中期答辩 基于单片机的PID恒温箱控制系统的设计

合集下载

基于单片机的PID恒温控制系统设计

基于单片机的PID恒温控制系统设计

基于单片机的PID恒温控制系统设计1. 引言恒温控制系统在现代工业生产中起着至关重要的作用,它能够确保生产过程中的温度稳定,从而保证产品质量和生产效率。

而PID控制器作为一种常用的控制器,具有简单易实现、稳定可靠等优点,被广泛应用于恒温控制系统中。

本文基于单片机的PID恒温控制系统设计,旨在研究和实现一种高效、精确的恒温控制方案。

2. 系统设计原理2.1 PID控制原理PID控制器是由比例项(P项)、积分项(I项)和微分项(D项)组成的。

比例项根据当前误差与设定值之间的差距来调整输出;积分项根据误差累积来调整输出;微分项根据误差变化率来调整输出。

PID控制器通过不断调整输出值与设定值之间的差距,使得系统能够快速、稳定地达到设定值。

2.2 单片机原理单片机是一种高度集成化、功能强大的微处理器芯片。

它具有处理能力强、可编程性好等特点,在工业控制领域得到广泛应用。

单片机可以通过输入输出端口与外部设备进行信息交互,通过控制算法调整输出信号,实现对恒温控制系统的精确控制。

3. 系统硬件设计3.1 传感器恒温控制系统中的传感器用于实时监测温度值,并将其转化为电信号输入给单片机。

常用的温度传感器有热电偶、热敏电阻等。

本设计中选择热敏电阻作为温度传感器。

3.2 控制器本设计中选择常用的STC89C52单片机作为控制器,它具有丰富的外设接口和高性能的处理能力,能够满足恒温控制系统的需求。

3.3 作动器作动器是恒温控制系统中负责调节环境参数(如加热、冷却等)以实现恒温目标的设备。

本设计中选择继电器作为作动器,它可以根据单片机输出信号来切换加热和冷却设备。

4. 系统软件设计4.1 温度采集与处理单片机通过模拟输入端口采集到来自传感器的模拟信号,然后通过模数转换器将其转化为数字信号。

接下来,通过算法对采集到的温度值进行处理,得到误差值。

4.2 PID算法实现PID算法的实现是整个恒温控制系统的核心。

根据采集到的误差值,通过比例、积分和微分三个参数来调整输出信号。

基于单片机的pid温度控制系统设计

基于单片机的pid温度控制系统设计

一、概述单片机PID温度控制系统是一种利用单片机对温度进行控制的智能系统。

在工业和日常生活中,温度控制是非常重要的,可以用来控制加热、冷却等过程。

PID控制器是一种利用比例、积分、微分三个调节参数来控制系统的控制器,它具有稳定性好、调节快等优点。

本文将介绍基于单片机的PID温度控制系统设计的相关原理、硬件设计、软件设计等内容。

二、基本原理1. PID控制器原理PID控制器是一种以比例、积分、微分三个控制参数为基础的控制系统。

比例项负责根据误差大小来控制输出;积分项用来修正系统长期稳态误差;微分项主要用来抑制系统的瞬时波动。

PID控制器将这三个项进行线性组合,通过调节比例、积分、微分这三个参数来实现对系统的控制。

2. 温度传感器原理温度传感器是将温度变化转化为电信号输出的器件。

常见的温度传感器有热电偶、热敏电阻、半导体温度传感器等。

在温度控制系统中,温度传感器负责将环境温度转化为电信号,以便控制系统进行监测和调节。

三、硬件设计1. 单片机选择单片机是整个温度控制系统的核心部件。

在设计单片机PID温度控制系统时,需要选择合适的单片机。

常见的单片机有STC89C52、AT89S52等,选型时需要考虑单片机的性能、价格、外设接口等因素。

2. 温度传感器接口设计温度传感器与单片机之间需要进行接口设计。

常见的温度传感器接口有模拟接口和数字接口两种。

模拟接口需要通过模数转换器将模拟信号转化为数字信号,而数字接口则可以直接将数字信号输入到单片机中。

3. 输出控制接口设计温度控制系统通常需要通过继电器、半导体元件等控制输出。

在硬件设计中,需要考虑输出接口的类型、电流、电压等参数,以及单片机与输出接口的连接方式。

四、软件设计1. PID算法实现在单片机中,需要通过程序实现PID控制算法。

常见的PID算法包括位置式PID和增量式PID。

在设计时需要考虑控制周期、控制精度等因素。

2. 温度采集和显示单片机需要通过程序对温度传感器进行数据采集,然后进行数据处理和显示。

基于51单片机温度控制系统设计(毕业答辩)

基于51单片机温度控制系统设计(毕业答辩)

基于51单片机温度控制系统设计(毕业答辩)1. 引言温度控制系统在现代生活和工业中具有广泛的应用。

随着科技的发展,越来越多的温度控制系统采用嵌入式技术来实现。

本文介绍了基于51单片机的温度控制系统设计。

2. 系统设计概述本温度控制系统设计采用了51单片机作为控制核心,通过温度传感器采集温度数据,然后根据设定的温度阈值进行控制操作,实现温度的稳定控制。

系统由硬件和软件两部分组成,硬件部分包括51单片机、温度传感器、温控器等组件,软件部分包括温度数据采集、控制算法以及用户界面的实现。

3. 硬件设计3.1 51单片机51单片机是一种基于CISC架构的微控制器,具有丰富的接口和功能,广泛用于各种嵌入式系统。

本系统选择了51单片机作为控制核心,主要负责温度数据的采集和控制算法的执行。

3.2 温度传感器温度传感器是用来测量环境温度的设备,常见的有热敏电阻、热电偶等。

本温度控制系统选择了热敏电阻作为温度传感器,通过测量电阻值来获取环境温度。

3.3 温控器温控器是用来控制温度的设备,常见的有继电器、三极管等。

本系统选择了继电器作为温控器,通过控制继电器的开关状态,实现对加热元件的控制。

4. 软件设计4.1 温度数据采集软件部分通过51单片机的模拟输入引脚,通过AD转换器将模拟温度值转换为数字信号。

然后将数字信号经过计算得到温度值。

4.2 控制算法实现控制算法是温度控制系统的核心部分,它根据温度数据和设定的温度阈值,通过比较和反馈控制来实现温度的稳定控制。

本系统采用PID控制算法,通过调节加热元件的工作时间和工作状态来控制温度。

4.3 用户界面用户界面是用户与温度控制系统交互的界面,本系统通过LCD显示屏实现了简单的用户界面。

用户可以通过按键来设置温度阈值和查看当前温度。

系统会将用户设置的温度阈值和实际温度同时显示在LCD屏幕上。

5. 实验结果经过实验验证,本系统能够准确地测量环境温度,并按照设定的温度阈值进行控制。

毕业设计(论文)-基于单片机的恒温箱控制器的软件设计[管理资料]

毕业设计(论文)-基于单片机的恒温箱控制器的软件设计[管理资料]

摘要随着微机测量和控制技术的迅速发展与广泛应用,以单片机为核心的温度采集与控制系统的研发与应用在很大程度上提高了生产生活中对温度信号的控制水平。

能够独立工作的温度检测和显示系统应用于诸多领域。

传统的温度检测以热敏电阻为温度敏感元件。

热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差。

与传统的温度计相比,这里设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。

本设计论述了一种以AT89S52单片机为主控制单元,以DS18B20为温度传感器的温度控制系统。

该控制系统可以实时存储相关的温度数据并记录当前的时间。

系统设计了相关的硬件电路和相关应用程序。

硬件电路主要包括AT89S52单片机最小系统,测温电路、实时时钟电路、LED数码管显示电路等。

系统程序主要包括主程序,读出温度子程序,计算温度子程序、按键处理程序、LED显示程序以及数据存储程序等。

关键词:AT89S52单片机 DS18B20 显示电路AbstractAlong with the computer measurement and control technology is developed rapidly and widely used, microcontroller as the core temperature acquisition and control system development and application has greatly improved the production life of the temperature signal to the control level. Able to work independently of the temperature detection and display system for use in many areas. The traditional temperature measurement using thermistor as a temperature sensitive element. The thermistor is low in cost, but the subsequent signal processing circuit, and relatively poor reliability, measurement accuracy is low, also have certain error detection system. Compared with the traditional thermometer, the digital thermometer with reading convenience, a wide range of temperature measurement, accurate temperature measurement, digital display, wide application range etc..This design presents a AT89S52 microcontroller as the main control unit, takingDS18B20as the temperature sensor temperature control system. The control system can real time storage temperature related data and recording the current time. The system design of the hardware circuit and the related applications. The hardware circuit including AT89S52MCU minimum system, a temperature measurement circuit, clock circuit, the LED digital tube display circuit. System program, including the main program, theread-out temperature subroutine, the calculated temperature subroutine, key processing program, LED display program and data storage program.Key words:AT89S52 microcontroller DS18B20 display circuit目录摘要 (I)Abstract (II)绪论 (1)1 恒温箱控制器系统组成及工作原理 (2)恒温箱系统的组成 (2)恒温箱系统的工作原理 (2)2 芯片介绍 (4)AT89S52单片机介绍 (4)AT89S52单片机简介 (4)AT89S52单片机时序 (4)AT89S52单片机引脚介绍 (5)温度传感器DS18B20介绍 (7)温度传感器DS18B20简介 (7)温度传感器DS18B20的主要性能特点 (8)DS18B20的引脚及功能介绍 (8)七段LED数码管介绍 (9)3 硬件电路设计 (10)硬件电路框图 (10)硬件电路图 (10)系统硬件电路图 (10)DS18B20温度传感器电路 (11)加热模块电路 (11)4 系统软件设计 (12)系统程序流程 (12)读温度子程序 (12)读温度流程图 (12)读温度子程序 (13)计算温度度子程序 (14)计算温度流程图 (14)计算温度子程序 (15)按键处理子程序 (16)按键程序流程图 (16)按键子程序 (17)5 系统软件调试 (21)结论 (23)致谢 (25)参考文献 (26)附录 (27)绪论二十一世纪是科技高速发展的信息时代,电子技术、微型单片机技术的应用更是空前广泛,是随着超大规模集成电路技术的发展而诞生的。

基于单片机的水温控制系统的研究与设计毕业答辩分解

基于单片机的水温控制系统的研究与设计毕业答辩分解

返回
实现
AT89C51系列单片机工作原理的研究
•AT89C51基本功能描述 AT89C51是一种低损耗、高性能、CMOS八位微处理器,而且在其片种还有4k字节 的在线可重复编程快擦快写程序存储器,能重复写入/擦除1000次,数据保存时 间为十年。AT89C51可构成真正的单片机最小应用系统,缩小系统体积, 增加系 统的可靠性,降低了系统成本。只要程序长度小于4k, 四个I/O口全部提供给用 户。可用5V电压编程,而且写入时间仅10毫秒, 仅为8751/87C51 的擦除时间的 百分之一,与8751/87C51的12V电压擦写相比, 不易损坏器件, 没有两种电源的 要求,改写时不拔下芯片,适合许多嵌入式控制领域。AT89C51 芯片提供三级 程序存储器锁定加密, 提供了方便灵活而可靠的硬加密手段, 能完全保证程序 或系统不被仿制。
返回
实现
AT89C51系列单片机工作原理的研究
⑶ RST/VPD:复位/备用电源。 ① RST(Reset)功能:复位信号输入端。 ② VPD功能:在Vcc掉电情况下,接备用电源。 ⑷ EA/Vpp:内外ROM选择/片内EPROM编程电源。 ① EA功能:内外ROM选择端。 ② Vpp功能:片内有EPROM的芯片,在EPROM编程期间,施加编程电源Vpp。 ⒋ I/O线 80C51共有4个8位并行I/O端口:P0、P1、P2、P3口,共32个引脚。P3口还具有 第二功能,用于特殊信号输入输出和控制信号(属控制总线)。
返回
实现
AT89C51系列单片机工作原理的研究
AT89C51有40引脚双列直插(DIP)形式。其与80C51引脚结构基本相同,其逻 辑引脚图如图2.1所示。
返回
实现
硬件设计

基于单片机的水温控制系统设计毕设答辩

基于单片机的水温控制系统设计毕设答辩

2 研 究 内 容 RESEARCH CONTENTS
该系统主要包括传感器温度采集、A/D模数转换、按钮操 作、单片机控制、数码管数字显示等。采用PID算法实现温度 控制功能,通过串行通信完成两片单片机信息的交互,实现 温度的设定、控制和显示。本设计还可以通过串口与上位机 连接,实现计算机控制。为了实现高精度的水温控制,这种 单片机系统采用PID算法控制和PWM脉宽调制相结合的技术, 通过控制双向晶闸管改变电炉和电源的通断来改变水温的加 热时间。该系统由两个模块组成:键盘显示和温度控制。通过 模块之间的通信,完成温度设定、实时温度显示、水温波动 等功能。
基于单片机的水温控制系统设计
答 辩 人: 学 号:C来自NTENTS1 研究意义 2 研究内容 3 调试分析 4 课题总结
1 研 究 意 义 RESEARCH SIGNIFICANCE
现代的发展,就控制器本身而言,控制电路可以采用应 急经典控制理论和常规模拟控制系统,实现水温的自动统一。 然而,随着计算机和超大规模集成电路的迅速发展,以现代 控制理论和计算机为基础,由数字控制、显示、A/D和D/A转 换、后配额执行机构和控制阀组成的计算机控制系统在过程 控制中得到了越来越广泛的应用。此外,单片机的使用也使 水温的智能控制成为可能,并提供完善的人机交互界面和多 机通信接口,这些在常规的数字逻辑道路上往往难以或不可 能实现。
硬件电路的调试要依次调试单片机的基本系统、前向通 道和后向通道。调试时,可利用仿真器读写各接口地址,静 态测试电路各部分连接是否正确;对于动态过程,可以编写 一个简短的调试程序来配合硬件电路的调试。
3 调 试 分 析 DEBUG ANALYSIS
软件的调试需要在仿真器提供的单步、断点、跟踪等功 能的支持下对各子程序分别进行调试.将调试完的工程序连 接起来再调试.逐步扩大调试范围。 调试的过程一般是: A)测试程序输入条件或设定程序输入条件; B)以单步、断点或跟踪方式运行程序; C)检查程序运行结果; D)运行结果不正确时查找原因。修改程序,重复上述过程。

基于单片机的恒温箱智能控制系统的设计方案

基于单片机的恒温箱智能控制系统的设计方案

基于单片机的恒温箱智能控制系统的设计方案1 引言近年来为了保证产品的质量,各个行业行为规就越来越高,众多机械类、医药类、化工类、建筑类等工业和企业都离不开恒温箱的使用;为了确保恒温箱许多主要技术的指标可以达到国家技术所要求的规定,必须对其进行检测,保证产品的质量[1]。

本系统所设计、研发的数字恒温箱能非常好地解决这些问题。

温度的控制系统是自动控制系统较为复杂的控制,其控制的滞后性是整个系统中最难克服的难题,因为温度的变化是纯滞后环节,而温度的控制也是一个惯性大,应变慢的控制对象[2]。

在温度的控制系统中一般用到的是较为先进的控制系统理论和控制算法。

本系统中采用了PID算法,其算法应用到了系统软件的设计中,对整个加热过程使用模糊PID控制方案,对于加热过程中所产生的各种干扰和恒温箱的惯性问题都进行了分析[3]。

恒温箱的智能控制系统采用半导体集成温度传感器满足温度测量要求,温度传感器将采集的温度信号转换成电流信号,然后再由转换电路将电流信号转换为电压信号,通过放大电路和模/数转换芯片将电压信号转换成数字信号,由单片机处理后,将测量得到的温度值显示于液晶显示器上。

系统的全部输入输出控制集中由单片机统一管理,各有关运行参数的设定,可通过键盘输入,设定温度、箱温实时值在液晶显示模块上显示,操作方便。

该系统具有实时温度显示和温度设定功能,还具有温度上、下限报警和自动控制功能。

当温度高于或低于设定值一定程度时,发出生光报警,消除由于单片机系统意外失控所造成的危险,提高了恒温箱工作的可靠性和使用安全性。

设计任务为:用单片机设计一个控制温度围在30℃~80℃的智能温度控制系统。

设计要求:完成该系统的软硬件设计,学习掌握单片机采集测控系统的设计方法,提高学习新知识、新技能的能力,培养独立设计的能力。

2 系统设计分析2.1 系统功能分析恒温箱的智能控制系统由核心处理模块、温度采集模块、键盘输入模块、液晶显示模块、及控制执行模块等组成。

基于单片机的pid温度控制系统设计 -回复

基于单片机的pid温度控制系统设计 -回复

基于单片机的pid温度控制系统设计-回复基于单片机的PID温度控制系统设计摘要:本文将介绍一种基于单片机的PID温度控制系统的设计方法。

该系统利用单片机的强大计算处理能力和易编程特性,通过PID控制算法实现对温度的精确调节和稳定控制。

文章将从系统的硬件设计和软件编程两个方面逐步讲解具体设计步骤和实施方法,旨在帮助读者理解和掌握该技术。

第一节:引言温度控制是很多工程领域中常用的一项自动化控制技术。

在一些需要保持稳定温度或者按设定温度进行自动控制的应用中,如温室、恒温箱、冷藏室等,PID控制算法广泛应用。

而采用基于单片机的PID温度控制系统,无论是从成本、体积还是功能扩展等方面都具有一定优势。

第二节:系统硬件设计PID温度控制系统的硬件设计主要包括传感器模块、智能温控器模块和执行器模块。

1. 传感器模块:选择适合应用场景的温度传感器,如热敏电阻、热电偶等。

将传感器与单片机相连,通过模拟输入口将传感器输出的模拟电压信号转换为数字信号。

2. 智能温控器模块:使用单片机作为智能温控器的核心,通过LCD显示屏和按键,实现温度的设定和显示。

单片机利用PID控制算法对设定温度和实际温度进行比较,并输出控制信号。

3. 执行器模块:执行器模块用于控制温度。

根据具体系统要求,可以选择继电器、加热器、风扇等。

执行器根据控制信号的输入来执行相应的操作,从而实现温度的调节控制。

第三节:软件编程PID温度控制系统的软件编程主要包括单片机的初始化设置和PID控制算法的实现。

1. 单片机的初始化设置:包括系统时钟设置、IO引脚设置、模拟输入口配置、LCD显示配置、按键操作配置等。

这些设置可以利用单片机提供的开发工具或者编程软件完成。

2. PID控制算法的实现:PID控制算法是PID温度控制系统的核心部分。

PID控制器由比例(P)、积分(I)和微分(D)三个部分组成。

通过不断调节三个参数的大小以及权衡不同参数的影响,实现对温度的稳定控制。

基于单片机的PID温度控制器的设计

基于单片机的PID温度控制器的设计

毕业设计(论文)课题基于单片机的PID温度控制器的设计学院电子信息工程学院专业(方向)应用电子技术(通信电子)班级电子104学号姓名完成日期2012年11月30号指导教师基于单片机的PID温度控制器的设计摘要本文从软硬件两方面设计了一个温度自动控制器系统。

本设计系统以单片机(STC89C51RC)为控制核心,主要包括按键部分、DS18B20温度采集部分、温度报警部分、1602显示部分、温度控制部分及MAX232通信接口部分等硬件部分,从而实现智能温度控制。

本系统通过按键预设加热的最终保持水温的温度并进行实时显示预设温度和当前温度,并采用PID 算法的控制输出宽度可调的PWM 波来控制双向可控硅的导通和关断用以调整输出加热功率,使之切断或接通加热器,从而控制水温稳定在预设值上。

文中还着重介绍了软件设计部分,在这里采用模块化结构,主要模块有:LCD1602显示程序、键盘扫描及按键处理程序、温度信号处理程序、温度控制程序、超温报警程序。

本系统的主要设计思想是以硬件为基础,软件和硬件相结合,最终实现各个模块的功能。

关键词:单片机;DS18B20;PID算法;PWM波;双向可控硅;Project nameThe Design of PID Temperature Control System Basedon SCMAbstractThis article from two aspects of hardware and software design of a temperature automatic controller.This design system with single chip microcomputer (STC89C51RC) as the control core, including the key part, DS18B20 temperature acquisition part, temperature alarm part, 1602 portion of the display, temperature control part and MAX232 communication interface and other hardware components, thereby realizing the intelligent temperature control.This system through the keys to the preset heating ultimately keep water temperature and real-time display preset temperature and the temperature, and PID algorithm is used to control the output with adjustable width PWM to control thyristor turn-on and turn-off is used to adjust the output of the heating power, to cut off or switch on the heater, thereby controlling the temperature stability at a preset value.The article also emphatically introduced the software design part, uses the modular structure in here, the main modules: LCD1602 display program, the keyboard scan and key process, temperature signal processing procedure, temperature control procedures, over-temperature alarm program.This system main design idea is on the base of hardware, software and hardware integration, and ultimately to achieve the functions of each module.Key words:SCM DS18B20 PID Algorithm PWM Waveform Bidirectional controllable silicon目录摘要Abstract1 引言 (1)2 系统设计的内容及要求 (2)2.1 系统设计的内容 (2)2.2 系统设计的要求 (2)3 系统总体设计方案选择与论证 (2)3.1 控制芯片选择 (2)3.2 传感器的选择 (3)3.3 显示方式的选择 (3)3.4 键盘的选择 (4)3.5 温度加热控制的选择 (4)3.6 方案选择 (4)3.7 方案比较 (5)四.系统硬件设计 (5)4.1 系统的组成及框图 (5)4.2 系统功能及工作原理 (6)4.3 单片机最小系统控制部分 (6)4.4 温度采集部分 (7)4.4.1 DS18B20工作原理 (7)4.4.2 温度采集电路 (8)4.6 通信部分 (9)4.6.1 MAX232资料简介 (9)4.6.2 串口通信电路 (9)4.7 加热控制部分 (10)4.8 超温报警部分 (10)4.9 液晶显示部分 (10)4.9.1 液晶的介绍 (11)4.9.2液晶显示电路 (12)4.10 电源部分 (12)五.系统的软件设计 (13)5.1软件设计思路 (13)5.2 系统变量定义及I/O口分配 ......................................................................... 错误!未定义书签。

基于单片机应用的温度控制器设计答辩

基于单片机应用的温度控制器设计答辩
基于单片机步进电机的温 度控制器
指导老师:袁铭 答辩人:王振青 专业班级:电子1031 苏州科技学院天平学院
1
目录
• 概述 • 温度控制系统总体设计 • 硬件系统设计 • 软件系统设计 • 结束语 • 致谢
2
概述
随着社会的进步和工业技术的发展,人们越来越重视温度对产品的 影响,许多产品对温度范围要求严格,目前市场上普遍存在的问题有温 度信息传递不及时、精度不够的缺点,不利于工业控制者根据温度变化 及时做出决定。在这样的形式下,开发一种实时性高、精度高的温度采 集系统就很有必要。
本文叙述了用STC12C5A60S2单片机作为控制器,用NTC热敏电阻 制作的温度传感器实现温度测量,该方案根据热敏电阻随温度变化而变 化的特性,采用串联分压电路单片机采集热敏电阻的电压,通过A/D转 换将模拟量电压信号转换成数字量电压信号,同时用PID算法计算出 PWM占空比来控制加热时间。经过查表转换得到温度值,控制数码管实 时显示温度值并用LED灯报警。
总体设计
对于该温度控制系统,软件部分主要包括系统初始化子程序、电 压采集子程序、数据处理子程序、键盘及显示子程序、报警程序。总 体设计思路为:首先进行系统初始化,主要是设置定时器的工作方式、 赋初值及串行通信的波特率等。在while循环中调用各个子程序,实现 温度控制系统的各个功能。温度控制系统主函数流程图设计为如下图 所示。
13
14
数经据过温采放度集大控滤程制波序系电设统路经计将过电热信敏号电转阻换传为感标器准将信温号度供信单号片转机换采为集电。信号,又
STC12C5A60S2单片机有8路10位高速A/D转换器,转换口在P1口, 速度可达到250KHz,属于逐次比较型ADC。逐次比较型ADC由一个 比较器和D/A转换器构成,通过逐次比较逻辑,从最高位开始,顺序 地对每一输入电压与内置D/A转换器输出进行比较,经过多次比较, 使转换所得的数字量逐次逼近输入模拟量对应值。数据采集程序流程 图如图5.2所示。

(完整版)基于单片机的PID温度控制毕业设计论文

(完整版)基于单片机的PID温度控制毕业设计论文

前言温度是表征物体冷热程度的物理量。

在很多生产过程中,特别是在冶金、化工、建材、食品、机械、石油等工业中,温度的测量和控制都直接和安全生产、提高生产效率、保证产品质量、节约能源等重大技术经济指标相联系。

因此,温度的测量与控制在国民经济各个领域中均受到了相当程度的重视。

单片机系统的开发应用给现代工业测控领域带来了一次新的技术革命,自动化、智能化均离不开单片机的应用。

将单片机控制方法运用到温度控制系统中,可以克服温度控制系统中存在的严重滞后现象,同时在提高采样频率的基础上可以很大程度的提高控制效果和控制精度。

现代自动控制越来越朝着智能化发展,在很多自动控制系统中都用到了工控机,小型机、甚至是巨型机处理机等,当然这些处理机有一个很大的特点,那就是很高的运行速度,很大的内存,大量的数据存储器。

但随之而来的是巨额的成本。

在很多的小型系统中,处理机的成本占了系统成本的比例高达20%,而对于这些小型的系统来说,配置一个如此高速的处理机没有任何必要,因为这些小系统追求经济效益,而不是最在乎系统的快速性,所以用成本低廉的单片机控制小型的,而又不是很复杂,不需要大量复杂运算的系统中是非常适合的。

随着电子技术以及应用需求的发展,单片机技术得到了迅速的发展,在高集成度,高速度,低功耗以及高性能方面取得了很大的进展。

现在完全可以运用单片机和电子温度传感器对某处进行温度检测,而且可以很容易地做到多点的温度检测,如果对此原理图稍加改进,还可以进行不同地点的实时温度检测和控制。

1绪论1.1研究的目的和意义温度是工业生产中主要被控参数之一,温度控制自然是生产的重要控制过程。

工业生产中温度很难控制,对于要求严格的的场合,温度过高或过低将严重影响工业生产的产质量及生产效率,降低生产效益。

这就需要设计一个良好温度控制器,随时向用户显示温度,而且能够较好控制。

单片机具有和普通计算机类似的强大数据处理能力,结合PID,程序控制可大大提高控制效力,提高生产效益[9]。

基于单片机的恒温箱控制系统设计方案

基于单片机的恒温箱控制系统设计方案

设计一个基于单片机的恒温箱控制系统涉及到硬件设计和软件编程两个方面。

下面是一个简要的设计方案:硬件设计:1. 传感器选择:选择合适的温度传感器,如DS18B20数字温度传感器,用于实时监测箱内温度。

2. 执行器:选择合适的加热器或制冷器作为执行器,用于调节箱内温度。

3. 单片机:选择适合的单片机,如Arduino Uno或STM32等,作为控制核心。

4. 显示器:可以添加LCD显示屏,用于显示当前温度和设定温度。

5. 输入设备:可以添加旋钮或按钮,用于设定目标温度。

软件设计:1. 温度读取:编写程序从温度传感器读取实时温度数据。

2. 控制算法:设计恒温控制算法,比如PID控制算法,根据实际温度和设定温度调节加热器或制冷器。

3. 用户界面:编写程序实现与用户的交互,包括设定目标温度和显示当前温度。

4. 安全保护:添加温度过高或过低的报警功能,保护箱内物品和系统安全。

5. 实时监控:实现实时监控功能,定时记录温度数据并可通过串口或WiFi上传至PC进行分析。

实施步骤:1. 进行硬件连接,将温度传感器、执行器和单片机连接好。

2. 编写单片机程序,包括温度读取、控制算法等功能。

3. 测试程序功能,确保可以准确地读取温度并控制箱内温度。

4. 调试控制算法,优化控制效果,确保恒温箱可以稳定工作。

5. 添加用户界面和安全保护功能,完善系统设计。

通过以上硬件设计和软件编程,可以实现一个基于单片机的恒温箱控制系统,能够稳定地控制恒温箱内的温度,满足不同实验或存储需求。

在实际应用中,还可以根据具体需求对系统功能和性能进行进一步优化和扩展。

(完整word版)基于PID的恒温箱温度控制系统设计

(完整word版)基于PID的恒温箱温度控制系统设计

基于PID的恒温箱温度控制系统设计2008届)2008年6月摘要本设计是恒温箱温度控制系统设计。

可供各类实验室、医疗机构、食品加工、生产部门等使用。

在周围温度不断变化条件下,使用恒温箱,可以使一定范围的温度恒定在特定温度下,从而适应生活和工作。

控制的温度范围为50—1200C。

恒温箱可以在线设定温度,并对温度进行实时数码显示。

设计内容包括硬件和软件两个部分。

硬件主要由AT89S52单片机、DS18B20 数字温度传感器、8155 片外存储器、继电器,LED 数码管和报警器等组成。

电原理图包括数据采集、温度显示、键盘设定、温度控制和复位电路等几个模块。

软件部分主要对PID 算法进行了数学建模和编程。

本设计由键盘电路输入设定温度信号给单片机,温度信号采集电路采集现场温度信号给单片机,单片机根据输入与反馈信号的偏差进行PID 计算,输出控制信号给加温控制电路,实现加温和停止。

当实际温度比设定温度大2 摄氏度以上时,则清P1.3 输出口,从而停止对电阻丝的加热。

当实际温度比设定温度小2 摄氏度以上时,取PID 的最大值,实现全功率输出。

在它们之间时,实现PID 算法控制,控制可控硅的接触时间,调节电阻丝功率。

显示电路实现现场温度的实时监控。

软件部分,采用PID 控制和时间最优控制相结合的控制方案,实现了控制速度快、超调小、线性控制精度高和实现成本低等的优点。

硬件部分采用单片机来实现温度控制,不仅具有控制方便、简单、灵活等优点,而且可以大幅度的提高被控温度的技术指标,从而大大提高产品的质量。

关键词:恒温控制,单片机,数字PID 算法ABSTRACTThe system of this design is the temperature controller of a constant temperature box.Can be provided as each kind of laboratory, medical treatment organization, food processing and produce the section etc. usage.Under the condition that the surroundings temperature continuously change, the usage constant temperature box, can make the temperature maintaining of the certain scope settle under the particular temperature, thus adapt the life and works.The temperature scope of the control is 50-120, The constant temperature box can with on-line enactment temperature, and carry on the solid hour to the temperature figures manifestation.When be placed in to set the appearance, figures tubemanifestation enactment temperature, circulate, manifestation actual temperature.Design content including hardware and software two parts. The hardware mainly by at89S52 monolithic integrated circuit, the DS18B20 digit temperature sensor, 8155 piece of external memory, the relay, the LEDnixietube and the alarm apparatus and so on is composed. Electricity schematic diagram including data acquisition, temperature demonstration, keyboard hypothesis, temperature control and reset circuit and so on several modules. The software part mainly hascarried on mathematics modelling and the programming to the PID algorithm.The circuit design of the keyboard input from the set temperature signal to the microcontroller, Temperature Signal Acquisition Circuit collect temperature signal to the microcontroller, According to SCMinput and feedback signal, the error for PID, the outputcontrol signals to the heating control circuit, Heating and achieve stop. Showcircuit scene of the real-time monitoring of temperature. Whenactualtemperature compares to set temperature big more than 2 degrees , then the pureexportation, thus stop to electric resistance silk of heating.When the actual temperature compares to set smaller than 2 degrees , taking the PID biggest value, carrying out the whole power exportation.among the two , carry out the PID calculate way control, control contact time that controvablesilicon , regulate the electric resistance silk power.software part, the adoption PID control and the control project time superior control combine together, carried out to control the quick,super adjust small, line control the accuracy is high and carry out thecost advantage of low etc..The hardware part adopts a machine to carry out the temperature control, not only have the control convenience, simple, vivid etc. advantage, and can is control with the significant exaltation the technique index sign the quantity of the product thus andconsumedly.Keywords:Temperature ,control ,microcontroller , 目录绪论还是在日常生活中, 都已 经变得非常适用和广泛了。

基于单片机的水温控制系统设计答辩ppt

基于单片机的水温控制系统设计答辩ppt

姓 名:
导师:
专 业 :电气工程及其自动化
CONTENTS
01 选题背景与意义
background and significance of Topic selection
02 研究过程及方法
Research process and methods
03 研究成果
Research results
04 论文归纳与小结
Summary of Papers and Acknowledgements
论文概述
本文主要是设计一种水龙头水温控制系统,该 系统主要由水温设置模块、水阀控制模块、温度采 集模块等组成,利用温度设置模块输入温度,用单 片机对温度进行数据采集与设定的温度数据进行对 比判断,再用四相步进电机实现对冷、热水进水量 的控制,重复进行以上步骤,使温度不断逼近输入 温度。
3. 温控步进电机: 根据温度差值的正负来 控制步进电机的转向, 从而控制冷水和热水的 流量。

4. 液晶显示:将部分 数据显示在LCD屏上, 包括温度数据和输入的 温度设定值。
5. 键盘输入:通过 键盘输入模块获取用 户输入的温度设定值。
总结来说,该水龙头水温控制系统的硬件部分包括温度 采集模块、键盘输入模块、水阀控制模块和液晶显示模块, 核心为单片机芯片。软件部分包括主模块程序、温度数据采 集、温控步进电机、液晶显示和键盘输入等模块。然而,该 系统目前还存在一些问题,需要进一步完善和调试。
01
background and significance of Topic selection
水龙头在人们生活中起到调节水流大小的作用,但现代人们对水龙 头的需求已不仅限于调节水流,更多关注外观、耐用性和水温控制等方 面。随着科技的发展,信息技术、计算机技术和电子技术的应用也进一 步改善了水温控制的需求。水温的控制在工业、农业生产中具有重要作 用,过高或过低的水温会造成资源浪费和损失。此外,水温的变化也会 影响人们的心情和生活体验。因此,将水龙头与科技技术相结合,实现 水温控制系统,能够提高生活质量和有效利用水资源。在设计水温控制 系统时,安全性是重要考虑因素之一。温度传感器需要与水接触,因此 必须具备防水功能,以确保水温数据的准确性和使用安全。温度控制和 流量控制是构成水温控制系统的关键,温度控制调节水温,流量控制控 制冷热水的进水量,以实现最终从水龙头流出的水温符合需求。

基于单片机及PID算法的水温控制系统的设计

基于单片机及PID算法的水温控制系统的设计

基于单片机及PID算法的水温控制系统的设计【摘要】此水温控制系统以单片机AT89S52为核心控制器,温度由DS18B20数字温度传感器进行采集。

为了更精确的测温,本系统采用三点测温,并采用PID算法进行水温控制,使温度能够自行调节。

【关键词】AT89S52单片机;DS18B20;可控硅;PID算法控制;LCD16021.引言温度控制在生产生活中应用都十分广泛,但其控制过程中存在着很大的时滞性和极强的干扰性,因此,如何很好地控制温度是评价一个温度控制系统优劣的关键之处。

PID控制是按设定值和被控量偏差的比例、积分和微分进行控制的一种控制方法。

PID控制在控制理论中占有举足轻重的地位,由于其结构简单、稳定性好、工作可靠、调整方便,被广泛应用于包括温度控制的各种控制过程中。

本课题是设计一个水温自动控制系统,设定温度是80度,从40度对500mL 的水加热,在多种环境下,达到80度的时间不超过5分钟,温度最后稳定在80度左右的调整时间不超过4分钟,超调量不大于5%。

2.总体设计方案本系统主要由单片机控制模块、温度检测模块、可控硅控制电路模块、加热电路、矩阵键盘、液晶显示模块等部分组成。

其整体设计框图如图1所示:图1 系统框图图2 控制电路本系统主要以单片机AT89S52为核心,基于自动控制原理与PID算法,根据不断扫描测量的温度值对电炉进行反馈调节,从而对温度实现精确的调节。

温度传感器DS18B20将测得的温度数据传输给单片机AT89S52,单片机来调整PWM波的占空比,通过驱动电路对可控硅进行控制完成对电炉的通断电控制,从而控制其功率,达到调节水温的目的。

3.各个模块电路设计(1)主控部分:由于本控制系统并不复杂,故选择Atmel公司的A T89S52单片机作为CPU。

(2)温度采集部分:本系统选择使用数字温度传感器DS18B20检测温度。

其温度测量精度较高,能够达到0.0625度以上精度。

为了更精确测量,采用多点测温的方法,本系统中选用三点测温。

基于单片机的恒温箱温度控制系统的设计

基于单片机的恒温箱温度控制系统的设计

课程设计题目:单片机恒温箱温度控制系统的设计本课程设计要求:本温度控制系统为以单片机为核心,实现了对温度实时监测和控制,实现了控制的智能化。

设计恒温箱温度控制系统,配有温度传感器,采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输,采用了PID控制技术,可以使温度保持在要求的一个恒定范围内,配有键盘,用于输入设定温度;配有数码管LED用来显示温度。

技术参数和设计任务:1、利用单片机AT89C2051实现对温度的控制,实现保持恒温箱在最高温度为110℃。

2、可预置恒温箱温度,烘干过程恒温控制,温度控制误差小于±2℃。

3、预置时显示设定温度,恒温时显示实时温度,采用PID控制算法显示精确到0.1℃。

4、温度超出预置温度±5℃时发出声音报警。

5、对升、降温过程没有线性要求。

6、温度检测部分采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输7、人机对话部分由键盘、显示和报警三部分组成,实现对温度的显示、报警。

一、本课程设计系统概述1、系统原理选用AT89C2051单片机为中央处理器,通过温度传感器DS18B20对恒温箱进行温度采集,将采集到的信号传送给单片机,在由单片机对数据进行处理控制显示器,并比较采集温度与设定温度是否一致,然后驱动恒温箱的加热或制冷。

2、系统总结构图总体设计应该是全面考虑系统的总体目标,进行硬件初步选型,然后确定一个系统的草案,同时考虑软硬件实现的可行性。

总体方案经过反复推敲,确定了以美国Atmel公司推出的51系列单片机为温度智能控制系统的核心,并选择低功耗和低成本的存储器、数码显示器等元件,总体方案如下图:图1系统总体框图二、硬件各单元设计1、单片机最小系统电路单片机选用Atmel公司的单片机芯片AT89C2051 ,完全可以满足本系统中要求的采集、控制和数据处理的需要。

单片机的选择在整个系统设计中至关重要,该单片机与MCS-51系列单片机高度兼容、低功耗、可以在接近零频率下工作等诸多优点,而广泛应用于各类计算机系统、工业控制、消费类产品中。

基于单片机的温度控制器设计-毕业答辩

基于单片机的温度控制器设计-毕业答辩

若实际温度小 若实际温度等 若实际温度大 于设置温度 于设置温度 于设置温度 升温及电器闭合 升温及电器断开 升温及电器断开 降温继电器断开 降温继电器断开 降温继电器闭合
若实际温度大 若实际温度等 若实际温度小 于设置温度 于设置温度 于设置温度 升温及电器断开 降温继电器闭合 升温及电器断开 升温及电器闭合 降温继电器断开 降温继电器断开
D5
LED-BIBY
D4
LED-BIBY
D3
LED-BIBY
4.7k
R12
470
R13
470
R14
470
R15
470
四、仿真
仿真2:
LCD1
LM016L
VSS VDD VEE
RS RW E 4 5 6
1 2 3
Q1 Q2
PNP
U1
PNP 19 XTAL1 P0.0/AD0 P0.1/AD1 P0.2/AD2 P0.3/AD3 P0.4/AD4 P0.5/AD5 P0.6/AD6 P0.7/AD7 P2.0/A8 P2.1/A9 P2.2/A10 P2.3/A11 P2.4/A12 P2.5/A13 P2.6/A14 P2.7/A15 P3.0/RXD P3.1/TXD P3.2/INT0 P3.3/INT1 P3.4/T0 P3.5/T1 P3.6/WR P3.7/RD 39 38 37 36 35 34 33 32 21 22 23 24 25 26 27 28 10 11 12 13 14 15 16 17
7 8 9 10 11 12 13 14
D0 D1 D2 D3 D4 D5 D6 D7
D1
LED-BIBY
D2
LED-BIBY

基于PID算法的恒温控制系统设计.docx

基于PID算法的恒温控制系统设计.docx

课程设计说明书题目:基于PID算法的恒温控制系统设计学号:姓名:指导教师:日期:目录一、设计题目 (1)二、设计要求 (1)三、设计思路 (1)四、实验设备 (1)五、硬件介绍 (1)六、硬件接线图 (3)七、软件流程图、 (4)八、PID参数确定 (5)九、实验总结 (6)附件:实验程序 (7)一、设计题目基于PID算法的恒温控制系统设计二、设计要求1.利用DS18B20采集温度并显示;2.利用单片机I/O管角输出PWM控制功率电阻发热;3.基于PID算法实现恒温控制。

三、设计思路本设计要求实时采集温度并实现恒温控制,根据设计要求,本次设计拟采用AT89C52单片机作为控制芯片,采集部分使用DS18B20温度传感器,显示部分采用数码管显示实时温度,功率电阻作为控制对象。

在PID算法的基础上完成恒温控制系统的设计。

四、实验设备单片机开发试验仪1台AT89C52单片机芯片1个DS18B20温度传感器1个C9013三极管1个1W功率二极管1个五、硬件介绍DS18B20:DS18B20是常用的温度传感器,具有体积小,硬件开销低,抗干扰能力强,精度高的特点。

DS18B20的主要特征:全数字温度转换及输出。

先进的单总线数据通信。

最高12位分辨率,精度可达土0.5摄氏度。

12位分辨率时的最大工作周期为750毫秒。

可选择寄生工作方式。

检测温度范围为–55°C ~+125°C (–67°F ~+257°F)内置EEPROM,限温报警功能。

64位光刻ROM,内置产品序列号,方便多机挂接。

多样封装形式,适应不同硬件系统。

DS18B20数据采集过程⑴GND 地信号⑵DQ 数据输入/输出引脚。

开漏单总线接口引脚。

当被用着在寄生电源下,也可以向器件提供电源。

⑶VDD 可选择的VDD引脚。

当工作于寄生电源时,此引脚必须接地。

由于DS18B20采用的是1-Wire总线协议方式,即在一根数据线实现数据的双向传输,而对AT89S51单片机来说,硬件上并不支持单总线协议,因此,我们必须采用软件的方法来模拟单总线的协议时序来完成对DS18B20芯片的访问。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019.12.17—20201.14
系统学习单片机及其他元器件配 套使用的相关知识,完成硬件电 路设计;
3
2020.3.2—2020.4.8 编写出恒温箱控制系统的程序代 码,完成软件设计,写出论文初 稿;
2020.4.9—2020.4.22
完成论文终稿,完成论文重复率自 查;
2020.4.23—2020.5.6
基于单片机的PID恒温箱控制系统的设计 1


指导教师:张加胜

汇报人:XXX 班级:16电气本1

2
论文的主题 设计是否完

论文初 稿是否
完成
未按时 完成的
原因
有哪些需指导教师或学院提供帮助


研究计划及进度安排
2019.11.25—2019.12.16 在查阅文献、深入企业现场 考查、广泛调研后,确定本 设计的总体设计方案与结构
AD连线图和PCB图
6
6
温度检测模块
技术参数: 供电电压:3.0~5.5VDC 测量范围:-55℃~﹢125℃ 测量精度:±0.5℃ 分 辨 率:9~12位,对应的 可分辨温度分别为0.5℃、0.2 5℃、0.125℃和0.0625℃。
Q D K 5 0 R1 C C V 123 DC O / NC I GV 4 QDS18B20 dd pp 3 gg 5 ff 1 0 ee 1 dd 2 cc 4 bb 7 aa 1 1 管 码 W 4 数 6 位 W 3 4 8 W 2 9 2 W 1 D 1 2 0000 3456 5555 QQQQ 5555 8888 SSSS 5678 K RRRR1 KKK 111 C C V 1234 WWWW
将论文及相关材料汇总提交, 准备答辩PPT;
2020.5.7—2020.5.29
进行论文答辩及后续材料完善工 作。
论文主体材料
复位电路
晶振电路
电源电路 DS18B20温度传
感器 独立按键
STC89C51 主控芯片
可控硅控制 光耦隔离 LED提示电路 数码管显示电路
4
本设计是基于51单片机和PID的恒温箱 温度测量及控制系统,能够测量温度, 并能根据输入与反馈信号的偏差进行 PID计算,输出控制信号给温控电路, 保证环境温度在限定的范围内,超限 的情况下进行报警提醒。 系统设计主要体现: ①在温度改变时可以迅速的调整输出; ②通过四位共阳数码管实时显示温度 值,系统设立几个按键,可以通过按 键进行设置温度; ③预置时显示设定温度,恒温时显示 实时温度。
延时
关闭位选w4=1;
结束
8
数码管显示 子程序流程图
演示视频
9
9
10
THANK YOU FOR WATCHING 辛苦各位老师
汇报人:XX
可控硅设计
7
硬件设计
7
软件设计
开始
DS18B20初始化 读取存储在
EEPROM的数据 PID参数初始化 定时器否正常 显示set_f==0?


DS18B20温度采集 读取
否 关闭加热
温度是否采集 正确?

判断温度是否达到 设定值?
是 关闭PWM输出
显示设置温度值
否 开启PWM输出控
制温度
显示温度值
开始
查表获得第一位段 选码送入P0口 打开位选w1=0;
延时
关闭位选w1=1; 查表获得第二位段
选码送入P0口 打开位选w2=0;
延时
关闭位选w2=1;
查表获得第三位段 选码送入P0口 打开位选w3=0;
延时
关闭位选w3=1; 查表获得第四位段
选码送入P0口 关闭位选w4=0;
硬件设计
数码管显示模块
独立按键设计
234 YYY EEE KKK 键键键 置值值 设加减 PWM 0 K 5 R121 5 8 8 QS 0 9 5 R1 C C V 123 123 456 5 UMOC3041 456 0 7 0 4 7 R144 R13 3 BT137 7 Q 12 柱 线 4 U接
相关文档
最新文档