MAX808LESA中文资料

合集下载

美国线规

美国线规

龙在天涯6Sigma品质网(龙在天涯)Tallwise制作美国线规(AWG)1007-3549Tallwise为lbx008制作*AWM 1007(1008) (80 ,300V)标准:UL 758导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km 32 0.0352 7/0.080 0.240 0.4 1.0400 1.140 519.00 1.500 30 0.0550 7/0.100 0.300 0.4 1.1000 1.210 332.00 1.790 28-1 0.0887 7/0.127 0.380 0.4 1.1800 1.290 206.00 2.260 -2 0.0955 19/0.0800.400 0.4 1.2000 1.320 191.00 2.360 26-1 0.1407 7/1.160 0.090 0.4 1.2900 1.419 130.00 2.930 -2 0.1393 11/0.1270.486 0.4 1.2860 1.414 131.00 2.930 -3 0.1307 26/0.0800.471 0.4 1.2700 1.390 140.00 2.820 -4 0.1508 30/0.0800.506 0.4 1.3100 1.441 121.00 3.100 24-1 0.2212 11/0.60 0.612 0.4 1.4100 1.550 83.00 3.930 -2 0.2266 7/0.203 0.609 0.4 1.4100 1.550 81.00 3.960 -3 0.2154 17/0.1270.604 0.4 1.4000 1.540 84.00 3.860 -4 0.2407 19/0.1270.635 0.4 1.4400 1.570 76.00 4.170 22-1 0.3418 17/0.1600.761 0.4 1.5600 1.720 54.00 5.220 -2 0.3820 19/0.1600.800 0.4 1.6000 1.760 48.00 5.800 -3 0.3550 7/0.254 0.762 0.4 1.5600 1.710 51.00 5.500 20-1 0.5230 26/0.1600.941 0.4 1.7400 1.920 35.00 7.400 -2 0.5180 16/0.2030.937 0.4 1.7400 1.910 35.00 7.360 -3 0.5660 7/0.321 0.963 0.4 1.7600 1.930 32.00 7.800 -4 0.5067 10/0.2540.927 0.4 1.7300 1.900 36.00 7.230 -5 0.6149 19/0.203 1.015 0.4 1.8100 1.990 29.76 8.370-6 0.5090 20/0.1800.929 0.4 1.7300 1.900 36.00 7.250 18-1 0.8240 41/0.160 1.182 0.4 1.9800 2.180 22.00 10.690 -2 0.8973 7/0.404/ 1.212 0.4 2.0100 2.210 20.00 11.370 -3 0.9627 19/0.254 1.270 0.4 2.0700 2.270 19.00 12.160 -4 0.8415 26/0.203 1.195 0.4 2.0000 2.200 21.00 10.900 -5 0.8107 16/0.254 1.172 0.4 1.9700 2.170 22.00 10.540 -6 0.8652 34/0.180 1.211 0.4 2.0100 2.210 21.00 11.140 16-1 1.3200 26/0.254 1.495 0.4 2.2900 2.520 14.00 15.940 -2 1.3100 65/0.160 1.489 0.4 2.2800 2.500 14.00 15.810 -3 1.3700 54/0.180 1.526 0.4 2.3300 2.550 13.30 16.520 -4 1.2292 19/0.287 1.435 0.4 2.2404 2.450 14.80 15.000 产品说明:·额定温度:80℃·额定电压:300V·参照标记:UL758,UL1581,UL62·导体使用绞合实芯AWG32-16裸铜丝或镀锡铜丝·耐温80℃聚氯乙烯绝缘·通过ULVW-1及CSAFT-1垂直燃烧测试·用于电器和电子设备内部接线*AWM 1011(1012-1014) (80 ,600V)标准:UL 758导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km 30 0.0550 7/0.100 0.300 0.76 1.820 2.01 332.00 3.20 28 0.0955 19/0.0800.400 0.76 1.920 2.11 192.00 4.92 26 0.1307 26/0.0800.471 0.76 1.990 2.19 140.00 4.47 24 0.2407 19/0.1270.635 0.76 2.155 2.37 76.00 7.10 22 0.3820 19/0.1600.800 0.76 2.320 2.55 48.00 9.02 20 0.6149 19/0.203 1.015 0.76 2.535 2.79 30.00 12.40 18 0.8415 26/0.203 1.195 0.76 2.720 2.99 22.00 14.78 16 1.3200 26/0.254 1.495 0.76 3.020 3.31 13.86 20.35 14 2.0800 41/0.254 1.877 0.76 3.397 3.74 8.79 28.85 12 3.2900 65/0.254 2.363 0.76 3.880 4.27 5.56 41.98 10 5.2300 65/0.320 2.977 0.76 4.510 4.96 3.48 62.889 6.7560 84/0.320 3.380 0.76 4.900 5.39 2.71 78.12产品说明:·额定温度:80℃·额定电压:600V·参照标记:UL758,UL1581,UL62·导体使用绞合实芯AWG32-16裸铜丝或镀锡铜丝·耐温80℃聚氯乙烯绝缘·通过ULVW-1及CSAFT-1垂直燃烧测试*AWM 1015(1016) (105 ,600V)标准:UL 758导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km 30 0.0550 7/0.100 0.300 0.76 1.820 2.01 332.70 4.18 28 0.0955 19/0.0800.400 0.76 1.920 2.10 191.00 4.92 26 0.1307 26/0.0800.471 0.76 1.990 2.19 140.00 4.47 24 0.2407 19/0.1270.635 0.76 2.155 2.37 76.00 7.10 22 0.3820 19/0.1600.800 0.76 2.320 2.55 48.00 9.02 20 0.6149 19/0.203 1.015 0.76 2.535 2.79 30.00 12.40 18 0.8415 26/0.203 1.195 0.76 2.720 2.99 22.00 14.78 16 1.3200 26/0.254 1.495 0.76 3.020 3.31 13.86 20.35 14 2.0800 41/0.254 1.877 0.76 3.397 3.74 8.79 28.85 12 3.2900 65/0.254 2.363 0.76 3.880 4.27 5.56 41.98 10 5.2300 65/0.320 2.977 0.76 4.510 4.96 3.48 62.889 6.7560 84/0.320 3.380 0.76 4.900 5.39 2.71 78.12 产品说明:·额定温度:105℃·额定电压:600V·参照标记:UL758,UL1581,UL62·导体使用绞合实芯AWG30-9镀锡或裸铜丝·耐温105℃聚氯乙烯绝缘·通过ULVW-1及CSAFT-1垂直燃烧测试·电器内部线缆标准:UL 758导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km30 0.0550 7/0.100 0.300 0.53 1.36 1.46 356.20 3.71 28 0.0887 7/0.127 0.381 0.53 1.44 1.55 200.87 4.33 26 0.1407 7/0.160 0.480 0.53 1.54 1.66 88.57 5.03 24 0.2266 7/0.203 0.609 0.53 1.67 1.80 80.46 6.54 22 0.3550 7/0.254 0.762 0.53 1.82 1.97 55.10 8.36 20 0.5660 7/0.321 0.963 0.53 2.02 2.18 34.60 11.60 18 0.8973 7/0.404 1.212 0.53 2.27 2.45 21.83 15.3116 1.2292 19/0.287 1.435 0.53 2.49 2.69 15.94 19.43 14 1.9447 19/0.361 1.805 0.53 2.86 3.09 10.07 27.80 12 3.0893 19/0.455 2.275 0.53 3.33 3.60 6.34 40.2210 5.2040 98/0.260 3.440 0.53 4.50 4.70 4.13 62.09 产品说明:·额定温度:200℃·额定电压:600V·最低使用环境温度:-65℃·参照标记:UL758,UL1581,UL62·导体使用绞合实芯AWG30-4/0镀锡铜丝·绝缘可溶性氯化乙丙烯(FEP)·通过ULVW-1及CSAFT-1垂直燃烧测试·电器内部线缆·适用于汽油中,工作温度为80℃标准:UL 758导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km 30 0.0550 7/0.100 0.300 0.53 1.36 1.46 356.20 3.71 28 0.0887 7/0.127 0.381 0.53 1.44 1.55 200.87 4.33 26 0.1407 7/0.160 0.480 0.53 1.54 1.66 88.57 5.03 24 0.2266 7/0.203 0.609 0.53 1.67 1.80 80.46 6.54 22 0.3550 7/0.254 0.762 0.53 1.82 1.97 55.10 8.36 20 0.5660 7/0.321 0.963 0.53 2.02 2.18 34.60 11.60 18 0.8973 7/0.404 1.212 0.53 2.27 2.45 21.83 15.31 16 1.2292 19/0.287 1.435 0.53 2.49 2.69 15.94 19.43 14 1.9447 19/0.361 1.805 0.53 2.86 3.09 10.07 27.80 12 3.0893 19/0.455 2.275 0.53 3.32 3.60 6.34 40.22 10 5.2030 98/0.260 3.440 0.53 4.50 4.70 4.13 62.27 产品说明:·额定温度:150℃·额定电压:600V·参照标记:UL758,UL1581,UL62·导体使用绞合实芯AWG30-4/0镀锡铜丝·绝缘可溶性氧化丙烯(FEP)·通过ULVW-1及CSAFT-1垂直燃烧测试·电器内部线缆·适用于汽油中,工作温度为80℃*AWM 1332 (200 ,300V)标准:UL 758导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km 30 0.5500 7/0.100 0.300 0.33 0.960 1.04 356.20 2.04 28 0.0887 7/0.127 0.381 0.33 1.040 1.12 200.87 2.54 26 0.1407 7/0.160 0.480 0.33 1.140 1.23 88.57 3.09 24 0.2266 7/0.203 0.609 0.33 1.260 1.37 80.46 4.39 22 0.3550 7/0.254 0.762 0.33 1.420 1.54 55.10 6.00 20 0.5660 7/0.321 0.963 0.33 1.620 1.75 34.60 8.52 18 0.8973 7/0.404 1.212 0.33 1.870 2.02 21.83 12.4216 1.2292 19/0.287 1.435 0.33 2.090 2.26 15.94 16.12 14 1.9447 19/0.361 1.805 0.33 2.465 2.66 10.07 24.00 12 3.0893 19/0.455 2.275 0.33 2.935 3.16 6.34 36.2510 5.2030 98/0.260 3.440 0.33 4.100 4.31 4.13 56.04产品说明:·额定温度:200℃·额定电压:300V·最低使用环境温度:-65℃·参照标记:UL758,UL1581,UL62·导体使用绞合AWG30-4/0镀锡铜丝·绝缘用可溶性氧化丙烯(FEP)·通过UL VW-1及CSA FT-1垂直燃烧测试·电器内部用线缆·适用于汽油中,工作温度为80℃导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km30 0.5500 7/0.100 0.300 0.33 0.960 1.04 356.20 2.04 28 0.0887 7/0.127 0.381 0.33 1.040 1.12 220.87 2.54 26 0.1407 7/0.160 0.480 0.33 1.140 1.23 88.57 3.09 24 0.2266 7/0.203 0.609 0.33 1.260 1.37 80.46 4.39 22 0.3550 7/0.254 0.762 0.33 1.420 1.54 55.10 6.00 20 0.5660 7/0.321 0.963 0.33 1.620 1.75 34.60 8.52 18 0.8973 7/0.404 1.212 0.33 1.870 2.02 21.83 12.3216 1.2292 19/0.287 1.435 0.33 2.090 2.26 15.94 16.12 14 1.9447 19/0.361 1.805 0.33 2.465 2.66 10.07 24.00 12 3.0893 19/0.455 2.275 0.33 2.935 3.16 6.34 36.2510 5.2030 98/0.260 3.440 0.33 4.100 4.30 4.13 54.76产品说明:·额定温度:150℃·额定电压:300V·参照标记:UL758,UL1581,UL62·导体使用绞合AWG30-10镀锡铜丝·绝缘用可溶性氯化乙丙烯(FEP)·通过UL VW-1及CSA FT-1垂直燃烧测试·电器内部用线缆·适用于汽油中,工作温度为80℃·结构和特性导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km 30 0.0550 7/0.100 0.300 0.4 1.10 1.20 356.20 1.80 28 0.0887 7/0.127 0.381 0.4 1.18 1.80 200.87 2.26 26 0.1407 7/0.160 0.488 0.4 1.28 1.41 88.57 2.93 24 0.2266 7/0.203 0.609 0.4 1.41 1.55 80.46 3.97 22 0.3550 7/0.254 0.762 0.4 1.56 1.71 55.10 5.46 20 0.5660 7/0.321 0.963 0.4 1.76 1.94 34.60 7.80 18 0.8973 7/0.404 1.212 0.4 2.01 2.21 21.83 11.37 16 1.2292 19/0.287 1.435 0.4 2.24 2.46 15.94 15.00 产品说明:·额定温度:105℃·额定电压:300V·参照标记:UL758,UL1581,UL62·导线使用单根或绞合AWG30-16镀锡或裸铜丝·交联辐照聚氯乙烯塑料绝缘·通过UL VW-1及CSA FT-1垂直燃烧测试·用于电子、电器设备内部线缆导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km32 0.0352 7/0.080 0.240 0.33 0.900 0.97 556.59 1.7030 0.0550 7/0.100 0.300 0.33 0.960 1.04 356.20 2.04 28 0.0887 7/0.127 0.381 0.33 1.040 1.12 200.87 2.5426 0.1407 7/0.160 0.480 0.33 1.140 1.23 88.57 2.09 24 0.2266 7/0.203 0.609 0.33 1.260 1.37 80.46 4.39 22 0.3550 7/0.254 0.762 0.33 1.420 1.53 55.10 6.00 20 0.5660 7/0.321 0.963 0.33 1.620 1.75 34.60 8.52 18 0.8973 7/0.404 1.212 0.33 1.870 2.02 21.83 12.32 16 1.2292 19/0.287 1.435 0.33 2.090 2.26 15.94 16.12 14 1.9447 19/0.361 1.805 0.33 2.465 2.66 10.07 24.00 12 3.0893 19/0.455 2.275 0.33 2.935 3.17 6.34 36.25 10 5.2030 98/0.260 3.440 0.33 4.100 4.30 4.13 54.76 产品说明:·额定温度:250℃·最低使用环境温度:-65℃·额定电压:300V·参照标记:UL758,UL1581,UL62·导线使用绞合AWG32-4/0镀锡或镀银铜丝·可溶性聚四氯乙烯(PFA)绝缘·通过UL VW-1及CSA FF-1垂直燃烧测试·电器内部用线缆高温场合·适用于汽油中,工作温度为80℃导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km 32 0.0352 7/0.080 0.240 0.53 1.30 1.40 556.59 3.15 30 0.0550 7/0.100 0.300 0.53 1.36 1.46 356.20 3.71 28 0.0887 7/0.127 0.381 0.53 1.44 1.55 200.87 4.33 26 0.1407 7/0.160 0.480 0.53 1.54 1.66 88.57 5.03 24 0.2266 7/0.203 0.609 0.53 1.67 1.80 80.46 6.54 22 0.3550 7/0.254 0.762 0.53 1.82 1.97 55.10 8.36 20 0.5660 7/0.321 0.963 0.53 2.02 2.18 34.60 11.60 18 0.8973 7/0.404 1.212 0.53 2.27 2.45 21.83 15.31 16 1.2292 19/0.287 1.435 0.53 2.49 2.69 15.94 19.43 14 1.9447 19/0.361 1.805 0.53 2.86 3.09 10.07 27.80 12 3.0893 19/0.455 2.275 0.53 3.32 3.60 6.34 40.72 10 5.2030 98/0.260 3.440 0.53 4.50 4.00 4.13 65.10产品说明:·额定温度:250℃·最低使用环境温度:-65℃·额定电压:600V·参照标记:UL758,UL1581,UL62·导线使用绞合AWG30-4/0镀锡或镀银铜丝·可溶性聚四氯乙烯(PFA)绝缘·通过ULVW-1及CSAFT-1垂直燃烧测试·电器内部用线缆高温场合·适用于汽油中,工作温度为80℃导体绝缘线规截面根数/线径直径标称厚度标称外径玻璃丝编织厚度最大外径最大导体电阻参考重量AWG mm2No/D mm mm mm mm mm20℃Ω/km kg/km 30 0.0550 7/0.100 0.300 0.4 1.100.11 1.66336.00 3.20 28 0.0887 7/0.127 0.381 0.4 1.180.11 1.70208.57 3.60 26 0.1407 7/0.160 0.480 0.4 1.280.11 1.80130.00 5.50 24 0.2266 7/0.203 0.609 0.4 1.410.11 1.9080.76 6.65 22 0.3550 7/0.254 0.762 0.4 1.560.11 2.0851.55 8.31 20 0.5660 7/0.321 0.963 0.4 1.760.11 2.2732.32 10.80 18 0.8973 7/0.404 1.212 0.4 2.010.11 2.5120.39 15.50 16 1.2292 19/0.287 1.435 0.4 2.240.11 2.7014.89 18.56产品说明:·额定温度:150℃·额定电压:300V·参照标记:UL758,UL1581,UL62·导体使用绞合AWG30-16镀锡铜丝·耐高温硅橡胶绝缘·通过ULVW-1及CSAFT-1垂直燃烧测试·用于电子、电器内部线缆导体绝缘线规截面根数/线径直径标称厚度标称外径玻璃丝编织厚度最大外径最大导体电阻参考重量AWG mm2No/D mm mm mm mm mm20℃Ω/km kg/km 26 0.1407 7/0.160 0.480 0.8 2.080.11 2.72130.00 8.07 24 0.2266 7/0.203 0.609 0.8 2.210.11 2.8680.76 9.50 22 0.3550 7/0.254 0.762 0.8 2.360.11 3.0351.55 11.40 20 0.5660 7/0.321 0.963 0.8 2.560.11 3.2432.33 14.30产品说明:·额定温度:150℃·额定电压:600V·参照标记:UL758,UL1581,UL62·导体使用绞合AWG26-20镀锡铜丝·耐高温硅橡胶绝缘·通过ULVW-1及CSAFT-1垂直燃烧测试·用于电子、电器内部线缆*AWM 3071 (200 ,600V)标准:UL 758导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km 18 0.9627 19/0.254 1.270 0.80 2.89 3.11 19.11 15.32 16 1.2292 19/0.287 1.435 0.80 3.06 3.29 14.96 18.36 14 2.0800 41/0.254 1.877 0.80 3.50 3.78 8.84 27.74 12 2.6860 38/0.300 2.190 0.80 3.81 4.10 6.85 34.67产品说明:·额定温度:200℃·额定电压:600V·参照标记:UL758,UL1581,UL62·导体使用单根或绞合AWG18-13镀锡铜丝·耐高温硅橡胶绝缘·通过ULVW-1及CSAFT-1垂直燃烧测试·用于电子、电器内部线缆高温场合*AWM 3074 (200 ,600V)标准:UL 758导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km12 3.29 65/0.254 2.363 0.80 3.96 4.28 5.65 40.89 产品说明:·额定温度:200℃·额定电压:600V·参照标记:UL758,UL1581,UL62·导体使用单根或绞合AWG12镀锡铜丝·耐高温硅橡胶绝缘·通过ULVW-1及CSAFT-1垂直燃烧测试·用于电子、电器内部线缆高温场合标准:UL 758导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km 26 0.1407 7/0.160 0.152 1.2 2.552 2.75 130.06 7.49 24 0.2266 7/0.203 0.609 1.2 3.010 3.25 80.76 10.64 22 0.3550 7/0.254 0.762 1.2 3.160 3.41 51.55 12.38 20 0.5660 7/0.321 0.963 1.2 3.360 3.63 32.33 15.46 18 0.8973 7/0.404 1.212 1.2 3.610 3.90 20.39 21.08 16 1.2292 19/0.287 1.435 1.2 3.840 4.14 14.89 24.07 14 1.9447 19/0.361 1.805 1.2 4.210 4.54 8.80 33.52 12 3.0893 19/0.455 2.275 1.2 4.680 5.05 5.92 45.44 10 5.2030 98/0.260 3.440 1.2 5.840 6.10 3.86 68.80 产品说明:·额定温度:200℃·额定电压:600V·最低使用环境温度:-100℃·参照标记:UL758,UL1581,UL62·导体使用绞合AWG26-10镀镍、锡、银、铜丝·耐高温硅橡胶绝缘·通过ULVW-1及CSAFT-1垂直燃烧测试·用于电子、电器燃具设备内部线缆高温场合标准:UL 758导体绝缘线规截面根数/线径直径标称厚度标称外径玻璃丝编织厚度最大外径最大导体电阻参考重量AWG mm2No/D mm mm mm mm mm 20℃Ω/km kg/km 26 0.1393 7/0.160 0.480 0.41 1.300.11 1.82 130.00 5.50 24 0.2266 7/0.203 0.610 0.41 1.430.11 1.93 80.76 6.65 22 0.3550 7/0.254 0.762 0.41 1.580.11 2.11 51.55 8.31 20 0.5660 7/0.321 0.960 0.41 1.780.11 2.29 32.33 10.80 18 0.8973 7/0.404 1.212 0.41 2.030.11 2.53 20.39 15.50 16 1.3740 7/0.500 1.500 0.41 2.320.11 2.84 14.89 18.54产品说明:·额定温度:200℃·额定电压:300V·最低使用环境温度:-100℃·参照标记:UL758,UL1581,UL62·导体使用实芯绞合AWG26-16镀镍、锡、银、铜丝·耐高温硅橡胶绝缘·通过UL VW-1及CSA FT-1垂直燃烧测试·用于电子、电器内部线缆高温场合导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km 30 0.0550 7/0.100 0.300 0.4 1.10 1.19 336.00 1.61 28 0.0887 7/0.127 0.381 0.4 1.18 1.28 208.57 2.05 26 0.1407 7/0.160 0.480 0.4 1.28 1.38 130.00 2.70 24 0.2266 7/0.203 0.609 0.4 1.41 1.52 80.76 3.70 22 0.3550 7/0.254 0.762 0.4 1.56 1.69 51.55 4.90 20 0.5660 7/0.321 0.963 0.4 1.76 1.90 32.33 7.43 18 0.8973 7/0.404 1.212 0.4 2.01 2.17 20.39 10.92 16 1.2292 10/0.287 1.425 0.4 2.24 2.41 14.89 14.50产品说明:·额定温度:150℃·额定电压:300V·最低使用环境温度:-100℃·参照标记:UL758,UL1581,UL62·导体使用绞合AWG30-16镀锡铜丝·耐高温硅橡胶绝缘·通过UL VW-1及CSA FT-1垂直燃烧测试·用于电子、电器燃具设备内部线缆高温场合导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km 30 0.0550 7/0.100 0.300 0.78 1.86 2.00 336.00 3.82 28 0.0887 7/0.127 0.381 0.78 1.94 2.09 208.57 4.38 26 0.1407 7/0.160 0.480 0.78 2.04 2.20 130.00 6.19 24 0.2266 7/0.203 0.609 0.78 2.17 2.34 80.76 7.48 22 0.3550 7/0.254 0.762 0.78 2.32 2.51 51.55 9.40 20 0.5660 7/0.321 0.963 0.78 2.52 2.72 32.33 11.90 18 0.8973 7/0.404 1.212 0.78 2.77 2.91 20.39 15.60 16 1.2292 19/0.287 1.435 0.78 3.06 3.21 14.89 21.05产品说明:·额定温度:150℃·额定电压:300V·最低使用环境温度:-100℃·参照标记:UL758,UL1581,UL62·导体使用绞合AWG30-16镀锡铜丝·耐高温硅橡胶绝缘·通过UL VW-1及CSA FT-1垂直燃烧测试·用于电子、电器燃具设备内部线缆高温场合·结构和特性导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km 26 0.1407 7/0.160 0.480 0.78 5.04 2.20 130.00 5.16 24 0.2266 7/0.203 0.609 0.78 2.17 2.34 80.76 6.37 22 0.3550 7/0.254 0.762 0.78 2.32 2.51 51.55 8.10 20 0.5660 7/0.321 0.963 0.78 2.52 2.72 32.33 10.70 18 0.8973 7/0.404 1.212 0.78 2.77 2.99 20.39 14.50 16 1.3740 7/0.500 1.500 0.78 3.06 3.23 14.89 21.05 14 1.9447 19/0.361 1.805 0.78 3.37 3.63 8.80 26.27 12 3.0893 19/0.455 2.275 0.78 3.84 4.14 5.92 38.95产品说明:·额定温度:200℃·额定电压:600V·最低使用环境温度:-100℃·参照标记:UL758,UL1581,UL62·导体使用实芯绞合AWG26-12镀锡铜丝·耐高温硅橡胶绝缘·通过UL VW-1及CSA FT-1垂直燃烧测试·用于电子、电器内部燃具设备内部线缆高温场合*AWM 3172 (200 ,600V)认可号:UL E186948导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km 26 0.1407 7/0.160 0.480 0.8 2.08 2.25 130.00 5.34 24 0.2266 7/0.203 0.609 0.8 2.21 2.39 80.76 6.55 22 0.3550 7/0.254 0.762 0.8 2.36 2.55 51.55 8.23 20 0.5660 7/0.321 0.963 0.8 2.56 2.77 32.33 10.82 18 0.8973 7/0.404 1.212 0.8 2.81 3.04 20.39 14.71产品说明:·额定温度:-100℃+200℃·额定电压:600V·参照标记:UL758,UL1581,UL62·导体使用绞合AWG26-18镀锡铜丝·耐高温硅橡胶绝缘·通过ULVW-1及CSAFT-1垂直燃烧测试·用于电子、电器内部线缆高温场合*AWM 3173 (125 ,600V)标准:UL 758导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km 26 0.1307 26/0.08 0.471 0.8 2.071 2.288 140.00 4.58 24 0.2407 19/0.1270.635 0.8 2.240 2.460 76.00 6.05 22 0.3820 19/0.1600.800 0.8 0.400 2.640 48.00 7.78 20 0.6149 19/0.203 1.015 0.8 2.620 2.880 30.00 10.90 18 0.8415 26/0.203 1.195 0.8 2.800 3.070 22.00 13.15 16 1.3200 26/0.254 1.495 0.8 3.100 3.400 14386 18.42 14 2.0800 41/0.254 1.877 0.8 3.480 3.820 8.79 26.52 12 3.2900 65/0.254 2.363 0.8 3.960 4.350 5.56 40.89 10 5.2300 65/0.320 2.987 0.8 4.590 5.040 3.48 59.199 6.7560 84/0.320 3.360 0.8 4.960 5.450 2.71 74.00产品说明:·额定温度:125℃·额定电压:600V·参照标记:UL758,UL1581,UL62·导体使用绞合AWG26-9镀锡铜丝·联聚烯烃绝缘·通过ULVW-1及CSAFT-1垂直燃烧测试·用于电子、电器内部线缆*AWM 3239 (150 ,20Kv~50Kv)标准:UL 758导体绝缘护套线规截面根数/线径直径标称厚度标称外径标称厚度电线外径最大导体电阻参考重量AWG mm2 No/D mm mm mm mm mm 20℃Ω/km kg/km 22.20 0.372 7/0.26 0.78 0.50 1.78 0.7 3.18 49.73 12.81 22.30 0.372 7/0.26 0.78 0.65 2.08 0.7 3.88 49.73 17.66 22.40 0.372 7/0.26 0.78 0.80 2.38 0.9 4.18 49.73 20.04 22.50 0.372 7/0.26 0.78 1.10 2.98 1.1 5.18 49.73 29.23产品说明:·额定温度:150℃·额定电压:20KV~50KV直流·参照标记:UL758,UL1581,UL62·导体使用绞合AWG24-10镀锡铜丝·绝缘使用XLPE塑料,护套可选用辐照PVC,XLPE·通过ULVW-1及CSAFT-1垂直燃烧测试·用于电视机、磁控管、电灶电器和电子设备内部*AWM 3266 (125 ,300V)标准:UL 758导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km 32 0.0350 7/0.080 0.240 0.38 1.000 1.10 519.00 1.26 30 0.0550 7/0.100 0.300 0.38 1.060 1.17 322-72 1.54 28 0.0955 19/0.0800.400 0.38 1.160 1.28 191.00 2.00 26 0.1307 26/0.0800.471 0.38 1.230 1.35 140.00 2.49 24 0.2407 19/0.1270.635 0.38 1.400 1.54 76.00 3.79 22 0.3820 19/0.1600.800 0.38 1.560 1.72 48.00 5.35 20 0.6149 19/0.203 1.015 0.38 1.775 1.95 30.00 7.85 18 0.8415 26/0.203 1.195 0.38 1.955 2.15 22.00 10.27 16 1.3200 26/0.254 1.495 0.38 2.255 2.48 13.86 14.87 14 2.0800 41/0.254 1.877 0.38 2.640 2.90 8.79 22.96 12 3.2100 65/0.254 2.363 0.38 3.120 3.44 5.56 35.05 10 5.2300 65/0.320 2.977 0.38 3.746 4.12 3.48 54.57 产品说明:·额定温度:125℃·额定电压:300V·参照标记:UL758,UL1581,UL62·导体使用绞合实芯AWG32-10镀锡或裸铜丝·辐照高能聚氯乙烯绝缘·通过ULVW-1及CSAFT-1垂直燃烧测试·用于电器、电气内部线缆*AWM 3271 (125 ,600V)标准:UL 758导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km 30 0.0550 7/0.100 0.300 0.8 1.90 2.09 332.70 3.40 28 0.0955 19/0.0800.400 0.8 2.00 2.20 191.00 4.05 26 0.1307 26/0.0800.471 0.8 2.07 2.28 140.00 4.58 24 0.2407 19/0.1270.635 0.8 2.24 2.46 76.00 6.05 22 0.3820 19/0.1600.800 0.8 0.40 2.64 48.00 7.78 20 0.6149 19/0.203 1.015 0.8 2.60 2.88 30.00 10.90 18 0.8415 26/0.203 1.195 0.8 2.80 3.07 22.00 13.15 16 1.3200 26/0.254 1.495 0.8 3.10 3.40 13.86 18.42 14 2.0800 41/0.254 1.877 0.8 3.48 3.82 8.79 26.52 12 3.2900 65/0.254 2.363 0.8 3.96 4.35 5.56 40.89 10 5.2300 65/0.320 2.987 0.8 4.59 5.04 3.48 59.199 6.7560 84/0.320 3.360 0.8 4.96 5.45 2.71 74.00产品说明:·额定温度:125℃·额定电压:600V·参照标记:UL758,UL1581,UL62·导体使用绞合实芯AWG30-9镀锡或裸铜丝·辐照高能聚氯乙烯绝缘·通过ULVW-1及CSAFT-1垂直燃烧测试·用于电器、电气内部线缆·结构和特性*AWM 3321 (150 ,600V)标准:UL 758导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km 30 0.0550 7/0.100 0.300 0.76 1.82 1.96 332.00 3.80 28-1 0.0887 7/0.127 0.381 0.76 1.90 2.05 206.00 4.36 28-2 0.0955 7/0.160 0.400 0.76 1.92 2.07 191.00 4.49 26-1 0.1407 19/0.0800.480 0.76 2.00 2.16 130.00 5.16 26-2 0.1393 11/0.1270.486 0.76 2.01 2.17 131.00 5.19 24-1 0.2266 7/0.203 0.609 0.76 2.13 2.30 83.00 6.37 24-2 0.2212 11/0.1600.612 0.76 2.13 2.30 81.00 6.33 22-1 0.3550 7/0.254 0.762 0.76 2.28 2.46 54.00 8.04 22-2 0.3820 19/0.1600.800 0.76 2.32 2.51 48.00 8.44 20-1 0.5660 7/0.321 0.963 0.76 2.48 2.68 32.00 10.63 20-2 0.6149 19/0.203 1.015 0.76 2.54 2.73 29.26 11.32 18-1 0.8973 7/0.404 1.212 0.76 2.73 2.95 20.00 14.51 18-2 0.9627 19/0.254 1.270 0.76 2.29 3.01 19.00 15.35 16-1 1.2292 19/0.287 1.435 0.76 2.96 3.19 14.80 18.40 16-2 1.3200 26/0.254 1.795 0.76 3.02 3.26 14.00 19.41 14 1.9447 19/0.361 1.805 0.76 3.32 3.59 9.40 26.23 12 3.0893 19/0.455 2.275 0.76 3.79 4.10 5.92 38.45 10 5.2030 98/0.260 3.440 0.76 4.96 5.20 3.86 57.84 产品说明:·额定温度:150℃·额定电压:600V ·参照标记:UL758,UL1581,UL62 ·导体使用绞合AWG30-9镀锡铜丝·绝缘耐热150℃交联聚烯(XLPE) ·通过UL VW-1及CSA FT-1垂直燃烧测试·电器内部线缆*AWM 3512 (200 ,600V)标准:UL 758导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km 0.5 0.503 7/0.80 0.80 0.78 2.36 2.55 36.700 9.360.75 0.753 7/0.37 1.00 0.78 2.67 2.88 24.800 12.841 1.017 7/0.43 1.29 0.78 2.85 3.08 18.200 15.851.5 1.487 7/0.52 1.56 0.78 3.12 3.36 12.200 21.082.5 2.542 7/0.68 2.04 0.783.60 3.89 7.560 32.434 4.035 19/0.52 2.60 0.78 4.16 4.50 4.700 48.276 6.112 19/0.64 3.20 1.15 5.50 5.94 3.100 77.07 10 10.556 84/0.40 4.98 1.55 8.08 8.72 1.950 146.00 16 15.834 126/0.40 6.00 1.55 9.10 9.82 1.240 204.02 25 24.630 196/0.40 7.69 1.55 10.79 11.65 0.795 305.18 35 35.814 285/0.40 9.40 1.55 12.50 13.50 0.565 431.00 50 50.140 399/0.40 10.60 2.05 14.70 15.88 0.393 600.73 70 70.880 361/0.50 12.50 2.05 16.60 17.93 0.277 819.92 120 119.380 608/0.50 16.70 2.45 21.60 23.33 0.164 1383.24产品说明:·额定温度:-100℃+200℃·额定电压:600V·参照标记:UL758,UL1581,UL62·导体使用绞合0.5~250mm2镀锡铜丝·耐高温硅橡胶绝缘·通过ULVW-1及CSAFT-1垂直燃烧测试·用于电子、电器、燃具内部线缆高温场合*AWM 3529 (150 ,600V)标准:UL 758导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km 26 0.1407 7/0.160 0.480 0.78 2.04 2.20 130.000 5.16 24 0.2266 7/0.203 0.609 0.78 2.17 2.34 80.760 6.37 22 0.3550 7/0.254 0.762 0.78 2.32 2.51 51.550 8.10 20 0.5660 7/0.321 0.963 0.78 2.52 2.72 32.330 10.70 18 0.8973 7/0.404 1.212 0.78 2.77 2.99 20.390 14.50 16 1.2292 19/0.287 1.435 0.78 3.00 3.23 14.890 21.05 14 1.9447 19/0.361 1.805 0.78 3.37 3.63 8.800 26.27 12 3.0893 19/0.455 2.275 0.78 3.84 4.14 5.920 39.94 10 5.2030 98/0.260 3.440 1.15 5.74 6.03 3.900 67.678 8.2467 168/0.250 3.500 1.56 6.62 7.15 2.240 100.056 13.0572 266/0.250 5.520 1.56 8.64 9.33 1.420 174.004 20.6168 420/0.250 6.630 1.56 9.75 10.53 0.897 248.002 32.6432 665/0.250 8.750 1.56 11.87 12.82 0.567 394.001 42.4744 338/0.400 10.000 2.04 14.08 15.21 0.436 518.00产品说明:·额定温度:150℃ ·最低使用环境温度:-100℃·额定电压:600V ·参照标记:UL758,UL1581,UL62·导体使用实芯绞合AWG26-1镀锡铜丝·耐高温硅橡胶绝缘·通过UL VW-1及CSA FT-1垂直燃烧测试·用于电子、电气设备内部线缆*AWM 3530 (200 ,600V)标准:UL 758导体绝缘最大导体电阻参考重量线规截面根数/线径直径标称厚度标称外径最大外径AWG mm2No/D mm mm mm mm 20℃Ω/km kg/km 26 0.1407 7/0.160 0.480 0.78 2.04 2.20 130.000 5.16 24 0.2266 7/0.203 0.609 0.78 2.17 2.34 80.760 6.37 22 0.3550 7/0.254 0.762 0.78 2.32 2.51 51.550 8.10 20 0.5660 7/0.321 0.963 0.78 2.52 2.72 32.330 10.70 18 0.8973 7/0.404 1.212 0.78 2.77 2.99 20.390 14.50 16 1.2292 19/0.287 1.435 0.78 3.00 3.23 14.890 21.05 14 1.9447 19/0.361 1.805 0.78 3.37 3.63 8.800 26.27 12 3.0893 19/0.455 2.275 0.78 3.84 4.14 5.920 38.95 10 5.2030 98/0.260 3.440 1.15 5.74 6.03 3.900 67.678 8.2467 168/0.250 3.500 1.56 6.62 7.15 2.240 106.056 13.0572 266/0.250 5.520 1.56 8.64 9.33 1.420 174.004 20.6168 420/0.250 6.630 1.56 9.75 10.53 0.897 248.002 32.6432 665/0.250 8.750 1.56 11.87 12.82 0.567 391.401 42.4744 338/0.400 10.000 2.04 14.08 15.21 0.436 518.00产品说明:·额定温度:200℃·最低使用环境温度:-100℃·额定电压:600V·参照标记:UL758,UL1581,UL62·导体使用实芯绞合AWG26-4/0镀锡丝·耐高温硅橡胶绝缘·通过UL VW-1及CSA FT-1垂直燃烧测试·用于电子、电器、燃具设备内部线缆高温场合龙在天涯6Sigma品质网(龙在天涯)Tallwise制作*AWM 仿3549 (200 ,600V)标准:UL 758导体 绝缘 屏蔽 护套线规 截面根数/线径 直径 厚度 外径缠绕/根数外径厚度标称外径最大外径最大导体电阻参考重量AWG mm2No/D mm mm mm No mm mm mm mm 20℃Ω/km kg/km 28 0.0887 7/0.127 0.381 0.76 1.9054/0.112.120.763.643.90 223.75 16.60 26 0.1407 7/0.160 0.480 0.76 2.0057/0.112.220.763.744.04 139.73 20.70 24 0.2266 7/0.203 0.609 0.76 2.1860/0.112.250.763.774.07 85.96 22.50 22 0.3710 39/0.1100.762 0.76 1.9554/0.112.070.763.693.99 48.50 23.50 20 0.5228 26/0.1600.963 0.76 2.0960/0.112.310.763.834.13 37.61 25.40 18 0.8244 41/0.1601.212 0.76 2.3867/0.112.600.764.124.45 23.83 31.16产品说明:·额定温度:200℃·额定电压:600V·参照标记:UL758,UL1581,UL62·导体使用实芯绞合AWG30-10号镀锡或裸铜丝·耐高温硅橡胶、铜丝屏蔽、硅橡胶护套·用于电子、电器内部线缆高温场合。

MAX31785中文资料

MAX31785中文资料

_________________________________________________________________Maxim Integrated Products __1本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。

如需进一步确认,请在您的设计中参考英文资料。

有关价格、供货及订购信息,请联络Maxim 亚洲销售中心:10800 852 1249 (北中国区),10800 152 1249 (南中国区),或访问Maxim 的中文网站: 。

6通道智能风扇控制器MAX3178519-5703; Rev 0; 12/10+表示无铅(Pb)/符合RoHS 标准的封装。

T = 卷带包装。

*EP = 裸焊盘。

概述MAX31785是一款闭环多通道风扇控制器。

自动闭环风扇控制架构将风扇控制在尽可能低的转速,从而节省系统功率。

低风扇转速的其它优势包括:有效降低可闻噪声和更长的风扇寿命、更少的系统维护。

根据用户可编程查找表(LUT),器件根据11个温度传感器中的一个或多个传感器测量值,自动调节6个独立风扇的转速。

也可以由外部主机手动控制风扇转速,器件自动调整风扇转速。

器件具有风扇状况诊断功能,帮助用户预防将要发生的风扇故障。

器件还可监测多达6路远端电压。

应用网络交换机/路由器基站服务器智能电网系统工业控制定购信息特性S 6路独立的风扇控制通道 支持3线和4线风扇 自动闭环风扇转速控制 基于RPM 或PWM 控制 可选手动控制模式快速、慢速PWM 频率选项 风扇交替启动,缓解电源压力 双转速计(支持12个风扇) 风扇故障检测 风扇运转状态监测 非易失风扇运转时间表S 支持多达11个温度传感器6个外部温度二极管,带有串联电阻自动抵消功能 1个内部温度传感器 4个I 2C 数字温度传感器对所有温度传感器进行故障检测S 6路ADC 测量远端电压S PMBus™兼容命令接口S I 2C/SMBus™兼容串行总线,带有总线超时功能S 板载非易失故障记录和默认配置设置S 无需外部时钟S +3.3V 供电PMBus 是SMIF, Inc.的商标。

MAX809SN160T1资料

MAX809SN160T1资料

MAX809 Series,MAX810 SeriesVery Low Supply Current 3-Pin Microprocessor Reset MonitorsThe MAX809 and MAX810 are cost–effective system supervisor circuits designed to monitor V CC in digital systems and provide a reset signal to the host processor when necessary. No external components are required.The reset output is driven active within 10 µsec of V CC falling through the reset voltage threshold. Reset is maintained active for a minimum of 140 msec after V CC rises above the reset threshold. The MAX810 has an active–high RESET output while the MAX809 has an active–low RESET output. The output of the MAX809 is guaranteed valid down to V CC = 1.0 V. Both devices are available in a SOT–23 package.The MAX809/810 are optimized to reject fast transient glitches on the V CC line. Low supply current of 1.0 µA (V CC= 3.2 V) makes these devices suitable for battery powered applications.Features•Precision V CC Monitor for 2.5 V, 3.0 V, 3.3 V, and 5.0 V Supplies •Precision Monitoring V oltages from 1.6 V to 4.9 V Availablein 100 mV Steps•140 msec Guaranteed Minimum RESET Output Duration •RESET Output Guaranteed to V CC = 1.0 V•Low Supply Current•V CC Transient Immunity•Small SOT–23 Package•No External Components•Wide Operating Temperature: –40°C to 105°CTypical Applications•Computers•Embedded Systems•Battery Powered Equipment•Critical µP Power Supply MonitoringV CCFigure 1. Typical Application DiagramDevice Package ShippingORDERING INFORMATIONMAX809xTR SOT–233000 Tape/Reel MAX809SNxxxT1SOT–233000 Tape/Reel NOTE:*SOT–23 is equivalent to JEDEC (TO–236) **RESET is for MAX809***RESET is for MAX810SOT–23(TO–236)CASE 318PIN CONFIGURATION312V CCGNDRESET**SOT–23*(Top View)xx, xxx= Specific Device Codem= Date Codey= Yearw= Work WeekMARKINGDIAGRAMS32xxxm1(RESET)***MAX810xTR SOT–233000 Tape/ReelSee general marking information in the device marking section on page 8 of this data sheet.DEVICE MARKING INFORMATION NOTE: The “x” and “xxx” denotes a suffix for V cc voltage threshold options – see page 8 for more details.32xxyw1See specific device markinginformation on page 8.PIN DESCRIPTIONABSOLUTE MAXIMUM RATINGS* (Note 1)1.This device series contains ESD protection and exceeds the following tests:Human Body Model 2000 V per MIL–STD–883, Method 3015. Machine Model Method 350 V.2.The maximum package power dissipation limit must not be exceeded.P D +T J(max)*T Aq JAwith T J(max) = 150°C ELECTRICAL CHARACTERISTICS T A = –40°C to +105°C unless otherwise noted. Typical values are at T A = +25°C. (Note 3)The following data is given for MAX809 threshold levels: 1.60 V, 2.32 V, 2.93 V, 4.63 V and 4.90 V.AELECTRICAL CHARACTERISTICS(continued) T A = –40°C to +105°C unless otherwise noted. Typical values are at T A = +25°C. (Note 4) The following data is given for MAX809 threshold levels: 1.60 V, 2.32 V, 2.93 V, 4.63 V and 4.90 V.A5.Contact your ON Semiconductor sales representative for other threshold voltage options.ELECTRICAL CHARACTERISTICS (V CC = Full Range, T A = –40°C to +85°C unless otherwise noted. Typical values are at T A = +25°C, V CC = 5.0 V for L/M/J, 3.3 V for T/S, 3.0 V for R) (Note 6) The following data is given for MAX809 threshold levels: 2.63 V, 3.08 V, 4.00 V and 4.38 V; MAX810 threshold levels: 2.63 V, 2.93 V, 3.08 V, 4.38 V and 4.63 V.AAPPLICATIONS INFORMATIONV CC Transient RejectionThe MAX809 provides accurate V CC monitoring and reset timing during power–up, power–down, and brownout/sag conditions, and rejects negative–going transients (glitches)on the power supply line. Figure 2 shows the maximum transient duration vs. maximum negative excursion (overdrive) for glitch rejection. Any combination of duration and overdrive which lies under the curve will not generate a reset signal. Combinations above the curve are detected as a brownout or power–down. Typically, transient that goes 100 mV below the reset threshold and lasts 5 µs or less will not cause a reset pulse. Transient immunity can be improved by adding a capacitor in close proximity to the V CC pin of the MAX809.Figure 2. Maximum Transient Duration vs. Overdrivefor Glitch Rejection at 25°CV CC10.010080110.060.0M A X I M U M T R A N S I E N T D U R A T I O N (µs e c )20120RESET COMPARATOR OVERDRIVE (mV)160.06040RESET Signal Integrity During Power–DownThe MAX809 RESET output is valid to V CC = 1.0 V .Below this voltage the output becomes an “open circuit” and does not sink current. This means CMOS logic inputs to the µP will be floating at an undetermined voltage. Most digital systems are completely shutdown well above this voltage.However, in situations where RESET must be maintainedvalid to V CC = 0 V , a pull–down resistor must be connected from RESET to ground to discharge stray capacitances and hold the output low (Figure 3). This resistor value, though not critical, should be chosen such that it does not appreciably load RESET under normal operation (100 k W will be suitable for most applications).Figure 3. Ensuring RESET Valid to V CC = 0 VProcessors With Bidirectional I/O PinsSome µP’s (such as Motorola 68HC11) have bi–directional reset pins. Depending on the current drive capability of the processor pin, an indeterminate logic level may result if there is a logic conflict. This can be avoided by adding a 4.7 k W resistor in series with the output of the MAX809 (Figure 4). If there are other components in the system which require a reset signal, they should be buffered so as not to load the reset line. If the other components are required to follow the reset I/O of the µP, the buffer should be connected as shown with the solid line.Figure 4. Interfacing to Bidirectional Reset I/OBUFFERED RESETThe following data is given for MAX809 threshold levels: 1.60 V, 2.32 V, 2.93 V, 4.63 V and 4.90 V.1.10S U P P L Y C U R R E N T I N M I C R O A M PTEMPERATURE (°C)N O R M A L I Z E D P O W E R –U P R E S E T T I M E O U T–404020–206080Figure 7. Normalized Power–Up Reset vs.Temperature Figure 8. Normalized Reset Threshold Voltagevs. TemperatureTEMPERATURE (°C)–404020–206080The following data is given for MAX809 threshold levels: 2.63 V, 3.08 V, 4.00 V and 4.38 V;MAX810 threshold levels: 2.63 V, 2.93 V, 3.08 V, 4.38 V and 4.63 V.S U P P L Y C U R R E N T ( A )m 040206080100P O W E R -D O W N R E S E T D E L A Y ( s e c )m TEMPERATURE (C °)-40-200204085Figure 13. Power–Up Reset Timeout vs.Temperature TEMPERATURE (C °)-40-20020406085225235230240245250P O W E R -U P R E S E T T I M E O U T (m s e c )60Figure 14. Normalized Reset Threshold vs.TemperatureTAPING FORMComponent Taping Orientation for 3L SOT–23 (JEDEC–236) Devices(Mark Right Side Up)SOT–23Package Carrier Width (W)Pitch (P)Part Per Full ReelReel Size 8 mm4 mm30007 inchesTape & Reel Specifications TableMARKING AND THRESHOLD INFORMATIONm = Date Codey = Yearw = Work WeekPACKAGE DIMENSIONSSOT–23PLASTIC PACKAGE (TO–236)CASE 318–08ISSUE AHNOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: INCH.3.MAXIMUM LEAD THICKNESS INCLUDES LEADNotesNotes11ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATIONJAPAN: ON Semiconductor, Japan Customer Focus Center4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031Phone: 81–3–5740–2700Email: r14525@。

MAX487ESA中文资料

MAX487ESA中文资料

For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .General DescriptionThe MAX481, MAX483, MAX485, MAX487–MAX491, and MAX1487 are low-power transceivers for RS-485 and RS-422 communication. Each part contains one driver and one receiver. The MAX483, MAX487, MAX488, and MAX489feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables,thus allowing error-free data transmission up to 250kbps.The driver slew rates of the MAX481, MAX485, MAX490,MAX491, and MAX1487 are not limited, allowing them to transmit up to 2.5Mbps.These transceivers draw between 120µA and 500µA of supply current when unloaded or fully loaded with disabled drivers. Additionally, the MAX481, MAX483, and MAX487have a low-current shutdown mode in which they consume only 0.1µA. All parts operate from a single 5V supply.Drivers are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-imped-ance state. The receiver input has a fail-safe feature that guarantees a logic-high output if the input is open circuit.The MAX487 and MAX1487 feature quarter-unit-load receiver input impedance, allowing up to 128 MAX487/MAX1487 transceivers on the bus. Full-duplex communi-cations are obtained using the MAX488–MAX491, while the MAX481, MAX483, MAX485, MAX487, and MAX1487are designed for half-duplex applications.________________________ApplicationsLow-Power RS-485 Transceivers Low-Power RS-422 Transceivers Level TranslatorsTransceivers for EMI-Sensitive Applications Industrial-Control Local Area Networks__Next Generation Device Features♦For Fault-Tolerant ApplicationsMAX3430: ±80V Fault-Protected, Fail-Safe, 1/4Unit Load, +3.3V, RS-485 TransceiverMAX3440E–MAX3444E: ±15kV ESD-Protected,±60V Fault-Protected, 10Mbps, Fail-Safe, RS-485/J1708 Transceivers♦For Space-Constrained ApplicationsMAX3460–MAX3464: +5V, Fail-Safe, 20Mbps,Profibus RS-485/RS-422 TransceiversMAX3362: +3.3V, High-Speed, RS-485/RS-422Transceiver in a SOT23 PackageMAX3280E–MAX3284E: ±15kV ESD-Protected,52Mbps, +3V to +5.5V, SOT23, RS-485/RS-422,True Fail-Safe ReceiversMAX3293/MAX3294/MAX3295: 20Mbps, +3.3V,SOT23, RS-855/RS-422 Transmitters ♦For Multiple Transceiver ApplicationsMAX3030E–MAX3033E: ±15kV ESD-Protected,+3.3V, Quad RS-422 Transmitters ♦For Fail-Safe ApplicationsMAX3080–MAX3089: Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422Transceivers♦For Low-Voltage ApplicationsMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E: +3.3V Powered, ±15kV ESD-Protected, 12Mbps, Slew-Rate-Limited,True RS-485/RS-422 TransceiversMAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers______________________________________________________________Selection Table19-0122; Rev 8; 10/03Ordering Information appears at end of data sheet.M A X 481/M A X 483/M A X 485/M A X 487–M A X 491/M A X 1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSSupply Voltage (V CC ).............................................................12V Control Input Voltage (RE , DE)...................-0.5V to (V CC + 0.5V)Driver Input Voltage (DI).............................-0.5V to (V CC + 0.5V)Driver Output Voltage (A, B)...................................-8V to +12.5V Receiver Input Voltage (A, B).................................-8V to +12.5V Receiver Output Voltage (RO).....................-0.5V to (V CC +0.5V)Continuous Power Dissipation (T A = +70°C)8-Pin Plastic DIP (derate 9.09mW/°C above +70°C)....727mW 14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)..800mW 8-Pin SO (derate 5.88mW/°C above +70°C).................471mW14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW 8-Pin µMAX (derate 4.1mW/°C above +70°C)..............830mW 8-Pin CERDIP (derate 8.00mW/°C above +70°C).........640mW 14-Pin CERDIP (derate 9.09mW/°C above +70°C).......727mW Operating Temperature RangesMAX4_ _C_ _/MAX1487C_ A...............................0°C to +70°C MAX4__E_ _/MAX1487E_ A.............................-40°C to +85°C MAX4__MJ_/MAX1487MJA...........................-55°C to +125°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°CDC ELECTRICAL CHARACTERISTICS(V CC = 5V ±5%, T A = T MIN to T MAX , unless otherwise noted.) (Notes 1, 2)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V V IN = -7VV IN = 12V V IN = -7V V IN = 12V Input Current (A, B)I IN2V TH k Ω48-7V ≤V CM ≤12V, MAX487/MAX1487R INReceiver Input Resistance -7V ≤V CM ≤12V, all devices except MAX487/MAX1487R = 27Ω(RS-485), Figure 40.4V ≤V O ≤2.4VR = 50Ω(RS-422)I O = 4mA, V ID = -200mV I O = -4mA, V ID = 200mV V CM = 0V-7V ≤V CM ≤12V DE, DI, RE DE, DI, RE MAX487/MAX1487,DE = 0V, V CC = 0V or 5.25VDE, DI, RE R = 27Ωor 50Ω, Figure 4R = 27Ωor 50Ω, Figure 4R = 27Ωor 50Ω, Figure 4DE = 0V;V CC = 0V or 5.25V,all devices except MAX487/MAX1487CONDITIONSk Ω12µA ±1I OZRThree-State (high impedance)Output Current at ReceiverV 0.4V OL Receiver Output Low Voltage 3.5V OH Receiver Output High Voltage mV 70∆V TH Receiver Input Hysteresis V -0.20.2Receiver Differential Threshold Voltage-0.2mA 0.25mA-0.81.01.55V OD2Differential Driver Output (with load)V 2V 5V OD1Differential Driver Output (no load)µA±2I IN1Input CurrentV 0.8V IL Input Low Voltage V 2.0V IH Input High Voltage V 0.2∆V OD Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States V 0.2∆V OD Change in Magnitude of Driver Differential Output Voltage for Complementary Output States V 3V OC Driver Common-Mode Output VoltageUNITS MINTYPMAX SYMBOL PARAMETERMAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers_______________________________________________________________________________________3SWITCHING CHARACTERISTICS—MAX481/MAX485, MAX490/MAX491, MAX1487(V CC = 5V ±5%, T A = T MIN to T MAX , unless otherwise noted.) (Notes 1, 2)DC ELECTRICAL CHARACTERISTICS (continued)(V CC = 5V ±5%, T A = T MIN to T MAX , unless otherwise noted.) (Notes 1, 2)ns 103060t PHLDriver Rise or Fall Time Figures 6 and 8, R DIFF = 54Ω, C L1= C L2= 100pF ns MAX490M, MAX491M MAX490C/E, MAX491C/E2090150MAX481, MAX485, MAX1487MAX490M, MAX491MMAX490C/E, MAX491C/E MAX481, MAX485, MAX1487Figures 6 and 8, R DIFF = 54Ω,C L1= C L2= 100pF MAX481 (Note 5)Figures 5 and 11, C RL = 15pF, S2 closedFigures 5 and 11, C RL = 15pF, S1 closed Figures 5 and 11, C RL = 15pF, S2 closed Figures 5 and 11, C RL = 15pF, S1 closed Figures 6 and 10, R DIFF = 54Ω,C L1= C L2= 100pFFigures 6 and 8,R DIFF = 54Ω,C L1= C L2= 100pF Figures 6 and 10,R DIFF = 54Ω,C L1= C L2= 100pF CONDITIONS ns 510t SKEW ns50200600t SHDNTime to ShutdownMbps 2.5f MAX Maximum Data Rate ns 2050t HZ Receiver Disable Time from High ns 103060t PLH 2050t LZ Receiver Disable Time from Low ns 2050t ZH Driver Input to Output Receiver Enable to Output High ns 2050t ZL Receiver Enable to Output Low 2090200ns ns 134070t HZ t SKD Driver Disable Time from High |t PLH - t PHL |DifferentialReceiver Skewns 4070t LZ Driver Disable Time from Low ns 4070t ZL Driver Enable to Output Low 31540ns51525ns 31540t R , t F 2090200Driver Output Skew to Output t PLH , t PHL Receiver Input to Output4070t ZH Driver Enable to Output High UNITS MIN TYP MAX SYMBOL PARAMETERFigures 7 and 9, C L = 100pF, S2 closed Figures 7 and 9, C L = 100pF, S1 closed Figures 7 and 9, C L = 15pF, S1 closed Figures 7 and 9, C L = 15pF, S2 closedM A X 481/M A X 483/M A X 485/M A X 487–M A X 491/M A X 1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers 4_______________________________________________________________________________________SWITCHING CHARACTERISTICS—MAX483, MAX487/MAX488/MAX489(V CC = 5V ±5%, T A = T MIN to T MAX , unless otherwise noted.) (Notes 1, 2)SWITCHING CHARACTERISTICS—MAX481/MAX485, MAX490/MAX491, MAX1487 (continued)(V CC = 5V ±5%, T A = T MIN to T MAX , unless otherwise noted.) (Notes 1, 2)3001000Figures 7 and 9, C L = 100pF, S2 closed Figures 7 and 9, C L = 100pF, S1 closed Figures 5 and 11, C L = 15pF, S2 closed,A - B = 2VCONDITIONSns 40100t ZH(SHDN)Driver Enable from Shutdown toOutput High (MAX481)nsFigures 5 and 11, C L = 15pF, S1 closed,B - A = 2Vt ZL(SHDN)Receiver Enable from Shutdownto Output Low (MAX481)ns 40100t ZL(SHDN)Driver Enable from Shutdown toOutput Low (MAX481)ns 3001000t ZH(SHDN)Receiver Enable from Shutdownto Output High (MAX481)UNITS MINTYP MAX SYMBOLPARAMETERt PLH t SKEW Figures 6 and 8, R DIFF = 54Ω,C L1= C L2= 100pFt PHL Figures 6 and 8, R DIFF = 54Ω,C L1= C L2= 100pFDriver Input to Output Driver Output Skew to Output ns 100800ns ns 2000MAX483/MAX487, Figures 7 and 9,C L = 100pF, S2 closedt ZH(SHDN)Driver Enable from Shutdown to Output High2502000ns2500MAX483/MAX487, Figures 5 and 11,C L = 15pF, S1 closedt ZL(SHDN)Receiver Enable from Shutdown to Output Lowns 2500MAX483/MAX487, Figures 5 and 11,C L = 15pF, S2 closedt ZH(SHDN)Receiver Enable from Shutdown to Output Highns 2000MAX483/MAX487, Figures 7 and 9,C L = 100pF, S1 closedt ZL(SHDN)Driver Enable from Shutdown to Output Lowns 50200600MAX483/MAX487 (Note 5) t SHDN Time to Shutdownt PHL t PLH , t PHL < 50% of data period Figures 5 and 11, C RL = 15pF, S2 closed Figures 5 and 11, C RL = 15pF, S1 closed Figures 5 and 11, C RL = 15pF, S2 closed Figures 5 and 11, C RL = 15pF, S1 closed Figures 7 and 9, C L = 15pF, S2 closed Figures 6 and 10, R DIFF = 54Ω,C L1= C L2= 100pFFigures 7 and 9, C L = 15pF, S1 closed Figures 7 and 9, C L = 100pF, S1 closed Figures 7 and 9, C L = 100pF, S2 closed CONDITIONSkbps 250f MAX 2508002000Maximum Data Rate ns 2050t HZ Receiver Disable Time from High ns 25080020002050t LZ Receiver Disable Time from Low ns 2050t ZH Receiver Enable to Output High ns 2050t ZL Receiver Enable to Output Low ns ns 1003003000t HZ t SKD Driver Disable Time from High I t PLH - t PHL I DifferentialReceiver SkewFigures 6 and 10, R DIFF = 54Ω,C L1= C L2= 100pFns 3003000t LZ Driver Disable Time from Low ns 2502000t ZL Driver Enable to Output Low ns Figures 6 and 8, R DIFF = 54Ω,C L1= C L2= 100pFns 2502000t R , t F 2502000Driver Rise or Fall Time ns t PLH Receiver Input to Output2502000t ZH Driver Enable to Output High UNITS MIN TYP MAX SYMBOL PARAMETERMAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers_______________________________________________________________________________________530002.5OUTPUT CURRENT vs.RECEIVER OUTPUT LOW VOLTAGE525M A X 481-01OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )1.515100.51.02.0203540450.90.1-50-252575RECEIVER OUTPUT LOW VOLTAGE vs.TEMPERATURE0.30.7TEMPERATURE (°C)O U T P U TL O W V O L T A G E (V )500.50.80.20.60.40100125-20-41.5 2.0 3.0 5.0OUTPUT CURRENT vs.RECEIVER OUTPUT HIGH VOLTAGE-8-16M A X 481-02OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )2.5 4.0-12-18-6-14-10-203.54.5 4.83.2-50-252575RECEIVER OUTPUT HIGH VOLTAGE vs.TEMPERATURE3.64.4TEMPERATURE (°C)O U T P UT H I G H V O L T A G E (V )0504.04.63.44.23.83.01001259000 1.0 3.0 4.5DRIVER OUTPUT CURRENT vs.DIFFERENTIAL OUTPUT VOLTAGE1070M A X 481-05DIFFERENTIAL OUTPUT VOLTAGE (V)O U T P U T C U R R E N T (m A )2.0 4.05030806040200.5 1.5 2.53.5 2.31.5-50-2525125DRIVER DIFFERENTIAL OUTPUT VOLTAGEvs. TEMPERATURE1.72.1TEMPERATURE (°C)D I F FE R E N T I A L O U T P U T V O L T A G E (V )751.92.21.62.01.8100502.4__________________________________________Typical Operating Characteristics(V CC = 5V, T A = +25°C, unless otherwise noted.)NOTES FOR ELECTRICAL/SWITCHING CHARACTERISTICSNote 1:All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to deviceground unless otherwise specified.Note 2:All typical specifications are given for V CC = 5V and T A = +25°C.Note 3:Supply current specification is valid for loaded transmitters when DE = 0V.Note 4:Applies to peak current. See Typical Operating Characteristics.Note 5:The MAX481/MAX483/MAX487 are put into shutdown by bringing RE high and DE low. If the inputs are in this state for lessthan 50ns, the parts are guaranteed not to enter shutdown. If the inputs are in this state for at least 600ns, the parts are guaranteed to have entered shutdown. See Low-Power Shutdown Mode section.M A X 481/M A X 483/M A X 485/M A X 487–M A X 491/M A X 1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers 6___________________________________________________________________________________________________________________Typical Operating Characteristics (continued)(V CC = 5V, T A = +25°C, unless otherwise noted.)120008OUTPUT CURRENT vs.DRIVER OUTPUT LOW VOLTAGE20100M A X 481-07OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )6604024801012140-1200-7-5-15OUTPUT CURRENT vs.DRIVER OUTPUT HIGH VOLTAGE-20-80M A X 481-08OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )-31-603-6-4-2024-100-40100-40-60-2040100120MAX1487SUPPLY CURRENT vs. TEMPERATURE300TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )20608050020060040000140100-50-2550100MAX481/MAX485/MAX490/MAX491SUPPLY CURRENT vs. TEMPERATURE300TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )257550020060040000125100-50-2550100MAX483/MAX487–MAX489SUPPLY CURRENT vs. TEMPERATURE300TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )257550020060040000125MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers_______________________________________________________________________________________7______________________________________________________________Pin DescriptionFigure 1. MAX481/MAX483/MAX485/MAX487/MAX1487 Pin Configuration and Typical Operating CircuitM A X 481/M A X 483/M A X 485/M A X 487–M A X 491/M A X 1487__________Applications InformationThe MAX481/MAX483/MAX485/MAX487–MAX491 and MAX1487 are low-power transceivers for RS-485 and RS-422 communications. The MAX481, MAX485, MAX490,MAX491, and MAX1487 can transmit and receive at data rates up to 2.5Mbps, while the MAX483, MAX487,MAX488, and MAX489 are specified for data rates up to 250kbps. The MAX488–MAX491 are full-duplex trans-ceivers while the MAX481, MAX483, MAX485, MAX487,and MAX1487 are half-duplex. In addition, Driver Enable (DE) and Receiver Enable (RE) pins are included on the MAX481, MAX483, MAX485, MAX487, MAX489,MAX491, and MAX1487. When disabled, the driver and receiver outputs are high impedance.MAX487/MAX1487:128 Transceivers on the BusThe 48k Ω, 1/4-unit-load receiver input impedance of the MAX487 and MAX1487 allows up to 128 transceivers on a bus, compared to the 1-unit load (12k Ωinput impedance) of standard RS-485 drivers (32 trans-ceivers maximum). Any combination of MAX487/MAX1487 and other RS-485 transceivers with a total of 32 unit loads or less can be put on the bus. The MAX481/MAX483/MAX485 and MAX488–MAX491 have standard 12k ΩReceiver Input impedance.Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers 8_______________________________________________________________________________________Figure 2. MAX488/MAX490 Pin Configuration and Typical Operating CircuitFigure 3. MAX489/MAX491 Pin Configuration and Typical Operating CircuitMAX483/MAX487/MAX488/MAX489:Reduced EMI and ReflectionsThe MAX483 and MAX487–MAX489 are slew-rate limit-ed, minimizing EMI and reducing reflections caused by improperly terminated cables. Figure 12 shows the dri-ver output waveform and its Fourier analysis of a 150kHz signal transmitted by a MAX481, MAX485,MAX490, MAX491, or MAX1487. High-frequency har-monics with large amplitudes are evident. Figure 13shows the same information displayed for a MAX483,MAX487, MAX488, or MAX489 transmitting under the same conditions. Figure 13’s high-frequency harmonics have much lower amplitudes, and the potential for EMI is significantly reduced.MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers_______________________________________________________________________________________9_________________________________________________________________Test CircuitsFigure 4. Driver DC Test Load Figure 5. Receiver Timing Test LoadFigure 6. Driver/Receiver Timing Test Circuit Figure 7. Driver Timing Test LoadM A X 481/M A X 483/M A X 485/M A X 487–M A X 491/M A X 1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers 10_______________________________________________________Switching Waveforms_________________Function Tables (MAX481/MAX483/MAX485/MAX487/MAX1487)Figure 8. Driver Propagation DelaysFigure 9. Driver Enable and Disable Times (except MAX488 and MAX490)Figure 10. Receiver Propagation DelaysFigure 11. Receiver Enable and Disable Times (except MAX488and MAX490)Table 1. TransmittingTable 2. ReceivingLow-Power Shutdown Mode (MAX481/MAX483/MAX487)A low-power shutdown mode is initiated by bringing both RE high and DE low. The devices will not shut down unless both the driver and receiver are disabled.In shutdown, the devices typically draw only 0.1µA of supply current.RE and DE may be driven simultaneously; the parts are guaranteed not to enter shutdown if RE is high and DE is low for less than 50ns. If the inputs are in this state for at least 600ns, the parts are guaranteed to enter shutdown.For the MAX481, MAX483, and MAX487, the t ZH and t ZL enable times assume the part was not in the low-power shutdown state (the MAX485/MAX488–MAX491and MAX1487 can not be shut down). The t ZH(SHDN)and t ZL(SHDN)enable times assume the parts were shut down (see Electrical Characteristics ).It takes the drivers and receivers longer to become enabled from the low-power shutdown state (t ZH(SHDN ), t ZL(SHDN)) than from the operating mode (t ZH , t ZL ). (The parts are in operating mode if the –R —E –,DE inputs equal a logical 0,1 or 1,1 or 0, 0.)Driver Output ProtectionExcessive output current and power dissipation caused by faults or by bus contention are prevented by two mechanisms. A foldback current limit on the output stage provides immediate protection against short cir-cuits over the whole common-mode voltage range (see Typical Operating Characteristics ). In addition, a ther-mal shutdown circuit forces the driver outputs into a high-impedance state if the die temperature rises excessively.Propagation DelayMany digital encoding schemes depend on the differ-ence between the driver and receiver propagation delay times. Typical propagation delays are shown in Figures 15–18 using Figure 14’s test circuit.The difference in receiver delay times, | t PLH - t PHL |, is typically under 13ns for the MAX481, MAX485,MAX490, MAX491, and MAX1487 and is typically less than 100ns for the MAX483 and MAX487–MAX489.The driver skew times are typically 5ns (10ns max) for the MAX481, MAX485, MAX490, MAX491, and MAX1487, and are typically 100ns (800ns max) for the MAX483 and MAX487–MAX489.MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers______________________________________________________________________________________1110dB/div0Hz5MHz500kHz/div10dB/div0Hz5MHz500kHz/divFigure 12. Driver Output Waveform and FFT Plot of MAX481/MAX485/MAX490/MAX491/MAX1487 Transmitting a 150kHz SignalFigure 13. Driver Output Waveform and FFT Plot of MAX483/MAX487–MAX489 Transmitting a 150kHz SignalM A X 481/M A X 483/M A X 485/M A X 487–M A X 491/M A X 1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers 12______________________________________________________________________________________V CC = 5V T A = +25°CV CC = 5V T A = +25°CV CC = 5V T A = +25°CV CC = 5V T A = +25°CFigure 14. Receiver Propagation Delay Test CircuitFigure 15. MAX481/MAX485/MAX490/MAX491/MAX1487Receiver t PHLFigure 16. MAX481/MAX485/MAX490/MAX491/MAX1487Receiver t PLHPHL Figure 18. MAX483, MAX487–MAX489 Receiver t PLHLine Length vs. Data RateThe RS-485/RS-422 standard covers line lengths up to 4000 feet. For line lengths greater than 4000 feet, see Figure 23.Figures 19 and 20 show the system differential voltage for the parts driving 4000 feet of 26AWG twisted-pair wire at 110kHz into 120Ωloads.Typical ApplicationsThe MAX481, MAX483, MAX485, MAX487–MAX491, and MAX1487 transceivers are designed for bidirectional data communications on multipoint bus transmission lines.Figures 21 and 22 show typical network applications circuits. These parts can also be used as line repeaters, with cable lengths longer than 4000 feet, as shown in Figure 23.To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possi-ble. The slew-rate-limited MAX483 and MAX487–MAX489are more tolerant of imperfect termination.MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers______________________________________________________________________________________13DIV Y -V ZRO5V 0V1V0V -1V5V 0V2µs/divFigure 19. MAX481/MAX485/MAX490/MAX491/MAX1487 System Differential Voltage at 110kHz Driving 4000ft of Cable Figure 20. MAX483, MAX487–MAX489 System Differential Voltage at 110kHz Driving 4000ft of CableFigure 21. MAX481/MAX483/MAX485/MAX487/MAX1487 Typical Half-Duplex RS-485 NetworkM A X 481/M A X 483/M A X 485/M A X 487–M A X 491/M A X 1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers 14______________________________________________________________________________________Figure 22. MAX488–MAX491 Full-Duplex RS-485 NetworkFigure 23. Line Repeater for MAX488–MAX491Isolated RS-485For isolated RS-485 applications, see the MAX253 and MAX1480 data sheets.MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers______________________________________________________________________________________15_______________Ordering Information_________________Chip TopographiesMAX481/MAX483/MAX485/MAX487/MAX1487N.C. RO 0.054"(1.372mm)0.080"(2.032mm)DE DIGND B N.C.V CCARE * Contact factory for dice specifications.__Ordering Information (continued)M A X 481/M A X 483/M A X 485/M A X 487–M A X 491/M A X 1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers 16______________________________________________________________________________________TRANSISTOR COUNT: 248SUBSTRATE CONNECTED TO GNDMAX488/MAX490B RO 0.054"(1.372mm)0.080"(2.032mm)N.C. DIGND Z A V CCYN.C._____________________________________________Chip Topographies (continued)MAX489/MAX491B RO 0.054"(1.372mm)0.080"(2.032mm)DE DIGND Z A V CCYREMAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers______________________________________________________________________________________17Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)S O I C N .E P SM A X 481/M A X 483/M A X 485/M A X 487–M A X 491/M A X 1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers 18______________________________________________________________________________________Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)MAX481/MAX483/MAX485/MAX487–MAX491Low-Power, Slew-Rate-Limited RS-485/RS-422 TransceiversMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________19©2003 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.M A X 481/M A X 483/M A X 485/M A X 487–M A X 491/M A X 1487P D I P N .E PSPackage Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)。

MAXTRAC 系列产品部件清单说明书

MAXTRAC 系列产品部件清单说明书

REF.NO.PART NO.DESCRIPTIONREF.NO.PART NO.DESCRIPTIONMAXTRAC 50/100 AND 820 SERIES202680223M05Shield, PA, VHF &UHF 202680223M05Shield, PA, 800 MHz 210980131M01Connector, antenna 222680124L03Heatsink, UHF &VHF 222680124L02Heatsink, 800 MHz 230980255E01Connector, power240310943M10Taptite Screw (M3 x 8); 8 used 250380271L01Machine Screw (M4 x 17); 2 used 260380043L01Taptite Screw (M3 x 10); 2 used 270400131974Washer; 2 used281580076M01Housing, accessory connector 297580918T02Pad, shock insulating; 5 used 300400002636Washer, int loc313280014N02Gasket, accessory connector 321380276L02Escutcheon, 2 frequencyNON-REFERENCED ITEMS:HLN5184B Switchboard 3380017N14Nameplate10380270L01Front Mounting Screws; 2 used 21580129L01Control Head Housing 33680144M01Control Knob 45080085D02Speaker54280253L01Speaker Retainer; 4 used 60310945A11Plastic Screw; 9 used 73880272L02Push Button; 2 used 84380273L01Push Button Spacer 97580200L01Keypad102900129883Wire Wrap; 2 used 110780037M01Bracket, switch board 122780128L04Chassis Frame 131580953T01Cover, VCO shield 142680038M03Shield, chassis RF150310943M09Taptite Screw (M3 x 6); 12 used 161580127L01Cover, housing; 2 used 171580124M01Cover, logic shield180310943R55Taptite Screw (M3 x 8, flathead); 4 used190310943R04Taptite Screw (M2.5 x 8, flathead); 2 usedREF.NO.PART NO.DESCRIPTIONREF.NO.PART NO.DESCRIPTIONMAXTRAC 300 AND 840 SERIES232680223M05Shield, PA, VHF&UHF232680223M05Shield, PA, 800 MHz240980131M01Connector, antenna252680124L03Heatsink, UHF &VHF252680124L02Heatsink, 800 MHz260980255E01Connector, power270310943M10Taptite Screw (M3 x 3); 8 used280380271L01Machine Screw (M4 x 27); 2 used290380043L01Taptite Screw (M3 x 10); 2 used300400131974Washer; 2 used313280039M01Gasket321580076M01Housing, accessory connector337580918T02Pad, shock insulating; 5 used340400002636Washer, int loc353280014N02Gasket, accessory connector361380277L01Escutcheon (16 freq. models)NON-REFERENCED ITEMS:HLN5184B Switchboard3380017N14NameplateNOTE: The part number for the speaker lead assembly,including connector P10 and two lugs, is 0180747T30.10380270L01Front Mounting Screws; 2 used 21580129L01Control Head Housing33680144M01Control Knob45080085D02Speaker54280253L01Speaker Retainer; 4 used 60310945A11Plastic Screw; 9 used73880272L02Push Button(6 freq. models); 3 used(16 freq. models); 5 used 84380274L01Push Button Spacer (1 x 2) 94380275L01Push Button Spacer (1 x 3) 107580201L01Keypad113880077N01Button Plug; 2 used123280907T01Gasket (6 freq. models only); 2 used 132900129883Wire Wrap; 2 used140780037M01Bracket Switch Board152780128L04Chassis Frame161580953T01Cover, VCO shield172680038M03Shield, chassis, RF180310943M09Taptite Screw (M3 x 6); 12 used 191580127L01Cover, housing; 2 used 201580124M01Cover, logic shield210310943R55Taptite Screw (M3 x 8, flathead);4 used220310943R04Taptite Screw (M2.5 x 8, flathead);2 usedMICROPHONESHSN4019B HMN1035CMOUNTING HARDWARE HLN4426AIGNITION SWITCH CABLEAccessories, Antennas ANTENNA ADAPTERHAD4008AHAD4006AVHF ANTENNASHAD4010ARAD4002ARA HAD4013AVHF ANTENNAHAE4003ARAE4022ARAUHF ANTENNAS800 MHZ ANTENNASRAF4011ARLRRA4933ASERVICE TOOLSRLN4008B RSX4043A6680163F010180357A57Service Aids, Manuals SERVICE AIDSHMN1035CHLN4426AHSN4019BHKN9327AEmergency Alarm 3dB, roof top w/14 ft. cable (890-960 MHz)3dB, roof top w/22 ft. cable 1/4 Wave, roof top (136-144 MHz)1/4 Wave, roof top (144-152 MHz)1/4 Wave, roof top (150.8-162 MHz)1/4 Wave, roof top (162-174 MHz)3dB, roof top (136-174 MHz)1/4 Wave, roof top (403-430 MHz)1/4 Wave, roof top (450-470 MHz)1/4 Wave, roof top (470-512 MHz)3.5dB, roof top (406-420 MHz)3.5dB, roof top (450-470 MHz)3.5dB, roof top (470-495 MHz)3.5dB, roof top (494-512 MHz)1/4 Wave Base Loaded Antenna 1/4 Wave Base Loaded Antenna 1/4 Wave Base Loaded Antenna HMN3000BHLN9330BHPN4002B HAE4013A。

MAX1680ESA+T中文资料

MAX1680ESA+T中文资料

PART MAX1680C/D MAX1680ESA MAX1681C/D MAX1681ESA
TEMP. RANGE 0°C to +70°C -40°C to +85°C 0°C to +70°C -40°C to +85°C
*Contact factory for dice specifications.
Note 1: Shorting OUT to IN may damage the device and should be avoided.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2.0
MAX1681
3.0
MAX1680
2.5
MAX1681
4.0
5.5 5.5
V 5.5
V 5.5
Supply Current
MAX1680 I+

AXIS M3088-V 8 MP мини胶囊摄像机说明书

AXIS M3088-V 8 MP мини胶囊摄像机说明书

AXIS M3088-V Dome CameraFixed8MP mini dome with deep learningThis cost-efficient mini dome features Wide Dynamic Range(WDR)to ensure clarity even when there’s both dark and light areas in the scene.A deep learning processing unit enables intelligent analytics based on deep learning on the edge.Plus,AXIS Object Analytics including time in area feature lets you track whenever an object stays in a defined area longer than a user-defined time,for example,to detect loitering.This compact,easy-to-install,vandal-resistant camera comes factory focused so there’s no manual focusing required.Furthermore,Axis Edge Vault protects your Axis device ID and simplifies authorization of Axis devices on your network.>Great image quality in8MP>Compact,discreet design>WDR for challenging light>Support for analytics with deep learning>Built-in cybersecurity featuresDatasheetAXIS M3088-V Dome Camera CameraImage sensor1/2.8”progressive scan RGB CMOSLens 2.9mm,F2.0Horizontal field of view:109°Vertical field of view:56°Fixed iris,IR correctedDay and night Automatically removable infrared-cut filterMinimum illumination Color:0.25lux at50IRE F2.0 B/W:0.05lux at50IRE F2.0Shutter speed1/71500s to1/5sCamera angle adjustment Pan:±175°Tilt:±80°Rotation:±175°Can be directed in any direction and see the wall/ceilingSystem on chip(SoC)Model CV25Memory2048MB RAM,512MB Flash ComputecapabilitiesDeep learning processing unit(DLPU) VideoVideo compression H.264(MPEG-4Part10/AVC)Main and High Profiles H.265(MPEG-H Part2/HEVC)Main Profile Motion JPEGResolution3840x2160(8MP)to320x240Frame rate12/15fps with power line frequency50/60Hz in H.264andH.265aVideo streaming Multiple,individually configurable streams in H.264,H.265and Motion JPEGAxis Zipstream technology in H.264and H.265Controllable frame rate and bandwidthVBR/MBR H.264/H.265Average bitrateMulti-viewstreamingUp to2individually cropped out view areas in full frame rateImage settings Compression,color,brightness,sharpness,contrast,whitebalance,exposure control,motion-adaptive exposure,WDR:upto120dB depending on scene,dynamic overlays,mirroring ofimages,privacy maskRotation:0°,90°,180°,270°,including Corridor FormatPan/Tilt/Zoom Digital PTZAudioAudio input/output Audio features through portcast technology:two-way audio connectivity,voice enhancerNetworkNetwork protocols IPv4,IPv6USGv6,ICMPv4/ICMPv6,HTTP,HTTPS,HTTP/2,TLS,QoS Layer3DiffServ,FTP,SFTP,CIFS/SMB,SMTP,mDNS(Bonjour), UPnP®,SNMP v1/v2c/v3(MIB-II),DNS/DNSv6,DDNS,NTP, NTS,RTSP,RTCP,RTP,SRTP/RTSPS,TCP,UDP,IGMPv1/v2/v3, DHCPv4/v6,SSH,LLDP,CDP,MQTT v3.1.1,Secure syslog(RFC 3164/5424,UDP/TCP/TLS),Link-Local address(ZeroConf)System integrationApplication Programming Interface Open API for software integration,including VAPIX®and AXIS Camera Application Platform;specifications at One-click cloud connectionONVIF®Profile G,ONVIF®Profile M,ONVIF®Profile S,and ONVIF®Profile T,specification at Event conditions Device status:above operating temperature,above or belowoperating temperature,below operating temperature,IP addressremoved,live stream active,network lost,new IP address,systemready,within operating temperatureEdge storage:recording ongoing,storage disruption,storagehealth issues detectedI/O:manual trigger,virtual input,digital input via accessoriesusing portcast technologyMQTT:subscribeScheduled and recurring:scheduleVideo:average bitrate degradation,tampering Event actions Notification:HTTP,HTTPS,TCP and emailRecord video:SD card and network shareMQTT:publishPre-and post-alarm video or image buffering for recording oruploadRecord video:SD card and network shareSNMP traps:send,send while the rule is activeUpload of images or video clips:FTP,SFTP,HTTP,HTTPS,networkshare and emailExternal output activation via accessories using portcasttechnologyBuilt-ininstallation aidsPixel counterAnalyticsAXIS ObjectAnalyticsObject classes:humans,vehicles(types:cars,buses,trucks,bikes)Features:line crossing,object in area,crossline counting BETA,occupancy in area BETA,time in area BETAUp to10scenariosMetadata visualized with color-coded bounding boxesPolygon include/exclude areasPerspective configurationONVIF Motion Alarm eventMetadata Object data:Classes:humans,faces,vehicles(types:cars,buses, trucks,bikes),license platesAttributes:Vehicle color,upper/lower clothing color,confidence,positionEvent data:Producer reference,scenarios,trigger conditions Applications IncludedAXIS Object Analytics,AXIS Video Motion DetectionSupport for AXIS Camera Application Platform enablinginstallation of third-party applications,see /acap CybersecurityEdge security Software:Signed firmware,brute force delay protection,digest authentication,password protection,AES-XTS-Plain64256bitSD card encryptionHardware:Axis Edge Vault cybersecurity platformSecure element(CC EAL6+),system-on-chip security(TEE),Axisdevice ID,secure keystore,signed video,secure boot,encryptedfilesystem(AES-XTS-Plain64256bit)Network security IEEE802.1X(EAP-TLS),IEEE802.1AR,HTTPS/HSTS,TLS v1.2/v1.3, Network Time Security(NTS),X.509Certificate PKI,IP addressfilteringDocumentation AXIS OS Hardening GuideAxis Vulnerability Management PolicyAxis Security Development ModelAXIS OS Software Bill of Material(SBOM)To download documents,go to /support/cybersecu-rity/resourcesTo read more about Axis cybersecurity support,go to/cybersecurityGeneralCasing IP42water-and dust-resistant(to comply with IP42,followInstallation Guide),IK08impact-resistant,polycarbonate/ABScasingEncapsulated electronicsColor:white NCS S1002-BFor repainting instructions,contact your Axis partner. Sustainability57%recycled plastics,PVC free,BFR/CFR freePower Power over Ethernet(PoE)IEEE802.3af/802.3at Type1Class2Typical3.6W,max4.2WConnectors RJ4510BASE-T/100BASE-TX PoEAudio:Audio and I/O connectivity via portcast technology Storage Support for microSD/microSDHC/microSDXC cardSupport for SD card encryption(AES-XTS-Plain64256bit)Recording to network-attached storage(NAS)For SD card and NAS recommendations see Operatingconditions0°C to40°C(32°F to104°F)Humidity10–85%RH(non-condensing)Storageconditions-40°C to65°C(-40°F to149°F)Humidity5–95%RH(non-condensing)Approvals EMCICES-3(A)/NMB-3(A),EN55032Class A,EN55035,EN61000-6-1,EN61000-6-2,FCC Part15Subpart B Class A,ICES-003Class A,VCCI Class A,KS C9835,KS C9832Class A,RCM AS/NZS CISPR32Class A,SafetyIEC/EN/UL62368-1,IS13252EnvironmentIEC60068-2-1,IEC60068-2-2,IEC60068-2-6,IEC60068-2-14,IEC60068-2-27,IEC/EN60529IP42,IEC/EN62262Class IK08NetworkNIST SP500-267Dimensions Height:56mm(2.2in)ø101mm(4.0in)Weight150g(0.33lb)Included accessories Installation guide,Windows®decoder1-user licenseOptionalaccessoriesAXIS TM3812Tamper CoverBlack casingSmoked domeAXIS Surveillance microSDXC™CardFor more accessories see VideomanagementsoftwareAXIS Companion,AXIS Camera Station and video managementsoftware from Axis Application Development Partners.For moreinformation,see /vmsLanguages English,German,French,Spanish,Italian,Russian,Japanese,Korean,Portuguese,Simplified Chinese,Traditional Chinese,Dutch,Czech,Swedish,Finnish,Turkish,Thai,VietnameseWarranty5-year warranty,see /warrantya.Reduced frame rate in Motion JPEG©2022-2023Axis Communications AB.AXIS COMMUNICATIONS,AXIS,ARTPEC and VAPIX are registered trademarks ofAxis AB in various jurisdictions.All other trademarks are the property of their respective owners.We reserve the right tointroduce modifications without notice.T10180116/EN/M10.2/2309。

MAX1978中文数据手册

MAX1978中文数据手册

用于Peltier模块的集成温度控制器概论MAX1978 / MAX1979是用于Peltier热电冷却器(TEC)模块的最小, 最安全, 最精确完整的单芯片温度控制器。

片上功率FET和热控制环路电路可最大限度地减少外部元件, 同时保持高效率。

可选择的500kHz / 1MHz开关频率和独特的纹波消除方案可优化元件尺寸和效率, 同时降低噪声。

内部MOSFET的开关速度经过优化, 可降低噪声和EMI。

超低漂移斩波放大器可保持±0.001°C的温度稳定性。

直接控制输出电流而不是电压, 以消除电流浪涌。

独立的加热和冷却电流和电压限制提供最高水平的TEC保护。

MAX1978采用单电源供电, 通过在两个同步降压调节器的输出之间偏置TEC, 提供双极性±3A输出。

真正的双极性操作控制温度, 在低负载电流下没有“死区”或其他非线性。

当设定点非常接近自然操作点时, 控制系统不会捕获, 其中仅需要少量的加热或冷却。

模拟控制信号精确设置TEC 电流。

MAX1979提供高达6A的单极性输出。

提供斩波稳定的仪表放大器和高精度积分放大器, 以创建比例积分(PI)或比例积分微分(PID)控制器。

仪表放大器可以连接外部NTC或PTC热敏电阻, 热电偶或半导体温度传感器。

提供模拟输出以监控TEC温度和电流。

此外, 单独的过热和欠温输出表明当TEC温度超出范围时。

片上电压基准为热敏电阻桥提供偏置。

MAX1978 / MAX1979采用薄型48引脚薄型QFN-EP 封装, 工作在-40°C至+ 85°C温度范围。

采用外露金属焊盘的耐热增强型QFN-EP封装可最大限度地降低工作结温。

评估套件可用于加速设计。

应用光纤激光模块典型工作电路出现在数据手册的最后。

WDM, DWDM激光二极管温度控制光纤网络设备EDFA光放大器电信光纤接口ATE特征♦尺寸最小, 最安全, 最精确完整的单芯片控制器♦片上功率MOSFET-无外部FET♦电路占用面积<0.93in2♦回路高度<3mm♦温度稳定性为0.001°C♦集成精密积分器和斩波稳定运算放大器♦精确, 独立的加热和冷却电流限制♦通过直接控制TEC电流消除浪涌♦可调节差分TEC电压限制♦低纹波和低噪声设计♦TEC电流监视器♦温度监控器♦过温和欠温警报♦双极性±3A输出电流(MAX1978)♦单极性+ 6A输出电流(MAX1979)订购信息* EP =裸焊盘。

MAX4080TASA+中文资料

MAX4080TASA+中文资料
5V/V (MAX4080F/MAX4081F) 20V/V (MAX4080T/MAX4081T) 60V/V (MAX4080S/MAX4081S) ♦ ±0.1% Full-Scale Accuracy ♦ Low 100µV Input Offset Voltage ♦ Independent Operating Supply Voltage ♦ 75µA Supply Current (MAX4080) ♦ Reference Input for Bidirectional OUT (MAX4081) ♦ Available in a Space-Saving 8-Pin µMAX Package
元器件交易网
MAX4080/MAX4081
19-2562; Rev 0; 10/02
EVAALVUAAILTAIOBNLEKIT
76V, High-Side, Current-Sense Amplifiers with Voltage Output
General Description
General System/Board-Level Current Sensing
Precision High-Voltage Current Sources
Features
♦ Wide 4.5V to 76V Input Common-Mode Range ♦ Bidirectional or Unidirectional ISENSE ♦ Low-Cost, Compact, Current-Sense Solution ♦ Three Gain Versions Available
(MAX4081 Only)....-0.3V to the lesser of +18V or (VCC + 0.3V) Output Short Circuit to GND.......................................Continuous Differential Input Voltage (VRS+ - VRS-) ...............................±80V Current into Any Pin..........................................................±20mA

MAX3088ESA+中文资料

MAX3088ESA+中文资料
The MAX3080–MAX3089 high-speed transceivers for RS-485/RS-422 communication contain one driver and one receiver. These devices feature fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. This means that the receiver output will be a logic high if all transmitters on a terminated bus are disabled (high impedance). The MAX3080/MAX3081/MAX3082 feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 115kbps. The MAX3083/MAX3084/MAX3085 offer higher driver output slew-rate limits, allowing transmit speeds up to 500kbps. The MAX3086/MAX3087/MAX3088’s driver slew rates are not limited, making transmit speeds up to 10Mbps possible. The MAX3089’s slew rate is selectable between 115kbps, 500kbps, and 10Mbps by driving a selector pin with a single three-state driver.

max485esa中文资料

max485esa中文资料

General DescriptionThe MAX481, MAX483, MAX485, MAX487–MAX491, andMAX1487 are low-power transceivers for RS-485 and RS-422 communication. Each part contains one driver and onereceiver. The MAX483, MAX487, MAX488, and MAX489feature reduced slew-rate drivers that minimize E MI andreduce reflections caused by improperly terminated cables,thus allowing error-free data transmission up to 250kbps.The driver slew rates of the MAX481, MAX485, MAX490,MAX491, and MAX1487 are not limited, allowing them totransmit up to 2.5Mbps.These transceivers draw between 120µA and 500µA ofsupply current when unloaded or fully loaded with disableddrivers. Additionally, the MAX481, MAX483, and MAX487have a low-current shutdown mode in which they consumeonly 0.1µA. All parts operate from a single 5V supply.Drivers are short-circuit current limited and are protectedagainst excessive power dissipation by thermal shutdowncircuitry that places the driver outputs into a high-imped-ance state. The receiver input has a fail-safe feature thatguarantees a logic-high output if the input is open circuit.The MAX487 and MAX1487 feature quarter-unit-loadreceiver input impedance, allowing up to 128 MAX487/MAX1487 transceivers on the bus. Full-duplex communi-cations are obtained using the MAX488–MAX491, whilethe MAX481, MAX483, MAX485, MAX487, and MAX1487are designed for half-duplex applications.________________________Applications Low-Power RS-485 Transceivers Low-Power RS-422 Transceivers Level Translators Transceivers for EMI-Sensitive Applications Industrial-Control Local Area Networks__Next Generation Device Features o For Fault-Tolerant Applications MAX3430: ±80V Fault-Protected, Fail-Safe, 1/4Unit Load, +3.3V, RS-485 Transceiver MAX3440E–MAX3444E: ±15kV ESD-Protected,±60V Fault-Protected, 10Mbps, Fail-Safe, RS-485/J1708 Transceivers o For Space-Constrained Applications MAX3460–MAX3464: +5V, Fail-Safe, 20Mbps,Profibus RS-485/RS-422 Transceivers MAX3362: +3.3V, High-Speed, RS-485/RS-422Transceiver in a SOT23 Package MAX3280E–MAX3284E: ±15kV ESD-Protected,52Mbps, +3V to +5.5V, SOT23, RS-485/RS-422,True Fail-Safe Receivers MAX3293/MAX3294/MAX3295: 20Mbps, +3.3V,SOT23, RS-485/RS-422 Transmitters o For Multiple Transceiver Applications MAX3030E–MAX3033E: ±15kV ESD-Protected,+3.3V, Quad RS-422 Transmitters o For Fail-Safe Applications MAX3080–MAX3089: Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422Transceiverso For Low-Voltage ApplicationsMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E: +3.3V Powered, ±15kVESD-Protected, 12Mbps, Slew-Rate-Limited,True RS-485/RS-422 Transceivers For pricing, delivery, and ordering information, please contact Maxim Direct at1-888-629-4642, or visit Maxim Integrated’s website at .______________________________________________________________Selection Table19-0122; Rev 10; 9/14PARTNUMBERHALF/FULL DUPLEX DATA RATE (Mbps) SLEW-RATE LIMITED LOW-POWER SHUTDOWN RECEIVER/DRIVER ENABLE QUIESCENT CURRENT (μA) NUMBER OF RECEIVERS ON BUS PIN COUNT MAX481Half 2.5No Yes Yes 300328MAX483Half 0.25Yes Yes Yes 120328MAX485Half 2.5No No Yes 300328MAX487Half 0.25Yes Yes Yes 1201288MAX488Full 0.25Yes No No 120328MAX489Full 0.25Yes No Yes 1203214MAX490Full 2.5No No No 300328MAX491Full 2.5No No Yes 3003214MAX1487 Half 2.5No No Yes 2301288Ordering Information appears at end of data sheet.找电子元器件上宇航军工MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-LimitedRS-485/RS-422 TransceiversPackage Information For the latest package outline information and land patterns, go to . Note that a “+”, “#”, or “-”in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.16Low-Power, Slew-Rate-Limited RS-485/RS-422 TransceiversMAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-100017©2014 Maxim Integrated Products, Inc.Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.。

MAX819LESA中文资料

MAX819LESA中文资料

Ordering Information continued on last page. †These parts offer a choice of reset threshold voltage. From the table below, select the suffix corresponding to the desired threshold and insert it into the blank to complete the part number.
MAX817L/M, MAX818L/M, MAX819L/M*
_____________________Selector Guide
FEATURE Active-Low Reset Backup-Battery Switchover Power-Fail Comparator Watchdog Input Battery Freshness Seal Manual Reset Input Chip-Enable Gating Pin-Package — — — — — — MAX817 L/M MAX818 L/M MAX819 L/M
元器件交易网
+5V Microprocessor Supervisory Circuits MAX817L/M, MAX818L/M, MAX819L/M*
ABSOLUTE MAXIMUM RATINGS
Input Voltage VCC, BATT ..........................................................-0.3V to +6.0V All Other Pins (Note 1).............................-0.3V to (VCC + 0.3V) Input Current VCC Peak ..............................................................................1A VCC Continuous .............................................................250mA BATT Peak .....................................................................250mA BATT Continuous .............................................................50mA GND .................................................................................25mA Output Current OUT................................................................................250mA All Other Outputs .............................................................25mA OUT Short-Circuit Duration.................................................10sec Continuous Power Dissipation (TA = +70°C) Plastic DIP (derate 9.09mW/°C above +70°C) .............727mW SO (derate 5.88mW/°C above +70°C) ..........................471mW µMAX (derate 4.10mW/°C above +70°C) .....................330mW Operating Temperature Ranges MAX81_ _C_A ......................................................0°C to +70°C MAX81_ _E_A ...................................................-40°C to +85°C Storage Temperature Range .............................-65°C to +160°C Lead Temperature (soldering, 10sec) .............................+300°C

MAX803SEXR中文资料

MAX803SEXR中文资料

MAX803SEXRRev. ARELIABILITY REPORTFORMAX803SEXRPLASTIC ENCAPSULATED DEVICESAugust 3, 2006MAXIM INTEGRATED PRODUCTS120 SAN GABRIEL DR.SUNNYVALE, CA 94086byWrittenPedicordJimQualityAssuranceManager, Reliability LabConclusionThe MAX803 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim’s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim’s quality and reliability standards.Table of ContentsI. ........Device Description V. ........Quality Assurance InformationII. ........Manufacturing Information VI. .......Reliability EvaluationIII. .......Packaging Information IV. .......Die Information.....AttachmentsI. Device DescriptionA. GeneralThe MAX803 is a microprocessor (µP) supervisory circuit used to monitor the power supplies in µP and digital systems. It provides excellent circuit reliability and low cost by eliminating externalcomponents and adjustments when used with +5V, +3.3V, +3.0V, or +2.5V powered circuits.This circuit performs a single function: it asserts a reset signal whenever the V CC supply voltage declines below a preset threshold, keeping it asserted for at least 140ms after V CC has risen above the reset threshold. Reset thresholds suitable for operation with a variety of supply voltages are available.The MAX803 has an open-drain output stage. The MAX803's open-drain RESET-bar output requiresa pull-up resistor that can be connected to a voltage higher than V CC. The MAX803 has an active-low RESET-bar output. The reset comparator is designed to ignore fast transients on V CC, and the outputs are guaranteed to be in the correct logic state for V CC down to 1V.Low supply current makes the MAX803 ideal for use in portable equipment. The MAX803 isavailable in a 3-pin SC70 package.B. Absolute Maximum RatingsItem RatingTerminal Voltage (with respect to GND)VCC -0.3V to +6.0VRESET, RESET (push-pull) -0.3V to (VCC + 0.3V)to-0.3V+6.0VRESETdrain)(open20mAVCCInputCurrent,Output Current, RESET, RESET 20mAVCC 100V/µsRateRise,ofContinuous Power Dissipation (TA = +70°C)3-Pin SC70 (derate 2.17mW/°C above +70°C) 174mW3-Pin SOT23 (derate 4mW/°C above +70°C) 320mWOperating Temperature Range+125°Cto-40°C3-PinSC70+105°Cto3-Pin-40°CSOT23Storage Temperature Range -65°C to +150°CLead Temperature (soldering, 10s) +300°CII. Manufacturing InformationA. Description/Function: 3-Pin Microprocessor Reset CircuitsB. Process: B8 (Standard 0.8 micron silicon gate CMOS)C. Number of Device Transistors: 380D. Fabrication Location: California, USAE. Assembly Location: MalaysiaF. Date of Initial Production: January, 2000III. Packaging InformationSC70-3A. Package Type: 3-PinB. Lead Frame: Alloy 42C. Lead Finish: Solder Plate or 100% Matte TinD. Die Attach: Nonconductive EpoxyE. Bondwire: Gold (1 mil dia.)F. Mold Material: Epoxy with silica fillerG. Assembly Diagram: # 05-1601-0082H. Flammability Rating: Class UL94-V0I. Classification of Moisture Sensitivityper JEDEC standard J-STD-020-C: Level 1IV. Die InformationA. Dimensions: 30 x 30 milsPassivation: Si3N4/SiO2 (Silicon nitride/ Silicon dioxide)B.C. Interconnect: Aluminum/Si (Si = 1%)D. Backside Metallization: NoneE. Minimum Metal Width: 0.8 microns (as drawn)F. Minimum Metal Spacing: 0.8 microns (as drawn)G. Bondpad Dimensions: 5 mil. Sq.H. Isolation Dielectric: SiO2I. Die Separation Method: Wafer SawV. Quality Assurance InformationA. Quality Assurance Contacts: Jim Pedicord (Manager, Reliability Operations)Bryan Preeshl (Managing Director of QA)B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.0.1% For all Visual Defects.C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105DVI. Reliability EvaluationA. Accelerated Life TestThe results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:λ = 1 = 1.83 (Chi square value for MTTF upper limit)MTTFλ = 6.87 x 10-9λ = 6.87 F.I.T. (60% confidence level @ 25°C)This low failure rate represents data collected from Maxim’s reliability monitor program. In addition to routine production Burn-In, Maxim pulls a sample from every fabrication process three times per week and subjects it to an extended Burn-In prior to shipment to ensure its reliability. The reliability control level for each lot to be shipped as standard product is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Attached Burn-In Schematic (Spec. #06-5033) shows the static Burn-In circuit. Maxim performs failure analysis on any lot that exceeds this reliability control level. Maxim also performs quarterly 1000 hour life test monitors. This data is published in the Product Reliability Report (RR-1N). Current monitor data for the B8/S8 Process results in a FIT rate of 0.17 @ 25°C and 2.92 @ 55°C (eV = 0.8, UCL = 60%).B. Moisture Resistance TestsMaxim pulls pressure pot samples from every assembly process three times per week. Each lot sample must meet an LTPD = 20 or less before shipment as standard product. Additionally, the industry standard 85°C/85%RH testing is done per generic device/package family once a quarter.C. E.S.D. and Latch-Up TestingThe MS42 die type has been found to have all pins able to withstand a transient pulse of ±2500V, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of ±250mA.Table 1Reliability Evaluation Test ResultsMAX803S EXRTEST ITEM TEST CONDITION FAILURE SAMPLE NUMBER OFSIZEFAILURES IDENTIFICATION PACKAGEStatic Life Test (Note 1)160DCParametersTa = 135°CBiased & functionalityTime = 192 hrs.Moisture Testing (Note 2)77SC70ParametersPressure Pot Ta = 121°CDCP = 15 psi. & functionality100%RH=Time = 168hrs.77ParametersTa85°C DC85/85=85% &functionality=RHBiased1000hrs.=TimeMechanical Stress (Note 2)77 0ParametersTemperature -65°C/150°CDCfunctionalityCycles&1000Cycle1010MethodNote 1: Life Test Data may represent plastic DIP qualification lots.Note 2: Generic Package/Process dataAttachment #1TABLE II. Pin combination to be tested. 1/ 2/1/ Table II is restated in narrative form in 3.4 below. 2/ No connects are not to be tested. 3/ Repeat pin combination I for each named Power supply and for ground (e.g., where V PS1 is V DD , V CC , V SS , V BB , GND, +V S, -V S , V REF , etc). 3.4 Pin combinations to be tested. a.Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open. b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., V SS1, or V SS2 or V SS3 or V CC1, or V CC2) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.c.Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.Terminal A (Each pin individually connected to terminal A with the other floating) Terminal B (The common combination of all like-named pins connected to terminal B) 1. All pins except V PS1 3/ All V PS1 pins 2. All input and output pinsAll other input-output pinsMil Std 883DMethod 3015.7Notice 8 TERMINAL BTERMINAL APROBE (NOTE 6) R = 1.5k ΩC = 100pf。

MEMORY存储芯片MAX813LESA+中文规格书

MEMORY存储芯片MAX813LESA+中文规格书

Manual Reset Input Many μP-based products require manual reset capabil -ity, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic low on MR asserts reset. Reset remains asserted while MR is low, and for the Reset Active Timeout Period (t RP ) after MR returns high. This input has an internal 20kΩ pull-up resistor, so it can be left open if it is not used. MR can be driven with TTL or CMOS-logic levels, or with open-drain/collector outputs. Connect a normally open momentary switch from MR to GND to create a manual-reset function; external debounce circuitry is not required. If MR is driven from long cables or if the device is used in a noisy environment, connecting a 0.1μF capacitor from MR to ground provides additional noise immunity.Reset Threshold Accuracy The MAX811/MAX812 are ideal for systems using a 5V ±5% or 3V ±5% power supply with ICs specified for 5V ±10% or 3V ±10%, respectively. They are designed to meet worst-case specifications over temperature. The reset is guaranteed to assert after the power supplyfalls out of regulation, but before power drops below theminimum specified operating voltage range for the systemICs. The thresholds are pre-trimmed and exhibit tight dis -tribution, reducing the range over which an undesirable reset may occur.PINNAME FUNCTION MAX811MAX81211GND Ground 2—RESET Active-Low Reset Output. RESET remains low while V CC is below the reset threshold or while MR is held low. RESET remains low for the Reset Active Timeout Period (t RP ) after the reset conditions are terminated.—2RESET Active-High Reset Output. RESET remains high while V CC is below the reset threshold or while MR is held low. RESET remains high for Reset Active Timeout Period (t RP ) after the reset conditions are terminated.33MR Manual Reset Input. A logic low on MR asserts reset. Reset remains asserted as long as MR is low and for 180ms after MR returns high. This active-low input has an internal 20kΩ pull-up resistor. It can be driven from a TTL or CMOS-logic line, or shorted to ground with a switch. Leave open if unused.44V CC +5V, +3.3V, or +3V Supply Voltage Detailed DescriptionReset OutputA microprocessor’s (μP’s) reset input starts the μP in aknown state. These μP supervisory circuits assert resetto prevent code execution errors during power-up, power-down, or brownout conditions.RESET is guaranteed to be a logic low for V CC > 1V.Once V CC exceeds the reset threshold, an internal timerkeeps RESET low for the reset timeout period; after thisinterval, RESET goes high.If a brownout condition occurs (V CC dips below the resetthreshold), RESET goes low. Any time V CC goes belowthe reset threshold, the internal timer resets to zero, andRESET goes low. The internal timer starts after V CC returns above the reset threshold, and RESET remainslow for the reset timeout period.The manual reset input (MR ) can also initiate a reset. See the Manual Reset Input section.The MAX812 has an active-high RESET output that is theinverse of the MAX811’s RESET output.MAX811/MAX8124-Pin μP Voltage Monitorswith Manual Reset InputPin DescriptionPACKAGE TYPEPACKAGE CODE OUTLINE ND PATTERN NO.4 SOT143U4+121-005290-0183MAX811/MAX8124-Pin μP Voltage Monitorswith Manual Reset InputPackage InformationFor the latest package outline information and land patterns (footprints), go to . Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffixcharacter, but the drawing pertains to the package regardless of RoHS status.。

Roland MC-808 新一代 Groovebox 说明书

Roland MC-808 新一代 Groovebox 说明书
MC-808 Sampling Groovebox
New-Generation Groovebox with Motorized Faders
From the company that made “groovebox” a household name comes a remarkable addition to the famous Roland groovebox family: the MC-808. Optimized for realtime performance,The sleek, silver powerstation features eight motorized faders on its surface — a groovebox first! With Roland’s most sophisticated processor at its core, the MC-808 has top-of-the-line sampling, sequencing, and synthesizer functions, yet it comes in at a new, low price point. For beat-makers, producers, remixers, live performers, and DJs, no sampling groovebox offers more bang for the buck than the MC-808.
------------------------------------------------------------------------------------------------------------------------------------

MAX810TD中文资料

MAX810TD中文资料

COVER TAPECARRIER TAPEREELAS-SEMBLY TAPE GUARBAND CODELABELBOXFigure 8. Tape and reel packing method.MAX809/MAX810 3-pin microprocessor resetsSOT23-3: plastic small outline package; 3 leads; body width 1.5 mm1.351.21.00.250.500.250.220.083.002.701.701.500.550.352310.150.0510°0°MAX809/MAX810 3-pin microprocessor resetsSC70-3:plastic small outline package; 3 leads; body width 1.15 mm1.0 0.80.40.250.2250.102.11.90.40.1MAX809/MAX810 3-pin microprocessor resetsDefinitionsShort-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.DisclaimersLife support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described or contained herein in order to improve design and/or performance. When the product is in full production (status ‘Production’), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.Contact informationFor additional information please visit.Fax: +31 40 27 24825For sales offices addresses send e-mail to:© Koninklijke Philips Electronics N.V. 2003All rights reserved. Printed in U.S.A.Date of release: 08-03Document order number:9397 750 11889。

maxim MAX811 MAX812 datasheet说明书

maxim MAX811 MAX812 datasheet说明书

General DescriptionThe MAX811/MAX812 are low-power microprocessor (μP) supervisory circuits used to monitor power supplies in μP and digital systems. They provide excellent circuit reliability and low cost by eliminating external compo-nents and adjustments when used with 5Vpowered or 3V-powered circuits. The MAX811/MAX812 also provide a debounced manual reset input.These devices perform a single function: They assert a reset signal whenever the V CC supply voltage falls below a preset threshold, keeping it asserted for at least 140ms after V CC has risen above the reset threshold. The only difference between the two devices is that the MAX811 has an active-low RESET output (which is guaranteed to be in the correct state for V CC down to 1V), while the MAX812 has an active-high RESET output. The reset comparator is designed to ignore fast transients on V CC. Reset thresholds are available for operation with a variety of supply voltages.Low supply current makes the MAX811/MAX812 ideal for use in portable equipment. The devices come in a 4-pin SOT143 package.Applications●Computers●Controllers●Intelligent Instruments●Critical μP and μC Power Monitoring●Portable/Battery-Powered Equipment Benefits and Features●Integrated Voltage Monitor Increases SystemRobustness with Added Manual Reset• Precision Monitoring of 3V, 3.3V, and 5VPower-Supply Voltages• 140ms Min Power-On-Reset Pulse Width• RESET Output (MAX811), RESET Output(MAX812)• Guaranteed Over Temperature• Guaranteed RESET Valid to V CC = 1V (MAX811)• Power-Supply Transient Immunity●Saves Board Space• No External Components• 4-Pin SOT143 Package●Low Power Consumption Simplifies Power-SupplyRequirements• 6μA Supply Current*This part offers a choice of five different reset threshold voltages. Select the letter corresponding to the desired nominal reset threshold voltage, and insert it into the blank to complete the part number.Devices are available in both leaded and lead(Pb)-free packaging. Specify lead-free by replacing “-T” with “+T” when ordering.RESET THRESHOLDSUFFIX VOLTAGE (V)L 4.63M 4.38T 3.08S 2.93R2.63PART*TEMP RANGE PIN-PACKAGEMAX811_EUS-T-40°C to +85°C 4 SOT143MAX812_EUS-T-40°C to +85°C 4 SOT1431243V CCMR(RESET) RESETGNDMAX811MAX812SOT143TOP VIEW( ) ARE FOR MAX812NOTE: SEE PACKAGE INFORMATION FOR MARKING INFORMATION. MAX811/MAX8124-Pin μP Voltage Monitorswith Manual Reset InputPin ConfigurationOrdering InformationClick here for production status of specific part numbers.19-0411; Rev 6; 5/18Terminal Voltage (with respect to GND)V CC.....................................................................-0.3V to 6.0V All Other Inputs .....................................-0.3V to (V CC + 0.3V) Input Current, V CC, MR......................................................20mA Output Current, RESET or RESET ....................................20mA Continuous Power Dissipation (T A = +70°C)SOT143 (derate 4mW/°C above +70°C) .....................320mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range ............................-65°C to +160°C Lead Temperature (soldering, 10sec) .............................+300°C(V CC = 5V for L/M versions, V CC = 3.3V for T/S versions, V CC = 3V for R version, T A = -40°C to +85°C, unless otherwise noted. Typical values are at T A = +25°C.) (Note 1)PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITSOperating Voltage Range V CC T A = 0°C to +70°C 1.0 5.5V T A = -40°C to +85°C 1.2Supply Current I CC MAX81_L/M, V CC = 5.5V, I OUT = 0615µA MAX81_R/S/T, V CC = 3.6V, I OUT = 0 2.710Reset Threshold V TH MAX81_LT A = +25°C 4.54 4.63 4.72V T A = -40°C to +85°C 4.50 4.75MAX81_MT A = +25°C 4.30 4.38 4.46T A = -40°C to +85°C 4.25 4.50MAX81_TT A = +25°C 3.03 3.08 3.14T A = -40°C to +85°C 3.00 3.15MAX81_ST A = +25°C 2.88 2.93 2.98T A = -40°C to +85°C 2.85 3.00MAX81_RT A = +25°C 2.58 2.63 2.68T A = -40°C to +85°C 2.55 2.70Reset Threshold Tempco30ppm/°CV CC to Reset Delay (Note 2)V OD = 125mV, MAX81_L/M40µs V OD = 125mV, MAX81_R/S/T20Reset Active Timeout Period t RP V CC = V TH(MAX)140560ms MR Minimum Pulse Width t MR10µs MR Glitch Immunity (Note 3)100ns MR to Reset PropagationDelay (Note 2)t MD0.5µsMR Input Threshold V IHV CC > V TH(MAX), MAX81_L/M2.3V V IL0.8V IHV CC > V TH(MAX), MAX81_R/S/T0.7 x V CCV IL0.25 x V CCMR Pull-Up Resistance102030kΩRESET Output Voltage (MAX812)V OH I SOURCE = 150µA, 1.8V < V CC < V TH(MIN)0.8 x V CCVV OLMAX812R/S/T only, I SINK = 1.2mA,V CC = V TH(MAX)0.3MAX812L/M only, I SINK = 3.2mA,V CC = V TH(MAX)0.4with Manual Reset InputAbsolute Maximum RatingsStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Electrical Characteristics(V CC = 5V for L/M versions, V CC = 3.3V for T/S versions, V CC = 3V for R version, T A = -40°C to +85°C, unless otherwise noted.Typical values are at T A = +25°C.) (Note 1)Note 1: Production testing done at T A = +25°C, over temperature limits guaranteed by design using six sigma design limits.Note 2: RESET output for MAX811, RESET output for MAX812.Note 3: “Glitches” of 100ns or less typically will not generate a reset pulse.PARAMETERSYMBOLCONDITIONSMINTYPMAX UNITSRESET Output Voltage (MAX811)V OLMAX811R/S/T only, I SINK = 1.2mA, V CC = V TH(MIN)0.3V MAX811L/M only, I SINK = 3.2mA, V CC = V TH(MIN)0.4I SINK = 50µA, V CC > 1.0V0.3V OHMAX811R/S/T only, I SOURCE = 500µA, V CC > V TH(MAX)0.8 x V CC MAX811L/M only, I SOURCE = 800µA, V CC > V TH(MAX)V CC - 1.5with Manual Reset InputElectrical Characteristics (continued)(T A = +25°C, unless otherwise noted.)SUPPLY CURRENT vs. TEMPERATURE(MAX81_L/M)8TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )426-408510-156035190POWER-UP RESET TIMEOUTvs. TEMPERATURE230TEMPERATURE (°C)P O W E R -U P R E S E T T I M E O U T (m s )210200220-408535-1510600POWER-DOWN RESET DELAY vs. TEMPERATURE(MAX81_R/S/T)80100TEMPERATURE (°C)P O W E R -D O W N R E S E T D E L A Y (µs )402060-408510-156035RESET THRESHOLD DEVIATIONvs. TEMPERATURE0.99951.00001.0005M A X 811/12-T O C 6TEMPERATURE (°C)N O R M A L I Z E D T H R E S H O L D (V )0.99850.99800.9990-408535-1510600-4085SUPPLY CURRENT vs. TEMPERATURE(MAX81_R/S/T)2.02.53.0M A X 811/12-T O C 1TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )101.00.5-15601.535POWER-DOWN RESET DELAY vs. TEMPERATURE(MAX81_L/M)200TEMPERATURE (°C)P O W E R -D O W N R E S E T D E L A Y (µs )10050150-408510-156035with Manual Reset InputTypical Operating CharacteristicsDetailed DescriptionReset OutputA microprocessor’s (μP’s) reset input starts the μP in a known state. These μP supervisory circuits assert reset to prevent code execution errors during power-up, power-down, or brownout conditions.RESET is guaranteed to be a logic low for V CC> 1V. Once V CC exceeds the reset threshold, an internal timer keeps RESET low for the reset timeout period; after this interval, RESET goes high.If a brownout condition occurs (V CC dips below the reset threshold), RESET goes low. Any time V CC goes below the reset threshold, the internal timer resets to zero, and RESET goes low. The internal timer starts after V CC returns above the reset threshold, and RESET remains low for the reset timeout period.The manual reset input (MR) can also initiate a reset. See the Manual Reset Input section.The MAX812 has an active-high RESET output that is the inverse of the MAX811’s RESET output.Manual Reset InputMany μP-based products require manual reset capabil-ity, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic low on MR asserts reset. Reset remains asserted while MR is low, and for the Reset Active Timeout Period (t RP) after MR returns high. This input has an internal 20kΩ pull-up resistor, so it can be left open if it is not used. MR can be driven with TTL or CMOS-logic levels, or with open-drain/collector outputs. Connect a normally open momentary switch from MR to GND to create a manual-reset function; external debounce circuitry is not required. If MR is driven from long cables or if the device is used in a noisy environment, connecting a 0.1μF capacitor from MR to ground provides additional noise immunity.Reset Threshold AccuracyThe MAX811/MAX812 are ideal for systems using a 5V ±5% or 3V ±5% power supply with ICs specified for 5V ±10% or 3V ±10%, respectively. They are designed to meet worst-case specifications over temperature. The reset is guaranteed to assert after the power supply falls out of regulation, but before power drops below the minimum specified operating voltage range for the system ICs. The thresholds are pre-trimmed and exhibit tight dis-tribution, reducing the range over which an undesirable reset may occur.PINNAME FUNCTION MAX811MAX81211GND Ground2—RESET Active-Low Reset Output. RESET remains low while V CC is below the reset threshold or while MR is held low. RESET remains low for the Reset Active Timeout Period (t RP) after the reset conditions are terminated.—2RESET Active-High Reset Output. RESET remains high while V CC is below the reset threshold or while MR is held low. RESET remains high for Reset Active Timeout Period (t RP) after the reset conditions are terminated.33MR Manual Reset Input. A logic low on MR asserts reset. Reset remains asserted as long as MR is low and for 180ms after MR returns high. This active-low input has an internal 20kΩpull-up resistor. It can be driven from a TTL or CMOS-logic line, or shorted to ground with a switch. Leave open if unused.44V CC+5V, +3.3V, or +3V Supply Voltage with Manual Reset InputPin DescriptionApplications InformationNegative-Going V CC TransientsIn addition to issuing a reset to the μP during power-up, power-down, and brownout conditions, the MAX811/ MAX812 are relatively immune to short duration negative-going V CC transients (glitches).Figure 1 shows typical transient durations vs. reset com-parator overdrive, for which the MAX811/MAX812 do not generate a reset pulse. This graph was generated using a negative-going pulse applied to V CC, starting above the actual reset threshold and ending below it by the magnitude indicated (reset comparator overdrive). The graph indicates the typical maximum pulse width a negative-going V CC transient may have without causing a reset pulse to be issued. As the magnitude of the tran-sient increases (goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a V CC transient that goes 125mV below the reset thresh-old and lasts 40μs or less (MAX81_L/M) or 20μs or less (MAX81_T/S/R) will not cause a reset pulse to be issued.A 0.1μF capacitor mounted as close as possible to V CC provides additional transient immunity.Ensuring a Valid RESET OutputDown to V CC = 0VWhen V CC falls below 1V, the MAX811 RESET output no longer sinks current—it becomes an open circuit. Therefore, high-impedance CMOS-logic inputs connected to the RESET output can drift to undetermined voltages. This presents no problem in most applications, since most μP and other circuitry is inoperative with V CC below 1V. However, in applications where the RESET output must be valid down to 0V, adding a pulldown resistor to the RESET pin will cause any stray leakage currents to flow to ground, holding RESET low (Figure 2). R1’s value is not critical; 100kΩ is large enough not to load RESET and small enough to pull RESET to ground.A 100kΩ pull-up resistor to V CC is also recommended for the MAX812 if RESET is required to remain valid for V CC < 1V.Figure 1. Maximum Transient Duration without Causing a Reset Pulse vs. Comparator Overdrive Figure 2. RESET Valid to V CC = Ground Circuitwith Manual Reset InputInterfacing to μPs with Bidirectional Reset PinsμPs with bidirectional reset pins (such as the Motorola 68HC11 series) can contend with the MAX811/MAX812 reset outputs. If, for example, the MAX811 RESET output is asserted high and the μP wants to pull it low, indeter -minate logic levels may result. To correct such cases, connect a 4.7kΩ resistor between the MAX811 RESET (or MAX812 RESET) output and the μP reset I/O (Figure 3). Buffer the reset output to other system components.Figure 3. Interfacing to μPs with Bidirectional Reset I/Owith Manual Reset InputChip InformationTRANSISTOR COUNT: 341with Manual Reset Input Package InformationFor the latest package outline information and land patterns (footprints), go to /packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.PACKAGE TYPE PACKAGE CODE OUTLINE ND PATTERN NO.4 SOT143U4+121-005290-0183REVISION NUMBERREVISION DATE DESCRIPTIONPAGES CHANGED56/15Updated Benefits and Features and Package Information sections 1, 865/18Updated Absolute Maximum Ratings2Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.with Manual Reset InputRevision HistoryFor pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https:///en/storefront/storefront.html.。

autel maxisys mt808 pro 用户手册.pdf说明书

autel maxisys mt808 pro 用户手册.pdf说明书

商标深圳市道通科技股份有限公司(以下称“道通公司””)已经在中国及海外若干国家进行了商标注册,Autel® , MaxiSys TM , MaxiDAS® , MaxiScan® , MaxiTPMS® , MaxiVideo TM ,MaxiRecorder TM,和MaxiCheck TM 均是道通公司的注册商标。

本产品所提及之其它产品及公司名称为其它公司分别所有的商标。

版权信息未征得道通公司的书面同意,任何公司或个人不得以任何形式(电子、机械、影印、录制或其它形式)对本说明书进行复制和备份。

免责声明和责任限制说明书中的所有信息、规格及图示均为出版截止时的最新信息。

道通公司保留对其进行更改而不另行通知的权利。

说明书中的内容已经过认真审核,但不保证其内容(包括但不限于产品规格、功能及图示)的完整性和准确性。

本公司不承担任何直接、间接、特殊、附带的损坏赔偿或任何间接经济损害(包括但不限于利润损失)。

注意:对设备进行操作与维护前,请认真阅读本说明书,尤其是安全注意事项。

服务支持销售服务热线:400-009-3838转1售后服务热线:400-009-3838转2*********************其它国家与地区的用户,请联系当地经销商寻求技术支持。

安全信息为了自身与他人的安全,同时避免对设备及车辆造成损坏,所有操作该设备的人员请务必阅读本手册中所提到的安全注意事项。

由于进行车辆维修时会运用各种程序、工具、部件及技术,同时工作人员的操作方式也各有不同,但因诊断应用程序和该设备所检测产品的种类繁多,本手册无法对每种情况进行预测并提供安全建议。

汽车维修技术人员有责任对所测试的系统进行充分的了解,并合理使用适当的维修方法和测试程序。

进行测试时,必须使用适当的操作方法,以避免对自身和工作区域内其他人员的人身安全造成威胁,同时避免对正在使用的设备或正在测试的车辆造成损坏。

SA808 产品说明书

SA808 产品说明书

SA808 INSTRUCTION MANUAL We’ll Make It Stress-FreeIf you have any questions along the way, just give us a call.1-800-359-5520. We’re ready to help!Scan for easy install video/4472Before getting started, let’s make sure this product is perfect for you!WARNING:This product contains small items that could be a choking hazard if swallowed.Before starting assembly, verify all parts are included and undamaged. If any parts are missing or damaged, do not return the damaged itemto your dealer; contact Customer Service. Never use damaged parts!353. Use a drywall saw or similar tool to cut the drywall where marked. Remove cut section of drywall.1. Break out the sections of the housing 02 that are required to install the power and cable outlets that are needed.2. Thread the elastic-velcro strap into the housing 02.681.To use the ECO-Mini (purchased separately) in the SA808, first remove feet.2. Fit the ECO-Mini into the ECO-Mini bracket 05 supplied with the SA808.3. Use two of the screws from the feet to secure the ECO-Mini in the bracket 05.4. Slide the ECO-Mini and bracket 05 into the top of the housing 02. Lock the bracket 05 into the housing 02 by sliding it towards thecorner until you feel it catch.5. Use the elastic-velcro strap 03 to attach components to the housing 02.6. Power the ECO-Mini with the power cord supplied with the ECO-Mini.The SA808 can be installed behind most large wall plates of wall mounts or underneath or above most small wall plates. To access the SA808 after installation, disconnect all cables and wires from the TV, then either slide or remove the arm or TV mount from the wall plate. IMPORTANT: Check your TV owner’s manual to see if there are any special requirements for mounting or removing your TV.12 5.83 in.[148.0 mm]7.80 in.[198.1 mm]13.80 in.[350.5 mm]11.80 in.[299.8 mm]4.00 in.[101.6 mm] 125°13Before getting started, let’s make sure this product is perfect for you!- see page 21. Will your accessories weigh more than 50 lb (22.7 kg)?No — Perfect!Yes — This product is NOT compatible. Visit or call 1-800-359-5520 [UK: 0800 056 2853] to fi nd a compatible product.2. What is your wall made of?3. Do you have all of the tools needed?4. Ready to begin?Please read through these instructions completely to be sure you’re comfortable with this easy install process.If you do not understand these instructions or have doubts about the safety of the installation, assembly or use of this product, contact Customer Service at 1-800-359-5520 [UK: 0800 056 2853].CAUTION: Avoid potential personal injuries and property damage!●Do not use this product for any purpose not explicitly specifi ed by manufacturer.●Manufacturer is not responsible for damage or injury caused by incorrect assembly or use.Supplied Parts- see page 3WARNING:This product contains small items that could be a choking hazard if swallowed.Before starting assembly, verify all parts are included and undamaged. If any parts are missing or damaged, do not return the damaged item to your dealer; contact Customer Service. Never use damaged parts!STEP 1 Cut Hole for Housing- see page 4CAUTION:Avoid potential personal injuries and property damage!●Minimum drywall thickness 1/2 in. (13 mm).●Box must be mounted between studs that are at least 16 in. (406 mm) apart.141. Locate the studs using an edge-to-edge stud finder. Verify the edges of the studs using an awl or thin nail. Mark the inner edges of thestuds with pencil.2. The open area on the left of the template 01 should line up the the inner edge of the left stud. This will allow space for the placement ofa power box on the right side of the housing 02. Level the template 01 and use a pencil to mark the open area of the template 01.3. Use a drywall saw or similar tool to cut the drywall where marked. Remove cut section of drywall.WARNING!Electric Shock Hazard! Avoid potential serious injuries or death. Ensure there are no electrical wires behind the wall before cutting or drilling into the surface.WARNING!Explosion and Fire Hazard! Avoid potential serious injuries or death. Ensure there are no gas lines behind the wall before cutting or drilling into the surface.4. Install wires and cables.2. Thread the elastic-velcro strap into the housing 02.3. Mount a power outlet (if needed) to the housing 02. Slide cables and additional wires through the hole in the bottom of the housing 02and the rubber cable grommet 04. Fit the cable grommet 04 into the hole.4. Using a screwdriver, turn the screws in the corners of the housing 02 . These will raise the locking tabs in the rear of the housing 02 tosecure it to the wall. Tighten only until secure. Do not over-tighten screws.STEP 3 Install Components- see page 8ECO-Mini (purchased separately) with the SA808 - Optional1. To use the ECO-Mini (purchased separately) in the SA808, first remove feet.2. Fit the ECO-Mini into the ECO-Mini bracket 05 supplied with the SA808.153. Use two of the screws from the feet to secure the ECO-Mini in the bracket 05.4. Slide the ECO-Mini and bracket 05 into the top of the housing 02. Lock the bracket 05 into the housing 02 by sliding it towards thecorner until you feel it catch.5. Use the elastic-velcro strap 03 to attach components to the housing 02.6. Power the ECO-Mini with the power cord supplied with the ECO-Mini.Positioning- see page 11The SA808 can be installed behind most large wall plates of wall mounts or underneath or above most small wall plates. To access the SA808 after installation, disconnect all cables and wires from the TV, then either slide or remove the arm or TV mount from the wall plate.IMPORTANT: Check your TV owner’s manual to see if there are any special requirements for mounting or removing your TV. Dimensions- see page 12161718Milestone AV Technologies and its affi liated corporations and subsidiaries (collectively, “Milestone”), intend to make this manual accurate and complete. However, Milestone makes no claim that the information contained herein covers all details, conditions, or variations. Nor does it provide for every possible contingency in connection with the installation or use of this product. The information contained in this document is subject to change without notice or obligation of any kind. Milestone makes no representation of warranty, expressed or implied, regarding the information contained herein. Milestone assumes no responsibility for accuracy, completeness or suffi ciency of the information contained in this document.©2013 Milestone AV Technologies, a Duchossois Group Company. All rights reserved. Sanus is a division of Milestone.All other brand names or marks are used for identifi cation purposes and are trademarks of their respective owners.Thank you for choosing Sanus!Please take a moment to let us know how we did:SANUS• 6436 City West Parkway • Eden Prairie, MN 55344 USACall us: 800-359-5520UK: 0800 056 28536901-002209 00Emailus:**************Find us on the web: 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

_______________General DescriptionThe MAX801/MAX808 microprocessor (µP) supervisory circuits monitor and control the activities of +5V µPs by providing backup-battery switchover, low-line indica-tion, and µP reset. Additional features include a watch-dog for the MAX801 and CMOS RAM write protection for the MAX808.The MAX801/MAX808 offer a choice of reset-threshold voltage (denoted by suffix letter): 4.675V (L), 4.575V (N), and 4.425V (M). These devices are available in 8-pin DIP and SO packages.________________________ApplicationsComputers ControllersIntelligent Instruments Critical µP Power Monitoring Portable/Battery-Powered Equipment Embedded Systems____________________________Featureso Precision Voltage Monitoring, ±1.5% Reset Accuracy o 200ms Power-OK/Reset Time Delay o RESET Output (MAX808)RESET and RESET Outputs (MAX801)o Watchdog Timer (MAX801)o On-Board Gating of Chip-Enable Signals (MAX808):Memory Write-Cycle Completion 3ns CE Gate Propagation Delay o 1µA Standby Currento Power Switching:250mA in V CC Mode20mA in Battery-Backup Mode o MaxCap™/SuperCap™Compatible o RESET Guaranteed Valid to V CC = 1V o Low-Line Threshold 52mV Above Reset ThresholdMAX801L/M/N, MAX808L/M/N8-Pin µP Supervisory Circuits with ±1.5% Reset Accuracy________________________________________________________________Maxim Integrated Products1__________Typical Operating Circuit19-1086; Rev 0; 6/96______________Ordering InformationFor free samples & the latest literature: , or phone 1-800-998-8800MaxCap is a trademark of The Carborundum Corp.SuperCap is a trademark of Baknor Industries.Pin Configurations appear at end of data sheet.*These parts offer a choice of reset threshold voltage. From the table below, select the suffix corresponding to the desiredthreshold and insert it into the blank to complete the part number.**Contact factory for availability and processing to MIL-STD-883.M A X 801L /M /N , M A X 808L /M /N8-Pin µP Supervisory Circuits with ±1.5% Reset AccuracyABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = 4.6V to 5.5V for the MAX80_L, V CC = 4.5V to 5.5V for the MAX80_N, V CC = 4.35V to 5.5V for the MAX80_M; V BATT = 2.8V;T A = T MIN to T MAX . Typical values are at V CC = 5V and T A = +25°C, unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Input Voltage (with respect to GND)V CC .......................................................................-0.3V to +6V V BATT ....................................................................-0.3V to +6V All Other Pins........................................-0.3V to (V OUT + 0.3V)Input CurrentV CC Peak ..........................................................................1.0A V CC Continuous............................................................500mA I BATT Peak.....................................................................250mA I BATT Continuous ............................................................50mA GND................................................................................50mA All Other Inputs...............................................................50mA Output CurrentOUT Peak..........................................................................1.0AOUT Continuous............................................................500mA All Other Outputs............................................................50mA Continuous Power Dissipation (T A = +70°C)Plastic DIP (derate 9.09mW/°C above +70°C)............727mW SO (derate 5.88mW/°C above +70°C).........................471mW CERDIP (derate 8.00mW/°C above +70°C).................640mW Operating Temperature RangesMAX801_C_A/MAX808_C_A...............................0°C to +70°C MAX801_E_A/MAX808_E_A............................-40°C to +85°C MAX801_MJA/MAX808_MJA.........................-55°C to +125°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°CMAX801L/M/N, MAX808L/M/N8-Pin µP Supervisory Circuits with ±1.5% Reset Accuracy_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V CC = 4.6V to 5.5V for the MAX80_L, V CC = 4.5V to 5.5V for the MAX80_N, V CC = 4.35V to 5.5V for the MAX80_M; V BATT = 2.8V; T A = T MIN to T MAX . Typical values are at V CC = 5V and T A = +25°C, unless otherwise noted.)40-55-1565V CC SUPPLY CURRENT vs. TEMPERATURE(NORMAL OPERATING MODE)50TEMPERATURE (°C)V C C S U P P L Y C U R R E N T (µA )25105-3545125585706045557565 3.02.52.01.51.00.50-60-2060140BATTERY SUPPLY CURRENT vs.TEMPERATURE (BATTERY-BACKUP MODE)M A X 801/808-02TEMPERATURE (°C)B A T T E R Y S U P P L Y C U R R E N T (µA )20100-40401200806543210-60-2060140MAX808CHIP-ENABLE PROPAGATION DELAYvs. TEMPERATUREM A X 801/808-03TEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )20100-4040120080M A X 801L /M /N , M A X 808L /M /N8-Pin µP Supervisory Circuits with ±1.5% Reset Accuracy 4_______________________________________________________________________________________Note 1:Either V CC or V BATT can go to 0V if the other is greater than 2V.Note 2:The supply current drawn by the MAX80_ from the battery (excluding I OUT ) typically goes to 15µA when (V BATT - 0.1V) <V CC < V BATT . In most applications, this is a brief period as V CC falls through this region (see Typical Operating Characteristics ).Note 3:“+” = battery-discharging current, “-” = battery-charging current.Note 4:WDI is internally connected to a voltage divider between V CC and GND. If unconnected, WDI is typically driven to 1.8V,disabling the watchdog function.Note 5:The chip-enable resistance is tested with V CE IN = V CC / 2 and I CE IN = 1mA.Note 6:The chip-enable propagation delay is measured from the 50% point at CE IN to the 50% point at CE OUT.Note 7:If CE IN goes high, CE OUT goes high immediately and stays high until reset is deasserted and CE IN is low.ELECTRICAL CHARACTERISTICS (continued)(V CC = 4.6V to 5.5V for the MAX80_L, V CC = 4.5V to 5.5V for the MAX80_N, V CC = 4.35V to 5.5V for the MAX80_M; V BATT = 2.8V; T A = T MIN to T MAX . Typical values are at V CC = 5V and T A = +25°C, unless otherwise noted.)__________________________________________Typical Operating Characteristics(V CC = 5V, V BATT = 2.8V, no load, T A = +25°C, unless otherwise noted.)MAX801L/M/N, MAX808L/M/N8-Pin µP Supervisory Circuits with ±1.5% Reset Accuracy_______________________________________________________________________________________5050Ω DRIVER246850100MAX808CHIP-ENABLE PROPAGATION DELAY vs. CE OUT LOAD CAPACITANCEM A X 801/808-04C LOAD (pF)P R O P A G A T I O N D E L A Y (n s )4.704.654.604.554.504.454.40-60-2060140RESET THRESHOLD vs. TEMPERATURETEMPERATURE (°C)R E S E T T H R E S H O L D (V )20100-4040120080305-60-2060140BATT to OUT ON-RESISTANCEvs. TEMPERATURE1025TEMPERATURE (°C)V B A T T T O V O U T O N -R E S I S T A N C E (Ω)20100-404012008020151.61.51.41.31.21.11.00.90.80.7-60-2060140V CC to OUT ON-RESISTANCEvs. TEMPERATURETEMPERATURE (°C)V C C T O V O U T O N -R E S I S T A N C E (Ω)20100-4040120080280260240220200180160140-60-2060140RESET TIMEOUT PERIOD vs. TEMPERATURE (V CC RISING)M A X 801/808-08TEMPERATURE (°C)R E S E T T I M E O U T P E R I O D (m s )20100-404012008001020304050607080-60-2060140LOWLINE to RESET THRESHOLD vs. TEMPERATURE (V CC FALLING)M A X 801/808-09TEMPERATURE (°C)L O W L I N E T O R E S E T T H R E S H O L D (m V )20100-4040120080____________________________Typical Operating Characteristics (continued)(V CC = 5V, V BATT = 2.8V, no load, T A = +25°C, unless otherwise noted.)4.754.804.704.654.604.554.504.45 4.40-60-2060140LOWLINE THRESHOLDvs. TEMPERATURE (V CC RISING)TEMPERATURE (°C)L O W L I N E T H R E S H O L D (V )20100-40401200800510152025303540-60-2060140LOWLINE COMPARATOR PROPAGATION DELAY vs. TEMPERATURE (V CC FALLING)TEMPERATURE (°C)P R O P A G A T I O N D E L A Y (µs )20100-40401200800510152025303540-60-2060140RESET COMPARATOR PROPAGATION DELAY vs. TEMPERATURE (V CC FALLING)TEMPERATURE (°C)P R O P A G A T I O N D E L A Y (µs )20100-4040120080M A X 801L /M /N , M A X 808L /M /N8-Pin µP Supervisory Circuits with ±1.5% Reset Accuracy 6_______________________________________________________________________________________2468101214162.52.62.72.82.93.0BATTERY CURRENT vs. INPUT SUPPLY VOLTAGEM A X 801/808-13V CC (V)B A T T E R YC U R R E N T (µA )10001001011100101000V CC to OUT VOLTAGE vs. OUTPUT CURRENTI OUT (mA)V C C T O V O U T V O L T A G E (m V)100010010110100BATT to OUT VOLTAGE vs.OUTPUT CURRENTI OUT (mA)V B A T T T O V O U T V O L T A G E (m V )10001001011100101000MAXIMUM TRANSIENT DURATION vs. RESET THRESHOLD OVERDRIVERESET THRESHOLD OVERDRIVE (mV)M A X I M U M T R A N S I E N T D U R A T I O N (µs)____________________________Typical Operating Characteristics (continued)(V CC = 5V, V BATT = 2.8V, no load, T A = +25°C, unless otherwise noted.)______________________________________________________________Pin DescriptionMAX801L/M/N, MAX808L/M/N8-Pin µP Supervisory Circuits with ±1.5% Reset Accuracy_______________________________________________________________________________________7_________________________________________________Pin Description (continued)Active-High Reset Output. RESET is the inverse of RESET . It is a CMOS output that sources and sinks current. RESET swings between V CC and GND.—5Chip-Enable Output. Output to the chip-enable gating circuit. CE OUT is pulled up to the higher of V CC or V BATT when the chip-enable gate is disabled.5—Watchdog Input. If WDI remains high or low longer than the watchdog timeout period (typically 1.6sec), RESET will be asserted for 200ms. Leave unconnected to disable the watchdog function.—6Chip-Enable Input6—RESET CE OUTWDI CE IN BATTOUTBackup-Battery Input. When V CC falls below the reset threshold and V BATT , OUT switch-es from V CC to BATT. V BATT may exceed V CC . The battery can be removed while the MAX801/MAX808 is powered up, provided BATT is bypassed with a 0.1µF capacitor to GND. If no battery is used, connect BATT to ground and V CC to OUT.77Output Supply Voltage to CMOS RAM. When V CC exceeds the reset threshold or V BATT ,OUT connects to V CC . When V CC falls below the reset threshold and V BATT , OUT con-nects to BATT. Bypass OUT with a 0.1µF capacitor to GND.88NAME MAX801MAX808FUNCTIONPINFigure 1. Functional DiagramM A X 801L /M /N , M A X 808L /M /N8-Pin µP Supervisory Circuits with ±1.5% Reset Accuracy 8______________________________________________________________________________________________________Detailed DescriptionThe MAX801/MAX808 microprocessor (µP) supervisory circuits provide power-supply monitoring and backup-battery switchover in µP systems. The MAX801 also provides program-execution watchdog functions (Figure 1). Use of BiCMOS technology results in an improved, 1.5% reset-threshold precision while keeping supply currents typically at 68µA (48µA for the MAX808). The MAX801/MAX808 are intended for bat-tery-powered applications that require high reset-threshold precision, allowing a wide power-supply operating range while preventing the system from oper-ating below its specified voltage range.RESET and RESET OutputsThe MAX801/MAX808’s RESET output ensures that the µP powers up in a known state, and prevents code-execution errors during power-down and brownout conditions. It does this by resetting the µP, terminating program execution when V CC dips below the reset threshold. Each time RESET is asserted, it stays low for at least the 200ms reset timeout period (set by an inter-nal timer) to ensure the µP has adequate time to return to an initial state. The internal timer restarts any time V CC goes below the reset threshold (V RST ) before the reset timeout period is completed. The watchdog timer on the MAX801 can also initiate a reset (see the MAX801Watchdog Timer section).The RESET output is active low, and is implemented with a strong pull-down/relatively weak pull-up structure. It is guaranteed to be a logic low for 0V < V CC < V RST , pro-vided V BATT is greater than 2V. Without a backup bat-tery, RESET is guaranteed valid for V CC ≥1V.The RESET output is the inverse of the RESET output; it both sources and sinks current and cannot be wire-OR connected.Low-Line ComparatorThe low-line comparator monitors V CC with a threshold voltage typically 52mV above the reset threshold, with 13mV of hysteresis. Use LOWLINE to provide a non-maskable interrupt (NMI) to the µP when power begins to fall, initiating an orderly software shutdown routine. In most battery-operated portable systems, reserve ener-gy in the battery provides ample time to complete the shutdown routine once the low-line warning is encoun-tered and before reset asserts. If the system must con-tend with a more rapid V CC fall time (such as when the main battery is disconnected, when a DC-DC converter shuts down, or when a high-side switch is opened dur-ing normal operation), use capacitance on the V CC line to provide time to execute the shutdown routine (Figure 3). First calculate the worst-case time required for the system to perform its shutdown routine. Then, with worst-case shutdown time, worst-case load current,and minimum low-line to reset threshold (V LR(min)),Figure 2a. Timing Diagram, V CC RisingFigure 2b. Timing Diagram, V CC Fallingcalculate the amount of capacitance required to allow the shutdown routine to complete before reset is asserted:C HOLD = (I LOAD x t SHDN ) / (V LR(min))where t SHDN is the time required for the system to com-plete the shutdown routine (including the V CC to low-line propagation delay), I LOAD is the current being drained from the capacitor, and V LR is the low-line to reset threshold.Output Supply VoltageThe output supply (OUT) transfers power from V CC or BATT to the µP, RAM, and other external circuitry. At the maximum source current of 250mA, V OUT will typi-cally be 220mV below V CC . Decouple OUT with a 0.1µF capacitor to ground.Battery-Backup ModeBattery-backup mode preserves the contents of RAM in the event of a brownout or power failure. With a backup battery installed at BATT, the MAX801/MAX808 automati-cally switches RAM to backup power when V CC falls.Two conditions are required for switchover to battery-backup mode: 1) V CC must be below the reset threshold;2) V CC must be below V BATT . Table 1 lists the status of inputs and outputs during battery-backup mode.BATT is designed to conduct up to 20mA to OUT dur-ing battery backup. The PMOS switch on-resistance is approximately 12Ω. Figure 4 shows the two series pass elements (between the BATT input and OUT) that facilitate UL recognition. V BATT can exceed V CC during normal operation without causing a reset.MAX801L/M/N, MAX808L/M/N8-Pin µP Supervisory Circuits with ±1.5% Reset Accuracy_______________________________________________________________________________________9Figure 3. Using LOWLINE to Provide a Power-Fail Warning to the µPFigure 4. V CC and BATT to OUT SwitchTable 1. Input and Output Status in Battery-Backup ModeM A X 801L /M /N , M A X 808L /M /NMAX801 Watchdog TimerThe watchdog monitors the µP’s activity. If the µP does not toggle the watchdog input (WDI) within 1.6sec,reset asserts for the reset timeout period. The internal 1.6sec timer is cleared when reset asserts or when a transition (low-to-high or high-to-low) occurs at WDI while reset is not asserted. The timer remains cleared and does not count as long as reset is asserted. It starts counting as soon as reset is released (Figure 5).Supply current is typically reduced by 10µA when WDI is at a valid logic level. To disable the watchdog func-tion, leave WDI unconnected. An internal voltage divider sets WDI to about mid-supply, disabling the watchdog timer/counter.MAX808 Chip-Enable GatingThe MAX808 provides internal gating of chip-enable (CE) signals to prevent erroneous data from corrupting CMOS RAM in the event of a power failure. During nor-mal operation, the CE gate is enabled and passes all CE transitions. When reset is asserted, this path becomes disabled, preventing erroneous data from corrupting the CMOS RAM. The MAX808 uses a series transmission gate from the chip-enable input (CE IN) to the chip-enable output (CE OUT) (Figure 1). The 8ns max chip-enable propagation from CE IN to CE OUT enables the MAX808 to be used with most µPs.The MAX808 also features write-cycle-completion cir-cuitry. If V CC falls below the reset threshold while the µP is writing to RAM, the MAX808 holds the CE gate enabled for 18µs to allow the µP to complete the write instruction. If the write cycle has not completed by the end of the 18µs period, the CE transmission gate turns off and CE OUT goes high. If the µP completes the write instruction during the 18µs period, the CE gate turns off (high impedance) and CE OUT goes high as soon as the µP pulls CE IN high. CE OUT remains high,even if CE IN falls low for any reason (Figure 6).Chip-Enable InputCE IN is high impedance (disabled mode) while reset is asserted. During a power-down sequence when V CC passes the reset threshold, the CE transmission gate disables. CE IN becomes high impedance 18µs after reset asserts, provided CE IN is still low. If the µP com-pletes the write instruction during the 18µs period, the CE gate turns off. CE IN becomes high impedance as soon as the µP pulls CE IN high. CE IN remains high impedance even if the signal at CE IN falls low (Figure 6). During a power-up sequence, CE IN remains high impedance (regardless of CE IN activity) until reset is deasserted following the reset timeout period.In high-impedance mode, the leakage currents into this input are ±1µA max over temperature. In low-imped-ance mode, the impedance of CE IN appears as a 75Ωresistor in series with the load at CE OUT.The propagation delay through the CE transmission gate depends on both the source impedance of the drive to CE IN and the capacitive loading on CE OUT (see the Chip-Enable Propagation Delay vs. CE OUT Load Capacitance graph in the Typical Operating Characteristics ). The CE propagation delay is produc-tion tested from the 50% point on CE IN to the 50%point on CE OUT using a 50Ωdriver and 50pF of load capacitance (Figure 7). For minimum propagation delay, minimize the capacitive load at CE OUT and use a low-output-impedance driver.8-Pin µP Supervisory Circuits with ±1.5% Reset Accuracy 10______________________________________________________________________________________Figure 5. Watchdog TimingFigure 6. Chip-Enable TimingChip-Enable OutputIn enabled mode, CE OUT’s impedance is equivalent to 75Ωin series with the source driving CE IN. In disabled mode, the 75Ωtransmission gate is off and CE OUT is actively pulled to the higher of V CC or V BATT . The source turns off when the transmission gate is enabled.__________Applications InformationThe MAX801/MAX808 are not short-circuit protected.Shorting OUT to ground, other than power-up transients such as charging a decoupling capacitor, may destroy the device. If long leads connect to the IC’s inputs,ensure that these lines are free from ringing and other conditions that would forward bias the IC’s protection diodes. Bypass OUT, V CC , and BATT with 0.1µF capacitors to GND.The MAX801/MAX808 operate in two distinct modes:1)Normal Operating Mode, with all circuitry powered up. Typical supply current from V CC is 68µA (48µA for the MAX808), while only leakage currents flow from the battery.2)Battery-Backup Mode, where V CC is below V BATTand V RST . The supply current from the battery is typ-ically less than 1µA.Using SuperCaps™ or MaxCaps™with the MAX801/MAX808BATT has the same operating voltage range as V CC , and the battery-switchover threshold voltage is typically V BATT when V CC is decreasing or V BATT + 0.05V when V CC is increasing. This hysteresis allows use of a SuperCap (e.g., around 0.47F) and a simple chargingcircuit as a backup source (Figure 8). Since V BATT can exceed V CC while V CC is above the reset threshold, no special precautions are needed when using these µP supervisors with a SuperCap.Backup-Battery ReplacementThe backup battery can be disconnected while V CC is above the reset threshold, provided BATT is bypassed with a 0.1µF capacitor to ground. No precautions are necessary to avoid spurious reset pulses.Negative-Going V CC TransientsWhile issuing resets to the µP during power-up, power-down, and brownout conditions, these supervisors are relatively immune to short-duration, negative-going V CC transients (glitches). It is usually undesirable to reset the µP when V CC experiences only small glitches.The Typical Operating Characteristics show a graph of Maximum Transient Duration vs. Reset Threshold Overdrive, for which reset pulses are not generated.The graph was produced using negative-going V CC pulses, starting at 5V and ending below the reset threshold by the magnitude indicated (reset compara-tor overdrive). The graph shows the maximum pulse width that a negative-going V CC transient may typically have without causing a reset pulse to be issued. As the amplitude of the transient increases (i.e., goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a V CC transient that goes 40mV below the reset threshold and lasts for 3µs or less will not cause a reset pulse to be issued. A 0.1µF bypass capacitor mounted close to the V CC pin provides additional transient immunity.MAX801L/M/N, MAX808L/M/N8-Pin µP Supervisory Circuits with ±1.5% Reset Accuracy______________________________________________________________________________________11Figure 7. MAX808 CE Gate Test Circuit Figure 8. Using the MAX801/MAX808 with a SuperCapMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.12__________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600©1996 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.M A X 801L /M /N , M A X 808L /M /N8-Pin µP Supervisory Circuits with ±1.5% Reset Accuracy Watchdog Software ConsiderationsTo help the watchdog timer keep a closer watch on software execution, you can set and reset the watch-dog input at different points in the program, rather than “pulsing” the watchdog input high-low-high or low-high-low. This technique avoids a “stuck” loop, where the watchdog timer continues to be reset within the loop,keeping the watchdog from timing out.Figure 9 shows a sample flow diagram where the I/O driving the watchdog input is set high at the beginning of the program, low at the beginning of every subrou-tine or loop, then high again when the program returns to the beginning. If the program should “hang” in any subroutine, the I/O would be continually set low and the watchdog timer would be allowed to time out, causing a reset or interrupt to be issued.Maximum V CC Fall TimeThe V CC fall time is limited by the propagation delay of the battery switchover comparator and should not exceed 0.03V/µs. A standard rule for filter capacitance on most regulators is around 100µF per Ampere of cur-rent. When the power supply is shut off or the main bat-tery is disconnected, the associated initial V CC fall rate is just the inverse, or 1A/100µF = 0.01V/µs.Figure 9. Watchdog Flow Diagram_________________Pin Configurations___________________Chip InformationTRANSISTOR COUNT: 922。

相关文档
最新文档