ2400x5.单片锂电池线性充电控制器BQ2401xB接口单节锂电池充电控制器BQ2402x7.2A同步开关模式锂电池充电控制器BQ241008.集成PWM开关控制器的快速充电管理器BQ29549.具有电池电量计量功能的充电控制器DS277010.锂电池充电控制器FAN7563/FAN756411.2A线性锂/锂聚合物电池充电控制器ISL629212.锂电池充电控制器LA5621M/LA5621V13.1.5A通用充电控制器LT157114.2A恒流/恒压电池充电控制器LT176915.线性锂电池充电控制器LTC173216.带热调节功能的1A线性锂电池充电控制器LTC173317.线性锂电池充电控制器LTC173418.新型开关电源充电控制器LTC198019.开关模式锂电池充电控制器LTC400220.4A锂电池充电器LTC400621.多用途恒压/恒流充电控制器LTC400822.4.2V锂离子/锂聚合物电池充电控制器LTC405223.可由USB端口供电的锂电池充电控制器LTC405324.小型150mA锂电池充电控制器LTC405425.线性锂电池充电控制器LTC405826.单节锂电池线性充电控制器LTC405927.独立线性锂电池充电控制器LTC406128.镍镉/镍氢电池充电控制器M62256FP29.大电流锂/镍镉/镍氢电池充电控制器MAX150130.锂电池线性充电控制器MAX150731.双输入单节锂电池充电控制器MAX1551/MAX155532.单节锂电池充电控制器MAX167933.小体积锂电池充电控制器MAX1736B接口单节锂电池充电控制器MAX181135.多节锂电池充电控制器MAX187336.双路输入锂电池充电控制器MAX187437.单节锂电池线性充电控制器MAX189838.低成本/多种电池充电控制器MAX190839.开关模式单节锂电池充电控制器MAX1925/MAX192640.快速镍镉/镍氢充电控制器MAX2003A/MAX200341.可编程快速充电控制器MAX712/MAX71342.开关式锂电池充电控制器MAX74543.多功能低成本充电控制器MAX846A44.具有温度调节功能的单节锂电池充电控制器MAX8600/MAX860145.锂电池充电控制器MCP73826/MCP73827/MCP7382846.高精度恒压/恒流充电器控制器MCP73841/MCP73842/MCP73843/MCP73844 647.锂电池充电控制器MCP73861/MCP7386248.单节锂电池充电控制器MIC7905049.单节锂电池充电控制器NCP180050.高精度线性锂电池充电控制器VM7205。
MAX471MAX472的中文资料大全
MAX471/MAX472的特点、功能美国美信公司生产的精密高端电流检测放大器是一个系列化产品,有MAX471/MAX472、MAX4172/MAX4173等。
它们均有一个电流输出端,可以用一个电阻来简单地实现以地为参考点的电流/电压的转换,并可工作在较宽电压内。
MAX471/MAX472具有如下特点:●具有完美的高端电流检测功能;●内含精密的内部检测电阻(MAX471);●在工作温度范围内,其精度为2%;●具有双向检测指示,可监控充电和放电状态;●内部检测电阻和检测能力为3A,并联使用时还可扩大检测电流范围;●使用外部检测电阻可任意扩展检测电流范围(MAX472);●最大电源电流为100μA;●关闭方式时的电流仅为5μA;●电压范围为3~36V;●采用8脚DIP/SO/STO三种封装形式。
MAX471/MAX472的引脚排列如图1所示,图2所示为其内部功能框图。
表1为MAX471/MAX472的引脚功能说明。
MAX471的电流增益比已预设为500μA/A,由于2kΩ的输出电阻(ROUT)可产生1V/A的转换,因此±3A时的满度值为3V.用不同的ROUT电阻可设置不同的满度电压。
但对于MAX471,其输出电压不应大于VRS+。
对于MAX472,则不能大于。
MAX471引脚图如图1所示,MAX472引脚图如图2所示。
MAX471/MAX472的引脚功能说明引脚名称功能MAX471MAX47211SHDN关闭端。
正常运用时连接到地。
当此端接高电平时,电源电流小于5μA2,3-RS+内部电流检测电阻电池(或电源端)。
“+”仅指示与SIGN输出有关的流动方向。
封装时已将2和3连在了一起-2空脚88OUT 电流输出,它正比于流过TSENSE被测电路的幅度,在MAX741中,此引脚到地之间应接一个2kΩ电阻,每一安培被测电流将产生大小等于1V的电压OUT端为电流幅度输出端,而SIGN端可用来指示输出电流的方向。
MAX3490及MAX3491
VIH DE, DI, RE
2.0
VIL DE, DI, RE
IIN1 DE, DI, RE
IIN2
DE = 0V, VCC = 0V or 3.6V
VIN = 12V VIN = -7V
IO
DE = 0V, RE = 0V,
VOUT = 12V
VCC = 0V or 3.6V, MAX3491 VOUT = -7V
Change in Magnitude of Driver Differential Output Voltage for Complementary Output States (Note 1)
SYMBOL
CONDITIONS
RL = 100Ω (RS-422), Figure 4
VOD RL = 54Ω (RS-485), Figure 4 RL = 60Ω (RS-485), VCC = 3.3V, Figure 5
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
MAX9813HEKA-T中文资料
Applications
Notebook Computers PDAs Smart Phones Car Kit Adapters Digital Cameras Video Tape Recorders
Pin Configurations, Selector Guide, and Typical Operating Circuits appear at end of data sheet. Rail-to-Rail is a trademark of Nippon Motorola Ltd.
元器件交易网
Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain Microphone Amplifiers with Integrated Bias MAX9812/MAX9813
ABSOLUTE MAXIMUM RATINGS
(All voltages referenced to GND) VCC ........................................................................-0.3V to +6.0V All Other Pins..............................................-0.3V to (VCC + 0.3V) Continuous Current (IN, SHDN, IN1, IN2, IN1/IN2)...........±20mA OUT, BIAS Short-Circuit Duration (to GND or VCC) ...Continuous Continuous Power Dissipation (TA = +70°C) 6-Pin SC70 (derate 3.1mW/°C above +70°C) ..............245mW 8-Pin SOT23 (derate 8.9mw/°C above +70°C) ............714mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range .............................-65°C to +150°C Junction Temperature ......................................................+150°C Lead Temperature (soldering, 10s) .................................+300°C
MAX系列芯片速查
MAXIM/DALLAS 中文数据资料DS12CR887, DS12R885, DS12R887 RTC,带有恒压涓流充电器DS1870 LDMOS RF功放偏置控制器DS1921L-F5X Thermochron iButtonDS1923 温度/湿度记录仪iButton,具有8kB数据记录存储器DS1982, DS1982-F3, DS1982-F5 1k位只添加iButton?DS1990A 序列号iButtonDS1990R, DS1990R-F3, DS1990R-F5 序列号iButtonDS1991 多密钥iButtonDS2129 LVD SCSI 27线调节器DS2401 硅序列号DS2406 双通道、可编址开关与1k位存储器DS2408 1-Wire、8通道、可编址开关DS2411 硅序列号,带有VCC输入DS2413 1-Wire双通道、可编址开关DS2430A 256位1-Wire EEPROMDS2431 1024位、1-Wire EEPROMDS2480B 串行、1-Wire线驱动器,带有负荷检测DS2482-100 单通道1-Wire主控制器DS2482-100 勘误表PDF: 2482-100A2DS2482-800, DS2482S-800 八通道1-Wire主控制器DS2482-800 勘误表PDF: 2482-800A2DS2502 1k位只添加存储器DS2505 16k位只添加存储器DS28E04-100 4096位、可寻址、1-Wire EEPROM,带有PIO DS3170DK DS3/E3单芯片收发器开发板DS3231, DS3231S 高精度、I2C集成RTC/TCXO/晶振DS33Z44 四路以太网映射器DS3902 双路、非易失、可变电阻器,带有用户EEPROMDS3906 三路、非易失、小步长调节可变电阻与存储器DS3984 4路冷阴极荧光灯控制器DS4302 2线、5位DAC,提供三路数字输出DS80C400-KIT DS80C400评估套件DS80C410, DS80C411 具有以太网和CAN接口的网络微控制器DS80C410 勘误表PDF: 80C410A1DS89C430, DS89C440, DS89C450 超高速闪存微控制器DS89C430 勘误表PDF: 89C430A2DS89C440 勘误表PDF: 89C440A2DS89C450 勘误表PDF: 89C450A2DS89C430 勘误表PDF: 89C430A3DS89C440 勘误表PDF: 89C440A3DS89C450 勘误表PDF: 89C450A3DS89C430 勘误表PDF: 89C430A5DS89C440 勘误表PDF: 89C440A5DS89C450 勘误表PDF: 89C450A5DS9090K 1-Wire器件评估板, B版DS9097U-009, DS9097U-E25, DS9097U-S09 通用1-Wire COM端口适配器DS9490, DS9490B, DS9490R USB至1-Wire/iButton适配器MAX1034, MAX1035 8/4通道、±VREF多量程输入、串行14位ADCMAX1072, MAX1075 1.8Msps、单电源、低功耗、真差分、10位ADCMAX1076, MAX1078 1.8Msps、单电源供电、低功耗、真差分、10位ADC,内置电压基准MAX1146, MAX1147, MAX1148, MAX1149 多通道、真差分、串行、14位ADC MAX1149EVKIT MAX1149评估板/评估系统MAX1220, MAX1257, MAX1258 12位、多通道ADC/DAC,带有FIFO、温度传感器和GPIO端口MAX1224, MAX1225 1.5Msps、单电源、低功耗、真差分、12位ADCMAX1258EVKIT MAX1057, MAX1058, MAX1257, MAX1258评估板/评估系统MAX1274, MAX1275 1.8Msps、单电源、低功耗、真差分、12位ADCMAX13000E, MAX13001E, MAX13002E, MAX13003E, MAX13004E, MAX13005E 超低电压电平转换器MAX1302, MAX1303 8/4通道、±VREF多量程输入、串行16位ADCMAX1304, MAX1305, MAX1306, MAX1308, MAX1309, MAX1310, MAX1312, MAX1313, MAX1314 8/4/2通道、12位、同时采样ADC,提供±10V、±5V或0至+5V 模拟输入范围MAX13050, MAX13052, MAX13053, MAX13054 工业标准高速CAN收发器,具有±80V故障保护MAX13080E, MAX13081E, MAX13082E, MAX13083E, MAX13084E, MAX13085E, MAX13086E, MAX13087E, MAX13088E, MAX13089E +5.0V、±15kV ESD保护、失效保护、热插拔、RS-485/RS-422收发器MAX13101E, MAX13102E, MAX13103E, MAX13108E 16通道、带有缓冲的CMOS 逻辑电平转换器MAX1334, MAX1335 4.5Msps/4Msps、5V/3V、双通道、真差分10位ADCMAX1336, MAX1337 6.5Msps/5.5Msps、5V/3V、双通道、真差分8位ADCMAX13481E, MAX13482E, MAX13483E ±15kV ESD保护USB收发器, 外部/内部上拉电阻MAX1350, MAX1351, MAX1352, MAX1353, MAX1354, MAX1355, MAX1356, MAX1357 双路、高端、电流检测放大器和驱动放大器MAX1450 低成本、1%精确度信号调理器,用于压阻式传感器MAX1452 低成本、精密的传感器信号调理器MAX1487, MAX481, MAX483, MAX485, MAX487, MAX488, MAX489, MAX490, MAX491 低功耗、限摆率、RS-485/RS-422收发器MAX1492, MAX1494 3位半和4位半、单片ADC,带有LCD驱动器MAX1494EVKIT MAX1493, MAX1494, MAX1495评估板/评估系统MAX1497, MAX1499 3位半和4位半、单片ADC,带有LED驱动器和μC接口MAX1499EVKIT MAX1499评估板/评估系统MAX15000, MAX15001 电流模式PWM控制器, 可调节开关频率MAX1515 低电压、内置开关、降压/DDR调节器MAX1518B TFT-LCD DC-DC转换器, 带有运算放大器MAX1533, MAX1537 高效率、5路输出、主电源控制器,用于笔记本电脑MAX1533EVKIT MAX1533评估板MAX1540A, MAX1541 双路降压型控制器,带有电感饱和保护、动态输出和线性稳压器MAX1540EVKIT MAX1540评估板MAX1551, MAX1555 SOT23、双输入、USB/AC适配器、单节Li+电池充电器MAX1553, MAX1554 高效率、40V、升压变换器,用于2至10个白光LED驱动MAX1556, MAX1557 16μA IQ、1.2A PWM降压型DC-DC转换器MAX1556EVKIT MAX1556EVKIT评估板MAX1558, MAX1558H 双路、3mm x 3mm、1.2A/可编程电流USB开关,带有自动复位功能MAX1586A, MAX1586B, MAX1586C, MAX1587A, MAX1587C 高效率、低IQ、带有动态内核的PMIC,用于PDA和智能电话MAX16801A/B, MAX16802A/B 离线式、DC-DC PWM控制器, 用于高亮度LED驱动器MAX1858A, MAX1875A, MAX1876A 双路180°异相工作的降压控制器,具有排序/预偏置启动和PORMAX1870A 升/降压Li+电池充电器MAX1870AEVKIT MAX1870A评估板MAX1874 双路输入、USB/AC适配器、1节Li+充电器,带OVP与温度调节MAX1954A 低成本、电流模式PWM降压控制器,带有折返式限流MAX1954AEVKIT MAX1954A评估板MAX19700 7.5Msps、超低功耗模拟前端MAX19700EVKIT MAX19700评估板/评估系统MAX19705 10位、7.5Msps、超低功耗模拟前端MAX19706 10位、22Msps、超低功耗模拟前端MAX19707 10位、45Msps、超低功耗模拟前端MAX19708 10位、11Msps、超低功耗模拟前端MAX2041 高线性度、1700MHz至3000MHz上变频/下变频混频器,带有LO缓冲器/开关MAX2043 1700MHz至3000MHz高线性度、低LO泄漏、基站Rx/Tx混频器MAX220, MAX222, MAX223, MAX225, MAX230, MAX231, MAX232, MAX232A, MAX233, MAX233A, MAX234, MAX235, MAX236, MAX237, MAX238, MAX239, MAX240, MAX241, MAX242, MAX243, MAX244, MAX245, MAX246, MAX247, MAX248, MAX249 +5V供电、多通道RS-232驱动器/接收器MAX2335 450MHz CDMA/OFDM LNA/混频器MAX2370 完备的、450MHz正交发送器MAX2370EVKIT MAX2370评估板MAX2980 电力线通信模拟前端收发器MAX2986 集成电力线数字收发器MAX3013 +1.2V至+3.6V、0.1μA、100Mbps、8路电平转换器MAX3205E, MAX3207E, MAX3208E 双路、四路、六路高速差分ESD保护ICMAX3301E, MAX3302E USB On-the-Go收发器与电荷泵MAX3344E, MAX3345E ±15kV ESD保护、USB收发器,UCSP封装,带有USB检测MAX3394E, MAX3395E, MAX3396E ±15kV ESD保护、大电流驱动、双/四/八通道电平转换器, 带有加速电路MAX3535E, MXL1535E +3V至+5V、提供2500VRMS隔离的RS-485/RS-422收发器,带有±15kV ESD保护MAX3570, MAX3571, MAX3573 HI-IF单芯片宽带调谐器MAX3643EVKIT MAX3643评估板MAX3645 +2.97V至+5.5V、125Mbps至200Mbps限幅放大器,带有信号丢失检测器MAX3654 47MHz至870MHz模拟CATV互阻放大器MAX3654EVKIT MAX3654评估板MAX3657 155Mbps低噪声互阻放大器MAX3658 622Mbps、低噪声、高增益互阻前置放大器MAX3735, MAX3735A 2.7Gbps、低功耗、SFP激光驱动器MAX3737 多速率激光驱动器,带有消光比控制MAX3737EVKIT MAX3737评估板MAX3738 155Mbps至2.7Gbps SFF/SFP激光驱动器,带有消光比控制MAX3744, MAX3745 2.7Gbps SFP互阻放大器,带有RSSIMAX3744EVKIT, MAX3745EVKIT MAX3744, MAX3745评估板MAX3748, MAX3748A, MAX3748B 紧凑的、155Mbps至4.25Gbps限幅放大器MAX3785 6.25Gbps、1.8V PC板均衡器MAX3787EVKIT MAX3787评估板MAX3793 1Gbps至4.25Gbps多速率互阻放大器,具有光电流监视器MAX3793EVKIT MAX3793评估板MAX3805 10.7Gbps自适应接收均衡器MAX3805EVKIT MAX3805评估板MAX3840 +3.3V、2.7Gbps双路2 x 2交叉点开关MAX3841 12.5Gbps CML 2 x 2交叉点开关MAX3967 270Mbps SFP LED驱动器MAX3969 200Mbps SFP限幅放大器MAX3969EVKIT MAX3969评估板MAX3982 SFP铜缆预加重驱动器MAX3983 四路铜缆信号调理器MAX3983EVKIT MAX3983评估板MAX3983SMAEVKIT MAX3983 SMA连接器评估板MAX4079 完备的音频/视频后端方案MAX4210, MAX4211 高端功率、电流监视器MAX4210EEVKIT MAX4210E、MAX4210A/B/C/D/F评估板MAX4211EEVKIT MAX4211A/B/C/D/E/F评估板MAX4397 用于双SCART连接器的音频/视频开关MAX4397EVKIT MAX4397评估系统/评估板MAX4411EVKIT MAX4411评估板MAX4729, MAX4730 低电压、3.5、SPDT、CMOS模拟开关MAX4754, MAX4755, MAX4756 0.5、四路SPDT开关,UCSP/QFN封装MAX4758, MAX4759 四路DPDT音频/数据开关,UCSP/QFN封装MAX4760, MAX4761 宽带、四路DPDT开关MAX4766 0.075A至1.5A、可编程限流开关MAX4772, MAX4773 200mA/500mA可选的限流开关MAX4795, MAX4796, MAX4797, MAX4798 450mA/500mA限流开关MAX4826, MAX4827, MAX4828, MAX4829, MAX4830, MAX4831 50mA/100mA 限流开关, 带有空载标记, μDFN封装MAX4832, MAX4833 100mA LDO,带有限流开关MAX4834, MAX4835 250mA LDO,带有限流开关MAX4836, MAX4837 500mA LDO,带有限流开关MAX4838A, MAX4840A, MAX4842A 过压保护控制器,带有状态指示FLAGMAX4850, MAX4850H, MAX4852, MAX4852H 双路SPDT模拟开关,可处理超摆幅信号MAX4851, MAX4851H, MAX4853, MAX4853H 3.5/7四路SPST模拟开关,可处理超摆幅信号MAX4854 7四路SPST模拟开关,可处理超摆幅信号MAX4854H, MAX4854HL 四路SPST、宽带、信号线保护开关MAX4855 0.75、双路SPDT音频开关,具有集成比较器MAX4864L, MAX4865L, MAX4866L, MAX4867, MAX4865, MAX4866 过压保护控制器,具有反向保护功能MAX4880 过压保护控制器, 内置断路开关MAX4881, MAX4882, MAX4883, MAX4884 过压保护控制器, 内部限流, TDFN封装MAX4901, MAX4902, MAX4903, MAX4904, MAX4905 低RON、双路SPST/单路SPDT、无杂音切换开关, 可处理负电压MAX4906, MAX4906F, MAX4907, MAX4907F 高速/全速USB 2.0开关MAX5033 500mA、76V、高效率、MAXPower降压型DC-DC变换器MAX5042, MAX5043 双路开关电源IC,集成了功率MOSFET和热插拔控制器MAX5058, MAX5059 可并联的副边同步整流驱动器和反馈发生器控制ICMAX5058EVKIT MAX5051, MAX5058评估板MAX5062, MAX5062A, MAX5063, MAX5063A, MAX5064, MAX5064A, MAX5064B 125V/2A、高速、半桥MOSFET驱动器MAX5065, MAX5067 双相、+0.6V至+3.3V输出可并联、平均电流模式控制器MAX5070, MAX5071 高性能、单端、电流模式PWM控制器MAX5072 2.2MHz、双输出、降压或升压型转换器,带有POR和电源失效输出MAX5072EVKIT MAX5072评估板MAX5074 内置MOSFET的电源IC,用于隔离型IEEE 802.3af PD和电信电源MAX5078 4A、20ns、MOSFET驱动器MAX5084, MAX5085 65V、200mA、低静态电流线性稳压器, TDFN封装MAX5088, MAX5089 2.2MHz、2A降压型转换器, 内置高边开关MAX5094A, MAX5094B, MAX5094C, MAX5094D, MAX5095A, MAX5095B, MAX5095C 高性能、单端、电流模式PWM控制器MAX5128 128抽头、非易失、线性变化数字电位器, 采用2mm x 2mm μDFN封装MAX5417, MAX5417L, MAX5417M, MAX5417N, MAX5417P, MAX5418, MAX5419 256抽头、非易失、I2C接口、数字电位器MAX5417LEVKIT MAX5417_, MAX5418_, MAX5419_评估板/评估系统MAX5477, MAX5478, MAX5479 双路、256抽头、非易失、I2C接口、数字电位器MAX5478EVKIT MAX5477/MAX5478/MAX5479评估板/评估系统MAX5490 100k精密匹配的电阻分压器,SOT23封装MAX5527, MAX5528, MAX5529 64抽头、一次性编程、线性调节数字电位器MAX5820 双路、8位、低功耗、2线、串行电压输出DACMAX5865 超低功耗、高动态性能、40Msps模拟前端MAX5920 -48V热插拔控制器,外置RsenseMAX5921, MAX5939 -48V热插拔控制器,外置Rsense、提供较高的栅极下拉电流MAX5932 正电源、高压、热插拔控制器MAX5932EVKIT MAX5932评估板MAX5936, MAX5937 -48V热插拔控制器,可避免VIN阶跃故障,无需RSENSE MAX5940A, MAX5940B IEEE 802.3af PD接口控制器,用于以太网供电MAX5940BEVKIT MAX5940B, MAX5940D评估板MAX5941A, MAX5941B 符合IEEE 802.3af标准的以太网供电接口/PWM控制器,适用于用电设备MAX5945 四路网络电源控制器,用于网络供电MAX5945EVKIT, MAX5945EVSYS MAX5945评估板/评估系统MAX5953A, MAX5953B, MAX5953C, MAX5953D IEEE 802.3af PD接口和PWM控制器,集成功率MOSFETMAX6640 2通道温度监视器,提供双路、自动PWM风扇速度控制器MAX6640EVKIT MAX6640评估系统/评估板MAX6641 兼容于SMBus的温度监视器,带有自动PWM风扇速度控制器MAX6643, MAX6644, MAX6645 自动PWM风扇速度控制器,带有过温报警输出MAX6678 2通道温度监视器,提供双路、自动PWM风扇速度控制器和5个GPIOMAX6695, MAX6696 双路远端/本地温度传感器,带有SMBus串行接口MAX6877EVKIT MAX6877评估板MAX6950, MAX6951 串行接口、+2.7V至+5.5V、5位或8位LED显示驱动器MAX6966, MAX6967 10端口、恒流LED驱动器和输入/输出扩展器,带有PWM亮度控制MAX6968 8端口、5.5V恒流LED驱动器MAX6969 16端口、5.5V恒流LED驱动器MAX6970 8端口、36V恒流LED驱动器MAX6977 8端口、5.5V恒流LED驱动器,带有LED故障检测MAX6978 8端口、5.5V恒流LED驱动器,带有LED故障检测和看门狗MAX6980 8端口、36V恒流LED驱动器, 带有LED故障检测和看门狗MAX6981 8端口、36V恒流LED驱动器, 带有LED故障检测MAX7030 低成本、315MHz、345MHz和433.92MHz ASK收发器, 带有N分频PLL MAX7032 低成本、基于晶振的可编程ASK/FSK收发器, 带有N分频PLLMAX7317 10端口、SPI接口输入/输出扩展器,带有过压和热插入保护MAX7319 I2C端口扩展器,具有8路输入,可屏蔽瞬态检测MAX7320 I2C端口扩展器, 带有八个推挽式输出MAX7321 I2C端口扩展器,具有8个漏极开路I/O口MAX7328, MAX7329 I2C端口扩展器, 带有八个I/O口MAX7347, MAX7348, MAX7349 2线接口、低EMI键盘开关和发声控制器MAX7349EVKIT MAX7349评估板/仿真: MAX7347/MAX7348MAX7375 3引脚硅振荡器MAX7381 3引脚硅振荡器MAX7389, MAX7390 微控制器时钟发生器, 带有看门狗MAX7391 快速切换时钟发生器, 带有电源失效检测MAX7445 4通道视频重建滤波器MAX7450, MAX7451, MAX7452 视频信号调理器,带有AGC和后肩钳位MAX7452EVKIT MAX7452评估板MAX7462, MAX7463 单通道视频重建滤波器和缓冲器MAX8505 3A、1MHz、1%精确度、内置开关的降压型调节器,带有电源就绪指示MAX8524, MAX8525 2至8相VRM 10/9.1 PWM控制器,提供精密的电流分配和快速电压定位MAX8525EVKIT MAX8523, MAX8525评估板MAX8533 更小、更可靠的12V、Infiniband兼容热插拔控制器MAX8545, MAX8546, MAX8548 低成本、宽输入范围、降压控制器,带有折返式限流MAX8550, MAX8551 集成DDR电源方案,适用于台式机、笔记本电脑及图形卡MAX8550EVKIT MAX8550, MAX8550A, MAX8551评估板MAX8552 高速、宽输入范围、单相MOSFET驱动器MAX8553, MAX8554 4.5V至28V输入、同步PWM降压控制器,适合DDR端接和负载点应用MAX8563, MAX8564 ±1%、超低输出电压、双路或三路线性n-FET控制器MAX8564EVKIT MAX8563, MAX8564评估板MAX8566 高效、10A、PWM降压调节器, 内置开关MAX8570, MAX8571, MAX8572, MAX8573, MAX8574, MAX8575 高效LCD升压电路,可True ShutdownMAX8571EVKIT MAX8570, MAX8571, MAX8572, MAX8573, MAX8574, MAX8575评估板MAX8576, MAX8577, MAX8578, MAX8579 3V至28V输入、低成本、迟滞同步降压控制器MAX8594, MAX8594A 5路输出PMIC,提供DC-DC核电源,用于低成本PDAMAX8594EVKIT MAX8594评估板MAX8632 集成DDR电源方案,适用于台式机、笔记本电脑和图形卡MAX8632EVKIT MAX8632评估板MAX8702, MAX8703 双相MOSFET驱动器,带有温度传感器MAX8707 多相、固定频率控制器,用于AMD Hammer CPU核电源MAX8716, MAX8717, MAX8757 交叉工作、高效、双电源控制器,用于笔记本电脑MAX8716EVKIT MAX8716评估板MAX8717EVKIT MAX8717评估板MAX8718, MAX8719 高压、低功耗线性稳压器,用于笔记本电脑MAX8725EVKIT MAX8725评估板MAX8727 TFT-LCD升压型、DC-DC变换器MAX8729 固定频率、半桥CCFL逆变控制器MAX8729EVKIT MAX8729评估板MAX8732A, MAX8733A, MAX8734A 高效率、四路输出、主电源控制器,用于笔记本电脑MAX8737 双路、低电压线性稳压器, 外置MOSFETMAX8737EVKIT MAX8737评估板MAX8738 EEPROM可编程TFT VCOM校准器, 带有I2C接口MAX8740 TFT-LCD升压型、DC-DC变换器MAX8743 双路、高效率、降压型控制器,关断状态下提供高阻MAX8751 固定频率、全桥、CCFL逆变控制器MAX8751EVKIT MAX8751评估板MAX8752 TFT-LCD升压型、DC-DC变换器MAX8758 具有开关控制和运算放大器的升压调节器, 用于TFT LCDMAX8758EVKIT MAX8758评估板MAX8759 低成本SMBus CCFL背光控制器MAX8760 双相、Quick-PWM控制器,用于AMD Mobile Turion 64 CPU核电源MAX8764 高速、降压型控制器,带有精确的限流控制,用于笔记本电脑MAX9223, MAX9224 22位、低功耗、5MHz至10MHz串行器与解串器芯片组MAX9225, MAX9226 10位、低功耗、10MHz至20MHz串行器与解串器芯片组MAX9483, MAX9484 双输出、多模CD-RW/DVD激光二极管驱动器MAX9485 可编程音频时钟发生器MAX9485EVKIT MAX9485评估板MAX9486 8kHz参考时钟合成器,提供35.328MHz倍频输出MAX9486EVKIT MAX9486评估板MAX9489 多路输出网络时钟发生器MAX9500, MAX9501 三通道HDTV滤波器MAX9500EVKIT MAX9500评估板MAX9502 2.5V视频放大器, 带有重建滤波器MAX9504A, MAX9504B 3V/5V、6dB视频放大器, 可提供大电流输出MAX9701 1.3W、无需滤波、立体声D类音频功率放大器MAX9701EVKIT MAX9701评估板MAX9702 1.8W、无需滤波、立体声D类音频功率放大器和DirectDrive立体声耳机放大器MAX9702EVSYS/EVKIT MAX9702/MAX9702B评估系统/评估板MAX9703, MAX9704 10W立体声/15W单声道、无需滤波的扩展频谱D类放大器MAX9705 2.3W、超低EMI、无需滤波、D类音频放大器MAX9705BEVKIT MAX9705B评估板MAX9710EVKIT MAX9710评估板MAX9712 500mW、低EMI、无需滤波、D类音频放大器MAX9713, MAX9714 6W、无需滤波、扩频单声道/立体声D类放大器MAX9714EVKIT MAX9704, MAX9714评估板MAX9715 2.8W、低EMI、立体声、无需滤波、D类音频放大器MAX9715EVKIT MAX9715评估板MAX9716, MAX9717 低成本、单声道、1.4W BTL音频功率放大器MAX9716EVKIT MAX9716评估板MAX9718, MAX9719 低成本、单声道/立体声、1.4W差分音频功率放大器MAX9718AEVKIT MAX9718A评估板MAX9719AEVKIT MAX9719A/B/C/D评估板MAX9721 1V、固定增益、DirectDrive、立体声耳机放大器,带有关断MAX9721EVKIT MAX9721评估板MAX9722A, MAX9722B 5V、差分输入、DirectDrive、130mW立体声耳机放大器,带有关断MAX9722AEVKIT MAX9722A, MAX9722B评估板MAX9723 立体声DirectDrive耳机放大器, 具有BassMax、音量控制和I2C接口MAX9725 1V、低功率、DirectDrive、立体声耳机放大器,带有关断MAX9728AEVKIT MAX9728A/MAX9728B评估板MAX9750, MAX9751, MAX9755 2.6W立体声音频功放和DirectDrive耳机放大器MAX9759 3.2W、高效、低EMI、无需滤波、D类音频放大器MAX9759EVKIT MAX9759评估板MAX9770, MAX9772 1.2W、低EMI、无需虑波、单声道D类放大器,带有立体声DirectDrive耳机放大器MAX9787 2.2W立体声音频功率放大器, 提供模拟音量控制MAX9850 立体声音频DAC,带有DirectDrive耳机放大器MAX9890 音频咔嗒声-怦然声抑制器MAX9951, MAX9952 双路引脚参数测量单元MAX9960 双闪存引脚电子测量/高压开关矩阵MAX9961, MAX9962 双通道、低功耗、500Mbps ATE驱动器/比较器,带有2mA负载MAX9967 双通道、低功耗、500Mbps ATE驱动器/比较器,带有35mA负载MAX9986A SiGe高线性度、815MHz至1000MHz下变频混频器, 带有LO缓冲器/开关MAXQ2000 低功耗LCD微控制器MAXQ2000 勘误表PDF: MAXQ2000A2MAXQ2000-KIT MAXQ2000评估板MAXQ3120-KIT MAXQ3120评估板MXL1543B +5V、多协议、3Tx/3Rx、软件可选的时钟/数据收发器。
MEMORY存储芯片MAX3490ECSA+T中文规格书
Figure 22. MAX3488/MAX3490/MAX3491 Full-Duplex RS-485 NetworkFigure 23. Line Repeater for MAX3488/MAX3490/MAX3491MAX3483/MAX3485/MAX3486/MAX3488/MAX3490/MAX34913.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 TransceiversLine Length vs. Data Rate The RS-485/RS-422 standard covers line lengths up to 4000 feet. For line lengths greater than 4000 feet, see Figure 23.Figures 19 and 20 show the system differential voltage for parts driving 4000 feet of 26AWG twisted-pair wire at 125kHz into 120Ω loads.Typical ApplicationsThe MAX3483, MAX3485, MAX3486, MAX3488, MAX3490, and MAX3491 transceivers are designed for bidirectional data communications on multipoint bus transmission lines. Figures 21 and 22 show typical net-work applications circuits. These parts can also be used as line repeaters, with cable lengths longer than 4000 feet, as shown in Figure 23.To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as pos-sible. The slew-rate-limited MAX3483/MAX3488 and the partially slew-rate-limited MAX3486 are more tolerant of imperfect termination.MAX3483/MAX3485/MAX3486/MAX3488/MAX3490/MAX34913.3V-Powered, 10Mbps and Slew-Rate-Limited True RS-485/RS-422 Transceivers Figure 21. MAX3483/MAX3485/MAX3486 Typical RS-485 Network Driver Output ProtectionExcessive output current and power dissipation caused by faults or by bus contention are prevented by two mechanisms. A foldback current limit on the output stage provides immediate protection against short circuits over the whole common-mode voltage range (see Typical Operating Characteristics ). In addition, a thermal shut-down circuit forces the driver outputs into a high-impedance state if the die temperature rises excessively.Propagation Delay Figures 15–18 show the typical propagation delays. Skew time is simply the difference between the low-to-high and high-to-low propagation delay. Small driver/receiver skew times help maintain a symmetrical mark-space ratio (50% duty cycle).The receiver skew time, |t PRLH - t PRHL |, is under 10ns (20ns for the MAX3483/MAX3488). The driver skew times are 8ns for the MAX3485/MAX3490/MAX3491, 11ns for the MAX3486, and typically under 100ns for the MAX3483/MAX3488.。
3971中文资料
Data Sheet 29319.323971DUAL DMOSFULL-BRIDGE DRIVERDesigned to interface between external PWM control logic and inductive loads such as relays, solenoids, dc motors, or stepper motors,each full bridge can operate with output currents to ±2.5 A and operating voltages to 50 V.Low r DS(on) DMOS output drivers provide low power dissipation during PWM operation. Internal charge pump circuitry is used to create a boosted voltage to fully enhance the high-side DMOS switches.Three TTL-compatible logic-input terminals per bridge allow flex-ibility in configuring PWM control.Internal circuit protection includes thermal shutdown with hysteresis,and crossover-current protection. Special power -up sequencing is not required.The A3971SLB is supplied in a 24-lead plastic SOIC with a copper batwing tab. The power tab is at ground potential and needs no electri-cal isolation.FEATURESI ±2.5 A Load Current Capability per Bridge I Parallel Outputs for 5 A Load-Current Capability I Low r DS(on) OutputsTypically 325 m Ω source, 175 m Ω sink I Synchronous Rectification via Control Logic I Internal Undervoltage Monitor I Crossover-Current ProtectionI Source Connections for External Current Sensing I Thermal Shutdown CircuitryADVANCE INFORMATION(Subject to change without notice)May 2, 2000Always order by complete part number: A3971SLB .115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-5000FUNCTIONAL BLOCK DIAGRAMCopyright © 2000, Allegro MicroSystems, Inc.0.22 µF/100 VDwg. FP-050ELECTRICAL CHARACTERISTICS at T A = +25°C, V BB = 50 V, V DD = 5.0 V (unless otherwise noted).LimitsCharacteristicSymbol Test Conditions Min.Typ.Max.Units Load Supply Voltage Range V BB Operating 10—50V Logic Supply Voltage Range V DD Operating4.55.0 5.5V Load Supply Current I BB Operating, each supply, no load —— 3.0mA Logic Supply Current I DDOperating——5.0mAOutput Drivers Output Leakage Current I DSS V OUT = V BB —<1.020µA V OUT = 0 V—<-1.0-20mA Output ON Resistance r DS(on)High-side switch, I OUT = -2.5 A —325375m ΩLow-side switch, I OUT = 2.5 A —175200m ΩBody Diode Forward Voltage V F Source diode, I F = 2.5 A — 1.2—V Sink diode, I F = 2.5 A — 1.0—V High-Side Gate Voltage V CPC = 0.22 µF, reference V BB6.06.57.0VControl Logic Logic Input Voltage V IN(0)——0.8V V IN(1) 2.0——V Logic Input Current I IN(0)V IN = 0 V —<1.0-5.0µA I IN(1)V IN = 5.0 V —2050µAPropagation Delay Timet PD50% to 90%:PWM change to source off —50—ns PWM change to sink off —60—ns PWM change to source on —565—ns PWM change to sink on —665—ns Disable to source on —150—ns Disable to sink on—250—ns Thermal Shutdown Temperature T J —165—°C Thermal Shutdown Hysteresis ∆T J —15—°C UVLO Threshold V UVLO Increasing V DD3.94.15 4.4V UVLO Hysteresis∆V UVLO—0.15—VNOTES: 1. Typical Data is for design information only.2. Negative current is defined as coming out of (sourcing) the specified device terminal.115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-5000Logic Truth TablePWM x S x0S x1OUT xAOUT xBFunction X 00Z Z Disable 001L H Forward 010H L Reverse 011L L Synchronous 101L L Rectification/111L L Slow Decay 11LLChopTerminal ListTerminalName Description1NC No (Internal) connection 2LGND Logic ground3S 10Control input, bridge 14OUT 1A Output A, bridge 15V BB1Load supply voltage, bridge 16, 7GND Ground8SENSE 1Sense resistor, bridge 19OUT 1B Output B, bridge 110S 11Control input, bridge 111PWM 1Control input, bridge 112CP1Charge-pump capacitor 13CP2Charge-pump capacitor 14V CP Reservoir capacitor 15S 21Control input, bridge 216OUT 2B Output B, bridge 217SENSE 2Sense resistor, bridge 218, 19GND Ground20V BB2Load supply voltage, bridge 221OUT 2A Output A, bridge 222S 20Control input, bridge 223PWM 2Control input, bridge 224V DDLogic supply voltageCharge Pump. The DMOS output stage requires a charge pump to bring the high-side gate-source voltage approximately 8 V above the V BB supply. Two external components are required, a pumping capacitor connected between CP1 and CP2 and a reservoir capacitor connected between V BB and V CP . Ceramic 0.22 µF capacitors are recommended.Control Logic. Each bridge is controlled by three TTL-compatible inputs. The inputs are resistively pulled to ground (via 250 k Ω). A crossover-delay circuit protects the outputs from a shoot-thru condition when going from a forward or reverse on state to synchronous rectification/slow decay chop (both sink drivers on). If the logic is in the DISABLE state and changes to an on state the 415 ns crossover delay does not occur.Protection Circuitry. In the event of a fault due to excessive junction temperature, or low voltage on V CP or V DD , the outputs of the device are disabled until the fault condition is removed.Current Sensing. If external current-sensing circuitry is used, the sense resistor should have an independentground return to the ground terminal of the device. Due to current transients during switching, a 0.1 µF capacitor should be connected from the sense terminal to the batwing tab connection of the package. This capacitor reduces voltage swings at the terminal due to the fast di/dt,which in turn ensures that the sink driver gate-source voltage stays within the safe operating area. Allegro MicroSystems recommends a value of R S given by:R S = 0.5/I TRIP max.Thermal protection. Circuitry turns off all drivers when the junction temperature reaches 165°C, typically.It is intended only to protect the device from failures due to excessive junction temperatures and should not imply that output short circuits are permitted. Thermal shut-down has a hysteresis of approximately 15°C.Layout. The printed wiring board should use a heavy ground plane. For optimum electrical and thermal perfor-mance, the driver should be soldered directly onto the board. If external current sensing is used, the ground side of R S should have an individual path to the groundterminal(s) of the device. This path should be as short as is possible physically and should not have any other components connected to it. The load supply terminal should be decoupled with an electrolytic capacitor( >47 µF is recommended) placed as close to the device as is possible.Parallel Operation. For high-power applications, the two DMOS full bridges in the A3971 may be connected in parallel as shown below. The current will be sharedequally in each full bridge due to the positive temperature coefficient of the DMOS r DS(on).Functional DescriptionDwg. EP-069115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-5000Dimensions in Inches(for reference only)NOTES:1.Exact body and lead configuration at vendor’s option within limits shown.2.Lead spacing tolerance is non-cumulative3.Webbed lead frame. Leads 6, 7, 18, and 19 are internally one piece.Dimensions in Millimeters(controlling dimensions)2413NOTES:1.Exact body and lead configuration at vendor’s option within limits shown.2.Lead spacing tolerance is non-cumulative3.Webbed lead frame. Leads 6, 7, 18, and 19 are internally one piece.115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-5000The products described here are manufactured under one or more U.S. patents or U.S. patents pending.Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may berequired to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.Allegro products are not authorized for use as critical components in life-support devices or systems without express written approval.The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsi-bility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.。
MAX4351EKA+T中文资料
General DescriptionThe MAX4350 single and MAX4351 dual op amps are unity-gain-stable devices that combine high-speed per-formance with rail-to-rail outputs. Both devices operate from dual ±5V supplies. The common-mode input volt-age range extends to the negative power-supply rail. The MAX4350/MAX4351 require only 6.9mA of quies-cent supply current per op amp while achieving a 210MHz -3dB bandwidth and a 485V/µs slew rate. Both devices are excellent solutions in low-power systems that require wide bandwidth, such as video, communi-cations, and instrumentation.The MAX4350 is available in an ultra-small 5-pin SC70package and the MAX4351 is available in a space-saving 8-pin SOT23 package.ApplicationsSet-Top BoxesSurveillance Video Systems Video Line DriversAnalog-to-Digital Converter Interface CCD Imaging SystemsVideo Routing and Switching Systems Digital CamerasFeatures♦Ultra-Small 5-Pin SC70, 5-Pin SOT23, and 8-Pin SOT23 Packages ♦Low Cost♦High Speed210MHz -3dB Bandwidth 55MHz 0.1dB Gain Flatness 485V/µs Slew Rate ♦Rail-to-Rail Outputs♦Input Common-Mode Range Extends to V EE ♦Low Differential Gain/Phase: 0.02%/0.08°♦Low Distortion at 5MHz-65dBc SFDR-63dB Total Harmonic DistortionMAX4350/MAX4351Ultra-Small, Low-Cost, 210MHz, Dual-SupplyOp Amps with Rail-to-Rail Outputs________________________________________________________________Maxim Integrated Products 1Pin ConfigurationsTypical Operating Circuit19-1989; Rev 1; 10/05For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .M A X 4350/M A X 4351Ultra-Small, Low-Cost, 210MHz, Dual-Supply Op Amps with Rail-to-Rail Outputs 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSDC ELECTRICAL CHARACTERISTICS(V CC = +5V, V EE = -5V, R L = ∞to 0V, V OUT = 0, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.) (NoteSupply Voltage (V CC to V EE )................................................+12V IN_-, IN_+, OUT_..............................(V EE - 0.3V) to (V CC + 0.3V)Output Short-Circuit Current to V CC or V EE ......................150mA Continuous Power Dissipation (T A = +70°C)5-Pin SC70 (derate 2.5mW/°C above +70°C).............200mW 5-Pin SOT23 (derate 7.1mW/°C above +70°C)...........571mW8-Pin SOT23 (derate 5.26mW/°C above +70°C).........421mW 8-Pin SO (derate 5.9mW/°C above +70°C).................471mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.MAX4350/MAX4351Ultra-Small, Low-Cost, 210MHz, Dual-SupplyOp Amps with Rail-to-Rail Outputs_______________________________________________________________________________________3AC ELECTRICAL CHARACTERISTICSM A X 4350/M A X 4351Ultra-Small, Low-Cost, 210MHz, Dual-Supply Op Amps with Rail-to-Rail Outputs 4_______________________________________________________________________________________Typical Operating Characteristics(V CC = +5V, V EE = -5V, V CM = 0V, A VCL = +1V/V, R F = 24Ω, R L = 100Ωto 0, T A = +25°C, unless otherwise noted.)4-6100k10M 100M1M1GSMALL-SIGNAL GAIN vs. FREQUENCYFREQUENCY (Hz)G A I N (d B )-5-4-3-2-101234-6100k 10M 100M 1M 1G LARGE-SIGNAL GAIN vs. FREQUENCYFREQUENCY (Hz)G A I N (d B )-5-4-3-2-101230.4-0.6100k 10M 100M 1M 1GGAIN FLATNESS vs. FREQUENCYFREQUENCY (Hz)G A I N (d B )-0.5-0.4-0.3-0.2-0.100.10.20.3100k10M 1M100M1GOUTPUT IMPEDANCE vs. FREQUENCYM A X 4350-05FREQUENCY (Hz)I M P E D A N C E (Ω)1000.010.1110-10-100100k100M10M1MDISTORTION vs. FREQUENCY-70-90-30-500-60-80-20-40FREQUENCY (Hz)D I S T O R T I O N (d B c )-10-100100k100M10M1MDISTORTION vs. FREQUENCY-70-90-30-500-60-80-20-40FREQUENCY (Hz)D I S T O R T I O N (d B c )-10-100100k100M10M1MDISTORTION vs. FREQUENCY-70-90-30-500-60-80-20-40FREQUENCY (Hz)D I S T O R T I O N (d B c )-100-70-80-90-60-50-40-30-20-100040020060080010001200DISTORTION vs. LOAD RESISTANCER LOAD (Ω)D I S T O R T I O N (d B c )0.4-0.6100k1M10M 100M1GGAIN FLATNESS vs. FREQUENCY-0.4FREQUENCY (Hz)G A I N (d B )-0.200.20.1-0.1-0.3-0.50.3MAX4350/MAX4351Ultra-Small, Low-Cost, 210MHz, Dual-SupplyOp Amps with Rail-to-Rail Outputs_______________________________________________________________________________________51000100DIFFERENTIAL GAIN AND PHASE-0.01000.0050.0150.025IRED I F F P H A SE (d e g r e e s )D I F F G A I N (%)M A X 4350-11IRE-0.0050.0200.010-0.040.020.040.080.1200.100.06-0.020-100100k 10M 100M 1M 1GCOMMON-MODE REJECTIONvs. FREQUENCYM A X 4350-12FREQUENCY (Hz)C M R (d B )-90-80-70-60-50-40-30-20-10P S R (d B )0-100100k10M 100M1M1GPOWER-SUPPLY REJECTIONvs. FREQUENCYM A X 4350-13FREQUENCY (Hz)-90-80-70-60-50-40-30-20-1000.40.21.00.80.61.41.21.60300400100200500600700800900OUTPUT VOLTAGE SWING vs. LOAD RESISTANCER LOAD (Ω)V S W I N G (V )INPUT 50mV/divOUTPUT 50mV/divSMALL-SIGNAL PULSE RESPONSE20ns/divR F = 24ΩA VCL = +1V/VINPUT 25mV/divOUTPUT 50mV/divSMALL-SIGNAL PULSE RESPONSE20ns/div R F = 500ΩA VCL = +2V/V INPUT 10mV/divOUTPUT 50mV/divSMALL-SIGNAL PULSE RESPONSE20ns/div R F = 500ΩA VCL = +5V/VINPUT 1V/divOUTPUT 1V/divLARGE-SIGNAL PULSE RESPONSE20ns/divR F = 24ΩA VCL = +1V/V-100-70-80-90-60-50-40-30-20-1000.51.01.52.0DISTORTION vs. VOLTAGE SWINGVOLTAGE SWING (Vp-p)D I S T O R T I O N (d B c )Typical Operating Characteristics (continued)(V CC = +5V, V EE = -5V, V CM = 0V, A VCL = +1V/V, R F = 24Ω, R L = 100Ωto 0, T A = +25°C, unless otherwise noted.)M A X 4350/M A X 4351Ultra-Small, Low-Cost, 210MHz, Dual-Supply Op Amps with Rail-to-Rail Outputs 6_______________________________________________________________________________________Typical Operating Characteristics (continued)(V CC = +5V, V EE = -5V, V CM = 0V, A VCL = +1V/V, R F = 24Ω, R L = 100Ωto 0, T A = +25°C, unless otherwise noted.)20ns/divINPUT 1V/divINPUT 1V/divLARGE-SIGNAL PULSE RESPONSER F = 500ΩA VCL = +2V/VV O L T A G E N O I S E (n V /H z )110k100101k100k1M10MVOLTAGE NOISE vs. FREQUENCYFREQUENCY (Hz)11010091110131********20010030040050250150350450500ISOLATION RESISTANCE vs. CAPACITIVE LOADC LOAD (pF)R I S O (Ω)0501001502002503000200100300400500600700800SMALL-SIGNAL BANDWIDTH vs. LOAD RESISTANCEM A X 4350-24R LOAD (Ω)B A N D W I D T H (M H z )8001001k 10kOPEN-LOOP GAIN vs. LOAD RESISTANCE2010M A X 4350-25R LOAD (Ω)O P E N -L O O P G A I N (d B c )4030506070C U R R E N T N O I S E (p A /H z)110k100101k100k1M10MCURRENT NOISE vs. FREQUENCYFREQUENCY (Hz)110100MAX4351CROSSTALK vs. FREQUENCYM A X 4350-26FREQUENCY (Hz)C R O S S T A L K (d B )-140-80-100-120-60-40-2002040600.1M1M10M 100M1GINPUT 500mV/divOUTPUT 1V/divLARGE-SIGNAL PULSE RESPONSE20ns/divR F = 500ΩA VCL = +2V/VDetailed DescriptionThe MAX4350/MAX4351 are single-supply, rail-to-rail,voltage-feedback amplifiers that employ current-feed-back techniques to achieve 485V/µs slew rates and 210MHz bandwidths. Excellent harmonic distortion and differential gain/phase performance make these ampli-fiers an ideal choice for a wide variety of video and RF signal-processing applications.The output voltage swings to within 125mV of each sup-ply rail. Local feedback around the output stage ensures low open-loop output impedance to reduce gain sensitivity to load variations. The input stage per-mits common-mode voltages beyond the negative sup-ply and to within 2.25V of the positive supply rail.Applications InformationChoosing Resistor ValuesUnity-Gain ConfigurationThe MAX4350/MAX4351 are internally compensated for unity gain. When configured for unity gain, a 24Ωresis-tor (R F ) in series with the feedback path optimizes AC performance. This resistor improves AC response by reducing the Q of the parallel LC circuit formed by the parasitic feedback capacitance and inductance.Inverting and Noninverting ConfigurationsSelect the gain-setting feedback (R F ) and input (R G )resistor values to fit your application (Figures 1a and 1b). Large resistor values increase voltage noise and interact with the amplifier’s input and PC board capaci-tance. This can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. For example, a noninverting gain-of-two configuration (R F =R G ) using 1k Ω resistors, combined with 1pF of amplifier input capacitance and 1pF of PC board capacitance,causes a pole at 159MHz. Since this pole is within the amplifier bandwidth, it jeopardizes stability. Reducing the 1k Ωresistors to 100Ωextends the pole frequency to 1.59GHz, but could limit output swing by adding 200Ωin parallel with the amplifier’s load resistor.Layout and Power-Supply BypassingThese amplifiers operate from dual ±5V supplies. Bypass each supply with a 0.1µF capacitor to ground.Maxim recommends using microstrip and stripline tech-niques to obtain full bandwidth. To ensure that the PC board does not degrade the amplifier’s performance,design it for a frequency greater than 1GHz. Pay care-MAX4350/MAX4351Ultra-Small, Low-Cost, 210MHz, Dual-SupplyOp Amps with Rail-to-Rail Outputs_______________________________________________________________________________________7Figure 1a. Noninverting Gain ConfigurationFigure 1b. Inverting Gain Configurationful attention to inputs and outputs to avoid large para-sitic capacitance. Whether or not you use a constant-impedance board, observe the following design guide-lines:•Don’t use wire-wrap boards; they are too inductive.•Don’t use IC sockets; they increase parasitic capaci-tance and inductance.•Use surface-mount instead of through-hole compo-nents for better high-frequency performance.•Use a PC board with at least two layers; it should be as free from voids as possible.•Keep signal lines as short and as straight as possi-ble. Do not make 90°turns; round all corners.Rail-to-Rail Outputs, Ground-Sensing InputThe input common-mode range extends from V EE to (V CC - 2.25V) with excellent common-mode rejection. Beyond this range, the amplifier output is a nonlinear function of the input, but does not undergo phase reversal or latchup. The output swings to within 125mV of either power-supply rail with a 2k Ωload.Output Capacitive Load and StabilityThe MAX4350/MAX4351 are optimized for AC perfor-mance. They are not designed to drive highly reactive loads, which decrease phase margin and may produce excessive ringing and oscillation. Figure 2 shows a cir-cuit that eliminates this problem. Figure 3 is a graph of the I solation Resistance (R ISO ) vs. Capacitive Load.Figure 4 shows how a capacitive load causes exces-sive peaking of the amplifier’s frequency response if the capacitor is not isolated from the amplifier by a resistor. A small isolation resistor (usually 20Ωto 30Ω)placed before the reactive load prevents ringing and oscillation. At higher capacitive loads, AC performance is controlled by the interaction of the load capacitance and the isolation resistor. Figure 5 shows the effect of a 27Ωisolation resistor on closed-loop response.Coaxial cable and other transmission lines are easily driven when properly terminated at both ends with their characteristic impedance. Driving back-terminated transmission lines essentially eliminates the line’s capacitance.M A X 4350/M A X 4351Ultra-Small, Low-Cost, 210MHz, Dual-Supply Op Amps with Rail-to-Rail Outputs 8_______________________________________________________________________________________Figure 2. Driving a Capacitive Load Through an Isolation Resistor 302520510150CAPACITIVE LOAD (pF)50100200150250I S O L A T I O N R E S I S T A N C E (Ω)Figure 3. Isolation Resistance vs. Capacitive LoadMAX4350/MAX4351Ultra-Small, Low-Cost, 210MHz, Dual-SupplyOp Amps with Rail-to-Rail Outputs_______________________________________________________________________________________9Figure 4. Small-Signal Gain vs. Frequency with Load Capacitance and No Isolation ResistorFigure 5. Small-Signal Gain vs. Frequency with Load Capacitance and 27ΩIsolation ResistorPin Configurations (continued)Chip InformationMAX4350 TRANSISTOR COUNT: 86MAX4351 TRANSISTOR COUNT: 170M A X 4350/M A X 4351Ultra-Small, Low-Cost, 210MHz, Dual-Supply Op Amps with Rail-to-Rail OutputsPackage Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________11©2005 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products, Inc.MAX4350/MAX4351Ultra-Small, Low-Cost, 200MHz, Dual-SupplyOp Amps with Rail-to-Rail OutputsPackage Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages.)元器件交易网。
MAX481_MAX483_MAX485_MAX487_MAX1487_MAX490_MAX491_中文资料
本文是Maxim 正式英文资料的译文,Maxim 不对翻译中存在的差异或由此产生的错误负责。
请注意译文中可能存在文字组织或翻译错误,如需确认任何词语的准确性,请参考Maxim 提供的英文版资料。
索取免费样品和最新版的数据资料,请访问Maxim 的主页: 。
_____________________________ _概述MAX481、MAX483、MAX485、MAX487-MAX491以及MAX1487是用于RS-485与RS-422通信的低功耗收发器,每个器件中都具有一个驱动器和一个接收器。
MAX483、MAX487、MAX488以及MAX489具有限摆率驱动器,可以减小EMI ,并降低由不恰当的终端匹配电缆引起的反射,实现最高250k b p s 的无差错数据传输。
M A X 481、MAX485、MAX490、MAX491、MAX1487的驱动器摆率不受限制,可以实现最高2.5Mbps 的传输速率。
这些收发器在驱动器禁用的空载或满载状态下,吸取的电源电流在120(A 至500(A 之间。
另外,MAX481、MAX483与MAX487具有低电流关断模式,仅消耗0.1µA 。
所有器件都工作在5V 单电源下。
驱动器具有短路电流限制,并可以通过热关断电路将驱动器输出置为高阻状态,防止过度的功率损耗。
接收器输入具有失效保护特性,当输入开路时,可以确保逻辑高电平输出。
MAX487与MAX1487具有四分之一单位负载的接收器输入阻抗,使得总线上最多可以有128个M A X 487/MAX1487收发器。
使用MAX488-MAX491可以实现全双工通信,而MAX481、MAX483、MAX485、MAX487与MAX1487则为半双工应用设计。
_______________________________应用低功耗RS-485收发器低功耗RS-422收发器电平转换器用于EMI 敏感应用的收发器工业控制局域网____________________下一代器件的特性♦容错应用MAX3430: ±80V 故障保护、失效保护、1/4单位负载、+3.3V 、RS-485收发器MAX3440E-MAX3444E: ±15kV ESD 保护、±60V 故障保护、10Mbps 、失效保护、RS-485/J1708收发器♦对于空间受限应用MAX3460-MAX3464: +5V 、失效保护、20Mbps 、Profibus RS-485/RS-422收发器MAX3362: +3.3V 、高速、RS-485/RS-422收发器,采用SOT23封装MAX3280E-MAX3284E: ±15kV ESD 保护、52Mbps 、+3V 至+5.5V 、SOT23、RS-485/RS-422、真失效保护接收器MAX3293/MAX3294/MAX3295: 20Mbps 、+3.3V 、SOT23、RS-485/RS-422发送器♦对于多通道收发器应用MAX3030E-MAX3033E: ±15kV ESD 保护、+3.3V 、四路RS-422发送器♦对于失效保护应用MAX3080-MAX3089: 失效保护、高速(10Mbps)、限摆率RS-485/RS-422收发器♦对于低电压应用MAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E: +3.3V 供电、±15kV ESD 保护、12Mbps 、限摆率、真正的RS-485/RS-422收发器MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487低功耗、限摆率、RS-485/RS-422收发器_____________________________________________________________________选择表19-0122; Rev 8; 10/03定购信息在本资料的最后给出。
A3979SLPTR-T;A3979SLP;A3979SLPTR;A3979SLP-T;中文规格书,Datasheet资料
AGND and PGND must beconnected together externallyDescriptionThe A3979 is a complete microstepping motor driver withbuilt-in translator, designed as a pin-compatible replacement for the successful A3977, with enhanced microstepping (1/16 step) precision. It is designed to operate bipolar stepper motors in full-, half-, quarter-, and sixteenth-step modes, with an output drive capacity of up to 35 V and ±2.5 A. The A3979 includes a fixed off-time current regulator that has the ability to operate in Slow, Fast, or Mixed decay modes. This current-decay control scheme results in reduced audible motor noise, increased step accuracy, and reduced power dissipation.The translator is the key to the easy implementation of the A3979. It allows the simple input of one pulse on the STEP pin to drive the motor one microstep, which can be either a full step, half, quarter, or sixteenth, depending on the setting of the MS1 and MS2 logic inputs. There are no phase-sequence tables, high-frequency control lines, or complex interfaces to program. The A3979 interface is an ideal fit for applications where a complex microprocessor is unavailable or is overburdened.Internal synchronous-rectification control circuitry is provided to improve power dissipation during PWM operation. Internal circuit protection includes: thermal shutdown with hysteresis, UVLO (undervoltage lockout), and crossover-current protection. Special power-on sequencing is not required.The A3979 is supplied in a low-profile (height ≤1.20 mm), 28-pin TSSOP with exposed thermal pad. The package is lead (Pb) free, with 100% matte tin leadframe plating.Features and Benefits▪ ±2.5 A, 35 V output rating ▪ Low R DS(On) outputs: 0.28 Ω source, 0.22 Ω sink, typical ▪ Automatic current decay mode detection/selection ▪ 3.0 to 5.5 V logic supply voltage range ▪ Slow, Fast or Mixed current decay modes ▪ Home output▪ Synchronous rectification for low power dissipation ▪ Internal UVLO and thermal shutdown circuitry ▪ Crossover-current protectionMicrostepping DMOS Driver with TranslatorPackage: 28 lead TSSOP (suffix LP) with exposed thermal padPin-out DiagramA3979VCP PGNDVREG STEP OUT2B RESET SR VBB2PFD RC1AGND REF RC2VDD OUT2A MS2MS1SENSE2SENSE1HOME DIR OUT1A ENABLE OUT1B CP2CP1SLEEP VBB1Not to scaleSelection GuidePart Number PackingA3979SLPTR-T4000 pieces per reelAbsolute Maximum RatingsLoad Supply Voltage V BB35VOutput Current I OUT Output current rating may be limited by duty cycle,ambient temperature, and heat sinking. Under any set ofconditions, do not exceed the specified current rating or ajunction temperature of 150°C.±2.5ALogic Supply Voltage V DD7.0VLogic Input Voltage Range V IN t W > 30 ns–0.3 to V DD + 0.3V t W < 30 ns–1 to V DD + 1VSense Voltage V SENSE0.5V Reference Voltage V REF V DD V Operating Ambient Temperature T A Range S–20 to 85°C Junction T emperature T J(max)150°C Storage Temperature T stg–55 to 150°CFunctional Block DiagramELECTRICAL CHARACTERISTICS at T A= 25°C, V BB = 35 V, V DD = 3.0 to 5.5 V (unless otherwise noted)Characteristics Symbol Test Conditions Min.Typ.1Max.Units Output DriversLoad Supply Voltage Range V BB Operating8–35V During Sleep mode0–35VOutput Leakage Current2I DSS V OUT = V BB–<1.020μA V OUT = 0 V–<1.0–20μAOutput On Resistance R DS(On)Source driver, I OUT = –2.5 A–0.280.335ΩSink driver, I OUT = 2.5 A–0.220.265ΩBody Diode Forward Voltage V F Source diode, I F = –2.5 A–– 1.4V Sink diode, I F = 2.5 A–– 1.4VMotor Supply Current I BB f PWM < 50 kHz ––8.0mA Operating, outputs disabled–– 6.0mA Sleep mode––20μAControl LogicLogic Supply Voltage Range V DD Operating 3.0 5.0 5.5VLogic Supply Current I DD f PWM < 50 kHz ––12mA Outputs off––10mA Sleep mode––20μALogic Input Voltage V IN(1)0.7×V DD––V V IN(0)––0.3 ×V DD VLogic Input Current2I IN(1)V IN = 0.7 × V DD–20<1.020μA I IN(0)V IN = 0.3 × V DD–20<1.020μAReference Input Voltage Range V REF Operating0–V DD V Reference Input Current I REF–0±3μAHOME Output Voltage V HOME(1)I HOME(1) = –200 μA0.7×V DD––V V HOME(0)I HOME(0) = 200 μA––0.3×V DD VMixed Decay Mode Trip Point V PFDH–0.6 ×V DD–V V PFDL–0.21×V DD–VGain (G m) Error3E G V REF = 2 V, Phase Current = 38.27%––±10% V REF = 2 V, Phase Current = 70.71%––±5.0% V REF = 2 V, Phase Current = 100.00%––±5.0%STEP Pulse Width t W1––μs Blank Time t BLANK R T = 56 kΩ, C T = 680 pF7009501200ns Fixed Off-Time tOFFR T = 56 kΩ, C T = 680 pF303846μs Crossover Dead Time t DT Synchronous rectification enabled100475800ns Continued on the next page...1Typical data are for initial design estimations only, and assume optimum manufacturing and application conditions. Performance may vary forindividual units, within the specified maximum and minimum limits.2Negative current is defined as coming out of (sourcing from) the specified device pin.3E G= ( [ V REF / 8] – V SENSE ) / ( V REF / 8 ).ELECTRICAL CHARACTERISTICS, continued at T A = 25°C, V BB = 35 V, V DD = 3.0 to 5.5 V (unless otherwise noted)Thermal Shutdown Temperature T JSD –165–°C Thermal Shutdown Hysteresis T JSDHYS –15–°C UVLO Enable Threshold V UVLO Increasing V DD 2.452.7 2.95V UVLO HysteresisV UVLOHYS0.050.10–VCharacteristicsSymbol Test Conditions Min.Typ.1Max.Units CharacteristicSymbolTest Conditions*Value Units Package Thermal ResistanceR θJATwo-layer PCB with 3.8 in.2 of copper area on each sideconnected with thermal vias and to device exposed pad 32ºC/W High-K PCB (multilayer with significant copper areas, based on JEDEC standard)28ºC/W*Additional thermal information available on Allegro Web site.THERMAL CHARACTERISTICS may require derating at maximum conditions, see application informationTemperature (°C)P o w e r D i s s i p a t i o n , P D (W )0.00.52.02.53.03.54.04.55.01.01.520406080100120140160Timing Requirements(T A = +25°C, V DD = 5 V, Logic Levels are V DD and Ground)A.Minimum Command Active TimeBefore Step Pulse (Data Set-Up Time)..... 200 nsB.Minimum Command Active TimeAfter Step Pulse (Data Hold Time)............ 200 nsC.Minimum STEP Pulse Width...................... 1.0 μsD.Minimum STEP Low Time......................... 1.0 μsE.Maximum Wake-Up Time......................... 1.0 ms Figure 1. Logic Interface Timing DiagramTable 1. Microstep Resolution Truth TableMS1MS2Microstep Resolution Excitation ModeL L Full Step 2 PhaseH L Half Step1-2 PhaseL H Quarter Step W1-2 PhaseH H Sixteenth Step4W1-2 PhaseDevice Operation. The A3979 is a complete micro-stepping motor driver with a built-in translator for easy operation with minimal control lines. It is designed to operate bipolar stepper motors in full-, half-, quarter-, and sixteenth-step modes. The currents in each of the two output full-bridges (all of the N-channel MOSFETs) are regulated with fixed off-time PMW (pulse width modulated) control circuitry. At each step, the current for each full-bridge is set by the value of its external current-sense resistor (R S1or R S2), a reference voltage (V REF), and the output voltage of its DAC (which in turn is controlled by the output of the translator).At power-on or reset, the translator sets the DACs and the phase current polarity to the initial Home state (shown in figures 2 through 5), and the current regulator to Mixed decay mode for both phases. When a step command signal occurs on the STEP input, the translator automatically sequences the DACs to the next level and current polarity. (See table 2 for the current-level sequence.) The microstep resolution is set by the combined effect of inputs MS1 and MS2, as shown in table 1.While stepping is occurring, if the next output level of the DACs is lower than the immediately preceeding output level, then the decay mode (Fast, Slow, or Mixed) for the active full bridge is set by the PFD input. If the next DAC output level is higher than or equal to the preceeding level, then the decay mode for that full bridge will be Slow decay. This automatic current-decay selection improves microstep-ping performance by reducing the distortion of the current waveform due to back EMF of the motor.RESET Input ( ¯R¯¯E¯¯S¯¯E¯¯T¯ ). The ¯R¯ ¯E¯ ¯S¯ ¯E¯ ¯T¯input (active low) sets the translator to a predefined Home state (shown in figures 2 through 5), and turns off all of the DMOS out-puts. The HOME output goes low and all STEP inputs are ignored until the ¯R¯ ¯E¯ ¯S¯ ¯E¯ ¯T¯input is set to high.Home Output (HOME). The HOME output is a logic output indicator of the initial state of the translator. At power-on, the translator is reset to the Home state (shown in figures 2 through 5).Step Input (STEP). A low-to-high transition on the STEP input sequences the translator and advances the motor one increment. The translator controls the input to the DACs and the direction of current flow in each winding. The size of the increment is determined by the combined state of inputs MS1 and MS2 (see table 1).Microstep Select (MS1 and MS2). The input on terminals MS1 and MS2 selects the microstepping format, as shown in table 1. Any changes made to these inputs do not take effect until the next rising edge of a step command signal on the STEP input.Direction Input (DIR).The state of the DIR input deter-mines the direction of rotation of the motor. Any changes made to this input does not take effect until the next rising edge of a step command signal on the STEP input.Internal PWM Current Control. Each full bridge is controlled by a fixed–off-time PWM current-control circuit that limits the load current to a desired value, I TRIP . Initially, a diagonal pair of source and sink MOS outputs are enabled and current flows through the motor winding and the current sense resistor, R S x. When the voltage across R S x equals the DAC output voltage, the current-sense comparator resets the PWM latch. The latch then turns off either the source MOS-FETs (when in Slow decay mode) or the sink and source MOSFETs (when in Fast or Mixed decay mode).The maximum value of current limiting is set by the selec-tion of R S and the voltage at the V REF input with a transcon-ductance function approximated by:I TRIP max = V REF/8R SThe DAC output reduces the V REF output to the cur-rent-sense comparator in precise steps (see table 2 for% I TRIP max at each step).I TRIP = (% I TRIP max/100) I TRIP maxIt is critical that the maximum rating (0.5 V) on either the SENSE1 and SENSE2 pins is not exceeded. For full step-ping, V REF can be applied up to the maximum rating of V DD because the peak sense value is 0.707 × V REF/ 8. In all other modes, V REF should not exceed 4 V.Functional DescriptionFixed Off-Time. The internal PWM current-control cir-cuitry uses a one-shot timer to control the duration of time that the MOSFETs remain off. The one shot off-time, t OFF, is determined by the selection of external resistors, R T x , and capacitors, C T x, connected from each R C x timing terminal to ground. The off-time, over a range of values of C T = 470 pF to 1500 pF and R T = 12 kΩ to 100 kΩ is approximated by:t OFF = R T C TRC Blanking. In addition to the fixed off-time of the PWM control circuit, the CTx component sets the compara-tor blanking time. This function blanks the output of the current-sense comparators when the outputs are switched by the internal current-control circuitry. The comparator outputs are blanked to prevent false overcurrent detection due to reverse recovery currents of the clamp diodes, or to switching transients related to the capacitance of the load. The blank time t BLANK can be approximated by:t BLANK= 1400C TCharge Pump (CP1 and CP2). The charge pump is used to generate a gate supply greater than that of VBB for driving the source-side DMOS gates. A 0.22 μF ceramic capacitor should be connected between CP1 and CP2 for pumping purposes. In addition, a 0.22 μF ceramic capacitor is required between VCP and VBB, to act as a reservoir for operating the high-side DMOS gates.V REG(VREG). This internally-generated voltage is used to operate the sink-side DMOS outputs. The VREG pin must be decoupled with a 0.22 μF capacitor to ground. V REG is internally monitored, and in the case of a fault condition, the DMOS outputs of the device are disabled.Enable Input (¯E¯¯N¯¯A¯¯B¯¯L¯¯E¯). This active-low input enables all of the DMOS outputs. When set to a logic high, the outputs are disabled. The inputs to the translator (STEP, DIR, MS1, and MS2), all remain active, independent of the ¯E¯¯N¯¯A¯¯B¯ ¯L¯¯E¯ input state.Shutdown. During normal operation, in the event of a fault, such as overtemperature (excess T J) or an undervolt-age on VCP, the outputs of the device are disabled until the fault condition is removed.At power up, and in the event of low V DD, the undervoltage lockout (UVLO) circuit disables the drivers and resets the translator to the Home state.Sleep Mode( ¯S¯¯L¯¯E¯¯E¯¯P¯). This active-low control input is used to minimize power consumption when the motor is not in use. It disables much of the internal circuitry includ-ing the output DMOS FETs, current regulator, and charge pump. Setting this to a logic high allows normal operation, as well as start-up (at which time the A3979 drives the motor to the Home microstep position). When bringing the device out of Sleep mode, in order to allow the charge pump (gate drive) to stabilize, provide a delay of 1 ms before issu-ing a step command signal on the STEP input.Percent Fast Decay Input (PFD). When a STEP input signal commands a lower output current than the previous step, it switches the output current decay to either Slow, Fast, or Mixed decay mode, depending on the voltage level at the PFD input. If the voltage at the PFD input is greater than 0.6 × V DD, then Slow decay mode is selected. If the voltage on the PFD input is less than 0.21 × V DD , then Fast decay mode is selected. Mixed decay mode is selected when V PFD is between these two levels, as described inthe next section. This terminal should be decoupled with a 0.1 μF capacitor.Mixed Decay Operation. If the voltage on the PFD inputis between 0.6 × V DD and 0.21 × V DD, the bridge operates in Mixed decay mode, as determined by the step sequence (shown in figures 2 through 5). As the trip point is reached, the device goes into Fast decay mode until the voltageon the RCx terminal decays to the same level as voltage applied to the PFD terminal. The time that the device oper-ates in fast decay is approximated by:t FD = R T C T ln (0.6V DD/V PFD)After this Fast decay portion, the device switches to Slow decay mode for the remainder of the fixed off-time period.Synchronous Rectification. When a PWM off-cycle is triggered by an internal fixed–off-time cycle, load current recirculates according to the decay mode selected by the control logic. The A3979 synchronous rectification feature turns on the appropriate MOSFETs during the decay of the current, and effectively shorts out the body diodes with the low R DS(On) driver. This reduces power dissipation significantly and eliminates the need for external Schottky diodes for most applications. The synchronous rectification can be set to either Active mode or Disabled mode:• Active Mode. When the SR input is logic low, Active mode is enabled and synchronous rectification can occur. This mode prevents reversal of the load current by turning off synchronous rectification when a zero current level is detected. This prevents the motor winding from conduct-ing in the reverse direction.• Disabled Mode. When the SR input is logic high, syn-chronous rectification is disabled. This mode is typi-cally used when external diodes are required to transfer power dissipation from the A3979 package to the external diodes.Layout. The printed circuit board on which the device is mounted should have a heavy ground plane. For optimum electrical and thermal performance, the A3979 should be soldered directly onto the board.The load supply terminals, VBB x, should be decoupled with an electrolytic capacitor (>47 μF is recommended), placed as close to the device as possible.To avoid problems due to capacitive coupling of the high dv / dt switching transients, route the bridge-output traces away from the sensitive logic-input traces.Always drive the logic inputs with a low source impedance to increase noise immunity.Grounding. The AGND (analog ground) terminal and the PGND (power ground) terminal must be connected together externally.All ground lines should be connected together and be as short as possible. A star ground system, centered under the device, is an optimum design.The copper ground plane located under the exposed thermal pad is typically used as the star ground.Current Sensing. To minimize inaccuracies caused by ground-trace IR drops in sensing the output current level, the current-sense resistors, R S x, should have an independent ground return to the star ground of the device. This path should be as short as possible.For low-value sense resistors, the IR drops in the printed cir-cuit board sense resistor traces can be significant and should be taken into account.The use of sockets should be avoided as they can introduce variation in R S x due to their contact resistance.Allegro MicroSystems recommends a value of R S given byR S = 0.5/I TRIP maxThermal Protection. This internal circuitry turns offall drivers when the junction temperature reaches 165°C, typical. It is intended only to protect the device from failures due to excessive junction temperatures and should not imply that output short circuits are permitted. Thermal shutdown has a hysteresis of approximately 15°C.Applications InformationPhase 2IOUT2BDirection = H(%)Phase 1I OUT1ADirection = H(%)STEP Input HOME OutputPhase 2I OUT2BDirection = H(%)Phase 1I OUT1ADirection = H(%)STEP Input HOME OutputPhase 2I OUT2ADirection = H(%)Phase 1I OUT1ADirection = H(%)STEP Input HOME OutputFigure 4. Decay Modes for Quarter-Step IncrementsFigure 3. Decay Modes for Half-Step IncrementsFigure 2. Decay Mode for Full-Step Increments分销商库存信息:ALLEGROA3979SLPTR-T A3979SLP A3979SLPTR A3979SLP-T。
N-40NTX93、TX93、TX94和TX95传感器传输器说明书
N-40NModels TX93, TX94 and TX95 transmitters can eliminate long runs of costly field wiring in a variety of applications. A stable 4 to 20 mA output signal is provided proportional to the transmitters specific input type and calibratedtemperature range (see Range Code table below). Adjustability of ±25% for zero and span is provided to facilitate some rangeability. The transmitted signal eliminates noise pickup, voltage drops, multiple cold junction errors and requires only a twisted pair of copper wire for loop connections. TX93, TX94 and TX95 are ultra-low profiletransmitters at an economical price.U Ultra-Low Profile Design Only 19 mm (3⁄4") High (Including Terminal Strip)U 4 to 20 mA Output U ±0.1% FS Accuracy U Non-IsolatedU Mounts in Protection HeadInsert range code from chart below.TX93-J4, shown actual size.Transmitter inside!Miniature Temperature Transmitters† 2-lead RTD configurationNotes: (1) Thermocouple models output proportional to mV output of thermocouple. Not linearized to temperature. (2) Non-Isolated unit for use with ungrounded probes.Ordering Example: TX93-J4, Type J, transmitter with -18 to 260°C (0 to 500°F) range.SpecificationsOutput Range: 4 to 20 mA dc Zero and Span Adjustment Range: ±25%Accuracy: ±0.1% FS (includes effects of linearity, hysteresis and repeatability)Frequency Response: 3 dB @ 3HzAmbient Temperature Range: -25 to 85°C (-13 to 185°F)Storage Temperature Range:-65 to 125°C (-85 to 257°F)Supply Voltage: 8 to 35 Vdc; 24 Vdc recommended Maximum Loop Vs – 8V Resistance: 0.020Dimensions: 1.90 H x 4.45 cm D (0.75 x 1.75") (height includes terminal strip)Weight: 30 g (1 oz)NB1TX93-K3thermocouple RTD. Smaller than actual size.Thermocouple, RTD (Pt100) or Voltage Input。
MAX ImagePRO-20LT 电源故障保护设备说明书
AC SURGE PROTECTIONLine Voltage……………...............120VAC, 50/60Hz Maximum Current Rating……….......................20A EMI/RFI Noise Filtration…. 65 dB (100KHz - 1 MHz)Thermal Fusing…………….......................…….Yes AVM (Automatic Voltage Monitoring) Circuitry... Yes Overvoltage Shutoff…………........…..... 138V ± 8V Undervoltage Shutoff…….......…............. 86V ± 6V10/100/1000BASE-T LAN PROTECTIONPins Protected...............................RJ-45, pins 1-8Protection Modes........................All pins to ground Clamping Level.. (62V)TELEPHONE PROTECTIONPins Protected………..........…......…RJ-11, pins 4,5Protection Modes…………..Metallic & Longitudinal Clamping Level………...........…..…………….260V Capacitance……………………..…...30pf (approx.)Protect or Disconnect™ Circuitry…..................Yes Single Pulse Energy Dissipation……..1650 Joules Peak Impulse Current………………52,000 Amps UL 1449 3rd EditionProtection Rating..…… 400V Protection Modes…………..…...... L-N, L-G, N-G Initial Clamping Level…………………. 200 Volts Surge Response Time…………....<1 nanosecondSpecifications due to change without notice due to product upgrades and improvements.CAUTION: Do not install this device if there is not at least 10 meters (30 feet) or more of wire between the electrical outlet and electrical service panel.Important Safety PointsPanamax surge protectors and the connectedequipment must be indoors in a dry location and in the same building. Although your Panamaxprotector is very durable, the internal components are not isolated from the environment. Do not install any Panamax product near heat emitting appliances such as a radiator or heat register.Do not install this product where excessive moisture is present.It is not uncommon for a building to be improperly grounded. In order to protect your equipment, Panamax products must be plugged into a properly grounded 3-wire outlet. Additionally, building wiring and grounding must conform to applicable NEC (USA) or CEC (Canada) codes for the Panamax warranty to be valid.Do not use 2-blade ground adapters with this product. Avoid using extension cords. If used, the extension cord must be UL or CSA Listed, minimum 12 AWG, 3-wire grounded, and rated for 20 Amps.If your surge protector indicates a Line Fault, do not use the product. Call your electrician to correct the building’s wiring.Power Filtration and Surge Protection for Digital Office-EquipmentFiltration Circuitry – This technology provides enhanced Neutral-to-Ground Noise Filtration for your digital office equipment. EMI/RFI noise can contaminate the equipment safety ground,which in turn will contaminate the connected digital equipment, and prevent it from operating at peak performance levels. GFCI CompatibilityThis circuit features an improved 2-stage common-mode architecture that provides compatibility for GFCIs per NEC article 250.6.Noise Filtration -Circuitry prevents EMI/RFI noise from contaminating the connected digital equip-ment through the ground wiring.Automatic Voltage Monitoring (AVM )This power monitoring system acts as a gate to prevent unsafe voltages from damaging sensitive electronic equipment. It automati-cally detects a prolonged over-voltage or under-voltage and disconnects the power to the connected equipment, then reconnects it when the power returns to a safe level. It even protects the MIP-20LT unit. Wiring Fault Safety ShutoffThis technology will detect a miswired wall receptacle or an open-ground by monitoring the voltage between neutral and ground. If an unsafe condition exists, the MIP-20LT will disconnect the power from the connect-ed equipment.SignalPerfect™ Telephone Line Protection RJ-11 phone jacks are available to protect a single-line telephone modem (pins 4,5 protected) with fuseless Auto-Resetting technology and optimized circuitry to ensure a clean, clear signal.Ethernet LAN ProtectionRJ-45 jacks are available to protect one Ethernet 10/100/1000BASE-T network。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
General DescriptionThe MAX3971 is a compact, low-power, 10.3Gbps limit-ing amplifier. It accepts signals over a wide range of input voltage levels and provides constant-level output volt-ages with controlled edge speeds. It functions as a data quantizer. The output of the amplifier is a 250mV P-P differ-ential CML signal with a 100Ωdifferential termination.The MAX3971 is designed to work with the MAX3970, a 10.3Gbps transimpedance amplifier (TIA). The limiting amplifier operates on a single +3.3V supply and con-sumes only 155mW. The part functions over the 0°C to +85°C temperature range. It also has a disable function that allows the outputs to be squelched if required by the application.The MAX3971 is offered in die form and in a compact 4mm x 4mm, 20-pin QFN plastic package.Applications10-Gigabit Ethernet Optical Receivers VSR OC-192 Receivers10-Gigabit Fibre Channel Receivers____________________________Features♦Single +3.3V Power Supply ♦155mW Power Consumption ♦9.5mV P-P Input Sensitivity ♦800mV P-P Input Overload ♦ 3.4ps P-P Deterministic Jitter♦Dice and 4mm x 4mm QFN Packages ♦Output Disable FeatureMAX3971+3.3V , 10.3Gbps Limiting Amplifier________________________________________________________________Maxim Integrated Products 1Typical Application Circuit*Dice are designed to operate over a 0°C to +110°C junction temperature (T J ) range, but are tested and guaranteed at T A = +25°C.Ordering Information19-2086; Rev 2; 5/03For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Pin Configuration appears at end of data sheet.M A X 3971+3.3V , 10.3Gbps Limiting Amplifier 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSSupply Voltage, V CC1, V CC2, V CC3.......................-0.5V to +0.5V Voltage at IN+, IN-, DISABLE,CZ+, CZ-, OUT+, OUT-........................+0.5V to (V CC + 0.5V)Differential Voltage Between CZ+ and CZ-...........................±1V Differential Voltage Between IN+ and IN-...........................±2.5V Continuous Power Dissipation (T A = +85°C)20-Lead QFN (derate 20mW/°C above +85°C)..............1.3WOperating Ambient Temperature Range.............-40°C to +85°C Storage Temperature Range.............................-55°C to +150°C Die Attach Temperature...................................................+400°C Lead Temperature (soldering, 10s).................................+300°CStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.ELECTRICAL CHARACTERISTICSideal time crossings, measured at the zero-level crossings of the differential output.Note 2:Random jitter is measured with the minimum input signal applied. To achieve a bit error rate of 10-12, the peak-to-peak ran-dom jitter is 14.1 times the RMS random jitter.MAX3971+3.3V , 10.3Gbps Limiting Amplifier_______________________________________________________________________________________3404550556065700201030405060708090SUPPLY CURRENT vs. TEMPERATUREMA X 3971 t oc 01TEMPERATURE (°C)S U P P L Y C U R R E N T (m A )20ps/div OUTPUT EYE DIAGRAM(INPUT SIGNAL = 800mV P-P AT 10.3Gbps)50mV/div MAX3971 toc0220ps/divOUTPUT EYE DIAGRAM(INPUT SIGNAL = 9mV P-P AT 10.3Gbps)50mV/divMAX3971 toc03304010205060708090TRANSITION TIME vs. TEMPERATURE(20% to 80%)TEMPERATURE (°C)T I M E (p s )192021227891011103050702040608090INPUT SENSITIVITY vs. TEMPERATURE (FOR BIT-ERROR RATIO OF 1E-12)M A X 3971 t o c 07TEMPERATURE (°C)S I G N A L I N P U T L E V E L (m V P -P )6050403020107008090DETERMINISTIC JITTER vs. TEMPERATURE (800mV P-P INPUT K28.5 PATTERN AT 10.3Gbps)TEMPERATURE (°C)J I T T E R (p s P -P )2.22.42.62.83.03.23.43.63.82.04.84.64.44.25.04.06050403020107008090DETERMINISTIC JITTER vs. TEMPERATURE (10mV P-P INPUT K28.5 PATTERN AT 10.3Gbps)TEMPERATURE (°C)J I T T E R (p s P -P )5.25.45.65.86.06.26.46.66.85.07.87.67.47.28.07.0-50-20-30-40-10010100410021006100810010,100INPUT RETURN (S11)INPUT SIGNAL = -20dBmM A X 3971 t o c 08FREQUENCY (MHz)G A I N (d B )-50-20-30-40-10010100410021006100810010,100OUTPUT RETURN (S22)INPUT SIGNAL = -20dBmM A X 3971 t o c 09FREQUENCY (MHz)G A I N (d B )Typical Operating Characteristics(V CC = +3.3V, output load = 50Ωto V CC , T A = +25°C, unless otherwise noted.)M A X 3971+3.3V , 10.3Gbps Limiting Amplifier 4_______________________________________________________________________________________Typical Operating Characteristics (continued)(V CC = +3.3V, output load = 50Ωto V CC , T A = +25°C, unless otherwise noted.)02010403050601101001000POWER-SUPPLY REJECTION RATIOvs. FREQUENCYM A X 3971 t o c 10FREQUENCY (MHz)P S R R (d B )201040305060110010100010,000COMMON-MODE REJECTION RATIOvs. FREQUENCYM A X 3971 t o c 11FREQUENCY (MHz)C M M R (d B )Detailed Description and Applications InformationFigure 1 is a functional diagram of the MAX3971 limit-ing amplifier.The signal path consists of an input buffer followed by a gain stage and output amplifier. A feed-back loop provides offset correction by driving the average value of the differential output to zero.Gain Stage and Offset CorrectionThe limiting amplifier provides approximately 50dB gain. This large gain makes the amplifier susceptible to small DC offsets, which cause deterministic jitter. A low-frequency loop is integrated into the limiting amplifier to reduce output offset, typically to less than 2mV.The external capacitor CZ is required to set the low-fre-quency cutoff for the offset correction loop and for sta-bility. The time constant of the loop is set by theproduct of an equivalent 20k Ωon-chip resistor and the value of the off-chip capacitor, CZ. For stable opera-tion, the minimum value of CZ is 0.01µF. To minimize pattern-dependent jitter, CZ should be as large as pos-sible. For 10-Gigabit Ethernet applications, the typical value of CZ is 0.1µF. Keep CZ as close to the package as possible.CML Input CircuitThe input buffer is designed to accept CML input sig-nals such as the output from the MAX3970 transimped-ance amplifier. An equivalent circuit for the input is shown in Figure 2. DC-coupling the inputs is not recom-mended because doing so prevents the part’s offset correction circuitry from working properly. Thus, AC-coupling capacitors are required on the input.CML Output CircuitAn equivalent circuit for the output network is shown in Figure 3. It consists of two 50Ωresistors connected to V CC driven by the collectors of an output differential transistor pair (Q1 and Q2). The differential output sig-nals are clamped by transistors Q3 and Q4 when the DISABLE input is high.Disable FunctionA logic signal can be applied to the DISABLE pin to squelch the output signal. When the output is disabled,an offset is added to the output, preventing the follow-ing stage from oscillating (if DC-coupled).MAX3971+3.3V , 10.3Gbps Limiting Amplifier_______________________________________________________________________________________5Figure 1. Functional DiagramFigure 2. CML Input Equivalent CircuitCircuit for Squelching the Output SignalM A X 3971Layout ConsiderationsCircuit board layout and design can significantly affect the MAX3971’s performance. Use good high-frequency techniques, including fixed-impedance transmission lines for the high-frequency data signal. Use a multilay-er board with solid ground plane. Minimize the induc-tance between MAX3971 and the ground plane.The MAX3971 uses three power supply pins (V CC 1,V CC 2, V CC 3). The input circuitry of the MAX3971 is supplied by V CC 1. The output drivers have a separate supply (V CC 3), which usually has large pulsing cur-rents. All other circuitry is powered by V CC 2. It is possi-ble to simply connect the three pins together. However,better isolation of the input circuitry is ensured by using a supply filter. For optimal isolation, Figure 4 shows a possible supply filtering circuit. Element L, a ferrite bead, provides isolation between a noisy V CC 3 and sensitive V CC 1.+3.3V , 10.3Gbps Limiting Amplifier 6_______________________________________________________________________________________Figure 4. Power-Supply FilterChip InformationTRANSISTOR COUNT: 1803PROCCESS: SiGe Bipolar SUBSTRATE: Electrically IsolatedPin ConfigurationMAX3971+3.3V , 10.3Gbps Limiting Amplifier_______________________________________________________________________________________7Chip TopographyM A X 3971+3.3V , 10.3Gbps Limiting Amplifier 8_______________________________________________________________________________________•All dimensions are in microns.•Pad dimensions:PASSIVATION OPENING: 94.4 microns × 94.4 micronsMETAL: 102.4 microns × 102.4 microns•All measurements specify the lower left corner of the padChip Topography (continued)MAX3971+3.3V , 10.3Gbps Limiting Amplifier_______________________________________________________________________________________9Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)M A X 3971+3.3V , 10.3Gbps Limiting Amplifier Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.10____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2004 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)。