2.2020学年第一学期九年级数学期中组卷答题卷
2020学年第一学期九年级期中数学质量检测答案
2020学年第一学期九年级期中教学质量检测数学科参考答案一、选择题:(每小题3分,共30分)题号1 2 3 4 5 67 8 9 10 答案D B A C C AB DC D二、填空题:(每小题3分,共18分)题号 11 1213 14 1516 答案(1,8)223=++y x x113010且<≠a a2三、解答题:(本大题共9小题,共72分.)注:下面只是给出各题的一般解法,其余解法对应给相应的分数.17.(本题满分5分)解:(1)如图,△A 1B 1C 为所求;…………4分 (2)(5,﹣1).…………5分18. (本题满分5分)解:(1)∵二次函数y =ax 2+bx +c 的图象经过点D (﹣1,0)和点C (4,5)∴1016415--=⎧⎨+-=⎩a b a b …………2分解得1212⎧=⎪⎪⎨⎪=-⎪⎩a b …………3分∴二次函数的解析式为211122=--y x x …………4分 (2)图象如图,当一次函数的值大于二次函数的值时,x 的取值范围是﹣1<x <4.…………5分第17题A 1B 1 第18题解:(1)∵⊥OD AB∴=AD BD …………1分∴112622∠=∠=∠=︒DEB DOB AOD …………3分(2)∵⊥OD AB∴12==AC BC AB …………4分 ∵∆AOC 为直角三角形OC =3,OA =5∴4==AC …………5分 ∴28==AB AC …………7分20.(本题满分7分)解:∵在Rt △ABC 中 ∠B =60°∴∠C =90°﹣∠B =90°﹣60°=30° …………1分 ∵AB =1∴BC =2AB =2 …………2分∵Rt △ABC 绕点A 按顺时针旋转一定角度得到Rt △ADE ∴AB =AD …………4分∴△ABD 是等边三角形 …………5分 ∴BD =AB =1 …………6分∴CD =BC ﹣BD =2﹣1=1 …………7分21. (本题满分8分)解:(1)设y =30﹣2x …………1分(6≤x <15)…………2分(2)设矩形苗圃园的面积为S …………3分 则S =xy =x (30﹣2x )=﹣2x 2+30x …………4分 ∴S =﹣2(x ﹣7.5)2+112.5 …………6分 由(1)知,6≤x <15∴当x =7.5时,S 最大值为112.5 …………7分即当矩形苗圃园垂直于墙的一边的长为7.5米时,这个苗圃园的面积最大,这个最大值为112.5平方米 …………8分解: (1)证明:连接ODDE 是切线∴90∠=︒ODE …………1分 ∴90∠+∠=︒ADE BDO 90ACB ∠=︒∴90∠+∠=︒A B …………2分 OD OB =∴ ∠=∠B BDO∴∠=∠ADE A …………3分 (2)解:连接CDADE A ∠=∠∴=AE DE BC 是O 的直径 90ACB ∠=︒∴EC 是O 的切线…………4分DE 是切线∴=ED EC …………5分 ∴=AE EC 5DE =∴210==AC DE …………6分 在∆Rt ADC 中22=6-=DC AC AD 设BD x =在∆Rt BDC 中 2226BC x =+ 在∆Rt ABC 中,222(8)10BC x =+- ∴22226(8)10+=+-x x 解得92x =…………7分 ∴229156()22=+=BC …………8分第22题解:(1) ∵''∆A B O 是由∆ABO 绕原点逆时针旋转得到的又A (0,1),B (2,0),O (0,0) ∴'A (﹣1,0) 'B (0,2)…………1分 设抛物线的解析式为2(0)=++≠y ax bx c a抛物线经过点'A 、'B 、解得 ∴满足条件的抛物线的解析式为22=-++y x x …………3分 (2)为第一象限内抛物线上的一动点,设,且,点坐标满足 连接PB 、PO 、PB’∴'''''四边形∆∆∆=++POB PB A B B A O PB O S S S S…………5分∵''12112∆=⨯⨯=A B O S 若四边形的面积是面积的倍, 则 …………6分 即,解得121==x x此时,即 …………7分∴存在点P (1,2),使四边形的面积是面积的倍 …………8分O 90︒B 02042a b c ca b c=-+⎧⎪∴=⎨⎪=++⎩112a b c =-⎧⎪=⎨⎪=⎩P (,)P x y 0,0x y >>P 22y x x =-++11112+2+2222x y =⋅⋅⋅⋅⋅⋅22(2)123x x x x x =+-+++=-++PB A B ''A B O ''∆42234x x -++=2210x x -+=21122y =-++=(1,2)P PB A B ''A B O ''∆4xyO-1 122 1· 第23题(1)证明:连接OM∵AB 是⊙O 的直径, ∴∠AMB =90° …………1分 ∵M 是弧AB 的中点,∴=MB MA …………2分 ∴MA =MB∴△AMB 为等腰直角三角形∴∠ABM =∠BAM =45°,∠OMA =45°,OM ⊥ABMB =22AB =22×62=6,12==OM OB AB ∴∠MOE +∠BOE =90° ∵∠COD =90°∴∠MOE +∠MOF =90°∴∠BOE =∠MOF …………3分 在△OBE 和△OMF 中∠=∠⎧⎪=⎨⎪∠=∠⎩OBE OMF OB OMBOE MOF ∴△OBE ≌△OMF (SAS ) ∴OE =OF …………4分(2)解:∠PMQ 为定值135° ∵∠BMQ =12∠BOQ ,∠AMP =12∠AOP …………5分 ∴∠BMQ +∠AMP =12(∠BOQ +∠AOP ) ∵∠COD =90°∴∠BOQ +∠AOP =90°∴∠BMQ +∠AMP =12×90°=45° …………6分 ∴∠PMQ =∠BMQ +∠AMB +∠AMP =45°+90°=135° …………7分 (3)解:△EFM 的周长有最小值 ∵OE =OF∴△OEF 为等腰直角三角形∴EF =2OE …………8分 ∵△OBE ≌△OMF∴BE =MF …………9分∴△EFM 的周长=EF +MF +ME =EF +BE +ME =EF +MB=2OE +6 …………10分当OE ⊥BM 时,OE 最小,此时OE =12BM =12×6=3 …………11分 ∴△EFM 的周长的最小值为32+6 …………12分第24题25. (本题满分12分) 解:(1)B (3,0) C (0,3)…………2分 设直线BC 的解析式为y =kx+b (k ≠0)39)24-+…………=32的长度有最大值94=32=32的坐标为(32,32外接圆的半径为221323+3=22………∴当∠OMB =45°时,点M 为⊙D 与直线x =32的交点 ∴点M (32,33222+)…………11分 根据对称性,(32,33222--)也满足∠OMB =45°故直线PQ 上存在点M (32,33222+)或(32,33222--),满足∠OMB =45°…………12分第25题。
2020年九年级数学上期中试卷(带答案)
解析:C 【解析】 【分析】 根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案. 【详解】
解:∵点 Pm 1,5 与点 Q3, 2 n 关于原点对称,
∴ m 1 3, 2 n 5, 解得: m 2 , n 7 , 则 m n 2 7 5
故选 C. 【点睛】
A.1
B.3
C.5
D.7
7.如图,将三角尺 ABC(其中∠ABC=60°,∠C=90°)绕点 B 按逆时针方向转动一个角度到
△A1BC1 的位置,使得点 A1、B、C 在同一条直线上,那么旋转角等于( )
A.30°
B.60°
C.90°
D.120°
8.将函数 y=kx2 与 y=kx+k 的图象画在同一个直角坐标系中,可能的是( )
2.方程 x2+x-12=0 的两个根为( )
A.x1=-2,x2=6
B.x1=-6,x2=2
C.x1=-3,x2=4
D.x1=-4,x2=3
3.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二
个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )
A. 1 6
B. 2 9
y1、y2 的大小关系(直接写出结果).
24.为满足市场需求,新生活超市在端午节前夕购进价格为 3 元/个的某品牌粽子,根据市 场预测,该品牌粽子每个售价 4 元时,每天能出售 500 个,并且售价每上涨 0.1 元,其销 售量将减少 10 个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价 的 200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为 800 元. 25.关于 x 的一元二次方程 mx2﹣(2m﹣3)x+(m﹣1)=0 有两个实数根. (1)求 m 的取值范围;
2020年九年上学期人教版九年级上册数学期中考试试卷
2020年九年上学期人教版九年级上册数学期中考试试卷一.选择题(每题3分,共30分)1.以下分别是回收、节水、绿色包装、低碳四个标志,其中是中心对称图形的是()A.B.C.D.2.一元二次方程x2﹣4x﹣4=0配方后可化为()A.(x﹣2)2=4B.(x﹣2)2=8C.(x﹣4)2=4D.(x﹣4)2=8 3.关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6B.﹣3C.3D.64.由二次函数y=3(x﹣4)2﹣2可知()A.其图象的开口向下B.其图象的对称轴为直线x=4C.其顶点坐标为(4,2)D.当x>3时,y随x的增大而增大5.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥6.如图,△OAB绕点O逆时针旋转90°到△OCD的位置,已知∠AOB=45°,则∠AOD 的度数为()A.55°B.45°C.40°D.35°7.在同一直角坐标系中,一次函数y=ax﹣b和二次函数y=﹣ax2﹣b的大致图象是()A.B.C.D.8.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2 9.方程2x2+6x﹣1=0的两根为x1、x2,则x1+x2等于()A.﹣6 B.6 C.﹣3 D.3 10.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.二.填空题(每题3分,共21分)11.点P(﹣1,2)关于坐标原点O的对称点坐标为.12.若二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是.13.将抛物线y=x2﹣2x+3向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为.14.如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积为77m2,设道路的宽为xm,则根据题意,可列方程为.15.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于.16.如图,△ABC是等边三角形,AB=3,E在AC上且AE=AC,D是直线BC上一动点,线段ED绕点E逆时针旋转90°,得到线段EF,当点D运动时,则线段AF的最小值是.17.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac<0 ②2a+b =0 ③4a+2b+c>0 ④对任意实数x均有ax2+bx≥a+b,正确的结论序号为:.三.解答题(49分)18.解方程(4分)(1)3x2﹣5x+2=0(2)(x+1)(x+3)=819.(6分)△ABC在平面直角坐标系中的位置如图,将△ABC绕点O逆时针旋转90°,得到△A1B1C1.(1)画出旋转后的△A1B1C1;(2)分别写出A1,B1,C1的坐标.20.(5分)小明遇到这样一个问题:已知:=1.求证:b2﹣4ac≥0.经过思考,小明的证明过程如下:∵=1,∴b﹣c=a.∴a﹣b+c=0.接下来,小明想:若把x=﹣1代入一元二次方程ax2+bx+c=0(a≠0),恰好得到a﹣b+c=0.这说明一元二次方程ax2+bx+c=0有根,且一个根是x=﹣1.所以,根据一元二次方程根的判别式的知识易证:b2﹣4ac≥0.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目:已知:=﹣2.求证:b2≥4ac.请你参考上面的方法,写出小明所编题目的证明过程.21.(6分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2018年市政府共投资4亿元人民币建设了廉租房16万平方米,2020年计划投资9亿元人民币建设廉租房,若在近三年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若近三年内的建设成本不变,问2021年建设了多少万平方米廉租房?22.(6分)(1)如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,试探索线段BC,DC,EC之间满足的等量关系,并证明你的结论.(2)如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论.23.(6分)如图,直线y=﹣x﹣2交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c的顶点为A,且经过点B.(1)求该抛物线的解析式;(2)若点C(m,﹣)在抛物线上,求m的值.(3)根据图象直接写出一次函数值大于二次函数值时x的取值范围.24.(8分)如图,在△ABC中,∠B=90°,AB=12cm,BC=24cm,动点P从点A开始沿边AB向点B以2cm/s的速度移动,动点Q从点B开始沿边BC向点C以4cm/s的速度移动,如果P、Q两点分别从A,B两点同时出发,设运动时间为t,(1)AP=,BP=,BQ=;(2)t为何值△时△PBQ的面积为32cm2?(3)t为何值时△PBQ的面积最大?最大面积是多少?25.(8分)如图,抛物线y=x2+bx+c的图象与x轴交于A(﹣1,0)和B(5,0),交y轴负半轴与点C.点D为抛物线的顶点.(1)求出二次函数的解析式;(2)若点P在x轴上,且∠PCB=∠CBD,求点P的坐标;(3)在BC下方的抛物线上是否存在一点Q使得以Q,C,B,O为顶点的四边形被一条对角线分成面积相等的两部分?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.参考答案一.选择题1.解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误;故选:C.2.解:x2﹣4x﹣4=0,x2﹣4x=4,x2﹣4x+4=4+4,(x﹣2)2=8,故选:B.3.解:设方程的另一个根为n,则有﹣2+n=﹣5,解得:n=﹣3.故选:B.4.解:∵y=3(x﹣4)2﹣2,∴抛物线开口向上,故A不正确;对称轴为x=4,故B正确;当x=4时,y有最小值﹣2,故C不正确;当x>4时,y随x的增大而增大,故D不正确;故选:B.5.解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.6.解:∵△OAB绕点O逆时针旋转90°到△OCD的位置,∠AOB=45°,∴△OAB≌△OCD,∠COA=90°,∴∠DOC=∠AOB=45°,∴∠AOD=∠AOC﹣∠COD=90°﹣45°=45°,故选:B.7.解:A、由一次函数y=ax﹣b的图象可得:a>0,﹣b>0,此时二次函数y=﹣ax2﹣b 的图象应该开口向下,顶点的纵坐标﹣b大于零,故A正确;B、由一次函数y=ax﹣b的图象可得:a<0,﹣b>0,此时二次函数y=﹣ax2﹣b的图象应该开口向上,顶点的纵坐标﹣b大于零,故B错误;C、由一次函数y=ax﹣b的图象可得:a<0,﹣b>0,此时二次函数y=﹣ax2+b的图象应该开口向上,故C错误;D、由一次函数y=ax﹣b的图象可得:a>0,﹣b>0,此时抛物线y=﹣ax2﹣b的顶点的纵坐标大于零,故D错误;故选:A.8.解:∵函数的解析式是y=﹣(x+1)2+a,如右图,∴对称轴是x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选:A.9.解:由于△>0,∴x1+x2=﹣3,故选:C.10.解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=x2;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=﹣x2+2x,故选:B.二.填空题11.解:点P(﹣1,2)关于坐标原点O的对称点坐标为:(1,﹣2).故答案为:(1,﹣2).12.解:∵二次函数y=kx2﹣6x+3的图象与x轴有交点,∴b2﹣4ac=36﹣4×k×3=36﹣12k≥0,且k≠0,解得:k≤3,且k≠0,则k的取值范围是k≤3,且k≠0,故答案为:k≤3,且k≠0.13.解:将y=x2﹣2x+3化为顶点式,得y=(x﹣1)2+2.将抛物线y=x2﹣2x+3向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为y=(x﹣1﹣3)2+2+1,即y=(x﹣4)2+3.故答案为y=(x﹣4)2+3.14.解:∵道路的宽应为x米,∴由题意得,(12﹣x)(8﹣x)=77,故答案为:(12﹣x)(8﹣x)=77.15.解:∵DC∥AB,∴∠ACD=∠CAB=65°,由旋转的性质可知,AD=AC,∠DAE=∠CAB=65°,∴∠ADC=∠CAB=65°,∴∠CAD=50°,∴∠CAE=15°,∴∠BAE=50°,故答案为:50°.16.解:如图所示,过E作EG⊥BC于G,过A作AP⊥EG于P,过F作FH⊥EG于H,则∠DGE=∠EHF=90°,∵∠DEF=90°,∴∠EDG+∠DEG=90°=∠HEF+∠DEG,∴∠EDG=∠FEH,又∵EF=DE,∴△DEG≌△EFH(AAS),∴HF=EG,∵△ABC是等边三角形,AB=3,AE=AC,∴AE=2,CE=1,∠AEH=∠CEG=30°,∴CG=CE=,AP=AE=1,∴EG=CG=,∴HF=,∴当点D运动时,点F与直线GH的距离始终为个单位,∴当AF⊥EG时,AF的最小值为AP+HF=1+,故答案为:1+.17.解:∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴的下方,∴c<0,∴ac<0,故①正确.∵对称轴x=﹣=1,∴2a=﹣b,∴b+2a=0,故②正确;根据图象知道当x=2时,y=4a+2b+c<0,故③错误,∵当x=1时,y最小=a+b+c,∴ax2+bx+c≥a+b+c,∴ax2+bx≥a+b,故④正确.∴正确的结论序号为:①②④,故答案为:①②④.三.解答题18.解:(1)分解因式得:(3x﹣2)(x﹣1)=0,3x﹣2=0,x﹣1=0,x1=,x2=1;(2)整理得:x2+4x﹣5=0,(x+5)(x﹣1)=0,x+5=0,x﹣1=0,x1=﹣5,x2=1.19.解:(1)如图,△A1B1C1即为所求.(2)A1(﹣5,﹣3),B1,(﹣1,﹣2),C1(﹣3,﹣1).20.证明:∵=﹣2,∴4a+c=﹣2b,∴4a+2b+c=0.∵把x=2代入一元二次方程ax2+bx+c=0(a≠0),恰好得到4a+2b+c=0,∴一元二次方程ax2+bx+c=0有根,且一个根是x=2,∴△=b2﹣4ac≥0,即b2≥4ac.21.解:(1)设每年市政府投资的增长率为x,依题意,得:4(1+x)2=9,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).答:每年市政府投资的增长率为50%.(2)9×(1+50%)×(16÷4)=54(万平方米).答:2021年建设了54万平方米廉租房.22.解:(1)BD=DC+EC,理由如下:∵将线段AD绕点A逆时针旋转90°得到AE,∴AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△BAD≌△CAE(SAS)∴EC=BD,∴BC=BD+CD=CE+CD;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2.23.解:(1)当y=0时,﹣x﹣2=0,解得x=﹣2,则A(﹣2,0),当x=0时,y=﹣x﹣2=﹣2,则B(0,﹣2),设抛物线解析式为y=a(x+2)2,把B(0,﹣2)代入得a(0+2)2=﹣2,解得a=﹣,所以抛物线解析式为y=﹣(x+2)2;(2)把点C(m,﹣)代入y=﹣(x+2)2得﹣(m+2)2=﹣,解得m1=1,m2=﹣5;(3)x<﹣2或x>0.24.解:(1)根据题意得:AP=2tcm,BQ=4tcm,所以BP=(12﹣2t)cm,故答案为:2tcm,(12﹣2t)cm,4tcm;(2)△PBQ的面积S==(12﹣2t)×4t=﹣4t2+24t=32,解得:t=2或4,即当t=2秒或4秒时,△PBQ的面积是32cm2;(3)S=﹣4t2+24t=﹣4(t﹣3)2+36,所以当t为3时△PBQ的面积最大,最大面积是36cm2.25.解:(1)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=(x+1)(x﹣5)=x2﹣4x﹣5,故抛物线的表达式为y=x2﹣4x﹣5①;(2)由抛物线的表达式知,点C(0,﹣5),点D(2,﹣9),延长BD交y轴于点H,设直线BD的表达式为y=mx+n,则,解得,故直线BD的表达式为y=3x﹣15,故点H(0,﹣15);①当点P在点B的右侧时,如下图,∵OB=OC,故∠OBC=∠OCB=45°,∴∠PBH=∠PBC﹣∠CBD=135°﹣∠CBD,∠PCH=∠BCH﹣PCB∠=135°﹣∠PCB,而∠PCB=∠CBD,∴∠PBH=∠PCH,而BC=BC,∠PCB=∠CBD,∴△BCP≌△CBH(AAS),∴PB=CH,而OB=OC,故OP=OH=15,故点P的坐标为(15,0);②当点P(P′)在点B的左侧时,∵∠PCB=∠CBD,∴P′C∥BD,故设直线P′C的表达式为y=3x+t,将点C的坐标代入上式并解得t=﹣5,故直线P′C的表达式为y=3x﹣5,令y=3x﹣5=0,解得x=,故点P的坐标为(,0);综上,点P的坐标为(15,0)或(,0);(3)存在,理由:以Q,C,B,O为顶点的四边形被对角线分成面积相等的两部分,这条对角线只能是OQ,而OB=OC,故OQ是∠BOC的平分线,即OQ的函数表达式为:y=﹣x…②,联立①②并解得:x=(舍去负值),故点Q(,),当被BC平分时,由S△BCQ=,则有+﹣=,解得t=,∴Q(,)或(,).综上所述,满足条件的点Q的坐标为(,)或(,)或(,).。
初三上学期期中考试数学试卷含答案(共3套)
2019-2020学年九年级(上册)期中数学试卷一.选择题(共10小题)1.下列方程是一元二次方程的是()A.2(x﹣1)=4 B.x2+=2 C.2x2+3x+1=0 D.x+y=02.若(b+d≠0),则的值为()A.B.C.1 D.3.下列方程有两个不相等的实数根的是()A.x2+6x﹣5=0 B.3x2+6x+5=0 C.x2+4x+4=0 D.x2+2x+1=04.下列可以判断是菱形的是()A.一组对边平行且相等的四边形B.对角线相等的平行四边形C.对角线垂直的四边形D.对角线互相垂直且平分的四边形5.王师傅的蘑菇培育基地2017年产量是60吨,由于科学管理,产量逐年增加,2019年产量达到80吨如果每年的增长率相同,设增长率为x,那么可列方程()A.60(1+x)2=80 B.80(1﹣x)2=60C.60(1+2x)=80 D.60(1+x)+60(1+x)2=1406.如图,在△ABC中,点D是AB边上一点(不与A,B两点重合),下列条件:①∠ACD=∠B;②∠ADC =∠ACB;③AC2=AD•AB;④,能使△ABC∽△ACD的条件的个数为()A.1 B.2 C.3 D.47.在一个不透明的盒子里装有只有颜色不同的10个红球和若中个黄球每次从盒子里摸出一个球,记录下颜色后再放回,经过多次重复试验,发现摸到黄球的频率稳定在0.8.请估计盒子里黄球约有()A.20个B.40个C.60个D.80个8.顶角为36°的等腰三角形我们把这种三角形称为“黄金三角形”,它的底与腰的比值为.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC交AC于点D,若CD=1,则AC的长为()A.B.C.D.9.如图,菱形ABCD沿对角线AC的方向平移到菱形A'B′C′D′的位置,点A′恰好是AC的中点.若菱形ABCD的边长为2,∠BCD=60°,则阴影部分的面积为()A.B.C.1 D.10.如图,在平面直角坐标系xOy中,矩形OABC的边O在x轴上,OC在y轴上,OA=6,OC=4,PC=BC.将矩形OABC绕点O以每秒45°的速度沿顺时针方向旋转,则第2019秒时,点P的坐标为()A.(3,)B.(2,﹣1)C.(,﹣3)D.(﹣1,2)二.填空题(共5小题)11.为了检验某批足球的质量,随机抽取了100个足球,发现合格的有90个.如果从这批足球中随机取出一个,那么这个足球合格的概率约为.12.若关于x的方程kx2+(2k﹣1)x+k﹣2=0有两个相等的实数根,则k的值为.13.如图,E、F分别为矩形ABCD的边AD,BC的中点.若矩形ABCD与矩形EABF相似,AB=6,则AD的长为.14.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦方图”中,以弦为边长得到的正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”张天同学要用细塑料棒制作“赵爽弦图”,若正方形ABCD 与正方形EFCH的面积分别为169和49,则所用细塑料棒的长度为.15.如图,在矩形ABCD中,AB=3,AD=4,点E是AD边上一动点,将△ABE沿BE折叠,使点A的对应点A′恰好落在矩形ABCD的对角线上,则AE的长为.三.解答题(共8小题)16.解下列方程:(1)x2+x=0(2)2x2+4x﹣1=017.如图,在△ABC中,点D是AB的中点,DE∥BC交AC于点E,DF∥BE交AC于点F,若EF=3,求AC的长.18.如图,在正方形ABCD的上方作等边三角形ADE,连接BE,CE.(1)求证:△ABE≌△DCE;(2)连接AC,设AC与BE交于点F,求∠BFC的度数.19.课堂上,蒋老师拿出了4张分别与有数字1,2,3,4的卡片(除数字外其他都相同),让同学们随机抽取两张,并计算这两张卡片上数字的和.(1)请用列表或画树状图的方法列举出所有等可能的结果;(2)求两张卡片上数字的和大于5的概率.20.某商场新上市一款毛衣,进价是40元,当售价为80元,一天可以销售20件.若售价每降价1元,则每天可以多卖2件.设售价为x元,当天的销售量为y件.(1)销售量y与售价x之间的函数表达式为;(2)在尽可能增大销售量的前提下,问这款毛衣降价后的售价为多少元时,商场当天可获利1200元?21.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点E是斜边AB上的一个动点,连接CE,过点B,C分别作BD∥CE,CD∥BE,BD与CD相交于点D.(1)当CE⊥AB时,求证:四边形BECD是矩形;(2)填空:①当BE的长为时,四边形BECD是菱形;②在①的结论下,若点P是BC上一动点,连接AP,EP,则AP+EP的最小值为.22.正方形ABCD与正方形DEFG按如图1放置,点A,D,G在同一条直线上,点E在CD边上,AD=3,DE =,连接AE,CG.(1)线段AE与CC的关系为;(2)将正方形DEFG绕点D顺时针旋转一个锐角后,如图2,请问(1)中的结论是否仍然成立?请说明理由(3)在正方形DEFG绕点D顺时针旋转一周的过程中,当∠AEC=90°时,请直接写出AE的长.23.如图在平面直角坐标系xOy中,直线y=﹣x+6与x轴、y轴分别交于B、A两点,点P从点A开沿y 轴以每秒1个单位长度的速度向点O运动,点Q从点A开始沿AB向点B运动(当P,Q两点其中一点到达终点时,另一点也随之停止运动)如果点P,Q从点A同时出发,设运动时间为t秒.(1)如果点Q的速度为每秒个单位长度,那么当t=5时,求证:△APQ∽△ABO;(2)如果点Q的速度为每秒2个单位长度,那么多少秒时,△APQ的面积为16?(3)若点H为平面内任意一点,当t=4时,以点A,P,H,Q四点为顶点的四边形是矩形,请直接写出此时点H的坐标.参考答案与试题解析一.选择题(共10小题)1.下列方程是一元二次方程的是()A.2(x﹣1)=4 B.x2+=2 C.2x2+3x+1=0 D.x+y=0【分析】根据一元二次方程的定义进行判断,只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.【解答】解:A、是一元一次方程,故本选项不合题意;B、不是一元二次方程,是分式方程,故本选项不合题意;C、是一元二次方程,故本选项符合题意;D、是二元一次方程,故本选项不合题意;故选:C.2.若(b+d≠0),则的值为()A.B.C.1 D.【分析】根据合比的性质进行解答即可.【解答】解:∵若(b+d≠0),∴=.故选:A.3.下列方程有两个不相等的实数根的是()A.x2+6x﹣5=0 B.3x2+6x+5=0 C.x2+4x+4=0 D.x2+2x+1=0【分析】利用根的判别式△=b2﹣4ac逐一求出四个方程的△的值,取其为正值的选项即可得出结论.【解答】解:A、∵△=62﹣4×1×(﹣5)=56>0,∴一元二次方程x2+6x﹣5=0有两个不相等的实数根,A符合题意;B、∵△=62﹣4×3×5=﹣24<0,∴一元二次方程3x2+6x+5=0没有实数根,B不符合题意;C、∵△=42﹣4×1×4=0,∴一元二次方程x2+4x+4=0有两个相等的实数根,C不符合题意;D、∵△=22﹣4×1×1=0,∴一元二次方程x2+2x+1=0有两个相等的实数根,D不符合题意.故选:A.4.下列可以判断是菱形的是()A.一组对边平行且相等的四边形B.对角线相等的平行四边形C.对角线垂直的四边形D.对角线互相垂直且平分的四边形【分析】由菱形的判定依次判断可求解.【解答】解:A、一组对边平行且相等的四边形是平行四边形,不一定是菱形,故A选项不符合题意;B、对角线相等的平行四边形是矩形,故B选项不符合题意;C、对角线垂直的四边形不一定是菱形,故C选项不符合题意;D、对角线互相垂直且平分的四边形是菱形,故D选项符合题意;故选:D.5.王师傅的蘑菇培育基地2017年产量是60吨,由于科学管理,产量逐年增加,2019年产量达到80吨如果每年的增长率相同,设增长率为x,那么可列方程()A.60(1+x)2=80 B.80(1﹣x)2=60C.60(1+2x)=80 D.60(1+x)+60(1+x)2=140【分析】设增长率为x,根据王师傅的蘑菇培育基地2017年及2019年的产量,即可得出关于x的一元二次方程,此题得解.【解答】解:设增长率为x,依题意,得:60(1+x)2=80.故选:A.6.如图,在△ABC中,点D是AB边上一点(不与A,B两点重合),下列条件:①∠ACD=∠B;②∠ADC =∠ACB;③AC2=AD•AB;④,能使△ABC∽△ACD的条件的个数为()A.1 B.2 C.3 D.4【分析】由∠A是公共角,根据有两组角对应相等的两个三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似,判定△ABC与△ACD相似,即可得出结果.【解答】解:∵∠A是公共角,∴当∠ACD=∠B时,△ADC∽△ACB(有两组角对应相等的两个三角形相似);当∠ADC=∠ACB时,△ADC∽△ACB(有两组角对应相等的两个三角形相似);当AC2=AD•AB时,即,△ADC∽△ACB(两组对应边的比相等且夹角对应相等的两个三角形相似).当时,∠A不是夹角,则不能判定△ADC与△ACB相似;∴能够判定△ABC与△ACD相似的条件是:①②③.故选:C.7.在一个不透明的盒子里装有只有颜色不同的10个红球和若中个黄球每次从盒子里摸出一个球,记录下颜色后再放回,经过多次重复试验,发现摸到黄球的频率稳定在0.8.请估计盒子里黄球约有()A.20个B.40个C.60个D.80个【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:设盒子里黄球约有x个,根据题意得:=0.8,解得:x=40,答:盒子里黄球约有40个;故选:B.8.顶角为36°的等腰三角形我们把这种三角形称为“黄金三角形”,它的底与腰的比值为.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC交AC于点D,若CD=1,则AC的长为()A.B.C.D.【分析】根据黄金三角形的腰与底的比值即可求解.【解答】解:∵在△ABC中,∠A=36°,AB=AC,∴∠ABC=∠ACB=72°,∵BD平分∠ABC,∴∠DBC=∠ABD=36°,∴AD=BD,∴∠BDC=72°,∴BD=BC,∴△ABC和△BDC都是顶角为36°的等腰三角形.∵顶角为36°的等腰三角形为“黄金三角形”,它的底与腰的比值为,∴==即==∴BC=,AC=.故选:D.9.如图,菱形ABCD沿对角线AC的方向平移到菱形A'B′C′D′的位置,点A′恰好是AC的中点.若菱形ABCD的边长为2,∠BCD=60°,则阴影部分的面积为()A.B.C.1 D.【分析】先求出菱形ABCD的面积,由平移的性质可得四边形A'ECF的面积是▱ABCD面积的,即可求解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AD=2=CD,∠DCA=∠BCD=30°,∴A'D=1,A'C=DA'=,∴菱形ABCD的面积=4××A'D×A'C=2,如图,由平移的性质得,▱ABCD∽▱A'ECF,且A'C=AC,∴四边形A'ECF的面积是▱ABCD面积的,∴阴影部分的面积==,故选:B.10.如图,在平面直角坐标系xOy中,矩形OABC的边O在x轴上,OC在y轴上,OA=6,OC=4,PC=BC.将矩形OABC绕点O以每秒45°的速度沿顺时针方向旋转,则第2019秒时,点P的坐标为()A.(3,)B.(2,﹣1)C.(,﹣3)D.(﹣1,2)【分析】将矩形OABC绕点O以每秒45°的速度沿顺时针方向旋转,360°÷45°=8,8秒循环一次,因为2019÷8=252余数为3,推出第2019秒时,点P旋转到如图P′处,作C′E⊥OC于E,P′F⊥C′E,利用等腰直角三角形的性质即可解决问题.【解答】解:∵将矩形OABC绕点O以每秒45°的速度沿顺时针方向旋转,360°÷45°=8,∴8秒循环一次,∵2019÷8=252余数为3,∴第2019秒时,点P旋转到如图P′处,作C′E⊥OC于E,P′F⊥C′E,由题意△P′C′F,△OEC′都是等腰直角三角形,∴OE=C′E=×4=2,P′F=C′F=×2=,∴P′(,﹣3),故选:C.二.填空题(共5小题)11.为了检验某批足球的质量,随机抽取了100个足球,发现合格的有90个.如果从这批足球中随机取出一个,那么这个足球合格的概率约为90% .【分析】用样本估计总体的思想解决问题即可.【解答】解:由题意,随机抽取了100个足球,发现合格的有90个,所以这个足球合格的概率约=90%,故答案为90%.12.若关于x的方程kx2+(2k﹣1)x+k﹣2=0有两个相等的实数根,则k的值为﹣.【分析】根据一元二次方程的定义及根的判别式△=0,即可得出关于k的一元一次不等式及一元一次方程,解之即可得出结论.【解答】解:∵关于x的方程kx2+(2k﹣1)x+k﹣2=0有两个相等的实数根,∴,解得:k=﹣.故答案为:﹣.13.如图,E、F分别为矩形ABCD的边AD,BC的中点.若矩形ABCD与矩形EABF相似,AB=6,则AD的长为6.【分析】根据相似多边形的性质列出比例式,计算即可.【解答】解:∵矩形ABCD与矩形EABF相似,∴=,即,解得,AD=6,故答案为:6.14.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦方图”中,以弦为边长得到的正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”张天同学要用细塑料棒制作“赵爽弦图”,若正方形ABCD 与正方形EFCH的面积分别为169和49,则所用细塑料棒的长度为100 .【分析】根据正方形的面积可得两个正方形的边长分别为13和7,再根据勾股定理可求得直角三角形的两条直角边长,进而求解.【解答】解:∵正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,∴AE=BF,∠AEB=90°,∵正方形ABCD与正方形EFCH的面积分别为169和49,∴AB=13,EF=7,在Rt△ABE中,BE=BF﹣EF=AE﹣7根据勾股定理,得AE2+BE2=AB2,即AE2+(AE﹣7)2=132解得,AE=12,所以BE=12﹣7=5,所以所用细塑料棒的长度为:4(AB+AE)=4(13+12)=100.故答案为100.15.如图,在矩形ABCD中,AB=3,AD=4,点E是AD边上一动点,将△ABE沿BE折叠,使点A的对应点A′恰好落在矩形ABCD的对角线上,则AE的长为.【分析】由勾股定理可求BD长,由折叠的性质可得AB=A'B=3,∠A=∠BA'E=90°,AE=A'E,由勾股定理列出方程,可求AE的长.【解答】解:如图,∵AB=3,AD=4,∠A=90°,∴BD===5,∵将△ABE沿BE折叠,∴AB=A'B=3,∠A=∠BA'E=90°,AE=A'E,∴A'D=BD﹣A'B=2,∵DE2=A'E2+A'D2,∴(4﹣AE)2=AE2+4,∴AE=,故答案为:.三.解答题(共8小题)16.解下列方程:(1)x2+x=0(2)2x2+4x﹣1=0【分析】(1)根据因式分解法即可求出答案;(2)根据配方法即可求出答案;【解答】解:(1)∵x2+x=0,∴x(x+1)=0,∴x=0或x=﹣1;(2)∵2x2+4x﹣1=0,∴x2+2x=,∴(x+1)2=,∴x=﹣1±;17.如图,在△ABC中,点D是AB的中点,DE∥BC交AC于点E,DF∥BE交AC于点F,若EF=3,求AC的长.【分析】通过证明△ADE∽△ABC,可得=,可得AC=2AE,通过证明△ADF∽△ABE,可得=,可求AF=EF=3,即可求解.【解答】解:∵点D是AB的中点,∴AB=2AD=2DB,∵DE∥BC,∴△ADE∽△ABC,∴=,∴AC=2AE,∵DF∥BE,∴△ADF∽△ABE,∴=,∴AE=2AF,且AE=AF+EF,∴EF=AF=3,∴AE=6,∴AC=2AE=12.18.如图,在正方形ABCD的上方作等边三角形ADE,连接BE,CE.(1)求证:△ABE≌△DCE;(2)连接AC,设AC与BE交于点F,求∠BFC的度数.【分析】(1)利用等边三角形的性质和正方形的性质可得∠BAE=∠CDE=150°,由“SAS”可证△ABE ≌△DCE;(2)首先得出∠ABE=∠AEB=15°,由外角性质可求解.【解答】证明:( 1)∵四边形ABCD为正方形,∴AB=AD=CD,∠BAD=∠ADC=90°,∠BAC=45°,∵三角形ADE为正三角形,∴AE=AD=DE,∠EAD=∠EDA=60°,∴∠BAE=∠CDE=150°,在△BAE和△CDE中,∴△ABE≌△DCE(SAS);(2)∵AB=AD,AD=AE,∴AB=AE,∴∠ABE=∠AEB,又∵∠BAE=150°,∴∠ABE=∠AEB=15°,∴∠BFC=∠ABE+∠BAC=60°.19.课堂上,蒋老师拿出了4张分别与有数字1,2,3,4的卡片(除数字外其他都相同),让同学们随机抽取两张,并计算这两张卡片上数字的和.(1)请用列表或画树状图的方法列举出所有等可能的结果;(2)求两张卡片上数字的和大于5的概率.【分析】(1)根据题意画出树状图得出所有等情况数,分别列举出来即可;(2)先找出两张卡片上数字的和大于5的情况数,然后根据概率公式即可得出答案.【解答】解:(1)画树状图如下共有12种等情况数,这两张卡片上数字的和分别是3,4,5,3,5,6,4,5,7,5,6,7;(2)∵共有12种等情况数,其中两张卡片上数字的和大于5的有4种,∴两张卡片上数字的和大于5的概率是=.20.某商场新上市一款毛衣,进价是40元,当售价为80元,一天可以销售20件.若售价每降价1元,则每天可以多卖2件.设售价为x元,当天的销售量为y件.(1)销售量y与售价x之间的函数表达式为y=﹣2x+180 ;(2)在尽可能增大销售量的前提下,问这款毛衣降价后的售价为多少元时,商场当天可获利1200元?【分析】(1)设售价为x元,根据售价每降低1元,平均每月多售出2件.可得平均每月的销售量y(件)与x满足的函数关系式;(2)根据销售利润=一件毛衣的利润×销售童装的数量可得方程,利用方程求解.【解答】解:(1)设售价为x元,则平均每月的销售量y(件)与x满足的函数关系式为:y=20+2(80﹣x),化简整理,得y=﹣2x+180;故答案是:y=﹣2x+180;(2)根据题意,得(x﹣40)(﹣2x+180)=1200,解得x1=70,x2=60.因为是尽可能增大销售量,所以x=60符合题意.答:这款毛衣降价后的售价为60元时,商场当天可获利1200元.21.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点E是斜边AB上的一个动点,连接CE,过点B,C分别作BD∥CE,CD∥BE,BD与CD相交于点D.(1)当CE⊥AB时,求证:四边形BECD是矩形;(2)填空:①当BE的长为时,四边形BECD是菱形;②在①的结论下,若点P是BC上一动点,连接AP,EP,则AP+EP的最小值为3.【分析】(1)根据矩形的判定:有一个角是直角的平行四边形是矩形即可证明;(2)①根据菱形的判定定理:对角线互相垂直的平行四边形是菱形即可求解;②根据对称性:连接ED交BC于点P,此时AP+EP=AD,最小,再过点D作DF垂直AC的延长线于点F,根据勾股定理即可求解.【解答】解:如图所示:(1)∵BD∥CE,CD∥BE,∴四边形BDCE是平行四边形,∵CE⊥AB,∴∠BEC=90°,∴四边形BECD是矩形;(2)①当BE的长为时,四边形BECD是菱形.理由如下:连接ED,与BC交于点O,∵四边形BDCE是平行四边形,当BC和DE互相垂直平分时,四边形BDCE是菱形,BO=BC=3,OE=AC=2,∴根据勾股定理,得BE===.故答案为.②连接AD,与BC交于点P,连接PE,此时PD=PE,AP+EP最小,∴AP+PE=AP+PD=AD,过点D作DF垂直于AC的延长线于点F,得矩形ODFC,∴CF=OD=2,DF=OC=3,∴AF=AC+CF=6,∴在Rt△ADF中,根据勾股定理,得AD===3.∴AP+EP的最小值为3.故答案为3.22.正方形ABCD与正方形DEFG按如图1放置,点A,D,G在同一条直线上,点E在CD边上,AD=3,DE =,连接AE,CG.(1)线段AE与CC的关系为AE=CG,AE⊥CG;(2)将正方形DEFG绕点D顺时针旋转一个锐角后,如图2,请问(1)中的结论是否仍然成立?请说明理由(3)在正方形DEFG绕点D顺时针旋转一周的过程中,当∠AEC=90°时,请直接写出AE的长.【分析】(1)延长AE交CG于点H,证△ADE≌△CDG,可得到AE=CG,∠EAD=∠GCD,再证∠CHE=90°,即可得出结论;(2)设AE与CG交于点H,证∴△ADE≌△CDG,可得到AE=CG,∠EAD=∠GCD,再证,∠CHP=90°,即可得出结论;(3)分两种情况讨论,当点E旋转到线段CG上时,过点D作DM⊥AE于点M,构造等腰直角三角形DME 和直角三角形ADM,可通过勾股定理分别求出ME,AM的长即可;当点E旋转到线段CG的延长线上时,过点D作DN⊥CE于点N,构造等腰直角三角形DNE和直角三角形CND,可通过勾股定理分别求出NE,CN 的长,再求出CE的长,在Rt△AEC中通过勾股定理可求出AE的长.【解答】解:(1)线段AE与CG的关系为:AE=CG,AE⊥CG,理由如下:如图1,延长AE交CG于点H,∵四边形ABCD和四边形DGFE是正方形,∴AD=CD,ED=GD,∠ADE=∠CDG=90°,∴△ADE≌△CDG(SAS),∴AE=CG,∠EAD=∠GCD,∵∠EAD+∠AED=90°,∠AED=∠CEH,∴∠GCD+∠CEH=90°,∴∠CHE=90°,即AE⊥CG,故答案为:AE=CG,AE⊥CG;(2)结论仍然成立,理由如下:如图2,设AE与CG交于点H,∵四边形ABCD和四边形DGFE是正方形,∴AD=CD,ED=GD,∠ADC=∠EDG=90°,∴∠ADC+∠CDE=∠EDG+∠CDE,即∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∠EAD=∠GCD,∵∠EAD+∠APD=90°,∠APD=∠CPH,∴∠GCD+∠CPH=90°,∴∠CHP=90°,即AE⊥CG,∴AE=CG,AE⊥CG,∴①中的结论仍然成立;(3)如图3﹣1,当点E旋转到线段CG上时,过点D作DM⊥AE于点M,∵∠AEC=90°,∠DEG=45°,∴∠AED=45°,∴Rt△DME是等腰直角三角形,∴ME=MD=DE=1,在Rt⊈△AMD中,ME=1,AD=3,∴AM===2,∴AE=AM+ME=2+1;如图3﹣2,当点E旋转到线段CG的延长线上时,过点D作DN⊥CE于点N,则∠END=90°,∵∠DEN=45°,∴∠EDN=45°,∴Rt△DNE是等腰直角三角形,∴NE=ND=DE=1,在Rt⊈△CND中,ND=1,CD=3,∴CN===2,∴CE=NE+CN=2+1,∵AC=AD=3,∴在Rt△AEC中,AE===2﹣1,综上所述,AE的长为2+1或2﹣1.23.如图在平面直角坐标系xOy中,直线y=﹣x+6与x轴、y轴分别交于B、A两点,点P从点A开沿y 轴以每秒1个单位长度的速度向点O运动,点Q从点A开始沿AB向点B运动(当P,Q两点其中一点到达终点时,另一点也随之停止运动)如果点P,Q从点A同时出发,设运动时间为t秒.(1)如果点Q的速度为每秒个单位长度,那么当t=5时,求证:△APQ∽△ABO;(2)如果点Q的速度为每秒2个单位长度,那么多少秒时,△APQ的面积为16?(3)若点H为平面内任意一点,当t=4时,以点A,P,H,Q四点为顶点的四边形是矩形,请直接写出此时点H的坐标.【分析】(1)根据已知得:直线与x、y轴的交点B(8,0)、A(0,6),AP=5,AQ=3,对应边成比例且夹角相等即可证明;(2)作QE⊥y轴于点E,用含t的式子表示AP和QE,利用三角形的面积即可求解;(3)根据题意画出矩形即可写出点H的坐标.【解答】解:(1)根据题意,得当t=5时,AP=5,AQ=3,∴B(8,0),A(0,6),∴OB=8,OA=6,∴AB=10,∴==,∠PAQ=∠BAO,∴△APQ∽△ABO;(2)如图:过点Q作QE⊥OA于点E,在Rt△AOB和Rt△AQE中,sin∠BAO==,sin∠QAE==,∴=,∴QE=t,∴S△APQ=AP•QE=16,即×t×t=16∴t=2.答:那么2秒时,△APQ的面积为16.(3)如图:设点Q的速度为每秒x个单位长度,当t=4时,AP=4,AQ=4x,∵以点A,P,H,Q四点为顶点的四边形是矩形,∴PQ∥OB,∴=,即=,∴PQ=,∴H(,6).设点Q的速度为每秒x个单位长度,当t=4时,AP=4,AQ=4x,∵以点A,P,H,Q四点为顶点的四边形是矩形,当AP为矩形对角线时,=解得x=∴Q′C==.∴H(﹣,4).所以点H的坐标为:(,6).(﹣,4).九年级上学期期中考试试卷数学试题(考试时间:120分钟,满分120分)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.关于抛物线()212y x =--,下列说法中错误的是( )A. 开口方向向上B.对称轴是直线1x =C.当x >1时,y 随x 的增大而减小D.顶点坐标为()1,2-2.如图,在⊙O 中,圆心角∠BOC =78°,则圆周角∠BAC 的大小为( )A .156°B .78°C .39°D .12°3.将函数2y x =的图像经过下列哪种平移,可以得到函数()212y x =-+的图像( ) A. 先向左平移1个单位,再向上平移2个单位B. 先向左平移1个单位,再向下平移2个单位C. 先向右平移1个单位,再向上平移2个单位D. 先向右平移1个单位,再向下平移2个单位4.如图,把直角三角板的直角顶点O 放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M ,N ,量得OM =8 cm ,ON =6 cm ,则该圆玻璃镜的半径是( )A.10 cm B .5 cm C .6 cm D .12 cm5.如图是二次函数224y x x =-++的图像,使y ≤4成立x 的取值范围是( )A. 0≤x ≤2B.x ≤0C.x ≥2D.x ≤0或x ≥26.已知⊙O 的半径为1,点P 到圆心O 的距离为d ,若关于x 的方程x 2-2x +d =0有实数根,则点P( )A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 的内部7.如图,⊙O 为△ABC 的外接圆,∠A=72°,则∠BCO 的度数为( )A .15°B .18°C .20°D .28°8.如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 且相交于点E ,则下列结论中不成立的是( )A .∠A=∠DB .= C .∠ACB=90° D .∠COB=3∠D9.如图,在平面直角坐标系xOy 中,半径为2的⊙P 的圆心P 的坐标为(-3,0),将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为( )A .1B .1或5C .3D .5 10如图,是二次函数 y=ax 2+bx+c (a ≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b >2a ;③ax 2+bx+c=0的两根分别为-3和1;④a-2b+c >0.其中正确的是____________.A. ①③B. ①④C. ②③D. ①③④二、填空题:请把最简答案直接填写在横线上(每小题3分,共18分)11.在Rt △ABC 中,∠C =90°,AC =5 cm ,BC =12 cm ,则它的外接圆的直径是 cm.12.如图是一个圆形人工湖的平面图,弦AB 是湖上的一座桥,已知桥长100 m ,测得圆周角∠ACB =30°,则这个人工湖的直径为 m.13.已知⊙O 的弦AB 的长等于⊙O 的半径,则此弦AB 所对的圆周角的度数为 .14.如果抛物线y=ax 2-2ax+5与y 轴交于点A ,那么此抛物线的对称轴是直线__________15.若二次函数y=x 2+2x+c 的最小值是7,则它的图象与y 轴的交点坐标是________16.某商品的进价为每件50元,售价为每件60元,每月可卖出200件,如果每件商品的售价上涨2元,则每月少卖10件(每件售价不能高于72元);每个月可获得最大利润是 元。
2020第一学期九年级数学期中试卷
【文库独家】2020第一学期初中教学质量监测(期考)九年级数学科试题(考试时间:100分钟 满分:120分)1. 下列二次根式中,最简二次根式是( ) A B C D2. 在等边三角形、平行四边形、矩形和圆这四个图形中,即是轴对称图形,又是中心对称图形的有( )个A .1B .2C .3D .43.有一批型号相同的杯子,其中一等品7只,二等品3只,三等品2只,从中任意取一只杯子,是二等品的概率是( ) A .112 B .16 C .14D .7124. 如果4x =是一元二次方程223x x a -=的一个根,则常数a 的值是()A .2B .2-C .2± D .4± 5. )A B .2 C D .1.4 6.下列计算正确的是( ) A = B = C = D 3=-7. 二次函数2y x =的图像向右平移3个单位,得到新图像的函数表达式为( ) A .23y x =+B .23y x =- C .()23y x =+ D .()23y x =-8. 如图,AB 是⊙O 的弦,BC 与⊙O 相切于点B ,连接OA 、OB .若∠ABC =70°,则∠A 等于( )A .15°B .20°C .30°D .70°9. 若两圆的半径分别是1cm 和5cm ,圆心距为6cm ,则这两圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离第12题10. 二次函数()212y x =++的最小值是( ) A .2 B .1 C .-3 D .2311. 二次函数222y x x =-+的图像与x 轴的交点个数是 ( ) A .0个 B .1个 C .2个 D .3个 12.二次函数2y ax bx c =++图像如图所示,下列结论错误..的是( ) A .0a > B .0b > C .0c < D .0abc >13. 将二次函数223y x x =-+化为()2y x h k =-+的形式,结果是( ) A .()214y x =++ B .()214y x =-+ C .()212y x =++ D .()212y x =-+14. 如图所示,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,则 ∠DCF 等于( ) A .80° B .50° C .40° D .20° 二、填空题(每小题4分,共16分) 15.函数y =x 的取值范围是 .16.方程22530x x ++=的解是 .17. 某个房间的地板用如图所示的黑白瓷砖铺满,每块瓷砖都是 边长相等的正方形,阴影部分是黑瓷砖,小华随意向其内部抛一三、解答题(本大题共62分) 19.计算:(每小题5分,共10分)(1)(2)(44+-20.(本题8分)某中学准备建一个面积375平方米的矩形游泳池,且游泳池的宽比长短10米,求游泳池的长与宽。
2020年初三数学上期中试卷(含答案)
点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对 称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图 形是要寻找对称中心,图形旋转 180°后与原图重合.
()
A.DE=3
B.AE=4
C.∠ACB 是旋转角 D.∠CAE 是旋转角
11.如图,已知二次函数 y ax2 bx c ( a 0 )的图象与 x 轴交于点 A(﹣1,0),
对称轴为直线 x=1,与 y 轴的交点 B 在(0,2)和(0,3)之间(包括这两点),下列结
论:
①当 x>3 时,y<0;
各路口遇到信号灯是相互独立的.
(1)如果有 2 个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用
“画树状图”或“列表”等方法写出分析过程)
(2)如果有 n 个路口,则小明在每个路口都没有遇到红灯的概率是
.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B 解析:B 【解析】 【分析】 根据一元二次方程根的判别式可得:当△=0 时,方程有两个相等的实数根;当△>0 时,方 程有两个不相等的实数根;当△<0 时,方程没有实数根. 【详解】 解:根据题意可得:
△= (4)2 -4×4c=0,解得:c=1
故选:B. 【点睛】 本题考查一元二次方程根的判别式.
2.D
解析:D 【解析】 【分析】 连接 CD,由圆周角定理得出∠BDC=90°,求出∠DCE=20°,再由直角三角形两锐角互余 求解即可, 【详解】 解:连接 CD,如图,
2020学年第一学期九年级期中考试数学试卷
2020学年第一学期九年级期中考试数学试卷一、选择题(本大题共 10小题,每小题 4 分,共 40 分。
请选出每小题中一个符合题意的选项,不选、错选均不给分)1. 若32=b a ,则b ba +的值等于( ) A .35 B .25 C . 52D . 52. 下列事件中是随机事件的是( )A .通常加热到100℃时,水沸腾B .在只装有黑球和白球的袋子里,摸出红球C .购买一张彩票,中奖D .太阳从东方升起3.已知⊙O 的半径为1cm ,点D 到圆心O 的距离为2cm ,则点D 与⊙O 的位置关系是( ) A .点D 在⊙O 外 B .点D 在⊙O 上 C .点D 在⊙O 内 D .不能确定4.某正方体的平面展开图如图所示,由此可知,原正方体“中”字所在面的对面的汉字是( )A .国B .的C .中D .梦5.如图,若31=BC DE ,则△ADE 与四边形BCED 的面积的比是( ) A .1:9 B .1:8 C .1:6 D .1:36.如图,□ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC =54°,连接AE ,则∠AEB 的度数为( )A .36°B .46°C .27°D .63°7.如图,AC ⊥BC ,AC=BC=4,以AC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作弧AB .过点O 作BC 的平行线交两弧于点D 、E ,则阴影部分的面积是( ) A.3235-π B. 543π- C. 323π- D. 34π-8.如图,Rt △ABC 中,∠C =90°,AC =3,BC =4,点P 为AB 上的一个动点,过点P 画PD ⊥AC 于点D ,PE ⊥BC 于点E ,当点P 由A 向B 移动时,四边形CDPE 周长的变化情况是( )A .逐渐变小B .逐渐变大C .先变大后变小D .不变9.如图,AC 、BC 是两个半圆的直径,∠ACP =30°,若AB=2a ,则 PQ 的值为( ) A.a B .1.5a C . a 3 D .a 3210.如图,四张大小不一的正方形纸片分别放置于矩形的四个角落,其中,①和②纸片既不重叠也无空隙.在矩形ABCD 的周长己知的情况下,知道下列哪个正方形的边长,就可以求得阴影部分的周长( )A .①B .②C . ③D . ④ 二、填空题(本大题共 6 小题,每小题 5 分,共 30 分)11.若4=x ,3=y ,则x 与y 的比例中项为____________.12.把抛物线2y x =-向左平移1个单位,然后向下平移3个单位,则平移后抛物线的解析式为________.13.如图,△ABC 中,ACB Rt ∠=∠,4AC =,3BC =,斜边AB 上一点D ,使得CD CB =,则sin ACD ∠= .第6题图 第9题图 第7题图 第10题图 第5题图第8题图 A C B DE P DBCA第13题图第4题图14.如图,已知AB ∥CD ∥EF ,AD ∶AF =3∶5,BE =12,那么CE 的长等于 . 15.直线m ax y +=和n bx y +=在同一直角坐标系中的图象如图所示,则抛物线c bx ax y ++=2的对称轴为16.如图,在矩形纸片ABCD 中,已知AB =1,BC =3,点E 在边CD 上移动,连接AE ,将多边形ABCE 沿AE 折叠,得到多边形AB'C'E ,点B 、C 的对应点分别为点B'、C'.当点E 从点C 移动到点D 的过程中,点C'移动的路径长为 .三、解答题(本大题有 8 小题,其中第17——19题各8分;第20——22题各10分;第23题12分,第24题14分,共80分.) 17.计算:(1)︒+-+-30cos 2)15.3(221π (2)已知023a b =≠,求代数式2252(2)4a b a b a b---的值18.如图,△ABC 是正方形网格图中的格点三角形(顶点在格点上),请分别在图1和图2的正方形网格内按下列要求画出格点三角形.(1)在图1中,画△DEF 与△ABC 相似,且相似比为2; (2)在图2中,画△PQR 与△ABC 相似,且相似比为5.19.如图,有四张背面完全相同的纸牌A 、B 、C 、D ,其正面分别画有四个不同的几何图形,这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率.(2)小明和小亮约定做一个游戏,其规则如下:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形,则小明获胜,否则小亮获胜,这个游戏公平吗?请用列表或画树状图的方法说明.(纸牌用A 、B 、C 、D )20.如图,从观察点A 处发现北偏东45°方向,距离为92海里的B 处有一走私船。
九年级数学上期中试卷(2020年)
D
. x 2 2x 3 0
x2 3.若分式 x 2
4x 2x
5
的值是
0,则
x 的值为
3
(
)
A.- 1
B. 5
C .- 1 或 5
D.3
4.关于 x 的一元二次方程 2 x2
bx c
0 的两个根分别为 x1
1,x2
2 ,则 x2
1 bx
1 c
0 分解因
22
式的结果为
(
)
A. 2( x 1)( x 2)
A. 2 和 -2
B. 2
C. -2
D.
无解
二、填空题(每小题 3 分,共 36 分)
() (
(
1 x 13.若 x 1、 x 2 是一元二次方程 x 2 7 x 5 0 的两根,则
1
1 x 的值是
2
) )
。
第- 1 -页 共4页
2020年最新
14 .某超市进了一批商品,每件进价为
a 元,如果想要要获利
2020年最新
九年级(上)数学期中考试
一、选择题(每小题 3 分,共 36 分)
1.下列性质中菱形有而矩形没有的是
A.对角相等
B
.对角线互相垂直
C.对边平行且相等
D
.对角线相等
2.下列关于 x 的一元二次方程中,有两个不 .相等的实数根的方程是
(
)
(
)
A. x 2 1 0
B
. x 2 2x 1 0
C. x 2 2x 3 0
B. ( x 1)( x 2)
C. 2( x 1)( x 2)
D
. ( x 1)( x 2)
2020学年第一学期九年级期中考试(数学)试题
2020学年第一学期九年级期中考试(数学)试题卷本卷考试时间120分钟,满分120分,不得使用计算器。
一、选择题(本题有10个小题, 每题3分, 共30分。
请选出各题中唯一的正确选项。
)1.二次函数y =(x -1)2-2的顶点坐标是( ) A.(1,-2) B.(-1,2) C.(-1,-2) D.(1,2) 2.将抛物线22x y =的图象先向右平移4个单位,再向下平移3个单位所得的解析式为( ) A .4)3(22+-=x y B .3)4(22-+=x y C .3)4(22+-=x yD .3)4(22--=x y3. 下列事件中,是必然事件的为( ) A .3天内会下雨 B .打开电视,正在播放广告 C .367人中至少有2人公历生日相同 D .某妇产医院里,下一个出生的婴儿是女孩 4.下列命题为真命题的是( ) A .三点确定一个圆 B .度数相等的弧相等 C .90°的圆周角所对的弦是直径 D .相等的圆心角所对的弧相等 5.如图,△ABC 内接于⊙O ,∠A =40°,则∠BOC 的度数为( ) A .20° B . 40° C . 60° D . 80° 6. 如图,AB 是⊙O 的直径,AB ⊥CD , AB =10,CD =8, 则BE 为( ) A. 2 B. 3 C . 4 D.3.57.如图,当半径为30cm 的转动轮转过1200角时,传送带上的物体A 平移的距离为( ) A. 900лcm B.300лcm C. 60лcm D.20лcm8.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,且对称轴为直线x =1,点B 坐标为(-1,0).则下面的四个结论:①2a +b =0;②4a -2b +c <0;③ac >0;④当y <0时,x <-1或x >2。
2020年九年级数学上期中试卷带答案
5.B
解析:B 【解析】 【分析】 根据:总利润=每个房间的利润×入住房间的数量-每日的运营成本,列出函数关系式,配 方成顶点式后依据二次函数性质可得最值情况.
20.如图,正五边形 ABCDE 内接于⊙O,F 是 CD 弧的中点,则∠CBF 的度数为_____.
三、解答题
21.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整
理,分成 5 个小组(x 表示成绩,单位:分),A 组:75≤x<80;B 组:80≤x<85;C 组: 85≤x<90;D 组:90≤x<95;E 组:95≤x<100.并绘制出如图两幅不完整的统计图.
x1
1,
x2
3 4
.
故选 D. 【点睛】
本题考查了勾股定理的应用和一元二次方程的解法,弄清题意,根据勾股定理列出方程是 解题的关键.
9.在一个不透明的袋子中装有 5 个黑球和 3 个白球,这些球的大小、质地完全相同,随机
地从袋子中摸出 4 个球,下列事件是必然事件的是( ).
A.摸出的 4 个球中至少有一个球是白球 B.摸出的 4 个球中至少有一个球是黑球
C.摸出的 4 个球中至少有两个球是黑球 D.摸出的 4 个球中至少有两个球是白球
∴AD= AB2 BD2 22 22 2 2 , ∴⊙O 的半径 AO= AD 2 .
2
故选 D. 【点睛】 本题考查圆周角定理;勾股定理.
4.B
解析:B 【解析】 【分析】 根据一元二次方程的定义得出 m-1≠0,m2+1=2,求出 m 的值即可. 【详解】
2020年九年级上学期期中数学试卷及答题卡
九年级上学期数学期中试卷(时间:120分钟,满分120分)学校: 班级: 姓名:一、选择题(本大题共10个小题,每小题4分,共40分)1.下列交通标志中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .2.下列方程是关于x 的一元二次方程的是( )A.02=++c bx ax B.2112=+x xC.1222-=+x x xD.)1(2)1(32+=+x x 3.抛物线3)2(32+-=x y 的顶点坐标为 ( ) A.(2-,3) B.(2,3) C.(2-,3-) D.(2, 3-)4.方程5)3)(1(=-+x x 的解是 ( ) A. 3,121-==x x B. 2,421-==x x C. 3,121=-=x x D. 2,421=-=x x5.将二次函数y=x 2+1的图象向上平移2个单位,再向右平移1个单位后的函数解析式为( )A.y=(x-1)2-1B.y=(x+1)2-1C.y=(x+1)2+3D.y=(x-1)2+36.一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,则m 等于( ) A. 6- 或1 B. 1 C. 6- D. 27.对抛物线y =-x 2+2x -3 而言,下列结论正确的是( ) A .与x 轴有两个交点 B .开口向上C .与y 轴的交点坐标是(0,3)D .顶点坐标是(1,-2)8.若点A (n,2)与点B (-3,m )关于原点对称,则n -m =( ) A .-1 B .-5 C .1 D .59.抛物线y=3x 2,y= -3x 2,y=x 2+3共有的性质是( ) A.开口向上 B.对称轴是y 轴 C.都有最高点 D.y 随x 的增大而增大10.在同一平面直角坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )二、填空题(本大题共6个小题,每小题3分,共18分)11.方程0122=-x 的二次项系数是 ,一次项系数是 常数项是 .12.若函数y =(m -3)2213m m x+-是二次函数,则m =______.13.抛物线y =2x 2-bx +3的对称轴是直线x =1,则b 的值为________.14.如果一元二方程043)222=-++-m x x m (有一个根为0,则m= . 15.下列图形中①平行四边形、②矩形、③等腰三角形、④线段、⑤菱形,既是轴对称图形又是中心对称图形的有_____(填序号).16.已知221=,422=,32=8,42=16,25=32,……观察上面规律,试猜想20172的末位数是 .三、解答题(本大题共7个小题,共62分) 17.解方程(每题4分,共12分)(1)0322=--x x (2)9)1(2=-x(3)2x 2﹣4x ﹣1=0.18.(7分)为执行“两免一补”政策,某地区2020年投入教育经费2500万元,预计2016年投入教育经费3600万元(设年平均增长率相同). (1)求每年的平均增长率.(2)按照这样的速度增长,预计到2017年投入教育经费达到多少万元?19.(7分)已知等腰三角形底边长为8,腰长是方程02092=+-x x 的一个根,求这个等腰三角形的腰长。
人教版九年级数学上册期中测试卷附答案【2020新品】
第一学期期中质量检测九年级数学试题(时间:120分钟 总分120分)答题说明:本次考试采用答题纸,请将所做题的正确答案写到指定的位置,否则不得分。
一、 选择题(本大题共20道小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.2sin60°的值等于( )A .1B .C .D .2.下面四个图案:不等边三角形、等边三角形、正方形和矩形,其中每个图案花边的宽度都相同,那么每个图形中花边的内外边缘所围成的几何图形不相似的个数有( )A .4个B .3个C .2个D .1个3.如图,在△ABC 中,DE ∥BC ,BD AD =21,BC=12,则DE 的长是( ) A .3 B .4 C .5 D .6(3题图) (5题图) (7题图) (8题图)4.如果两个相似三角形的面积比是1:4,那么它们的周长比是(△)A .1:16B .1:4C .1:6D .1:25.如图,在平面直角坐标系中,A (2,4)、B (2,0),将△OAB 以O 为中心缩小一半,则A 对应的点的坐标( )A .(1,2)B .(﹣1,﹣2)C .(1,2)或(﹣1,﹣2)D .(2,1)或(﹣2,﹣1)6.如图,在大小为4×4的正方形网格中,是相似三角形的是( )A 、①和②B 、②和③C 、①和③D 、②和④7.如图,点D (0,3),O (0,0),C (4,0)在⊙A 上,BD 是⊙A 的一条弦,则sin ∠OBD=(△)A .B .C .D .8.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是(△)A.B.C.D.29.在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB(△)A.4 B.6 C.8 D.1010.在半径为1的圆中,长度等于的弦所对的弧的度数为(△)A.90°B.145°C.90°或270°D.270°或145°11.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是()A.假设三内角都不大于60°B.假设三内角都大于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个大于60°(12题图)(13题图)(14题图)(16题图)12.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为(△)A.10海里/小时B.30海里/小时C.20海里/小时D.30海里/小时13.如图,在△ABC中,点D,E分别在边AB,AC上,且==,则S△ADE:S四边形BCED的值为(△)A.1:B. 1:3 C.1:8 D.1:914.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于(△)A.60°B.70°C.120°D.140°15.在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,以点C为圆心,以2.5cm为半径画圆,则⊙C 与直线AB的位置关系是(△)A.相交B.相切C.相离D.不能确定16.如图,有一块锐角三角形材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使其一边在BC上,其余两个顶点分别在AB、AC上,则这个正方形零件的边长为(△)A、40mm B、45mm C、48mm D、60mm17.如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=15,则△PCD的周长为(△).A.15 B.30 C.18 D.25(17题图)(18题图)18.如图,在平行四边形ABCD中,BE交AC,CD于G,F,交AD的延长线于E,则图中的相似三角形(全等除外)有(△)A.3对B.4对C.5对D.6对19.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=3,tan∠OAB=,则AB的长是(△)A.12 B.6C.8 D.3(19题图)(20题图)(21题图)(23题图)20.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为(△)A.π﹣1 B.2π﹣1 C.π﹣1 D.π﹣2二.填空题(每小题3分,共计12分。
人教版九年级数学上册期中测试卷含答案(2020必考)
第一学期期中测试题九年级数学一 选择题:本大题同12小题,每小题3分,共36分。
1.在下列电视台的图标中,是中心对称图形的是( )2.A(2,-3)关于原点对称的点在( )A.第一象限B.第二象限C.第三象限D.第三象限 3.下列方程是关于x 的一元二次方程的是( ) A.ax 2+bx+c=0 B.2112=+xx C.x 2+2x=x2-1 D.3(x+1)2=2(x+1)4.下列函数中,是二次函数的是( ) A.y=1-2x B.y=2(x-1)2+4 C.y=21(x-1)(x+4) D.y=(x-2)2-x 25.如图,△ABC 和△DCE 都是直角三角形,其中一个三角形是由另一个三角形旋转得到的,下列叙述中错误的是( )A.旋转中心是点CB.顺时针旋转角是900C.旋转中心是点B,旋转角是∠ABCD.既可以是逆时针旋转又可以是顺时针旋转第5题图 第6题图6.如图,CE 是圆O 的直径,⊙O 的直径,AB 为⊙O 的弦,EC ⊥AB,垂足为D,下面结论正确的有( ) ①AD=BD;②弧AC=弧BC ;③弧AE=弧BE ;④OD=CD.A.1个B.2个C.3个D.4个7.如图,⊙O 的两条弦AE 、BC 相交于点D,连接AC 、BE 、OA 、OB ,若∠ACB=600.则下列结论正确的是( )A.∠AOB=600B.∠ADB=600C.∠AEB=600D.∠AEB=300第7题图 第8题图 第9题图 8.一元二次方程x2-mx+2m=0有两个相等的实数根,则m 等于( )A.0或8B.0C.8D.2 9.如图所示,抛物线顶点坐标是P(1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A.x>1B.x<1C.x>3D.x<3 10.如图,⊙O 的直径AB 垂直于弦CD,垂足是E,∠A=22.50,OC=4,CD 的长为( ) A.22 B.24 C.4 D.8 11.二次函数y=ax 2+bx+c 的图象如图,点(1,,0)在函数图象上,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值大于或等于零的数有( )A.1个B.2个C.3个D.4个第11题图 第12题图12.如图所示,MN 是⊙O 的直径,弦AB ⊥MN,垂足为点D,连接AM,AN,点C 为弧AN 上一点,且弧AC=弧AM,连接CM 交AB 于点E,交AN 于点F.现给出以下结论:①AD=BD;②∠MAN=900;③弧AM=弧BM ;④∠ACM+∠ANM=∠MOB ;⑤AE=21MF.其中正确结论的个数是( ) A.2个 B.3个 C.4个 D.5个二填空题:本大题6小题,每小题3分,共18分。
2020第一学期九年级数学期中试卷
【文库独家】2020第一学期期中考试九年级数学试卷(考试时间:100分钟 满分:120分)一、选择题:(满分42分,每小题3分)下列各题都有A 、B 、C 、D 四个答案供选择,其中只有一个答案是正确AB CD 2. 如图,用放大镜将图形放大,应该属于( )A.相似变换B.平移变换C.对称变换D.旋转变换 3. 下列二次根式中属于最简二次根式的是( )A .14B .48C .baD .44+a 4.2)得( )A .2-B 2C .2D .25. 在相同时刻的物高与影长成比例,如果高为1.5米的标杆的影长为2.5米,那么影长为30米的旗杆的高是( )A.20米B.18米C.16米D.15米 6. 已知0和1-是一个一元二次方程的解,则此方程是( )A. 012=-xB. 0)1(=+x xC. 02=-x xD. 12+=x x学校 班别: 姓名 座号………………………………………………………………装………………订………………线………………………………………………得分E DCB AQPDCBA7. 若最简二次根式a a 241-+与是同类二次根式,则a 的值为( )A .43-=aB .34=a C .1=a D .1-=a8. 用配方法解下列方程,其中应在方程左右两边同时加上4的是( )A .225x x -=B .2245x x -=C .245x x +=D .225x x +=9. 若ABC DEF △∽△,且它们的面积比为94,则周长比是( ) A .8116 B .32 C .94 D .2310. 某超市一月份的营业额为200万元,一月、二月、三月的营业额共1000万元,如果平均每月增长率为x ,则由题意列方程应为( ) A .2200(1)1000x += B .10002200200=⨯+xC .10003200200=⨯+xD .22001(1)(1)1000x x ⎡⎤++++=⎣⎦11. 如图所示,D 、E 分别是ΔABC 的边AB 、AC 上的点,DE ∥BC ,并且AD ∶BD=2,那么S ΔADE ∶S 四边形DBCE =( )A .32B .43C .54D .9412.如图,在菱形ABCD 中,P 、Q 分别是AD 、AC 的中点,如果PQ=3,那么菱形ABCD 的周长是( )A .6B .18C .24D .30 13. 如果一元二次方程2320x x -=的两根为12x x ,,则21x x ⋅的值等于( )A .2B .0C .23D .32-14. 已知方程04132=--x mx 有两个不相等的实数根,则m 的值为( ) A .9-<mB .9->mC .09≠->m m 且D .09≠-<m m 且二、填空题:(满分16分,每小题4分)15. 如果关于x 的方程2(1)50mx m x +-+=有一个解是2,那么m =_______.16. 试写出一个式子,使它与13-之积不含二次根式,则这个式子是 . 17. 如图,AF ⊥BC ,CE ⊥AB ,则图中相似的三角形有 对. 18. 实数a 在数轴上的位置如图所示,化简:=-+-2)2(|1|a a 。
(金华)2020-2020学年第一学期九年级期中测试-数学试题卷参考答案及评分建议
5 2020-2020 学年第一学期九年级期中测试数学试题卷参考答案及评分建议一、单选题(共 10 题,共 30 分)1.C2.A3.D4.D5.D6.C7.A8.C9.B10.B二、填空题(共 6 题,共 24 分)11.a <112. 3 10 13.814. 2 cm 或4 cm15.32°16.(1)(3,1);(2)9.125三、解答题(共 8 题,共 66 分)17.(6 分)解:(1)y =﹣2x 2+4x +1,=﹣2(x 2-2x +1)+2+1,=﹣2(x -1)2+3,所以,对称轴是直线 x =1,顶点坐标为(1,3);(2)∵新顶点 P (-2,0),∴所得抛物线的表达式为 y =﹣2(x +2)2,∴平移过程为:向左平移 3 个单位,向下平移 3 个单位.18.(6 分)解:(1)∵一个口袋中装有 9 个只有颜色不同的球,其中 4 个白球,5 个红球,∴从中随机抽取出一个黑球的概率是: 5 ;9(2)∵往口袋中再放入 x 个白球和 y 个黑球,从口袋中随机取出一个白球的概率是 1 ,4x + 4 ∴ 9 + x + y = 1 ,则 y =3x +7. 45证明:∵AB=CD,∴∠AOB=∠COD,∴∠AOB-∠COB=∠COD-∠COB,∴∠AOC=∠BOD20.(8 分)解:(1)所有可能出现的结果如下总共有6 种结果,每种结果出现的可能性相同.所有结果中,满足AB 在同一组的结果有2 种,∴AB 恰好分在同一组的概率=2=1;6 3(2)画树状图如下:共有12 种等可能的结果,甲、乙两名选手恰好被抽中的有 2 种情况,∴甲、乙两名选手恰好被抽中的概率= 2 =1 .12 621.(8 分)解:(1)点B→B1→B2→B 经过的路径如图所示:(2)轴对称.(3)周长=2π×5=10π.【考点】二次函数综合题.【专题】综合题;二次函数图象及其性质;平移、旋转与对称.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2 时,AD=4,∴点D 的坐标为(2,4),∴将点D 坐标代入解析式得﹣16a=4,解得:a =-1 ,4抛物线的函数表达式为y =-1x2+5x ;4 2 (2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t 时,AD =-1t2+5t ,4 2∴矩形ABCD 的周长=2(AB+AD)=⎡⎛1 2 5 ⎫⎤2 ⎢(10 - 2t )+ -4t +2t ⎪⎥ ⎣⎝⎭⎦=-1t2+ 2t + 20 2=-1 (t -1)2 +41,2 2∵-1< 0 ,2∴当t=1 时,矩形ABCD 的周长有最大值,最大值为41;2(3)如图,当t=2 时,点A、B、C、D 的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD 对角线的交点P 的坐标为(5,2),2当平移后的抛物线过点 A 时,点H 的坐标为(4,4),此时GH 不能将矩形面积平分;当平移后的抛物线过点C 时,点G 的坐标为(6,0),此时GH 也不能将矩形面积平分;∴当G、H 中有一点落在线段AD 或BC 上时,直线GH 不可能将矩形的面积平分,当点G、H 分别落在线段AB、DC 上时,直线GH 过点P 必平分矩形ABCD 的面积,∵AB∥CD,∴线段OD 平移后得到的线段GH,∴线段OD 的中点Q 平移后的对应点是P,在△ OBD 中,PQ 是中位线,∴PQ =1OB = 4 ,2所以抛物线向右平移的距离是 4 个单位.23.(10 分)(1)不是(2) s =1⨯(6 3)2 = 54(3)AD=2OM∠BAC=∠G,∠AFB=∠BCG=90°∴∠ABD=∠GBC∴AD=CG∵CG=2OM∴AD=2OM224.(12 分)解:(1)把 A (-1,0)、B (3,0)代入函数解析式,可求得抛物线的表达式为:y =x 2﹣2x ﹣3;当 x =2 时,y =22﹣2×2﹣3,解得 y =﹣3,即 D (2,﹣3).设 AD 的解析式为 y =kx +b ,将 A (-1,0),D (2,﹣3)代入,可得直线 AD 的解析式为 y =﹣x ﹣1;… ............................ (5 分)(2)设 P 点坐标为(m ,﹣m ﹣1),H (m ,m 2﹣2m ﹣3),l =(﹣m ﹣1)﹣(m 2﹣2m ﹣3)化简,得 l =﹣m 2+m +2配方,得⎛ 1 ⎫2 9 l = - m - ⎪ + , ⎝⎭ 4 当 m = 1 时, l = 9 ;… ............................. (10 分)2 最大 4(3)存在满足 E 的点,它的坐标为(2,﹣2)或(2,﹣4)或(2,﹣1)或(2,﹣5)或(0,﹣3)或 (﹣2,﹣1). ............................... (12 分)。
2020年九年级数学上期中试卷(含答案)
2020年九年级数学上期中试卷(含答案)一、选择题1.如图A,B,C是上的三个点,若,则等于()A.50°B.80°C.100°D.130°2.如图,已知⊙O的半径为5,锐角△ABC内接于⊙O,BD⊥AC于点D,AB=8,则tan∠CBD的值等于()A.43B.45C.35D.343.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.4.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣45.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪.若草坪的面积为570m 2,道路的宽为xm ,则可列方程为( )A .32×20﹣2x 2=570 B .32×20﹣3x 2=570 C .(32﹣x )(20﹣2x )=570 D .(32﹣2x )(20﹣x )=5706.如图,已知圆心角∠AOB=110°,则圆周角∠ACB=( )A .55°B .110°C .120°D .125°7.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k<4B .k≤4C .k<4且k ≠3D .k≤4且k≠38.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A .6B .7C .8D .9 9.如图,从一张腰长为90cm ,顶角为120︒的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为( )A .15cmB .12cmC .10cmD .20cm10.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .49B .13C .29D .1911.用1、2、3三个数字组成一个三位数,则组成的数是偶数的概率是( )A .13B .14C .15D .1612.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0. 其中正确的个数为A .1B .2C .3D .4二、填空题13.我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.”如果设矩形田地的长为x 步,那么根据题意列出的方程为_____.14.若圆锥的底面周长为4π,母线长为6,则圆锥的侧面积等于________.(结果保留π)15.已知点C 在以AB 为直径的半圆上,连结AC 、BC ,AB =10,BC :AC =3:4,阴影部分的面积为_____.16.小明同学测量一个光盘的直径,他只有一把直尺和一块三角尺,他将直尺、光盘和三角尺按图所示方法放置于桌面上,并量出AB =3 cm ,则此光盘的直径是________ cm .17.在一个不透明的口袋中装有3个红球,1个白球,他们除了颜色外,其余均相同,若把它们搅匀后从中任意摸一个球,则摸到白球的可能性是 _________.18.如图所示,AB 是⊙O 的直径,弦CD AB ⊥于H ,30,3A CD ︒∠==,则⊙O 的半径是_______.19.Rt △ABC 中,∠C =90°,若直角边AC =5,BC =12,则此三角形的内切圆半径为________.20.如图所示过原点的抛物线是二次函数2231y ax ax a =-+-的图象,那么a 的值是_____.三、解答题21.已知:如图,AB 是⊙O 的弦,⊙O 的半径为10,OE 、OF 分别交AB 于点E 、F ,OF 的延长线交⊙O 于点D ,且AE=BF ,∠EOF=60°.(1)求证:△OEF 是等边三角形;(2)当AE=OE 时,求阴影部分的面积.(结果保留根号和π)22.为打造“文化九中,书香校园”,阜阳九中积极开展“图书漂流”活动,旨在让全体师生共建共享,校团委学生处在对上学期学生借阅登记簿进行统计时发现,在4月份有1000名学生借阅了名著类书籍,5月份人数比4月份增加10%,6月份全校借阅名著类书籍人数比5月份增加340人.(1)求6月份全校借阅名著类书籍的学生人数;(2)列方程求从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率.23.如图,在平面直角坐标系中,二次函数21262y x x =-++的图象交x 轴于点A ,B (点A 在点B 的左侧).(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围;(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n的值.24.小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.25.如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=63cm.(1)求证:AC是⊙O的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.D解析:D【解析】过B作⊙O的直径BM,连接AM,则有:∠MAB=∠CDB=90°,∠M=∠C,∴∠MBA=∠CBD,过O作OE⊥AB于E,Rt△OEB中,BE=12AB=4,OB=5,由勾股定理,得:OE=3,∴tan∠MBA=OEBE=34,因此tan∠CBD=tan∠MBA=34,故选D.3.B解析:B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.4.D解析:D【解析】试题分析:抛物线y=x2+2x﹣3与x轴的两交点横坐标分别是﹣3、1;抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.选项A,无法确定点A、B离对称轴x=﹣1的远近,无法判断y1与y2的大小,该选项错误;选项B,无法确定点A、B离对称轴x=﹣1的远近,无法判断y1与y2的大小,该选项错误;选项C,y的最小值是﹣4,该选项错误;选项D,y 的最小值是﹣4,该选项正确.故答案选D.考点:二次函数图象上点的坐标特征;二次函数的最值.5.D解析:D【解析】【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【详解】解:设道路的宽为xm,根据题意得:(32-2x)(20-x)=570,故选D.【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题关键是利用平移把不规则的图形变为规则图形,进而即可列出方程.6.D解析:D【解析】分析:根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半. 详解:根据圆周角定理,得∠ACB=12(360°-∠AOB )=12×250°=125°. 故选D . 点睛:此题考查了圆周角定理.注意:必须是一条弧所对的圆周角和圆心角之间才有一半的关系.7.B解析:B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x 轴交点的特点. 8.D解析:D【解析】【分析】由正方形的边长为3,可得弧BD 的弧长为6,然后利用扇形的面积公式:S 扇形DAB =1lr 2,计算即可.【详解】解:∵正方形的边长为3,∴弧BD 的弧长=6,∴S 扇形DAB =11lr =22×6×3=9. 故选D .【点睛】本题考查扇形面积的计算. 9.A解析:A【解析】【分析】根据等腰三角形的性质得到OE 的长,再利用弧长公式计算出弧CD 的长,设圆锥的底面圆半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长可得到r .【详解】过O 作OE AB ⊥于E ,90120OA OB cm AOB ︒∠==,=,30A B ︒∴∠∠==, 1452OE OA cm ∴==, ∴弧CD 的长1204530180ππ⨯==, 设圆锥的底面圆的半径为r ,则230r ππ=,解得15r =.故选:A .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.10.A解析:A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49, 故选A .【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.11.A解析:A【解析】【分析】【详解】解:用1,2,3三个数字组成一个三位数的所有组合是:123,132,213,231,312,321,是偶数只有2个,所以组成的三位数是偶数的概率是13;故选A.12.B解析:B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误。