七年级数学上册3.4实际问题与一元一次方程课件(8)人教版(1)
合集下载
3.4.5实际问题与一元一次方程——电费水费问题课件+2023-—2024学年人教版数学七年级上册
主叫时间t /min t 小于150 t =150
t 大于150且小于 350
t =350
t 大于350
方式一计费/元 58 58
方式二计费/元 88 88
58+0.25(t-150)
88
58+0.25(350-150) =108
88
58+0.25(t-150) 88+0.19(t-350)
分析:根据所列出的表格可以发现:随着主叫时间的变化, 按哪种方式的计费少也会发生变化.
下面比较不同时间范围内方式一和方式二的计费情况.
主叫时间 t /min t 小于150 t =150
t 大于150且小于 350
t =350
t 大于350
方式一计费/元
58 计费少 58 计费少
方式二计费/元 88 88
58+0.25(t-150)
88
58+0.25(350-150) =108
88 计费少
主叫限定 主叫超时费/ 时间/min (元/min)
150
0.25
350
0.19
被叫
免费 免费
问题 2:话费是由___主__叫__时__间____决定的.
下表中有两种移动电话计费方式.
计费 月使用 方式 费/元
方式一 58
方式二 88
主叫限定 主叫超时费/ 时间/min (元/min)
150
0.25
88
当t 从150增加到 350时,按方式一的计费由 58元增加到108元, 而方式二的计费一直是 88元,因此当t大于150并且小于350时,可 能在某主叫时间按方式一和方式二的计费相等,都为88元.
问题 当 t 大于150且小于 350时,计费情况怎样?
人教版2020-2021学年七年级数学上册3.4 实际问题与一元一次方程--球赛积分表问题 电话计费问题课件
8. 用A4纸在某复印社复印文件,复印页数不超过20 时每页收费0.12元;复印页数超过20时,超过部 分每页收费0.09元. 在某图书馆复印同样的文件, 不论复印多少页,每页收费0.1元. 问:如何根据 复印的页数选择复印的地点使总价格比较便宜? (复印的页数不为零)
解:设复印页数为x,依题意,列表得:
解:由C队的得分可知,胜场积分+负场积分=27÷9=3. 设胜一场积x分,则负一场积(3-x)分.
根据A队得分,可列方程为 14x+4(3-x)=32,
解得x=2,则3-x=1. 答:胜一场积2分,则负一场积1分.
想一想:某队的胜场总积分能等于它的负场总积分吗?
能. 胜6场、负12场时,胜场总积分等于它的负场总积分.
(1) 比较下列表格的第2、3行,你能得出什么结论?
主叫时间t /分 t 小于150 t 等于150
方式一计费/元 方式二计费/元
58
<
88
58
< 88
①当t ≤150时,方式一计费少(58元);
(2) 比较下列表格的第2、4行,你能得出什么结论?
主叫时间t /分 方式一计费/元 方式二计费/元
4. 用方程解决实际问题时,要注意检验方程的解是 否正确,且符合问题的实际意义.
当堂练习
1. 某球队参加比赛,开局 9 场保持不败,积 21 分,
比赛规则:胜一场得 3 分,平一场得 1分,则该
队共胜
(C)
A. 4场 B. 5场 C. 6场 D. 7场
2. 中国男篮CBA职业联赛的积分办法是:胜一场积 2 分,负一场积 1 分,某支球队参加了12 场比赛, 总积分恰是所胜场数的 4 倍,则该球队共胜__4__ 场.
初中数学教学课件:3.4 实际问题与一元一次方程 第1课时(人教版七年级上)
3.4 实际问题与一元一次方程
第1课时
1.进一步掌握列一元一次方程解应用题的方法步骤.
2. 通过分析零件配套问题及工作量中的相等关系,进一步
经历运用方程解决实际问题的过程,体会方程模型的作用. 3.培养学生自主探究和合作交流的意识和能力,体会数学的 应用价值.
1.一件工作,甲单独做20小时完成,乙单独做12小时完成.
解:设乙队还需要x天才能完成.
1 1 1 ( )3 x 1 , 9 24 24
解得
x=13.
答:乙队还需要13天才能完成.
列方程解应用题的步骤:
设未知数 列方程 实际问题
→
数学问题 (一元一次方程)
↓
实际问题的 答案
解 方 程
↓
←
检验
数学问题的解 x=a
1. 已知关于x的方程3x + a = 0的解比方程 2x–3 =x + 5的解大2,则a = -30 .
.
解:设先安排x人工作4小时,根据相等关系: 两段完成的工作量之和应等于总工作量 列出方程: 4x 8 x 2 1
40 40
解得x=2 则应由2人先做4小时
一个道路工程,甲队单独做9天完成,乙队单独做24天 完成.现在甲乙两队共同施工3天,因甲另有任务,剩下 的工程由乙队完成,问乙队还需几天才能完成?
1 n
是
.
2.工作量= 人均效率×人数×时间.
3.各阶段工作量的和=总工作量.
各人完成的工作量的和=完成的工作总量.
分析:这里可以把工作总量看作 1
请填空:
4x 40
人均效率(一个人做1小时完成的工作量)为
由x人先做4小时,完成的工作量为
8 x 2 40
第1课时
1.进一步掌握列一元一次方程解应用题的方法步骤.
2. 通过分析零件配套问题及工作量中的相等关系,进一步
经历运用方程解决实际问题的过程,体会方程模型的作用. 3.培养学生自主探究和合作交流的意识和能力,体会数学的 应用价值.
1.一件工作,甲单独做20小时完成,乙单独做12小时完成.
解:设乙队还需要x天才能完成.
1 1 1 ( )3 x 1 , 9 24 24
解得
x=13.
答:乙队还需要13天才能完成.
列方程解应用题的步骤:
设未知数 列方程 实际问题
→
数学问题 (一元一次方程)
↓
实际问题的 答案
解 方 程
↓
←
检验
数学问题的解 x=a
1. 已知关于x的方程3x + a = 0的解比方程 2x–3 =x + 5的解大2,则a = -30 .
.
解:设先安排x人工作4小时,根据相等关系: 两段完成的工作量之和应等于总工作量 列出方程: 4x 8 x 2 1
40 40
解得x=2 则应由2人先做4小时
一个道路工程,甲队单独做9天完成,乙队单独做24天 完成.现在甲乙两队共同施工3天,因甲另有任务,剩下 的工程由乙队完成,问乙队还需几天才能完成?
1 n
是
.
2.工作量= 人均效率×人数×时间.
3.各阶段工作量的和=总工作量.
各人完成的工作量的和=完成的工作总量.
分析:这里可以把工作总量看作 1
请填空:
4x 40
人均效率(一个人做1小时完成的工作量)为
由x人先做4小时,完成的工作量为
8 x 2 40
七年级数学上册 第三章 一元一次方程 3.4 实际问题与一元一次方程(电话计费问题)课件
第十页,共十八页。
2.对问题的深入(shēnrù)探 究
主叫时间t /分 方式一计费/元
t >350
58+0.25(t-150)
方式二计费/元 88+0.19(t-350)
当t >350分时,两种计费(jìfèi)方式哪种更合算呢?
当t>350分时,可以看出,按方式一的计费为108元加 上超过350min部分(bùfen)的超时费0.25(t-350)元,按方式 二的计费为88元加上超过350min部分的超时费0.19(t350)元,按方式二的计费划算.
(1)t<150 (2)t=150 (20213/12)/5 150<t<350
(4)t=350 (5)t>350
第六页,共十八页。
问题2:深入月使(sh用ēnrù)探主究叫限定
费(元) 时间(分)
主叫超时 费(元/分)
被叫
问题3:设一个月内用移动电话主叫为t 分(t是正整 方式一数).根据58表格(biǎogé)1,5当0 t 在不同0时.2间5 范围内免取费值,
观察,分析,判断,解答,验证
2021/12/5
第十七页,共十八页。
内容(nèiróng)总结
创设情境引入新课。由上表可知,营业厅根据________的不同进行收费,所以。(3)150< t<350。问题3:设一个月内用移动电话主叫为t 分(t是正整。列表说明(shuōmíng)按方式一和
No 方式二如何计费.。150<t< 350。150<t< 350。150<t<350时,方式一话费从__元增加到
2021/12/5
第十四页,共十八页。
用A4纸在某誊印社复印文件,复印页数不超过20时每页收费0.12元;复印页 数超过20页时,超过部分每页收费0.09元. 在某图书馆复印同样的文件,不论复印 多少页,每页收费0.1元. 如何根据复印的页数选择(xuǎnzé)复印的地点使总价格 比较便宜?(复印的页数不为零)
2.对问题的深入(shēnrù)探 究
主叫时间t /分 方式一计费/元
t >350
58+0.25(t-150)
方式二计费/元 88+0.19(t-350)
当t >350分时,两种计费(jìfèi)方式哪种更合算呢?
当t>350分时,可以看出,按方式一的计费为108元加 上超过350min部分(bùfen)的超时费0.25(t-350)元,按方式 二的计费为88元加上超过350min部分的超时费0.19(t350)元,按方式二的计费划算.
(1)t<150 (2)t=150 (20213/12)/5 150<t<350
(4)t=350 (5)t>350
第六页,共十八页。
问题2:深入月使(sh用ēnrù)探主究叫限定
费(元) 时间(分)
主叫超时 费(元/分)
被叫
问题3:设一个月内用移动电话主叫为t 分(t是正整 方式一数).根据58表格(biǎogé)1,5当0 t 在不同0时.2间5 范围内免取费值,
观察,分析,判断,解答,验证
2021/12/5
第十七页,共十八页。
内容(nèiróng)总结
创设情境引入新课。由上表可知,营业厅根据________的不同进行收费,所以。(3)150< t<350。问题3:设一个月内用移动电话主叫为t 分(t是正整。列表说明(shuōmíng)按方式一和
No 方式二如何计费.。150<t< 350。150<t< 350。150<t<350时,方式一话费从__元增加到
2021/12/5
第十四页,共十八页。
用A4纸在某誊印社复印文件,复印页数不超过20时每页收费0.12元;复印页 数超过20页时,超过部分每页收费0.09元. 在某图书馆复印同样的文件,不论复印 多少页,每页收费0.1元. 如何根据复印的页数选择(xuǎnzé)复印的地点使总价格 比较便宜?(复印的页数不为零)
(名师整理)最新人教版数学7年级上册第三章第4节《实际问题与一元一次方程——销售问题》精品课件
某种商品每件的进价是 250元,按标价的九折销售 时,利润率是15.2%,这种 商品每件标价是多少?
5. 某件商品进价100元,盈利15%,则 它盈利了____元.它的售价为____.
6. 某件商品进价100元,亏损15%,则 它亏损了____元.它的售价为____.
7. 某件商品进价为a元,盈利25%,这 件商品的售价为____.
—— 约·诺里斯
实际问题与一元一次方程
销售中的盈亏问题
学习目标
1.理解商品销售中的相关概念及数量关系。 (重点)
2. 根据商品销售中的数量关系列一元一次方 程解决与打折销售有关的实际问题 ,并掌握解 决此类问题的一般思路。(难点)
商品销售中的盈亏问题。
成本; 成本价; 进价
标价;
定价;
原价
销售价; 售出价; 实际售价
3. 某件商品进价100元,盈利10% ,则它盈利了___元.
4. 某件商品进价100元,亏损10% ,则它亏损了___元.
某件商品的售价为80 元,可获利20%, 这件商 品的进价为多少元?
某种商品的零售价是每 件900元,为了适应市场竞 争,商品按零售价的九折降 价并让利40元销售,仍可获 利40%,则进价为每件多少 元?
利润; 盈利; 亏损
利润率
利润 = 售价-进价
利润率
=
利润 进价
打x折的售价= 原价× x
10
1. 一件上衣进价是100元,售价 是150元.盈利了_____元.
2. 一件上衣进价是100元,售价 是50元.亏损了_____元.
3.一件上衣进价是100元,盈利 50元.售价是_____.
4.一件上衣进价是100元,亏损 30元.售价是_____.
实际问题与一元一次方程(第二课时销售利润与球赛积分问题)(课件)七年级数学上册(人教版)
4 10 18
钢铁 14
0 14 14
互动新授
问题4:怎样用式子表示总积分与胜、负场数之间的关系?
解:若一个队胜 m场,则负(14-m) 场,胜场积分为2m,负场积分为14-m,总 积分为:
2m+(14-m)=m+14.
即胜m场的总积分为(m+14)分.
队名 前进 东方 光明 蓝天 雄鹰 远大 卫星 钢铁
售价 成本
老式剃须刀 2.5(元/把) 2 (元/把)
新式剃须刀
刀架
刀片
1 (元/把)
0.55(元/片)
5 (元/把)
0.05(元/片)
拓展训练
解:设这段时间内乙厂家销售了x把刀架.依题意,得
(0.55-0.05)×50x+(1-5)x=2×(2.5-2)×8 400.
解得
x=400.
销售出的刀片数=50×400=20000(片).
所以两个计算器总进价为120元,而总售价128元,进价小于售价, 因此两个计算器总的盈利情况为盈利8元.
课堂检测
2.某超市规定,若购买不超过50元的商品,按定价金额 收费;若购买超过50元的商品,超过部分按定价的九折收费. 某顾客在一次消费中付了212元,则该顾客购买的是定价为多 少元的商品?
解:设顾客购买的是定价为x元的商品, 依题意有:50+0.9(x-50)=212, 解得 x=230.
比赛场次 14 14 14 14 14 14 14 14
胜场 负场 积分 10 4 24 10 4 24 9 5 23 9 5 23 7 7 21 7 7 21 4 10 18 0 14 14
互动新授
问题5:某队胜场总积分能等于它负场总积分吗?
人教版七年级上册实际问题与一元一次方程课件
知识回顾 问题探究 课堂小结 随堂检测
探究二:解决生活中销售盈亏问题
活动3 反思过程,发现规律
重点、难点知识▲
点评:不要认为一件盈利25%,一件亏损25%,结果不盈 不亏,因为盈亏要看这两件的进价.例如盈利25%的一件 进价为40元,那么这一件盈利40%×25%=10(元),亏 损25%的一件进价为80元,那么这一件亏损了 80×25%=20(元),总的还是亏损10元,这就是说,亏 损25%的一件进价如果比盈利25%的一件进价高,那么总 的是亏损,反之才是盈利.
知识回顾 问题探究 课堂小结 随堂检测
探究二:解决生活中销售盈亏问题
活动2 集思广益,讨论交流解决问题
重点、难点知识▲
解决销售中的利润问题,一定掌握进价、售价、标价、利
润、利润率、打折等概念和它们之间的基本数量关系:
利润=售价-进价;
利润率=
利润 进价
100%=
售价-进价 进价
100%
折数
售价=标价 × 10 =进价×(1+利润率)
问题3 这里的盈利率、亏损率指的是什么?
这里盈利 25%= 进利价润,亏损25%就是盈利-25%.
利润率=
利润 进价
100%=
售价-进价 进价
100%
知识回顾 问题探究 课堂小结 随堂检测
探究二:解决生活中销售盈亏问题
活动2 集思广益,讨论交流解决问题
重点、难点知识▲
第一件 第二件
售价 60 60
知识回顾 问题探究 课堂小结 随堂检测
探究二:解决生活中销售盈亏问题
活动3 反思过程,发现规律
重点、难点知识▲
总结:有关销售盈亏问题的应用题中:
(1)当利润值为正数时是盈利,当利润值为负数时为亏损;
人教版七年级数学上册 实际问题与一元一次方程-销售中的盈亏问题(课件)
的大米,按照九折销售仍可获利13元,设这袋大米的成本为x元,根据题意,
下面所列的方程正确的是( A )
A.130 × 0.9 − x = 13
C.x −
130
9
= 13
B.(130 − x) × 0.9 − x = 13
D.(130 − x) × 0.9 = x − 13
5.某电商平台将一件商品按进价提高40%后标价,又以8折优惠卖出,结果每
意,得
x+0.25x=60
解方程,得
x=48
一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利
25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
问题3:两件衣服的成本各是多少元?
亏损的一件
解:设亏损25%的那件衣服进价是y元. 根据
题意,得
y-0.25y=60
解方程,得
1.售价、进价、利润的关系:利润=售价-成本价(进价)
2.进价、利润、利润率的关系:
利润
利润率= 成本价 ×100% 或 利润=成本价(进价)×利润率
3.标价、折扣数、商品售价的关系:
商品售价=标价× 折扣数
10
4.商品售价、进价、利润率的关系:
商品售价=商品进价×(1+利润率)
某琴行同时卖出两台钢琴,每台售价为960元. 其中一台盈利20%,另一台亏
解:设小书包的进价为x元. 根据题意,得
30%x=20%(x+10)
解方程,得 3x=2(x+10)
3x=2x+20
x=20
x+10=30
答:小书包的进价为20元,大书包的进价为30元.
8.一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的
下面所列的方程正确的是( A )
A.130 × 0.9 − x = 13
C.x −
130
9
= 13
B.(130 − x) × 0.9 − x = 13
D.(130 − x) × 0.9 = x − 13
5.某电商平台将一件商品按进价提高40%后标价,又以8折优惠卖出,结果每
意,得
x+0.25x=60
解方程,得
x=48
一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利
25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
问题3:两件衣服的成本各是多少元?
亏损的一件
解:设亏损25%的那件衣服进价是y元. 根据
题意,得
y-0.25y=60
解方程,得
1.售价、进价、利润的关系:利润=售价-成本价(进价)
2.进价、利润、利润率的关系:
利润
利润率= 成本价 ×100% 或 利润=成本价(进价)×利润率
3.标价、折扣数、商品售价的关系:
商品售价=标价× 折扣数
10
4.商品售价、进价、利润率的关系:
商品售价=商品进价×(1+利润率)
某琴行同时卖出两台钢琴,每台售价为960元. 其中一台盈利20%,另一台亏
解:设小书包的进价为x元. 根据题意,得
30%x=20%(x+10)
解方程,得 3x=2(x+10)
3x=2x+20
x=20
x+10=30
答:小书包的进价为20元,大书包的进价为30元.
8.一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的
新部编版初中七年级数学上册第三章3.4 实际问题与一元一次方程精品优质公开课课件
两个等量关系的问题:利用第一个等量关系设未知数, 第二个等量关系列方程.
探究新知
列表分析:
产品类型 生产人数 单人产量 总产量
螺钉
x × 1 200 = 1 200 x
螺母
22-x × 2 000 = 2 000(22-x)
人数和为22人 如果设x名工人生产 螺母,怎样列方程?
列方程: 2 000(22-x)=2×1 200x
螺母总产量 是螺钉的2倍
探究ቤተ መጻሕፍቲ ባይዱ知
列表分析:
产品类型 生产人数 单人产量 总产量
螺钉 22-x × 1 200 = 1 200 (22-x)
螺母
x × 2 000 = 2 000x
人数和为22人 如果设x名工人生产 螺母,怎样列方程?
列方程: 2 000x=2×1 200(22-x)
螺母总产量 是螺钉的2倍
列表分析:
的关系考虑问题.
人均效率 人数 时间 工作量
前一部 分工作
后一部 分工作
1 40
× x ×4=
4x 40
1 40
×(x+2 )× 8 =
8(x 2) 40
4x + 8( x+2)=1 40 40
工作量之和等 于总工作量1
探究新知
解:设安排 x 人先做4 h. 依题意得: 4x + 8( x+2)=1
本课时学习了一元一次方程与配套问题和工程问题,在 配套问题中,要弄清楚数量之间的关系,在工程问题中, 要弄清工作量、工作时间、工作效率之间的关系.
用一元一次方程解决实际问题的基本过程一般包 括设、列、解、检、答等步骤,即设未知数,列方程 ,解方程,检验所得结果,确定答案.正确分析问题中 的相等关系是列方程的基础.
探究新知
列表分析:
产品类型 生产人数 单人产量 总产量
螺钉
x × 1 200 = 1 200 x
螺母
22-x × 2 000 = 2 000(22-x)
人数和为22人 如果设x名工人生产 螺母,怎样列方程?
列方程: 2 000(22-x)=2×1 200x
螺母总产量 是螺钉的2倍
探究ቤተ መጻሕፍቲ ባይዱ知
列表分析:
产品类型 生产人数 单人产量 总产量
螺钉 22-x × 1 200 = 1 200 (22-x)
螺母
x × 2 000 = 2 000x
人数和为22人 如果设x名工人生产 螺母,怎样列方程?
列方程: 2 000x=2×1 200(22-x)
螺母总产量 是螺钉的2倍
列表分析:
的关系考虑问题.
人均效率 人数 时间 工作量
前一部 分工作
后一部 分工作
1 40
× x ×4=
4x 40
1 40
×(x+2 )× 8 =
8(x 2) 40
4x + 8( x+2)=1 40 40
工作量之和等 于总工作量1
探究新知
解:设安排 x 人先做4 h. 依题意得: 4x + 8( x+2)=1
本课时学习了一元一次方程与配套问题和工程问题,在 配套问题中,要弄清楚数量之间的关系,在工程问题中, 要弄清工作量、工作时间、工作效率之间的关系.
用一元一次方程解决实际问题的基本过程一般包 括设、列、解、检、答等步骤,即设未知数,列方程 ,解方程,检验所得结果,确定答案.正确分析问题中 的相等关系是列方程的基础.
七年级数学上册 第三章 一元一次方程 3.4 实际问题与一元一次方程 第8课时 分段计费问题课件
名校讲 坛
因此,如果主叫时间恰是270 min,按两种方式的计费相等,都是88元;如果 主叫时间大于150 min且小于270 min,按方式一的计费少于按方式二的计费(88 元);如果主叫时间大于270 min且小于350 min,按方式一的计费多于按方式二 的计费(88元).
③当t=350时,按方式二的计费少; ④当t大于350时,可以看出,按方式一的计费为108元加上超过(chāoguò)350 min 部分的超时费[0.25(t-350)],按方式二的计费为88元加上超过350 min部分的超时 费[0.19(t-350)],按方式二的计费少. 综合:当t小于270时,选择方案一省钱;当t等于270时,选择两种方案一样; 当t大于270时,选择方案二省钱.
第六页,共十二页。
名校讲 坛
【跟踪训练】 某市出租车收费标准为:行程(xíngchéng)不超过3 km收起步价10元, 超过3 km的收费标准如下表.
(1)若某人在该市乘坐出租车x(x>3)km,他应该支付的车费是多少元? (2)若乘客支付的车费为31元,则他在该市乘出租车行驶了多少千米(不足1 km按 1 km计)? 解:(1)10+1.4×(x-3)=1.4x+5.8. 答:他应该支付的车费是(1.4x+5.8)元. (2)根据(gēnjù)题意,得1.4x+5.8=31.解得x=18. 答:他在该市乘出租车行驶了18 km.
第七页,共十二页。
巩固训 练
1.一家三口每月用水不超过6吨,每吨水按3.7元收费,如超过规定的用水量,
每吨水按7元收费,王红一家三口八月交了36.2元,他们家超过规定用水( )
A.9.8吨 C C.2吨
B.5吨
D.3吨
2.某市居民生活用电基本价格(jiàgé)为0.4元,若每月用电量超过a度,超出部分
河南省商丘市实验中学七年级数学上册 3.4 实际问题与一元一次方程说课课件 (新版)新人教版
背 景 分 析 教 学 目标 教 法 学 法 教 学 过 程 教 学 评 价
情 境 激 趣
设计意图:良好的开端是成功的一半. 由熟悉的动画人物引入,立刻就吸引了学生的注意力.
背 景 分 析 教 学 目标 教 法 学 法 教 学 过 程 教 学 评 价
创 情
设 境
今天我运气不错
情 激 境 趣
衣服进价100,我卖了150
教材分析
学情分析
教学难点
找出数量间的 相等关系
(1)对于七年级的学生 来说,应用题文字多, 信息量大,学生容易产 生畏难情绪.
(2)年龄小,生活阅历 浅,盈亏问题中的专业 名词不熟悉,不理解, 难以找出相应的等量关 系.
背背 景景 分分 析析 教 学 目标 教 法 学 法 教 学 过 程 教 学 评 价
设计意图:为了使复杂的问题简单化,便于引导学生深入 思考,设计了两个问题由浅入深.
背 景 分 析 教 学 目标 教 法 学 法 教 学 过 程 教 学 评 价
呈现问题
截图学生板演
设计意图:给学生创造思维的空间与时间, 学生参与了知识发生发展的全过程,突出了重点.
背 景 分 析 教 学 目标 教 法 学 法 教 学 过 程 教 学 评 价
销售中的盈亏
说课流程
背景分析
教学评价
教学目标
教学过程
教法学法
过程与方法
情感与态度
知识与技能
(1) 理解商品 进价、售价、利 润、利润率等概 念. (2) 弄清它们 间的数量关系.
(3) 会判断销 售中的盈亏.
背景分析
教教 学学 目目标标
教法学法
教学过程
教学评价
知识与技能
过程与方法
情 境 激 趣
设计意图:良好的开端是成功的一半. 由熟悉的动画人物引入,立刻就吸引了学生的注意力.
背 景 分 析 教 学 目标 教 法 学 法 教 学 过 程 教 学 评 价
创 情
设 境
今天我运气不错
情 激 境 趣
衣服进价100,我卖了150
教材分析
学情分析
教学难点
找出数量间的 相等关系
(1)对于七年级的学生 来说,应用题文字多, 信息量大,学生容易产 生畏难情绪.
(2)年龄小,生活阅历 浅,盈亏问题中的专业 名词不熟悉,不理解, 难以找出相应的等量关 系.
背背 景景 分分 析析 教 学 目标 教 法 学 法 教 学 过 程 教 学 评 价
设计意图:为了使复杂的问题简单化,便于引导学生深入 思考,设计了两个问题由浅入深.
背 景 分 析 教 学 目标 教 法 学 法 教 学 过 程 教 学 评 价
呈现问题
截图学生板演
设计意图:给学生创造思维的空间与时间, 学生参与了知识发生发展的全过程,突出了重点.
背 景 分 析 教 学 目标 教 法 学 法 教 学 过 程 教 学 评 价
销售中的盈亏
说课流程
背景分析
教学评价
教学目标
教学过程
教法学法
过程与方法
情感与态度
知识与技能
(1) 理解商品 进价、售价、利 润、利润率等概 念. (2) 弄清它们 间的数量关系.
(3) 会判断销 售中的盈亏.
背景分析
教教 学学 目目标标
教法学法
教学过程
教学评价
知识与技能
过程与方法
人教版七年级上册实际问题与一元一次方程PPT精品课件
3.4实际问题与一元一次方程
第二课时
工程问题
学习目标: 1.会通过列方程解决“工程问题”; 2.掌握列方程解决实际问题的一般步骤; 3.通过列方程解决实际问题的过程,体会建模思想.
学习重点: 建立模型解决实际问题的一般方法.
学习难点: 寻找题中隐含的等量关系。
自研共探:
请同学们带着下列问题阅读教科书100页到101页例 2内容(6分钟)同时思考: (1)工作量、工作时间、工作效率之间有何关系? (2)本题隐含的等量关系是什么?
•
5.以景物衬托情思,以幻境刻画心理 ,尤其 动人。 凄清、 冷落的 景色, 衬托出 人物的 惆怅、 幽怨之 情,并 为全诗 定下了 哀怨不 已的感 情基调 。
•
6.石壕吏和老妇人是诗中的主要人物 ,要立 于善于 运用想 像来刻 画他们 各自的 动作、 语言和 神态; 还要补 充一些 事实上 已经发 生却被 诗人隐 去的故 事情节 。
•
3.本题运 用说明 文限制 性词语 能否删 除四步 法。不 能。极 大的一 词表程 度,说 明绘画 的题材 范围较 过去有 了很大 的变化 ,删去 之后其 程度就 会减轻 ,不符 合实际 情况, 这体现 了说明 文语言 的准确 性和严 密性。
•
4.开篇写湘君眺望洞庭,盼望湘夫人 飘然而 降,却 始终不 见,因 而心中 充满愁 思。续 写沅湘 秋景, 秋风扬 波拂叶 ,画面 壮阔而 凄清。
解:设乙还需x小时完成此工作, 依题意,得:
9 x 1 15 10
去分母,得 18+3x=30
移项,得
3x = 30 - 18
合并同类项,得 3x=12
系数化为1,得
x=4
答:乙还要4小时完成.
3.整理一批图书,由一个人做要40小时完成.
第二课时
工程问题
学习目标: 1.会通过列方程解决“工程问题”; 2.掌握列方程解决实际问题的一般步骤; 3.通过列方程解决实际问题的过程,体会建模思想.
学习重点: 建立模型解决实际问题的一般方法.
学习难点: 寻找题中隐含的等量关系。
自研共探:
请同学们带着下列问题阅读教科书100页到101页例 2内容(6分钟)同时思考: (1)工作量、工作时间、工作效率之间有何关系? (2)本题隐含的等量关系是什么?
•
5.以景物衬托情思,以幻境刻画心理 ,尤其 动人。 凄清、 冷落的 景色, 衬托出 人物的 惆怅、 幽怨之 情,并 为全诗 定下了 哀怨不 已的感 情基调 。
•
6.石壕吏和老妇人是诗中的主要人物 ,要立 于善于 运用想 像来刻 画他们 各自的 动作、 语言和 神态; 还要补 充一些 事实上 已经发 生却被 诗人隐 去的故 事情节 。
•
3.本题运 用说明 文限制 性词语 能否删 除四步 法。不 能。极 大的一 词表程 度,说 明绘画 的题材 范围较 过去有 了很大 的变化 ,删去 之后其 程度就 会减轻 ,不符 合实际 情况, 这体现 了说明 文语言 的准确 性和严 密性。
•
4.开篇写湘君眺望洞庭,盼望湘夫人 飘然而 降,却 始终不 见,因 而心中 充满愁 思。续 写沅湘 秋景, 秋风扬 波拂叶 ,画面 壮阔而 凄清。
解:设乙还需x小时完成此工作, 依题意,得:
9 x 1 15 10
去分母,得 18+3x=30
移项,得
3x = 30 - 18
合并同类项,得 3x=12
系数化为1,得
x=4
答:乙还要4小时完成.
3.整理一批图书,由一个人做要40小时完成.
人教版七年级上册数学:实际问题与一元一次方程---方案选择问题课件
(2)什么情况下买卡划算? (3)什么情况下,不买卡划算?
(4)小康持会员卡购书,一年共节省80元,请你 帮他计算一下这一年他在唐人书店买书共花了多 少钱?
解:设他在唐人书店买书花了x元钱, 由题意得: 20+0.8x=x-80 解得:x=500
答:他在唐人书店买书花了500元钱.
拓展提高
校长带领“三好学生”去旅行,已知甲、乙两家旅行社 的全票价均为240元,为了争取游客,甲旅行社推出的 优惠方案是:校长全票,其余学生享受半价优惠;乙旅 行社:包括校长在内,全部按票价的6折优惠。 (1)当学生人数为多少时,两旅行社收费一样? (2)请根据实际人数为校长设计一个省钱的旅行方案。
解:方式一:30+0.3×200=90(元) 方式二:0.4×200=80(元) 所以选方式二.方式一:30+0.3×350=135(元) 方式二:0.4×350=140(元) 所以选方式一.
问题探究
方式一
方式二
月租费
30元/月 0
本地通话费 0.3元/分 0.4元/分
(1)当购买乒乓球多少盒时,到两家商店花钱一样多?
(2)若同学们需要15盒乒乓球,请你去办这件事,你决 定去哪家商店购买?
2、为了积极配合学校开展的“阳光体育”活动,七(1) 班同学准备购买一些乒乓球和乒乓球拍,每副球拍30元, 每盒乒乓球5元,甲、乙两商店又推出不同的优惠方案: 甲商店买一副球拍赠送1盒乒乓球;乙商店全部按定价 的9折优惠。同学们需要球拍5副,乒乓球若干盒(不小 于5盒) (1)当购买乒乓球多少盒时,到两家商店花钱一样多?
如果通话时间等于300分钟,两种方式都可以。
例题解析
例题:唐人书店出售一种购书会员卡,每张会员卡20
(4)小康持会员卡购书,一年共节省80元,请你 帮他计算一下这一年他在唐人书店买书共花了多 少钱?
解:设他在唐人书店买书花了x元钱, 由题意得: 20+0.8x=x-80 解得:x=500
答:他在唐人书店买书花了500元钱.
拓展提高
校长带领“三好学生”去旅行,已知甲、乙两家旅行社 的全票价均为240元,为了争取游客,甲旅行社推出的 优惠方案是:校长全票,其余学生享受半价优惠;乙旅 行社:包括校长在内,全部按票价的6折优惠。 (1)当学生人数为多少时,两旅行社收费一样? (2)请根据实际人数为校长设计一个省钱的旅行方案。
解:方式一:30+0.3×200=90(元) 方式二:0.4×200=80(元) 所以选方式二.方式一:30+0.3×350=135(元) 方式二:0.4×350=140(元) 所以选方式一.
问题探究
方式一
方式二
月租费
30元/月 0
本地通话费 0.3元/分 0.4元/分
(1)当购买乒乓球多少盒时,到两家商店花钱一样多?
(2)若同学们需要15盒乒乓球,请你去办这件事,你决 定去哪家商店购买?
2、为了积极配合学校开展的“阳光体育”活动,七(1) 班同学准备购买一些乒乓球和乒乓球拍,每副球拍30元, 每盒乒乓球5元,甲、乙两商店又推出不同的优惠方案: 甲商店买一副球拍赠送1盒乒乓球;乙商店全部按定价 的9折优惠。同学们需要球拍5副,乒乓球若干盒(不小 于5盒) (1)当购买乒乓球多少盒时,到两家商店花钱一样多?
如果通话时间等于300分钟,两种方式都可以。
例题解析
例题:唐人书店出售一种购书会员卡,每张会员卡20
实际问题与一元一次方程-工程问题(课件)七年级数学上册课件(人教版)
实际做了多少小时?
解:设甲队实际做了小时,
根据题意,得
1
(
10
+
1
20
+
解得 = 5.
答:甲队实际做5小时.
1
)
30
+
1
(
20
+
1
)
30
6 − = 1.
例4.为推进我国“碳达峰、碳中和”双碳目标的实现,各地大力推广分布式
光伏发电项目.某公司计划建设一座光伏发电站,若由甲工程队单独施工需
要3周,每周耗资8万元,若由乙工程队单独施工需要6周,每周耗资3万元.
答:写出答案 (包括单位).
解决工程问题的基本思路:
1. 三个基本量:工作量、工作效率、工作时间.
它们之间的关系是:工作量=工作效率×工作时间.
2. 相等关系:工作总量=各部分工作量之和.
(1) 按工作时间,工作总量=各时间段的工作量之和;
(2) 按工作者,工作总量=各工作者的工作量之和.
3. 通常在没有具体数值的情况下,把工作总量看作“1”.
答:这批防护服原计划生产任为3100套.
5.某厂接到一所中学的冬季校服定做任务,计划用、两台大型设备进行
加工,如果单独用型设备,需要45天做完;如果单独用型设备,需要30
天做完;为了同学们能及时领到冬季校服,工厂决定由两台设备同时赶
制.
(1)填空:型设备的工作效率是_______,型设备的工作效率是_______;
(1)若甲、乙两工程队合作施工,需要几周完成?共需耗资多少万元?
(2)若需要最迟4周完成工程,请你设计一种方案,既保证按时完成任务,又
最大限度节省资金.(时间按整周计算)
解:设甲队实际做了小时,
根据题意,得
1
(
10
+
1
20
+
解得 = 5.
答:甲队实际做5小时.
1
)
30
+
1
(
20
+
1
)
30
6 − = 1.
例4.为推进我国“碳达峰、碳中和”双碳目标的实现,各地大力推广分布式
光伏发电项目.某公司计划建设一座光伏发电站,若由甲工程队单独施工需
要3周,每周耗资8万元,若由乙工程队单独施工需要6周,每周耗资3万元.
答:写出答案 (包括单位).
解决工程问题的基本思路:
1. 三个基本量:工作量、工作效率、工作时间.
它们之间的关系是:工作量=工作效率×工作时间.
2. 相等关系:工作总量=各部分工作量之和.
(1) 按工作时间,工作总量=各时间段的工作量之和;
(2) 按工作者,工作总量=各工作者的工作量之和.
3. 通常在没有具体数值的情况下,把工作总量看作“1”.
答:这批防护服原计划生产任为3100套.
5.某厂接到一所中学的冬季校服定做任务,计划用、两台大型设备进行
加工,如果单独用型设备,需要45天做完;如果单独用型设备,需要30
天做完;为了同学们能及时领到冬季校服,工厂决定由两台设备同时赶
制.
(1)填空:型设备的工作效率是_______,型设备的工作效率是_______;
(1)若甲、乙两工程队合作施工,需要几周完成?共需耗资多少万元?
(2)若需要最迟4周完成工程,请你设计一种方案,既保证按时完成任务,又
最大限度节省资金.(时间按整周计算)
初中数学人教版七年级上册《34实际问题与一元一次方程》教学课件
由题意,得 (1+20%)x= =378,解这个方程,得 x=315.
设亏损20%的豆浆机的进价为 y 元.
由题意,得 (1-20%)y=378,解这个方程,得 y=472.5.
所以这两个豆浆机的进价之和是315+472.5=787.5(元).
因为这两个豆浆机共卖了378×2=756(元),且756-787.5=-31.5(元),
相等关系“售价-进价=进价×润率”列方程.
同理也可以根据相等关系“进价×(1+利润率) =标价×打折率”
列方程.
例 一商店在某一时间以每件60元的价格卖出两件衣服,其中一件
盈利25% ,另一件亏损25% ,卖这两件衣服总的是盈利还是亏损,
或是不盈不亏?
思考:销售的盈亏取决于什么?
取决于总售价与总成本(两件衣服的成本之和)的关系
(−6.4%)
× 100% − = 8% ,
解这个方程,得 x=0.17.
答:这种商品原来的利润率是17%.
某商店将两个进价不同的豆浆机都卖378元,其中一个盈利20%,另一个亏
损20%,那么在这次买卖中,这家商店是盈利还是亏损?盈利或亏损多少元?
解:设盈利20%的豆浆机的进价为 x 元.
A.5
B.6
)
C.7
解析:根据题意列方程,得200× -80=80×50%,
10
解得 x=6.
D.8
某商场经销一种商品,由于进货时价格比原进价降低了6.4%,
使得利润率增加了8%,那么这种商品原来的利润率是多少?
解:设原来的利润率是 x,原进价为 a 元,则售价为 a(1+x)元.
根据题意,得
1+ −(1−6.4%)
设亏损20%的豆浆机的进价为 y 元.
由题意,得 (1-20%)y=378,解这个方程,得 y=472.5.
所以这两个豆浆机的进价之和是315+472.5=787.5(元).
因为这两个豆浆机共卖了378×2=756(元),且756-787.5=-31.5(元),
相等关系“售价-进价=进价×润率”列方程.
同理也可以根据相等关系“进价×(1+利润率) =标价×打折率”
列方程.
例 一商店在某一时间以每件60元的价格卖出两件衣服,其中一件
盈利25% ,另一件亏损25% ,卖这两件衣服总的是盈利还是亏损,
或是不盈不亏?
思考:销售的盈亏取决于什么?
取决于总售价与总成本(两件衣服的成本之和)的关系
(−6.4%)
× 100% − = 8% ,
解这个方程,得 x=0.17.
答:这种商品原来的利润率是17%.
某商店将两个进价不同的豆浆机都卖378元,其中一个盈利20%,另一个亏
损20%,那么在这次买卖中,这家商店是盈利还是亏损?盈利或亏损多少元?
解:设盈利20%的豆浆机的进价为 x 元.
A.5
B.6
)
C.7
解析:根据题意列方程,得200× -80=80×50%,
10
解得 x=6.
D.8
某商场经销一种商品,由于进货时价格比原进价降低了6.4%,
使得利润率增加了8%,那么这种商品原来的利润率是多少?
解:设原来的利润率是 x,原进价为 a 元,则售价为 a(1+x)元.
根据题意,得
1+ −(1−6.4%)
初中数学七年级上册《实际问题与一元一次方程( 销售中的盈亏问题)》课件
小明的妈妈真 的捡便宜了吗?
打好你的小算盘
1、500元的9折价是__4_5_0__元 ,x折是___5_0_x__元.
2、某商品的每件销售利润是72元,进价是120,
则售价是____1_9_2____元.
3、某商品利润率13﹪,进价为50元,则利润是
____6_.5___元. 4、某商品进价200元,加价80%后,标价 360元,
设商场资金为元x元,第一 种方式的获利为y1元,第二种 方式的获利为y2元,分别计算 两种方式的获利.
因此,
当商场资金超过20000元, 第二种方式购销获利多.
当商场资金低于20000元, 第一种方式购销获利多.
• 汕头某琴行同时卖出两台钢琴,每台售价为 960元.其中一台盈利20%,另一台亏损20%.这 次琴行是盈利还是亏损,或是不盈不亏?
本题给了我们 什么启示?
一天,小明的妈妈从个体服装 店买回一件成衣,花去220元,回家 后高兴的对小明说:“今天我捡了 个大便宜,碰上服装八折优惠酬宾 , 平时要花275元的衣服我只要花了 220元就买回来了.”
1. 如果该件衣服是商家在进价的 基础上加价100﹪标价,再打八 折卖给小明妈妈的,请你帮小明 妈妈计算一下,进价是多少? 2.小明的妈妈真的捡便宜了吗?若 没有,请你帮她计算一下,她比在 公平买卖(加价20%)时多付出多 少元钱?
或是不盈不亏?
两件衣服的进价是 x + y =__1_220元,进价
__>___于售价,由此可知卖这两
件衣服总的盈亏情况是 _____亏__损_________.
¥60
¥60
➢ 假如你是商场经理,你能否设计 一种方案,适当调整售价,使得捆 绑销售这两件衣服时不亏本呢?
打好你的小算盘
1、500元的9折价是__4_5_0__元 ,x折是___5_0_x__元.
2、某商品的每件销售利润是72元,进价是120,
则售价是____1_9_2____元.
3、某商品利润率13﹪,进价为50元,则利润是
____6_.5___元. 4、某商品进价200元,加价80%后,标价 360元,
设商场资金为元x元,第一 种方式的获利为y1元,第二种 方式的获利为y2元,分别计算 两种方式的获利.
因此,
当商场资金超过20000元, 第二种方式购销获利多.
当商场资金低于20000元, 第一种方式购销获利多.
• 汕头某琴行同时卖出两台钢琴,每台售价为 960元.其中一台盈利20%,另一台亏损20%.这 次琴行是盈利还是亏损,或是不盈不亏?
本题给了我们 什么启示?
一天,小明的妈妈从个体服装 店买回一件成衣,花去220元,回家 后高兴的对小明说:“今天我捡了 个大便宜,碰上服装八折优惠酬宾 , 平时要花275元的衣服我只要花了 220元就买回来了.”
1. 如果该件衣服是商家在进价的 基础上加价100﹪标价,再打八 折卖给小明妈妈的,请你帮小明 妈妈计算一下,进价是多少? 2.小明的妈妈真的捡便宜了吗?若 没有,请你帮她计算一下,她比在 公平买卖(加价20%)时多付出多 少元钱?
或是不盈不亏?
两件衣服的进价是 x + y =__1_220元,进价
__>___于售价,由此可知卖这两
件衣服总的盈亏情况是 _____亏__损_________.
¥60
¥60
➢ 假如你是商场经理,你能否设计 一种方案,适当调整售价,使得捆 绑销售这两件衣服时不亏本呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
你对有关利率的问题了解多少吗? 你知道有关利率的消息吗? 在有关利率的问题中基本的数量关系:
本金×利率=利息 利息×税率=利息税 本金+利息-利息税=实得本利和。
……
例6 小明把压岁钱按定期一个存入银行。当 时一年期定期存款的年利率为 1.98%,利息 税为20%。到期支取时,扣除利息税后小明 实得本利和为 507.92元。问小明存入银行的 压岁钱有多少元?
你对有关工作的问题有什么了解? 工作问题的基本数量关系是
工作效率×工作时间=工作量 部分工作量之和= Nhomakorabea的工作量
例5 甲每天生产某种零件 80个,甲生产3天 后,乙也加入生产同一种零件,再经过 5天, 两人共生产这种零件 940个。问乙每天生产 这种零件多少个?
你对有关工作的问题有什么了解?
你认为在这个应用题中关键句是哪一句? 由此句你看出什么相等关系?你能根据这一 个相等关系列方程吗?
你认为哪一句能够列出方程?
你能列出方程吗?
?课内练习 P130
你 今 天 有 什 么 收 获 ?