ASTME186-1998射线评定中文版
ASTM E 目录中英文
ASTM E 壁厚 英寸铸钢件标准参考射线底片
厚度2英寸[51mm]以下的铸钢件标准参考射线底片1 适用范围1.1 这些参考射线底片列举了在厚度2英寸[51mm]以下的铸钢件上产生的各种缺陷的种类和等级(注1)。
注1:在E71中曾提到过这种厚度的参考射线底片,但E71中只包含了一种现在不常用的γ源——镭。
当前的文档中包括了一些已认可的缩孔或C级,,取消了裂纹类和热裂缝类, 除这两类缺陷的一张底片外。
更厚的参考射线底片可以在E186和E280中找到。
1.2 这些参考底片包括以下独立的三套(注2):(1)中压(标称250-kVp)X射线。
(2)1-MV X射线和铱-192(Ir-192)射线。
(3)2-MV到 4-MV X射线和钴-60(Co-60)射线。
每套比较的只是同一种射线产生的底片。
应该注意的是每个能量级不适用于本文中的所有厚度。
每套只作为样片提供,包括了6类已在渐增程度上定级的缺陷和4类未定级的缺陷,如下: 1.2.1 A级——气孔;等级为1到5级。
1.2.2 B级——夹砂和夹渣;等级为1到5级。
1.2.3 C级——缩孔;4类:1.2.3.1 CA——等级为1到5级。
1.2.3.2 CB——等级为1到5级。
1.2.3.3 CC——等级为1到5级。
1.2.3.4 DD——等级为1到5级。
1.2.4 D级——裂纹;1幅底片1.2.5 E级——热裂纹;1幅底片1.2.6 F级——夹杂物;1幅底片1.2.7 G级——斑点;1幅底片注2:底片组成如下:卷Ι:中压(标称250-kVp)X射线——34幅底片(5英寸×7英寸)放置在15英寸×17英寸的活页夹中。
卷II:1-MV X射线和Ir-192射线——34幅底片(5英寸×7英寸)放置在15英寸×17英寸的活页夹中。
卷III:2-MV到 4-MV X射线和Co-60射线——34幅底片(5英寸×7英寸)放置在15英寸×17英寸的活页夹中。
注3:虽然在三卷中都列出了G级——斑点,但斑点的出现取决于射线能量等级。
ASTM E186-98 译
名稱:E186-98厚壁(2-41/2in.[51-114mm])鑄鋼件的標準射線參照相片1範圍1.1本標準的射線參照相片適用于2-41/2in.[51-114mm]壁厚鑄鋼件,由以下獨立的三套相片組成:1.1.1第1冊:1-MV X射線和銥-192射線(以前的版本中稱為1-2Mev X射線)。
有28片,5×8in.(127×203mm)大小,裝于15×17in.(381×432mm)的活頁夾內。
1.1.2第2冊:2-MV X射線和鈷-60射線(以前的版本中稱為“伽馬射線”)。
包括鈷-60或相當的放射性同位素射線,以及2-4MV X射線。
有28片,5×8in.大小,裝于15×17in.的活頁夾內。
1.1.3第3冊:4-MV至30-MV X射線(以前的版本中稱為“10-24 Mev X射線”)。
有28片,5×8in.大小,裝于15×17in.的活頁夾內。
1.1.4每一套相片由按非連續性的嚴重度遞增而劃分等級的3個種類和不劃分等級僅是附加圖例的3個種類組成,如下所示:1.1.4.1A類-氣孔;嚴重度從1至5.1.1.4.2B類-砂眼和夾渣;嚴重度從1至5.1.1.4.3C類-縮孔;3個類型:(1)Type1 嚴重度從1至5.(2)Type2 嚴重度從1至5.(3)Type3 嚴重度從1至5.1.1.4.4D類-裂紋;有1圖例,1972年以前文件。
1.1.4.5E類-熱裂;有1圖例,1972年以前文件。
1.1.4.6F類-型芯夾雜;有1圖例,1972年以前文件。
1.2以英寸-磅單位制作為標準單位。
1.3本標準并不意味著闡述了所有的安全問題。
本標準用戶有責任在使用前制訂相應安全和健康細則,確認符合相應的法律法規。
2參考文獻2.1ASTM标准:E 94 射線照相检测指南E 1316 无损检测专用术語2.2ASTM 附件:2-41/2in.[51-114mm]壁厚鑄鋼件的射線參照相片:第1冊:1MV X射線和銥-192射線第2冊:2MV X射線和鈷-60射線第3冊:4MV-30MV X射線3專用術語3.1定義-本文件使用的定義和術語,參見《專用術語E 1316》D章節。
ASTM标准目录(E)
ASTM E 1000-1998 射线检验法ASTM E 1001-1999 运用纵波的浸入式脉冲回波超声法探测与评价不连续性ASTM E 100-1995 ASTM流体比重计ASTM E 1002-1996 使用超声波检漏ASTM E 1003-1995 静水压泄漏试验ASTM E 1004-1999 导电率的电磁(涡流)测量的标准规程ASTM E 1005-1997 反应堆压力容器监测E706(ⅢA)用辐射监视器的应用和分析的试验方法ASTM E 1006-1996 试验反应堆E706(Ⅱ)用的物理剂量测定结果的分析和解释ASTM E 1007-1997 通过天棚地板组件及其支承结构传导的夯击机械撞击声的现场测量方法ASTM E 1008-1997 地热和其它高温液体设备用减压阀体的安装、检验及保养法ASTM E 1009-1995 分析碳和低合金钢用光辐射真空分光仪的评估ASTM E 1010-1984 再溶化法作光谱化学分析用钢铁圆试样的制备ASTM E 1011-1996 硫酸ASTM E 101-1991 用点对面技术做铝和铝合金光谱分析的试验方法ASTM E 1012-1999 在拉伸负载下试样找平的验证ASTM E 1013-1993 有关计算机处理系统的术语ASTM E 1014-1984 室外A加权声级测量ASTM E 1016-1996 静电电子分光仪性能的规定和描述ASTM E 1017-1988 住所外窗组件的一般性能要求ASTM E 1018-1995 ASTM评价的核数据文件的应用(ENDF/A).截面和不确定文件(E706ⅡB) ASTM E 1019-1994 钢,铁,镍和钴合金中碳,硫,氮和氧含量的测定的测试方法ASTM E 10-2001 金属材料布氏硬度的标准试验方法ASTM E 1020-1996 事故报告ASTM E 1021-1995 光电池的光谱响应测量的测试方法ASTM E 102-1993 ASTM流体比重计ASTM E 1022-1994 用鱼和海水双壳类软体动物进行生物浓缩试验ASTM E 1023-1984 对水生生物及其使用的材料的危险性评估ASTM E 1024-1997 用火焰原子吸收分光光度测定法对金属和金属轴承矿石进行化学分析ASTM E 1025-1998 辐射摄影术用孔型图象质量指示仪ASTM E 1026-1995 弗里克基准剂量测定系统的使用ASTM E 1027-1992 聚合材料电离辐射的辐照量ASTM E 1028-2000 用无重铬酸盐滴定分析法对铁矿石中总铁含量的试验方法ASTM E 1029-2001 临床实验室计算机系统文献工作的标准指南ASTM E 1030-1995 金属铸件的X射线照相检验的试验方法ASTM E 1031-1996 炉渣的X射线辐射光谱测定分析的试验方法ASTM E 103-1984 金属材料的快速压痕硬度试验方法ASTM E 1032-2001 焊接件射线检验的标准试验方法ASTM E 1033-1998 在居里温度以上的F型连续焊接亚锰铁管的电磁(涡流)检验ASTM E 1034-1995 核设施工人瞬时记录ASTM E 1035-1985 核反应堆堆芯压力容器支承结构的放射性辐照量的测定ASTM E 1036-1996 使用标准电池的排列和非聚能地面光电模电气性能的标准试验方法ASTM E 1037-1984 测定回收废燃料的粒度分布ASTM E 1038-1998 通过撞击推动冰球法测定光电池组件抗冰雹能力的试验方法ASTM E 1039-1999 在全球辐射下硅非聚能器的地面光电基准电池的校准和特性的标准试验方法ASTM E 1040-1998 非集中陆地光电压参照电池的物理特性ASTM E 1041-1985 敞开式办公室隔音的测量ASTM E 104-1985 用水溶液保持恒定相对湿度ASTM E 1042-1992 镘刀抹涂或喷涂用的吸音材料的分类ASTM E 1043-1985 牛奶和奶油检验用吸管ASTM E 1044-1996 血清玻璃吸管(一般用途和船形)ASTM E 1045-1985 沙式血红蛋白吸管ASTM E 1046-1985 易处置的韦斯特格伦玻璃试管ASTM E 1047-1985 易处置的温特罗布血沉玻璃试管ASTM E 1048-1988 抗凝剂涂覆的色码试管或容器ASTM E 1049-1985 疲劳分析的周期计数ASTM E 1050-1998 管子、双扩音器和数字频率分析系统用传声材料的阻抗和吸收的试验方法ASTM E 1051-1996 马铃薯除草剂效力的评估指南ASTM E 105-1958 材料的概率取样ASTM E 1052-1996 专用杀病毒剂预期效力的试验方法ASTM E 1053-1997 对无生物环境表面杀病毒剂预期效力的试验方法ASTM E 1054-1991 在杀菌剂,卫生洗涤剂和防腐或贮藏产品中使用的抗菌剂活力失效的评估ASTM E 1055-1999 在白化兔中眼刺激性评价的试验方法ASTM E 1056-1985 一家和两家住房用太阳能家用热水设备的安装和维护ASTM E 1057-1999 建筑物和建筑系统投资的内部回报率和调整的内部回报率的测算ASTM E 1058-1985 自走式农业用车辆驾驶室内环境有毒污染的测试方法ASTM E 1059-1991 非石墨反电极的形状和尺寸的标示ASTM E 1061-2001 直读式带液晶头温度计标准规范ASTM E 106-1983 铜铍合金的化学分析试验方法ASTM E 1062-1986 用鸟类进行繁殖研究ASTM E 1063-1994 碳素钢和低合金钢中镧和铈含量的X射线辐射光谱测定的测试方法ASTM E 1064-2000 用卡尔费歇尔库仑滴定法测定有机液体中水含量的标准试验方法ASTM E 1065-1999 评估超声波探测装置特性的标准指南ASTM E 1066-1995 氨比色泄漏检验的测试方法ASTM E 1067-2001 玻璃纤维增强塑料树脂罐/容器的声辐射检验标准实施规程ASTM E 1068-1985 用模拟地热试液浸渍法测试非金属密封材料的方法ASTM E 1069-1985 密封应力下地热和/或高温操作用聚合密封材料试验的方法ASTM E 1070-1995 用磷钼兰光度测定法测定铁矿石中磷含量的方法ASTM E 107-1988 电子元件用镍的化学分析试验方法ASTM E 1073-1991 用老鼠获得药理学剖面的试验方法ASTM E 1074-1993 测算建筑物和建筑系统投资的净收益ASTM E 1075-1985 乙二醇,二甘醇,三甘醇,丙二醇和双丙二醇气味以及丙二醇味道的试验方法ASTM E 1076-1985 固体废料加工设备上的健康防护和安全记录ASTM E 1077-1991 估计钢样品脱碳深度的试验方法ASTM E 1078-1997 在螺旋电子光谱法、X射线光电子光谱法和二次离子质谱法中的样品加工ASTM E 1079-1997 透射密度计的校准ASTM E 1081-1995 用银还原滴定分析法测定铁矿石中总铁含量的试验方法ASTM E 108-2000 屋面覆盖物防火试验的标准试验方法ASTM E 1082-1990 测量车行道路面粗糙度的行车响应曲线的试验方法ASTM E 1083-2000 红辣椒热量的感官评定标准试验方法ASTM E 1084-1986 用阳光测试薄板材料的太阳能传递性(地面上)的试验方法ASTM E 1085-1995 金属的X射线辐射光谱测定分析试验方法ASTM E 1086-1994 用点对面激发技术作不锈钢的光辐射真空光谱测定分析ASTM E 1089-1986 均匀的静气压差下平板太阳能收集器的透水性的试验方法ASTM E 1090-1996 过氧化二异丙苯及其分解产物的试验方法ASTM E 1091-1998 防护板用非金属蜂窝芯子规范ASTM E 1092-1991 易处置的微型(Folin)玻璃移液管ASTM E 1093-1991 易处置玻璃(Prothrombin)移液管ASTM E 1094-1998 医用玻璃量杯ASTM E 1095-1999 普通实验室用玻璃漏斗的标准规范ASTM E 1096-1986 实验室玻璃分液漏斗ASTM E 1097-1997 直流电流等离子发射分光光谱测定分析法ASTM E 1098-1993 液态苛性钠(氢氧化钠溶液)ASTM E 1099-1996 无水苏打灰(碳酸钠,无水)ASTM E 1100-1992 公式SD-3A特种改性乙醇的气相色谱分析的试验方法ASTM E 110-1982 用轻型硬度测试仪测定金属材料压痕硬度的试验方法ASTM E 1102-1991 有关施用农用化学药物的术语定义ASTM E 1103-1996 测量亚慢性表皮毒性的试验方法ASTM E 1104-1998 医用温度计测头罩和护壳ASTM E 1105-1996 用统一的或循环的静态气压差法现场测定已安装的外窗,护墙及门渗水度的测试方法ASTM E 1106-1986 声发射传感器的一次校准ASTM E 1107-1986 测量资源回收单位操作物料通过量ASTM E 1108-1986 测量原料分选设备中产品回收的试验方法ASTM E 1109-1986 测量固体废料碎片体密度的试验方法ASTM E 1110-2001 声音清晰度等级测定的标准分类ASTM E 1111-1992 测量顶棚系统地段间减弱的测试方法ASTM E 111-1997 杨氏弹性模量、正切模量和弦切模量的试验方法ASTM E 1112-1986 病人体温定期检查用电子体温计ASTM E 1114-1992 测定铱192工业X射线源的焦点尺寸的测试方法ASTM E 1115-1991 外科手擦洗剂配方评估的试验方法ASTM E 1116-1998 杀虫剂可乳化浓缩物乳化特性的试验方法ASTM E 1117-1997 燃料酒精制造设备的设计ASTM E 1118-1995 强化热固树脂管(RTRP)的声辐射检验ASTM E 1119-1997 工业级乙二醇ASTM E 11-1995 试验用金属丝筛布筛分装置ASTM E 1120-1997 液氯ASTM E 1121-1998 建筑物和建筑系统投资的偿还率测算ASTM E 112-1996 测定平均粒度的试验方法(取代SAE AMS 2316A)ASTM E 1122-1996 用自动图象分析得到JK夹杂物额定值ASTM E 1123-1986 海军和航海船舶舱壁处理材料的声传输损失试验用试样的安装ASTM E 1124-1992 用双表面法现场测量声功率级的试验方法ASTM E 1125-1999 用平面光谱法校准初级非浓缩器的地面光电基准电池的标准试验方法ASTM E 1126-1994 有关生物量燃料的术语ASTM E 1127-1991 俄歇电子能谱学中的深度压形ASTM E 1129/E 1129M-1998 电热偶连接器ASTM E 1130-2002 使用声音清晰度指数在敞开式办公室内对谈话保密性进行客观量度的标准试验方法ASTM E 1131-1998 用热解重量分析法作成分分析的试验方法ASTM E 1132-1999 有关石英粉尘工作环境的健康要求ASTM E 1133-1986 美国政府征购的已包装的实验室设备的性能试验ASTM E 1134-1986 资源分离钢罐ASTM E 1135-1997 荧光穿透性亮度比较的试验方法ASTM E 1136-1993 径向标准试验轮胎ASTM E 1137-1997 工业用铂阻尼式温度计ASTM E 1139-1997 金属压力面产生的声辐射的连续监测ASTM E 1140-1995 气相色谱法用氮/磷热离子电离探测器测试ASTM E 114-1995 用接触法做超声波脉冲回波纵波检验ASTM E 1142-1997 与热力学特性相关的术语ASTM E 1143-1999 根据试验参数测定光电器件参数线性度的标准试验方法ASTM E 1146-1997 盐酸(工业级盐酸)ASTM E 1147-1992 用液体色谱法估算分配系数(N-辛醇/水)的试验方法ASTM E 1148-2002 水溶解度测量用标准试验方法ASTM E 1150-1987 与疲劳相关的名词术语ASTM E 1151-1993 离子色谱法名词和相关术语ASTM E 115-1997 光辐射光谱分析中的照片冲洗标准规范ASTM E 1152-1995 测定J-R曲线的试验方法ASTM E 1153-1994 无生命非食品接触面用推荐的消毒器的效力的测试ASTM E 1154-1989 活塞或柱塞操作的容量测量装置ASTM E 1155-1996 使用F-数字制测定楼板平正度和水平度的试验方法ASTM E 1155M-1996 使用F-数字制测定楼板平正度和水平度的试验方法(米制)ASTM E 1156-1988 暴露在合成非晶态硅土下的工作岗位的健康要求ASTM E 1157-1987 可重复使用的实验室玻璃器皿的取样和试验ASTM E 1158-1998 金属和金属合金生产材料的脉冲纵波超声检验用的标准块的材料选择与制造ASTM E 1159-1998 热电偶材料的标准规范.铂-铑合金和铂ASTM E 1160-1987 太阳能家用热水系统的现场检查和操作验证ASTM E 1161-1995 半导体和电子元件的放射性的测试方法ASTM E 116-1997 光谱化学分析中的照片光度学ASTM E 1162-1987 二次离子质谱法(SIMS)中报告溅射深度截面数据ASTM E 1163-1998 评定剧毒口服灭鼠剂的试验方法ASTM E 1164-1994 获取物体颜色评定用分光光度计数据ASTM E 1165-1992 用针孔成象法测量工业X射线管焦点的试验方法ASTM E 1166-2000 道路网水平路面管理ASTM E 1167-1987 停止操作的辐射防护计划ASTM E 1168-1995 核设施工人辐射防护训练ASTM E 1169-1989 耐久性试验的实施ASTM E 1170-1997 车行道路面纵剖面图的摸拟行车响应曲线ASTM E 1171-2001 在循环温度和湿度环境下光电模数的标准试验方法ASTM E 1172-1987 波长扩散X射线分光仪的描述和规定ASTM E 1173-2001 评定手术前和导管插入术前或注射前皮肤处理的标准试验方法ASTM E 1174-1994 评价卫生保健人员洗手模式的测试方法ASTM E 1175-1987 用大直经积分球测定材料的太阳能或光反射性,透明性和吸收性的试验方法ASTM E 1177-1998 防冻级乙二醇ASTM E 1178-1997 丙烯腈分析的测试法ASTM E 1179-1987 敞开式办公室元件和系统测试用声源ASTM E 1180-1994 宏观结构检验用硫印痕制备ASTM E 1181-1987 描述双重粒度特性的测试方法(代替 SAM AMS 2316A)ASTM E 118-1989 铜铬合金的化学分析试验方法ASTM E 1182-2001 用径向切割法测量表层厚度的标准试验方法ASTM E 1183-1987 为进一步分析用的风干回收废燃料RD-5的试验方法ASTM E 1184-1998 电热(石墨加热炉)原子吸收分析ASTM E 1185-1993 为评估在建筑物和建筑系统上投资对经济方法的选择ASTM E 1186-1998 建筑物外层漏气的现场检验ASTM E 1187-1997 与实验室认可相关的标准术语ASTM E 1188-1995 通过技术调研人员对信息和物理项进行收集和保存ASTM E 1189-1987 微型滴定管(科赫型)ASTM E 1190-1995 安装在结构构件中的传动粉料扣件强度的试验方法ASTM E 1191-1997 用海水糠虾进行生命周期毒性试验指南ASTM E 119-2000 建筑结构和材料防火试验的标准试验方法ASTM E 1192-1997 用鱼、大型无脊椎动物和两栖动物身上流出的含水物质进行剧毒试验ASTM E 1193-1997 用水蚤属magna进行延长生命周期毒性试验ASTM E 1194-1987 蒸气压力的试验方法ASTM E 1195-1987 测量土壤和沉积物中有机化学药物吸收常数(Koc)的试验方法ASTM E 1197-1987 进行陆地土壤芯样缩影测试的指南ASTM E 1198-1987 用泵采集浮流生物ASTM E 1199-1987 用克--朋氏浮游生物采样器采集浮游生物ASTM E 1-1998 ASTM温度计(试验方法9501-联邦试验方法NO.791b)ASTM E 1200-1987 浮游生物防腐ASTM E 1201-1987 用圆锥形拖网采集浮游生物ASTM E 120-2000 钛和钛合金化学分析的标准试验方法ASTM E 1202-1987 开发微核检测标准ASTM E 1203-1998 含水毒理学中动物试验用作为受试动物食品的海水小虾类ASTM E 1204-1997 食品加工用γ辐射装置在操作和特性上的剂量测定的应用ASTM E 1205-1999 用高铈-三价铈硫酸剂量仪测定水中的吸收剂量的试验方法ASTM E 1206-1987 现有设备的计算机化ASTM E 1207-1987 腋下除臭剂的感觉评定ASTM E 1208-1999 用亲油的乳化法作荧光液体渗透检验的试验方法ASTM E 1209-1999 用可水洗法作荧光液体渗透检验的试验方法ASTM E 1210-1999 用亲水的乳化法作荧光液体渗透检验的试验方法ASTM E 1211-1997 用表面安装的声辐射探测器作泄漏探测和定位ASTM E 121-1983 铜碲合金的化学分析试验方法ASTM E 1212-1999 无损检验机构质量控制体系的建立和维护ASTM E 1213-1997 热成像系统用可分辨的最小温度差的试验方法ASTM E 1214-1987 反应堆堆芯压力容器监测用熔丝温度监视器的使用ASTM E 1215-1993 测量车辆对道路粗糙度的行车响应用挂车ASTM E 1216-1999 用胶带提取法对表面微粒子污染取样的标准规程ASTM E 1217-2000 用X射线光电子光谱仪和俄歇电子光谱仪测定影响检测信号的样品面积的标准实施规范ASTM E 1218-1997 用微型海藻作静态96-H毒性试验ASTM E 1219-1999 用可移动溶剂法作荧光液体渗透检验的试验方法ASTM E 12-1970 固体、液体及气体密度和比重的有关术语ASTM E 1220-1999 用可移动溶剂法作可视性液体渗透检验的试验方法ASTM E 1221-1996 测定Kla铁素体钢的平面应变,断裂抑制,破裂韧性的试验方法ASTM E 122-1999 为估算一批产品或者一次加工过程的制品的质量对样品尺寸的选择的标准规程ASTM E 1222-1990 管子护套装置安放损耗的实验室测量用试验方法ASTM E 1224-1994 实验室鉴定用试验区分类ASTM E 1225-1999 通过隔绝--比较--轴向热流技术对固体导热性的试验方法ASTM E 1226-2000 可燃粉剂用压力和压力提高率的标准试验方法ASTM E 1228-1994 过氧脂化验分析的测试方法.催化碘滴定法ASTM E 1229-1993 次氯酸钙ASTM E 1230-1996 近似测定无水氟化氢中碳氢化合物低分子量的测试方法ASTM E 1231-2001 热不稳定材料危害潜在灵敏值计算的标准实施规程ASTM E 123-1992 蒸馏法水分测定装置ASTM E 1232-1991 化学药剂可燃性温度极限的试验方法ASTM E 1233-1996 用循环的静态气压差法测定外窗,护墙及门结构性能的试验方法ASTM E 1234-2001 宇宙飞船在环境受控区域内使用的不挥发残留物取样板的装卸、运输和安装的标准实施规程ASTM E 1234M-1995 在宇宙飞船人工控制环境中使用的挥发残渣取样板的搬运,运输和安装标准试验方法ASTM E 1235M-1995 在宇宙飞船人工控制环境中挥发残渣重量测定的标准试验方法(米制)ASTM E 1236-1991 作为参照样机的摆锤式冲击试验机的合格证明ASTM E 1237-1993 安装耦合电阻应变仪ASTM E 1238-1997 独立计算机系统之间的可转换临床观测ASTM E 1239-1994 自动化患者护理信息系统用预约/登记允许,出院,转院系统的描述ASTM E 1240-1988 风能转换系统性能的测试方法ASTM E 1241-1998 用鱼进行早期生命阶段毒性测试ASTM E 124-1994 微量化学分析用称重和干燥装置ASTM E 1242-1997 用辛醇水分配系数测定鱼因麻醉的中长致死浓度ASTM E 1245-1995 用自动图象分析测定包括钢和其它金属的含量ASTM E 1246-2001 临床实验室计算机系统可靠性报告的标准规程ASTM E 1247-1992 用分光光度法在物体色码样品中鉴别荧光粉的测试方法ASTM E 1248-1990 切碎机防爆ASTM E 1249-1993 用钴60源在硅电子装置的辐射强度试验中最小的剂量测定误差ASTM E 1250-1988 评估硅电子器件辐射强度试验用钴60辐射源的低能γ成分的电离箱的应用ASTM E 1251-1994 用氩保护气氛,点对面,单极自激发电容器放电法作铝和铝合金的光辐射光谱测定分析的测试方法ASTM E 125-1963 铁铸件的磁粉检验用参考照片ASTM E 1252-1998 定性红外线分析通用技术ASTM E 1253-1999 辐照过的摆锤式冲击试样的复原ASTM E 1254-1998 射线照片和未曝光工业用射线照相胶片的储存ASTM E 1255-1996 射线检查法ASTM E 1256-1995 辐射式温度计的测试方法(单波段型)ASTM E 1257-1993 用光谱化学分析法评定表面处理用研磨材料ASTM E 1258-1988 风扇增压装置气流校正的试验方法ASTM E 1259-2001 沸腾温度低于390℃的液体燃料中抗微生物剂评定的标准试验方法ASTM E 1260-1995 用光学无图信号光散射仪确定喷射时液滴尺寸特性的测试方法ASTM E 1261-2000 辐射处理用剂量测定体系的选择和校准的标准指南ASTM E 126-1992 流体比重计检验和验证的试验方法ASTM E 1262-1988 中国仓鼠卵巢细胞/次黄质鸟嘌呤转磷酸核糖基酶基因变异鉴定的操作ASTM E 1263-1997 哺乳动物骨髓红血球中微细胞核检验的实施ASTM E 1264-1998 吸音顶棚产品的分类ASTM E 1265-1990 气动排气消音器安放损耗测量用试验方法ASTM E 1266-1988 结构填料和其它结构中用的石灰,飞灰和重金属废料混合物的处理ASTM E 1268-2001 评定显微结构带状物等级或取向的标准实施规范ASTM E 1269-2001 用差别扫描热量测定仪测定特殊热量的标准试验方法ASTM E 1270-1988 等臂天平的测试方法ASTM E 1271-1994 热处理钢的摆锤式冲击检验试样的合格化ASTM E 127-1998 超声波标准铝合金块的制造及检验ASTM E 1272-1995 带刻度的圆柱形容器ASTM E 1273-1988 可重复使用的实验室移液管的色标ASTM E 1274-1988 用验平仪测量路面粗糙度的测试方法ASTM E 1275-1998 放射铬箔剂量测定系统的使用ASTM E 1276-1996 有机玻璃剂量测定系统的使用ASTM E 1277-1996 用ICP(感耦等离子体)氩气等离子体光谱测定法对锌-5%铝-铈合金作化学分析的试验方法ASTM E 1278-1988 排除现场跟综退役用放射通道的分类法ASTM E 1279-1989 用摇瓶衰减弱法作生物降解的试验方法ASTM E 1280-1997 哺乳动物细胞诱变性用老鼠淋巴瘤鉴定实施ASTM E 1281-1989 核设备退役计划ASTM E 128-1999 实验室用刚性多孔过滤器的最大孔隙直经和渗透性的试验方法ASTM E 1282-1998 规定金属及其合金的化学成分并选择取样的实际操作与定量分析方法ASTM E 1283-1989 计算机综合制造系统的采购ASTM E 1284-1997 新生物医学术语结构用疾病分类标准和导则ASTM E 1285-2001 λ(拉姆达)噬菌现象或它的脱氧核糖核酸的识别标准指南ASTM E 1286-1989 热疮病毒或它的脱氧核糖核酸的识别ASTM E 1287-1989 生物材料的无菌取样ASTM E 1288-1989 生物量球粒耐久性的试验方法ASTM E 1289-1997 声传输损耗的标样ASTM E 1290-1999 测量裂缝尖端开口位移(CTOD)裂缝韧性的试验方法ASTM E 1291-1999 用老鼠进行饱和蒸气吸入研究的试验方法ASTM E 129-1974 用粉末技术做热离子镍合金光谱分析的试验方法ASTM E 1292-1994 重力对流和强制通风恒温箱ASTM E 1293-1994 玻璃测量移液管ASTM E 1294-1989 用自动液体孔率计检验薄膜过滤器的孔径特性的测试方法ASTM E 1295-2001 用网纹水蚤(Dubia)进行三卵、复原毒性试验的标准指南ASTM E 1297-1996 用铌辐射激活法测量快中子反应率的试验方法ASTM E 1298-1989 生物药品中纯净度,污物和杂质的测定ASTM E 1299-1996 人体温度断续测量用可重新使用的相变换型体温计ASTM E 1300-1997 测定要求耐规定荷载的退火玻璃的最小厚度ASTM E 1301-1995 实验室技术熟练检验计划的制定和执行ASTM E 130-1987 石墨电极形状和尺寸的名称与符号ASTM E 1302-2000 在水可溶混合的金属加工液条件下对动物剧毒性测试的标准指南ASTM E 1303-1995 液相色谱法用折射指数检测器ASTM E 1304-1997 金属材料平面变形(V型槽口)断裂韧度的测试方法(代替SAE ARP 1704)ASTM E 1306-1994 化合物测定用电弧溶化时活性和耐溶金属及合金式样的制备ASTM E 1307-2000 平面遮蔽板用预硫化非金属复合面板的表面制备和与结构芯层的结构胶合的标准实施规程ASTM E 1308-1992 计算机管理材料性能数据库中聚合物(热固性合成橡胶除外)的识别ASTM E 1309-2000 数据库中纤维增强聚合物复合材料的识别的标准指南ASTM E 1310-1998 辐射铬光学波导管剂量测定系统的使用ASTM E 1311-1989 热像仪用最低可检测温差的测试方法ASTM E 131-2000 分子光谱学的相关标准术语ASTM E 1312-1999 居里温度以上铁磁圆柱棒产品的电磁(涡流)检验ASTM E 1313-1995 材料性能数据的计算机化管理用数据记录的采集和加工ASTM E 1314-1989 与计算机管理的试验报告和材料标志格式相关的结构化术语记录ASTM E 1315-1993 带有凸圆柱弯曲进入面钢的超声检验ASTM E 1316-1997 无损检验术语ASTM E 1317-1997 船舶表面涂层易燃性的试验方法ASTM E 1318-2002 根据用户要求的公路承重监测器系统和测试方法标准规范ASTM E 1319-1998 高温变形测量ASTM E 1320-1995 钛铸件用基准X射线照相ASTM E 1321-1997 测量材料引燃和火焰曼延性能的测试方法ASTM E 132-1997 室温下泊松比率的试验方法ASTM E 1322-1990 实验室认可体系评定员的选择,训练和评估ASTM E 1323-1989 实验室测量规程的评估和结果数据的统计分析ASTM E 1324-2000 超声检验装置的某些电子特性测定的标准指南ASTM E 1325-1991 与实验装置设计相关的术语ASTM E 1326-1998 细菌计数用的非常规微生物试验的评价ASTM E 1327-1990 利用指甲部位评定个人保健洗手配方的测试方法ASTM E 1328-1999 与光电太阳能转换相关的标准术语ASTM E 1329-1996 光谱化学分析中控制图表的验证和使用ASTM E 1331-1996 用半球体几何形状的分光光度法测量反射系数和颜色的测试方法ASTM E 133-1992 蒸馏设备ASTM E 1332-1990 室外-室内透过等级测定用分类ASTM E 1333-1996 确定的试验条件下用大容器测定木制品甲醛量的测试方法ASTM E 1334-1995 建筑物或设施耐用参数的制备ASTM E 1335-1996 用吹灰法测定金条中纯金的测试方法ASTM E 1336-1996 用辐射分光法从视频显示单元中获取比色数据试验方法ASTM E 1337-1990 用参考试验轮胎测定纵向峰值制动系数的测试方法ASTM E 1338-1997 计算机化材料特性数据库的金属和合金的识别ASTM E 1339-1990 计算机管理材料性能数据库中铝合金和零件的识别ASTM E 1340-1996 计算机管理系统的快速形成原型ASTM E 1341-1996 从比色法用从辐射源中获取辐射分光数据ASTM E 1342-1997 用冷冻、冷冻干燥和低温养护法对细菌、真菌、原生生物、病毒、遗传要素以及动物和植物组织的保存ASTM E 1343-1990 平板超滤膜的分子量界限评定的测试方法ASTM E 1344-1990 燃料乙醇生产设备的评定ASTM E 1345-1998 用多次测量法降低颜色测量变异性的影响ASTM E 1346-1990 感官评定用大量取样,搬运和制备食用植物油ASTM E 1347-1997 用三色(滤色器)比色法进行颜色和色差测量的试验方法ASTM E 1348-1990 用半球体几何形状的分光光度法测量透明度和颜色的测试方法ASTM E 1349-1990 用双向几何形状的分光光度法测量反射系数和颜色的测试方法ASTM E 1350-1997 安装前、安装期间和安装之后铠装热电偶测试的试验方法ASTM E 1351-2001 现场金相复制品的生产和评定标准实施规范ASTM E 135-2001 金属、矿石及相关材料的分析化学的有关标准术语ASTM E 1352-1999 模型化装软垫家具组件的抗香烟点燃性的试验方法ASTM E 1353-1999 装软垫家具部分的耐香烟点燃性的试验方法ASTM E 1354-1999 用耗氧热量计测量材料和产品的热及可见烟雾释放率的试验方法ASTM E 1355-1997 火焰模型预测能力的评价ASTM E 1356-1998 用差示扫描量热法或差示热分析测量玻璃透过温度的试验方法ASTM E 1357-1990 用硫杆菌铁氧化剂从黄铁矿中测定铁的双浸取率的测试方法ASTM E 1358-1997 用微波炉测定颗粒木材燃料含水量的测试方法ASTM E 1359-1999 检查无损检验机构ASTM E 135a-2001 金属、矿石及相关材料的分析化学的有关标准术语ASTM E 1360-1990 按美国均匀色标系统光学学会规定说明颜色ASTM E 1361-1990 X射线光谱测定分析中元素间的效应校正ASTM E 136-1999 750℃时立式管炉中材料特性的标准试验方法ASTM E 1362-1999 非浓缩器光电二次标准电池校准的标准试验方法ASTM E 1363-1997 热机械分析仪温度校准的测试方法ASTM E 1364-1995 用静态水平仪法测量道路不平度的测试方法ASTM E 1366-1996 标准化水生物缩影:淡水ASTM E 1367-1999 用海水中和河口处生长的端足类甲壳动物作10天静态沉淀物毒性试验ASTM E 1368-1997 石棉消除项目的外观检查ASTM E 1369-1998 建筑物和建筑系统经济评估中处理不定性和风险的技术选择ASTM E 1370-1996 工作者和工作场地防护用空气取样策略ASTM E 1371-1990 磷铜合金或磷铜银合金中磷的重量分析测定的测试方法ASTM E 1372-1995 进行老鼠中90天口服毒药研究的测试方法ASTM E 1373-1992 进行老鼠的亚慢性吸入毒性研究的试验方法ASTM E 1374-1993 开放式办公室声学及其适用的ASTM标准ASTM E 1375-1990 作为隔声屏障的家具面板的区间衰减测量用测试方法ASTM E 1376-1990 墙面涂层和家俱面板的声反射区域间衰减测量用测试方法ASTM E 1377-1999 实验室开尔达玻璃烧瓶的标准规范ASTM E 1378-1999 实验室玻璃多功能缩颈蒸馏烧瓶和长劲烧瓶的标准规范ASTM E 1379-1990 实验室玻璃杜瓦瓶ASTM E 1380-1990 0.1毫升或稍大容量的多刻度实验室移液管用色码,不包括可处置的凝血酶原和一次性微量滴管ASTM E 1381-1995 临床实验室装置和计算机系统间传送信息的低级协议ASTM E 1382-1997 用半自动和自动图象分析测量平均粒度的测试方法ASTM E 1384-1999 管理的自动化原始记录的内容和结构描述指南ASTM E 1385-1995 用蒸馏法对从火灾瓦砾样品中获取的可燃或易燃液体残渣的分离和浓缩ASTM E 1386-1995 用溶剂萃取法对火灾瓦砾样品中获取的可燃或易燃液体残渣的分离和浓缩ASTM E 1387-1995 用气相色谱法对从火灾瓦砾样品中获取的可燃或易燃液体残渣的试验方法。
ASTME186-1998射线评定中文版
ASTME186-1998射线评定中文版ASTM E186-1998 射线评定中文版文献代号:E 186-98(2004重新批准)e12至4 1/2英寸[51至114毫米]厚壁钢铸件基准射线照片标准规范1本标准是在固定文献代号E186下颁发的, 紧接文献代号后的一个数字表示最初采用时的年号, 如有修改则是最近一次修改的年号。
括号内的数字表示最近一次重新批准的年号。
上标ε表示自最近一次修改或重新批准后的附加修改。
(美国)国防部的一些机构已批准采用此标准。
ε1注释—本标准于2004年1月作了附加修改。
1. 范围1.1 这些厚壁钢铸件的基准射线照片适用于名义截面厚度在2至4 1/2英寸[51至114毫米]的钢铸件。
由下述三套独立的部分组成。
1.1.1 第一卷:1-MV X射线和铱-192辐射(以前的版本中被称为“1-2 Mev-X射线”)-一套28张图例(5*8英寸,放在15*17英寸的铁环活页夹内)。
1.1.2 第二卷:2-MV X射线和钴60辐射(以前的版本中被称为“伽马射线”)。
这其中包括钴60或当量同位素,和从2-MV至4-MV的X射线—一套28张图例(5*8英寸,放在15*17英寸的铁环活页夹内)。
1.1.3 第三卷:4-MV到30MV的X射线(以前的版本中被称为“10-24Mev X射线—一套28张图例(5*8英寸,放在15*17英寸的铁环活页夹内)。
1.1.4 每套图例都包括3个苛刻度呈递增状态的非连续性分级类别,和3个非连续性不分级类别(仅作为范例)。
具体如下1.1.4.1 A类—气孔性;苛刻度从1到5。
1.1.4.2 B类—砂粒和矿渣含量;苛刻度从1到5。
1.1.4 3 C类—收缩性;有3种:第一种—苛刻度从1到5。
第二种—苛刻度从1到5。
第三种—苛刻度从1到5。
1.1.4.4 D类—裂纹;1个图例1972年前文献中的D3。
1.1.4.5 E类—热裂;1个图例见1972年前文献。
1.1.4.6 F类—镶嵌;1个图例1972年前文献中的EB3。
ASTM铸件射线检测标准及与中国标准的比较
定检测方法 � ; 根据铸件厚度选择 E 446 或 E 186 参考 级 : A � 2% ; B 级 : B � 1 .5% ; 当透 照 厚度 小于 � 10 m m 时, = 2% �要求使用的像质计为线性像质 照片和铸件照片对比进行评定和验收� A STM 铸钢 B 56 77 有很大的不同� 以下重 件射线检测标准和 G 点介绍铸钢件 A STM R T 标准的主要内容, 就某些关 键事项与 G B 56 77 标准进行比较, 并就各自特点进 � 行分析 计� 从上述的区别可以看出, 通常情况下, A STM 标 准对灵敏度的要求比 G B 56 77 低或者相当 � A STM 标准将更多的权利给予采购方和供货方�
点是否能在底片中显示出来主要是由结晶几何形状 和结晶与射线发生的方向所决定 , 于是对于样品 , 射
线方向的任何改变将会显著影响衍射斑点的形状, 是用吸收性材料放在薄的部分上使得不同部分的吸 � � 所以可以通过使工件从射线方向倾斜 1 5 或者只 是稍微移动一下射线中心线方向, 任何缩孔等其它 缺陷的影像将会移动一点点 , 而任何斑点的形状将 会显著改变 �还有一种办法就是提高电压以减少衍 射斑点数� 在 X 射线照片中, 热裂纹和条状缩松的显示很 相似, 当难以辨别而无法确定是热裂纹和条状缩松 时, 应当在出现此缺陷的该区域所有表面进行打磨, 用磁粉或渗透检测表面, 如果没有检测出该显示的 裂纹, 则认为是缩松� B 56 77 中, 在G 缺陷种类中没有白点; 缺陷评定 是根据具体的数据表格中允许的数量, 尺寸来进行 的� 在实际用伽马射线检测铸件中 , 白点的检出率 极低 �在我公司承接的铸件检测任务中, 17 万张底 片中仅有一张缺陷显示为白点� 但是白点也属于和 B 56 77 标准检测 裂纹一样的危害缺陷 , 所以在用 G 时也不能放过白点类缺陷� 虽然 A STM 的评定方法 并不是根据具体的数据去度量从而定级别, 这并不 A S TM , 代表按照 标准评定铸件底片更主观 相反 , 要 求评片人员更要综 合� 均衡地 考虑缺陷的尺 寸� 数 量� 分布等状态对缺陷进行全面评估 �
ASTM E186-2010
Designation:E186–10Standard Reference Radiographs forHeavy-Walled(2to41⁄2-in.(50.8to114-mm))Steel Castings1 This standard is issued under thefixed designation E186;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(´)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.Scope1.1These reference radiographs2illustrate various catego-ries,types and severity levels of discontinuities occurring in steel castings that have section thicknesses of2to less than41⁄2 in.(50.8to114mm).The reference radiographfilms are an adjunct to this document and must be purchased separately from ASTM International,if needed(see2.2).Categories and severity levels for each discontinuity type represented by these reference radiographs are described in1.2.1.Note that the basis of application for these reference radiographs requires a prior purchaser/supplier agreement of radiographic examination at-tributes and classification criterion as described in Sections4, 6,and7of this standard.Reference radiographs for other steel casting thicknesses may be found in Reference Radiograph standards E446and E280.Reference Radiograph standards E446and E280provide some overlap of severity levels for similar discontinuity categories within the same energy level range(see4.2,5.1,and6.3)1.2These reference radiographs consist of three separate volumes as follows:1.2.1V olume I:1–MV X Rays and Iridium192(called“1to 2–Mev X rays”in previous editions)-Set of28plates(nominal 5by8in.(127by203mm)in a15by17in.(381by432mm) ring binder).1.2.2V olume II:2–MV X Rays and Cobalt-60(called “gamma rays”in previous editions).This includes cobalt-60or equivalent isotope radiation and from2–MV up to4–MV X rays-Set of28plates(nominal5by8in.)in a15by17in.ring binder.1.2.3V olume III:4–MV to30–MV X rays(called“10to24 Mev X rays”in previous editions)-Set of28plates(nominal5 by8in.)in a15by17in.ring binder.1.2.4Unless otherwise specified in a purchaser supplier agreement(see1.1),each volume is for comparison only with production radiographs produced with radiation energy levels within the thickness range covered by this standard.Each volume consists of three categories of graded discontinuities in increasing severity levels,and three categories of ungraded discontinuities.Reference radiographs containing ungraded discontinuities are provided as a guide for recognition of a specific casting discontinuity type where severity levels are not needed.Following is a list of discontinuity categories,types and severity levels for the adjunct reference radiographs of this standard:1.2.4.1Category A—Gas porosity;severity levels1through 5.1.2.4.2Category B—Sand and slag inclusions;severity levels1through5.1.2.4.3Category C—Shrinkage;three types:(1)Ca—linear shrinkage—severity levels1through 5. (Called Type1in previous revisions)(2)Cb—feathery shrinkage—Severity levels1through5. (Called Type2in previous revisions)(3)Cc—sponge shrinkage—Severity levels1through5. (Called Type3in previous revisions)1.2.4.4Category D—Crack;one illustration(D3in pre-1972documents).1.2.4.5Category E—Hot tear;one illustration in pre-1972 documents.1.2.4.6Category F—Insert;one illustration(EB3in pre-1972documents).1.3The values stated in inch-pound units are to be regarded as the standard.SI values are shown for information only. 1.4This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:3E94Guide for Radiographic ExaminationE242Reference Radiographs for Appearances of Radio-graphic Images as Certain Parameters Are Changed1These reference radiographs are under the jurisdiction of ASTM Committee E07on Nondestructive Testing and is the direct responsibility of Subcommittees E07.02on Reference Radiological Images and E07.93on Illustration Monitoring.Current edition approved Jan.1,2010.Published February2010.Originallyapproved st previous edition approved in2004as E186-98(2004)´1. DOI:10.1520/E0186-10.2For ASME Boiler and Pressure Vessel Code applications see related Reference Radiographs SE186in Section V of that Code.3For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.E280Reference Radiographs for Heavy-Walled(412to 12-in.[114to305-mm])Steel CastingsE446Reference Radiographs for Steel Castings Up to2in.[51mm]in ThicknessE1316Terminology for Nondestructive Examinations2.2ASTM Adjuncts:4Reference Radiographs for Heavy-Walled(2to41⁄2-in.(50.8 to114-mm))Steel Castings:V olume I,1-MV X-Rays and Iridium-1925V olume II,2to4-MV X-Rays and Cobalt-606V olume III,4-MV to30-MV X-Rays73.Terminology3.1Definitions—For definitions of terms relating to radio-graphic examination,see Terminology E1316.3.2Definitions of Terms Specific to This Standard:3.2.1production radiograph—a radiograph under review for compliance with this standard.3.2.2discontinuity type—a specific discontinuity character-ized by its cause and appearance.For example:linear shrink-age is a specific discontinuity type.3.2.3discontinuity category—a nomenclature system used for grouping discontinuity types.For example:linear shrinkage is assigned category“Ca”where“C”represents the general shrinkage category and“a”represents the specific linear shrinkage discontinuity type.3.2.4discontinuity severity level—a relative rank in terms of“quantity,size and distribution”of a collection of disconti-nuities where“1”is the least and“5”is the greatest“quantity, size and distribution”present on the reference radiograph. Example:a severity level of“1”is more restrictive(requires a higher level of workmanship fabrication quality)than a sever-ity level of“2.”3.2.5discontinuity class—an assigned workmanship fabri-cation quality rating characterized by a discontinuity type, category and severity level.For example:“Ca2”is a discon-tinuity class comprised of linear shrinkage with a severity level of“2.”3.2.6classification specification—a set of user defined ac-ceptance criterion that prescribes the radiographic workman-ship discontinuity class requirements for a specified user casting service application(see Sections6and7).3.2.7graded illustration—a category of discontinuity that is assigned a severity level.3.2.8ungraded illustration—a category of discontinuity without an assigned severity level.3.2.9prorating—assignment of quantity,size and distribu-tion on a production radiograph in proportion to a similar size area of a reference radiograph.For example:a production radiograph covers an area that is smaller than the unit area of a reference radiograph and the extent of discontinuity on the applicable reference radiograph is reduced proportionately.4.Significance and Use4.1Graded reference radiographs are intended to provide a guide enabling recognition of specific casting discontinuity types and relative severity levels that may be encountered during typical fabrication processes.Reference radiographs containing ungraded discontinuities are provided as a guide for recognition of a specific casting discontinuity type where severity levels may not be needed.These reference radiographs are intended as a basis from which manufacturers and purchas-ers may,by mutual agreement,select particular discontinuity classes to serve as standards representing minimum levels of acceptability(see Sections6and7).4.2Reference radiographs represented by this standard may be used,as agreed upon in a purchaser supplier agreement,for energy levels,thicknesses or both outside the range of this standard when determined applicable for the casting service application.Severity levels of similar discontinuity categories and energy level range of E446or E280reference radiographs may alternatively be used,as determined appropriate for the casting service application,if so agreed upon in a purchaser supplier agreement(see Section1and5.1).4.3Procedures for evaluation of production radiographs using applicable reference radiographs of this standard are prescribed in Section8;however,there may be manufacturing-purchaser issues involving specific casting service applications where it may be appropriate to modify or alter such require-ments.Where such modifications may be appropriate for the casting application,all such changes shall be specifically called-out in the purchaser supplier agreement or contractual document.Section9addresses purchaser supplier requisites where weld repairs to castings may be required.5.Method of Preparation5.1The original radiographs used to prepare the adjunct reference radiographs were produced on ASTM Class I or II film systems by the respective use of radiation energies stated in1.2.1to1.2.3.The original radiographs were made with a penetrameter sensitivity,as determined by ASTM penetram-eters(see Guide E94),of2-2T.The adjunct reference radio-graphs are reproductions prepared to an optical density of2.00 to2.25and have substantially retained the contrast of the original radiographs.In preparing these reference radiographs, the objective was to obtain progressively graduated severity levels for each graded discontinuity category of this standard. Additionally,some overlap of severity levels may occur for similar discontinuity categories of Reference Radiograph stan-dard E446or E280with the same energy level range(see6.3).5.2Film Deterioration—Radiographicfilms are subject to wear and tear from handling and use.The extent to which the image deteriorates over time is a function of storage condi-tions,care in handling and amount of use.Reference radio-graphfilms are no exception and may exhibit a loss in image quality over time.The radiographs should therefore be peri-odically examined for signs of wear and tear,including scratches,abrasions,stains,and so forth.Any reference radio-graphs which show signs of excessive wear and tear which could influence the interpretation and use of the radiographs should be replaced.4Available from ASTM Headquarters. 5Order RRE018601.6Order RRE018602.7Order RRE018603.2--`,,```````,``,`,```,```````,,,-`-`,,`,,`,`,,`---6.Determination of Radiographic Classification6.1For purposes of evaluation of castings,a determination must be made of the radiographic discontinuity classifications to be assigned to individual castings or specific areas of castings.The determination of the applicable radiographic discontinuity classification shall be based on an evaluation of the casting applications,design,and service requirements.In these evaluations,consideration shall be given to such factors as pressure,temperature,section thickness,applicable design safety factor,vibration,shock,resistance to corrosion,involve-ment of penetrating radiations or radiation products,and involvement of dangerous gases or liquids.6.2For each individual casting or specific area of a casting to be radiographed,the discontinuity class must be clearly specified.For example:severity level2might be specified for linear shrinkage,Category Ca,and severity level3for gas porosity,Category A,since the latter are generally much less deleterious to tensile properties(see Section7).6.3When determining discontinuity severity levels for in-dividual castings spanning thickness ranges outside the range of this standard,consideration should be given to the potential for overlapping severity levels as described in4.2and5.1. 6.4Production radiographs which are compared to refer-ence radiographs should have an optical density in the area of interest in accordance with Standard Guide E94and a specified minimum radiographic sensitivity(quality level)of2%(2-2T).Other radiographic quality levels or optical densities may be designated,but then a corresponding change in severity level for each discontinuity category should be anticipated and hence specified.7.Classification Specifications7.1The applicable radiographic discontinuity classification should be designated by the contracting agency in formal specifications or drawings and in the specific contract or order. The specifications,drawings,contract,or order should also designate the sampling plan for the castings to be radiographed and the extent of radiographic coverage,radiographic practice to be followed(see Guide E94),image quality desired(see Note1),as well as the severity of acceptable discontinuity for graded discontinuity.N OTE1—For description of sensitivity or image quality levels,see Guide E94and Reference Radiograph standard E242.8.Procedure for Evaluation8.1Compare the production radiographs of the casting submitted for evaluation with the reference radiographs ex-posed at an equivalent energy range within the thickness range of this standard(unless otherwise specified—see Section4).8.2When the severity level of discontinuities in the produc-tion radiograph being evaluated is equal to or less than the severity level in the specified reference radiograph,that part of the casting represented by the production radiograph shall be acceptable.If the production radiograph shows discontinuities of greater severity than the reference radiograph,that part of the casting shall be rejected.8.3A unit area on the production radiograph shall be evaluated to a unit area of like size on the reference radiograph.Any evaluation unit area that shares a discontinuity with an adjacent unit evaluation area shall meet the minimum unit area acceptability requirements within the combined unit area. When the unit area of interest of a production radiograph is less than the unit area of the applicable reference radiograph,such unit area of the production radiograph shall be prorated to the reference radiographic area.8.4When two or more categories of discontinuity are present in the same production radiograph,the predominating discontinuities,if unacceptable,shall govern without regard to the other categories of discontinuity and that part of the casting shall be judged unacceptable.8.5When two or more categories of discontinuity are present to an extent equal to the maximum permissible level as shown in the applicable standards for each category,then that part of the casting shall be judged unacceptable.When two or more categories of discontinuity are present in the same radiograph to an extent less than the maximum permissible level,as shown in the applicable standards for each category, the severity shall be evaluated by the overall aggregate condition.The aggregate condition is defined as the balance of quantity,size and distribution of the collection of discontinui-ties and shall not exceed the aggregate condition of the applicable reference radiograph.8.6Reference radiographs are provided showing a variety of shrinkage discontinuity types.Production radiographs show-ing shrinkage shall be judged by the most representative reference radiograph.8.7This standard does not specify limiting criteria for a single size of discontinuity,maximum number of discontinui-ties per unit area evaluated,specific dimensional spacing and/or alignment criterion between individual discontinuities or any other undefined discontinuity patterns.Unless otherwise specified by a purchaser supplier agreement(see Section4), these discontinuity conditions on production radiographs shall be evaluated as aggregate conditions as defined in8.5.8.8In general,there is no limit as to the extent of acceptable discontinuities in a casting,provided that no unit evaluation area throughout the casting contains discontinuities that exceed the severity of discontinuities in the applicable reference radiographs.8.9Reference radiographs in this standard do not illustrate elongated or“worm hole”type of gas discontinuities.When this condition occurs in a production radiograph,it shall be evaluated by comparison with the most representative refer-ence radiograph.8.9.1When the exposing radiation source has been placed perpendicular to the length of the gas hole,evaluate the production radiograph with a shrinkage reference radiograph.8.9.2When the exposing radiation source has been placed diametrically or“into”the diameter of the gas hole,evaluate the production radiograph with a gas reference radiograph. 8.10A diffraction mottling pattern can occur onfilms of parts and sections where the grain size is large enough to be an appreciable fraction of the material thickness(see Note2).If diffraction mottling is suspected,there are a number of ways to demonstrate its presence.The diffraction mottling pattern shown in these cases is dependent principally upon thecrystal 3--`,,```````,``,`,```,```````,,,-`-`,,`,,`,`,,`---geometry and the orientation of the crystals to the incident radiation.Therefore,for a given specimen,any change in this orientation will affect the diffraction pattern dramatically.This can be accomplished by a slight,1to5°tilt of the part,with respect to the radiation beam or simply by shifting the center line of the radiation beam to a slightly different location from thefirst exposure.Indications from any porosity,shrinkage,or other discontinuity will move only slightly,while any mottling patterns present will change dramatically.If it is necessary or desirable to eliminate the mottling,the kV may be raised to reduce the amount of diffraction radiation.However,caution should be used so that the kV is not raised to the point that sensitivity is reduced excessively.If diffraction mottling is demonstrated to be present on a radiograph,this condition shall not be considered as prejudicial in evaluating the radiograph. N OTE2—Mottling is often associated with thin sections of austenitic steels,and copper base alloys such as copper nickel,tin bronzes,and nickel copper.8.11Hot tears and cracks exhibited on production radio-graphs may at times resemble linear type shrinkage.When doubt exists whether such indications are cracks or tears,or are linear shrinkage,all surfaces in the area of interest shall be ground and magnetic particle or liquid penetrant inspected as applicable.The extent and depth of grinding may require engineering judgment.If the indication does not appear on the surface,that indication shall be considered shrinkage.8.12The radiographic density of discontinuities in compari-son with background density is a variable dependent on technical factors.It shall not be used as a criterion for acceptance or rejection in comparison with reference radio-graphs.9.Weld Repair of Castings9.1When radiographic quality castings are repaired by welding,the reference radiographs to be used in the evaluation of the repaired sections must be specifically agreed upon between purchaser and supplier.9.2When casting discontinuities are removed for repairs, only the extent of discontinuity required to meet applicable reference standards need be removed.10.Keywords10.1discontinuity classification criterion;gamma-ray;ref-erence radiographs;steel castings;X-rayASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed everyfive years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959, United States.Individual reprints(single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at610-832-9585(phone),610-832-9555(fax),or service@(e-mail);or through the ASTM website ().Permission rights to photocopy the standard may also be secured from the ASTM website(/COPYRIGHT/).4--`,,```````,``,`,```,```````,,,-`-`,,`,,`,`,,`---。
国外主要无损检测标准含中英文名称对照
ASTM A 754/A 754M-1996X射线荧光法测量涂层厚度的试验方法Test Method for Coating Thickness by X-Ray FluorescenceASTM B567-1998用B射线背散射法测量涂层厚度的试验方法Test Method for Measurement of Coating Thickness by the Beta Backscatter MethodASTM B568-1998X射线光谱仪法测量涂层厚度的试验方法Test Method for Measurement of Coating Thickness by X-Ray SpectrometryASTM C637-1998辐射屏蔽混凝土用集料的标准规范Standard Specification for Aggregates for Radiation-Shielding ConcreteASTM C638-1992辐射屏蔽混凝土集料组分的描述术语Descriptive Nomenclature of Constituents of Aggregates for Radiation-Shielding Concrete ASTM C1455-2000用Y射线谱法无损检定仍然有效特殊核材料指南ASTM D2599-1987X射线光谱法测定汽油含铅量的试验方法(05.02)Test Method for Lead in Gasoline by X-Ray Spectrometry (05.02)ASTM D4294-1998用非色散X射线荧光光谱法测定石油产品中含硫量试验方法Sulfur in Petroleum Products by Non-Dispersive X-Ray Fluorescence Spectrometry, Method of Test for (05.02)ASTM D4452-1985 土壤样品的X 射线照相法X-Ray Radiography of Soil SamplesASTM D5059-1998X-射线光谱法测定汽油含铅量的试验方法Test Method for Lead in Gasoline by X-Ray Spectroscopy (05.03)ASTM D5187-1991X射线衍射法测定煅烧石油焦炭中结晶尺寸(LC)的试验方法Test Method for Crystallite Size (LC) of Calcined Petroleum Coke by X-Ray Diffraction (05.03) ASTM D6247-1998X射线荧光光谱法分析聚烯烃中元素含量的试验方法Test Method for Analysis of Elemental Content in Polyolefins by X-Ray Fluorescence SpectrometryASTM E94-2004(2010)射线照相检验标准指南Standard Guide for Radiographic Examination ASTM E142-1996 射线照相检测的质量控制方法Method for Controlling Quality of Radiographic TestingASTM E155-2010铝镁合金铸件射线照相检验标准参考照片Standard Reference Radiographs for Inspection of Aluminum and Magnesium CastingsASTM E170-1999有关辐射测量和剂量测定的术语ASTM E181-1998放射性核素探测器的校准和分析的一般方法General Methods for Detector Calibration and Analysis of RadionuclidesASTM E186-2010厚壁(50.8-114mm)钢铸件标准参考射线照片Standard Reference Radiographs for Heavy-Walled (2 to 4 1/2-In./50.8 to 114-mm) Steel Castings ASTM E192-2004(2010)e1宇航用熔模钢铸件标准参考射线照片Standard Reference Radiographs for Investment Steel Castings of AerospaceApplicationsASTM E242-2001(2010)某些参数改变时射线照相图象显示的标准参考射线照片Standard Reference Radiographs for Appearances of Radiographic Images asCertain Parameters Are ChangedASTM E272-2010高强度铜基及镍铜合金铸件的标准参考射线照片Standard Reference Radiographs for High-Strength Copper-Base andNickel-Copper Alloy CastingsASTM E280-2010厚壁(114-305mm)铸钢件标准参考射线照片Standard Reference Radiographs for Heavy-Walled (4 1/2 to 12-in. (114 to305-mm)) Steel CastingsASTM E310-2010锡青铜铸件标准参考射线照片Standard Reference Radiographs for Tin Bronze CastingsASTM E390-2011钢熔焊焊缝标准参考射线照片Standard Reference Radiographs for Steel Fusion WeldsASTM E431-96(2011)半导体和相关器件射线照片判读指南Standard Guide to Interpretation of Radiographs of Semiconductors andRelated DevicesASTM E446-2010厚度至50.8mm钢铸件的标准参考射线照片Standard Reference Radiographs for Steel Castings up to 2 in. (50.8 mm) inThicknessASTM E505-2001(2011)铝和镁压铸件检验的标准参考射线照片Standard Reference Radiographs for Inspection of Aluminum and Magnesium Die Castings ASTM E545-2005(2010)确定直接热中子射线照相检验成象质量的标准试验方法Standard Test Method for Determining Image Quality in Direct ThermalNeutron Radiographic ExaminationASTM E586-88Y与X射线照相检测的术语定义ASTM E592-1999(2009)e16〜51mm厚钢板X射线照相检验和25〜152mm厚钢板钻60照相检验获得ASTM当量穿透灵敏度的标准指南Standard Guide to Obtainable ASTM Equivalent Penetrameter Sensitivity forRadiography of Steel Plates 1/4 to 2 in. (6 to 51 mm) Thick with X Rays and 1 to 6 in. (25 to 152 mm) Thick with Cobalt-60ASTM E665-1994测量暴露在X闪光射线机的X射线照射下的材料中相对深度的吸收剂量Determining Absorbed Dose Versus Depth in Materials Exposed to the X-RayOutput of Flash X-Ray MachinesASTM E666-1997Y 或X 射线剂量吸收的计算Calculating Absorbed Dose from Gamma or X RadiationASTM E689-2010球墨铸铁标准参考射线照片Standard Reference Radiographs for Ductile Iron CastingsASTM E746-2007测定工业射线照相成像系统相关图象质量响应的标准方法Standard Practice for Determining Relative Image Quality Response ofIndustrial Radiographic Imaging SystemsASTM E747-2004(2010)射线照相用线型象质计(IQI)的设计、制造及材料组分类的标准方法Standard Practice for Design, Manufacture, and Material GroupingClassification of Wire Image Quality Indicators (Iqi) Used for RadiologyASTM E748-2002(2008)材料热中子射线照相标准方法Standard Practices for Thermal Neutron Radiography of MaterialsASTM E801-2006(2011)电子装置射线照相检验的质量控制标准方法Standard Practice for Controlling Quality of Radiological Examination of Electronic Devices ASTM E802-1995(2010)厚度至114mm的灰口铸铁标准参考射线照片Standard Reference Radiographs for Gray Iron Castings up to 4 1/2 in. (114 mm) in ThicknessASTM E803-1991(2008)确定中子射线透照束长径比的标准方法Standard Method for Determining the L/D Ratio of Neutron Radiography BeamsASTM E915-1996残余应力测量用X射线衍射仪校准检定的试验方法Test Method for Verifying the Alignment of X-Ray DiffractionInstrumentation for Residual Stress MeasurementASTM E999-2010工业射线照相胶片处理的质量控制标准指南Standard Guide for Controlling the Quality of Industrial Radiographic FilmProcessingASTM E1000-98(2009)射线照相检测标准指南Standard Guide for RadioscopyASTM E1025-2011射线照相检测用孔型象质计设计、制造和材料组分类的标准方法Standard Practice for Design, Manufacture, and Material GroupingClassification of Hole-Type Image Quality Indicators(IQI) Used forRadiographyASTM E1030-2005(2011)金属铸件射线照相检验的标准试验方法Standard Test Method for Radiographic Examination of Metallic CastingsASTM E1032-2012焊缝射线照相检验的标准试验方法Standard Test Method for Radiographic Examination of WeldmentsASTM E1079-2010透射密度计校准的标准方法Standard Practice for Calibration of Transmission DensitometersASTM E1114-2009e1测定铱192工业射线照相源尺寸的标准试验方法Standard Test Method for Determining the Size of Iridium -192 IndustrialRadiopraphic SourcesASTM E1161-2009半导体和电子元件射线检验的标准方法Standard Practice for Radiologic Examination of Semiconductors andElectronic ComponentsASTM E1165-2004(2010)用针孔成象法测量工业X射线管焦点的标准试验方法Standard Test Method for Measurement of Focal Spots of Industrial X-RayTubes by Pinhole ImagingASTM E1168-1995 核设施工人辐射防护训练Radiological Protection Training for Nuclear Facility WorkersASTM E1254-2008射线照片及未曝光工业射线照相胶片储藏的标准指南Standard Guide for Storage of Radiographs and Unexposed IndustrialRadiographic FilmsASTM E1255-2009射线透视检验标准方法Standard Practice for RadioscopyASTM E1320-2010钛铸件标准参考射线照片Standard Reference Radiographs for Titanium CastingsASTM E1390-2012工业射线照相观片灯标准规范Standard Specification for Illuminators Used for Viewing IndustrialRadiographsASTM E1400-1995高剂量辐射量测定校准实验室的特性和性能规程Characterization and Performance of a High-Dose Radiation DosimetryCalibration Laboratory, Practice for (12.02)ASTM E1411-2009射线照相系统鉴定的标准方法Standard Practice for Qualification of Radioscopic SystemsASTM E1416-2009 焊缝射线检验的标准试验方法Standard Test Method for Radioscopic Examination of WeldmentsASTM E1441-2011计算机层析(CT)成像的标准指南Standard Guide for Computed Tomography (CT) ImagingASTM E1441-2000 计算机层析成像(CT)指南Guide for Computed Tomography (CT) Imaging ASTM E1453-2009含模拟或数字射线照相数据的磁带媒体存储标准指南Standard Guide for Storage of Magnetic Tape Media that Contains Analog orDigital Radioscopic DataASTM E1475-2002(2008)数字射线照相检验数据计算机化传输的数据区标准指南Standard Guide for Data Fields for Computerized Transfer of DigitalRadiological Examination DataASTM E1496-2005(2010)中子射线照相尺寸测量的标准试验方法Standard Test Method for Neutron Radiographic DimensionalMeasurements(With drawn 2012)ASTM E1570-2011计算机层析(CT)检验标准方法Standard Practice for Computed Tomographic (CT) ExaminationASTM E1647-2009确定射线照相检测对比度灵敏度的标准方法Standard Practice for Determining Contrast Sensitivity in RadiologyASTM E1648-1995(2011)铝熔焊焊缝检验标准参考射线照片Standard Reference Radiographs for Examination of Aluminum Fusion WeldsASTM E1672-2006选择计算机层析(CT)系统的标准指南Standard Guide for Computed Tomography (Ct) System SelectionASTM E1695-1995(2006)e1计算机层析(CT)系统性能测量的标准试验方法Standard Test Method for Measurement of Computed Tomography (Ct) System PerformanceASTM E1734-2009铸件射线照相检验标准方法Standard Practice for Radioscopic Examination of CastingsASTM E1735-2007确定经4-25MV X射线曝光的工业射线胶片相关成像质量的标准试验方法Standard Test Method for Determining Relative Image Quality of IndustrialRadiographic Film Exposed to X-Radiation from 4 to 25 MVASTM E174〃E1742M-2011射线照相检验标准方法Standard Practice for Radiographic ExaminationASTM E1814-1996(2007)铸件计算机层析(CT)检验标准方法Standard Practice for Computed Tomographic (CT) Examination of CastingsASTM E1815-2008工业射线照相胶片系统分类的标准试验方法Standard Test Method for Classification of Film Systems for IndustrialRadiographyASTM E1817-2008使用典型象质计(RQIs)控制射线检验质量的标准方法Standard Practice for Controlling Quality of Radiological Examination byUsing Representative Quality Indicators(RQI-s)ASTM E1894-1997选择脉冲X射线源用的剂量测定系统的标准指南Standard Guide for Selecting Dosimetry Systems for Application in PulsedX-Ray SourcesASTM E1931-2009X射线康普顿散射层析技术标准指南Standard Guide for X-ray Compton Scatter TomographyASTM E1935-1997(2008)校准和测量计算机层析(CT)密度的标准试验方法Standard Test Method for Calibrating and Meausring CT DensityASTM E1936-2003(2011)评估射线照相数字化系统性能的标准参考射线照片Standard Reference Radiograph for Evaluating the Performance ofRadiographic Digitization SystemsASTM E1955-2004(2009)与美国材料与试验协会ASTM E 390参考射线照片等级比较钢中焊缝完善性的标准射线检验Standard Radiographic Examination for Soundness of Welds in Steel byComparison to Graded ASTM E390 Reference RadiographsASTM E2002-1998(2009)测定射线照相图象总不清晰度的标准方法Standard Practice for Determining Total Image Unsharpness in RadiologyASTM E2003-2010中子射线照相波束纯度指示计制作的标准方法Standard Practice for Fabrication of the Neutron Radiographic Beam PurityIndicators [Metric]ASTM E2007-2010计算机射线照相标准指南(用于CR的标准指南)(可激射线发光[PSL]法)Standard Guide for Computed Radiology (Photostimulable Luminescence (PSL)Method)ASTM E2023-2010制作中子射线照相灵敏度指示计的标准方法Standard Practice for Fabrication of Neutron Radiographic SensitivityIndicatorASTM E2033-1999(2006)计算机射线照相的标准方法(用于CR的标准实施方法)(可激射线发光晓1]法)Standard Practice for Computed Radiology (Photostimulable LuminescenceMethod)ASTM E2104-2009优质航空与涡轮材料和构件射线照相检验的标准方法Standard Practice for Radiographic Examination of Advanced Aero andTurbine Materials and ComponentsASTM E2120-2000便携式X射线荧光光谱仪测量涂膜中铅含量的性能评估规程Practice for the Performance Evaluation of the Portable X-Ray FluorescenceSpectrometer for the Measurement of Lead in Paint FilmsASTM E2339-2004无损评价中的数字成像和通讯Digital Imaging and Communication in NDE(DICONDE)ASTM E2422-2011铝铸件标准参考数字射线图像(钛和钢铸件也适用)Standard Digital Reference Images for Al. Casting(Titanium & steel Casting also available) ASTM E2445-2005(2010)计算机射线照相系统的长期稳定性与鉴定的标准方法(用于CR系统的质量认定和长期稳定性的标准实施方法)Standard Practice for Qualification and Long-Term Stability of ComputedRadiology SystemsASTM E2446-2005(2010)计算机射线照相系统分类的标准方法(用于CR系统分类的标准实施方法)Standard Practice for Classification of Computed Radiology SystemsASTM E2597-2007e1数字探测器阵列制造特性的标准规程Standard Practice for Manufacturing Characterization of Digital DetectorArraysASTM E2660-2011航空用优质钢铸件标准参考数字射线图像Standard Digital Reference Images for Investment Steel Castings forAerospace ApplicationsASTM E2662-2009航空用平面与夹芯复合材料射线照相检验的标准方法Standard Practice for Radiologic Examination of Flat Panel Composites andSandwich Core Materials Used in Aerospace ApplicationsASTM E2669-2011数字射线照相(DR)检测方法的数字图像与通信无损评价(DICONDE)的标准方法Standard Practice for Digital Imaging and Communication in NondestructiveEvaluation (DICONDE) for Digital Radiographic (DR) Test MethodsASTM E2698-2010使用数字探测器阵列的射线照相检验标准方法Standard Practice for Radiological Examination Using Digital DetectorArraysASTM E2736-2010数字探测器阵列射线照相检测标准指南Standard Guide for Digital Detector Array RadiologyASTM E2737-2010评价数字探测器阵列性能和长期稳定性的标准方法Standard Practice for Digital Detector Array Performance Evaluation andLong-Term StabilityASTM E2738-2011使用计算机射线照相(CR)检测方法的数字图像与通讯无损评价(DICONDE) 的标准方法Standard Practice for Digital Imaging and Communication NondestructiveEvaluation (DICONDE) for Computed Radiography (CR) Test MethodsASTM E2767-2011使用X射线计算机层析(CT)检测方法的数字图像与通讯无损评价(DICONDE)的标准方法Standard Practice for Digital Imaging and Communication in NondestructiveEvaluation (DICONDE) for X-ray Computed Tomography (CT) Test MethodsASTM E2861-2011测量中子辐射束发散与校准的标准试验方法Standard Test Method for Measurement of Beam Divergence and Alignment inNeutron Radiologic BeamsASTM F629-1997铸造金属外科手术植入物射线照相检查实施方法(14)ASTM F727-1981透明照相干版透光度测量的试验方法Test Method for Measuring Transmittance of See-Through PhotoplateASTM F784-1982校准放射性同位素密封测试仪的试验方法Test Method for Calibrating Radioisotope Hermetic Test ApparatusASTM F864-1984 硬表面玻璃照相干板的检验Inspection of Hard-Surface Glass Photoplates ASTM F947-1985测定照相胶片低能级X射线辐射灵敏度的试验方法Test Method for Determining Low-Level X-Radiation Sensitivity ofPhotographic FilmsASTM F1035-1991使用橡胶帘布圆盘验证轮胎X射线成象系统的辩别能力Use of Rubber-Cord Pie Disk to Demonstrate the Discernment Capability of aTire X-Ray Imaging SystemASTM F1039-1987X射线安全屏系统中测量低剂量X辐射的试验方法Test Method for Measurement of Low Level X-Radiation Used in X-RaySecurity Screening SystemsASTM F1467-1999微电子装置电离辐射效应中X射线测试仪(近似等于10keV辐射量子)的使用Use of an X-Ray Tester (is Approximately Equal to 10 keV Photons) inIonizing Radiation Effects Testing of Microelectronic DevicesASTM PS95-1998便携式X射线荧光(XRF)装置现场测定涂料或其它涂层含铅量的质量体系的标准临时操作规程Standard Provisional Practice for Quality Systems for Conducting In SituMeasurements of Lead Content in Paint or Other Coatings usingField-Portable X-Ray Fluorescence (XRF) DevicesASTM PS 116-1999测量涂膜含铅量用的便携式X射线荧光光谱仪性能评价的临时操作规程Provisional Practice for the Performance Evaluation of the Portable X-RayFluorescence Spectrometer for the Measurement of Lead in Paint FilmsANSI/ANS6.1.1-1991中子及r射线对剂量因素的影响Neutron and Gamma-Ray Fluence-to-DoseFactorsANSI/IEEE 309-1970 盖革-弥勒计数器的试验程序Geiger-Muller Counters, Test Procedure for ANSI IT9.2-1991成象介质-已处理的照相胶片、平板和相纸-归档盒及储存箱Imaging Media - Photographic Processed Films, Plates and Papers - FilingEnclosures and Storage ContainersANSI IT9.8-1989成象介质-照相胶片耐折强度的测定Imaging Media - Photographic Film - Determination of Folding EnduranceANSI N13.2-1969 辐射监测的管理规程指南Administrative Practices in Radiation Monitoring, Guide toANSI N13.5-1972直读和非直读式袖珍X和Y射线辐射剂量仪的性能Direct Reading and Indirect Reading Pocket Dosimeters for X- and GammaRadiation, PerformanceANSI N13.7-1983辐射防护照相胶片剂量仪性能标准Radiation Protection - Photographic Film Dosimeters - Criteria forPerformanceANSI N13.11-2001 个人剂量测定的试验标准Personnel Dosimetry Performance, Criteria for TestingANSI N13.27-1981袖珍式报警辐射剂量仪和报警记数率计的性能要求Performance Requirements for Pocket-Sized Alarm Dosimeters and AlarmRatemetersANSI N15.36-1994核材料无损化验测量的控制和保证Nuclear materials - Nondestructive assay measurement control and assuranceANSI N15.37-1981核材料控制的自动无损化验系统指南Automation of Nondestructive Assay Systems for Nuclear Materials Control,Guide toANSI N42.16-1986用于液体闪烁计数器的密封放射检查源的规范Specifications for sealed radioactive check sources used in liquid-scintillation countersANSI N42.20-1995 个人辐射监视仪的性能标准Performance criteria for active personnel radiation monitorsANSI N42.26-1995辐射防护仪器监测设备X和Y辐射个人报警装置Radiation Protection Instrumentation - Monitoring Equipment - PersonalWarning Devices for X and Gamma RadiationsANSI N43.3-1993通用辐射安全非医疗应用的X射线和密封Y射线源的安装能量达10Mev General radiation safety - Installations using non-medical X-ray andsealed gamma-ray sources, energies up to 10 MeVANSI N43.6-1997 密封放射性源的分类Classification of Sealed Radioactive SourcesANSI N43.9-1991Y射线照相仪器的设计和试验规范Gamma Radiography - Specifications for Design and Testing of ApparatusANSI N322-1996直接和间接读取石英纤维袖珍剂量计的检验和试验规范Inspection and Test Specifications for Direct and Indirect Reading QuartzFiber Pocket DosimetersASME Boiler & Pressure VesselCode(ASME锅炉压力容器规范)第V卷《无损检测》2004版,第2篇“射线检测”,强制性附录-包含动态射线照相、实时射线成像检测内容ASME SE-1647确定射线照相对比灵敏度的推荐实施方法ASME Code Case 2476使用荧光成像板的射线照相Radiography using phosphor imaging platesMIL-HDBK-55-66射线照相无损检测手册(已由MIL-HDBK-7285取代)MIL-STD-139A-65射线检测铝镁合金铸件的完好性要求MIL-STD-453C-88射线照相检测MIL-STD-746A-63铸造爆破器材的射线照相检测要求MIL-STD-779-68钢焊缝参考X射线照片(由ASTM E390取代)MIL-STD-1257A-87钻铬合金枪管射线照相及目视检验MIL-R-11470A-71对射线检验设备,操作方法和操作人员的合格审查(由MIL-STD-453取代) MIL-I-36013B-72折迭式X射线观片灯MIL-R-45226-62石墨的射线照相检测(已停用)MIL-R-45774A(92)铝,镁导弹零件熔焊完好性要求-射线照相检测MIL-STD-1948(91)中子射线照相检验的术语和定义汇编MIL-HDBK-7285(92)射线照相检验MIL-HDBK-733(92)复合材料无损检验方法-射线照相法MIL-STD-1166A(91)固体火箭推进剂射线照相检验要求MIL-STD-1264B(93)钢焊缝完好性射线照相检验-与ASTM E390各级参考底片比较MIL-STD-1265A(92)钢铸件射线照相检验分类和完好性要求MIL-STD-1894A(86)不完全焊透钢焊缝的射线照相参考标准及射线照相程序MIL-STD-1895A(86)不完全焊透铝焊缝的射线照相参考标准及射线照相程序BAC 5915(美国波音公司)射线检验DPS 4.736(美国麦道公司) 射线检验API 1104(美国石油协会)管道及有关设备的焊接AWS B 5.15射线照相评片资格技术条件。
AS 1065-1988 中文版 澳大利亚锻件无损检测标 准
1.2 参考文件
本标准中所用到的文件如下
AS 1929 无损检测—术语
AS 1965 用粗糙度仪器测量表面粗糙度
AS 2083 超声检测所用的校准试块和方法
1.3 定义
为应用本标准,按照 AS 1929 进行定义
第二节仪器和校准
2.1 总则
检测设备应能检测到锻件中常见的缺陷并对缺陷的外形和边界能测定
述几种方式组合使用。
3.8.9 钻孔的锻件
需要钻孔的锻件可行时应在钻孔前检测;已发现中心有缺陷的应在钻孔后再进行复检。(见
图 3.6)
大型铸锻件研究所无损检测室
4
Heavy forging and casting research institute ndt office
兴趣翻译非单位行为QQ:249901158 谢谢小宝的鼓励才能坚持翻译完
1.6
10
1.5
0.8
大型铸锻件研究所无损检测室
1
Heavy forging and casting research institute ndt office
兴趣翻译非单位行为QQ:249901158 谢谢小宝的鼓励才能坚持翻译完
上海重型机器厂有限公司
Shanghai heavy machinery plant limited company
(a) 平面型 (b) 倾斜平面型 (c) 条状 (d) 密集型 (e) 点状 采用协商灵敏度进行缺陷的测长方法见附录 C 和 G 由于工件曲率补偿见附录 D.
大型铸锻件研究所无损检测室
3
Heavy forging and casting research institute ndt office
兴趣翻译非单位行为QQ:249901158 谢谢小宝的鼓励才能坚持翻译完
ASTM标准目录(E)
ASTM标准目录(E)ASTM E 1000-1998 射线检验法ASTM E 1001-1999 运用纵波的浸入式脉冲回波超声法探测与评价不连续性ASTM E 100-1995 ASTM流体比重计ASTM E 1002-1996 使用超声波检漏ASTM E 1003-1995 静水压泄漏试验ASTM E 1004-1999 导电率的电磁(涡流)测量的标准规程ASTM E 1005-1997 反应堆压力容器监测E706(ⅢA)用辐射监视器的应用和分析的试验方法ASTM E 1006-1996 试验反应堆E706(Ⅱ)用的物理剂量测定结果的分析和解释ASTM E 1007-1997 通过天棚地板组件及其支承结构传导的夯击机械撞击声的现场测量方法ASTM E 1008-1997 地热和其它高温液体设备用减压阀体的安装、检验及保养法ASTM E 1009-1995 分析碳和低合金钢用光辐射真空分光仪的评估ASTM E 1010-1984 再溶化法作光谱化学分析用钢铁圆试样的制备ASTM E 1011-1996 硫酸ASTM E 101-1991 用点对面技术做铝和铝合金光谱分析的试验方法ASTM E 1012-1999 在拉伸负载下试样找平的验证ASTM E 1013-1993 有关计算机处理系统的术语ASTM E 1014-1984 室外A加权声级测量ASTM E 1016-1996 静电电子分光仪性能的规定和描述ASTM E 1017-1988 住所外窗组件的一般性能要求ASTM E 1018-1995 ASTM评价的核数据文件的应用(ENDF/A).截面和不确定文件(E706ⅡB) ASTM E 1019-1994 钢,铁,镍和钴合金中碳,硫,氮和氧含量的测定的测试方法ASTM E 10-2001 金属材料布氏硬度的标准试验方法ASTM E 1020-1996 事故报告ASTM E 1021-1995 光电池的光谱响应测量的测试方法ASTM E 102-1993 ASTM流体比重计ASTM E 1022-1994 用鱼和海水双壳类软体动物进行生物浓缩试验ASTM E 1023-1984 对水生生物及其使用的材料的危险性评估ASTM E 1024-1997 用火焰原子吸收分光光度测定法对金属和金属轴承矿石进行化学分析ASTM E 1025-1998 辐射摄影术用孔型图象质量指示仪ASTM E 1026-1995 弗里克基准剂量测定系统的使用ASTM E 1027-1992 聚合材料电离辐射的辐照量ASTM E 1028-2000 用无重铬酸盐滴定分析法对铁矿石中总铁含量的试验方法ASTM E 1029-2001 临床实验室计算机系统文献工作的标准指南ASTM E 1030-1995 金属铸件的X射线照相检验的试验方法ASTM E 1031-1996 炉渣的X射线辐射光谱测定分析的试验方法ASTM E 103-1984 金属材料的快速压痕硬度试验方法ASTM E 1032-2001 焊接件射线检验的标准试验方法ASTM E 1033-1998 在居里温度以上的F型连续焊接亚锰铁管的电磁(涡流)检验ASTM E 1034-1995 核设施工人瞬时记录ASTM E 1035-1985 核反应堆堆芯压力容器支承结构的放射性辐照量的测定ASTM E 1036-1996 使用标准电池的排列和非聚能地面光电模电气性能的标准试验方法ASTM E 1037-1984 测定回收废燃料的粒度分布ASTM E 1038-1998 通过撞击推动冰球法测定光电池组件抗冰雹能力的试验方法ASTM E 1039-1999 在全球辐射下硅非聚能器的地面光电基准电池的校准和特性的标准试验方法ASTM E 1040-1998 非集中陆地光电压参照电池的物理特性ASTM E 1041-1985 敞开式办公室隔音的测量ASTM E 104-1985 用水溶液保持恒定相对湿度ASTM E 1042-1992 镘刀抹涂或喷涂用的吸音材料的分类ASTM E 1043-1985 牛奶和奶油检验用吸管ASTM E 1044-1996 血清玻璃吸管(一般用途和船形)ASTM E 1045-1985 沙式血红蛋白吸管ASTM E 1046-1985 易处置的韦斯特格伦玻璃试管ASTM E 1047-1985 易处置的温特罗布血沉玻璃试管ASTM E 1048-1988 抗凝剂涂覆的色码试管或容器ASTM E 1049-1985 疲劳分析的周期计数ASTM E 1050-1998 管子、双扩音器和数字频率分析系统用传声材料的阻抗和吸收的试验方法ASTM E 1051-1996 马铃薯除草剂效力的评估指南ASTM E 105-1958 材料的概率取样ASTM E 1052-1996 专用杀病毒剂预期效力的试验方法ASTM E 1053-1997 对无生物环境表面杀病毒剂预期效力的试验方法ASTM E 1054-1991 在杀菌剂,卫生洗涤剂和防腐或贮藏产品中使用的抗菌剂活力失效的评估ASTM E 1055-1999 在白化兔中眼刺激性评价的试验方法ASTM E 1056-1985 一家和两家住房用太阳能家用热水设备的安装和维护ASTM E 1057-1999 建筑物和建筑系统投资的内部回报率和调整的内部回报率的测算ASTM E 1058-1985 自走式农业用车辆驾驶室内环境有毒污染的测试方法ASTM E 1059-1991 非石墨反电极的形状和尺寸的标示ASTM E 1061-2001 直读式带液晶头温度计标准规范ASTM E 106-1983 铜铍合金的化学分析试验方法ASTM E 1062-1986 用鸟类进行繁殖研究ASTM E 1063-1994 碳素钢和低合金钢中镧和铈含量的X射线辐射光谱测定的测试方法ASTM E 1064-2000 用卡尔费歇尔库仑滴定法测定有机液体中水含量的标准试验方法ASTM E 1065-1999 评估超声波探测装置特性的标准指南ASTM E 1066-1995 氨比色泄漏检验的测试方法ASTM E 1067-2001 玻璃纤维增强塑料树脂罐/容器的声辐射检验标准实施规程ASTM E 1068-1985 用模拟地热试液浸渍法测试非金属密封材料的方法ASTM E 1069-1985 密封应力下地热和/或高温操作用聚合密封材料试验的方法ASTM E 1070-1995 用磷钼兰光度测定法测定铁矿石中磷含量的方法ASTM E 107-1988 电子元件用镍的化学分析试验方法ASTM E 1073-1991 用老鼠获得药理学剖面的试验方法ASTM E 1074-1993 测算建筑物和建筑系统投资的净收益ASTM E 1075-1985 乙二醇,二甘醇,三甘醇,丙二醇和双丙二醇气味以及丙二醇味道的试验方法ASTM E 1076-1985 固体废料加工设备上的健康防护和安全记录ASTM E 1077-1991 估计钢样品脱碳深度的试验方法ASTM E 1078-1997 在螺旋电子光谱法、X射线光电子光谱法和二次离子质谱法中的样品加工ASTM E 1079-1997 透射密度计的校准ASTM E 1081-1995 用银还原滴定分析法测定铁矿石中总铁含量的试验方法ASTM E 108-2000 屋面覆盖物防火试验的标准试验方法ASTM E 1082-1990 测量车行道路面粗糙度的行车响应曲线的试验方法ASTM E 1083-2000 红辣椒热量的感官评定标准试验方法ASTM E 1084-1986 用阳光测试薄板材料的太阳能传递性(地面上)的试验方法ASTM E 1085-1995 金属的X射线辐射光谱测定分析试验方法ASTM E 1086-1994 用点对面激发技术作不锈钢的光辐射真空光谱测定分析ASTM E 1089-1986 均匀的静气压差下平板太阳能收集器的透水性的试验方法ASTM E 1090-1996 过氧化二异丙苯及其分解产物的试验方法ASTM E 1091-1998 防护板用非金属蜂窝芯子规范ASTM E 1092-1991 易处置的微型(Folin)玻璃移液管ASTM E 1093-1991 易处置玻璃(Prothrombin)移液管ASTM E 1094-1998 医用玻璃量杯ASTM E 1095-1999 普通实验室用玻璃漏斗的标准规范ASTM E 1096-1986 实验室玻璃分液漏斗ASTM E 1097-1997 直流电流等离子发射分光光谱测定分析法ASTM E 1098-1993 液态苛性钠(氢氧化钠溶液)ASTM E 1099-1996 无水苏打灰(碳酸钠,无水)ASTM E 1100-1992 公式SD-3A特种改性乙醇的气相色谱分析的试验方法ASTM E 110-1982 用轻型硬度测试仪测定金属材料压痕硬度的试验方法ASTM E 1102-1991 有关施用农用化学药物的术语定义ASTM E 1103-1996 测量亚慢性表皮毒性的试验方法ASTM E 1104-1998 医用温度计测头罩和护壳ASTM E 1105-1996 用统一的或循环的静态气压差法现场测定已安装的外窗,护墙及门渗水度的测试方法ASTM E 1106-1986 声发射传感器的一次校准ASTM E 1107-1986 测量资源回收单位操作物料通过量ASTM E 1108-1986 测量原料分选设备中产品回收的试验方法ASTM E 1109-1986 测量固体废料碎片体密度的试验方法ASTM E 1110-2001 声音清晰度等级测定的标准分类ASTM E 1111-1992 测量顶棚系统地段间减弱的测试方法ASTM E 111-1997 杨氏弹性模量、正切模量和弦切模量的试验方法ASTM E 1112-1986 病人体温定期检查用电子体温计ASTM E 1114-1992 测定铱192工业X射线源的焦点尺寸的测试方法ASTM E 1115-1991 外科手擦洗剂配方评估的试验方法ASTM E 1116-1998 杀虫剂可乳化浓缩物乳化特性的试验方法ASTM E 1117-1997 燃料酒精制造设备的设计ASTM E 1118-1995 强化热固树脂管(RTRP)的声辐射检验ASTM E 1119-1997 工业级乙二醇ASTM E 11-1995 试验用金属丝筛布筛分装置ASTM E 1120-1997 液氯ASTM E 1121-1998 建筑物和建筑系统投资的偿还率测算ASTM E 112-1996 测定平均粒度的试验方法(取代SAE AMS 2316A)ASTM E 1122-1996 用自动图象分析得到JK夹杂物额定值ASTM E 1123-1986 海军和航海船舶舱壁处理材料的声传输损失试验用试样的安装ASTM E 1124-1992 用双表面法现场测量声功率级的试验方法ASTM E 1125-1999 用平面光谱法校准初级非浓缩器的地面光电基准电池的标准试验方法ASTM E 1126-1994 有关生物量燃料的术语ASTM E 1127-1991 俄歇电子能谱学中的深度压形ASTM E 1129/E 1129M-1998 电热偶连接器ASTM E 1130-2002 使用声音清晰度指数在敞开式办公室内对谈话保密性进行客观量度的标准试验方法ASTM E 1131-1998 用热解重量分析法作成分分析的试验方法ASTM E 1132-1999 有关石英粉尘工作环境的健康要求ASTM E 1133-1986 美国政府征购的已包装的实验室设备的性能试验ASTM E 1134-1986 资源分离钢罐ASTM E 1135-1997 荧光穿透性亮度比较的试验方法ASTM E 1136-1993 径向标准试验轮胎ASTM E 1137-1997 工业用铂阻尼式温度计ASTM E 1139-1997 金属压力面产生的声辐射的连续监测ASTM E 1140-1995 气相色谱法用氮/磷热离子电离探测器测试ASTM E 114-1995 用接触法做超声波脉冲回波纵波检验ASTM E 1142-1997 与热力学特性相关的术语ASTM E 1143-1999 根据试验参数测定光电器件参数线性度的标准试验方法ASTM E 1146-1997 盐酸(工业级盐酸)ASTM E 1147-1992 用液体色谱法估算分配系数(N-辛醇/水)的试验方法ASTM E 1148-2002 水溶解度测量用标准试验方法ASTM E 1150-1987 与疲劳相关的名词术语ASTM E 1151-1993 离子色谱法名词和相关术语ASTM E 115-1997 光辐射光谱分析中的照片冲洗标准规范ASTM E 1152-1995 测定J-R曲线的试验方法ASTM E 1153-1994 无生命非食品接触面用推荐的消毒器的效力的测试ASTM E 1154-1989 活塞或柱塞操作的容量测量装置ASTM E 1155-1996 使用F-数字制测定楼板平正度和水平度的试验方法ASTM E 1155M-1996 使用F-数字制测定楼板平正度和水平度的试验方法(米制)ASTM E 1156-1988 暴露在合成非晶态硅土下的工作岗位的健康要求ASTM E 1157-1987 可重复使用的实验室玻璃器皿的取样和试验ASTM E 1158-1998 金属和金属合金生产材料的脉冲纵波超声检验用的标准块的材料选择与制造ASTM E 1159-1998 热电偶材料的标准规范.铂-铑合金和铂ASTM E 1160-1987 太阳能家用热水系统的现场检查和操作验证ASTM E 1161-1995 半导体和电子元件的放射性的测试方法ASTM E 116-1997 光谱化学分析中的照片光度学ASTM E 1162-1987 二次离子质谱法(SIMS)中报告溅射深度截面数据ASTM E 1163-1998 评定剧毒口服灭鼠剂的试验方法ASTM E 1164-1994 获取物体颜色评定用分光光度计数据ASTM E 1165-1992 用针孔成象法测量工业X射线管焦点的试验方法ASTM E 1166-2000 道路网水平路面管理ASTM E 1167-1987 停止操作的辐射防护计划ASTM E 1168-1995 核设施工人辐射防护训练ASTM E 1169-1989 耐久性试验的实施ASTM E 1170-1997 车行道路面纵剖面图的摸拟行车响应曲线ASTM E 1171-2001 在循环温度和湿度环境下光电模数的标准试验方法ASTM E 1172-1987 波长扩散X射线分光仪的描述和规定ASTM E 1173-2001 评定手术前和导管插入术前或注射前皮肤处理的标准试验方法ASTM E 1174-1994 评价卫生保健人员洗手模式的测试方法ASTM E 1175-1987 用大直经积分球测定材料的太阳能或光反射性,透明性和吸收性的试验方法ASTM E 1177-1998 防冻级乙二醇ASTM E 1178-1997 丙烯腈分析的测试法ASTM E 1179-1987 敞开式办公室元件和系统测试用声源ASTM E 1180-1994 宏观结构检验用硫印痕制备ASTM E 1181-1987 描述双重粒度特性的测试方法(代替SAMAMS 2316A)ASTM E 118-1989 铜铬合金的化学分析试验方法ASTM E 1182-2001 用径向切割法测量表层厚度的标准试验方法ASTM E 1183-1987 为进一步分析用的风干回收废燃料RD-5的试验方法ASTM E 1184-1998 电热(石墨加热炉)原子吸收分析ASTM E 1185-1993 为评估在建筑物和建筑系统上投资对经济方法的选择ASTM E 1186-1998 建筑物外层漏气的现场检验ASTM E 1187-1997 与实验室认可相关的标准术语ASTM E 1188-1995 通过技术调研人员对信息和物理项进行收集和保存ASTM E 1189-1987 微型滴定管(科赫型)ASTM E 1190-1995 安装在结构构件中的传动粉料扣件强度的试验方法ASTM E 1191-1997 用海水糠虾进行生命周期毒性试验指南ASTM E 119-2000 建筑结构和材料防火试验的标准试验方法ASTM E 1192-1997 用鱼、大型无脊椎动物和两栖动物身上流出的含水物质进行剧毒试验ASTM E 1193-1997 用水蚤属magna进行延长生命周期毒性试验ASTM E 1194-1987 蒸气压力的试验方法ASTM E 1195-1987 测量土壤和沉积物中有机化学药物吸收常数(Koc)的试验方法ASTM E 1197-1987 进行陆地土壤芯样缩影测试的指南ASTM E 1198-1987 用泵采集浮流生物ASTM E 1199-1987 用克--朋氏浮游生物采样器采集浮游生物ASTM E 1-1998 ASTM温度计(试验方法9501-联邦试验方法NO.791b)ASTM E 1200-1987 浮游生物防腐ASTM E 1201-1987 用圆锥形拖网采集浮游生物ASTM E 120-2000 钛和钛合金化学分析的标准试验方法ASTM E 1202-1987 开发微核检测标准ASTM E 1203-1998 含水毒理学中动物试验用作为受试动物食品的海水小虾类ASTM E 1204-1997 食品加工用γ辐射装置在操作和特性上的剂量测定的应用ASTM E 1205-1999 用高铈-三价铈硫酸剂量仪测定水中的吸收剂量的试验方法ASTM E 1206-1987 现有设备的计算机化ASTM E 1207-1987 腋下除臭剂的感觉评定ASTM E 1208-1999 用亲油的乳化法作荧光液体渗透检验的试验方法ASTM E 1209-1999 用可水洗法作荧光液体渗透检验的试验方法ASTM E 1210-1999 用亲水的乳化法作荧光液体渗透检验的试验方法ASTM E 1211-1997 用表面安装的声辐射探测器作泄漏探测和定位ASTM E 121-1983 铜碲合金的化学分析试验方法ASTM E 1212-1999 无损检验机构质量控制体系的建立和维护ASTM E 1213-1997 热成像系统用可分辨的最小温度差的试验方法ASTM E 1214-1987 反应堆堆芯压力容器监测用熔丝温度监视器的使用ASTM E 1215-1993 测量车辆对道路粗糙度的行车响应用挂车ASTM E 1216-1999 用胶带提取法对表面微粒子污染取样的标准规程ASTM E 1217-2000 用X射线光电子光谱仪和俄歇电子光谱仪测定影响检测信号的样品面积的标准实施规范ASTM E 1218-1997 用微型海藻作静态96-H毒性试验ASTM E 1219-1999 用可移动溶剂法作荧光液体渗透检验的试验方法ASTM E 12-1970 固体、液体及气体密度和比重的有关术语ASTM E 1220-1999 用可移动溶剂法作可视性液体渗透检验的试验方法ASTM E 1221-1996 测定Kla铁素体钢的平面应变,断裂抑制,破裂韧性的试验方法ASTM E 122-1999 为估算一批产品或者一次加工过程的制品的质量对样品尺寸的选择的标准规程ASTM E 1222-1990 管子护套装置安放损耗的实验室测量用试验方法ASTM E 1224-1994 实验室鉴定用试验区分类ASTM E 1225-1999 通过隔绝--比较--轴向热流技术对固体导热性的试验方法ASTM E 1226-2000 可燃粉剂用压力和压力提高率的标准试验方法ASTM E 1228-1994 过氧脂化验分析的测试方法.催化碘滴定法ASTM E 1229-1993 次氯酸钙ASTM E 1230-1996 近似测定无水氟化氢中碳氢化合物低分子量的测试方法ASTM E 1231-2001 热不稳定材料危害潜在灵敏值计算的标准实施规程ASTM E 123-1992 蒸馏法水分测定装置ASTM E 1232-1991 化学药剂可燃性温度极限的试验方法ASTM E 1233-1996 用循环的静态气压差法测定外窗,护墙及门结构性能的试验方法ASTM E 1234-2001 宇宙飞船在环境受控区域内使用的不挥发残留物取样板的装卸、运输和安装的标准实施规程ASTM E 1234M-1995 在宇宙飞船人工控制环境中使用的挥发残渣取样板的搬运,运输和安装标准试验方法ASTM E 1235M-1995 在宇宙飞船人工控制环境中挥发残渣重量测定的标准试验方法(米制)ASTM E 1236-1991 作为参照样机的摆锤式冲击试验机的合格证明ASTM E 1237-1993 安装耦合电阻应变仪ASTM E 1238-1997 独立计算机系统之间的可转换临床观测ASTM E 1239-1994 自动化患者护理信息系统用预约/登记允许,出院,转院系统的描述ASTM E 1240-1988 风能转换系统性能的测试方法ASTM E 1241-1998 用鱼进行早期生命阶段毒性测试ASTM E 124-1994 微量化学分析用称重和干燥装置ASTM E 1242-1997 用辛醇水分配系数测定鱼因麻醉的中长致死浓度ASTM E 1245-1995 用自动图象分析测定包括钢和其它金属的含量ASTM E 1246-2001 临床实验室计算机系统可靠性报告的标准规程ASTM E 1247-1992 用分光光度法在物体色码样品中鉴别荧光粉的测试方法ASTM E 1248-1990 切碎机防爆ASTM E 1249-1993 用钴60源在硅电子装置的辐射强度试验中最小的剂量测定误差ASTM E 1250-1988 评估硅电子器件辐射强度试验用钴60辐射源的低能γ成分的电离箱的应用ASTM E 1251-1994 用氩保护气氛,点对面,单极自激发电容器放电法作铝和铝合金的光辐射光谱测定分析的测试方法ASTM E 125-1963 铁铸件的磁粉检验用参考照片ASTM E 1252-1998 定性红外线分析通用技术ASTM E 1253-1999 辐照过的摆锤式冲击试样的复原ASTM E 1254-1998 射线照片和未曝光工业用射线照相胶片的储存ASTM E 1255-1996 射线检查法ASTM E 1256-1995 辐射式温度计的测试方法(单波段型)ASTM E 1257-1993 用光谱化学分析法评定表面处理用研磨材料ASTM E 1258-1988 风扇增压装置气流校正的试验方法ASTM E 1259-2001 沸腾温度低于390℃的液体燃料中抗微生物剂评定的标准试验方法ASTM E 1260-1995 用光学无图信号光散射仪确定喷射时液滴尺寸特性的测试方法ASTM E 1261-2000 辐射处理用剂量测定体系的选择和校准的标准指南ASTM E 126-1992 流体比重计检验和验证的试验方法ASTM E 1262-1988 中国仓鼠卵巢细胞/次黄质鸟嘌呤转磷酸核糖基酶基因变异鉴定的操作ASTM E 1263-1997 哺乳动物骨髓红血球中微细胞核检验的实施ASTM E 1264-1998 吸音顶棚产品的分类ASTM E 1265-1990 气动排气消音器安放损耗测量用试验方法ASTM E 1266-1988 结构填料和其它结构中用的石灰,飞灰和重金属废料混合物的处理ASTM E 1268-2001 评定显微结构带状物等级或取向的标准实施规范ASTM E 1269-2001 用差别扫描热量测定仪测定特殊热量的标准试验方法ASTM E 1270-1988 等臂天平的测试方法ASTM E 1271-1994 热处理钢的摆锤式冲击检验试样的合格化ASTM E 127-1998 超声波标准铝合金块的制造及检验ASTM E 1272-1995 带刻度的圆柱形容器ASTM E 1273-1988 可重复使用的实验室移液管的色标ASTM E 1274-1988 用验平仪测量路面粗糙度的测试方法ASTM E 1275-1998 放射铬箔剂量测定系统的使用ASTM E 1276-1996 有机玻璃剂量测定系统的使用ASTM E 1277-1996 用ICP(感耦等离子体)氩气等离子体光谱测定法对锌-5%铝-铈合金作化学分析的试验方法ASTM E 1278-1988 排除现场跟综退役用放射通道的分类法ASTM E 1279-1989 用摇瓶衰减弱法作生物降解的试验方法ASTM E 1280-1997 哺乳动物细胞诱变性用老鼠淋巴瘤鉴定实施ASTM E 1281-1989 核设备退役计划ASTM E 128-1999 实验室用刚性多孔过滤器的最大孔隙直经和渗透性的试验方法ASTM E 1282-1998 规定金属及其合金的化学成分并选择取样的实际操作与定量分析方法ASTM E 1283-1989 计算机综合制造系统的采购ASTM E 1284-1997 新生物医学术语结构用疾病分类标准和导则ASTM E 1285-2001 λ(拉姆达)噬菌现象或它的脱氧核糖核酸的识别标准指南ASTM E 1286-1989 热疮病毒或它的脱氧核糖核酸的识别ASTM E 1287-1989 生物材料的无菌取样ASTM E 1288-1989 生物量球粒耐久性的试验方法ASTM E 1289-1997 声传输损耗的标样ASTM E 1290-1999 测量裂缝尖端开口位移(CTOD)裂缝韧性的试验方法ASTM E 1291-1999 用老鼠进行饱和蒸气吸入研究的试验方法ASTM E 129-1974 用粉末技术做热离子镍合金光谱分析的试验方法ASTM E 1292-1994 重力对流和强制通风恒温箱ASTM E 1293-1994 玻璃测量移液管ASTM E 1294-1989 用自动液体孔率计检验薄膜过滤器的孔径特性的测试方法ASTM E 1295-2001 用网纹水蚤(Dubia)进行三卵、复原毒性试验的标准指南ASTM E 1297-1996 用铌辐射激活法测量快中子反应率的试验方法ASTM E 1298-1989 生物药品中纯净度,污物和杂质的测定ASTM E 1299-1996 人体温度断续测量用可重新使用的相变换型体温计ASTM E 1300-1997 测定要求耐规定荷载的退火玻璃的最小厚度ASTM E 1301-1995 实验室技术熟练检验计划的制定和执行ASTM E 130-1987 石墨电极形状和尺寸的名称与符号ASTM E 1302-2000 在水可溶混合的金属加工液条件下对动物剧毒性测试的标准指南ASTM E 1303-1995 液相色谱法用折射指数检测器ASTM E 1304-1997 金属材料平面变形(V型槽口)断裂韧度的测试方法(代替SAE ARP 1704)ASTM E 1306-1994 化合物测定用电弧溶化时活性和耐溶金属及合金式样的制备ASTM E 1307-2000 平面遮蔽板用预硫化非金属复合面板的表面制备和与结构芯层的结构胶合的标准实施规程ASTM E 1308-1992 计算机管理材料性能数据库中聚合物(热固性合成橡胶除外)的识别ASTM E 1309-2000 数据库中纤维增强聚合物复合材料的识别的标准指南ASTM E 1310-1998 辐射铬光学波导管剂量测定系统的使用ASTM E 1311-1989 热像仪用最低可检测温差的测试方法ASTM E 131-2000 分子光谱学的相关标准术语ASTM E 1312-1999 居里温度以上铁磁圆柱棒产品的电磁(涡流)检验ASTM E 1313-1995 材料性能数据的计算机化管理用数据记录的采集和加工ASTM E 1314-1989 与计算机管理的试验报告和材料标志格式相关的结构化术语记录ASTM E 1315-1993 带有凸圆柱弯曲进入面钢的超声检验ASTM E 1316-1997 无损检验术语ASTM E 1317-1997 船舶表面涂层易燃性的试验方法ASTM E 1318-2002 根据用户要求的公路承重监测器系统和测试方法标准规范ASTM E 1319-1998 高温变形测量ASTM E 1320-1995 钛铸件用基准X射线照相ASTM E 1321-1997 测量材料引燃和火焰曼延性能的测试方法ASTM E 132-1997 室温下泊松比率的试验方法ASTM E 1322-1990 实验室认可体系评定员的选择,训练和评估ASTM E 1323-1989 实验室测量规程的评估和结果数据的统计分析ASTM E 1324-2000 超声检验装置的某些电子特性测定的标准指南ASTM E 1325-1991 与实验装置设计相关的术语ASTM E 1326-1998 细菌计数用的非常规微生物试验的评价ASTM E 1327-1990 利用指甲部位评定个人保健洗手配方的测试方法ASTM E 1328-1999 与光电太阳能转换相关的标准术语ASTM E 1329-1996 光谱化学分析中控制图表的验证和使用ASTM E 1331-1996 用半球体几何形状的分光光度法测量反射系数和颜色的测试方法ASTM E 133-1992 蒸馏设备ASTM E 1332-1990 室外-室内透过等级测定用分类ASTM E 1333-1996 确定的试验条件下用大容器测定木制品甲醛量的测试方法ASTM E 1334-1995 建筑物或设施耐用参数的制备ASTM E 1335-1996 用吹灰法测定金条中纯金的测试方法ASTM E 1336-1996 用辐射分光法从视频显示单元中获取比色数据试验方法ASTM E 1337-1990 用参考试验轮胎测定纵向峰值制动系数的测试方法ASTM E 1338-1997 计算机化材料特性数据库的金属和合金的识别ASTM E 1339-1990 计算机管理材料性能数据库中铝合金和零件的识别ASTM E 1340-1996 计算机管理系统的快速形成原型ASTM E 1341-1996 从比色法用从辐射源中获取辐射分光数据ASTM E 1342-1997 用冷冻、冷冻干燥和低温养护法对细菌、真菌、原生生物、病毒、遗传要素以及动物和植物组织的保存ASTM E 1343-1990 平板超滤膜的分子量界限评定的测试方法ASTM E 1344-1990 燃料乙醇生产设备的评定ASTM E 1345-1998 用多次测量法降低颜色测量变异性的影响ASTM E 1346-1990 感官评定用大量取样,搬运和制备食用植物油ASTM E 1347-1997 用三色(滤色器)比色法进行颜色和色差测量的试验方法ASTM E 1348-1990 用半球体几何形状的分光光度法测量透明度和颜色的测试方法ASTM E 1349-1990 用双向几何形状的分光光度法测量反射系数和颜色的测试方法ASTM E 1350-1997 安装前、安装期间和安装之后铠装热电偶测试的试验方法ASTM E 1351-2001 现场金相复制品的生产和评定标准实施规范ASTM E 135-2001 金属、矿石及相关材料的分析化学的有关标准术语ASTM E 1352-1999 模型化装软垫家具组件的抗香烟点燃性的试验方法ASTM E 1353-1999 装软垫家具部分的耐香烟点燃性的试验方法ASTM E 1354-1999 用耗氧热量计测量材料和产品的热及可见烟雾释放率的试验方法ASTM E 1355-1997 火焰模型预测能力的评价ASTM E 1356-1998 用差示扫描量热法或差示热分析测量玻璃透过温度的试验方法ASTM E 1357-1990 用硫杆菌铁氧化剂从黄铁矿中测定铁的双浸取率的测试方法ASTM E 1358-1997 用微波炉测定颗粒木材燃料含水量的测试方法ASTM E 1359-1999 检查无损检验机构ASTM E 135a-2001 金属、矿石及相关材料的分析化学的有关标准术语ASTM E 1360-1990 按美国均匀色标系统光学学会规定说明颜色ASTM E 1361-1990 X射线光谱测定分析中元素间的效应校正ASTM E 136-1999 750℃时立式管炉中材料特性的标准试验方法ASTM E 1362-1999 非浓缩器光电二次标准电池校准的标准试验方法ASTM E 1363-1997 热机械分析仪温度校准的测试方法ASTM E 1364-1995 用静态水平仪法测量道路不平度的测试方法ASTM E 1366-1996 标准化水生物缩影:淡水ASTM E 1367-1999 用海水中和河口处生长的端足类甲壳动物作10天静态沉淀物毒性试验ASTM E 1368-1997 石棉消除项目的外观检查ASTM E 1369-1998 建筑物和建筑系统经济评估中处理不定性和风险的技术选择ASTM E 1370-1996 工作者和工作场地防护用空气取样策略ASTM E 1371-1990 磷铜合金或磷铜银合金中磷的重量分析测定的测试方法ASTM E 1372-1995 进行老鼠中90天口服毒药研究的测试方法ASTM E 1373-1992 进行老鼠的亚慢性吸入毒性研究的试验方法ASTM E 1374-1993 开放式办公室声学及其适用的ASTM标准ASTM E 1375-1990 作为隔声屏障的家具面板的区间衰减测量用测试方法ASTM E 1376-1990 墙面涂层和家俱面板的声反射区域间衰减测量用测试方法ASTM E 1377-1999 实验室开尔达玻璃烧瓶的标准规范ASTM E 1378-1999 实验室玻璃多功能缩颈蒸馏烧瓶和长劲烧瓶的标准规范ASTM E 1379-1990 实验室玻璃杜瓦瓶ASTM E 1380-1990 0.1毫升或稍大容量的多刻度实验室移液管用色码,不包括可处置的凝血酶原和一次性微量滴管ASTM E 1381-1995 临床实验室装置和计算机系统间传送信息的低级协议ASTM E 1382-1997 用半自动和自动图象分析测量平均粒度的测试方法ASTM E 1384-1999 管理的自动化原始记录的内容和结构描述指南ASTM E 1385-1995 用蒸馏法对从火灾瓦砾样品中获取的可燃或易燃液体残渣的分离和浓缩ASTM E 1386-1995 用溶剂萃取法对火灾瓦砾样品中获取的可燃或易燃液体残渣的分离和浓缩ASTM E 1387-1995 用气相色谱法对从火灾瓦砾样品中获取的可燃或易燃液体残渣的试验方法ASTM E 1388-1995 对从火灾瓦砾样品中获取的头上空间蒸汽取样ASTM E 1389-1995 用酸洗法对火灾瓦砾样品提取物的清洗ASTM E 1390-1990 用于观察工业射线照相的照明装置ASTM E 1391-1994 毒理测定用沉积物的收集,存储,表征和操作方法ASTM E 139-2000 金属材料传导蠕变、蠕变断裂和应力断裂的标准试验方法ASTM E 1392-1996 镜面或反射面角度分析光散射测量ASTM E 1393-1990 用尖状往复式抛光机械测定沥青路面及样品精整性的试验方法。
美国标准目录查询(中文版)
美国标准目录查询(中文版)美国ASTM标准目录查询(中文版)ASTMF(二)ASTMF1788-1997水上泄漏油的现场燃烧标准导则:环境与操作依据ASTMF1789-2002F16机械紧固件标准术语U:[ASTMF1790-1997测量防护服用材料的耐切割的标准试验方法ASTMF1792-1997用于氧气服务的阀门的特殊要求的标准规范ASTMF1793-1997空气或氮服务用自动截流阀(也称为溢流阀)的标准规范ASTMF1794-1997手动、球型阀气体(除氧气)和液压系统标准规范ASTMF1795-1997空气或氮气系统减压阀标准规范ASTMF1796-1997高压探测器标准规范.第1部分:超过600伏交流电压用电容式探测器ASTMF1797-1998绝缘采掘式起重机声音发射试验的标准试验方法ASTMF1798-1997脊椎关节固定术植入用互连接装置和子配件的静态和疲劳特性评价的标准指南ASTMF1799-1997船上生成废物管理审核的标准指南ASTMF1800-1997整体膝关节替代物的医疗胫骨盘成分的周期疲劳试验的标准试验方法ASTMF1801-1997金属植入物腐蚀疲劳试验的标准操作规程ASTMF180-1994电子装置用细金属线和带状金属线密度的测试方法ASTMF1802-1997溢流阀性能测试标准试验方法ASTMF1803-1997基于可控内径的聚氯乙烯封闭异形重力管的标准规范ASTMF1804-1997测定牵引装配时聚乙烯气管可允许抗拉荷载的标准规程ASTMF1805-1998在覆雪或覆冰表面测定单轮直线驱动摩擦力的标准试验方法ASTMF1806-1997轮胎试验操作标准规程.基准轮胎用基本概念和术语ASTMF1807-1999DSR9交联聚乙烯(PEX)管用的使用卷制铜环的金属内插件标准规范ASTMF1808-1997水面舰艇重量控制技术要求的标准指南ASTMF1809-1997硅光滑结构缺陷用浸蚀溶液的选择与使用标准导则ASTMF1810-1997择优统计硅片侵蚀或表面缺陷的标准试验方法ASTMF1811-1997从表面轮廓数据估测功率谱密度函数和有关的精整参数的标准指南ASTMF1812-1997测定薄膜开关ESD屏蔽有效性的标准试验方法ASTMF1813-2001外科植入用锻压的钛-12钼-6锆-2铁合金(UNSR58120)的标准规范ASTMF1814-1997评价髋部和膝关节连接部件模数的标准指南ASTMF1815-1997小型高尔夫球场绿呢和运动场草地区的饱和水渗透性、水分保持、孔隙率、颗粒密度和体密度的标准试验方法ASTMF1816-1997儿童外上衣上综线的标准安全规范ASTMF1817-1997运输带式烘箱性能的标准试验方法ASTMF1818-1997链锯脚部保护的标准规范ASTMF1819-1998用机械压力技术测定防护服装材料抗人造血渗透性的标准试验方法ASTMF18-1964电子设备用玻璃金属底板评定规范和试验方法ASTMF1820-1997测定模数碟状体设备轴向拆解力的标准试验方法ASTMF1821-1997婴儿床标准使用安全规范ASTMF1822-1997不足尺寸婴儿叠木框的使用安全规范ASTMF1823-1997水上救援人员漂浮装置的标准指南ASTMF1824-1997水上救援者工作状况的标准指南-Ⅱ级ASTMF1825-1997固定长度夹杆式带电工具的标准规范ASTMF1827-1997与食品加工设备有关的标准术语ASTMF1828-1997输尿管展伸的标准规范ASTMF1829-1998静态评价剪切中关节窝锁紧结构的标准试验方法ASTMF1830-1997评价玻璃试管内血泵用血液的选择的标准操作规程ASTMF1831-1997颅骨牵引钳和晕轮外部脊椎固定装置的标准规范ASTMF1832-1997测定射箭弓压下和下降的标准试验方法ASTMF1833-1997跑鞋后脚运动控制特性比对的标准试验方法ASTMF1834-1998作为陆上减少化学污染物方法的厌氧生物治疗状况的标准指南ASTMF1835-1997电缆编接装置的标准指南ASTMF1836M-1997填料管、尼龙和包装配件的标准规范ASTMF1837M-1997热缩电缆引入密封的标准规范(公制)ASTMF1838-1998户外用儿童塑料椅的标准性能要求ASTMF1839-2001测试矫形装置和仪器的标准物质用硬质聚氨酯泡沫的标准规范ASTMF1840-1998外科缝合针的标准术语ASTMF1841-1997连续流动血泵里溶血评定的标准操作规程ASTMF1842-1997测定薄膜开关的塑料基质上油墨或涂层粘附的标准试验方法ASTMF1843-1997薄膜开关涂覆层上抛光光泽测量用透明塑料薄膜的样品制备的标准指南ASTMF1844-1997用非接触式涡流计测量平板显示器制造用薄膜导体耐力的标准操作规程ASTMF1845-1997用高质量减少辉光放电质谱仪测量电子级铝铜、铝硅和铝铜硅中微量金属杂质的标准试验方法ASTMF1846-1998与陆上搜寻图一起使用的符号和标志的标准操作规程ASTMF1847-1998演示搜寻和援救狗和管理人员的最低技能的标准指南ASTMF1848-1998搜寻和援救狗群/队的标准分类ASTMF1850-1998麻醉操作工位及其部件的特殊要求的标准规范ASTMF1851-1998条码验证标准操作规程ASTMF1852-2000120/105ksi最小抗张强度热处理拧松式张力控制结构螺栓/螺母/垫圈配件的标准规范ASTMF1853-1998测量睡袋填充量的标准试验方法ASTMF1854-2001医用植入物上多孔覆层的立体测量评价的标准试验方法ASTMF1856-1998测定打印机盒式存储器的调色剂使用的标准操作规程ASTMF1857-2001与喷墨打印机及其打印的图像有关的标准术语ASTMF1858-1998户外用带有可调节背或活动靠背结构的多位塑料椅的标准性能要求ASTMF1859-1998无内层的橡胶薄楼板的标准规范ASTMF1860-1998有内层的橡胶薄楼板的标准规范ASTMF1861-1998弹性墙座的标准规范ASTMF1862-1998医疗面具抗人造血渗透的标准试验方法(以已知速率固定量的水平投影)ASTMF1863-1998测量夜视镜透明部件的加权过滤系数的标准试验方法ASTMF1864-1998光学和红外透明材料及覆层的耐尘土腐蚀的标准试验方法ASTMF1865-1998交联聚乙烯管用带压缩套筒的机械冷膨胀插入配件的标准规范ASTMF1866-1998壁厚40的聚氯乙烯塑料排水管和排水、排渣和放气加工配件的标准规范ASTMF1867-1998现存排水道和管线修复用A型折叠/成型聚氯乙烯管安装的标准操作规程ASTMF1868-1998用焊接热板测定服装材料耐热和耐蒸发的标准试验方法ASTMF1869-1998用无水氯化钙测量混凝土底层地板湿气发散率的标准试验方法ASTMF1870-1999在滞留和校正设备中评定选择装饰家具的着火试验方法的标准指南ASTMF1871-1998现存下水道和管线修复用A型折叠/成型聚氯乙烯管的标准规范ASTMF1872-1998化学海岸线清洁剂使用的标准指南:环境和操作研究ASTMF1873-1998外科植入用高纯度密集三氧化二钇四氧化锆多晶体的标准规范ASTMF1874-1998外科缝合用针的弯曲试验的标准试验方法ASTMF1875-1998模块植入接口的磨损侵蚀试验的标准操作规程:脊股骨孔和锥体锥形接口ASTMF1876-1998外科植入用聚醚酮醚二酮树脂的标准规范ASTMF1877-1998粒子特性的标准操作规程ASTMF1878-1998护航船评价和选择的标准指南ASTMF1879-1998演示搜寻和援救狗驯从和敏捷性的标准指南ASTMF1880-1998测定射箭弓射出百分比的标准试验方法ASTMF1881-1998测量棒球球棒能的标准试验方法ASTMF1882-1998家用篮球系统的标准规范ASTMF1883-1998美国线规或米制装置中导线和电缆选择的标准操作规程ASTMF1884-1998测定包装材料中剩余溶剂的标准试验方法ASTMF1885-1998控制干香料、香草类植物及蔬菜作料中病原体和微生物的辐照的标准指南ASTMF1886-1998用目视检验测定医疗包装密封完整性的标准试验方法ASTMF1887-1998测量棒球和垒球回弹系数的标准试验方法ASTMF1888-1998棒球和垒球受压位移的试验方法ASTMF1889-1998箭杆平直度测量的标准指南ASTMF1890-2001垒球棒性能的标准试验方法ASTMF1891-2001雨衣耐电弧和耐火的标准规范ASTMF1892-1998半导体器件电离辐射(总剂量)效应试验的标准指南ASTMF1893-1998测量半导体器件电离剂量率熔蚀的指南ASTMF1894-1998定量分析硅化钨半导体加工膜组分和厚度的标准试验方法ASTMF1895-1998薄膜开关浸没的操作规程ASTMF1896-1998测定印刷传导材料电阻率的试验方法ASTMF1897-1998链锯使用者用护腿的标准规范ASTMF1898-2001婴幼儿用非机动轮式车辆头盔的标准规范ASTMF1899-1998无水压机装配的食品废气物搅碎机的标准规范ASTMF1900-1998用行走模拟器进行鞋靴耐水标准试验方法ASTMF1901-1998屋顶排水系统用聚乙烯管和配件的标准规范ASTMF1903-1998测试体内粒子生物响应的标准操作规程ASTMF1904-1998测试体内粒子生物响应的标准操作规程ASTMF1905-1998选定测定材料产生抗毒性倾向的试验的标准操作规程ASTMF1906-1998用酶标记免疫分析试验、淋巴细胞扩散和细胞移动评价生物配伍中免疫反应的标准操作规程ASTMF1908-1998家用户外游泳池、热浴盆和温泉用栅栏的标准指南ASTMF1909-1998预制开口泡沫橡胶桶和桶衬垫规范ASTMF1910-1998长的有倒刺带状障碍物的标准规范ASTMF1911-1998有倒刺绝缘带装配的标准操作规程ASTMF1912-1998豆袋椅安全标准规范ASTMF1913-1998没有背衬的乙烯基薄楼板覆层的标准规范ASTMF1914-1998弹性楼板覆层的短期陷穴和剩余陷穴的标准试验方法ASTMF1915-1998拘役设施用门窗玻璃的标准试验方法ASTMF1916-1998选择拘役用带涂层链节栅栏结构和圆柱的链节栅栏系统的标准规范ASTMF1917-1999婴儿被垫和有关辅助品的标准使用安全性能规范ASTMF1918-1998软的封闭式游戏设备的标准安全性能规范ASTMF1919-1998单边或双边、自加热、柜台式或固定于燃气或电加热火上的铁盘标准规范ASTMF19-1964镀金属陶瓷密封件抗拉及真空试验方法ASTMF1920-1998架式输送装置、热水消毒和商用洗碟设备的能量性能的标准试验方法ASTMF1921-1998构成挠性腹板密封表面的热塑聚合物和混合物的热封强度(热点焊焊缝)的标准试验方法ASTMF1922-1998道路气动车辆轮胎的标准试验方法ASTMF1923-1998非道路气动低速车辆轮胎的标准试验方法ASTMF1924-1998外直径可控聚乙烯管及管道用塑料机械配件的标准规范ASTMF1925-1998外科植入物用直馏聚(L-乳酸)树脂的标准规范ASTMF1926-1999评价磷酸钙涂层的环境稳定性的标准试验方法ASTMF1927-1998用库仑检测器测定氧气传输率、渗透率和穿透屏蔽材料的受控相对湿度的渗透的标准试验方法ASTMF1928-1998娱乐小型汽车的用户娱乐用的标准安全指南ASTMF1931-1998体操用着地垫和训练用地板面特性的标准试验方法ASTMF1932-1998测量睡袋纺织纤维回弹力的标准试验方法ASTMF1933-1998插图说明背包式或登山用帐蓬触地面积的标准规范ASTMF1934-1998称重背包式或登山用帐蓬的试验方法ASTMF1935-2001测量背包式或登山用帐蓬高度的标准试验方法ASTMF1936-1998现场测量北美足球运动场地减震性能的标准规范ASTMF1937-1998用于马术运动和骑马行驶的身体保护器标准规范ASTMF1938-1998可移动足球球门安全使用指南ASTMF1939-1999耐火服装材料的抗辐射性能的标准试验方法ASTMF1940-2001电镀或涂覆紧固件防氢脆的过程控制检定的标准试验方法ASTMF1941-1998螺纹紧固件上电度覆层的标准规范(统一英制螺纹)ASTMF1941M-2000螺纹紧固件电积层的标准规范ASTMF1942-1998创建测定喷墨打印机用成像供给的油墨成品的试验目标的标准操作规程ASTMF1943-1998测定热质量传递带状产品的动态热响应的标准试验方法ASTMF1944-1998测定由喷墨打印机产生的文本、行和实地版输出质量的标准操作规程ASTMF1945-1998测定曝露于室内荧光照明下的喷墨打印的耐晒性的标准操作规程ASTMF1946-1998测定曝露于室内荧光照明和滤窗日光下的喷墨打印的耐晒性的标准操作规程ASTMF1947-1998现有排水管和管道中有皱褶的聚氯乙烯(PVC)管的安装标准实施规范ASTMF1948-1999外直径可控热塑气体分布管及管道用金属机械配件的标准规范ASTMF1949-1999EMS陆上车辆用医用氧输送系统的标准规范ASTMF1950-1999用旧娱乐车辆和装置传输物理信息的标准规范ASTMF1951-1999测定运动场设备下部和周围的地面系统易维护性的标准规范ASTMF1953-1999网球草场的建设与维护的标准指南ASTMF1955-1999睡袋易燃性的标准试验方法ASTMF1956-1999对救援卡宾枪手的标准规范ASTMF1957-1999复合泡沫材料硬度测定器硬度的标准试验方法ASTMF1961-1999交联聚乙烯(PEX)管用带盘簧的金属冷压扩口式管接头的标准规范ASTMF1962-1999包括渡口在内的障碍物下聚乙烯管道更换时最大水平方向打眼的使用标准指南ASTMF1963-1999敞口式燃气或电的深油煎锅标准规范ASTMF1964-1999压力油炸器和锅状油炸器性能的标准试验方法ASTMF1965-1999台式炉性能的标准试验方法ASTMF1966-1999分面机和使成圆形设备的标准规范ASTMF1967-2001婴儿浴室座椅的标准用户安全规范ASTMF1970-2001聚氯乙烯(PVC)或氯化聚氯乙烯(CPVC)系统中使用的专用工程配件或附属品的标准规范ASTMF1971-1999试验台负荷下轮胎电阻性的标准试验方法ASTMF1972-1999有关蜡烛和相关附件的术语的标准指南ASTMF1973-1999聚乙烯(PE)燃料气分配系统中工厂装配的阳级冒口和过渡配件的标准规范ASTMF1974-2001聚乙烯/铝/聚乙烯和交联聚乙烯/铝/交联聚乙烯复合压力管用金属内插件标准规范ASTMF1976-1999用冲击试验测试运动鞋减震性能的标准试验方法ASTMF1977-1999测定真空吸尘器系统初始部分过滤效率的标准试验方法ASTMF1978-1999用TABER%26lt;SUP%26gt;TM%26lt;SUP%26gt;研磨剂测定金属热喷射涂层的耐磨性的标准试验方法ASTMF1979-1999彩弹球运动用球的标准规范ASTMF1980-2002无菌医疗设备包装的加速老化的标准指南ASTMF1981-1999用于呼吸系统的吸气导管标准规范ASTMF1982-1999用热解吸气相色谱法分析硅晶表面有机污染物的标准试验方法ASTMF1983-1999植入用可吸收和再吸收的生物材料的兼容性评定的标准操作规程ASTMF1984-1999用固体材料测试血浆中整个活性的标准操作规程ASTMF1985-1999气力操作的球形控制阀标准规范ASTMF1986-2001冷热饮用水系统用2型多层管、压合配件和压合接头的标准规范ASTMF1987-2001水硬水泥混凝土和灰浆用乳状和粉末聚合物改良剂的标准规范ASTMF1988-1999户外用带可调节底座的、有或没有活动臂的塑料躺椅的标准性能要求ASTMF1989-1999灭火毛巾标准规范ASTMF1991-1999中式炉灶(镬)性能的标准试验方法ASTMF1995-2000利用薄膜开关剪切力测定表面安装设备(SMD)粘着强度的标准试验方法ASTMF1996-2001薄膜开关电路系统银迁移的标准试验方法ASTMF2001-2001开发电子数据库和船舶安全记录用与船舶有关的技术信息标准指南ASTMF2002-2001麻醉与呼吸设备的相关标准术语ASTMF2002c-2001麻醉与呼吸设备的相关标准术语ASTMF2006-2000非紧急出口和营救窗口用窗下落防护装置的标准安全规范ASTMF2009-2000测定模块化假体锥形连接的轴向拆解力的标准试验方法ASTMF2011-2000游乐车安全和性能的标准规范ASTMF2013-2001用自动静态顶部空间取样设备和带火焰电离检测器的毛细管GC测定聚乙烯对苯二甲酸酯瓶装聚合物中残留乙醛的标准试验方法ASTMF2034-2000层状铺地板油毡的标准规范ASTMF204-1976密封钨丝和钨条表面裂纹的试验方法ASTMF205-1994用称量法测定细金属丝直径的测试方法ASTMF2066-2001外科植入物用锻制钛-15钼合金的标准规范ASTMF2068-2001大腿股假体金属植入物的标准规范ASTMF2072-2001薄膜开关软管洗涤的标准实施规程ASTMF2073-2001薄膜开关无损短路检验的标准试验方法ASTMF2075a-2001置于运动场设备下面和周围的用作运动场安全表面的工程木纤维的标准规范ASTMF2076-2001EMS病人报告关于接收医疗设备的通知的标准实施规程ASTMF2077-2001椎间体融合设备的试验方法ASTMF2078-2001氢脆化试验的相关标准术语ASTMF2079-2001气球反冲力测量的标准试验方法.可膨胀幅度ASTMF2080-2001交联聚乙烯管用带金属压合套筒的冷膨胀配件标准规范ASTMF2081-2001维管展幅尺寸属性的特征描述和表示的标准指南ASTMF2082-2001通过弯曲和自由回复测定镍钛成型记忆合金转变温度的标准试验方法ASTMF2083-2001全膝假体标准规范ASTMF2083a-2001全膝关节假体标准规范ASTMF2084-2001受控环境中安全壳吊杆性能数据采集的标准指南ASTMF2085-2001便携式床围栏的消费者安全标准规范ASTMF2086-2001圆形磁性溅涂靶磁通量的标准试验方法ASTMF2087-2001玻璃纤维编织绳和油绳的包装标准规范ASTMF2088-2001婴幼儿秋千的标准消费者安全规范ASTMF2089-2001语言说明服务的标准指南ASTMF2090-2001带有紧急逃生分离机构的防窗跌落装置的规范ASTMF2090a-2001带有紧急逃生分离机构的防窗跌落装置的规范ASTMF2091-2001碟状体菌柄标准规范ASTMF2092-2001燃气或电对流炉标准规范ASTMF2093-2001搁架式烤炉的性能标准试验方法ASTMF2094-2001氮化硅轴承滚珠标准规范ASTMF2094a-2001氮化硅轴承滚珠标准规范ASTMF2095-2001有或无约束板的无孔挠性包装件压力下降泄漏试验的标准试验方法ASTMF2096-2001通过内部加压(鼓泡试验)检测有孔医用包装毛损的标准试验方法ASTMF2098-2001保证SDR9交联聚乙烯(PEX)管用金属插件安全的不锈钢夹子的标准规范ASTMF2099-2001陆地探查用实测原图的准备和使用时统一横墨卡托投影网格的使用标准指南ASTMF2100-2001医用面罩材料的性能标准规范ASTMF2101-2001用金黄色葡萄球菌的生物气溶胶评定医用面罩材料细菌过滤效果(BFE)的标准试验方法ASTMF2102-2001评定外科植入物用超高分子量聚乙烯加工式样氧化程度的标准指南ASTMF2103-2001作物生物化学和组织工程医疗产品原材料的脱乙酰壳多糖盐的表征和试验标准指南ASTMF2105-2001测量真空吸尘器发动机/风扇系统的空气性能特性的标准试验方法ASTMF2106-2001装有发动机的人力蹋车设计和性能特征评定的标准试验方法ASTMF2107-2001运动场没有草皮部分的建造和维护标准指南ASTMF2108-2001用棱镜对透光部分的检验标准操作规程ASTMF2109-2001测定由于飞行器维修试剂作用于飞行器座舱内部硬表面上而引起的颜色变化和锈蚀的标准试验方法ASTMF2111a-2001测量由于飞行器化学处理引起的对金属的粒间冲击或端面晶粒点蚀的标准实施规范ASTMF2113-2001薄膜电子设备用高纯度金属溅涂靶杂质含量和等级的分析和报告标准指南ASTMF2115-2001装有发动机的人力蹋车的标准规范ASTMF2117-2001球类运动场垂直回弹特性的标准试验方法.声学测量ASTMF2118-2001丙烯水泥材料力控疲劳试验的恒定幅值ASTMF2118a-2001丙烯骨料水泥材料力控疲劳试验恒定幅值的测试方法ASTMF21-1965用雾化试验器作疏水表面薄膜的试验方法ASTMF2120-2001测试Treestand负荷能力的标准实施规程ASTMF2121-2001Treestand标签的标准实施规程ASTMF2122-2001Treestand安全设备的标准实施规程ASTMF2123-2001Treestand说明的标准实施规程ASTMF2124-2001梯形Treestand、三角形Treestand和提升木棍负荷能力试验的标准实施规程ASTMF2125-2001Treestand静态稳定性的标准试验方法ASTMF2126-2001Treestand静态负荷能力的标准试验方法ASTMF2127-2001Treestand粘着力的标准试验方法ASTMF2128-2001Treestand反复荷载能力的标准试验方法ASTMF2129-2001进行循环动电位极化测量以测定小型植入装置的腐蚀敏感性的标准试验方法ASTMF2130-2001测量防护服材料对液体杀虫剂的排斥性、抑制能力和渗透性的标准试验方法ASTMF2132-2001废弃医用针头和其它尖锐物用的容器使用的材料抗穿透性的标准规范ASTMF2133-2001测定钢结构的绝缘船舱壁和甲板的防火效果的标准试验方法ASTMF2135-2001模制排水、污物和通风的短型塑料配件标准规范ASTMF2136-2001测定HDPE树脂或HDPE波纹管抗慢性断裂的凹口恒定带状应力试验的标准试验方法ASTMF2137-2001娱乐骑座设备和娱乐设备动力特性测量的标准实施规范ASTMF2138-2001天然气设备用溢流阀标准规范ASTMF2140-2001食品保温箱性能的标准试验方法ASTMF2141-2001熟食加热装置性能的标准试验方法ASTMF2142-2001抽屉式加热器性能的标准试验方法ASTMF2143-2001冷藏餐具柜和食品准备桌性能的标准试验方法ASTMF2144-2001大的敞口式深油煎锅性能的标准试验方法ASTMF2145-2001外径受控的聚酰胺11管用聚酰胺11(PA11)机械配件标准规范ASTMF2153-2001背负容量测量的标准试验方法ASTMF2154-2001多孔纤维玻璃布面的纤维玻璃吸声板标准规范ASTMF2155-2001扣锁或密封用搭扣和其他固定装置性能的标准规范ASTMF2156-2001利用坐标线斜率测量透明部件中光学失真的标准试验方法ASTMF2160-2001外径受控的实心壁高密度聚乙烯导管标准规范ASTMF2161-2001轴承润滑剂测量仪器及精度的标准指南.第1部分:油ASTMF2162-2001滚针滚柱轴承标准规范:拉制外环、完全配套、无内环、开端和闭端、标准型ASTMF2163-2001带拉制外环的滚针滚柱轴承用轴承内环标准规范ASTMF2167-2001未成年人用弹跳座椅的消费者标准安全规范ASTMF218-1995玻璃应力分析的试验方法ASTMF219-1996电子器件和电灯用细圆丝和扁线的试验方法ASTMF221-1998与复写纸、色带制品以及所产生的图案相关的术语定义ASTMF22-1965用水膜破裂试验作疏水表面薄膜的试验方法ASTMF23-1990热离子发射器温度测量方法的选择ASTMF25-1968电子及类似用途用的清洁室及其它防尘区域空气中粒状杂质的测量和计算方法ASTMF256-1994含有18%或26%铬的铬铁密封合金ASTMF26-1987测定半导体单晶体取向的方法ASTMF269-1960钨丝弯曲度的试验方法ASTMF28-1991光电导衰减测量法测定大块锗和硅中少数载流子寿命的方法ASTMF288-1996电子器件和电灯用钨丝ASTMF289-1996电子设备用钼丝及钼条ASTMF290-1994绕制电子管栅极支线用圆线ASTMF29-1997玻璃与金属密封装置用杜美丝ASTMF301-1991液流的开口瓶取样ASTMF30-1996铁镍密封合金ASTMF302-1978容器中航空航天流体的现场取样ASTMF303-1978元部件中航空航天流体的取样ASTMF306-1970真空吸取技术从航空航天流体用人可进入的储存容器中粒子的取样(一般方法)ASTMF307-1973气体分析用压力气体的取样ASTMF309-1970非冷冻航空航天推进剂的液体取样ASTMF310-1970冷冻的航空航天流体的取样ASTMF311-1997用膜滤器进行粒状污染物分析用航空航天流体样品的处理ASTMF31-199442%镍,6%铬铁密封合金ASTMF312-1997膜滤器上航空流体中颗粒微观大小的测定及计数ASTMF315-1970航空航天流体中焊料和焊剂污染物的识别试验方法ASTMF318-1978处理航空航天流体用无菌室中空气粒子污染物取样ASTMF319-1991航空航天用透明加热元件中裂纹的偏振光检测ASTMF3-2002电子管用镍带标准规范ASTMF320-1994航空和航天透明外壳抗冰雹撞击性的测试方法ASTMF326-1996镀镉工艺用电子氢脆试验方法ASTMF327-1978用自动粒子监控器法对气体排污系统和部件的粒子污染物取样ASTMF328-1998用近向单发散球状粒子材料测定空气中粒子计数器的计数和尺寸的准确度ASTMF330-1989航空航天透明外壳撞鸟试验的试验方法ASTMF331-1972从航空航天部件中提取的卤化溶剂的不挥发残渣的试验方法(使用旋转瞬间蒸发器)ASTMF335-1994与静电复印相关的术语ASTMF336-1997腐蚀作业用非金属包封衬垫的设计和结构的标准实施规程ASTMF339-1971苜蓿叶型中间销ASTMF340-1971导入型医疗用埋头钻ASTMF34-1998柔性阻挡层材料液体提取实验台的结构ASTMF355-2001运动表面系统和材料减震性能的标准试验方法ASTMF356-1975电子和电气设备用氧化铍陶瓷ASTMF357-1978厚膜导体的软钎焊性测定ASTMF358-1983磷化砷化镓片的最大光致发光波长及其相应成分的试验方法ASTMF359-1982四氧化二氮中无应力材料的静态浸渍试验ASTMF360-1982静电办公复制品图象评定ASTMF36-1999垫片材料的压缩性及回弹性的试验方法ASTMF362-1991测定油墨色带消磁性试验方法ASTMF363-1999衬垫的腐蚀试验的标准试验方法ASTMF364-1996电子管用扁平钼丝ASTMF366-1982固定销钉及金属丝ASTMF370-1994近股骨假肢ASTMF371-1983材料与液氧兼容性的试验方法(反应强度法)ASTMF37-2000垫片材料密封性的标准试验方法ASTMF372-1999用红外线探测技术检查挠性隔栅材料水蒸气传递率的试验方法ASTMF373-1982弹性地板覆盖物压纹深度的试验方法ASTMF374-1994用共线四探针列阵法测定硅外延层,扩散层和离子注入层的薄膜电阻的测试方法ASTMF375-1989集成电路引线框材料ASTMF377-1994校准充气轮胎试验用刹车力的测试方法ASTMF381-2001弹簧床(蹦床)的部件、安装、使用和标签的消费者标准安全规范ASTMF38-2000垫片材料蠕变松驰作用的标准试验方法ASTMF382-1999金属骨板的静态弯曲特性的测试方法和标准规范ASTMF383-1973髓内用杆的静态弯曲及扭转试验ASTMF384-1999钉板的静态弯曲试验的试验方法和标准规范ASTMF386-1993表面平坦的弹性地板铺面材料厚度的测试方法ASTMF387-1993带有泡沫层的弹性地板覆盖物厚度测量的方法ASTMF390-1998用共线四探针法对金属薄膜的薄膜耐力的试验方法ASTMF391-1996通过测量稳态硅表面光致电压确定非本征半导体中少数载流子的扩散长度的试验方法ASTMF392-1993挠性阻挡层材料耐挠曲度的试验方法ASTMF394-1978陶瓷基底的双轴抗挠强度(挠折模量)的试验方法ASTMF395-2000真空吸尘器的相关标准术语ASTMF396-2000一次性不能校准的打字机色带比较的标准操作规程ASTMF397-1993用二探针法对硅棒的电阻率的试验方法ASTMF398-1992通过测量等离子体共振的最小波长对半导体材料中多数载流子浓度的试验方法ASTMF399-2000异质外延层或聚硅层厚度的标准试验方法ASTMF400-1992打火机的安全使用规范ASTMF402-1993热塑性塑料管及配件接合用溶剂粘结剂、油漆腻子及清洁剂的安全操作规范ASTMF403-1998测定高速公路车辆直线前进中刹车时轮胎湿摩擦力的试验方法ASTMF404-1999高脚椅的安全使用规范ASTMF405-1997聚乙烯(PE)波纹软管及管配件ASTMF406-1999娱乐场地的安全使用规范ASTMF408-1999测定拖挂车朝正前方制动时潮湿牵引用轮胎的试验方法ASTMF409-1999可卸可更换的热塑性塑料管和管配件ASTMF410-1995光学测量法对弹性地板覆盖物磨损层厚度的试验方法ASTMF412-2000塑料管道系统的相关标准术语ASTMF412a-2001与塑料管系统相关的标准术语ASTMF413-1998平版印刷复制品功能试验中用胶印复印机准备的标准实施规程ASTMF414-1996当轮胎因缓慢移动的插棒而变形时轮胎吸收能。
ASTM E1000-98(2003) X射线检验法
Designation:E1000–98(Reapproved2003)An American National Standard Standard Guide forRadioscopy1This standard is issued under thefixed designation E1000;the number immediately following the designation indicates the year oforiginal adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.Asuperscript epsilon(e)indicates an editorial change since the last revision or reapproval.1.Scope1.1This guide is for tutorial purposes only and to outline the general principles of radioscopic imaging.1.2This guide describes practices and image quality mea-suring systems for real-time,and near real-time,nonfilm detection,display,and recording of radioscopic images.These images,used in materials examination,are generated by penetrating radiation passing through the subject material and producing an image on the detecting medium.Although the described radiation sources are specifically X-ray and gamma-ray,the general concepts can be used for other radiation sources such as neutrons.The image detection and display techniques are nonfilm,but the use of photographicfilm as a means for permanent recording of the image is not precluded. N OTE1—For information purposes,refer to Terminology E1316. 1.3This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.For specific safety precautionary statements,see Section6.2.Referenced Documents2.1ASTM Standards:E142Method for Controlling Quality of Radiographic Testing2E747Practice for Design,Manufacture and Material Grouping Classification of Wire Image Quality Indicators (IQI)Used for Radiology2E1025Practice for Design,Manufacture,and Material Grouping Classification of Hole-Type Image Quality Indi-cators(IQI)Used for Radiology2E1316Terminology for Nondestructive Examinations2E2002Practice for Determining Total Image Unsharpness in Radiology22.2National Council on Radiation Protection and Mea-surement(NCRP)Standards:NCRP49Structural Shielding Design and Evaluation for Medical Use of X Rays and Gamma Rays of Energies up to10MeV3NCRP51Radiation Protection Design Guidelines for0.1–100MeV Particle Accelerator Facilities3NCRP91,(supercedes NCRP39)Recommendations on Limits for Exposure to Ionizing Radiation32.3Federal Standard:Fed.Std.No.21-CFR1020.40Safety Requirements for Cabinet X-Ray Machines43.Summary of Guide3.1This guide outlines the practices for the use of radio-scopic methods and techniques for materials examinations.It is intended to provide a basic understanding of the method and the techniques involved.The selection of an imaging device, radiation source,and radiological and optical techniques to achieve a specified quality in radioscopic images is described.4.Significance and Use4.1Radioscopy is a versatile nondestructive means for examining an object.It provides immediate information re-garding the nature,size,location,and distribution of imperfec-tions,both internal and external.It also provides a rapid check of the dimensions,mechanical configuration,and the presence and positioning of components in a mechanism.It indicates in real-time the presence of structural or component imperfec-tions anywhere in a mechanism or an assembly.Through manipulation,it may provide three-dimensional information regarding the nature,sizes,and relative positioning of items of interest within an object,and can be further employed to check the functioning of internal mechanisms.Radioscopy permits timely assessments of product integrity,and allows prompt disposition of the product based on acceptance standards. Although closely related to the radiographic method,it has much lower operating costs in terms of time,manpower,and material.4.2Long-term records of the radioscopic image may be obtained through motion-picture recording(cinefluorography),1This guide is under the jurisdiction of ASTM Committee E07on Nondestruc-tive Testing and is the direct responsibility of Subcommittee E07.01on Radiology(X and Gamma)Method.Current edition approved March10,2003.Published May2003.Originally approved st previous edition approved in1998as E1000-98.2Annual Book of ASTM Standards,V ol03.03.3Available from NCRP Publications,7010Woodmont Ave.,Suite1016,Be-thesda,MD20814.4Available from Standardization Documents Order Desk,Bldg.4Section D,700 Robbins Ave.,Philadelphia,PA19111-5094,Attn:NPODS.1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.Copyright ASTM InternationalReproduced by IHS under license with ASTM Document provided by IHS Licensee=Istanbul Teknik Universitesi/5956919001, 01/27/2005 00:47:45 MST Questions or comments about this message: please call the Document Policy Group at 303-397-2295.--`,,`,,,`,```,``,`,,,`,,`,`,,`-`-`,,`,,`,`,,`---video recording,or“still”photographs using conventional cameras.The radioscopic image may be electronically en-hanced,digitized,or otherwise processed for improved visual image analysis or automatic,computer-aided analysis,or both.5.Background5.1Fluorescence was the means by which X rays were discovered,but industrialfluoroscopy began some years later with the development of more powerful radiation sources and improved screens.Fluoroscopic screens typically consist of phosphors that are deposited on a substrate.They emit light in proportion to incident radiation intensity,and as a function of the composition,thickness,and grain size of the phosphor coating.Screen brightness is also a function of the wavelength of the impinging radiation.Screens with coarse-grained or thick coatings of phosphor,or both,are usually brighter but have lower resolution than those withfine grains or thin coatings,or both.In the past,conventionalfluorescent screens limited the industrial applications offluoroscopy.The light output of suitable screens was quite low(on the order of0.1 millilambert or0.343310−3cd/m2)and required about30min for an examiner to adapt his eyes to the dim image.To protect the examiner from radiation,thefluoroscopic image had to be viewed through leaded glass or indirectly using mirror optics. Such systems were used primarily for the examination of light-alloy castings,the detection of foreign material in food-stuffs,cotton and wool,package inspection,and checking weldments in thin or low-density metal sections.The choice of fluoroscopy over radiography was generally justified where time and cost factors were important and other nondestructive methods were not feasible.5.2It was not until the early1950’s that technological advances set the stage for widespread uses of industrial fluoroscopy.The development of the X-ray image intensifier provided the greatest impetus.It had sufficient brightness gain to bringfluoroscopic images to levels where examination could be performed in rooms with somewhat subdued lighting,and without the need for dark adaption.These intensifiers con-tained an input phosphor to convert the X rays to light,a photocathode(in intimate contact with the input phosphor)to convert the light image into an electronic image,electron accelerating and focusing electrodes,and a small output phosphor.Intensifier brightness gain results from both the ratio of input to output phosphor areas and the energy imparted to the electrons.Early units had brightness gains of around1200 to1500and resolutions somewhat less than high-resolution conventional screens.Modern units utilizing improved phos-phors and electronics have brightness gains in excess of 100003and improved resolution.For example,welds in steel thicknesses up to28.6mm[1.125in.]can be examined at2% plaque penetrameter sensitivity using a160constant potential X-ray generator(keVcp)source.Concurrent with image-intensifier developments,direct X ray to television-camera tubes capable of high sensitivity and resolution on low-density materials were marketed.Because they require a comparatively high X-rayflux input for proper operation,however,their use has been limited to examination of low-density electronic components,circuit boards,and similar applications.The development of low-light level television(LLLTV)camera tubes,such as the isocon,intensifier orthicon,andsecondary electron conduction(SEC)vidicon,and the advent of ad-vanced,low-noise video circuitry have made it possible to use television cameras to scan conventional,high-resolution,low-light-outputfluorescent screens directly.The results are com-parable to those obtained with the image intensifier.5.3In recent years(circa1980’s)new digital radiology techniques have been developed.These methods produce directly digitized representations of the X-rayfield transmitted by an examination article.Direct digitization enhances the signal-to-noise ratio of the data and presents the information in a form directly suitable for electronic image processing and enhancement,and storage on magnetic tape.Digital radio-scopic systems use scintillator-photodetector and phosphor-photodetector sensors inflying spot and fan beam-detector array arrangements.5.4All of these techniques employ television presentation and can utilize various electronic techniques for image en-hancement,image storage,and video recording.These ad-vanced imaging devices,along with modern video processing and analysis techniques,have greatly expanded the versatility of radioscopic imaging.Industrial applications have become wide-spread:production examination of the longitudinal fusion welds in line pipe,welds in rocket-motor housings,castings, transistors,microcircuits,circuit-boards rocket propellant uni-formity,solenoid valves,fuses,relays,tires and reinforced plastics are typical examples.5.5Limitations—Despite the numerous advances in RRTI technology,the sensitivity and resolution of real-time systems usually are not as good as can be obtained withfilm.In radiography the time exposures and close contact between the film and the subject,the control of scatter,and the use of screens make it relatively simple to obtain better than2% penetrameter sensitivity in most cases.Inherently,because of statistical limitations dynamic scenes require a higher X-ray flux level to develop a suitable image than static scenes.In addition,the product-handling considerations in a dynamic imaging system mandate that the image plane be separated from the surface of the product resulting in perceptible image unsharpness.Geometric unsharpness can be minimized by employing small focal spot(fractions of a millimetre)X-ray sources,but this requirement is contrary to the need for the high X-rayflux density cited previously.Furthermore,limita-tions imposed by the dynamic system make control of scatter and geometry more difficult than in conventional radiographic systems.Finally,dynamic radioscopic systems require careful alignment of the source,subject,and detector and often expensive product-handling mechanisms.These,along with the radiation safety requirements peculiar to dynamic systems usually result in capital equipment costs considerably in excess of that for conventional radiography.The costs of expendables, manpower,product-handling and time,however,are usually significantly lower for radioscopic systems.6.Safety Precautions6.1The safety procedures for the handling and use of ionizing radiation sources must be followed.Mandatory rules and regulations are published by governmental licensing agen-cies,and guidelines for control of radiation are available inpublications such as the Fed.Std.No.21-CFR1020.40. Careful radiation surveys should be made in accordance with regulations and codes and should be conducted in the exami-nation area as well as adjacent areas under all possible operating conditions.7.Interpretation and Reference Standards7.1Reference radiographs produced by ASTM and accep-tance standards written by other organizations may be em-ployed for radioscopic examination as well as for radiography, provided appropriate adjustments are made to accommodate for the differences in thefluoroscopic images.8.Radioscopic Devices,Classification8.1The most commonly used electromagnetic radiation in radioscopy is produced by X-ray sources.X rays are affected in various modes and degrees by passage through matter.This provides very useful information about the matter that has been traversed.The detection of these X-ray photons in such a way that the information they carry can be used immediately is the prime requisite of radioscopy.Since there are many ways of detecting the presence of X rays,their energy andflux density, there are a number of possible systems.Of these,only a few deserve more than the attention caused by scientific curiosity. For our purposes here,only these few are classified and described.8.2Basic Classification of Radioscopic Systems—All com-monly used systems depend on two basic processes for detecting X-ray photons:X-ray to light conversion and X-ray to electron conversion.8.3X Ray to Light Conversion–Radioscopic Systems—In these systems X-ray photons are converted into visible light photons,which are then used in various ways to produce images.The processes arefluorescence and scintillation.Cer-tain materials have the property of emitting visible light when excited by X-ray photons.Those used most commonly are as follows:8.3.1Phosphors—These include the commonly usedfluo-rescent screens,composed of relatively thin,uniform layers of phosphor crystals spread upon a suitable support.Zinc cad-mium sulfide,gadolinium oxysulfide,lanthanum oxybromide, and calcium tungstate are in common use.Coating weights vary from approximately50mg/cm2to100mg/cm.28.3.2Scintillators—These are materials which are transpar-ent and emit visible light when excited by X rays.The emission occurs very rapidly for each photon capture event,and consists of a pulse of light whose brightness is proportional to the energy of the photon.Since the materials are transparent,they lend themselves to optical configurations not possible with the phosphors used in ordinaryfluorescent screens.Typical mate-rials used are sodium iodide(thallium-activated),cesium iodide(thallium-activated)and sodium iodide(cesium-activated).These single crystal materials can be obtained in very large sizes(up to30-cm or12-in.diameter is not uncommon)and can be machined into various sizes and shapes as required.Thickness of2to100mm[0.08to4in.]are customary.8.4X Ray to Electron Conversion—Radioscopic Systems—X-ray photons of sufficient energy have the ability to release loosely bound electrons from the inner shells ofatoms with which they collide.These photoelectrons have energies pro-portional to the original X-ray photon and can be utilized in a variety of ways to produce images,including the following useful processes.8.4.1Energizing of Semiconductor Junctions—The resis-tance of a semiconductor,or of a semiconductor junction in a device such as a diode or transistor,can be altered by adding free electrons.The energy of an X-ray photon is capable of freeing electrons in such materials and can profoundly affect the operation of the device.For example,a simple silicon “solar cell”connected to a microammeter will produce a substantial current when exposed to an X-ray source.8.4.1.1If an array of small semiconductor devices is ex-posed to an X-ray beam,and the performance of each device is sampled,then an image can be produced by a suitable display of the data.Such arrays can be linear or two-dimensional. Linear arrays normally require relative motion between the object and the array to produce a useful real-time image.The choice depends upon the application.8.4.2Affecting Resistance of Semiconductors—The most common example of this is the X-ray sensitive vidicon camera tube.Here the target layer of the vidicon tube,and its support, are modified to have an improved sensitivity to X-ray photons. The result is a change in conductivity of the target layer corresponding to the pattern of X-rayflux falling upon the tube,and this is directly transformed by the scanning beam intoa video signal which can be used in a variety of ways.8.4.2.1Photoconductive materials that exhibit X-ray sensi-tivity include cadmium sulfide,cadmium selenide,lead oxide, and selenium.The latter two have been used in X-ray sensitive TV camera tubes.Cadmium sulfide is commonly used as an X-ray detector,but not usually for image formation.8.4.3Microchannel Plates—These consist of an array or bundle of very tiny,short tubes,each of which,under proper conditions,can emit a large number of electrons from one end when an X-ray photon strikes the other end.The number of electrons emitted depends upon the X-rayflux per unit area, and thus an electron image can be produced.These devices must operate in a vacuum,so that a practical imaging device is possible only with careful ually,this will mean that a combination of processes is required,as described more completely in8.5.8.5Combinations of Detecting Processes—Radioscopic Systems—A variety of practical systems can be produced by various combinations of the basic mechanisms described, together with other devices for transforming patterns of light, electrons,or resistance changes into an image visible to the human eye,or which can be analyzed for action decision in a completely automated system.Since the amount of light or electrical energy produced by the detecting mechanism is normally orders of magnitude below the range of human senses,some form of amplification or intensification is com-mon.Figs.1-13illustrate the basic configuration of practical systems in use.For details of their performance and application see Section10.Table1compares several common imaging systems in terms of general performance,complexity,and relative costs.9.Radiation Sources 9.1General :9.1.1The sources of radiation for radioscopic imaging systems described in this guide are X-ray machines and radioactive isotopes.The energy range available extends from a few keV to 32MeV .Since examination systems in general require high dose rates,X-ray machines are the primary radiation source.The types of X-ray sources available are conventional X-ray generators that extend in energy up to 420keV .Energy sources from 1MeV and above may be the Van de Graaff generator and the linear accelerator.High energy sources with large flux outputs make possible the real-time examination of greater thicknesses of material.9.1.2Useable isotope sources have energy levels from 84KeV (Thulium-170,Tm 170)up to 1.25MeV (Cobalt-60,Co 60).With high specific activities,these sources should be consid-ered for special application where their field mobility and operational simplicity can be of significant advantage.9.1.3The factors to be considered in determining the desired radiation source are energy,focal geometry,duty cycle,wave form,half life,and radiation output.9.2Selection of Sources :9.2.1Low Energy —The radiation source selected for a specific examination system depends upon the material being examined,its mass,its thickness,and the required rate of examination.In the energy range up to 420keV ,the X-rayunitsFIG.1BasicFluoroscopeFIG.2Fluoroscope withOpticsFIG.3Light-IntensifiedFluoroscopeFIG.4Light-Intensified Fluoroscope withOpticshave an adjustable energy range so that they are applicable to a wide range of materials.Specifically,50-keV units operate down to a few keV ,160-keV equipment operates down to 20keV ,and 420-keV equipment operates down to about 85keV .A guide to the use of radiation sources for some materials is given in Table 2.9.2.2High-Energy Sources —The increased efficiency of X-ray production at higher accelerating potentials makes available a large radiation flux,and this makes possible the examination of greater thicknesses of material.High-radiation energies in general produce lower image contrast,so that as a guide the minimum thickness of material examined should not be less than three-half value layers of material.The maximum thickness of material can extend up to ten-half value layers.Table 3is a guide to the selection of high-energy sources.9.3Source Geometry :9.3.1The physical size of the source of radiation is a parameter that may vary considerably.One reason is the dominating unsharpness in the radiation detector,whichcan be of the order of 0.5to 0.75mm [0.02to 0.03in.].Thus,while an X-ray tube with a focal spot of 3mm [0.12in.]operating at a target to detector distance of 380mm [15in.]and penetrating a 25-mm [1-in.]thick material would contribute an unsharp-ness of 0.2mm [0.008in.],a detector unsharpness of 0.5to 0.75mm would still be the principal source of unsharpness.9.3.2The small source geometry of microfocus X-ray tubes permits small target-to-detector spacings and object projection magnification for the detection of small anomalies.The selec-tion of detectors with low unsharpness is of particular advan-tage in these cases.Where isotopes are to be evaluated for radioscopic systems,the highest specific activities that are economically practical should be available so that source size is minimized.9.4Radiation Source Rating Requirements :9.4.1The X-ray equipment selected for examination should be evaluated at its continuous duty ratings,because theFIG.5LLLTV FluoroscopeFIG.6Light-Intensified LLLTV FluoroscopeFIG.7Scintillator Arrays,TV Readouteconomy of radioscopic examination is realized in continuous production examination.X-ray units with target cooling by fluids are usually required.9.4.2The wave form of X-ray units up to 420keV are mostly of the full-wave rectified or the constant potential type.The full-wave rectified units give 120pulses per second which can present interference lines on the television monitor.Simi-larly the high-energy sources which can operate at pulse rates up to 300pulses per second produce interference lines.These lines can be minimized by the design of the real-time systems.9.4.3The radiation flux is a major consideration in the selection of the radiation source.For stationary or slow-moving objects,radiation sources with high outputs at a continuous duty cycle are desired.X-ray equipment at the same nominal kilovolt and milliampere ratings may have widely different radiation outputs.Therefore in a specificexaminationFIG.8X-ray ImageIntensifierFIG.9Semiconductor (Diode)ArrayFIG.10Semiconductor (Diode)Array withFluorescencerequirement of radiation output through the material thickness being examined should be measured.10.Imaging Devices10.1An imaging device can be described as a component or sub-system that transforms an X-ray flux field into a prompt response optical or electronic signal.10.2When X-ray photons pass through an object,they are attenuated.At low-to-medium energies this attenuation is caused primarily by photoelectric absorption,or Compton scattering.At high energies,scattering is by pair production (over 1MeV)and photonuclear processes (at about 11.5MeV).As a result of attenuation,the character of the flux field in a cross-section of the X-ray beam is changed.Variations in photon flux density and energy are most commonly encoun-tered,and are caused by photoelectric absorption and Compton scatterings.10.3By analyzing this flux field,we can make deductions about the composition of the object being examined,since the attenuation process depends on the number of atoms encoun-tered by the original X-ray beam,and their atomic number.10.4The attenuation process is quite complex,since the X-ray beam is usually composed of a mixture of photons of many different energies,and the object composed of atoms of many different kinds.Exact prediction of the flux field falling upon the imaging device is therefore,difficult.Approximations can be made,since the mathematics and data are available to treat any single photon energy and atomic type,but inpracticeFIG.11X-ray SensitiveVidiconFIG.12MicrochannelPlatesFIG.13Flying SpotScannergreat reliance must be placed on the experience of the user.In spite of these difficulties,many successful imaging devices have been developed,and perform well.The criteria for choice depend on many factors,which,depending on the application, may,or may not be critical.Obviously,these criteria will include the following devices.10.4.1Field of View of Imaging Device—Thefield of view of the imaging device,its resolution,and the dynamic inspec-tion speed are interrelated.The resolution of the detector is fixed by its physical characteristics,so if the X-ray image is projected upon it full-size(the object and image planes in contact),the resultant resolution will be approximately equal to that of the detector.When detector resolution becomes the limiting factor,the object may be moved away from the detector,and towards the source to enlarge the projected image and thus allow smaller details to be resolved by the same detector.As the image is magnified,however,the detail contrast is reduced and its outlines are less distinct.(See11.3.)The use of a selected energy at other material thicknesses depends upon the specific radiationflux and possible image processing in the real time system.A There is no significant difference in the half-value layers for steel from10to15 MeV.It is apparent,also,that when geometric magnification is used, the area of the object that is imaged on the detector is proportionally reduced.Consequently the area that can be examined per unit time will be reduced.As a general rule, X-ray magnifications should not exceed53except when using X-ray sources with very small(microfocus)anodes.In such cases,magnifications in the order of10to203are useful. When using conventional focal-spot X-ray sources,magnifica-tions from1.2to1.5provide a good compromise between contrast and resolution in the magnified image.10.4.2Inherent Sensitivity of Imaging Device—The basic sensitivity of the detector may be defined as its ability to respond to small,local variations in radiantflux to display the features of interest in the object being examined.It would seem that a detector that can display density changes on the order of 1to2%at resolutions approaching that of radiography would satisfy all of the requirements for successful radioscopic imaging.It is not nearly that simple.Often good technique is more important than the details of the imaging system itself. The geometry of the system with respect tofield of view, resolution,and contrast is a very important consideration as is the control of scattered radiation.Scattered X rays entering the imaging system and scattered light in the optical system produce background similar to fogging in a radiograph.This scatter not only introduces radiant energy containing no useful information into the imaging system but also impairs system sensitivity and resolution.Carefulfiltering and collimation of the X-ray beam,control of backscatter,and appropriate use of light absorbing materials in the optical system are vital to good radioscopy.The low-resolution,low-contrast visible light im-ages produced by the detector may pose special problems in the choice of optical components.For example,a lens that would be an excellent choice for photography may be a poor choice to couple a low-light-level television(LLLTV)to afluorescent screen.10.4.2.1This brief treatment just touches on a complex subject.When designing an imaging system,the reader should consult other references.10.5Physical Factors—The selection of a radioscopic im-aging system for any specific application may be affected by a number of factors.Environmental conditions such as extremes of temperature and humidity,the presence of strong magnetic fields in the proximity of image intensifiers and television cameras,the presence of loose dirt and scale and oily vapors can all limit their use,or even preclude some applications.In production-line applications,system reliability,ease of adjust-ment,mean-time-between-failures,and ease and cost of main-tenance are significant factors.Furthermore,the size and weight of imaging system components as well as positioning and handling mechanism requirements must be considered in system design,and interact with cost factors in selection of a system.10.6X Ray to Light Conversion—Radioscopic Systems—For the purpose of radioscopy,afluorescent screen can be described as a sheet of material that converts X-ray photons into visible light,without use of external energy sources. Screen materials were known even before the discovery of X rays or radioactive materials,since substances which“glow in the dark”have been known for centuries.However,enormous improvements have been made in understanding,manufactur-ing,and applying screens.Although the basic physical phe-nomena involved are similar,it is convenient for our purposes to divide screens into two groups,fluorescent phosphors and scintillating crystals.10.6.1Fluorescent Phosphors:10.6.1.1Afluorescent screen is a layer of phosphor crystals deposited on a suitable support backing,with a transparent protective coating or cover.The crystals used have the ability to absorb energy from an X-ray photon and re-emit some of that energy in the form of visible light.The amount of light produced for a given X-rayflux input is termed the brightness (luminance)of the screen.The number of light photons emitted per unit exposure is the conversion effıciency.Resolution is the ability to showfine detail(for high contrast objects),and contrast is the detectable discernible change in brightness with a specified change in inputflux.This is often specified as the minimum percentage thickness change in the object which can be detected.Image quality indicators(IQI)are commonly used to make these tests.Most phosphors used in screens have limited ability to transmit the light they produce without scattering or refraction due to their size,shape,coatings,and other factors,and are not truly transparent.Thus the light that is produced by the lowermost layers is somewhat distorted by passage through the layers above.Consequently thicker phos-phors that have,in general,increased ability to absorb X-rays, and thus produce more light,usually produce brighter images with lower resolution,as compared to thin screens of the same material.10.6.1.2The contrast of afluorescent screen is influenced by the scattering of light and X rays within the structure of the screen itself,and to a larger extent by the relative response of the screen to direct and scattered X rays.The scattered X rays, particularly those scattered at large angles,consist of lower energy photons,to which the screen is more sensitive.This has the effect of reducing the contrast.10.6.1.3In usual applications,the contrast of thefluorescent image for large areas(such as the outline of an IQI)is limited by the contrast capability of the eye.Practical experience is that the lower observable limit is that change in brightness caused by a1%change in thickness of the object.10.6.1.4Allfluorescent screens exhibit some persistence or afterglow.This is a function of the phosphor and activator used and to this extent may be somewhat controlled by the manu-facturer.It is usually of the order of10−5s for calcium tungstate(CaWO4)screens and10−2for zinc sulfide(ZnS). Rare earth screens with terbium3(Tb3)and europium3+(Eu3+) activators have about the same persistence(10−2s),but other activators can produce characteristic decay times as short as 10−6s.The relationship between brightness and resolution is clearly shown in Table4.10.6.1.5These screens are commercially available and the choice of screen will be governed by the requirements of the user,who must make a compromise choice between brightness, resolution,keV range,and apparent color of the image.The apparent color of thefluorescent image is important both in the directly viewed and electronically scanned systems.Matching。
ASTM E 1965 – 98 (Reapproved 2003)中文版
ASTM E 1965 – 98 (Reapproved 2003)间歇性测定患者体温的红外测温仪的标准规范1.范围1.1本规范涵盖运用探测测量主体之间热辐射强度的方法,用于间歇性测量和检测病人温度的电子体温计和感应器。
1.2该规范通过热辐射测量耳道,涉及评估主体的身体内部温度。
也提供了非接触式皮肤温度测量的性能要求。
1.3该规范规定了实验室精度的限量和需求决定和披露了涵盖体温计的的临床精度。
1.4建立在不同的环境条件下的性能和储存限制,标签和测试程序要求。
注1:电气安全参考下述实验室标准2.注2:电磁辐射要求和测试参阅CPSPR 11:1990工业,科学和医疗(ISM)射频设备电磁干扰特性的测量方法列表。
1.5以SI单位表示的数值被作为标准。
括号里的数值不是以SI单位表示,是可以选择使用的。
1.6以下预防警告仅适用于测试方法部分,本规范的第6段:本标准的目的不是要结果所有的安全问题,既便要,与它的应用有关。
在使用前建立适当的安全和健康的做法,并确定监管限制的适用性,是此标准的用户的责任。
2.参考文件2.1ASTM标准:E117E344E667E11122.2国际电工委员会标准:IEC 601-1-2: 1993IEC 1000-4-2: 1995IEC 1000-4-3: 19952.3其他标准国际计量的基本和一般的词汇(VIM)3.术语3.1定义—E344给出的术语的定义同样适用于本标准。
3.2本标准的特殊术语的定义--下面定义的术语仅是本规范的目的而已。
制造商应该将这些术语运用于标记和技术和销售文献。
3.2.1精确性---是红外体温计给出接近于真实温度的读数的能力。
3.2.2可调节模式—IR体温计的输出,测量和计算从一个主体或对象的温度,利用纠正在周围环境温度,主体的温度,发射率,身体部位(口腔,或直肠)等温度变化。
3.2.3腋温[t ba]---用接触式体温计测量的任何一侧腋下的温度。
3.2.4黑体---红外辐射的参考源进入空腔和由空腔壁的已知温度精确表现和在空腔任意打开时考虑与其一致的有效发射率。
ASTME中文修订版
金属平均晶粒度测定方法引言本标准规定了金属材料平均晶粒度的基本方法。
由于纯粹以晶粒几何图形为基础,与金属和合金本身无关。
因此,这些基本方法也可以用来测量非金属材料中晶粒、晶体和晶胞的平均尺寸。
如果材料的组织形貌非常接近某一个标准系列评级图,可以使用比较法。
测定平均晶粒度常用比较法,也可以用截点法和面积法。
但是,比较法不能用来测量单个晶粒。
1范围本标准规定了金属组织的平均晶粒度表示及评定的三种方法——比较法、面积法和截点法。
这些方法也适用于晶粒组织形貌与标准系列评级图相似的非金属材料。
这些方法主要适用于单相晶粒组织,但也适用于多相或多组元试样中特定类型组织的晶粒平均尺寸的测量。
本标准使用晶粒面积、晶粒直径、截线长度的单峰分布来测定式样的平均晶粒度。
这些分布近似正态分布。
本标准的测定方法不适用于双峰分布的晶粒度。
双峰分布的晶粒度参见标准E1181。
测定分布在细小晶粒基体上个别非常粗大的晶粒的方法参见E 930。
本标准的测量方法仅适用平面晶粒度的测量,也就是试样截面显示出的二维晶度;不适用于试样三维晶粒,即立体晶粒尺寸的测量。
试验可采用与一系列标准晶粒度图谱进行对比的方法或者在简单模板上进行计数的方法。
利用半自动计数仪或自动图象分析仪测定晶粒尺寸的方法参见E 1382。
本标准仅作为推荐性试验方法,它不能确定受检材料是否接收或适合使用的范围。
测量数值应用SI单位表示。
等同的英寸-英镑数值,如需标出,应在括号中列出近似值. 本标准没有列出所有的安全事项,只是一些使用的注意事项。
本标准的使用者在使用前应掌握较合适的安全健康的操作规范和使用时限制的规章制度。
章节的顺序如下:2、参考文献标准E3 金相试样的制备E7 金相学相关术语E407 金属和合金浅腐蚀的操作E562计数法计算体积分数的方法E691 通过多个实验室比较决定测试方法的精确度的方法E883 反射光显微照相指南E930 截面上最大晶粒的评估方法(ALA晶粒尺寸)E1181双峰分布的晶粒度测试方法E1382 半自动或全自动图像分析平均晶粒度方法ASTM附件参见附录X23术语定义-本标准采用的专业术语定义参照E7本标准中特定术语的定义:ASTM晶粒度——G,通常定义如公式(1)N AE=2G-1 (1)N AE为100倍下每平方英寸()面积内包含的晶粒个数,相当于1倍下每平方毫米面积内包含的晶粒个数乘以倍。
B568-98(2004)
Designation:B568–98(Reapproved2004)Standard Test Method forMeasurement of Coating Thickness by X-Ray Spectrometry1 This standard is issued under thefixed designation B568;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.Scope1.1This test method covers the use of X-ray spectrometry to determine thickness of metallic and some nonmetallic coatings.1.2The maximum measurable thickness for a given coating is that thickness beyond which the intensity of the character-istic secondary X radiation from the coating or the substrate is no longer sensitive to small changes in thickness.1.3This test method measures the mass of coating per unit area,which can also be expressed in units of linear thickness provided that the density of the coating is known.1.4Problems of personnel protection against radiation gen-erated in an X-ray tube or emanating from a radioisotope source are not covered by this test method.For information on this important aspect,reference should be made to current documents of the National Committee on Radiation Protection and Measurement,Federal Register,Nuclear Regulatory Com-mission,National Institute of Standards and Technology(for-merly the National Bureau of Standards),and to state and local codes if such exist.1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:2E135Terminology Relating to Analytical Chemistry for Metals,Ores,and Related Materials2.2International Standard:ISO3497Metallic Coatings—Measurement of Coating Thickness—X-ray Spectrometric Methods 3.Terminology3.1Definitions of technical terms used in this test method may be found in Terminology E135.4.Summary of Test Method4.1Excitation—The measurement of the thickness of coat-ings by X-ray spectrometric methods is based on the combined interaction of the coating and substrate with incident radiation of sufficient energy to cause the emission of secondary radia-tions characteristic of the elements composing the coating and substrate.The exciting radiation may be generated by an X-ray tube or by certain radioisotopes.4.1.1Excitation by an X-Ray Tube—Suitable exciting radia-tion will be produced by an X-ray tube if sufficient potential is applied to the tube.This is on the order of35to50kV for most thickness-measurement applications.The chief advantage of X-ray tube excitation is the high intensity provided.4.1.2Excitation by a Radioisotope—Of the many available radioisotopes,only a few emit gamma radiations in the energy range suitable for coating-thickness measurement.Ideally,the exciting radiation is slightly more energetic(shorter in wave-length)than the desired characteristic X rays.The advantages of radioisotope excitation include more compact instrumenta-tion essentially monochromatic radiation,and very low back-ground intensity.The major disadvantage of radioisotope excitation is the much lower intensities available as compared with X-ray tube sources.X-ray tubes typically have intensities that are several orders of magnitude greater than radioisotope sources.Due to the low intensity of radioisotopes,they are unsuitable for measurements on small areas(less than0.3mm in diameter).Other disadvantages include the limited number of suitable radioisotopes,their rather short useful lifetimes,and the personnel protection problems associated with high-intensity radioactive sources.4.2Dispersion—The secondary radiation resulting from the exposure of an electroplated surface to X radiation usually contains many components in addition to those characteristic of the coating metal(s)and the substrate.It is necessary, therefore,to have a means of separating the desired compo-nents so that their intensities can be measured.This can be1This test method is under the jurisdiction of ASTM Committee B08on Metallicand Inorganic Coatings and is the direct responsibility of Subcommittee B08.10onTest Methods.Current edition approved June1,2004.Published June2004.Originallyapproved st previous edition approved in1998as B568–98.2For referenced ASTM standards,visit the ASTM website,,orcontact ASTM Customer Service at service@.For Annual Book of ASTMStandards volume information,refer to the standard’s Document Summary page onthe ASTM website.1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.done either by diffraction(wavelength dispersion)or by electronic discrimination(energy dispersion).4.2.1Wavelength Dispersion—By means of a single-crystal spectrogoniometer,wavelengths characteristic of either the coating or the substrate may be selected for measurement. Published data in tabular form are available that relate spec-trogoniometer settings to the characteristic emissions of ele-ments for each of the commonly used analyzing crystals. 4.2.2Energy Dispersion—X-ray quanta are usually speci-fied in terms of their wavelengths,in angstroms(Å),or their equivalent energies in kiloelectron volts(keV).The relation-ship between these units is as follows:~keV!~Å!512.396where:keV=the quantum energy in thousands of electron volts, andÅ=the equivalent wavelength in angstroms(10-10m). In a suitable detector(see4.3.2),X rays of different energies will produce output pulses of different amplitudes.After suitable amplification,these pulses can be sorted on the basis of their amplitudes and stored in certain designated channels of a multichannel analyzer,each adjacent channel representing an increment of energy.Typically,a channel may represent a span of20eV for a lithium-drifted silicon detector or150to200eV for a proportional counter.From six to sixty adjacent channels can be used to store the pulses representing a selected characteristic emission of one element,the number of channels depending on the width of the emission peak(usually displayed on the face of a cathode ray tube).The adjacent channels used to store the pulses from the material under analysis are called the“region of interest”or ROI.4.3Detection:4.3.1Wavelength Dispersive Systems—The intensity of a wavelength is measured by means of an appropriate radiation detector in conjunction with electronic pulse-counting cir-cuitry,that is,a scaler.With wavelength dispersive systems,the types of detectors commonly used as the gas-filled types and the scintillation detector coupled to a photomultiplier tube. 4.3.2Energy-Dispersive Systems—For the highest energy resolution with energy dispersive systems,a solid-state device such as the lithium-drifted silicon detector must be used.This type of detector is maintained at a very low temperature in a liquid-nitrogen cryostat(77K).Acceptable energy resolution for most thickness measurement requirements can be realized with proportional counters,and these detectors are being used on most of the commercially available thickness gages based on X-ray spectrometry.In setting up a procedure for coating-thickness measurement using an energy-dispersive system, consideration should be given to the fact that the detector “sees”and must process not only those pulses of interest but also those emanating from the substrate and from supporting and masking materials in the excitation enclosure.Therefore, consideration should be given to restricting the radiation to the area of interest by masking or collimation at the radiation source.Similarly,the detector may also be masked so that it will see only that area of the specimen on which the coating thickness is to be determined.4.4Basic Principle—A relationship exists between coating thickness and secondary radiation intensity up to the limiting thickness mentioned in1.2.Both of the techniques described below are based on the use of primary standards of known coating thicknesses which serve to correlate quantitatively the radiation intensity and thickness.4.5Thickness Measurement by X-Ray Emission—In this technique,the spectrogoniometer is positioned to record the intensity of a prominent wavelength characteristic of the coating metal or,in the case of an energy-dispersive system, the multichannel analyzer is set to accept the range of energies comprising the desired characteristic emission.The intensity of the coating’s X-ray emission(coating ROI)will be at a minimum for a sample of the bare substrate where it will consist of that portion of the substratefluorescence which may overlap the ROI of the coating and a contribution due to background radiation.This background radiation is due to the portion of the X-ray tube’s output which is the same energy as the coating’s X-ray emission.The sample will always scatter some of these X rays into the detector.If the characteristic emission energies of the coating and substrate are sufficiently different,the only contribution of the substrate will be due to background.For a thick sample of the solid coating metal or for an electroplated specimen having an“infinitely thick”coating,the intensity will have its maximum value for a given set of conditions.For a sample having a coating of less than “infinite”thickness,the intensity will have an intermediate value.The intensity of the emitted secondary X radiation depends,in general,upon the excitation energy,the atomic numbers of the coating and substrate,the area of the specimen exposed to the primary radiation,the power of the X-ray tube, and the thickness of the coating.If all of the other variables are fixed,the intensity of the characteristic secondary radiation is a function of the thickness or mass per unit area of the coating. The exact relationship between the measured intensity and the coating thickness must be established by the use of standards having the same coating and substrate compositions as the samples to be measured.The maximum thickness that can be measured by this method is somewhat less than what is, effectively,infinite thickness.This limiting thickness depends, in general,upon the energy of the characteristic X-ray and the density and absorption properties of the material under analy-sis.The typical relationship between a coating thickness and the intensity of a characteristic emission from the coating metal is illustrated by the curve in the Appendix,Fig.X1.1.4.6Thickness Measurements by X-Ray Absorption—In this technique the spectrometer,in the case of a wavelength-dispersive system,is set to record the intensity of a selected emission characteristic of the basis metal.In an energy-dispersive system,the multichannel analyzer is set to accumu-late the pulses comprising the same energy peak.The intensity will be a maximum for a sample of the uncoated basis metal and will decrease with increasing coating thickness.This is because both the exciting and secondary characteristic radia-tions undergo attenuation in passing through the coating. Depending upon the atomic number of the coating,when the coating thickness is increased to a certain value,the character-istic radiation from the substrate will disappear,althoughacertain amount of scattered radiation will still be detected.The measurement of a coating thickness by X-ray absorption is not applicable if an intermediate coating is present because of the indeterminate absorption effect of intermediate layer.The typical relationship between coating thickness and the intensity of a characteristic emission from the substrate is shown in the Appendix,see Fig.X1.2.4.7Thickness and Composition Measurement by Simulta-neous X-ray Emission and Absorption(Ratio Method)—It is possible to combine the X-ray absorption and emission tech-niques when coating thicknesses and alloy composition are determined from the ratio of the respective intensities of substrate and coating materials.Measurements by this ratio method are largely independent of the distance between test specimen and detector.4.8Multilayer Measurements—Many products have multi-layer coatings in which it is possible to measure each of the coating layers by using the multiple-energy-region capability of the multichannel analyzer of an energy-dispersive system. The measuring methods permit the simultaneous measurement of coating systems with up to three layers.Or the simultaneous measurement of thickness and compositions of layers with up to three components.Such measurements require unique data processing for each multilayer combination to separate the various characteristic emissions involved,to account for the absorption by intermediate layers,and to allow for any secondary excitation which may occur between layers.Typical examples of such combinations are gold on nickel on copper and nickel on copper on steel.4.9Mathematical Deconvolution—When using a multi-channel analyzer a mathematical deconvolution of the second-ary radiation spectra can be used to extract the intensities of the characteristic radiation.This method can be used when the energies of the detected characteristic radiations do not differ sufficiently(for example,characteristic radiation from Au and Br).This method sometimes is described as numericalfiltering in order to distinguish from the technique of settingfixed Region of Interest(ROI)channel limits in the multichannel analyzer.5.Significance and Use5.1This is a sensitive,noncontact,and nondestructive method for measuring the coating thickness(and in some cases,coating composition)of metallic and some nonmetallic coatings over a range of thicknesses from as little as0.01µm to as much as75µm depending on the coating and substrate materials.It can be used to measure coating and base combi-nations that are not readily measured by other techniques. 5.2The coating thickness is an important factor in the performance of a coating in service.6.Factors Affecting Accuracy6.1Counting Statistics—The production of X-ray quanta is random with respect to time.This means that during afixed time interval,the number of quanta emitted will not always be the same.This gives rise to the statistical error which is inherent in all radiation measurements.In consequence,an estimate of the counting rate based on a short counting interval (for example,1or2s)may be appreciably different from an estimate based on a longer counting period,particularly if the counting rate is low.This error is independent of other sourcesof error such as those arising from mistakes on the part of theoperator or from the use of inaccurate standards.To reduce thestatistical error to an acceptable level,it is necessary to use acounting interval long enough to accumulate a sufficientnumber of counts.When an energy-dispersive system is beingused it should be recognized that a significant portion of anintended counting period may be consumed as dead time,thatis,time during which the count-rate capacity of the system isexceeded.It is possible to correct for dead-time losses.Themanufacturer’s instructions for accomplishing this with hisparticular instrumentation should be followed.6.1.1The standard deviation,s,of this random error willclosely approximate the square root of the total count;that is,s5=N.The“true”count will lie within N62s95%of the time.To understand the significance of the precision,it ishelpful to express the standard deviation as a percent of thecount,100=N/N5100/=N.Thus,100000would give a standard deviation indicating10times the precision(one-tenth the standard deviation)obtained from1000counts.This is because~100/=1000!/~100/=100000!=10.This does not mean that the result would necessarily be ten times as accurate (see7.2).6.1.2A counting interval should be chosen that will providea net count of at least10000.This would correspond to astatistical error in the count rate of1%.The correspondingstandard deviation in the thickness measurement is a functionof the slope of the calibration curve at the point of measure-ment.Most commercially available instruments display thestandard deviation directly in units of thickness.6.2Coating Thickness—The precision of the measurementwill be affected by the thickness range being measured.In thecurve shown in the Appendix,see Fig.X1.1,the precision willbe best in the portion of the curve from approximately0.25to7.5µm.The precision rapidly becomes poorer in the portion ofthe curve above approximately10µm.The situation is similarfor the absorption curve shown in the Appendix,see Fig.X1.2.At coating thicknesses greater than approximately10µm,theintensity changes very little with the coating thickness and,therefore,the precision in that region is poor.These limitingthicknesses are,in general,different for each coating material.6.3Size of Measuring Area—To obtain satisfactory count-ing statistics(see6.1)in a reasonably short counting period,theexposed area of the significant surface should be as large aspracticably consistent with the size and shape of the specimen.Caution must be exercised,however,to see that the use of alarge sample area in conjunction with high power input to theX-ray tube does not result in a signal so large as to exceed thecount-rate capacity of the detection system.6.4Coating Composition—Thickness determinations byX-ray methods can be affected by the presence of foreignmaterials such as inclusions,co-deposited material,and alloy-ing metals as well as by voids and porosity.The sources oferror will be eliminated by the use of calibration standardselectroplated in the same type of solution under the sameconditions as those used in the production of the coatings tobemeasured.If pores or voids are present,X-ray methods will give an indication of coating mass per unit area but not of thickness.6.5Density—If the density of the coating materials differs from that of the calibration standards,there will be a corre-sponding error in the thickness mercially available X-rayfluorescence instruments allow the use of a density correction procedure to compensate for small differ-ences between the density of the coating material to be measured and the density of the calibration standards coating material.This procedure is commonly used for the measure-ment of hard gold coatings having a density of17.5g/cm3with calibration standards having a soft(pure)gold coating,which has a density of19.3g/cm3.Variations in density can result either from variations in composition or from variations in plating conditions(see6.4).6.6Substrate Composition—The effect of differences in substrate composition will be relatively minor on thickness measurements made by the X-ray emission method if an intensity ratio is used and if the X rays emitted by the substrate do not excite or overlap the radiation being measured.How-ever,when thickness measurements are made by the X-ray absorption method the substrate composition of the test speci-mens must be the same as that of the standards.6.7Substrate Thickness—The effect of a thin substrate will be slight on thickness measurements by X-ray emission pro-vided that an intensity ratio is used and if the X rays emitted by the substrate are not energetic enough to excite the radiation being measured.Care must be taken that the coating and substrate are thick enough to prevent the primary X-ray beam from reaching andfluorescing the material on which the sample is supported.However,when thickness is to be deter-mined by the X-ray absorption technique,the thickness of the substrate must exceed a certain minimum or critical thickness. It must be established experimentally that the minimum thickness requirements have been met for a particular substrate-source combination,although it is sometimes pos-sible to back up the test specimen substrates with a sufficient thickness of materials of the same composition.The X-ray absorption method cannot be used when one or more interme-diate coating layers are present.6.8Surface Cleanliness—Foreign materials such as dirt, grease,or corrosion products will lead to inaccurate thickness determinations.Protective coatings such as lacquer or chro-mate conversion coatings over the coating to be measured will also affect the results.6.9Specimen Curvature—Thickness measurements should be made onflat surfaces if practical.In those cases where the measurement of thickness on curved surfaces cannot be avoided,a collimator should be used on the excitation beam, reducing the measurement area to a size that will minimize the effects of curvature.Spatial relationships between the curved surface,the excitation beam,and the detector are particularly important,and variations in these relationships can introduce errors in measurement.Calibration standards having the same radius of curvature as that of the test specimens can also be used to eliminate curvature effects.6.10Excitation Energy—The intensity of the characteristic secondary radiation from either the coating or the substrate is strongly affected by any variation in the excitation energy,that is,by changes in potential applied to the X-ray tube or changes in the tube current,or both.In general,the radiation intensity varies directly with the current and the square of the potential. Therefore,in any method based on a simple relationship between intensity and thickness,thefinal adjustment of exci-tation energy must be made with reference to the observed intensity from a standard sample used to construct the working curve.However,if the method is based on intensity ratios rather than absolute intensities,minor variations in excitation energy are compensated for.6.11Detector—Errors can be introduced by erratic opera-tion of the detector system which includes the associated scaling circuitry as well as the detector tube itself.If instability is suspected,a series of twenty or more count measurements should be made on the same specimen without moving the specimen and the standard deviation of the series calculated. Most modern industrial X-ray instrumentation will perform this calculation automatically.The value should not be signifi-cantly greater than the square root of one measurement,=N. Some forms of instability become evident if the same specimen is measured periodically.6.11.1All radiation-detection/pulse-processing systems have limitations with respect to reliable count-rate capability. Operation of the gas-filled and scintillation types above their count-rate capabilities will result in loss of counts and errone-ously low readings.Operation of an energy-dispersive system at high-input pulse rates will require an excessively long time to obtain a statistically valid total,even with“dead-time”compensation(see6.1).6.12Any extrapolation beyond the thickness range covered by the calibration standards excluding infinite thickness can result in serious measurement errors;therefore,it is necessary to take additional steps for measurements outside this range.6.12.1When making measurements in the range between the highest thickness standard and the saturation(or infinite thickness)standard,especially in the so-called hyperbolic range,one must always use additional thickness standards with values slightly above and below the presumed thickness of the test specimen.Instrument measurement precision will rapidly decrease with increasing thickness in the hyperbolic range.For this reason,significantly longer measurements times are usu-ally required for measurement applications using the hyper-bolic range.6.12.2The use of additional standards between the substrate standard and the lowest thickness standard will also improve the accuracy of the measurement in the lower range,which is also called the linear range.6.13Filter to Absorb Secondary Radiation—When measur-ing coating/substrate combinations having similar characteris-tic emission energies it is often helpful to use an absorber or filter made from an appropriate material to absorb the charac-teristic X-ray emission of the substrate or coating material to improve measurement accuracy and precision.In most com-mercially available XRF systems this absorber is a thinmetalfoil which is manually or automatically placed between the detector and the test specimen.7.Calibration7.1General—In taking instrument readings for the purpose of establishing an instrument calibration,exactly the same instrumental conditions,including collimator size,voltage,and tube current,shall be used as those which will be used on test specimens.7.2Standards—Prolonged counting periods will not com-pensate for inaccurate standards.Standards representing vari-ous thickness ranges of a number of coatings on different substrates are generally available from thickness gage manu-facturers.Those that are certified for thickness(as opposed to mass per unit area)are suitable provided they are used for coatings of the same density and composition.Calibration standards for gold coatings,certified as to mass of gold per unit area,with an accuracy of65%,are available.3If standards representing a particular type of coating and substrate are not available,their preparation may be undertaken only if thor-oughly competent personnel in thefields of electroplating and analytical chemistry are available.7.2.1Calibration standards must be used in such a manner as to minimize wear and abrasion of the plated surface.If the standards are visibly scratched or abraded they should be replaced.It is recommended that two sets of standards be maintained,that is,a set of primary standards and a set of working standards.These should be used only to calibrate and periodically check the condition of the working standards.At thefirst signs of wear or discrepancy,the working standards should be replaced.7.3The instrument shall be calibrated with thickness stan-dards having the same coating and substrate materials as those being measured.Exceptions are allowed if the intensity of the characteristic coating material emission is not influenced by the characteristic emission of the substrate material.An example of this situation is the measurement of silver on copper.The instrument calibration may be made with standards of silver on nickel.The intensity of the characteristic silver emission is not influenced by the characteristic emission of nickel or copper.7.4The coating of the calibration standards must have the same X-ray emission(or absorption)properties as the coating being measured.If the coating of the standards is electrode-posited from the same bath and under the same conditions as the coating to be measured,the X-ray properties may be assumed to be the same.If the coating on the standard is gold, but not electroplated under conditions known to be the same as the coating being measured,the X-ray properties may be assumed to be the same for mass per unit area measurements. Under such circumstances,thickness measurements must be corrected for density differences,unless density differences can be shown to be insignificant.7.5If the thickness is to be determined by the X-ray absorption technique,the substrate of the thickness standards shall have the same X-ray emission properties as that of the test specimen.This shall be verified by comparing the intensities of the selected characteristic radiations of both uncoated substrate materials.7.6In the X-ray absorption technique,the substrate thick-ness of the test specimen and the calibration standards shall be the same unless the critical thickness,as defined in6.7,is exceeded.7.7If the curvature of the coating to be measured is such as to preclude calibration on aflat surface,the curvature of the standard and that of the test specimen shall be the same.8.Standard Less Techniques by Fundamental ParameterComputer Simulation8.1If the software of the XRF instrument is capable to model the true physical properties of the coating and basis material characteristic X-ray emission(by fundamental param-eter based computer simulation)then a measurement of coating thickness and coating composition is obtained which is not derived from an instrument calibration with standards.This standard less measurement shall be corrected by means of calibration standards.The standards correction procedure(cali-bration)performs the same way as the procedure used for establishing empirical instrument calibrations alone.8.2In cases when the coating(s)to be measured and the available calibration standard do not meet the conditions of7.3, then the computer simulation based on the fundamental param-eter technique will cover such situations,if the following conditions are fulfilled:8.2.1The composition of the coating(s)of standard and part to be measured does not differ considerably,and8.2.2If the characteristic radiation of substrate components influences the radiation intensities which are used for calculat-ing the thickness and composition of the coating,the compo-sition of the substrate of standard and specimen shall not differ considerably.9.Referee Test9.1If a referee test is required in order to resolve a disagreement,it shall be performed by using suitable Standard Reference Material(SRM)4thickness standards from the National Institute of Standards and Technology(NIST),if such standards are available.A suitable SRM standard is an SRM standard of the same substrate/coating combination for which the XRF gage was calibrated,the thickness of which is within the range of the calibration,preferably close to that of the test specimens being measured.The SRM shall be measuredfive times,each measurement being made under the same condi-tions as used for the measurement of the test piece.If the average of thefive measurements of the SRM differs from the certified mass per unit area of equivalent thickness by more than10%,the calibration is not valid.N OTE1—SRMs are issued by NIST and include coating thickness SRMs for some coating systems.The stated mass per unit area of each coating thickness SRM is certified to be within5%of the true mass per unit area.3Available from National Institute of Standards and Technology(NIST),100 Bureau Dr.,Stop3460,Gaithersburg,MD20899-3460.4SRMs may be purchased from the Office of Standard Reference Materials, National Institute of Standards and Technology,Gaithersburg,MD20899.。
用聚焦探头区域识别技术的环焊缝机械化超声检测标准ASTME1961_1998
3
3. 1
术语
定义
3. 1. 1 AST M E1316 中有关超声检测术语的定义 适用于本标准。 3. 2 本标准专用术语 由工程质量评定 ( ECA) 文件界 Z662 或 AP I 1104 的 3. 2. 1 验收条件
2
2. 1
引用标准
下列标准经本标准引用成为本标准的一部分。 E164 焊缝接触式超声检测方法 E317 不采用电子测量仪器 评价脉冲反射式
根据工程质量评定eca文件确定的缺陷容限制订验收条件或遵循由工程管理方指定的其它验收判废条件本标准可用于编制检测工艺规程以此作为本标准使用者之间的约定文件si给出的数值可视为标准值并在使用前确定条例的可用性是本标准使用者的职责astm标准e164焊缝接触式超声检测方法e317不采用电子测量仪器评价脉冲反射式超声检测系统性能的方法e1316无损检测术语美国国家标准学会ansi标准asntc1a无损检测人员资格鉴定与认证实施细则ansiasncp189无损检测人员资格鉴定与认证标准ilstd410无损检测人员资格鉴定与认证美国石油学会api标准apistd1104管道及有关设施的焊接加拿大标准学会csa标准csa662石油天然气管线系统astme1316中有关超声检测术语的定义适用于本标准验收条件由工程质量评定eca文件界定缺陷的合格与否csaz662api1104规定或由工程管理方规定的施工质量要求合同文件由工程管理方与承包者签订的合同中所规定的任何文件包括订货单技术条件工程管理方政府部门
5
5. 1
检测方法
外观检验 所有焊缝完工后均应进行目视检
进行检测和表征, 也可用衍 射时差 ( T OFD) 法来改 善对缺陷的表征和定量。T OFD 法可弥补脉冲反射 法之不足 , 但不应取代脉冲反射法。 6. 2. 3 用 T OFD 法时, 记录系统应能作 256 级灰 度显示, 并能记录 T OFD 探头 对的全射频波形 ( 非 检波波形 ) 。 6. 3 耦合 应使用合适的介质作耦合剂。可使用对环境无 污染的润湿剂来增强声耦合 , 此液体挥发后 , 管道表 面应无残留物。在 < 0 气温下进行检测时 , 可使用
ASME规范第XI卷98版与83版对照
ASME规范第XI卷98版与83版对照内部资料ASME 第Ⅺ卷核电厂设备在役检查规则-1998版(上册)上海核工程研究设计院2021年2月ASME 第Ⅺ卷核电厂设备在役检查规则-1998版(上册)翻译:徐受律校核:林绍萱杨仁安贺寅彪审核:姚伟达沈培洁审定:蔡剑平上海核工程研究设计院2021年2月编制说明美国国家标准学会(ANSI)在1968年主持并成立了由美国NRC代表和核工业界代表组成的《核电厂在役检查规则起草委员会》,6个月后起草了《核电厂设备在役检查规则(草案)》。
该工作后转由美国机械工程师学会(ASME)主管。
为此在1970年相继成立了ASME锅炉与压力容器委员会(BPVC)管辖下的《核电厂设备在役检查分委员会(SCXI)》,同年正式出版了ASME规范第XI卷《核电厂设备在役检查规则》,该规则成为ASME规范一个重要的部分,并作为规定性要求,由核电厂所在的州来执行,同时被美国核管理委员会(NRC)采用,并强制性实施。
在以后三十年中,规范以每隔3年讨论、修改和出版一次。
第XI卷《核电厂设备在役检查规则》包括核电厂设备检验、检查、试验、评定、修理及更换等方面一套完整内容的规定性规则。
该规范制订了一整套对核电厂设备(包括安全1、2、3级设备及支承件、MC、CC级金属内衬与混凝土设施等)材料和焊缝进行无损检验的方法、周期、验收标准等。
如果检验结果缺陷显示超出规定的验收标准(缺陷尺寸、位置和走向等),规范还允许采用分析评定或工程评价等方法作进一步的评定与验收,并在非规定性附录A~L中采用线弹性断裂力学理论对承压容器和管道的缺陷显示如何进行分析与评定提出较完整的方法。
而每章中所规定的缺陷显示验收标准(缺陷尺寸、位置和走向等)也是根据该方法及经验综合后制订出来的。
总之,《核电厂设备在役检查分委员会》的宗旨是“确保核电厂设备安全可靠运行,并保持原有设计、建造时的结构完整性”。
分委员会下属目前已发展到共21个工作组,其规模与ASME第Ⅲ卷的《核动力分委员会》的规模相当。