Alkaloids from Chelidonium majus and their inhibitory effects on LPS-inducedin RAW264.7 cells
基于转录组学探讨白屈菜生物碱促进小鼠睡眠障碍免疫修复药效学和机制
福建中医药2023 年7 月第54 卷第7期Fujian Journal of TCM July 2023,54(7)基于转录组学探讨白屈菜生物碱促进小鼠睡眠障碍免疫修复药效学和机制朱丽萍1,李景琳2,王凌1*(1.福建省立医院,福建福州 350001;2.福建医科大学药学院,福建福州 350122)摘要:目的基于转录组学探讨白屈菜生物碱促进小鼠睡眠障碍免疫修复的药效学和机制。
方法将30只昆明小鼠随机分为对照组、模型组和低、中、高剂量组,采用改良多平台水环境法每日14:00—次日10:00构建小鼠睡眠剥夺模型,共剥夺3 d。
在睡眠剥夺开始前5 d,低、中、高剂量组分别按体质量0.012 mL/(g·d)给予0.83、1.67、3.33 mg/mL白屈菜碱药液灌胃,对照组和模型组按体质量0.012 mL/(g·d)给予生理盐水灌胃,共8 d。
干预后观察小鼠的一般情况;ELISA法测定5组血清白细胞介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)、白细胞介素-1β(IL-1β)、γ干扰素(IFN-γ)水平;流式细胞仪检测5组血清CD4+ T细胞、CD8+ T细胞和CD4+/CD8+。
对对照组、模型组和高剂量组进行转录组测序,采用DESeq 2.0软件包进行两两差异表达基因分析,运用GO数据库和KEGG 数据库对差异表达基因进行功能富集分析,构建蛋白互作(PPI)网络,筛选白屈菜碱促进睡眠剥夺小鼠免疫修复的关键基因,采用qPCR检测关键基因mRNA相对表达水平。
结果与对照组比较,模型组小鼠精神状态及毛发较差,饮食量减少,体质量均明显下降(P均<0.05),IL-6、TNF-α、IL-1β和IFN-γ浓度均明显升高(P均<0.05),中剂量组CD4+ T细胞、CD4+/CD8+明显升高(P均<0.05),高剂量组CD4+ T细胞、CD8+ T细胞以及CD4+/CD8+均明显升高(P均<0.05);与模型组比较,低、中、高剂量组小鼠精神状态、毛发和饮食量有所改善,体质量均明显增加(P均<0.05),IL-6、TNF-α、IL-1β和IFN-γ水平均明显降低(P均<0.05),CD4+ T细胞、CD8+ T细胞、CD4+/ CD8+均明显升高(P均<0.05);与对照组比较,模型组中有15个基因明显上调,9个基因显著下调;高剂量组15个明显上调的基因明显下调,9个明显下调的基因明显上调;高剂量组与模型组之间的差异表达基因主要富集在细胞外区域部分、细胞外空间、细胞外基质、IgA肠道免疫网络等通路;通过PPI网络图以及Degree值确定CD8A为关键基因,与模型组比较,低、中、高剂量组CD8A mRNA相对表达水平均明显上调(P均<0.05),与测序结果一致。
辽东山区落叶松-东部白松混交林林分生长和植被特征研究
i=1
式中:S 为物种数目;N 为物种的个体总数;P i = ni / N,P i 为第
落叶松纯林,其中,与落叶松纯林相比,落叶松-东部白松混交
∑ni = N。
高比和冠径比在两者间差异均达到极显著水平(P<0.01)。
i 个物种的相对重要值;ni 指样方中第 i 种物种的个体数,且
林中落叶松的高径比更接近于 1。 t 检验结果表明,高径比、冠
Larix gmelinii in the mixed forest was better than that of the pure Larix gmelinii forest. In terms of quantity, the total number of species and the
number of herbs were slightly higher in the pure Larix gmelinii forest than in Larix gmelinii-Pinus strobus L. mixed forest, while the opposite
林型
Forest type
混交林 Mixed forest
纯林 Pure forest6
25.480
0.000
冠幅
Crown
diameter
m
t
Sig.
7.984
0.000
2.02±0.51
1.70±0.45
蓄积
Accumulation
m3 / hm2
t
Sig.
29.63±10.49
2.00、1.58、1.19、6.67 和 4.03 倍,且混交落叶松形质指标优于落叶松纯林。 从数量上看,物种总数量和草本植物数量表现为落叶松纯林略
化妆品禁用植动物组分表《化妆品安全技术规范版》
28 威灵仙 29 秋水仙 30 毒参
31 铃兰 32 马桑 33 紫堇 34 木香根油 35 文殊兰 36 野百合(农吉利) 37 大戟科巴豆属植物 38 芫花 39 茄科曼陀罗属植物 40 鱼藤 41 玄参科毛地黄属植物 42 白薯莨 43 茅膏菜
44 粗茎鳞毛蕨(绵马贯众) 45 麻黄科麻黄属植物 46 葛上亭长 47 大戟科大戟属植物(小烛树蜡除外) 48 秘鲁香树脂 49 无花果叶净油 50植(动)物组分(1)(2)(3)(表 2)
原植(动)物拉丁文学名或植(动)物英文名 Aconitum L, (Ranunculaceae). Adonis L, (Ranunculaceae). Alanroot oil (Inula helenium L.) (CAS No. 97676-35-2) Alocasia cucullata (Lour.) Schott Alocasia macrorrhiza (L.) Schott Ammi majus L. Amorphophallus rivieri Durieu (Amorphophallus konjac) ; Amorphophallus sinensis Belval (Amorphophallus kiusianus) Anamirta cocculus L.(fruit) Anemone hupehensis Lemoine Angelica dahurica (Fisch. Ex Hoffm.)Benth. et Hook.f. Anisodus Link et Otto, (Solanaceae). Apocynum cannabinum L Areca catechu L. Aristolochia L,( Aristolochiaceae ) Asarum L, ( Aristolochiaceae). Atropa belladonna L. Brassica juncea (L.) Czern. et Coss.; Sinapis alba L. Brucea javanica (L.) Merr. BCuanfothbaurfios vgeasrigcatroizraians(MCyalanbtorris;pBhuafloermaetalanPoaslltaicst.u; sMSylcahbnreiisdceirchorii linnaeus) Catharanthus roseus (L.) G. Don Cephaelis ipecacuanha Brot .and related species Cerbera manghas L. Chelidonium majus L. Chenopodium album L. Chenopodium ambrosioides L. (essential oil) Claviceps purpurea Tul. Clematis chinensis Osbeck; Clematis hexapetala Pall.; Clematis terniflora var. mandshurica Rupr.( Clematis mandshurica Rupr.) Colchicum autumnale L. Conium maculatum L.
The Psychoactive Ergot Alkaloids and their occurrence in the
The Psychoactive Ergot Alkaloids
This group contains five compounds known to be psychoactive in
humans, these are ergine, isoergine, ergonovine, elymoclavine and
eaten, but rather the alkaloid containing material, plant or
fungus, is ground to a powder which is soaked in water, which is
then filtered. The solid residue is discarded and the water is
seems likely that agroclavine, triseclavine, penniclavine,
lysergine and lysergene and lysergic acid hydroxyethylamide will
be psychoactive in humans. Even ergot alkaloids such as
sedative effects and `a feeling of mental emptiness and of the
unreality and complete meaningless of the outside world'
(Hoffman, 1971).
Claviceps purpurea (Fr.) Tul. (Rye Ergot)
Claviceps purpurea var. sasae Tanda (Bamboo Ergot)
化妆品禁用植(动)物组分(表2)《化妆品安全技术规范2015版》
69 毒扁豆 70 商陆 71 毛果芸香 72 半夏 73 紫花丹 74 白花丹 75 桂樱 76 补骨脂 77 除虫菊 78 毛茛科毛茛属植物 79 萝芙木 80 羊踯躅 81 万年青 82 乌桕 83 种子藜芦(沙巴草) 84 一叶萩 85 苦参实 86 龙葵 87 羊角拗类 88 菊科千里光属植物 89 茵芋 90 狼毒 91 马钱科马钱属植物 92 黄花夹竹桃 93 卫矛科雷公藤属植物 94 白附子 95 (白)海葱 96 百合科藜芦属植物 97 马鞭草油
Dryopteris crassirhizoma Nakai Ephedra Tourn. ex L, (Ephedraceae). Epicauta gorhami Mars. EuxpuhdoatriboinaoLf ,M(Eyruopxhyolrobniapceeraeei)rae(e(xRcoeyplte. )caKnldoetzliclhla(wCAaxS)No 8007-009) Fig leaf absolute (Ficus carica ) (CAS No 68916-52-9) Garcinia hanburyi Hook. F.; Garcinia morella Desv. Gelsemium elegans Benth. Huechys sanguinea De Geer. Hydnocarpus anthelmintica Pierre ; Hydnocarpus hainanensis (Merr.) Sleum. Hyoscyamus niger L. Illicium L. (Illiciaceae) (except. Illicium verumt ) Iphigenia indica Kunth et Benth. Juniperus sabina L. Lobelia L, (Campanulaceae) Lycoris radiata Herb. Lytta caraganae Pallas Macleaya cordata (Willd.) R. Br. Meloe coarctatus Motsch. Mimosa pudica L. Nerium indicum Mill. Oil from the seeds of Laurus nobilis L. Orixa japonica Thunb. Periploca sepium Bge. Pharbitis nil (L.) Choisy.; Pharbitis purpurea (L.) Voigt
INDOLE ALKALOIDS FROM RAUWOLFIA SELLOWII
(Received in revisedform 24 July 1995)
Key Word Index--Rauwolfia sellowii; Apocynaceae; leaves; indole alkaloids; sellowiine.
Abstraet--A new alkaloid, sellowiine (N~-demethyl-20-deethyl suaveoline), was obtained from leaves of Rauwolfia sellowii collected at two different locations in southern Brazil. Also 9btained were the known alkaloids, perakine, raucaffrinoline, vomilenine, 19ct,20~t-epoxy-akuammicine, picrinine and 12-demethoxytabernulosine. The N M R spectra of the alkaloids were assigned completely.
tPresent address: Department of Organic Chemistry, The Technical University of Denmark, Building 201, DK-2800 Lyngby, Denmark. :~Author to whom correspondence should be addressed.
INDOLE ALKALOIDS FROM R A U W O L F I A SELLOWII
CESAR VICENTE FERREIRABATISTA,JAN SCHRIPSEMA,*~"ROBERT VERPOORTE,* SANDRABEATRIZ RECH and AMELIA T. HENRIQUES+ + Graduated Course in Pharmaceutical Sciences, UFRGS, Av. Ipiranga 2752, 90.610.000, Porto Alegre, RS, Brazil; *Center for Biopharmaceutical Sciences, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
毒草断肠草
断肠草断肠草是葫蔓藤科植物葫蔓藤,一年生的藤本植物。
其主要的毒性物质是葫蔓藤碱。
其中最富盛名的就是马钱科钩吻属的钩吻[1] 。
钩吻的根部含钩吻碱(葫蔓藤碱)甲、子、丑、寅、卯等,在离开泥土时略带香味,但多闻会令人产生晕眩感。
钩吻的叶则含钩吻碱甲、辰等。
当中又以钩吻碱子含量最高,而钩吻碱寅则毒性最烈。
钩吻可在200-2000米的丘陵、疏林或灌木林[7]向阳的地方生长[3],广布于中国及东南亚地区,于中国广东、广西、福建、浙江、江西、湖南、贵州、云南、海南、台湾等地皆有发现[1] 。
钩吻的毒性主要成分为多种生物碱(包括钩吻碱),包括极强烈的神经毒性,服食过量即导致消化系统、循环系统和呼吸系统的强烈反应,肠会发黑粘连,中毒症状包括流涎、恶心、口渴、吞咽困难、发热、呕吐、口吐白沫、抽搐、四肢麻木、肌肉无力、肌肉纤维颤动、舌硬、言语不清、共济失词、烦躁不安、心律失常等。
迷走神经时,可使心跳减慢、加速及失常,出现四肢冰冷、面色苍白、体温不开及血压下降等症状。
中毒晚期可引起痉挛、呼吸肌麻痹、窒息、昏迷及休克,最后甚至可因心脏衰竭或呼吸衰竭至身亡。
其毒理主要为抑制延髓的呼吸中枢,当严重受抑制时会引发酸中毒,最终可因延髓呼吸中枢及呼吸肌的麻痹而死于呼吸衰竭,同时亦可抑制脑部和脊髓的运动中枢而引起肌肉麻痹。
一旦发现类似情况,就应及时就诊,如果时间紧迫,可以先给误服钩吻者灌一些鹅血、鸭血、羊血,这在临床上已经证明有一定的疗效[1] 。
中文学名断肠草拉丁学名Gelsemium elegans别称马钱子界植物界门被子植物门目龙胆目科马钱科属钩吻属目录1马钱科钩吻2八角科▪野八角▪红毒茴3毛茛科▪北乌头▪伏毛铁棒锤▪芹叶铁线莲4罂粟科▪白屈菜▪椭果绿绒蒿5紫堇科▪大叶紫堇▪鸡血七▪地锦苗▪石棉紫堇▪金顶紫堇▪黄根紫堇▪金钩如意草▪师宗紫堇▪平武紫堇▪长距紫堇▪无囊长距紫堇▪南黄堇▪大海黄堇▪变根紫堇▪刻叶紫堇▪紫堇▪尿罐草▪蛇果黄堇▪小花黄堇▪黄堇▪臭黄堇6豆科小花棘豆7瑞香科狼毒8卫矛科雷公藤9龙胆科蔓龙胆10夹竹桃科11萝藦科▪古钩藤▪牛角瓜12茄科天仙子13醉鱼草科密蒙花14木犀科1马钱科钩吻马钱科Loganiaceae 钩吻属别名:[2] 、胡蔓藤、大天茶药、钩吻、朝阳草、大茶藤、大茶药、大茶叶、大炮叶、毒根、甘尾、柑毒草、狗闹花、狗向藤、荷班药、胡蔓草、葫蔓藤、黄花苦蔓、黄猛菜、黄藤、黄藤根、烂肠草[1] 、梭柙、文大海、野葛、无缝钢管厂家猪参、猪人参、大茶根、大蛇药、大王根、大叶荖、断肠茶、橄榄枯、胡满姑、胡曼藤、黄花苦晚藤、脚莽姑、苦蔓藤、山砒霜、藤黄2八角科野八角llicium simonsii Maxim.八角科Illiciaceae 八角属别名:[2] 八角果、臭八角、川茴香、断肠草、莽草、山八角、土大香、西南八角茴香、云南八角、地八角、土八角、野茴香红毒茴Illicium lanceolatum A. C. Smith断肠草断肠草(2张)八角科Illiciaceae 八角属别名:[2] 莽草、八角茴香、大茴、毒八角、断肠草、红茴香、茴香、老根、木蟹、木蟹柴、披针叶八角、披针叶茴香、山八角、山大茴、山桂花、山木蟹、鼠莽、土八角、土大茴、狭叶茴香、野八角、野茴香、野猫柴、窄叶红茴香、木蟹树、披叶叶八角、披针红茴香、披针叶红茴香、披针叶红苘香、山茴香3毛茛科北乌头Aconitum kusnezoffii Reichb.毛茛科Ranunculaceae 乌头属别名:[2] 、草乌、蓝鞡花、北乌头、[革几]鞡花、百步草、草乌头、川乌、东北草乌、断肠草、哈日-好日苏、鸡头草、蓝附子、蓝花菜、蓝花子、蓝靰鞡花、勒革拉花、辽西乌头、曼钦、山喇叭花、乌头、五毒根、五毒狼、靰鞡花、小乌头、小叶鸦儿芦、穴种、鸦头、鸭头、药羊蒿、百部、北草乌、泵嘎、考氏乌头、兰附子、蓝花草、蓝乌拉花、五毒花根、小叶芦靰伏毛铁棒锤Aconitum flavum Hand.-Mazz.断肠草断肠草(2张)毛茛科Ranunculaceae 乌头属别名:[2] 、伏毛铁棒槌、八百棒、断肠草、伏毛铁棒钟、两头尖、门青、磨三转、特木苏特-好日苏、铁棒锤、铁牛七、乌药、小草乌、雪上一枝蒿、一支蒿、一枝蒿、芝麻七、草乌、草芽子、伏毛铁锤棒、曼岑、钦巴、小乌、雪上一支蒿芹叶铁线莲Clematis aethusifolia Turcz.毛茛科Ranunculaceae 铁线莲属别名:[2] 、白拉拉秧、断肠草、驴断肠、那林-那布其特-奥日牙木格、女蒌、芹菜铁线莲、透骨草、细叶铁线莲、叶芒嘎保、草地铁线莲、荷叶铁线莲、宽芹叶铁线莲、那林-那布其特-奥日雅木格、碎叶铁线莲、特木日-敖日秧古4罂粟科白屈菜Chelidonium majus Linn.断肠草断肠草(3张)罂粟科Papaveraceae 白屈菜属别名:[2] 、白屈菜、八步紧、地黄连、地黄莲、断肠草、断肠散、观音草、胡黄连、黄连、黄莲、黄汤子、假黄连、假黄莲、见肿消、牛金花、人血七、山黄莲、山西瓜、水黄草、水黄连、秃疮花、土黄连、土黄莲、希古得日格纳、希日-好日、小人血七、小野人草、小野人血草、雄黄草、血当归、岩黄连、、八歩紧、白屈芽、希古得日-格纳、野黄连、扎格朱、celandine椭果绿绒蒿Meconopsis chelidoniifolia Bureau & Franch.罂粟科Papaveraceae 绿绒蒿属别名:[2] 、椭果绿绒蒿、都辣、断肠草、蒿枝七、裂叶蒿、拟千金子、黄华绿绒蒿、木琼、木琼单园、椭圆绿绒蒿、Meconopsis chelidoniifolia5紫堇科大叶紫堇Corydalis temulifolia Franch.紫堇科Fumariaceae 紫堇属别名:[2] 、山臭草、断肠草、大叶紫堇、城口紫堇、冷草、大叶堇、鸡血七鸡血七Corydalis temulifolia subsp. aegopodioides (Lévl. et Van.) C. Y. Wu紫堇科Fumariaceae 紫堇属别名:[2] 、断肠草、人血七地锦苗Corydalis sheareri S. Moore紫堇科Fumariaceae 紫堇属别名:[2] 、地锦苗、大流草、地锦、断肠草、飞菜、高山羊不吃、荷包牡丹、红花鸡距草、护心胆、苦心胆、鹿耳草、牛奶七、牛屎草、七寸高、芹菜、三月烂、山芹菜、蛇含七、铁板道人、大距紫堇、地堇苗、红花紫堇、块茎紫堇、珠芽地锦苗石棉紫堇Corydalis shimienensis C. Y. Wu紫堇科Fumariaceae 紫堇属别名:[2] 、倒地(手/刍)、断肠草、倒地金顶紫堇Corydalis flexuosa subsp. omeiana (C. Y. Wu et H. Chuang) C. Y. Wu紫堇科Fumariaceae 紫堇属别名:[2] 、淡蓝断肠草、断肠草、蓝芹续草、紫断肠草黄根紫堇Corydalis flexuosa subsp. pseudoheterocentra (Fedde) Liden紫堇科Fumariaceae 紫堇属别名:[2] 、断肠草金钩如意草Corydalis taliensis Franch.紫堇科Fumariaceae 紫堇属别名:[2] 、五味草、金钩如意草、断肠草、大理紫堇、大理紫堇草、苦地丁、如意草、水黄连、水金钩如意草、水金钩如玉草、水晶金钩如意草、五味花、野元荽师宗紫堇Corydalis duclouxii Lévl. et Van.紫堇科Fumariaceae 紫堇属别名:[2] 、师宗紫堇、断肠草、金钩如意草、如意草、水黄连、水黄莲、水金钩如意草平武紫堇Corydalis pingwuensis C. Y. Wu紫堇科Fumariaceae 紫堇属别名:[2] 、断肠草、飞燕草、蓝花紫堇长距紫堇Corydalis longicalcarata H. Chuang et Z. Y. Su紫堇科Fumariaceae 紫堇属别名:[2] 、断肠草、高山羊不吃无囊长距紫堇Corydalis longicalcarata var. non-saccata Z. Y. Su紫堇科Fumariaceae 紫堇属别名:[2] 、大紫堇、断肠草南黄堇Corydalis davidii Franch.紫堇科Fumariaceae 紫堇属别名:[2] 、南黄堇、倒卵果紫堇、百脉根、断肠草、何及南博、黄断肠草、老龙草、南紫堇、牛角花、山香、水黄连、土黄苓、小牛角草、岩莲大海黄堇Corydalis feddeana H.Lév.紫堇科Fumariaceae 紫堇属别名:[2] 、断肠草变根紫堇Corydalis linstowiana Fedde紫堇科Fumariaceae 紫堇属别名:[2] 、断肠草、康定紫堇、水黄连刻叶紫堇Corydalis incisa (Thunb.) Pers.紫堇科Fumariaceae 紫堇属别名:[2] 、刻叶紫堇、地锦苗、断肠草、粪桶草、刻叶黄堇、裂苞紫堇、烫伤草、羊不吃、裂叶紫堇、紫堇紫堇Corydalis edulis Maxim.紫堇科Fumariaceae 紫堇属别名:[2] 、断肠草、麦黄草、闷头草、闷头花、牛尿草、炮仗花、蜀堇、虾子菜、蝎子草、蝎子花、野花生、野芹菜、紫、赤芹、楚堇、楚葵、地锦苗、裂苞紫堇、起贫草、山黄连、水卜菜、苔菜、紫芹尿罐草Corydalis moupinensis Franch.紫堇科Fumariaceae 紫堇属别名:[2] 、宝兴黄堇、断肠草蛇果黄堇Corydalis ophiocarpa Hook. f. et Thoms.紫堇科Fumariaceae 紫堇属别名:[2] 、臭香草、弟夏、断肠草、黄堇、那林-萨巴乐干纳、帕夏嘎、蛇果闷头花、蛇果紫堇、弯果黄堇、我正、小前胡、找正、大断肠草、莫害夺、帕夏嘎曼巴、蛇果堇、蛇形果黄堇、札桑小花黄堇Corydalis racemosa (Thunb.) Pers.紫堇科Fumariaceae 紫堇属别名:[2] 、白刺梨果、白断肠草、断肠草、粪桶草、黄荷包牡丹、黄荷色牡丹、黄花地锦苗、黄花五味草、黄花鱼灯草、黄堇、鸡爪莲、深山黄堇、土黄连、小黄紫堇、鱼子草、假胆草、小花紫堇、紫堇黄堇Corydalis pallida (Thunb.) Pers.紫堇科Fumariaceae 紫堇属别名:[2] 、暴鸡母、布木布根-萨巴乐干纳、断肠草、黄花鸡距草、黄炮仗花、闷头花、千人耳子、球果紫堇、三支麻、三芝麻、深山黄堇、小前胡、岩黄连、珠果紫堇、胡黄堇、鸡爪莲、念珠黄堇、念珠紫堇、球果堇、山黄堇、透骨草、玉门透骨草臭黄堇Corydalis foetida C. Y. Wu et Z. Y. Su紫堇科Fumariaceae 紫堇属别名:[2] 、断肠草6豆科小花棘豆Oxytropis glabra (Lam.) DC.豆科Fabaceae 棘豆属别名:[2] 、小花棘豆、包头棘豆、霍勒-额布斯、霍勒-乌布斯、马绊肠、扫格图-奥日图哲、扫格图-额布斯、小叶小花棘豆、醉马豆、断肠草、黄花棘豆、霍尔-乌布斯、沙格图-乌布斯、勺草、乌森赫尔斯、小华棘豆、小棘豆7瑞香科狼毒Stellera chamaejasme L.瑞香科Thymelaeaceae 狼毒属别名:[2] 、拔萝卜、草瑞香、达伦图茄、达伦-图茹、打碗花、大将军、独萝卜、断肠草、粉花团、粉团花、甘遂、红火柴头、红火柴头花、红狼毒、猴子根、火柴头花、鸡肠狼毒、馒头花、绵大戟、棉大戟、胖婆娘、千里马、热吉巴、热加巴、软条、瑞香狼毒、山萝卜、生扯拢、顺水龙、搜山虎、秃疮花聊城精密管、秃闺女花、万丈深、小狼毒、燕子花、燕子药、洋火头花、药萝卜、一把香、一棵松、一扫光、一束香、疮花、达兰-图如、夺整里、甘逐、狗娃花、狗牙花、红尖紫头花、满头花、头疼花、头痛花、一柱香狼毒8卫矛科雷公藤Tripterygium wilfordii Hook. f.卫矛科Celastraceae 雷公藤属别名:[2] 、黄腊藤、雷公藤、菜子龙草、断肠草、红柴根、红药、黄蜡藤、黄鳝藤、黄藤、黄藤草、黄藤根、黄药、蝗虫药、苦木藤、昆明山海棠、南蛇杆子、南蛇根、山花色、水莽草、水莽藤、小黄藤根、莱药虫、山砒霜9龙胆科蔓龙胆Crawfurdia maculaticaulis C. Y. Wu ex C. J. Wu龙胆科Gentianaceae 蔓龙胆属别名:[2] 、断肠草、斑茎蔓龙眼、节紫花10夹竹桃科Strophanthus divaricatus (Lour.) Hook. & Arn.夹竹桃科Apocynaceae 羊角拗属别名:[2] 、猫屎壳、断肠草、羊角拗、布渣叶、打破碗、大羊角扭蔃、黄葛扭、鲤鱼橄榄、沥口花、菱角扭、螺心鱼、年角橹、牛角藤、山羊角、羊角、羊角果、羊角黎、羊角墓、羊角纽、羊角藕、羊角树、羊角藤、阳角右藤、猪屎壳、猫尿壳、牛头相答、土巴戟、羊角坳、羊角柪、羊角崩11萝藦科古钩藤Cryptolepis buchananii Roem. et Schult.萝藦科Asclepiadaceae 白叶藤属别名:[2] 、大叶白叶藤、古钩藤、白都宗、白浆藤、白马连鞍、白叶藤、半架牛、大奶浆藤、断肠草、个卜汁、嘿央欢、扣过怀、老鸦嘴、奶浆藤、牛挂脖子藤、牛挂肚子藤、牛角藤、牛奶藤、羊角藤、羊嘛、羊排果、羊排角、古勾藤、海上霸王、嘿秧欢、奶酱藤、浦猴、乳藤、羊角排牛角瓜Calotropis gigantea (Linn.) Dry. ex Ait. f.萝藦科Asclepiadaceae 牛角瓜属别名:[2] 、断肠草、牛角瓜、大麻风药、奶浆包、五狗卧花、五狗卧花心、羊浸渣叶、野攀枝花、大皇冠花、短场草、五狗卧花芯、哮喘树、越南楷杷、越南枇杷、giant milkweed 12茄科天仙子Hyoscyamus niger Linn.茄科Solanaceae 天仙子属别名:[2] 、山烟、牙痛子、天仙子、白花灯笼、白花莨菪、苯格哈兰特、大天仙子、菲沃斯、冈伍入克、茛菪、黑莨菪、克来名多那、莨菪根、莨菪叶、莨菪子、铃铛草、麻性草、马铃草、米罐子、山大烟、山大菸、山烟子、山菸、唐冲浪唐子、唐葱莨菪子、特纳格-乌布斯、特讷格-额布斯、小天仙子、熏牙子、薰牙子、牙痛草、野大菸、重牙子、北天仙子、断肠草、救牙子、兰坦兹、莨菪了、坦普拉姆、特纳格-额布斯、特尼格-乌布斯、牙疼草、牙疼子、black henbane13醉鱼草科密蒙花Buddleja officinalis Maxim.醉鱼草科Buddlejaceae 醉鱼草属别名:[2] 、米汤花、羊耳朵、密蒙花、草春条、虫见死、断肠草、疙瘩皮树花、黄饭花、黄花树、黄花醉鱼草、鸡骨头花、假黄花、酒药花、老蒙花、老密蒙花、蒙花树、蒙花珠、密蒙花树、蜜蒙花、绵糊条子、糯米花、染饭花、石灰条子、水锦花、土蒙花、小锦花、羊春条、羊耳朵朵尖、羊耳花、羊叶子、跟戛拉、梁饭花、羊耳朵尖、羊耳朵叶、pole butterflybush 14木犀科Jasminum coarctatum Roxb.木犀科Oleaceae 素馨属别名:[2] 、断肠草、光清素馨、聚花茉莉、清明花、鸡胆藤、羊断肠草秋海棠Begonia grandis Dryand.秋海棠科Begoniaceae 秋海棠属别名:秋海棠、八月春、八月喜、断肠花、无名断肠草、无名相思草、中华秋海棠、珠芽秋海棠、肠草花、大叶秋海棠、山海棠、相思草、血蜈蚣、一点血、一口血[2]。
生药学和植物疗法的基本原理英文版_部分10
ARALIACEAEImportant medicinal plants from the familyl Hedera helix L.[(common)ivy],used as a cough remedyl Panax ginseng C.A.Meyer(ginseng),used as an adaptogene(a very ill-defined category)and to combat mental and physical stress[and sometimes replaced by Eleutherococcus(Acanthopanax)senticosus(Rupr.and Maxim) Maxim from the same family].Morphological characteristics of the family This family consists mostly of woody species,charac-terized by hermaphrodite flowers in a simple umbel (see the closely related Apiaceae with a double umbel).The leaf lobes are hand-shaped,and the flow-ers relatively inconspicuous with two pistils,an infer-ior gynaecium,a small calyx and generally a white to greenish corolla,with free petals and sepals. DistributionThis family of>700species is widely dispersed in tropical and subtropical Asia and in the Americas. Hedera helix is the only species native to Europe.Chemical characteristics of the familyOf particular importance from a pharmacognostical perspective are the saponins,triterpenoids and some acetylenic compounds.The triterpenoids(gin-sengosides)are implicated in the pharmacological effects of Panax ginseng,while saponins(hederasa-ponins)are of relevance for the secretolytic effect of Hedera helix.ASPHODELACEAE(‘MONOCOTYLEDONEAE’)This family is often included in the Liliaceae(lily family).Important medicinal plants from the familyl Aloe vera(L.)Burman f.(syn.Aloe barbadensis, Barbardos aloe)and A.ferox Miller(Cape aloe), both strong purgatives(see p206and208).Aloe leaves contain a gel which is also applied topically for skin conditions;for botanical description.(see p.286,Chapter22).Morphological characteristics of the family Members of this family are generally perennials,and,in the case of Aloe,usually woody,with a basal rosette and the typical radial hermaphrodite flower structure of the Liliales.The petals and sepals are identical in form and colour,and composed of 3þ3free or fused,3þ3free stamens and three fused superior carpels.DistributionThis family,with about600species,is widely dis-tributed in South Africa(a characteristic element of the Cape flora);some species occur naturally in the Mediterranean(Asphodelus).Chemical characteristics of the family Typical for the genus Aloe are anthranoids and anthraglycosides(aloe-emodin),which are respon-sible for the species’laxative effects,as well as poly-saccharides accumulating in the leaves.Contrary to other related families,the Asphodelaceae do not accumulate steroidal saponins.ASTERACEAE–THE‘DAISY’FAMILY(ALSO KNOWN AS COMPOSITAE)This large family has kept botanists busy for many centuries and still no universally accepted classifica-tion exists.All members of the family have a complex inflorescence(the capitula),which gave rise to the older nameofthefamily:Compositae(¼inflorescence composed of many flowers).In other features,the family is rather diverse,especially with respect to its chemistry.Important medicinal plants from the familyl Arnica montana L.(arnica),used topically, especially for bruisesl Artemisia absinthum L.(wormwood or absinthium),used as a bitter tonic and choleretic l Calendula officinalis L.(marigold),used topically, especially for some skin afflictionsl Cnicus benedictus L.(cnicus),used as a cholagogue (a bitter aromatic stimulant)l Cynara scolymus L.(artichoke),used in the treatment of liver and gallbladder complaints and several other conditionsl Echinacea angustifolia DC.,E.pallida Nuttall andE.purpurea(L.)Moench(Cone flower),now commonly used as an immunostimulantl Matricaria recutita L.(chamomille/camomille; several botanical synonyms are also commonly used,including Chamomilla recutita andMatricaria chamomilla)(see Chapter14,p.208). l Tussilago farfara L.(coltsfoot),a now little used expectorant and demulcent.Morphological characteristics of the family (Fig.4.3)The family is largely composed of herbaceous and shrubby species,but some very conspicuous trees are also known.The most important morphological trait is the complex flower head,a flower-like struc-ture,which may in fact be composed of a few or many flowers(capitulum or pseudanthium).In some sections of the family(e.g.the subfamilyRay floretFlowerheadDisk floret Stigma(a)FruitM. maritima ssp inodora L.Scentless chamomile Matricaria chamomilla L.Wild ChamomileFig.4.3(a)Two members of the genus Matricaria.(Left)Matricaria chamomilla L.is aromatic and used medicinally.(Right) Matricaria maritima L.subsp.inodora Schultz[¼Tripleurospermum perforatum(Me´rat)Wagenitz],also known as Matricaria inodora,is not aromatic and is not used medicinally.The illustration shows typical morphological differences in these two species, such as the form of the flower heads and the fruit,but it also shows how similar the two species are in many other characteristics. From Fitch(1924).(b)Schematic of typical flower heads(a capitulum)of the Asteraceae(compositae).df,disk flowers;tf,tubular flowers;in,involucre,from Brimble(1942).Lactucoideae,which includes lettuce and dande-lion),only ligulate(tongue-shaped)or disk(ray) florets are present in the dense heads.In the other major segment(subfamily Asteroideae),both ligu-late and radiate/discoid flowers are present on the same flower head,the former generally forming an outer,showy ring with the inner often containing large amounts of pollen.The flowers are epigynous, bisexual or sometimes female,sterile or functionally male.The(outer)calyx has five fused sepals and in many instances later develops into a pappus(feath-erlike in dandelions,in other instances more bristly),which is used as a means for dispersingthe fruit;it is lacking in many other taxa.The fused petals(generally five)form a tubus or a ligula.The two gynaecia are epigynous and develop into tiny, nut-like fruits(achene or cypsela).The leaves are generally spirally arranged,simple,dissect or more or less compound.DistributionMore than21,000species are known from practi-cally all parts of the world,with the exception of Antarctica,and the family has found niches in a large variety of ecosystems.The family is particu-larly well-represented in Central America and southern North America(Mexico).Chemical characteristics of the familyA typical chemical trait of this family is the presence of polyfructanes(especially inulin)as storage carbo-hydrates(instead of polysaccharides)in perennial taxa.Inulin-containing drugs are used for preparing malted coffee(e.g.from the rootstocks of Cichorium intybus,chicory).In many taxa,some segments of the family accumulate sesquiterpene lactones(typi-cally with15-carbon atoms such as parthenolide; Fig.4.4),which are important natural products responsible for the pharmacological effects of many botanical drugs such as Chrysanthemum parthenium(feverfew)and Arnica montana(arnica). Polyacetylenic compounds(polyenes),and essential oil,are also widely distributed.Some taxa accumu-late pyrrolizidine alkaloids,which,for example,are present in Tussilago farfara(coltsfoot)in very small amounts.Many of these alkaloids are known for their hepatotoxic effects.Other taxa accumulate unusual diterpenoids;the diterpene glycoside stevioside(Fig.4.4),for example,is of interest because of its intensely sweet taste.CAESALPINIACEAEThis family was formerly part of the Leguminosae(or Fabaceae)and is closely related to two other families: the Fabaceae(seebelow)andtheMimosaceae(not dis-cussed).Many contain nitrogen-fixing bacteria in root nodules.This symbiotic relationship is beneficial to both partners(for the plant,increased availability of physiologically usable nitrogen;for the bacterium, protection and optimal conditions for growth).Important medicinal plants from the familyl Cassia senna L.and C.angustifolia Vahl(Senna), used as a cathartic.Morphological characteristics of the family (Fig.4.5)Nearly all of the taxa are shrubs and trees.Typically the leaves are pinnate.The free or fused calyx is composed of five sepals,the corolla of five generally free petals,the androecium of ten stamens,with many taxa showing a reduction in the number of stamens(five)or the development of staminodes instead of stamens.The flowers are zygomorphic and have a very characteristic shape,if seen from above,resembling a shallow cup.DistributionThe2000species of this family are mostly native to tropical and subtropical regions,with some species common in the Mediterranean region.The family includes the ornamental Cercis siliquastrum L.(the Judas tree),native to the western Mediterranean, which according to(very doubtful)legend was the tree on which Judas Iscariot hangedhimself. Parthenolide SteviosideCH2OHO OOHOHOOHOHOOHHOH2CFig.4.4Chemical characteristics of the familyFrom a pharmaceutical perspective the presence of anthranoides with strong laxative effects is of parti-cular interest.Other taxa accumulate alkaloids,such as the diterpene alkaloids of the toxic Erythrophleum.FABACEAEThis family is also classified together with the Mimosaceae and the Caesalpiniaceae as the Legu-minosae(or Fabaceae,s.l.;see note under Caesalpi-niaceae).One of its most well-known characteristics is that many of its taxa are able to bind atmospheric nitrogen.Important medicinal plants from the familyl Cytisus scoparius(L.)Link(common or Scotch broom),which yields sparteine(formerly used in cardiac arrhythmias,as an oxytoxic,and in hypotonia to raise blood pressure)l Glycyrrhiza glabra L.(liquorice),used as an expectorant and for many other purposesl Melilotus officinalis L.(melilot or sweet clover);the anticoagulant drug warfarin was developed from dicoumarol,first isolated from spoiled hay of sweet clover l Physostigma venenosum Balfour(Calabar bean),a traditional West African arrow poison,which contains the cholinesterase inhibitor physostigmine,used as a myotic in glaucoma,in postoperative paralysis of the intestine and to counteract atropine poisoning.Morphological characteristics of the family This family is characterized by a large number of derived traits.Most of the taxa of this family are her-baceous,sometimes shrubby and only very rarely trees.Typically,the leaves are pinnate and some-times the terminal one is modified to form a tendril, used for climbing.Bipinnate leaves are not found in this family.The five sepals are at least basally uni-ted.The corolla is formed of five petals and has a very characteristic butterfly-like shape(papilionac-eous),with the two lower petals fused and forming a keel-shaped structure,the two lateral ones pro-truding on both sides of the flower and the largest petal protruding above the flower,being particu-larly showy.The androecium of ten stamens gener-ally forms a characteristic tubular structure with at least nine out of ten of the stamens forming a sheath. Normally,the fruit are pods,containing beans(tech-nically called legumes)with two sutures,which open during the drying of the fruit(Fig.4.6).(a)(c)(d)(b)Fig.4.6Flower of Pisum sativum(common pea,Fabaceae, sensu stricto):(a)entire flower showing the various elements of the corolla(co;b,banner;w,wing(two);k,keel;ca calyx);(b) calyx;(c)stamens(nine fused and one free);(d)gynaecium;(e) the four petals of the corolla.Modified after Frohne&Jensen(1998).(c)(a)(b)Fig.4.5Cassia angustifolia,a typical Caesalpiniaceae:(a) typical zygomorphic flower(yellow in its natural state);(b) fruit(one of the botanical drugs obtained from the species);(c) flowering branch showing the leaves composed of leaflets,and the inflorescence.Modified after Frohne&Jensen(1998).DistributionThis is a cosmopolitan family with about 11,000species,and is one of the most important families.It includes many plants used as food:for example,numerous species of beans (Phaseolus and Vigna spp.,Vicia faba L.),peas (Pisum sativum L.),soy [Gly-cine max (L.)Merrill],fodder plants (Lupinus spp.)and medicines (see above).Chemical characteristics of the familyThis large family is characterized by an impressive phytochemical diversity.Polyphenols (especially flavonoids and tannins)are common,but from a phar-maceutical perspective various types of alkaloids are probably the most interesting and pharmaceutically relevant groups of compounds.In the genera Genista and Cytisus (both commonly called broom)as well as Laburnum ,quinolizidine alkaloids,including cytisine and sparteine (Fig.4.7),are common.The hepatotoxic pyrrolizidine alkaloids are found in this family (e.g.in members of the genus Crotolaria ).Other important groups of natural products are the isoflavonoids,known for their oestrogenic activ-ity,and the coumarins used as anticoagulants (see Melilotus officinalis above).Glycyrrhiza glabra L.(licor-ice)is used because of its high content of the triterpe-noid glycyrrhic acid,which,if joined to a sugar,is called glycyrrhizin (a saponin)and is used in confec-tionery as well as in the treatment of gastric ulcers (controversial).Last but not least,the lectins must be mentioned.These large (MW 40,000–150,000),sugar-binding proteins agglutinate red blood cells and they are a common element of the seeds of many species.Some are toxic to mammals,for example phasin from the common bean (Phaseolus spp.),which is the cause of the toxicity of uncooked beans.HYPERICACEAEThis small family was formerly part of the Gutti-ferae and is of pharmaceutical importance becauseof St John’s wort,which in the last decade of the 20th century became one of the most important medicinal plants in Western medicine.Important medicinal plants from the familyl Hypericum perforatum L.(St John’s wort)hasclinically well-established effects in mild forms of depression.It has also been employed topically for inflammatory conditions of the skin.Morphological characteristics of the familyThe leaves are opposite,often dotted with glands.A characteristic feature of this family is a secondary increase in the number of stamens (polyandrous flowers).The fruit are usually capsules,but berries may occur in some species.DistributionThis family,with about 900species,has its main area of distribution in the tropics and in temperate regions.Chemical characteristics of the familyThe former name Guttiferae is an important indicator of a characteristic chemical feature:the presence of resins,balsam and other glands containing excretory products.For example,the hypericin glands,with a characteristic red colour,are present especially in the flowers and contain naphthodianthrones,includ-ing hypericin (Fig.4.8)and pseudohypericin,which are characteristic for some sections of the genus.Typi-cal for the family in general are also xanthones (found nearly exclusively in this family and in the Gentiana-ceae).The genus is known to accumulate flavonoids and their glycosides (rutoside,hyperoside),as well as hyperforin (Fig.4.8)and its derivatives,which are derived from the terpenoidpathway.QuinolizidineCytisineSparteineNNN HHHO Fig.4.7。
不同生境白屈菜(Chelidonium majus)生活史型特征及其与不同器官单宁、黄酮、生物碱含量的关系
h ra m dcn .B sn h r cp l o o e t ayi P A)mehd, h h rc r t aa tr o epa t i eb l e iie yuigtePi ia C mp n n ls n An s( C to tec aat i i p rmees f h ln f esc t le
第 2 8卷第 1 1期
20 0 8年 1 1月
生
态
学
报
Vo . 128. No. 11 No v., 0 2 I CA S NI
不 同生境 白屈 菜 ( h l o im maU ) C ei nu j S 生活 史型 特征 d 及 其与 不 同器 宁 、 官单 黄酮 、 生物碱 含量 的关 系
( )白屈菜生活史型 _ 3 卜次生代谢产物 ( 单宁 、 黄酮和生物碱) 含量相关性分析结果 中, 显著 的线 性关 系显示 , 白屈菜 次生代谢 产 物( 宁、 阿 黄酉和生物碱 ) 含量与营养牛长和有性生长成 负相关 , 与克隆生长成正相关 。实验结果表明, 较于空地 的 D E生境 , 林 ( 榆树和白扦 ) 下的 D F生境条件差 , 白J 菜 向 C型转变 , 使 习 { 同时也促进 了次生代谢产物 ( 宁、 单 黄酮和生物碱 ) 的积累。结果 可 以为野生植物的人 定 向培育r生境选择和 目的活性成分定 向累积提供基于形态学的评 价方法和理论。 f l 1
境 。各样地白屈菜不同器官单宁含量 :十 >种 >根 > ; n片 茎 黄酮含量 : >叶片 >根 >茎 ; 种 生物碱含量 : 片 > > , n 十 根 茎 各样地 白 屈菜茎和根的生物碱含量无明显差异 , 空地 白屈菜 叶片 【生 物碱含 量低 于榆树林 下和 白扦林 下 白屈菜植株 5 % ~5 . % 。 l j 9 67
白屈菜炮制方法的初步研究
HPLC 法所建立的梯度洗脱条件,6 种对照品分离度较好,方法学考察结果符合相关规定。醋制品的 6 种成分
无论是单一的含量还是总量均低于生品,但醋制品水提取的效果要优于生品。结论:所建立的 HPLC 含量测定
方法,简单易行,可用于白屈菜样品的含量测定,白屈菜焖法炮制方法所得总碱相对较高,白屈菜的饮片炮制
conditions established by HPLC showed that the six reference substances had good separation, and the methodologi-
cal results met the relevant requirements. The six components of vinegar products are lower than those of raw prod-
Abstract:OBJECTIVE To study the processing method of Chelidonium majus with vinegar. METHODS High
performance liquid chromatography (HPLC)was used under the conditions of 1% triethylamine (adjusting pH to 3.0 with phosphoric acid)- acetonitrile and gradient elution with detection wavelength of 274 nm. Six alkaloids in Chelidonium majus L. were used as indicators to prepare raw Chelidonium majus L. and its processed products by
植物拉丁学名中文名对照
植物拉丁学名中文名对照(ZT)矮扁柏 Chamaecyparis obtusa cv.Nana Kosteri矮柳 Salix herbacea矮山姜 Alpinia pumila矮生美洲花柏 Chamaecyparis lawlsoniana cv.Minima 安德喜林芋 Philodendron andreanum八角金盘 Fatsia japonica八角莲 Disporum leschenaultianum八仙花 Hydrangea macrophylla巴西铁树 Dracaena fragrans白雪委陵菜 Potentilla nitidavar. alba白边铁树 Dracaena deremensis白粉藤 Cissus repens白蝴蝶 Syngonium podophyllum cv white butterfly 白花败酱 Patrima villosa白花碎米荠 Cardamine leucantha白花网纹草 Fitionia verschaffeliii白花油麻藤 Mucuna birdwoodiana白花紫露草 Tradescatia fluminensis白屈菜 Chelidoniummajus白山金腰子 Chrysosplenium baitoshamicum白山蓼 Poly-gonum laxmanii白山龙朋 Gentiana jamesii白山毛茛 Ranunculus japonica var.monticola白睡莲 Nymphaea alba白头风毛菊 Saussurea triangulata var. alpina白头翁 Pulsatilla chinensis白头翁一种 Pulsatillavernalis白香石竹 Dianthus arenarins白雪花 Plumbag zeylanica白颜树 Gironniera subaequalis白珠树一种 Gaultherianum mularioides百里香 Thymus mongolicus百里香 Thymus rzewalskii百两金 Ardisia crispa斑瓣虎耳草 Saxlfra#璯a takedana斑点虎耳草 Saxifraga punetata斑花捉构兰 Cyperipedium guttatum斑纹竹芋 Calaihea zebrina斑叶堇菜 Viola variegata斑叶竹芋 Calathea warscewiczzi板兰 Baphicacacanthus cusia板兰 Baphicacanthus cusia瓣蕊唐松草 Thalictrum petaloideum苞叶杜鹃 Rhododendron redowskianum报春花 Primula malacoides报春叶杜鹃 Rhododendron primuliflorum报春一种 Primula modesta豹纹竹芋 Maranta bicolor北京虎耳草 Saxifraga sibirica var.pekinensis 北拉拉藤 Galium boleale北马先蒿 Pedicularis mdshurica北毛茛 anunculus borealis贝拉球兰 Hoya bella本氏点地梅 Androsace bungeana笔龙胆 Gentiana zellingeri蓖齿苏铁 Cycas peciinata扁担藤 tetrastigma planicaule。
有毒植物
白屈菜:Greater Calandine Herb (Chelidonium majus L.)【拉丁文】*Chelidonium maius L【别名】*地黄连、牛金花、土黄连、八步紧、断肠草、山西瓜、雄黄草、山黄连、假黄连、小野人血草【来源】*为罂粟科植物白屈菜(土黄连)Chelidonium majus L.的全草。
【成分】*含白屈菜酸(chelidonic acid)、白屈菜碱(chelidonine)、原鸦片碱(protopine)、白屈菜红碱(chelery thrine)、小檗碱(berberine)、黄连碱(coptisine)等。
血根碱(sanguinarine)α-,β-,γ-高白屈菜碱(α-,β-homochelidonine)、普托品(protopine)、胆碱、芸香甙等。
【性味】*性凉,味苦*有小毒。
【功效】*1、行气止痛 2、化痰止咳 3、利水消肿 4、解毒杀虫【功能】*镇痛,止咳,平喘,消肿。
用于胃痛、慢性支气管炎、百日咳。
白屈菜Herba Chelidonii(英)Greater Calandine Herb别名为罂栗科植物白屈菜Chelidonium majus L.的全草。
植物形态多年生草本,高30~100cm,有黄色乳汁。
茎直立,多分枝,嫩绿色,被白粉,疏生柔毛。
叶互生,1~2回羽状全裂,基生叶全裂片5~8对,茎生叶全裂片2~4对,边缘有不整齐缺刻,上面近无毛,下面疏生短柔毛,有白粉。
花数朵,伞状排列;萼片2,早落;花瓣4,黄色,倒卵圆形,雄蕊多数;子房线形,无毛。
蒴果线状圆柱形,成熟时由基部向上开裂。
种子多数,卵球形,黄褐色,有光泽及网纹。
花期5~8月,果期6~10月。
生于山坡、山谷林边草地;有栽培。
主产东北、华北。
采制夏、秋季采割,阴干或鲜用。
化学成分含白屈菜碱(chelidonine)、白屈菜红碱(chelerythrine)、血根碱(sanguinarine)α-,β-,γ-高白屈菜碱(α-,β-homochelidonine)、普托品(protopine)、小檗碱(berberine)、黄连碱等,尚含白屈菜酸、胆碱、芸香甙等。
Lecture(7)Alkaloids
Ephedra sinica (1-3 %) E. equisetina (2 %), Ephedra vulgaris
• Its structure is related to the animal hormone, adrenaline (or epinephrine), and has similar pharmacological actions.
• Used as a traditional medicine in China for more than 5000 years.
• Ephedra contains 0.5-2.0% of phenylalkylamine Alk. The major and medicinally important ones are: * (-) ephedrine ,“90% of the total Alk.” * its stereoisomer (+)-pseudoephedrine
OH
OH
β
β
NHMe
NH2
(+)-Pseudoephedrine
(+) Norpseudoephedrine (Cathine)
as amphetamine CNS stimulant
O
NH2 (-) Cathinone
Catha edulis (Fam. Celastraceae)
Peyote Alkaloids
-osteoarthritis
O
H3CO N H
HO
CH3 CH3
- A phenolic amide alkaloid - No basic characters (nitrogen in an amide group)
alkaloid的用法总结大全
alkaloid的用法总结大全(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如英语单词、英语语法、英语听力、英语知识点、语文知识点、文言文、数学公式、数学知识点、作文大全、其他资料等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of classic sample essays, such as English words, English grammar, English listening, English knowledge points, Chinese knowledge points, classical Chinese, mathematical formulas, mathematics knowledge points, composition books, other materials, etc. Learn about the different formats and writing styles of sample essays, so stay tuned!alkaloid的用法总结大全alkaloid的意思alkaloid的简明意思n. 生物碱;植物碱基adj. 生物碱的;似碱的英式发音 ['ælkəlɔɪd] 美式发音 ['ælkəlɔɪd]alkaloid的词态变化为:形容词: alkaloidalalkaloid的详细意思在英语中,alkaloid不仅具有上述意思,还有更详尽的用法,alkaloid作名词 n. 时具有【生化】生物碱;植物碱基;有机含氮碱等意思,alkaloid作形容词 adj. 时具有【生化】生物碱的;似碱的;碱的;碱一样的;含碱的等意思,alkaloid的具体用法alkaloid作名词 n. 时具有【生化】生物碱;植物碱基;有机含氮碱等意思,alkaloid作形容词 adj. 时具有【生化】生物碱的;似碱的;碱的;碱一样的;含碱的等意思,如:Objective : To compare the total alkaloid contents at different sites of Pinellia ternata from Nanchong Sichuan.目的: 比较四川南充半夏不同部位总生物碱的含量.在此句中alkaloid表示生物碱的意思alkaloid的用法例句Objective : To study the alkaloid constituents of Phlegmariurus fordii ( Baker ) Ching.目的: 研究石杉科华南马尾杉[Phlegmariurusfordii ( Baker ) Ching]中的生物碱成分.在此句中alkaloid表示生物碱的意思Methods The total alkaloid and berberine contents were determined by UV and HPLC methods respectively.方法采用紫外分光光度法测定总生物碱含量,高效液相色谱方法测定盐酸小檗碱含量.在此句中alkaloid表示生物碱的意思Neferine ( Nef ) is a dibenzylisoquinoline alkaloid from a Chinese medicinal herb ( Nelumbo nucifera Gaertn ).甲基莲心碱是一种双苄基异喹啉类生物碱.在此句中alkaloid表示生物碱的意思Objective : To observe the expectorant and relieving cough effects of total alkaloid from Chelidonium majus L.目的: 观察白屈菜总生物碱(以下简称生物碱)的祛痰止咳作用.在此句中alkaloid表示生物碱的意思Conclusion It has good prospect in development and application for isoquinoline alkaloid composition of Tongbangchui.结论铜棒锤中含有异喹啉类生物碱,具有良好的开发应用前景. 在此句中alkaloid表示生物碱的意思。
ALKALOIDS FROM ANNONA CHERIMOLIA LEAVES
Brief Reports
15 1
103.4 (C-lo), 128.6 (C-1‘), 128.5 (C-2’,6’), 115.7 (C-3’,5’), 157.7 (C-4’), 99.0 (C-l”), 71.10 (C-2“), 76.90 (C-3”), 67.95 (C-4”), 73.80 (C-5”), 62.90 (C-6‘7, 125.0, 125.2 (C-1”’, l””),130.0 (C-2”‘, 2””, 6”’, 6””), 115.2, 115.7 (C-3”’, 3””, 5”’, 5””), 159.7, 159.8 (C-4”‘, 4““), 113.9, 114.7 (,) and 165.9, 166.2 (C-7”‘, 7””)ppm and were assigned on the basis of naringenin 7-0-pD-glucoside (6) and anisofolin-A (2). Full details of the isolation and physical and spectra identification of the compounds are available on request to the senior author. ACKNOWLEDGMENTS Two of the authors (LJMR and GNKK) are grateful to CSIR, New Delhi, for fellowships. LITERATURE CITED
L. Jagan Mohan Rao, G . N . Krishna Kumari, and N.S. Prakasa Rao,]. Nat. Prod., 149 (1984). L. Jagan Mohan Rao, G . N . Krishna Kumari, and N.S. Prakasa Rao, Heterocycles, 19, 1655 (1982). L. Jagan Mohan Rao, G . N . Krishna Kumari, and N.S. Prakasa Rao, Phytochemistry, 22, 1058 (1983). 4. L. Jagan Mohan Rao, G . N . Krishna Kumari, and N.S. Prakasa Rao, Pbytocbemistry, 22, 1522 (1983). 5. L.Jagan Mohan Rao, G . N . Krishna Kumari, and N.S. Prakasa Rao,]. Nat. Prod.. 46, 595 (1983). 6. W . Rahman, K. Ishratullah, H. Wagner, 0. Setigmann, V.M. Chari, and B.G. Osterdahl, Phytochemistry, 17, 1064 (1978). Gottlieb, Phytochemistry.21,2107 7. D.A.D. Barros, M.A. De Alvarenga, O.R. Gottlieb, and H.E. (1982). 8. C. Karl, G . Miller, and P.A. Pederson, Pbytorbemirtry, 15, 1084 (1976). 9. H . Itokawa, K. Suto, and K. Takya, Cbem. Pharm. Bull., 29,254 (198 1). 10. M. Aritomi, Chem. Pharm. Bull., 11, 1225 (1963).
长白山区有毒植物资源调查研究
长白山区有毒植物资源调查研究孙仁爽;赵敏婧;张儆文【摘要】采用野外调查和访问相结合的方法开展有毒植物的调查研究,调查发现:长白山区共有野生有毒植物51个科,162个种,对有毒植物的生物活型和主要有毒植物的分布、危害进行了分析探讨,并提出了有毒植物的防控对策.【期刊名称】《人参研究》【年(卷),期】2018(030)006【总页数】6页(P44-49)【关键词】长白山区;有毒植物;调查研究【作者】孙仁爽;赵敏婧;张儆文【作者单位】通化师范学院,通化134002;通化师范学院,通化134002;通化市食品药品检验所,通化134000【正文语种】中文植物广泛分布于自然界,在碳循环过程中起重要作用,是自然界不可缺少的一部分,与人类的生活息息相关。
在自然界中植物种类繁多,化学成分复杂,人们很难辨别植物是否有毒,不慎接触到有毒植物会引发过敏,皮炎,腹痛,腹泻,严重者危害生命。
在东北地区[1],随着人们对野生植物资源食用和药用价值认识的不断深入,对野生植物采摘食用也逐渐广泛,但多数人很难从主观上分辨相类似的有毒植物,从而导致食物中毒的现象时有发生。
为了减少和避免有毒植物对人和动物造成危害,更好的认识和了解有毒植物,确保人和动物健康发展,控制有毒植物的生长繁殖,我们对长白山区[2]有毒植物进行实地调查研究,为长白山区植物资源的有效开发和利用提供依据。
1 调查内容长白山区共有野生植物2700多种分属73目246科,在全国野生植物种类中占有重要地位。
长白区野生植物多数可以用来做中药材,但有很多有毒植物难以区分,药材混用的现象时有发生,导致我们在服用中药时常有服药效果不佳,服药后发生不良反应或中毒。
在以往的对长白山的有毒植物[3]的资源研究中叙述的较为片面,本文将对详细的调查长白山区[4]的有毒植物的种类,分布情况进行叙述,统计野生有毒的植物资源的自然分布,同时记录有毒植物的种类、分布范围、生长环境、数量、出现频率等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Alkaloids from Chelidonium majus and their inhibitory effects on LPS-induced NO production in RAW264.7cellsJi Eun Park a , ,To Dao Cuong a , ,Tran Manh Hung b ,IkSoo Lee c ,MinKyun Na d ,Jin Cheol Kim e ,SungWoo Ryoo f ,Jeong Hyung Lee f ,Jae Sue Choi g ,Mi Hee Woo a ,Byung Sun Min a ,⇑aCollege of Pharmacy,Catholic University of Daegu,Gyeongbuk 712-702,Republic of KoreabDivision of Pharmacognosy and Natural Products Chemistry,Faculty of Medicine and Pharmacy,Duy Tan University,K7/25Quang Trung,Danang City,Viet Nam cKorea Institute of Oriental Medicine,Daejeon 305-811,Republic of Korea dCollege of Pharmacy,Yeungnam University,Gyeongbuk 712-764,Republic of Korea eKorea Research Institute of Chemical Technology,Daejeon 305-600,Republic of Korea fCollege of Natural Sciences,Kangwon National University,Kangwon 200-701,Republic of Korea gFaculty of Food Science and Biotechnolgy,Pukyoung National University,Busan 608-737,Republic of Koreaa r t i c l e i n f o Article history:Received 1July 2011Revised 23September 2011Accepted 30September 2011Available online xxxx Keywords:Chelidonium majus Papaveraceae AlkaloidAnti-inflammatory activitya b s t r a c tA new alkaloid,methyl 20-(7,8-dihydrosanguinarine-8-yl)acetate (1),together with six known alkaloids,stylopine (2),protopine (3),norchelidonine (4),chelidonine (5),berberine (6),and 8-hydroxydihydrosan-guinarine (7),were isolated from Chelidonium majus .Their chemical structures were primarily estab-lished using 1D and 2D NMR techniques and mass spectrometry.The anti-inflammatory activity of the isolates was examined for their inhibitory effects on LPS-induced NO production in macrophage RAW264.7cells.Among them,compounds 5and 7showed strong inhibitory activities toward the LPS-induced NO production in macrophage RAW264.7cells with IC 50values of 7.3and 4.5l M,respectively.In addition,compounds 5and 7inhibited the inductions of COX-2and iNOS mRNA in dose-dependent manners,indicating that these compounds attenuated the syntheses of these transcripts at the transcriptional level.Ó2011Elsevier Ltd.All rights reserved.Inflammation is a central feature of many pathophysiological conditions in response to tissue injury and host defenses against invading microbes.Chronic inflammations and infections lead to the upregulation of a series of enzymes and signaling proteins in affected tissues and cells.Among these pro-inflammatory en-zymes,the inducible forms of nitric oxide synthase (NOS),and cyclooxygenase (COX),which are responsible for increasing the levels of NO and prostaglandins (PGs),respectively,are known to be involved in the pathogenesis of many chronic diseases including multiple sclerosis,Parkinson 0s,Alzheimer 0s diseases,and colon cancer.1,2NO is produced by iNOS in macrophages,hepatocytes and renal cells,under the stimulation of lipopolysaccharide (LPS),tumor necrosis factor-alpha (TNF-a ),interleukin-1or interferon-gamma,3meanwhile,COX is the enzyme that converts arachidonic acid to PGs.Like NOS,COX has been found to exist in two isoforms and one of these,COX-2,is an inducible form which is responsible for the production of large amounts of pro-inflammatory PGs at the inflammatory site.4Furthermore,TNF-a is one of the most impor-tant pro-inflammatory cytokines and is mainly produced by monocytes and macrophages.It is secreted during the early phase of acute and chronic inflammatory diseases such as asthma,rheu-matoid arthritis,septic shock,and other allergic diseases,as well as the activation of T cells.5During a screening procedure on higher plants to find novel candidates as anti-inflammatory agents,the methanol extract of Chelidonium majus L.(greater celandine)was shown to exhibit con-siderable inhibitory activity. C.majus belongs to the family Papaveraceae and is a rich source of various biologically active substances.Anti-inflammatory,anti-microbial,antiviral,and antispasmodic activities are attributed to greater celandine.6–9Fur-thermore,the C.majus herbal drug has been traditionally used for its choleretic activity and for the treatment of liver disorders.10The main chemical components of C.majus are as follows:benzo[c ]phenanthridines both quaternary (chelerythrine,sanguin-arine)and tertiary (chelidonine),protopine and its derivatives (protopine,allocryptopine),and protoberberines (berberine,copti-sine).11Other previously isolated constituents included flavonoids and various acids (ferulic,cumaric,caffeic,and chelidonic acids).12Few clinical trials have been conducted to gain a better under-standing of the efficacy of C.majus ,which is often used with other herbal ingredients,in the treatment of functional gastric disorders or upper abdominal pain due to biliary system dysfunction.120960-894X/$-see front matter Ó2011Elsevier Ltd.All rights reserved.doi:10.1016/j.bmcl.2011.09.128⇑Corresponding author.Tel.:+82538503613;fax:+82538503602.E-mail address:bsmin@cu.ac.kr (B.S.Min).These authors contributed equally to this work.These studies have provided evidence of a statistically significant improvement in patients treated with greater celandine.13From the continuing investigation on the discovery of the inhibitory ef-fect on LPS-induced NO production in macrophage RAW264.7cells, the subsequent isolation of C.majus from the EtOAc-soluble frac-tion resulted in the isolation of a new alkaloid(1),as well as six previously known isolates(2–7).14On comparing the spectral data with those in the literature and of authentic samples,the known compounds were identified as stylopine(2),15c protopine(3),15b norchelidonine(4),15d chelidonine(5),15c berberine(6),15b and 8-hydroxydihydrosanguinarine(7).15a In the present paper,the isolation and structural elucidation of the isolates,as well as the evaluation of their inhibitory effects on LPS-induced NO produc-tion in macrophage RAW264.7cells are described.Compound1was obtained as yellow powder,and shown posi-tive reactions with Dragendorff’s reagent.The molecular formula of 1was found to be C23H19NO6,on the basis of the molecular ion at m/z405.1215for the[M]+(calcd for C23H19NO6,405.1212)in the HR-EI-MS.16The IR spectrum of1showed the presence of2922 (C–C),1720[(C@O)–O],1650(C@O),and1478(aromatic absorp-tion)cmÀ1.The1H NMR spectrum displayed,in the aromatic re-gion,two one-proton singlets at[d H7.14(1H,s,H-1)and7.47 (1H,s,H-4)],two pairs of AB-type ortho-coupling quartets at[d H7.52(1H,d,J=8.4Hz,H-5)and7.74(1H,d,J=8.4Hz,H-6)],and[d H6.90(1H,d,J=8.0Hz,H-11)and7.42(1H,d,J=8.0Hz,H-12)],as well as one N-methyl group in the higher-field region[d H 2.61(3H,s,N–CH3)],and two methylenedioxy protons at[d H 6.08and6.07(each1H,d,J=1.2Hz,–OCH2O–),6.05and6.04(each 1H,d,J=1.2Hz,–OCH2O–)].All of the1H NMR spectra also exhib-ited a double doublet[d H4.80(1H,dd,J=4.8,10.8Hz)],the typicalsignal of H-8from an8-hydroxydihydrosanguinarine skeleton iso-lated from Dactylicapnos torulosa,15a substituted at C-8by a directly connected methine(Fig.1).The13C NMR spectroscopic data cou-pled with an HMQC experiment established the presence of23sig-nals including sixteen aromatic carbons,one carboxylic carbon signal at d C173.6,two methylenedioxy carbons at(d C102.6and 103.1),one methine carbon signal at d C56.2,one methylene carbon signal at d C39.8and one N-methyl carbon signal at d C43.4and one methoxy carbon signal at d C52.2.The NMR spectroscopic data,to-gether with the molecular formula,suggested that1had a methyl acetate group,which was confirmed by a COSY experiment.In the 1H–1H COSY spectrum,H-8showed a clear correlation with H-20 (Fig.2).With the further aid of the HMBC spectrum of1,which notably contained cross-peaks between H-8/H-20/10-OCH3and C-10(d C173.6),established that a methyl acetate group was substituted at C-8through C-20(Fig.2).The relative configuration of position C-8was not solved due to the lack of information in the NMR spectra and the failure to crystallize1.Based on the above data analyses,compound1was established as a new alkaloid, namely methyl20-(7,8-dihydrosanguinarine-8-yl)acetate.Inflammation is an essential aspect of host response to infection and injury,and it is characterized by the abundant productions ofTable1Inhibition of NO production in macrophage RAW264.7cells by compounds1–7Compound IC50value a(l m)1>502>503>50416.5±4.557.3±0.66>307 4.5±0.5Celastrol b 1.0±0.1a The inhibitory effects are represented as the molar concentration(l M)giving50%inhibition(IC50)relative to the vehicle control,the results are the mean of threereplications.b Positive control.2J.E.Park et al./Bioorg.Med.Chem.Lett.xxx(2011)xxx–xxxNO,PGE2,and of cytokines such as IL-6and TNF-a,and thus,these pro-inflammatory mediators are important anti-inflammatory tar-gets.Lipopolysaccharide(LPS)is an endotoxin,one of the constitu-ent of the outer membrane of gram-negative bacteria,17it stimulates innate immunity by regulating the productions of inflammatory mediators,like NO,TNF-a,IL-6,prostanoids and other leukotrienes.17Several reports showed that murine RAW 264.7cells stimulated by LPS offered an excellent model for the screening and subsequent evaluation of the effects of candidate drugs on the inflammatory pathway.In our experiments,the cyto-toxic effects of isolates1–7were evaluated in the presence or ab-sence of LPS using MTT assay,18and these compounds did not affect the cell viability of RAW264.7cells at doses of50l M after 24h(data not shown).The amount of NO produced was deter-mined by the amount of nitrite,a stable metabolite of NO.To assess the effects of these compounds on the LPS-induced NO production in RAW264.7cells,the cell culture medium was harvested,with the amount of nitrite measured using the Griess reaction.19As shown in Table1,compounds5and7showed strong inhibitory ef-fects with IC50values of7.3and4.5l M,respectively,compound4 showed a weak inhibitory effect with and IC50value of16.5l M, while the other compounds exhibited no activities.The effects of 5and7on the LPS-induced COX-2and iNOS expressions were also investigated.20RAW264.7cells were stimulated on exposure to 1l g/ml of LPS for18h in the presence of increasing concentrations of5and7,and the expression levels of COX-2and iNOS proteins were determined using immunoblot analyses.Western blot was performed to determine whether the inhibitory effects of com-pounds5and7on the pro-inflammatory mediator(NO)are related to the modulations of the expressions of iNOS,and COX-2.In unstimulated RAW264.7cells,iNOS and COX-2protein levels were almost undetectable.However,in response to LPS,the expression of iNOS and COX-2was markedly augmented,compounds5and 7significantly inhibited this iNOS and COX-2protein induction in a concentration-dependent manner(Fig.3).Moreover,preincu-bation with compounds5and7at3l M resulted in a marked reduction in LPS-induced COX-2,and at3l M of compound5and at1l M of compound7resulted in a marked reduction in LPS-in-duced iNOS expression(Fig.3).These compounds suppressed the production of NO as well as the expressions of iNOS and COX-2 in LPS-stimulated pounds5and7were also shown to inhibit not only the expressions of iNOS and COX-2 mRNA,but also the iNOS and COX-2promoter activities in LPS stimulated RAW264.7cells,suggesting that these compounds could suppress LPS-induced iNOS and COX-2expressions at the transcription level.In accordance with our study,it is unclear tofind out the signif-icant differences in the relationship between activity and chemical structures,however,the compounds with hydroxy methine con-stituents as norchelidonine(4),chelidonine(5)and8-hydroxydihydrosanguinarine(7)reduced the NO production after LPS stimulation in a dose-dependent manner(Table1).Interest-ingly,the N-methyl-substituted skeletons as chelidonine(5)and 8-hydroxydihydrosanguinarine(7)showed somewhat more potent inhibitory activity than the other compounds(Fig.3).The anti-inflammatory effects of these compounds is due to their regulation of inflamatory mediators such as COX-2and iNOS.In summary,the present results demonstrated that these alkaloids might be important anti-inflammatory constituents of this plant. AcknowledgmentsThis research was supported by the National Research Founda-tion of Korea Grant funded by the Korean Government(MEST) (KRF-2009-0084675)and(NRF-C1ABA001-2010-0020484). References and notes1.Heiss,E.;Herhaus,C.;Klimo,K.;Bartsch,H.;Gerhauser,C.J.Biol.Chem.2001,276,32008.2.Kundu,J.K.;Surh,Y.J.Mutat.Res.2008,659,15.3.Kuo,P.C.;Schroeder,R.A.Ann.Surg.1995,221,220.4.Weisz,A.;Cicatiello,I.;Esumi,H.Biochem.J.1996,316,209.5.Palladino,M.A.;Bahjat,F.R.;Theodorakis,E.A.;Moldawer,L.L.Nat.Rev.DrugDisc.2003,2,736.6.Chung,H.S.;An,H.J.;Jeong,H.J.;Won,J.H.;Hong,S.H.;Kim,H.M.J.Pharm.Pharmacol.2004,56,129.7.Kokosca,L.;Polesny,Z.;Rada,V.;Nepovim,A.;Vanek,T.J.Ethnopharmacol.2002,82,51.8.Colombo,M.L.;Bosisio,E.Pharm.Res.1996,33,127.9.Hiller,K.O.;Ghorbani,M.;Schilcher,H.Planta Med.1998,64,758.10.Vahlensieck,U.;Hahn,R.;Winterhoff,H.;Gumbinger,H.G.;Nahrsted,A.;Kemper,F.H.Planta Med.1995,61,267.11.Barreto,M.C.;Pinto,R.E.;Arrabaca,J.D.;Pavão,M.L.Toxicol.Lett.2003,146,37.12.Barnes,J.;Anderson,L. A.;Phillipson,J. D.In Herbal Medicines,3rd ed.;Pharmaceutical Press:London,2007.13.Ritter,R.;Schatton,W.F.H.;Gessner,B.;Willems,plement.Ther.Med.1993,1,189.14.The air-dried whole plant of C.majus was purchased from a folk medicinemarket‘Yak-ryoung-si’in Daegu,Korea,in May2009.Botanical identification was performed by Professor Byung Sun Min,and the voucher specimen CUD-1523was deposited at the Herbarium of the College of Pharmacy,Catholic University of Daegu.The air-dried whole plant of C.majus(6kg)was extracted with MeOH(15LÂ3times)at room temperature for72h and the combined extract was removed under vacuum to afford a viscous residue358.17g.The MeOH extract was suspended in hot water and successively partitioned with n-hexane,EtOAc,and n-BuOH to afford n-hexane—(61.45g),EtOAc—(33.74g), and n-BuOH-soluble(26.85g)fractions.The EtOAc-soluble fraction(33.74g) was applied to a silica gel column,eluted with CHCl3–MeOH(50:1–0:1)to yielded11subfractions(E1–E11)according to their TLC profiles.Subfraction E1(1.06g)was applied to MPLC and eluted with MeOH–H2O(5:1–20:1)to obtain7(4mg).Re-chromatography of subfraction E5(2.32g)on a silica gel column and eluted with CHCl3–EtOAc(10:1–1:1)to afford six subfractions(E5.1–E5.6).Compound6(5.7mg)was isolated by applying subfraction E5.1(340.5mg) over a silica gel column and eluted with hexane–acetone(20:1–1:1).Further purification of subfraction E5.4(514mg)using silica gel column with a gradient of CHCl3–acetone(20:1–1:1)resulted in the isolation of5(151mg).Subfraction E6(1.04g)was purified by silica gel column using a gradient of CHCl3–MeOH(30:1–1:1)resulted in the isolation of1(23.6mg)and2(17.5mg)and six subfractions(E6.1–E6.6).Compound4(4.5mg)wascrystallized from subfraction E6.4(55mg)with hexane–EtOAc(5:1).Figure3.Inhibition of compounds5(A)and7(B)in LPS-induced iNOS and COX-2expressions in RAW264.7cells.Furthermore,subfraction E10(1.25g)was also purified using silica gel column, eluting with a gradient of CHCl3–MeOH(20:1–3:1)to afford3(62.9mg), respectively.15.(a)Guo-Lin,Z.;Gerhard,R.;Eberhard,B.;Martin,N.;Ralf,M.;Christoph,S.Phytochemistry1995,40,299;(b)Kim,D.K.;Lee,K.T.;Baek,N.I.;Kim,S.H.;Park,H.W.;Lim,J.P.;Shin,T.Y.;Eom,D.O.;Yang,J.H.;Eun,J.S.Arch.Pharm.Res.2004,27,1127;(c)Lee,J.;Shon,M.Y.;Jang,D.S.;Ha,T.J.;Hwang,S.W.;Nam,S.H.;Seo,E.K.;Park,K.H.;Yang,M.S.Agric.Chem.Biotechnol.2005,48, 198;(d)Matthew,J.;Fleming,H.A.;McManus,A.R.;Chan,W.H.;Ruiz,J.;Dockendorff,C.;Lautens,M.Chem.Eur.J.2008,14,2112.16.Physical and spectroscopic data of new compound(1,methyl20-(7,8-dihydrosanguinarine-8-yl)acetate)):Yellow powder;mp192°C;½a 25D+23.0(c0.5,CHCl3);UV k max(MeOH)276nm;IR m max(KBr)2922,1720,1650,1602,1478,1320,1263,772,618cmÀ1;HR-EI-MS m/z405.1215[M]+(calcd for C23H19NO6,405.1212);1H NMR(400MHz,CD3OD)d:7.14(1H,s,H-1),7.47 (1H,s,H-4),7.52(1H,d,J=8.4Hz,H-5),7.74(1H,d,J=8.4Hz,H-6),2.61(3H,s, N-CH3),4.80(1H,dd,J=4.8,10.8Hz,H-8),2.41(1H,dd,J=4.8,14.0Hz,H-20a),2.32(1H,dd,J=10.8,14.0Hz,H-20b),6.90(1H,d,J=8.0Hz,H-11),7.42(1H,d,J=8.0Hz,H-12),6.08and6.07(each1H,d,J=1.2Hz,–OCH2O–),6.05and6.04 (each1H,d,J=1.2Hz,–OCH2O–),3.67(3H,s,20-OCH3).13C NMR(100MHz, CD3OD)d:105.3(C-1),149.7(C-2),149.2(C-3),101.5(C-4),132.7(C-4a),125.4 (C-5),121.1(C-6),56.2(C-8),116.6(C-8a),148.8(C-9),146.0(C-10),108.9(C-11),117.8(C-12),129.1(C-12a),127.1(C-13),124.7(C-14),139.4(C-14a),103.1(–OCH2O–),102.6(–OCH2O–),39.8(C-20),52.2(10-COO C H3),43.4(N–CH3),173.6(10-C OOCH3).17.Guha,M.;Mackman,N.Cell Signal2001,13,85.18.(a)Shin,K.M.;Kim,I.T.;Park,Y.M.;Ha,J.;Choi,J.W.;Park,H.J.;Lee,Y.S.;Lee,K.T.Biochem.Pharmacol.2004,68,2327;(b)Cell culture.The RAW264.7cells were maintained in Dulbecco’s Modified Essential.These cells were grown at 37°C in DMEM supplemented with10%heat-inactivated FBS,penicillin (100units/ml),and streptomycin sulfate(100l g/ml)in a humidified atmosphere of5%CO2.After pre-incubation of RAW264.7cells for4h,0–10l g/ml each compound was added;(c)MTT assay for cell viability.RAW264.7 viability after24h of continuous exposure to the compounds was measured with a colorimetric assay based on the ability of mitochondria in viable cells to reduce MTT.Briefly,1Â104cells/well treated for24h with vehicle or compounds were examined for cell viability.Viability of the macrophages treated with vehicle(0.5%DMSO)only was defined as100%viable.Survival of macrophage cells after treatment with compounds was calculated using the following formula:viable cell number(%)=OD570(treated cell culture)/OD570 (vehicle control)Â100.19.Determination of NO production and the cell viability assay:The level of NOproduction was determined by measuring the amount of nitric from the cell culture supernatants as described previously.Briefly,the RAW264.7cells (ATCC,Rockville,MD,USA,1Â105cells/well)were stimulated with or without 1l g/ml of LPS(Sigma Chemical Co.,St.Louis,MO)for24h in the presence or absence of the test compounds(0.5–25l M).The cell culture supernatant (100l l)was then reacted with100l l of Griess reagent.The remaining cells after the Griess assay were used to test their viability using a MTT(Sigma Chemical Co.,St.Louis,MO)-based colorimetric assay as previously described.Celastrol was used as the positive control.20.Immunoblot analysis:Proteins were extracted from cells in ice-cold lysis buffer(50mM Tris–HCl,pH7.5,1%Nonidet P-40,1mM EDTA,1mM phenylmethyl sulfonylfluoride,1l g/ml leupeptin,1mM sodium vanadate,150mM NaCl).Fifty microgram of protein per lane was separated by sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis(PAGE)and followed by transferring to a polyvinylidene difluoride membrane(Millipore,Bedford,MA,USA).The membrane was blocked with5%skim milk,and then incubated with the corresponding antibody.Antibodies for COX-2,iNOS were obtained from Santa Cruz Biotechnology(Santa Cruz,CA,USA).Antibody for a-tubulin was purchased from Sigma.After binding of an appropriate secondary antibody coupled to horseradish peroxidase,proteins were visualized by enhanced chemiluminescence according to the instructions of the manufacturer (Amersham Pharmacia Biotec,Buckinghamshire,UK).4J.E.Park et al./Bioorg.Med.Chem.Lett.xxx(2011)xxx–xxx。