1.3.1二项式定理(2)
高二数学 第一章1.3.1 二项式定理
本
解析 依题意 C57a2+C37a4=2C74a3.
课
时 由于 a≠0,整理得 5a2-10a+3=0,
栏
目 开 关
解得
a=1±
10 5.
练一练·当堂检测、目标达成落实处
1.3.1
4.求2
x-
1 6 x
的展开式.
解 先将原式化简,再展开,得
本
2 x- 1x6=2x-x 16=x13(2x-1)6
开 关
(a+b)在相乘时都有两种选择:选 a 或选 b,而且每个(a+b)
中的 a 或 b 都选定后,才能得到展开式的一项.由分步乘法
计数原理,在合并同类项之前,(a+b)2 展开式共有 2×2=
22 项,而且 a2-kbk 相当于从 2 个(a+b)中取 k 个 b 的组合数
Ck2,即 a2-kbk 的系数是 Ck2.
பைடு நூலகம்
当 9-2r=5 时,解得 r=2,所以系数为 36.
所以展开式中,不含 x6 项,含有 x5 项,系数为 36.
研一研·问题探究、课堂更高效
1.3.1
探究点三 综合应用
例3
已知
x- 2
1 4
x
n
的展开式中,前三项系数的绝对值依次
成等差数列.
本
(1)证明:展开式中没有常数项;
课
时
(2)求展开式中所有的有理项.
栏 目 开 关
(即1)证n2-明9n+由8题=意0,得:2Cn1·12=1+Cn2·122,
∴n=8 (n=1 舍去).
∴Tk+1=Ck8(
x)8-k·-241
xk=-12k·Ck8x
8-k 2
·x-4k =
高中数学 1.3.1二项式定理课件 新人教A版选修23[1]
二项式定理(dìnglǐ) 思维导航 1.我们已知(a+b)2=a2+2ab+b2,展开式中有3项;运 用多项式乘法可以求得(a+b)3、(a+b)4的展开式,并且它们分 别(fēnbié)有4项、5项,你能用类比归纳的方法得出(a+b)n(n≥2) 的展开式吗?
第八页,共38页。
新知导学 1.二项展开式的推导:(a+b)n(n∈N*)是 n 个因式(a+b) 的积,按多项式乘以多项式的法则,可知确定乘积展开式中的 每一项,需要看有多少个因式(a+b)中取 a,多少个因式(a+b) 中取 b,如果从 k 个因式中选取 b,则就有__n_-__k____个因式中 选 a.∴积式为 an-kbk(k=0、1、2、…、n)的形式的项共有__C_nk___ 个.合并同类项后为 _____C_nk_a_n-_k_b_k__________.因此(a +b)n= _C_0n_a_n+__C__1na_n_-_1b_+__…__+__C__rna_n_-_rb_r_+__…__+__C_nn_-_1a_b_n_-_1_+__C_nn_b_n__这个公式 叫做二项式定理.
D.-40
[解析] Tr+1=Cr5(x2)5-r(-x23)r=Cr5x10-2r·(-2)r·x-3r =C5r (-2)r·x10-5r. 令 10-5r=0,∴r=2,常数项为 C25×4=40.
第二十页,共38页。
若
x+ 1 4
2
n x
展开式中前三项系数依次成等差
数列.求:
(1)展开式中含 x 的一次幂的项;
第三十一页,共38页。
[方法规律总结] 二项式系数与项的系数是两个不同的概 念,前者仅与二项式的指数及项数有关(yǒuguān),与二项式的 构成无关,后者与二项式的构成、二项式的指数及项数均有关 (yǒuguān).
1.3.1二项式定理课件-高二数学人教A版选修2-3
2 x
6
的展开式的常数项是
240
2.
1
1 x
10的展开式中含
1 x3 项的系数是
120
五、课堂小结
思想共鸣 经验共享
你
1.二项式定理
学
到
了
a b n Cn0an Cn1an1b Cnk ankbk Cnnbn n N *
什
么
2.二项展开式的通项
Tk1 Cnk ankbk,k 0,1, 2,…, n
C
0 3
a
3
C
1a
3
2b
C 32ab 2
C
3 3
b
3
思想共鸣 经验共享
请同学们类比 (a+b)2 ,(a+b)3的展开式的特
征及方法,你能直接写出 (a+b)4 的展开式
吗?
第 二
( ( a a+ b ) b4 ) = 2( a + Cb ) 20( a a+ 2 b ) ( Ca + 21ab ( b) a + Cb 2) 2b2
恰有1个括号取b的情况有C21种,则ab前的系数为C21
恰有2个括号取b的情况有C22 种,则b2前的系数为C22
(a+b)2 = C20 a2 + C21 ab+ C22 b2 = a2 +2ab+b2
对(a+b)3展开式的分析:
(a b)3 (a b)(a b)(a b)
项的形式: a 3 a 2b ab2 b3
探
(a b)3= C 4 0 Ca 4 30+ aC 3 4 1 a 3 Cb + 31aC 24 2 ba 2 b 2 C+ 3C 2a4 3 a bb 23 + C C4 4 3b 3b4 3
高二数学二项式定理
问题探究
(a + b)4 = C 40a 4 + C 41a 3b + C 42a2b2 + C 43ab3 + C 44b4
问题探究
根据归纳推理,你能猜测出
(a+b)n(n∈N*)的展开式是什么
吗?
(a + b)n =
C n0a n + C n1a n- 1b + C n2a n- 2b2 + L
问题探究
(a + b)2 = a2 + 2ab + b2 (a + b)2 = C 20a2 + C 21ab + C 22b2
问题探究
(a + b)3 = (a + b)(a + b)(a + b)
(a + b)3 = (a + b)(a + b)(a + b) C 30a 3 + C 31a 2b + C 32ab2 + C 33b3
+
C
n n
-
1abn -
1
+
C nnbn
如何证明这个猜想?
形成结论
(a + b)n
=
C n0an
+
C
a1 n-
n
1b
+
L
+
C
ak n-
n
kbk
+
L
+ C nnbn
叫做二项式定理,等式右边叫做二项展
开式,其中各项的系数
C
k n
(k=0,1,
2,…,n)叫做二项式系数.
问题探究
人教版高中数学选修2-3教案:1.3.1二项式定理
§1.3.1 二项式定理【教学目标】1.理解二项式定理及推导方法,识记二项展开式的有关特征,能对二项式定理进行简单应用;2.通过对二项式定理内容的研究,体验特殊到一般的发现规律,一般到特殊指导实践的认识事物过程。
【教学重难点】教学重点:二项式定理的内容及归纳过程;教学难点:在二项式展开的过程中,发现各项及各项系数的规律。
【教学过程】一、设置情景,引入课题引入:二项式定理研究的是(a+b)n的展开式。
如(a+b)2=a2+2ab+b2, (a+b)3=?,(a+b)4=?,那么(a+b)n的展开式是什么呢?二、引导探究,发现规律1、多项式乘法的再认识问题1:(a1+ b1)(a2+b2) (a3+ b3)展开式中每一项是怎样构成的?展开式有几项?2、(a+b)3展开式的再认识问题2:将上式中,若令a1=a2=a3=a, b1=b2= b3=b,则展开式又是什么?合作探究1:合并同类项后,为什么a2b的系数是3?教师引导:可以发现a2b是从(a+b)(a+b)(a+b)这三个括号中的任意两个中选a,剩下的一个括号中选b;利用组合知识可以得到a2b应该出现了C23· C11=3次,所以a2b的系数是3。
问题3:(a+b)4的展开式又是什么呢?可以对(a+b)4按a或按b进行分类:(1)四个括号中全都取a,得:C44a4(2)四个括号中有3个取a,剩下的1个取b,得:C34a3· C11b(3)四个括号中有2个取a,剩下的2个取b,得:C24a2· C22b2(4)四个括号中有1个取a,剩下的3个取b,得:C14a· C33b3(5)四个括号中全都取b,得:C44b4小结:对于展开式,只要按一个字母分类就可以了,可以按a分类,也可以按b分类,再如:(1)不取b:C04a4;(2)取1个b:C14a3b;(3)取2个b:C24a2b2;(4)取3个b:C34a b3;(5)取4个b:C44b4,然后将上面各式相加得到展开式。
1.3.1二项式定理
式的常数项是________.
2.(2019·上饶高二检测)已知 (x 2 x )n 的展开式的各项 系数和比二项式系数和大211. 世纪金榜导学号
林老师网络编辑整理
38
(1)求n的值. (2)求展开式中所有有理项.
林老师网络编辑整理
39
【思维·引】1.先根据二项式展开式的通项公式写出
第r+1项,再根据项的次数为零解得r,代入即得结果.
角度1 二项式系数与项的系数
【典例】1.(2018·全国卷Ⅲ) (x2 2)5 的展开式中x4的
x
系数为 ( )
A.10
B.20
C.40
D.80
林老师网络编辑整理
31
2.已知二项式 (3 x 2 )10 . 世纪金榜导学号
3x
(1)求展开式第4项的二项式系数.
(2)求展开式第4项的系数.
林老师网络编辑整理
林老师网络编辑整理
46
(4)求整式项,求二项展开式中的整式项,其通项公式中 同一字母的指数应是非负整数,求解方式与求有理项一 致.
林老师网络编辑整理
47
3.正确区分二项式系数与该项的系数 二项式系数与项的系数是两个不同的概念,前者仅与二 项式的指数及项数有关,与二项式无关,后者与二项式, 二项式的指数及项数均有关.
C×17 36-
林老师网络编辑整理
24
2.(x+2y)4= C04 x4+ C14 x3(2y)+ C24 x2(2y)2+ C34 x(2y)3 + C44 (2y)4=x4+8x3y+24x2y2+32xy3+16y4.
林老师网络编辑整理
1.3.1-2二项式定理
2 r ( x ) Tr 1 C
r 20
4 r 1 4 r 1 8 r 2 x T4r C20 ( x 2 )4r 1 (1)4r 1 C20 r 1 r 1 x 2r 2 Tr 2 C20 ( x 2 )r 1 ( 1)r 1 C20 r 1 4 r 1 C20 C20
r Tr 1 Cn ( xlog2 x )nr ,
展开式的倒数第二项为:
T14 C ( x
13 14
log2 x
) C x
1 14
log2 x
14 x log2 x =112
2
log2 x log2 x log2 8 23
(log2 x) 3
log2 x 3
解得, n 14, k 5,
4r-1=r+1 或(4r-1)+(r+1)=20
2 r , (舍) 或r=4. 3
例2.在(1-x2)20展开式中, 如果第4r项和第r+2项的二项 式系数相等. (1)求r的值; (2)写出展开式中的第4r项,第r+2项.
解(2): (1-x2)20的展开式的通项为:
4 r 1 4 r 1 8 r 2 x T4r C20 ( x 2 )4r 1 (1)4r 1 C20 r 1 r 1 x 2r 2 Tr 2 C20 ( x 2 )r 1 ( 1)r 1 C20
二项式定理 (二)
复习回顾
1. 定理 (a+b)n= Cn0an+Cn1an-1b+…+ Cnran-rbr …+Cnnbn (1).项数规律: 二项展开式共有n+1个项 (2).指数规律: 各项的次数均为二项式的次数n (3).字母指数规律: a的次数由n降到0,b的次数由0升到n.
最新高中数学 第一章1.3 二项式定理 1.3.1 二项式定理学案 新人教A版选修2-3(考试必备)
1.3.1 二项式定理学习目标 1.能用计数原理证明二项式定理.2.掌握二项式定理及其展开式的通项公式.3.会用二项式定理解决与二项展开式有关的简单问题.知识点 二项式定理及其相关概念思考1 我们在初中学习了(a +b )2=a 2+2ab +b 2,试用多项式的乘法推导(a +b )3,(a +b )4的展开式.答案 (a +b )3=a 3+3a 2b +3ab 2+b 3,(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4. 思考2 能用类比方法写出(a +b )n (n ∈N *)的展开式吗? 答案 能,(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *).梳理1.(a +b )n展开式中共有n 项.( × )2.在公式中,交换a ,b 的顺序对各项没有影响.( × ) 3.C k n an -k b k是(a +b )n 展开式中的第k 项.( × )4.(a -b )n与(a +b )n的二项式展开式的二项式系数相同.( √ )类型一 二项式定理的正用、逆用例1 (1)求⎝⎛⎭⎪⎫3x +1x 4的展开式.考点 二项式定理题点 运用二项式定理求展开式解 方法一 ⎝ ⎛⎭⎪⎫3x +1x 4=(3x )4+C 14(3x )3·⎝ ⎛⎭⎪⎫1x +C 24(3x )2⎝ ⎛⎭⎪⎫1x 2+C 34(3x )⎝ ⎛⎭⎪⎫1x 3+C 44⎝ ⎛⎭⎪⎫1x 4=81x 2+108x +54+12x +1x 2. 方法二 ⎝⎛⎭⎪⎫3x +1x 4=⎝⎛⎭⎪⎫3x +1x 4=1x 2(1+3x )4=1x 2·[1+C 14·3x +C 24(3x )2+C 34(3x )3+C 44(3x )4]=1x2(1+12x +54x 2+108x 3+81x 4)=1x 2+12x+54+108x +81x 2.(2)化简:C 0n (x +1)n -C 1n (x +1)n -1+C 2n (x +1)n -2-…+(-1)k C k n (x +1)n -k+…+(-1)n C nn .考点 二项式定理题点 逆用二项式定理求和、化简 解 原式=C 0n (x +1)n +C 1n (x +1)n -1(-1)+C 2n (x +1)n -2(-1)2+…+C k n (x +1)n -k(-1)k+…+C nn (-1)n=[(x +1)+(-1)]n=x n. 引申探究若(1+3)4=a +b 3(a ,b 为有理数),则a +b =________. 答案 44解析 ∵(1+3)4=1+C 14×(3)1+C 24×(3)2+C 34×(3)3+C 44×(3)4=1+43+18+123+9=28+163,∴a =28,b =16,∴a +b =28+16=44.反思与感悟 (1)(a +b )n的二项展开式有n +1项,是和的形式,各项的幂指数规律是:①各项的次数和等于n ;②字母a 按降幂排列,从第一项起,次数由n 逐项减1直到0;字母b 按升幂排列,从第一项起,次数由0逐项加1直到n .(2)逆用二项式定理可以化简多项式,体现的是整体思想.注意分析已知多项式的特点,向二项展开式的形式靠拢.跟踪训练1 化简:(2x +1)5-5(2x +1)4+10(2x +1)3-10(2x +1)2+5(2x +1)-1. 考点 二项式定理题点 逆用二项式定理求和、化简解 原式=C 05(2x +1)5-C 15(2x +1)4+C 25(2x +1)3-C 35(2x +1)2+C 45(2x +1)-C 55(2x +1)0=[(2x +1)-1]5=(2x )5=32x 5. 类型二 二项展开式通项的应用 命题角度1 二项式系数与项的系数 例2 已知二项式⎝ ⎛⎭⎪⎫3x -23x 10. (1)求展开式第4项的二项式系数; (2)求展开式第4项的系数;(3)求第4项.考点 二项展开式中的特定项问题 题点 求二项展开式特定项的系数 解 ⎝⎛⎭⎪⎫3x -23x 10的展开式的通项是 T k +1=C k 10(3x )10-k⎝ ⎛⎭⎪⎫-23x k =C k 10310-k ⎝ ⎛⎭⎪⎫-23k ·1032kx- (k =0,1,2,…,10).(1)展开式的第4项(k =3)的二项式系数为C 310=120. (2)展开式的第4项的系数为C 31037⎝ ⎛⎭⎪⎫-233=-77 760. (3)展开式的第4项为T 4=T 3+1=-77 760x .反思与感悟 (1)二项式系数都是组合数C kn (k ∈{0,1,2,…,n }),它与二项展开式中某一项的系数不一定相等,要注意区分“二项式系数”与二项式展开式中“项的系数”这两个概念. (2)第k +1项的系数是此项字母前的数连同符号,而此项的二项式系数为C kn .例如,在(1+2x )7的展开式中,第四项是T 4=C 3717-3(2x )3,其二项式系数是C 37=35,而第四项的系数是C 3723=280.跟踪训练2 已知⎝ ⎛⎭⎪⎫x -2x n 展开式中第三项的系数比第二项的系数大162.(1)求n 的值;(2)求展开式中含x 3的项,并指出该项的二项式系数. 考点 二项展开式中的特定项问题 题点 求二项展开式特定项的系数解 (1)因为T 3=C 2n (x )n -2⎝ ⎛⎭⎪⎫-2x 2=4C 2n 62n x-,T 2=C 1n (x )n -1⎝ ⎛⎭⎪⎫-2x =-2C 1n 32n x -,依题意得4C 2n +2C 1n =162,所以2C 2n +C 1n =81, 所以n 2=81,n ∈N *,故n =9.(2)设第k +1项含x 3项,则T k +1=C k 9(x )9-k⎝ ⎛⎭⎪⎫-2x k =(-2)k C k9932k x-,所以9-3k 2=3,k =1,所以第二项为含x 3的项为T 2=-2C 19x 3=-18x 3. 二项式系数为C 19=9.命题角度2 展开式中的特定项例3 已知在⎝⎛⎭⎪⎪⎫3x -33x n的展开式中,第6项为常数项.(1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项. 考点 二项展开式中的特定项问题 题点 求二项展开式的特定项 解 通项公式为T k +1=C kn3n k x-(-3)k3k x-=C k n(-3)k23n k x-.(1)∵第6项为常数项,∴当k =5时,有n -2k3=0,即n =10.(2)令10-2k 3=2,得k =12(10-6)=2,∴所求的系数为C 210(-3)2=405. (3)由题意得,⎩⎪⎨⎪⎧10-2k3∈Z ,0≤k ≤10,k ∈N .令10-2k3=t (t ∈Z ), 则10-2k =3t ,即k =5-32t .∵k ∈N ,∴t 应为偶数.令t =2,0,-2,即k =2,5,8.∴第3项,第6项与第9项为有理项,它们分别为405x 2,-61 236,295 245x -2. 反思与感悟 (1)求二项展开式的特定项的常见题型 ①求第k 项,T k =C k -1n an -k +1b k -1;②求含x k 的项(或x p y q 的项);③求常数项;④求有理项.(2)求二项展开式的特定项的常用方法①对于常数项,隐含条件是字母的指数为0(即0次项);②对于有理项,一般是先写出通项公式,其所有的字母的指数恰好都是整数的项.解这类问题必须合并通项公式中同一字母的指数,根据具体要求,令其属于整数,再根据数的整除性来求解;③对于二项展开式中的整式项,其通项公式中同一字母的指数应是非负整数,求解方式与求有理项一致.跟踪训练3 (1)若⎝⎛⎭⎪⎫x -a x 9的展开式中x 3的系数是-84,则a =________. 考点 二项展开式中的特定项问题 题点 由特定项或特定项的系数求参数 答案 1解析 展开式的通项为T k +1=C k 9x 9-k(-a )k ⎝ ⎛⎭⎪⎫1xk=C k9·(-a )k x9-2k(0≤k ≤9,k ∈N ).当9-2k =3时,解得k =3,代入得x 3的系数, 根据题意得C 39(-a )3=-84,解得a =1.(2)已知n 为等差数列-4,-2,0,…的第六项,则⎝⎛⎭⎪⎫x +2x n的二项展开式的常数项是________.考点 二项展开式中的特定项问题 题点 求二项展开式的特定项 答案 160解析 由题意得n =6,∴T k +1=2k C k 6x6-2k,令6-2k =0得k =3,∴常数项为C 3623=160.1.(x +2)n的展开式共有11项,则n 等于( ) A .9 B .10 C .11 D .8 考点 二项展开式中的特定项问题 题点 由特定项或特定项的系数求参数 答案 B解析 因为(a +b )n 的展开式共有n +1项,而(x +2)n的展开式共有11项,所以n =10,故选B.2.1-2C 1n +4C 2n -8C 3n +…+(-2)n C nn 等于( ) A .1 B .1 C .(-1)nD .3n考点 二项式定理题点 逆用二项式定理求和、化简 答案 C解析 逆用二项式定理,将1看成公式中的a ,-2看成公式中的b ,可得原式=(1-2)n=(-1)n.3.⎝⎛⎭⎪⎫x 2-1x n的展开式中,常数项为15,则n 的值为( ) A .3 B .4 C .5 D .6 考点 二项展开式中的特定项问题 题点 由特定项或特定项的系数求参数 答案 D解析 展开式的通项为T k +1=C kn (x 2)n -k·(-1)k ·⎝ ⎛⎭⎪⎫1x k =(-1)k C k n x 2n -3k.令2n -3k =0,得n =32k (n ,k ∈N *),若k =2,则n =3不符合题意,若k =4,则n =6,此时(-1)4·C 46=15,所以n =6.4.在⎝⎛⎭⎪⎪⎫x +13x 24的展开式中,x 的幂指数是整数的项共有( ) A .3项 B .4项 C .5项 D .6项 考点 二项展开式中的特定项问题 题点 求多项展开式中的特定项 答案 C解析 ⎝ ⎛⎭⎪⎪⎫x +13x 24的展开式的通项为T k +1=C k 24·(x )24-k ⎝ ⎛⎭⎪⎪⎫13x k =C k 245126kx -,故当k =0,6,12,18,24时,幂指数为整数,共5项. 5.求二项式(x -3x )9展开式中的有理项. 考点 二项展开式中的特定项问题 题点 求多项展开式中的特定项解 T k +1=C k 9912kx -⎛⎫ ⎪⎝⎭·13kx ⎛⎫- ⎪⎝⎭=(-1)k C k9·276kx -,令27-k 6∈Z (0≤k ≤9),得k =3或k =9,所以当k =3时,27-k 6=4,T 4=(-1)3C 39x 4=-84x 4,当k =9时,27-k 6=3,T 10=(-1)9C 99x 3=-x 3.综上,展开式中的有理项为-84x 4与-x 3.1.注意区分项的二项式系数与系数的概念. 2.要牢记C k n an -k b k是展开式的第k +1项,不要误认为是第k 项.3.求解特定项时必须合并通项公式中同一字母的指数,根据具体要求,令其为特定值.一、选择题1.S =(x -1)4+4(x -1)3+6(x -1)2+4x -3,则S 等于( ) A .x 4B .x 4+1 C .(x -2)4D .x 4+4考点 二项式定理题点 逆用二项式定理求和、化简 答案 A解析 S =(x -1)4+4(x -1)3+6(x -1)2+4(x -1)+1=C 04(x -1)4+C 14(x -1)3+C 24(x -1)2+C 34(x -1)+C 44=[(x -1)+1]4=x 4,故选A.2.设i 为虚数单位,则(1+i)6展开式中的第3项为( ) A .-20i B .15i C .20D .-15考点 二项展开式中的特定项问题 题点 求二项展开式中的特定项 答案 D解析 (1+i)6展开式中的第3项为C 26i 2=-15. 3.(x -2y )10的展开式中x 6y 4的系数是( ) A .-840 B .840 C .210D .-210考点 二项展开式中的特定项问题 题点 求二项展开式特定项的系数 答案 B解析 在通项公式T k +1=C k 10(-2y )k x 10-k中,令k =4,即得(x -2y )10的展开式中x 6y 4的系数为C 410×(-2)4=840.4.在⎝ ⎛⎭⎪⎫x +2x n 的展开式中,若常数项为60,则n 等于( )A .3B .6C .9D .12考点 二项展开式中的特定项问题题点 由特定项或特定项的系数求参数 答案 B解析 T k +1=C k n(x )n -k⎝ ⎛⎭⎪⎫2x k =2k C kn 32n k x-.令n -3k2=0,得n =3k .根据题意有2k C k3k =60,验证知k =2,故n =6.5.若(1+3x )n (n ∈N *)的展开式中,第三项的二项式系数为6,则第四项的系数为( ) A .4 B .27 C .36D .108考点 二项展开式中的特定项问题 题点 求二项展开式特定项的系数 答案 D解析 T k +1=C kn (3x )k,由C 2n =6,得n =4,从而T 4=C 34·(3x )3,故第四项的系数为C 3433=108.6.在二项式121412nx x ⎛⎫⎪+⎪⎝⎭的展开式中,若前三项的系数成等差数列,则展开式中有理项的项数为( ) A .5 B .4 C .3D .2考点 二项展开式中的特定项问题 题点 求多项展开式中的特定项 答案 C解析 二项展开式的前三项的系数分别为1,C 1n ·12,C 2n ·⎝ ⎛⎭⎪⎫122,由其成等差数列,可得2C 1n ·12=1+C 2n ·⎝ ⎛⎭⎪⎫122⇒n =1+n (n -1)8,所以n =8(n =1舍去).所以展开式的通项T k +1=C k 8⎝ ⎛⎭⎪⎫12k344kx -.若为有理项,则有4-3k4∈Z ,所以k 可取0,4,8,所以展开式中有理项的项数为3.7.设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x -1x 4,x <0,-x ,x ≥0,则当x >0时,f (f (x ))表达式的展开式中常数项为( ) A .4 B .6 C .8D .10考点 二项展开式中的特定项问题 题点 求二项展开式的特定项答案 B解析 依据分段函数的解析式, 得f (f (x ))=f (-x )=⎝ ⎛⎭⎪⎫1x -x 4,∴T k +1=C k4(-1)k xk -2.令k -2=0,则k =2,故常数项为C 24(-1)2=6. 二、填空题8.⎝ ⎛⎭⎪⎫2x +1x 7的展开式中倒数第三项为________.考点 二项展开式中的特定项问题 题点 求二项展开式的特定项 答案84x8解析 由于n =7,可知展开式中共有8项, ∴倒数第三项即为第六项,∴T 6=C 57(2x )2·⎝ ⎛⎭⎪⎫1x 25=C 57·221x 8=84x8.9.若(x +1)n =x n+…+ax 3+bx 2+nx +1(n ∈N *),且a ∶b =3∶1,那么n =________. 考点 二项展开式中的特定项问题 题点 由特定项或特定项的系数求参数 答案 11解析 a =C n -3n ,b =C n -2n .∵a ∶b =3∶1, ∴C n -3n C n -2n =C 3n C 2n =31,即n (n -1)(n -2)·26n (n -1)=3, 解得n =11.10.已知正实数m ,若x 10=a 0+a 1(m -x )+a 2(m -x )2+…+a 10(m -x )10,其中a 8=180,则m 的值为________.考点 二项展开式中的特定项问题 题点 由特定项或特定项的系数求参数 答案 2解析 由x 10=[m -(m -x )]10,[m -(m -x )]10的二项展开式的第9项为C 810m 2(-1)8·(m -x )8, ∴a 8=C 810m 2(-1)8=180, 则m =±2.又m >0,∴m =2.11.使⎝⎛⎭⎪⎫3x +1x x n (n ∈N *)的展开式中含有常数项的最小的n 为________.考点 二项展开式中的特定项问题 题点 由特定项或特定项的系数求参数 答案 5解析 展开式的通项公式T k +1=C k n(3x )n -k⎝ ⎛⎭⎪⎫1x x k,∴T k +1=3n -k C kn52n k x-,k =0,1,2,…,n .令n -52k =0,n =52k ,故最小正整数n =5. 三、解答题12.若二项式⎝⎛⎭⎪⎫x -a x 6(a >0)的展开式中x 3的系数为A ,常数项为B ,且B =4A ,求a 的值.考点 二项展开式中的特定项问题 题点 由特定项或特定项的系数求参数解 ∵T k +1=C k 6x 6-k⎝⎛⎭⎪⎫-a x k =(-a )k C k6362kx -,令6-3k 2=3,则k =2,得A =C 26·a 2=15a 2;令6-3k 2=0,则k =4,得B =C 46·a 4=15a 4.由B =4A 可得a 2=4,又a >0, ∴a =2.13.已知在⎝⎛⎭⎪⎫12x 2-1x n的展开式中,第9项为常数项,求:(1)n 的值;(2)展开式中x 5的系数; (3)含x 的整数次幂的项的个数. 考点 二项展开式中的特定项问题 题点 求多项展开式中的特定项解 已知二项展开式的通项为T k +1=C k n⎝ ⎛⎭⎪⎫12x 2n -k ·⎝⎛⎭⎪⎫-1x k =(-1)k ⎝ ⎛⎭⎪⎫12n -k C kn 522n k x -.(1)因为第9项为常数项,即当k =8时,2n -52k =0,解得n =10.(2)令2×10-52k =5,得k =25(20-5)=6.所以x 5的系数为(-1)6⎝ ⎛⎭⎪⎫124C 610=1058. (3)要使2n -52k ,即40-5k 2为整数,只需k 为偶数,由于k =0,1,2,3,…,9,10,故符合要求的有6项,分别为展开式的第1,3,5,7,9,11项.四、探究与拓展14.设a ≠0,n 是大于1的自然数,⎝ ⎛⎭⎪⎫1+x a n 的展开式为a 0+a 1x +a 2x 2+…+a n x n.若点A i (i ,a i ) (i =0,1,2)的位置如图所示,则a =________.考点 二项展开式中的特定项问题题点 由特定项或特定项的系数求参数答案 3解析 由题意知A 0(0,1),A 1(1,3),A 2(2,4).即a 0=1,a 1=3,a 2=4.由⎝ ⎛⎭⎪⎫1+x a n的展开式的通项公式知T k +1=C k n ⎝ ⎛⎭⎪⎫x a k(k =0,1,2,…,n ).故C 1n a =3,C 2na 2=4,解得a =3.15.设f (x )=(1+x )m +(1+x )n 的展开式中含x 项的系数是19(m ,n ∈N *).(1)求f (x )的展开式中含x 2项的系数的最小值;(2)当f (x )的展开式中含x 2项的系数取最小值时,求f (x )的展开式中含x 7项的系数. 考点 二项展开式中的特定项问题题点 求二项展开式特定项的系数解 (1)由题设知m +n =19,所以m =19-n ,含x 2项的系数为C 2m +C 2n =C 219-n +C 2n=(19-n )(18-n )2+n (n -1)2=n 2-19n +171=⎝ ⎛⎭⎪⎫n -1922+3234.因为n ∈N *,所以当n =9或n =10时,x 2项的系数的最小值为⎝ ⎛⎭⎪⎫122+3234=81.(2)当n=9,m=10或n=10,m=9时,x2项的系数取最小值,此时x7项的系数为C710+C79=C310+C29=156.。
数学选修2-3 1.3.1二项式定理
填一填
(x+2)8 的展开式中的第 6 项为 ,其二项式系数为 . 5 3 5 5 解析:展开式的第 6 项是 T6=C8 x· 2 =1 792x3,其二项式系数为C8 . 答案:1 792x3 56
-5-
1.3.1 二项式定理
首 页
X 新知导学 Z 重难探究
INZHI DAOXUE
HONGNAN TANJIU
D 当堂检测
ANGTANG JIANCE
探究一
探究二
探究三
探究四
探究一二项式定理
1.简单的二项式展开时可直接利用二项式定理展开;对于形式较复杂 的二项式,在展开之前可以根据二项式的结构特点进行必要的变形,然后再 展开,以使运算得到简化.记准、记熟二项式(a+b)n 的展开式是解答好与二 项式定理有关的问题的前提. 2.逆用二项式定理要注意二项展开式的结构特点.a 的指数是从高到 低,b 的指数是从低到高,a,b 的指数和都相等;如果项的系数是正负相间,则 是(a-b)n 的形式.
3
2x)
20-k
·-
∵系数为有理数,∴40-5k 是 6 的倍数,0≤k≤20,k∈Z,∴k=2,8,14,20.
答案:(1)C (2)A
-13-
1 ������ 2
= -
2 2
������
· ( 2)
3
20-k ������
C20 · x
20-k
=(-1)
k
40-5������ · 2 6 C������
0 C4 · (2
4
解:(1)方法一:直接利用二项式定理展开并化简:
1 4 ������
+
(2)原式 0 5 1 2 3 4 =C5 (x-1)5+C5 (x-1)4+C5 (x-1)3+C5 (x-1)2+C5 (x-1)+C5 -1=[(x-1)+1]5-1=x5-1.
二项式定理
栏目导航
(2)设第 r+1 项含 x3 项,
则 Tr+1=Cr9( x)9-r-2xr=(-2)rCr9x
,
所以9-23r=3,r=1,
所以第二项为含 x3 的项:T2=-2C19x3=-18x3. 二项式系数为 C19=9.
栏目导航
1.(变结论)在本例条件不变的情况下,求二项展开式的常数项. [解] 通项公式为: Tk+1=(-2)kCk9x . 由9-23k=0 得 k=3. ∴展开式中的常数项为(-2)3C39=-672.
单问题.(重点、难点)
运算素养.
栏目导航
自主预习 探新知
栏目导航
1.二项式定理 (a + b)n = _C__0na_n_+__C_1n_a_n_-_1b_+__C__2na_n_-_2_b_2+__…__+__C_kn_a_n_-_kb_k_+__…__+__C_nn_b_n_ (n∈N*). (1)这个公式所表示的规律叫做二项式定理. (2)展开式:等号右边的多项式叫做(a+b)n 的二项展开式,展开 式中一共有_n_+__1__项. (3)二项式系数:各项的系数_C__kn_ (k∈{0,1,2,…,n})叫做二项 式系数.
B.10
C.11
D.12
B [由二项式定理的公式特征可知 n=10.]
栏目导航
2.C0n·2n+C1n·2n-1+…+Ckn·2n-k+…+Cnn等于(
)
A.2n
B.2n-1
C.3n
D.1
C [原式=(2+1)n=3n.]
栏目导航
3.(1+2x)5 的展开式的第 3 项的系数为________,第 3 项的二 项式系数为________.
栏目导航
2.(1)(2017·高考全国卷)1+x12(1+x)6 展开式中 x2 的系数为 ()
【数学】1.3.1《二项式定理2》课件(新人教B版选修2-3)
n−r n
4
4
n
n
n
n
n
二项式系数前半部分逐渐增大,后半部分逐渐减小, 二项式系数前半部分逐渐增大,后半部分逐渐减小,且 ② 在中间取得最大值; ; 在中间取得最大值;
即与首末两端“等距离” ; 即与首末两端“等距离”的两个二项式系数相 等
③
各二项式系数的和: 各二项式系数的和: Cn + Cn + Cn +L+ Cn = 2
n+1
r (r=0,1,2,……,n) ) n
3. 对称性: 对称性: 聚合性: 聚合性:
C = C
C +C
r n
r n
n−r n
r −1 n
= C
r n +1
1 10 (a+b)1…………………………… C1 C1 1 2 (a+b)2……………………… C 0 C 1 C 1 1 2
2
2
2
2 3 1 3 (a+b)3…………………… C 3 C 3 C3 C 31 3 2 (a+b)4……………… C 0 C 1 C C43 C 41 1 4 6
知识回顾
1.(a+b) n=
0 1 2 n Cn an +Cnan−1b +Cn an−2b2 +L+Cn bn n ∈ N ∗, ﹙ ﹚
展开式共有 项,其中 C 叫做 二项式系数 ; 2.通项表示展开式中的第 2.通项表示展开式中的第 r+1 项,通项公式 r n−r r 是 Tr+1 = Cn a b . r+1
。
4 6 4
展开式中, 4.﹙x-y﹚10展开式中,系数最大的项是
1.3.1二项式定理(2)
(n ∈ N )
(2)二项展开式的通项 二项展开式的通项: 二项展开式的通项
∗
Tk +1 = C a
k n
n− k
b
k
(注意,它是第k+1项) 注意,它是第 注意 项 (3)区别二项式系数, (3)区别二项式系数,项的系数 区别二项式系数 (4)掌握用通项公式求二项式系数, (4)掌握用通项公式求二项式系数,项的系数及项 掌握用通项公式求二项式系数 (5)二项式定理简单应用 二项式定理简单应用. 二项式定理简单应用
0 n
r
+ C + C + L + C = (1 + 1) = 2n
1 n 2 n n n n
运用二项式定理可以在头脑里迅速地展开一些式 从而能解决些问题.这节课我们来做一些练习. 子,从而能解决些问题.这节课我们来做一些练习.
普通高中课程数学选修2-3] 1.2 排列与组合 普通高中课程数学选修 3 [普通高中课程数学选修
故存在常数项且为第7项 故存在常数项且为第 项,
6 6 8
1 常数项T7 = ( −1) ⋅ C ⋅ 2
8− 6
⋅x =7
0
4. 9192除以 除以100的余数是_____ 的余数是_____ 的余数是
0 1 91 92 91 分 析 : 92 = (90 + 1)92 = C 92 90 92 + C 92 90 91 + L + C 92 90 + C 92
由此可见,除后两项外均能被 由此可见,除后两项外均能被100整除 整除 91 92 C 92 90 + C 92 = 8281 = 82 × 100 + 81
1.3.1二项式定理(学、教案)
§1.3.1 二项式定理【教学目标】1.理解二项式定理及推导方法,识记二项展开式的有关特征,能对二项式定理进行简单应用;2.通过对二项式定理内容的研究,体验特殊到一般的发现规律,一般到特殊指导实践的认识事物过程。
【教学重难点】教学重点:二项式定理的内容及归纳过程;教学难点:在二项式展开的过程中,发现各项及各项系数的规律。
【教学过程】一、设置情景,引入课题引入:二项式定理研究的是(a+b)n的展开式。
如(a+b)2=a2+2ab+b2, (a+b)3=?,(a+b)4=?,那么(a+b)n的展开式是什么呢?二、引导探究,发现规律1、多项式乘法的再认识问题1:(a1+ b1)(a2+b2) (a3+ b3)展开式中每一项是怎样构成的?展开式有几项?2、(a+b)3展开式的再认识问题2:将上式中,若令a1=a2=a3=a, b1=b2= b3=b,则展开式又是什么?合作探究1:合并同类项后,为什么a2b的系数是3?教师引导:可以发现a2b是从(a+b)(a+b)(a+b)这三个括号中的任意两个中选a,剩下的一个括号中选b;利用组合知识可以得到a2b应该出现了C23· C11=3次,所以a2b的系数是3。
问题3:(a+b)4的展开式又是什么呢?可以对(a+b)4按a或按b进行分类:(1)四个括号中全都取a,得:C44a4(2)四个括号中有3个取a,剩下的1个取b,得:C34a3· C11b(3)四个括号中有2个取a,剩下的2个取b,得:C24a2· C22b2(4)四个括号中有1个取a,剩下的3个取b,得:C14a· C33b3(5)四个括号中全都取b,得:C44b4小结:对于展开式,只要按一个字母分类就可以了,可以按a分类,也可以按b分类,再如:(1)不取b:C04a4;(2)取1个b:C14a3b;(3)取2个b:C24a2b2;(4)取3个b:C34a b3;(5)取4个b:C44b4,然后将上面各式相加得到展开式。
高中数学(人教选修2-3)配套课件第一章 1.3.1 二项式定理与二项展开式
栏 目 链
接
(2)S=C40(x-1)4+C41(x-1)3×21+C42(x-1)2×22+C34(x-
1)×23+C4424=[(x-1)+2]4=(x+1)4.故选 D.
答案:(1)1+4x+x62+x43+x14 (2)D
点评:解决这一问题的关键是弄清二项式展开式左右两边的结 构特征,这样我们就能够将一个二项式展开,若一个多项式符合二项 展开式右边的结构特征,我们也能够将它表示成左边的形式.
(1)展开式的第四项的二项式系数为 =120.
(2)展开式的第四项的系数为 ·37-323=-77 760. 点评:根据二项展开式的通项公式,即可求展开式中的特定项.
变式 训练
2.(2013·揭阳一模)若二项式x+21xn 的展开式中,第 4 项与第
7 项的二项式系数相等,则展开式中 x6 的系数为________(用数字作
基础 梳理
(3)其中各项的系数_____C__rn_(r=0,1,2,…,n)叫做
_________二__项_式__系__数____.
(4)式中的______________叫做二项展开式的通项,用Tr+1
表示.
Crnan-rbr
栏
(5)通项是展开式的第________项.
目
链
2.二项式定理的应用.
10-(2)2 40 .
答案: C
栏 目 链 接
题型一 二项式定理的正用、逆用
例 1 (1)用二项式定理展开1+1x4=________;
(2)设 S=(x-1)4+4×2(x-1)3+6×4(x-1)2+4×8(x-1)+16,
根据二项式定理得 S=( )
接
r+1 例如:(1)(x+1)4的展开式中常数项是________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.1
二项式定理 (2)
2 [普通高中课程数学选修2-3] 1.2 排列与组合
上节课,我们认识了二项式定理:
1.二项式定理:
(a b) C a C a b C a b C b Tr 1 C a b ,(r 0,1,2,n) 第(r+1)项 2.通项规律:
解:由题意,知:a C ,b C .
3 n 2 n
又 a : b 3 :1, C : C 3 :1.
3 n 2 n
解得n 11.
1 x 6.试判断在 3 的展开式中有 x 2
8 排列与组合 11 [普通高中课程数学选修2-3] 1.2
无常数项?如果有,求出此常数项;如果 没有,说明理由.
n 0 n n n n n
1 n1 n r n r r n
r n r r n
3.二项式系数: C
n
r n
1 n 2 2 n r r n n n n
注:项的系数与二项式系数是两个不同的概念 4.特殊地: ( 1 x ) 1 C
x C x C x C x 0 1 2 n n 令以x=1得 Cn Cn Cn Cn (1 1) 2n
37 1 1093 2
1094
| a0 | | a1 (4) 能力训练 2:
| | a7 |
2187
若 (2 x 4)2n a0 a1 x a2 x2 a2n x2n (n∈N+), 则 a2 a4 a2n 被 3 除的余数是(B) (A)0 (B)1 (C)2 (D)不能确定
求(x +2)10 (x 2-1)展开式中含 x 10 项 179 . (1998年全国高考题) 的系数为____ 能力训练5:
在(x2 + 3x + 2)5 的展开式中, x的系数为多少? 240
7 [普通高中课程数学选修2-3] 1.2 排列与组合
能力训练5 : (x2+3x+2)5展开式中x的系数为_____.
3.你能否判断 (3 x
2
1 x
) 的展开式中是否包含常数项?
1 x
20 5r 2
10
解:根据二项式定理,取a=3x2,b=-
∴
(3 x
2
r 10 2
1
1 r r 10 r Tr 1 C 3 x 1 C10 3 x x 5r 由题意可知, 20 2 0 r 8 常数项即 x 0项. 故存在常数项且为第9项,
运用二项式定理可以在头脑里迅速地展开一些式 子,从而能解决些问题.这节课我们来做一些练习.
3 [普通高中课程数学选修2-3] 1.2 排列与组合
(一)赋值法的应用: 能力训练 1: 7 2 7 已知 (1 2 x) a0 a1 x a2 x a7 x 求:(1) a1 a2 a7 ; - 2 (2) a1 a3 a5 a7 ; (3)a0 a2 a4 a6 ;
由此可见,除后两项外均能被100整除 91 92 C92 90 C92 8281 82 100 81
所以 9192除以100的余数是81 5.若( x + 1 )n = x n +…+ ax3 + bx2 +…+1 (n∈N*), 且 a : b=3 : 1 ,那么 n =_____ (95上海高考)
方法1 (x2+3x+2)5=[(x2+2)+3x]5 在展开式中只有 C 1 (x2 2)4 3x才 存 在 x的 项 , 5
4 其系数为 5C 24 3 240 4 方法2 (x2+3x+2)5=[x(x+3)+2]5 1 在展开式中只有 C x(x 3) 24才 存 在 x的 项 , 5 其系数为 C 1 3 24 240 5 方法3 (x2+3x+2)5=[x2+(3x+2)]5 在展开式中只有 C 0 (3x 2)5才 存 在 x的 项 , 5 其系数为 C 1 3 24 240 5 方法4 (x2+3x+2)5= (x+1)5 (x+2)5 ,……. 妙!
10 r
x
) 的通项公式是
r
10
8 10 8 0 常数项T9 1 C10 3 x 405 1 10 2 ) 的展开式中第9项为常数项。 ∴ (3 x x 8
6 [普通高中课程数学选修2-3] 1.2 排列与组合
关于展开式中的项与项的系数的进一步思考 能力训练 4:
则 (a0 a2 a4 )2 (a1 a3 )2 的值是____. 2.求(1 + x + x2)(1-x)10展开式中含 x 项的系数 3.求(1+x)+(1+x)2+…+(1+x)10展开式中x3的系数
1
,
-9
4.
9192除以100的余数是____.
81 11
330
5.若( x + 1 )n = x n +…+ ax3 + bx2 +…+1(n∈N*),
且 a : b=3 : 1 ,那么 n =_____ (95上海高考)
10 [普通高中课程数学选修2-3] 1.2 排列与组合
4. 9192除以100的余数是_____
0 1 91 92 分析: 9192 (90 1)92 C92 9092 C92 9091 C92 90 C92
常数项即 x 0项.
故存在常数项且为第7项,
1 常数项T 1 C 7 2
6 6 8
8 6
x 7
0
b
k
(注意,它是第k+1项) (3)区别二项式系数,项的系数 (4)掌握用通项公式求二项式系数,项的系数及项 (5)二项式定理简单应用.
课后作业:素能综合检测(9)
9 [普通高中课程数学选修2-3] 1.2 排列与组合
巩固练习: 1.若(2 x 3)4 a0 a1 x a2 x2 a3 x 3 a4 x 4
解:设展开式中的第r+1项为常数项,则: r 8 r 8 r 24 4 r 1 r r x r 1 Tr 1 C 8 3 1 C 8 x 3 x 2 2
24 4r 0 r 6 由题意可知, 3
8 [普通高中课程数学选修2-3] 1.2 排列与组合
(1)二项式定理:
0 n 1 n 1 k n k k n n ( a b )n C n a Cn a b Cn a b Cn b
(n N )
(2)二项展开式的通项:
Tk 1 C a
k n
n k
4 [普通高中课程数学选修2-3] 1.2 排列与组合
(二)求特定项:
能力训练 3: 你能否判断 (3 x
2
1 x
)10 的展开式中是否包含常数项?
0
分析:取通Leabharlann 来分析, 常数项即 x 项.Tr 1 C 3 x
r 10
2
10 r
1 x
r
5 [普通高中课程数学选修2-3] 1.2 排列与组合