第一章 电化学理论基础

合集下载

应用电化学 第一章 电化学理论基础 [兼容模式]

应用电化学 第一章 电化学理论基础 [兼容模式]
电极过程是一种复杂过程,按其反应类型,它是一 个异相氧化还原过程,又因这种过程发生在“电极/溶液” 的荷电界面上,所以与化学反应相比,有如下两个特征:
两个特征:
1.分区进行。即氧化、还原反应可以分别在阳极 和阴极进行,反应中涉及的电子通过电极和外电路传 递。
2.“电极/溶液”界面附近的电场对电极反应的 活化作用。在一定范围内通过改变电极电势,可以连 续地改变界面电场的强度和方向,并在相应范围内随 意的和连续的改变电极反应的活化能和反应速度。换 言之,在“电极/溶液”界面上,我们有可能在一定 范围内随意地控制反应表面的“催化活性”与反应条 件。所以说,电极过程是一种很特殊的异相催化反应。
恒温恒压下荷电粒子i从α相转移到β相 ÌGiα→β = μiβ- μiα + Zie0(φβ - φ α)
平衡时: μiβ + Zie0φβ = μiα + Zie0φ α
μ
β
i
=
μ
α
i
两相间建立平衡电势
电化学研究对象
电化学体系由两类导体共同完成电流的 传递,导体间电流传递任务的交接是在电极 界面上完成,途径为电极反应: 例如:Cu2++2e-→ Cu(S)
• 由此可见,研究电极过程动力学的首要目的在于找出整 个电极过程的控制步骤,并通过控制步骤来影响整个电
极过程的进行速度,而这又建立在对电极过程基本历程 的分析和弄清个分步骤动力学特征的基础之上。
电极的极化
处在热力学平衡状态的电极体系,因正、负方向的 反应速度相等,净反应速度等于零.相应的平衡电极电 势可由Nernst公式计算.当有外电流通过时,净反应速 度不等于零,即原有的热力学平衡受到破坏,致使电极 电势偏离平衡电势,这种现象在化学上称为电极的“极 化现象” 。

第一章 电化学理论基础

第一章 电化学理论基础

B.金电极(Gold electrode)
在阴极区电位窗口比较宽,易与汞形成汞齐, 但是在HCl水溶液中易发生阳极溶解,并且很难 把金封入玻璃管中,即制作电极比较麻烦。常用 金电极测定正电位一侧的电化学反应,而相同形 状的汞齐化的金电极常用来研究负电位一侧的还 原反应。
C.碳电极(Carbon electrode)
电极的分类 根据电极组成分为 :
①金属电极。由金属及相应离子组成,其特点是 氧化还原对可以迁越相界面,如铜电极 Cu2+|Cu。 (第一类电极) ②氧化还原电极。由惰性金属电极及溶液中氧 化还原离子对组成,其特点是氧化还原对不能 迁越相界面。如Pt|Fe2+,Fe3+等(零类电极)
③气体电极。由惰性金属电极及氧化还原对中一个 组元为气体组成的,如氢电极 Pt | H2(g) ) H+ ( aq ) (零类电极)
一、可逆电化学过程的热力学
1. 电池的可逆性 可逆电极必须具备的两个条件: ( 1 )电池反应是可逆的。如 ZnZnSO4 电极, 其电极反应为:
Zn 2e Zn
2
(2)电池在平衡条件下工作
所谓平衡条件下就是通过电极的电流等于0或 电流无限小,只有在这种条件下,电极上进行的 氧化反应和还原反应速率才能被认为是相等的
Q n zF

Q nzF
电极上发生反应的物质的质量m为:
Q m nM M zF
法拉第常数在数值上等于1mol元电荷的电量。 已知元电荷电量为 1.6022 1019 C
F=L· e
=6.022×1023 mol-1×1.6022×10-19 C
=96484.6 C· mol-1 ≈96500 C· mol-1

第一章电化学理论基础

第一章电化学理论基础
和碱土金属及其合金体系中。
溶剂
无机溶剂:纯度高、介电常数不能太低 水
有机溶剂 选择原则: (1) 可溶解足够量的支持电解质; (2) 具有足够使支持电解质离解的介电常数; (3) 常温下为液体,并且其蒸气压不大; (4) 黏性不能太大,毒性要小; (5) 可以测定的电位范围(电位窗口)大。
1.1.4 电解池的设计与安装(电化学池, electrochemical cell)
1.1.1 电极
电极:与电解质溶液接触的电子导体或半 导体。
电极是实施电极反应的场所
甘汞电极
金属电极
玻碳电极
电化学体系借助于电极实现电能的输入或输 出
电化学体系:二电极体系和三电极体系
三个电极体系:工作电极、参比电极和辅助 电极
三电极组成
研究电极: WE
三电极
辅助电极: CE
参比电极: RE
等组成。
实现控制或测量极化 的变化
目的
实现极化电流的变化与测量
测量WE通电时的变化情况
三电极的优点
1. 可以同时测量极化电流和极化电位; 2. 三电极两回路具有足够的测量精度。
工作(研究) 电极(working electrode, WE):
所研究的反应在该电极发生
对工作电极的基本要求是: 电极能够在所研究的电化学反应下,有较大的电位稳
电解质只起导电作用.在所研究的电位范围内不参与电化学氧化-
还原反应,这类电解质称为支持电解质。
固体电解质. 具有离子导电性的晶态或非晶态物质,如聚环氧乙烷 和全氟磺酸膜Nafion膜及ß -铝氧土(Na2O·ß -Al2O3)等。
熔盐电解质: 兼顾(1)、(2)的性质,多用于电化学方法制备碱金属
AgCl+e-Ag+Cl饱和KCl, Eo=0.197V

应用电化学第一章 电化学理论基础

应用电化学第一章  电化学理论基础
组分发生反应; ❖ 电极有效面积不宜太大,电极表面一般
应是均一平滑、洁净且容易清洁。
❖工作电极:导电的固体或液体
❖根据研究的性质确定电极材料
❖常用的“惰性”固体电极材料是 玻碳(GC)、铂、金、银、铅和导 电玻璃
❖采用固体电极时,为了保证实验的 重现性,必须建立合适的电极预处 理步骤。
❖在液体电极中,汞和汞齐是最常用 的工作电极,都有可重现的均相表 面,制备和保持清洁都较容易 .
相对于研究体系, 参比电极是一个已知电 势的接近于理想化的不极化的电极。
❖参比电极上基本没有电流通过,用于测定 研究电极的电极电势。
❖在控制电位实验中,因为参比半电池保持 固定的电势,因而加到电化学池上的电势 的任何变化值直接表现在工作电极/电解质 溶液的界面上。
❖实际上,参比电极起着既提供热力学参比, 又将工作电极作为研究体系隔离的双重作 用。
电 解质(electrolyte)
(3) 固体电解质. 具有离子导电性的晶态或非 晶态物质,如聚环氧乙烷和全氟磺酸膜 Nafion膜及ß -铝氧土(Na2O·ß -Al2O3)等。
(4) 熔盐电解质: 兼顾(1)、(2)的性质,多用于 电化学方法制备碱金属和碱土金属及其合 金体系中。
溶剂:
除熔盐电解质外,一般电解质只有溶解 在一定溶剂中才具有导电能力,因此溶剂 的选择也十分重要,介电常数很低的溶剂 就不太适合作为电化学体系的介质。
电解质是使溶液具有导电能力的物质, 它可以是固体、液体,偶尔也用气体, 一般分为四种:
电解质(electrolyte)
(1) 起导电和反应物双重作用。电解质作为电 极反应的起始物质,与溶剂相比,其离子 能优先参加电化学氧化-还原反应.
(2) 电解质只起导电作用,在所研究的电位范 围内不参与电化学氧化-还原反应,这类 电解质称为支持电解质。

电化学原理知识点

电化学原理知识点

电化学原理知识点电化学原理第一章绪论两类导体:第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。

第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。

三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。

电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。

腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。

阳极:发生氧化反应的电极原电池(-)电解池(+)阴极:发生还原反应的电极原电池(+)电解池(-)电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。

分类:1.弱电解质与强电解质—根据电离程度 2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型水化数:水化膜中包含的水分子数。

水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。

可分为原水化膜与二级水化膜。

活度与活度系数:活度:即“有效浓度”。

活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。

规定:活度等于1的状态为标准态。

对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。

离子强度I:离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为:注:上式当溶液浓度小于0.01mol·dm-3 时才有效。

电导:量度导体导电能力大小的物理量,其值为电阻的倒数。

符号为G,单位为S ( 1S =1/Ω)。

第二章是电化学热力学界面:不同于基体的两相界面上的过渡层。

相间电位:两相接触时存在于界面层的电位差。

产生电位差的原因是带电粒子(包括偶极子)分布不均匀。

形成相间电位的可能情况:1。

残余电荷层:带电粒子在两相间的转移或外部电源对界面两侧的充电;2.吸附双电层:界面层中阴离子和阳离子的吸附量不同,使界面和相体带等量相反的电荷;3.偶极层:极性分子在界面溶液侧定向排列;4.金属表面电势:各种短程力在金属表面形成的表面电势差。

第1章 电化学基础介绍

第1章 电化学基础介绍

(d)流化床电极反应器
理论耗电量(符号:k):生成单位质量物质所 需的电量,是电化当量的倒数,即:
1 k K
例题:
1、Ni2++2e- === Ag++e==
Ni Ag
若在电极上通过1F电量,生成 0.5mol金属 Ni,为29.35g 若在电极上通过1F电量,生成 1mol金属 Ag,为107.87g
2、氯气的电化当量是K=1.323g/Ah,则生成1吨氯 气的理论耗电量是多少?
三、 电化学工程中的质量因数(技术经济指标)
1、转化率(Fractional Conversion)
转化率:反应物在电化学反应中转化为产物的比率
(1)间隙反应器:
(2)连续反应器:
转化率取决于反应深度,由反应时间和体积电流 密度决定。电化学反应为异相反应,转化率和单位 体积电化学反应器中的电极面积密切相关。
直流电耗:每单位产量(kg或t)消耗的直流电能。
生成产物的理论耗电量
由于k值基本不变(除非原料及生成反应根本 改变),影响直流电耗的主要因素是槽电压和电流 效率。降低槽电压和提高电流效率是降低直流电耗 的关键。
7、能量效率
能量效率:生成一定量产物所需的理论能耗与 实际能耗之比。
W理 kE kE w= I V I kV kV W
化学电源:时空产率相当于体积比功率,单位时间单位体 积电池的电能产量。 电解槽:时空产率较低。 化学反应器:0.2~1kg/dm3· h; 铜电解冶金: 0.08kg/dm3· h
四、 电化学反应器
1、电化学反应器的基本特征: (1)构成:两个电极和电解质。
(2)类别:电解反应器、化学电源反应器。
电解合成:防止两极产物混合产生的副反应。

电化学原理知识点

电化学原理知识点

电化学原理知识点 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT电化学原理第一章绪论两类导体:第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。

第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。

三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。

电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。

腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。

阳极:发生氧化反应的电极原电池(-)电解池(+)阴极:发生还原反应的电极原电池(+)电解池(-)电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。

分类:1.弱电解质与强电解质—根据电离程度2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型水化数:水化膜中包含的水分子数。

水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。

可分为原水化膜与二级水化膜。

活度与活度系数: 活度:即“有效浓度”。

活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。

规定:活度等于1的状态为标准态。

对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。

离子强度I : 离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为: 注:上式当溶液浓度小于·dm-3 时才有效。

电导:量度导体导电能力大小的物理量,其值为电阻的倒数。

符号为G ,单位为S( 1S =1/Ω)。

影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。

当量电导(率):在两个相距为单位长度的平行板电极之间,放置含有1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω-1 ·cm2·eq-1。

第一章电化学理论基础

第一章电化学理论基础

第一章电化学理论基础§1.1电化学体系的基本单元电化学体系:由两类不同导体组成,且在电荷转移时不可避免地伴随有物质变化的体系,通常有原电池、电解池、腐蚀电池三大类型。

电化学体系的基本单元:电极电解质溶液隔膜一、电极(electrode)1、电极的定义电极是与电解质溶液或电解质接触的电子导体或半导体,为多相体系,它是实施电极反应的场所。

2、电极的种类一般电化学体系为三电极体系,相应的电极为工作电极、参比电极和辅助电极。

3、工作电极(worsing electrode,简称WE)(1)定义:又称研究电极,是指所研究的反应在该电极上发生。

(2)对工作电极的基本要求(一般化解,也有特殊,如做电源,参与成流反应)a、所研究的电化学反应不会因电极自身所发生的反应而受到影响,并且能在较大的电位区域中进行测定。

b、电极必须不与溶剂或电解液部分发生反应。

c、电极面积不易太大(如获得较大的电流密度,是产生完善浓差极化的重要因素—极),电极表面最好应是均一、平滑的,且能够通过简单的方法进行表面净化等等,(以保证安全、可靠地传导电流;电流在电极上分布不均;起始物质顺利到达;电解产物的排出等)。

(3)工作电极的种类固体:如固体电极玻璃(GC)、铂、金、银、铅和导电玻璃等液体:如汞、汞齐已广泛用于电化学分析中(如极谱)4、辅助电极(comter electrode,简称CE)(1)定义:CE又称对电极,它和工作电极组成回路,使工作电极上电流畅通,以保证所研究的反应在工作电极上发生,但必须无任何方式限制电池观测的响应。

(2)对辅助电极的要求总的来说应使辅助电极的性能一般不显著影响研究电极上的反应,具体要求如下:a、用隔膜将两电极区的溶液隔离开。

b、结构上的要求:CE应具有大的表面积,以使其上的电流密度较小,从而保证外部所加的极化主要作用于工作电极上。

c、CE本身电阻要小,IR降小,极化也小d、对形状和位置也有一定要求。

《应用电化学》复习思考题参考答案

《应用电化学》复习思考题参考答案

《应⽤电化学》复习思考题参考答案《应⽤电化学》思考题第⼀章电化学理论基础1.什么是电化学体系?基本单元有那些?(1)由两类不同导体组成,且在电荷转移时不可避免地伴随有物质变化的体系,通常有原电池、电解池、腐蚀电池三⼤类型。

(2)1.电极 2.电解质溶液 3.隔膜2.试举例说明隔膜的作⽤。

隔膜是将电解槽分隔为阳极区和阴极区,以保证阴极、阳极上发⽣氧化-还原反应的反应物和产物不互相接触和⼲扰。

例如采⽤玻璃滤板隔膜、盐桥和离⼦交换膜,起传导电流作⽤的离⼦可以透过隔膜。

3.试描述现代双电层理论的概要.电极\溶液界⾯的双电层的溶液⼀侧被认为是由若⼲“层”组成的。

最靠近电极的⼀层为内层,它包含有溶剂分⼦和所谓的特性吸附的物质(离⼦或分⼦),这种内层也称为紧密层、helmholtz层或stern层,如图1.5所⽰。

实际上,⼤多数溶剂分⼦(如⽔)都是强极性分⼦,能在电极表⾯定向吸附形成⼀层偶极层。

特性吸附离⼦的电中⼼位置叫内holmholtz层(IHP),它是在距离为x1处。

溶剂化离⼦只能接近到距电极为x2的距离处,这些最近的溶剂化离⼦中⼼的位置称外helmholtz层(OHP)。

⾮特性吸附离⼦由于电场的作⽤会分布于称为分散层(扩散层)的三维区间内并延伸到本体溶液。

在OHP层与溶液本体之间是分散层。

4.什么是电极的法拉第过程和⾮法拉第过程。

电极上发⽣的反应过程有两种类型,法拉第过程和⾮法拉第过程。

前者是电荷经过电极/溶液界⾯进⾏传递⽽引起的某种物质发⽣氧化或还原反应时的法拉第过程,其规律符合法拉第定律,所引起的电流称法拉第电流。

后者是在⼀定条件下,当在⼀定电势范围内施加电位时,电极/溶液界⾯并不发⽣电荷传递反应,仅仅是电极/溶液界⾯的结构发⽣变化,这种过程称⾮法拉第过程。

5.试述电极反应的种类和机理。

电极反应种类:(1)简单电⼦迁移反应;(2)⾦属沉积反应;(3)表⾯膜的转移反应;(4)伴随着化学反应的电⼦迁移反应;(5)多孔⽓体扩散电极中的⽓体还原或氧化反应;(6)⽓体析出反应;(7)腐蚀反应电极反应的机理:(1)CE机理:指在发⽣电⼦迁移反应之前发⽣了化学反应,其通式为:X O X+ne RedH2HCHO + H2O C步骤HCHO + 2H+ + 2e →CH3OH E步骤(2) EC机理:指在电极/溶液界⾯发⽣电⼦迁移反应后⼜发⽣了化学反应,其通式为:O X+Ze→Red X如:对氨基苯酚在Pt电极上的氧化反应(3)催化机理a、“外壳层”催化:EC机理中的⼀种,指在电极和溶液之间的电⼦传递反应,通过电极表⾯物种氧化—还原的媒介作⽤,使反应在⽐裸电极低的超电势下发⽣,其通式可表⽰如下:X + ne Red E步骤X + Y C步骤如:Fe3+/Fe2+电对催化H2O2的还原反应:1/2H2O2+e→OH-3+2+Fe+ 1/2H2O2→Fe3++ OH-b、“内壳层”催化:也称为化学氧化—还原催化,即当反应物的总电化学反应中包括旧键的断裂和新键的形成时,发⽣在电⼦转移步骤的前、后或其中⽽产⽣了某种化学加成物或某些其它的电活性中间体,总的活化能会被某些“化学的”氧化—还原催化剂所降低。

电化学理论基础

电化学理论基础

测定电容和表面张力的变化是研究双电层结构的
基本手段 !
39
(1) 微分电容法
Cd dq / dE
1 d d ( -1) d1 1 1
Cd dq
dq
dq C紧 C分
0.1MNaF微分电容曲 线
0.01MNaF微分电容曲 线
40
(2) 电毛细曲线法
储汞瓶
参比电极
毛细管 显微镜
毛细管静电计示意图
电能或化学能不转变为热能而散失——理想状态。
严格地讲,只有由两个可逆电极放在同一种电解液中 所形成的电池,而且通过电池的电流又是无限小的情 况下,才能构成可逆电池。
15
二、电动势
电池的可逆电动势指的是电流趋近于零时,构成原电 池各相界面的电势差的代数和。主要有电极/溶液界面间 的电势差—电极电势;金属接触电势;液体接界电势。
44
四、极化和电极过程
1、极化 对于电极反应:Ox + ze → Red
根据电流的定义和法拉第定律:
i = dQ/dt
dn = dQ/zF
反应速度v可表示式:
v=-(dnOx/dt) = -(dne/dt) = dnRed/dt = i/zF
电极反应是异相的,其反应速度通常用单位面积的电流
密度来描述,即:
v = i/zFA = I/zF
式中:A—电极面积;I—电流密度
45
所以, v f (I ) g()
CE :辅助电极;WE:工作电极;RE:参比电极
电极电位=平衡电位
电极电位=极化电位
46
极化:电流流过电极时电极电位偏离平衡电极 电位的现象。
过电位η:电流流过电极时,电极电位偏离平 衡电位的数值。

大学化学第一章电化学基础课件

大学化学第一章电化学基础课件

(4)半电池的表示法,半电池电极反应的写法 电池 Zn(s) ∣ZnSO4(a1) || H2SO4(a2) ∣H2 (p),Pt 半电池 Zn(s) ∣ZnSO4(a1) Pt,H2 (p)∣H2SO4(a2)
电极反应写还原反应形式 Zn ─→ Zn2+(a1) + 2e
H2 (p) ─→ 2H+ (a2) + 2e CH3OH + H2O → CO2 + 6H+ + 6e-
电池
电解池 原电池
原电池:若电池能自发地在两极上发生化 学反应,并产生电流,此时化学能转化为电 能,则该电池就称为原电池(primary cell)。
实用的原电池称为化学电源。
原电池的构成
电解质溶液
两个半电池(电极)
金属导体
原电池
固体电子导体 惰性固体导体
盐桥
外接电路
原电池将分子之间直接发生的氧化还原反应,通过电 极间接完成。每个电极上发生一个半反应—半电池反应 (或电极反应)。
由于我们只能测得原电池的电动势,无法 测得电极电势的绝对值。
就人为规定标准氢电极的电极电势为0,来 测定其它电极的标准电极电势。
其它电极的标准电极电势
以298.15K时的标准氢电极作为负极,待 测电极作为正极,组成原电池,待测电极也 要处于标准态时测得的电极电势就称为该电 极的标准电极电势。
各种电极的标准电极电势可以从化学手册 中查到。
/V 0.222 0.268 0.071 0.613 -0.557
0.098
氢电极使用不方便,常用甘汞电极代替标准氢电极。
甘汞电极
电极组成式 Pt,Hg,Hg2Cl2(s) | Cl-(c)

电化学理论基础

电化学理论基础

S Ox
静思笃行 持中秉正
1.3、法拉第过程和电极反应
k 是反映氧化还原电对动力学难易程度的一个量,
一般来讲,
k 102 cm / s 电极传递步骤很快,电极反应是可逆的; 102 cm / s k 104 cm / s 电极传递步骤不是很快,电极反应是准可逆的; 104 cm / s k 电极传递步骤很慢,电极反应是不可逆的;
静思笃行 持中秉正
1.1、电化学体系的基本单元
一、电极:
电极是与电解质溶液接触的电子导体或半导体, 为多相体系。电化学体系借助电极实现电能的 输入和输出,电极是实施电极反应的场所。对 于三电极体系,三个电极分别为工作电极、参 比电极和辅助电极(对电极)。对于化学电源来 说,分正负极;对于电解池则分为阴阳极。
静思笃行 持中秉正
1.1、电化学体系的基本单元
一、电极:
辅助电极应具有较大的表面积,以使得 极化主要作用于该电极上,其本身电阻 要小,并且不容易极化。
静思笃行 持中秉正
1.1、电化学体系的基本单元
一、电极:
3、参比电极:指一个已知电势且接近理想不极化 的电极,参比电极基本没有电流通过,用于测定研 究电极的电势。 参比电极应具有以下性能: (1)是可逆电极,其电极电势符合能斯特方程; (2)应具有较大的交换电流密度,流过微小的电 流时电极电势能迅速恢复原状。
静思笃行 持中秉正
1.3、法拉第过程和电极反应
1、简单电子迁移反应:
指电极/溶液界面的溶液一侧的氧化或还原物种借 助于电极得到或失去电子,生成还原或氧化态物 种而溶解于溶液中,而电极在经历氧化-还原后其 物理化学性质和表面状态等并未发生变化,如铂 电极发生的Fe3+还原为Fe2+的反应,

储能材料与器件重点

储能材料与器件重点

第1章电化学理论基础1.相间电势:将电极插入某溶液中,形成一个两相界面,其结构和性质与孤立的相本体有很大的差别,这是由于某些带电粒子或偶极子发生了向界面的富集,使孤立相原有的电中性遭到破坏,形成了类似于充电的电容器的荷电层和与之相应的界面电势差。

形成界面电势差的原因:电荷在界面分布不均匀。

而造成不均匀的原因有:① 离子双层电势差:带电粒子在两相间转移或外电源使两相中出现剩余电荷,用φq表示② 吸附双层电势差(φad)溶液中某种离子有可能被吸附在电极与溶液界面上,形成一层电荷。

这层电荷又靠静电作用吸引溶液中同等数量的带相反电荷的离子而形成双电层.这样的双电bnnnhhnm层称为吸附双层。

③ 偶极双层电势差(φdip):偶极子正负电荷分开而形成双电层。

偶极的一端朝向界面,另一端则朝向该分子所属的一相,形成偶极双层。

通常M|S界面电势差是上述过程共同作用引起的,双电层的总电势差为这三种双电层的电势差之和:φ=φq+φad+φdip2.双电层结构的形成:当固体与液体接触时,可以是固体从溶液中选择性吸附某种离子,也可以是固体分子本身发生电离作用而使离子进入溶液,以致使固液两相分别带有不同符号的电荷,在界面上形成了双电层的结构。

影响双电层结构的因素:决定双电层结构的是静电作用与热运动。

因此,凡能够影响静电作用和热运动的因素都将影响到双电层结构,或者说影响电势的分布。

① 浓度的影响② 温度的影响温度升高,离子热运动加剧,导致双电层趋于分散排布;温度较低时,热运动则较平缓,这时稍有静电力就可以将离子吸引到电极表面,双电层趋于紧密排布。

③ 电极电势的影响电极电势远离零电荷电势时,电极表面与溶液中离子之间的静电作用增强,使双电层趋向紧密排布;电极电势在零电荷电势附近时,静电作用较小,双电层趋于分散排布。

这里的零电荷电势指电极表面剩余电荷为零时的电极电势,用φ0表示。

④ 溶液组分与电极间相互作用的影响如果溶液中含有可以在电极表面特性吸附的离子,则该离子易于和电极紧密结合,甚至可以脱掉水化膜,并穿透电极表面的水化层,直接靠在电极上,形成内紧密层。

电化学理论基础

电化学理论基础
• 与化学领域中的其他学科、物理、生物、电子等学科的紧密联 系,出现电分析化学、有机电化学、催化电化学、量子电化学、 半导体电化学、生物电化学等交叉学科。
• 这些学科涉及能源、交通、材料、生命以及环境等重大问题的 研究,推动着国民经济和科学技术的ore than two centuries
ln 1
T
n2
ln
T
2
H ex
RT
2
n1
ln 1
T
n2
ln
T
2
V
ex
RT n1
ln
p
1
n2
ln
p
2
三种函数的联系
在这些过量函数中,Gex比较重要,将它对组分i的物质的量ni求偏导 (不是对物质的量分数xi求偏导),即可得过量化学势,进而得到组
分i的活度系数i:
G ex ni
T , p,nj ji
RT n1 ln x1 1 n2 lnx2 2
得出过量Gibbs自由能的表达式为:
Gex RT n1 ln 1 n2 ln 2
过量函数
Gex RT n1 ln 1 n2 ln 2
由上式出发,通过简单的热力学推导,可以得到其它过量函数。
S ex
Rn1
ln 1
n2
ln
2
RT
n1
Arrhenius电离学说的缺陷
• 仅能较好地应用于弱电解质溶液;强电解质溶液中完全电离, 根本不存在电离平衡和电离度的问题,因而更不能用 Arrhenius电离理论来解释。
• 部分电离学说不能解释强电解质的下列典型性质: • (1)不符合稀释定律; • (2)不同方法所得到的“电离度”不同; • (3)不能解释强电解质溶液摩尔电导率与浓度的关系。 • 这些现象说明,强电解质溶液不符合部分电离学说。

第1章 电化学理论基础3

第1章 电化学理论基础3

金属的溶解反应,金属或非金属在一定的介质中发生溶 解,电极的重量不断减轻。
6
2.伴随着化学反应的电子迁移反应机理 (1)CE机理:发生电子迁移之前发生化学反应
通式:X←→Ox + ne ←→ Red
在给定的电势区间,溶液中反应物的主要存在 X是非电 活性物种,不能在电极上进行电化学反应,必须通过化学步 骤先生成电活性物种 Ox ,再在电极上进行电荷传递,例: 金属配离子的还原,弱酸性缓冲溶液中H2的析出、酸性介质 中甲醛的还原反应等。
电势变正 (η= φa-φeq) 。通过的电流越大,电极电势偏离 平衡值越大,超电势越大。 对同一电化学体系,通过的电流越大,电极电势偏离平 衡值也越大,亦即超电势越大。
22
随着电流密度的增大,两电极 上的超电势也增大,阳极析出电势 变大,阴极析出电势变小,使外加 的电压增加,额外消耗了电能。
原电池中,负极是阳极,正极是阴极。 随着电流密度的增加,阳极析出电势变 大,阴极析出电势变小。由于极化,使 原电池的作功能力下降。但可以利用这 种极化降低金属的电化腐蚀速度。
Nernst方程:Φ=Φθ‘+(RT/zF)ln(COX*/CR*)
29
29
大部分电化学反应涉及一个以上电子的转移,同时,这
些电子的转移过程也不可能是一次完成,而可能是各单
电子步骤转移过程的组合。 只讨论简单电子迁移的情况:
dQ i
---库仑定律
dt
法拉第定律 ---- dn
zF
从动力学角度 , 化学反应速度可以用单位时间生成或 者消耗物质的量来表示,也可知电化学反应速度的大小可以 通过流过电流大小表示: dn dn dn
v (
Ox
) ( dt

第一章 电化学理论基础

第一章 电化学理论基础

精选2021版课件
19
电极的分类
一般来说,电极可以分为如下四类:
(1). A. 一个金属电极与它的水溶液中的离子相接触, e.g.
Cu/Cu2+
E =Eo + RT/(F) lnaMz+ 半反应: Mz+ + ze = M B. 一个非金属它的离子相接触, e.g. H2/H+ 或 Cl2/Cl-在一个惰性导电物质表面上 E =Eo + RT/(F) lnPH21/2/aH+ (2) 一个金属电极与一个水溶液中的阴离子相接触, 此阴离 子可与金属电极的离子形成难溶物。例如:Hg/Hg2Cl2/Cl-,the calomel electrode(甘汞电极) (3) 惰性电极,Pt, Au, C, Hg etc (4) 上述不能包括的电极,例如:化学修饰电极等
精选2021版课件
20
研究电极的大小和形状
精选2021版课件
21
• 研究电极的大小和形状
精选2021版课件
22
参比电极
顾名思义,参比电极是给出一个固定的值,其它的电极电势的 测量以此为基础。一个好的参比电极应该不受温度、时间和通 过小电流而变化, 应遵守Nernst 方程!
Type 1: the hydrogen electrode Type 2: the calomel electrode Type 3: glass electrode, ion-selective electrodes
Ag/AgCl/KCl (饱和水溶液) 与SCE相比该电极具有较小的温度系数,并且可制作得更加紧 凑。当实验体系中不允许氯化物存在时,可采用硫酸亚汞电极:
Hg/Hg2SO4/K2SO4 (饱和水溶液) 对于非水溶剂,会涉及到水溶液参比电极漏水的问题,因此采
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原电池与电解池的区别:
原电池中自由能△ G 小于零,反应自发进行;化
学能转变为电能;正极是阴极,负极是阳极。
电解池中自由能△ G 大于零,反应是被迫进行, 需要从外界输入能量才能发生化学反应,电能转 化为化学能;正极是阳极,负极是阴极。
第二节 电化学过程热力学
通过对一个体系的热力学研究能够知道一个反 应在指定的条件下可进行的方向和达到的限度。 化学能能够转变为电能或者电能转变为化学能, 如果一个化学反应设臵在电池中进行,通过热 力学研究同样能够知道该电池反应对外电路所 能提供的最大能量,这就是电化学热力学的主 要研究内容。
电极的分类 根据电极组成分为 :
①金属电极。由金属及相应离子组成,其特点是 氧化还原对可以迁越相界面,如铜电极 Cu2+|Cu。 (第一类电极) ②氧化还原电极。由惰性金属电极及溶液中氧 化还原离子对组成,其特点是氧化还原对不能 迁越相界面。如Pt|Fe2+,Fe3+等(零类电极)
③气体电极。由惰性金属电极及氧化还原对中一个 组元为气体组成的,如氢电极 Pt | H2(g) ) H+ ( aq ) (零类电极)
具有常温下为液态,可重现均相表面、易 制备、氢过电位大(提高了负电位下的工作窗 口)的特点,常用在极谱分析法中。常与其他 金属形成汞齐制备成汞齐电极。 注意: 建立合适的电极预处理步骤,保证氧化还原、 表面形貌和不存在吸附杂质的可重现状态
2 辅助电极(Counter electrode,CE)
辅助电极又称对电极,该电极与工作电极 组成回路,使工作电极上电流通畅,保证所研 究的反应在工作电极上发生,但必须无任何方 式限制电池观测的响应。 工作电极发生氧化或还原反应时,辅助电 极上可为气体的析出反应或工作电极反应的逆 反应,使电解液组分不变,以至于影响工作电 极上的反应(不显著)。
B.金电极(Gold electrode)
在阴极区电位窗口比较宽,易与汞形成汞齐, 但是在HCl水溶液中易发生阳极溶解,并且很难 把金封入玻璃管中,即制作电极比较麻烦。常用 金电极测定正电位一侧的电化学反应,而相同形 状的汞齐化的金电极常用来研究负电位一侧的还 原反应。
C.碳电极(Carbon electrode)
荷电粒子基本单元的选取
根据法拉第定律,通电于若干串联电解池中,每个 电极上析出物质的物质的量相同,这时,所选取的基 本粒子的荷电绝对值必须相同。例如:
荷一价电
阴极
1 1 1 H 2 , Cu, Au 2 2 3
1 1 阳极 O 2 , Cl2 4 2
荷二价电
阴极
荷三价电
阴极
2 H 2 , Cu, Au 3
Q n zF

Q nzF
电极上发生反应的物质的质量m为:
Q m nM M zF
法拉第常数在数值上等于1mol元电荷的电量。 已知元电荷电量为 1.6022 1019 C
F=L· e
=6.022×1023 mol-1×1.6022×10-19 C
=96484.6 C· mol-1 ≈96500 C· mol-1
第一章
主要内容: 电化学体系
电化学理论基础
电化学过程热力学
非法拉第过程及电极/溶液界面的性能
法拉第过程和影响电极反应速度的因素
物质传递控制反应
电化学研究基本方法
第一节 电化学体系的基本单元
1.1
电极
1.2
1.3
隔膜
电解质溶液
1.4
电解池
1.1
电极(electrode)
电极是与电解质溶液或电解质接触的电子 导体或半导体,为多相体系 电化学体系借助于电极实现电能的输入或 输出,电极是实现电极反应的场所
有机溶剂
条件:
可溶解足够量的支持电解质
具有能够使支持电解质离解的介电常数
常温下为液体,且蒸气压不大
黏性不大,毒性小;电位窗口大
纯化:常见杂质水,先通过分子筛交换,在 通过CaH2吸水,再蒸馏除去
1.4 电解池的设计与安装
电化学电解池主要包括电极和电解液,以 及连通的一个容器。 电解池的材料一般为玻璃,因使用目的不 同而不同, HF 液和浓碱采用聚四氟乙烯,聚乙 烯、有机玻璃等。
3.固体电解质为具有离子导电性的晶态或非晶态物质: 聚环氧乙烷、全氟磺酸膜Nafion膜、-铝氧土等 4.熔盐电解质:兼顾1、2的性质,多用于电化学方法 制备碱金属和简体金属
除熔盐电解质外,一般电解质只有溶解在一定溶 剂中才具有导电能力,选择溶剂 电极反应对溶液中的杂质较敏感,溶剂必须仔细纯化
如: 水做溶剂 ,通常要将离子交换水进行二次或三 次蒸馏后使用(如:石英亚沸水) 石英容器,第一次蒸馏时常通过高锰酸钾溶液除去可 能存在的杂质,同时在进行电解时,须考虑氢气和氧 气的产生。
1 阳极 O 2 , Cl 2 2
3 H 2 , Au 2
阳极
3 3 O 2 , Cl 2 4 2
法拉第定律的意义
⒈ 是电化学上最早的定量的基本定律,揭示了通 入的电量与析出物质之间的定量关系。 ⒉ 该定律在任何温度、任何压力下均可以使用。
⒊ 该定律的使用没有什么限制条件。
电化学体系
电化学体系通常分两类: (1)原电池:电化学中两电极与外电路中的负载 接通后自发地将电流送到外电路做功 ( 2 )电解池:与外电源组成回路,强迫电流在 电化学体系中通过并促使电化学反应发生
常以氢离子和氢气的活度为1时的电位即 E0为电极电位的基准,其值为0. B.甘汞电极(Calomel electrode)
0.1mol/L 甘汞电极 KCl 浓度 电极电位(V) 0.1 mol / L +0.3365
标准甘汞电极(NCE) 1.0 mol / L +0.2828
饱和甘汞电极(SCE) 饱和溶液 +0.2438
基本要求: 研究的电化学反应不受电极自身发生的反应的影响 有较大的电位窗 电极必须不与溶剂或电解液组分发生反应 电极面积不宜太大 电极表面均一、平滑,且易进行表面净化
工作电极可以是固体也可以是液体,能导电的 固体材料均能作电极。通常根据研究的性质预先确 定电极材料。
典型的工作电极主要有:
A.铂电极(Platinum electrode) 这种电极具有化学性质稳定、氢过电位小,而 且高纯度的铂易得到、容易加工等特点,但价格比 较昂贵。
标准氢电极
④难溶盐电极。氧化还原对的一个组元为难溶盐或 其他固相,它包含着三个物相两个界面,如 AgCl电 极 Ag(s) | AgCl(s) | Cl- 、 氧 化 汞 电 极 Hg(l) | HgO(s)|OH-。(第二类、第三类电极)
⑤膜电极。利用隔膜对单种离子透过性或膜表面 与电解液的离子交换平衡所建立起来的电势,测 定电解液中特定离子的活度如玻璃电极、离子选 择电极等。
膜内外被 测离子活 度的不同 而产生电 位差
⑥化学修饰电极。将活性集团、催化物质附着在 电极金属表面上,使之具有较强特征功能。
⑦多重电极,即金属溶液界面间存在着一种以上 的电极反应
根据不同用途分为:
1.工作电极(Work electrode,WE)
工作电极又称研究电极,其上面发生的反应过程是 我们的研究对象;
在控制电位实验中,参比半电池电势固定,加 在电化学池上的电势的变化值则直接表现在工 作电极/电解质溶液的界面上。
要求:
1.可逆电极,电极电势符合能斯特方程
2.参比电极反应具有较大的交换电流密度, 通过微小的电流时电极电势能迅速恢复原状
3.具有良好的电势稳定性和重现性
水溶液体系参比电极:
A. 标准氢电极(NHE)

e
是标准状态下的平衡电势,叫做该电极的 标准电极电势。
C. Ag/AgCl电极
由覆盖着氯化银层的金属银浸在氯化钾或盐 酸溶液中组成。常用 Ag|AgCl|Cl-表示。一般采 用银丝或镀银铂丝在盐酸溶液中阳极氧化法制 备。银|氯化银电极的电极电势与溶液中Cl-浓度 和所处温度有关。
非水溶液体系参比电极:
Ag/Ag+(乙腈)
工业上常采用简易参比电极,或用辅助电极 兼做参比电极,但在测量时,参比电极内的溶液 和被研究体系的溶液不同,为降低液接电势,常 选用盐桥
为减少辅助电极上的反应对工作电极的干 扰,一般采用烧结玻璃、多孔陶瓷或离子交换 膜等来隔离两电极区的溶液。
要求: 1.大的表面积使外部所加的极化主要作用 于工作电极上
2.电阻小,且不易极化。
3.参比电极(Reference electrode,RE)
测量时,参比电极上通过的电流极小,不 致引起参比电极的极化(接近于理想不极化的 电极),参比电极具有已知恒定的电位,为研 究对象提供一个电位标准(相对于参比电极的 电极电势)。
化学电源和电解装臵,辅助电极和参比电极 常二合一。
化学电源中,电极材料可参与反应,本身可 溶解或化学组成改变;电解过程,电极一般不参 加化学的或电化学的反应,仅将电能传递至反式 电化学反应的电极/溶液界面。 电极的不溶性——困难问题
1.2 隔膜
隔膜在电化学研究的大部分场合是电解槽 必要的结构单元,隔膜将电解槽分隔为阳极区 和阴极区,保证阴极、阳极上发生氧化 -还原反 应的反应物和产物不互相接触和干扰。 隔膜常采用玻璃滤板隔膜、盐桥和离子交 换膜等,起传导电流作用的离子可以透过隔膜。 多孔膜和离子交换膜(阳离子交换膜、阴 离子交换膜)
电解电池:正极(阳极)、
பைடு நூலகம்
负极(阴极);
盐桥的作用: 在两种溶液之间插入盐桥 以代替原来的两种溶液的 直接接触,减免和稳定液 接电位(当组成或活度不 同的两种电解质接触时, 在溶液接界处由于正负离 子扩散通过界面的离子迁 移速度不同造成正负电荷 分离而形成双电层,这样 产生的电位差称为液体接 界扩散电位,简称液接电 位),使液接电位减至最小 以致接近消除.
相关文档
最新文档