数列综合应用教案
数列综合问题高中数学教案
数列综合问题高中数学教案
知识点:数列的综合
教学目标:通过本节课的学习,学生能够掌握数列的综合方法,解决相关数学问题。
教学重点:数列的综合求解方法。
教学难点:在实际问题中运用数列的综合方法解决问题。
教学过程:
一、导入新知识(5分钟)
教师向学生介绍本节课的学习内容,引导学生了解数列的综合概念。
并通过一个简单的例子引出数列综合问题。
二、讲解与实践(15分钟)
1. 讲解数列的综合方法,说明综合的含义及求解步骤。
2. 通过几个示例讲解综合求解数列问题的步骤,引导学生掌握方法。
3. 学生进行练习,巩固数列综合的求解方法。
三、拓展应用(10分钟)
1. 给学生提供一些实际问题,让学生尝试用数列综合方法解决问题。
2. 学生结合实际问题进行讨论,分享不同解题思路。
四、作业布置(5分钟)
布置练习题作业,相关综合数列问题的练习。
五、课堂小结(5分钟)
总结本节课的重点内容,强调数列综合方法的重要性,并提醒学生作业要认真完成。
教学反思:本节课通过讲解数列的综合方法,让学生了解了数列的综合应用,实际问题中的数列综合求解方法。
通过多种实例的讲解和练习,学生对数列综合方法有了更深入的理解和掌握。
在今后的教学过程中,可以结合更多实际问题,让学生更好地运用数列综合方法解决各种数学问题。
2025届高考数学一轮复习教案:数列-数列的综合应用
第六节数列的综合应用【核心考点·分类突破】考点一等差、等比数列的综合问题(规范答题)[例1](12分)(2023·新高考Ⅰ卷)设等差数列{a n}的公差为d,且d>1,令b n=2+,记S n,T n分别为数列{a n},{b n}的前n项和.(1)若3a2=3a1+a3,S3+T3=21,求{a n}的通项公式;(2)若{b n}为等差数列,且S99-T99=99,求d.审题导思破题点·柳暗花明(1)思路:根据等差数列的定义,灵活运用给定的条件,即可得到所求等差数列的通项公式;同时帮助学生理解题设条件,以顺利进入第(2)问的情境.(2)思路:所给题设条件“{b n}为等差数列”要求学生能够灵活转化为求解数列{a n}中公差与首项的关系,可以采用通性通法来解答.规范答题微敲点·水到渠成【解析】(1)因为3a2=3a1+a3,所以3d=a1+2d,解得a1=d,[1分]关键点根据已知条件,列方程求出首项a1和公差d的关系.所以S3=3a2=3(a1+d)=6d,又T3=b1+b2+b3=2+3+4=9,所以S3+T3=6d+9=21,即2d2-7d+3=0,解得d=3或d=12(舍去),[3分]所以a n=a1+(n-1)d=3n,所以的通项公式为a n=3n.[4分]阅卷现场(1)没有过程,只有a n=3n得1分;(2)结果正确时漏写a1=d不扣分;(3)d=12漏舍只得1分.(2)因为b n=2+,且为等差数列,所以2b2=b1+b3,即122=21+123,[6分]所以61+-11=61+2,所以12-3a1d+2d2=0,解得a1=d或a1=2d.[8分]传技巧取的前3项,利用等差中项2b2=b1+b3,得到首项a1和公差d之间的关系.解法一:①当a1=d时,a n=nd,所以b n=2+=2+B=r1,S99=99(r99)=99×50d,T99=99×51.因为S99-T99=99,所以99×50d-99×51=99,关键点利用S99-T99=99,列出关于d的方程,结果注意d>1.即50d2-d-51=0,解得d=5150或d=-1(舍去).[10分]②当a1=2d时,a n=(n+1)d,所以b n=2+=2+(r1)=,避易错讨论另一种情况,不可遗漏.S99=99(2r100)=99×51d,T99=99×50.因为S99-T99=99,所以99×51d-99×50=99,即51d2-d-50=0,解得d=-5051(舍去)或d=1(舍去).[11分]综上,d=5150.[12分]解法二:因为S99-T99=99,由等差数列的性质知,且99a50-99b50=99,即a50-b50=1,传技巧利用等差数列的性质,可以简化运算过程.列方程求出a50,注意由d>1可知a n>0.所以a50-255050=1,即a502-a50-2550=0,解得a50=51或a50=-50(舍去).[10分]①当a1=d时,a50=a1+49d=50d=51,解得d=5150.②当a1=2d时,a50=a1+49d=51d=51,解得d=1,与d>1矛盾,应舍去.[11分]综上,d=5150.[12分]解法三:因为,都是等差数列,且a nb n=n(n+1),=B=1(+1).[8分]所以可设=1(+1)=B或敲黑板构造新数列要考虑全面,少写一组不得分.(i)当a n=1(n+1),b n=kn时,S99-T99=1(2+3+…+100)-k(1+2+…+99)=99,即50k2+k-51=0,解得k=-5150或k=1,因为d=k>1,所以均不合题意.[10分](ii)当a n=kn,b n=1(n+1)时,S99-T99=k(1+2+…+99)-1(2+3+…+100)=99,即50k2-k-51=0,解得k=5150或k=-1.因为d=k>1,所以k=5150,所以d=5150.[12分]拓思维高考命题强调“多思考,少运算”的理念,试题面向全体学生,为考生搭建展示数学能力的平台.本解法根据给出的条件,巧妙的构造新的数列,突破常规解法,灵活运用数列知识,解题方法“高人一招”,解题速度“快人一步”.【解题技法】等差、等比数列综合问题的求解策略1.基本方法:求解等差、等比数列组成的综合问题,首先要根据数列的特征设出基本量,然后根据题目特征使用通项公式、求和公式、数列的性质等建立方程(组),确定基本量;2.基本思路:注意按照顺序使用基本公式、等差中项、等比中项以及证明数列为等差、等比数列的方法确定解题思路.【对点训练】(2022·全国甲卷)记S n为数列{a n}的前n项和.已知2+n=2a n+1.(1)证明:{a n}是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.【解析】(1)由2+n=2a n+1,得2S n+n2=2a n n+n①,所以2S n+1+(n+1)2=2a n+1(n+1)+(n+1)②,②-①,得2a n+1+2n+1=2a n+1(n+1)-2a n n+1,化简得a n+1-a n=1,所以数列{a n}是公差为1的等差数列.(2)由(1)知数列{a n}的公差为1.由a4,a7,a9成等比数列,得72=a4a9,即(a1+6)2=(a1+3)(a1+8),解得a1=-12,所以S n=-12n+(-1)2=2-252=12(n-252)2-6258,所以,当n=12或n=13时,(S n)min=-78.考点二数列与函数、向量的综合[例2](1)(2023·龙岩模拟)已知函数f(x)=13x3+4x,记等差数列{a n}的前n项和为S n,若f(a1+2)=100,f(a2022+2)=-100,则S2022等于()A.-4044B.-2022C.2022D.4044【解析】选A.因为f(-x)=-13x3-4x=-f(x),所以f(x)是奇函数,因为f(a1+2)=100,f(a2022+2)=-100,所以f(a1+2)=-f(a2022+2),所以a1+2+a2022+2=0,所以a1+a2022=-4,所以S2022=2022(1+2022)2=-4044.(2)数列满足a1=1,a2=5,若m=1,r1+1,n=+r2,-2,m·n=0,则数列的通项公式为________.【解析】由已知m·n=0,得1×+r2-2r1+1=0,即r2-r1-r1-=2,则r1-是首项为a2-a1,公差为2的等差数列,则a n+1-a n=2-1+-1×2=2+1,于是a n=--1+-1--2+…+2-1+a1=2n+2-1+…+2×2+1=2+-1+…+2+1=n2+n-1.答案:a n=n2+n-1【解题技法】数列与函数、向量的综合问题的求解策略(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形;(3)涉及数列与三角函数有关的问题,常利用三角函数的周期性等特征,寻找规律后求解;(4)涉及数列与向量有关的综合问题,应根据条件将向量式转化为与数列有关的代数式求解.【对点训练】1.已知数列{a n}满足a n+2-a n+1=a n+1-a n,n∈N*,且a5=π2,若函数f(x)=sin2x+2cos22,记y n=f(a n),则数列{y n}的前9项和为()A.0B.-9C.9D.1【解析】选C.由题意知数列{a n}是等差数列.因为a5=π2,所以a1+a9=a2+a8=a3+a7=a4+a6=2a5=π.f(x)=sin2x+2cos22,所以f(x)=sin2x+cos x+1,所以f(a1)+f(a9)=sin2a1+cos a1+1+sin2a9+cos a9+1=2.同理f(a2)+f(a8)=f(a3)+f(a7)=f(a4)+f(a6)=2.因为f(a5)=1,所以数列{y n}的前9项和为9.2.数列{a n}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为________.【解析】因为a4+λa10+a16=15,所以a1+3d+λ(a1+9d)+a1+15d=15,令λ=f(d)=151+9-2,因为d∈[1,2],所以令t=1+9d,t∈[10,19],因此λ=f(t)=15-2.当t∈[10,19]时,函数λ=f(t)是减函数,故当t=10时,实数λ有最大值,最大值为f(10)=-12.答案:-12考点三数列与不等式的综合【考情提示】数列不等式作为考查数列综合知识的载体,因其全面考查数列的性质、递推公式、求和等知识而成为高考命题的热点,重点考查不等式的证明、参数范围、最值等.角度1数列中的最值[例3]公比为2的等比数列{a n}中存在两项a m,a n满足a m a n=1612,则1+4的最小值为()A.32B.53C.43D.1310【解析】选A.由等比数列的通项公式知a m=a1×2m-1,a n=a1×2n-1,由a m a n=1612,可得12×2m+n-2=1612,易知a1≠0,故2m+n-2=16,解得m+n=6,则1+4=16(m+n)·(1+4)=16(1+4++4)≥16(5+2)=32(当且仅当m=2,n=4时取等号).角度2数列中的不等式证明[例4](2023·宁德模拟)已知数列,满足b n=a n+n2,a1+b1=3,a2+b2=8,且数列是等差数列.(1)求数列的通项公式;(2)n项和为S n,求证:12≤S n<1.【解析】(1)由b n=a n+n2得b1=a1+1,b2=a2+4,代入a1+b1=3,a2+b2=8得2a1+1=3,2a2+4=8,解得a1=1,a2=2.又因为数列为等差数列,故公差为d=a2-a1=1,因此a n=n,b n=n+n2.(2)由(1)可得b n=n+n2,所以1=1r2=1-1r1,所以S n=11+12+13+…+1=(1-12)+(12-13)+(13-14)+…+(1-1r1)=1-1r1,又因为n∈N*,所以0<1r1≤12(n=1时等号成立),所以12≤1-1r1<1,即12≤S n<1.角度3数列中的不等式恒成立[例5]已知数列{a n}的通项公式为a n=5-n,其前n项和为S n,将数列{a n}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n}的前3项,记{b n}的前n项和为T n.若存在m∈N*,使对任意n∈N*,S n≤T m+λ恒成立,则实数λ的取值范围是()A.[2,+∞)B.(3,+∞)C.[3,+∞)D.(2,+∞)【解析】选D.依题意得S n=(4+5-)2=(9-)2,根据二次函数的性质知,当n=4,5时,S n 取得最大值为10.另外,根据通项公式得数列{a n}的前4项为a1=4,a2=3,a3=2,a4=1,观察易知抽掉第二项后,余下的三项可组成等比数列,所以数列{b n}中,b1=4,公比q=12,所以T n=4(1-12)1-12=8(1-12),所以4≤T n<8.因为存在m∈N*,对任意n∈N*,S n≤T m+λ恒成立,所以10<8+λ,所以λ>2.【解题技法】数列与不等式交汇问题的解题策略(1)判断数列问题的一些不等关系,可以利用数列的单调性比较大小或借助数列对应的函数的单调性比较大小.(2)考查与数列有关的不等式证明问题,此类问题一般采用放缩法进行证明,有时也可通过构造函数进行证明.(3)数列中有关项或前n 项和的恒成立问题,常转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.【对点训练】1.(2023·重庆模拟)设a >0,b >0,若3是3a 与9b 的等比中项,则1+2的最小值为()A .92B .3C .32+2D .4【解析】选A .因为3是3a 与9b 的等比中项,所以32=3a ·9b =3a +2b ,所以a +2b =2,所以1+2=12·(1+2)·(a +2b )=12(5+2+2)≥12·(5+2)=92,当且仅当a =b =23时取等号.2.数列{a n }满足a 1=14,a n +1=14-4,若不等式21+32+…+r2r1<n +λ对任何正整数n 恒成立,则实数λ的最小值为()A .74B .34C .78D .38【解析】选A .因为数列{a n }满足a 1=14,a n +1=14-4,所以反复代入计算可得a 2=26,a 3=38,a 4=410,a 5=512,…,由此可归纳出通项公式a n =2(r1),经验证,成立,所以r1=1+1(r2)=1+12(1-1r2),所以21+32+…+r2r1=n +1+12(1+12-1r2-1r3)=n +74-12(1r2+1r3).因为要求21+32+…+r2r1<n +λ对任何正整数n 恒成立,所以λ≥74.3.(2023·南京模拟)已知数列的前n 项和为S n ,a 1=2,(n -2)S n +1+2a n +1=nS n ,n ∈N *.(1)求数列的通项公式;(2)求证:112+122+…+12<716.【解析】(1)(n -2)S n +1+2a n +1=nS n ,则(n -2)S n +1+2(S n +1-S n )=nS n ,整理得到nS n +1=(n +2)S n ,故r1(r1)(r2)=(r1),,故(r1)=11×2=1,即S n=n(n+1).当n≥2时,a n=S n-S n-1=n(n+1)-n(n-1)=2n,验证当n=1时满足,故a n=2n,n∈N*.(2)12=142<142-1=12(12-1-12r1),故112+122+…+12<14+12(13-15+15-17+…+12-1-12r1)=14+12(13-12r1)<14+12×13=512<716.考点四数列在实际问题中的综合应用[例6](1)(2022·新高考Ⅱ卷)图1是中国古代建筑中的举架结构,AA',BB',CC',DD'是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图,其中DD1,CC1,BB1,AA1是举,OD1,DC1,CB1,BA1是相等的步,相邻桁的举步之比分别为B1B1=0.5,B1B1=k1,B1B1=k2,B1B1=k3.已知k1,k2,k3成公差为0.1的等差数列,且直线OA的斜率为0.725,则k3=()A.0.75B.0.8C.0.85D.0.9【解析】选D.设OD1=DC1=CB1=BA1=1,则CC1=k1,BB1=k2,AA1=k3,依题意,有k3-0.2=k1,k3-0.1=k2,且B1+B1+B1+B1B1+B1+B1+B1=0.725,所以0.5+33-0.34=0.725,故k3=0.9.(2)据统计测量,已知某养鱼场,第一年鱼的质量增长率为200%,以后每年的增长率为前一年的一半.若饲养5年后,鱼的质量预计为原来的t倍.下列选项中,与t值最接近的是()A.11B.13C.15D.17【解析】选B.设鱼原来的质量为a,饲养n年后鱼的质量为a n,q=200%=2,则a1=a(1+q),a2=a1(1+2)=a(1+q)(1+2),…,a5=a(1+2)×(1+1)×(1+12)×(1+122)×(1+123)=40532a≈12.7a,即5年后,鱼的质量预计为原来的13倍.【解题技法】数列在实际应用中的常见模型等差模型如果增加(或减少)的量是一个固定的数,则该模型是等差模型,这个固定的数就是公差等比模型如果后一个量与前一个量的比是一个固定的非零常数,则该模型是等比模型,这个固定的数就是公比递推数列模型如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,则应考虑考查的是第n项a n与第(n+1)项a n+1(或者相邻三项等)之间的递推关系还是前n项和S n 与前(n+1)项和S n+1之间的递推关系【对点训练】1.(2023·武汉模拟)南宋数学家杨辉为我国古代数学研究作出了杰出贡献,他的著名研究成果“杨辉三角”记录于其重要著作《详解九章算法》,该著作中的“垛积术”问题介绍了高阶等差数列.以高阶等差数列中的二阶等差数列为例,其特点是从数列中的第二项开始,每一项与前一项的差构成等差数列.若某个二阶等差数列的前4项为2,3,6,11,则该数列的第15项为()A.196B.197C.198D.199【解析】选C.设该数列为,则a1=2,a2=3,a3=6,a4=11.由二阶等差数列的定义可知,a2-a1=1,a3-a2=3,a4-a3=5,…所以数列r1-是以a2-a1=1为首项,公差d=2的等差数列,即a n+1-a n=2n-1,所以a2-a1=1,a3-a2=3,a4-a3=5,…,a n+1-a n=2n-1.将所有上式累加可得a n+1=a1+n2=n2+2,所以a15=142+2=198,即该数列的第15项为198.2.(2023·深圳模拟)将一个顶角为120°的等腰三角形(含边界和内部)的底边三等分,挖去由两个等分点和上顶点构成的等边三角形,得到与原三角形相似的两个全等三角形,再对余下的所有三角形重复这一操作.如果这个操作过程无限继续下去,最后挖剩下的就是一条“雪花”状的Koch曲线,如图所示.已知最初等腰三角形的面积为1,则经过4次操作之后所得图形的面积是()A.1681B.2081C.827D.1027【解析】选A.根据题意可知,每次挖去的三角形面积是被挖三角形面积的13,所以每一次操作之后所得图形的面积是上一次三角形面积的23,由此可得,第n次操作之后所得图形的面积是,即经过4次操作之后所得图形的面积是=1681.。
《数列综合应用举例》教案
《数列综合应用举例》教案第一章:数列的概念与应用1.1 数列的定义与表示方法引导学生了解数列的概念,理解数列的表示方法,如通项公式、列表法等。
通过实际例子,让学生掌握数列的性质,如项数、公差、公比等。
1.2 数列的求和公式介绍等差数列和等比数列的求和公式,让学生理解其推导过程。
通过例题,让学生学会运用求和公式解决实际问题,如计算数列的前n项和等。
第二章:数列的性质与应用2.1 数列的单调性引导学生了解数列的单调性,包括递增和递减。
通过实际例子,让学生学会判断数列的单调性,并运用其解决相关问题。
2.2 数列的周期性介绍数列的周期性概念,让学生理解周期数列的性质。
通过例题,让学生学会运用周期性解决实际问题,如解数列的方程等。
第三章:数列的极限与应用3.1 数列极限的概念引导学生了解数列极限的概念,理解数列极限的含义。
通过实际例子,让学生掌握数列极限的性质,如保号性、夹逼性等。
3.2 数列极限的计算方法介绍数列极限的计算方法,如夹逼定理、单调有界定理等。
通过例题,让学生学会运用极限计算方法解决实际问题,如求数列的极限值等。
第四章:数列的级数与应用4.1 数列级数的概念引导学生了解数列级数的概念,理解级数的特点和分类。
通过实际例子,让学生掌握级数的基本性质,如收敛性和发散性等。
4.2 数列级数的计算方法介绍数列级数的计算方法,如比较法、比值法、根值法等。
通过例题,让学生学会运用级数计算方法解决实际问题,如判断级数的收敛性等。
第五章:数列的应用举例5.1 数列在数学建模中的应用引导学生了解数列在数学建模中的应用,如人口增长模型、存货管理模型等。
通过实际例子,让学生学会运用数列建立数学模型,并解决实际问题。
5.2 数列在物理学中的应用介绍数列在物理学中的应用,如振动序列、量子力学中的能级等。
通过例题,让学生学会运用数列解决物理学中的问题,如计算振动序列的周期等。
第六章:数列在经济管理中的应用6.1 数列在投资组合中的应用引导学生了解数列在投资组合中的作用,如资产收益的序列分析。
数列综合题和应用性问题教案
数列综合题和应用性问题教案章节一:数列的概念和性质教学目标:1. 理解数列的定义及其基本性质。
2. 能够识别和表示不同类型的数列。
3. 掌握数列的通项公式和求和公式。
教学内容:1. 数列的定义及表示方法。
2. 数列的性质,如单调性、周期性等。
3. 数列的通项公式和求和公式。
教学活动:1. 通过实例介绍数列的定义和表示方法。
2. 引导学生探索数列的性质,如单调性、周期性等。
3. 讲解数列的通项公式和求和公式,并通过例题进行解释。
章节二:等差数列和等比数列教学目标:1. 理解等差数列和等比数列的定义及其性质。
2. 能够识别和表示等差数列和等比数列。
3. 掌握等差数列和等比数列的通项公式和求和公式。
教学内容:1. 等差数列和等比数列的定义及表示方法。
2. 等差数列和等比数列的性质,如单调性、周期性等。
3. 等差数列和等比数列的通项公式和求和公式。
教学活动:1. 通过实例介绍等差数列和等比数列的定义和表示方法。
2. 引导学生探索等差数列和等比数列的性质,如单调性、周期性等。
3. 讲解等差数列和等比数列的通项公式和求和公式,并通过例题进行解释。
章节三:数列的极限教学目标:1. 理解数列极限的概念及其性质。
2. 能够求解数列极限的问题。
3. 掌握数列极限的运算规则。
教学内容:1. 数列极限的定义及其性质。
2. 数列极限的求解方法。
3. 数列极限的运算规则。
教学活动:1. 通过实例介绍数列极限的定义和性质。
2. 引导学生学习数列极限的求解方法,如直接求解、夹逼定理等。
3. 讲解数列极限的运算规则,并通过例题进行解释。
章节四:数列的综合题型教学目标:1. 理解数列综合题型的概念及其解题方法。
2. 能够解决数列综合题型的问题。
3. 掌握数列综合题型的解题策略。
教学内容:1. 数列综合题型的概念及其解题方法。
2. 数列综合题型的常见类型和解题技巧。
3. 数列综合题型的解题策略。
教学活动:1. 通过实例介绍数列综合题型的概念和解题方法。
《数列综合应用举例》教案
《数列综合应用举例》教案一、教学目标:1. 让学生掌握数列的基本概念和性质,包括等差数列、等比数列等。
2. 培养学生运用数列知识解决实际问题的能力,提高学生的数学应用意识。
3. 通过对数列的综合应用举例,使学生理解数列在数学和自然科学领域中的重要性。
二、教学内容:1. 等差数列的应用举例:例如计算工资、利息等问题。
2. 等比数列的应用举例:例如计算复利、人口增长等问题。
3. 数列的求和公式及应用:例如求等差数列、等比数列的前n项和等问题。
4. 数列的通项公式的应用:例如求等差数列、等比数列的第n项等问题。
5. 数列在函数中的应用:例如数列与函数的关系、数列的函数性质等问题。
三、教学重点与难点:1. 教学重点:数列的基本概念、性质和求和公式。
2. 教学难点:数列的通项公式的理解和应用。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过解决实际问题来学习数列知识。
2. 利用多媒体课件,直观展示数列的应用实例,提高学生的学习兴趣。
3. 组织小组讨论,培养学生的合作能力和思维能力。
五、教学安排:1. 第一课时:等差数列的应用举例。
2. 第二课时:等比数列的应用举例。
3. 第三课时:数列的求和公式及应用。
4. 第四课时:数列的通项公式的应用。
5. 第五课时:数列在函数中的应用。
6. 剩余课时:进行课堂练习和课后作业的辅导。
六、教学目标:1. 深化学生对数列求和公式的理解,能够熟练运用求和公式解决复杂数列问题。
2. 培养学生运用数列知识进行数据分析的能力,提高学生的数学素养。
3. 通过对数列图像的观察,使学生理解数列与函数之间的关系。
七、教学内容:1. 数列图像的绘制与分析:学习如何绘制数列图像,并通过图像观察数列的特点。
2. 数列与函数的联系:探讨数列与函数之间的关系,理解数列可以看作是函数的特殊形式。
3. 数列在数据分析中的应用:例如,利用数列分析数据的变化趋势,预测未来的数据。
八、教学重点与难点:1. 教学重点:数列图像的绘制方法,数列与函数的关系,数列在数据分析中的应用。
数列的应用教案
数列的应用教案教案标题:数列的应用教学目标:1.了解数列的概念和基本特点;2.掌握数列的各种应用方法,如递推公式、通项公式等;3.培养学生的分析和解决问题的能力;4.加强学生对数列应用的兴趣和实际运用能力。
教学内容:1.数列的基本概念和特点的讲解;2.数列的递推公式和通项公式的推导;3.通过实例分析数列的应用:等差数列的求和、等比数列的求和、斐波那契数列等;4.通过实例练习巩固学生对数列应用的掌握。
教学步骤:Step 1:引入通过一个生活场景或问题引入数列的概念和应用意义,如电影院里的座位排列、兔子繁殖等。
Step 2:梳理基本知识讲解数列的基本概念,如数列的定义、项、公式等,并引导学生发现数列的规律和特点。
Step 3:递推公式和通项公式的推导介绍递推公式和通项公式的概念和作用,并通过具体的数列例子进行推导的过程和方法讲解。
Step 4:数列应用实例分析选择一些常见的数列应用例子,如等差数列的求和、等比数列的求和、斐波那契数列等,让学生通过观察和分析找出解题的关键思路,并进行详细的解题过程讲解。
Step 5:实例练习提供一些练习题,让学生进行实际操作和巩固,分级设计不同难度的题目,逐渐提高学生的应用能力。
Step 6:总结和归纳对本节课的内容进行总结和归纳,强调数列的应用价值和重要性,激发学生对数学学科的兴趣和探索欲望。
Step 7:拓展延伸针对学生的个别能力和兴趣,提供更多数列应用的实例和挑战题,鼓励学生深入研究和探索数列的更多应用领域。
教学评估:1.课堂讨论:观察学生在课堂上的积极参与和思考表现;2.练习题表现:根据学生的练习题答案和解题过程评估其掌握程度;3.个别测试:选择性地进行小测验,检查学生对数列应用的准确性和独立解题能力。
教学资源:1.教材:数学教材中的相关章节;2.实例材料:生活中的例子、数列的实际应用问题;3.练习题集:根据学生能力,选择相应难度的练习题。
教学反思:教师应关注学生对数列的理解和应用能力的培养,通过丰富的实例和问题设计,引导学生主动思考、探索和动手解决问题的能力。
高中教学数列设计数学教案
高中教学数列设计数学教案
教学内容:数列
一、教学目标
1.了解数列的定义和性质。
2.掌握常见数列的求和公式。
3.能够应用数列知识解决问题。
二、教学重点和难点
重点:数列的定义和性质,常见数列的求和公式。
难点:能够灵活运用数列知识解决问题。
三、教学准备
1.教师准备教案和教学PPT。
2.学生准备数学笔记本和作业本。
四、教学过程
1.引入:通过引入一个简单的问题引出数列的概念,让学生思考数列的定义。
2.概念讲解:讲解数列的定义和性质,包括等差数列、等比数列等常见数列的特点。
3.例题讲解:通过几个例题,帮助学生掌握常见数列的求和公式。
4.练习:让学生做一些练习题,巩固所学知识。
5.拓展:提出一些拓展问题,让学生运用所学知识解决问题。
6.总结:总结本节课的重点内容,梳理学生的思路。
五、教学反馈
1.教师让学生口头回答一些问题,检查他们的理解情况。
2.教师布置相关作业,巩固所学知识。
六、教学手段
1.课堂互动:让学生积极参与,通过讨论和解答问题来加深理解。
2.多媒体辅助:通过PPT呈现数列的概念和例题,提高学生的学习效果。
七、教学总结
本节课通过引入、讲解、练习等环节,使学生初步掌握数列的相关知识,为以后的学习打下坚实基础。
《数列综合应用举例》教案
《数列综合应用举例》教案一、教学目标1. 理解数列的概念及其性质2. 掌握数列的通项公式和求和公式3. 能够运用数列解决实际问题二、教学内容1. 数列的概念及其性质2. 数列的通项公式和求和公式3. 数列在实际问题中的应用三、教学重点与难点1. 教学重点:数列的概念、性质、通项公式和求和公式2. 教学难点:数列在实际问题中的应用四、教学方法1. 采用讲解法,引导学生理解数列的概念和性质2. 采用示例法,教授数列的通项公式和求和公式3. 采用案例分析法,让学生学会运用数列解决实际问题五、教学过程1. 引入:通过生活中的实例,如等差数列“每月工资”、“每分钟心跳次数”等,引导学生认识数列的概念和性质。
2. 讲解:讲解数列的概念、性质、通项公式和求和公式,通过示例让学生理解并掌握这些知识点。
3. 练习:布置一些练习题,让学生运用所学的数列知识解决问题,巩固所学内容。
4. 案例分析:选取一些实际问题,如“等差数列投资”、“数列在数据处理中的应用”等,让学生学会运用数列知识解决实际问题。
5. 总结:对本节课的内容进行总结,强调数列在实际中的应用价值。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,评估学生对数列概念和性质的理解程度。
2. 练习题评价:通过学生完成的练习题,检查学生对数列通项公式和求和公式的掌握情况。
3. 案例分析评价:评估学生在案例分析中的表现,判断其能否将数列知识应用于实际问题中。
七、教学拓展1. 数列在数学其他领域的应用:介绍数列在代数、几何、概率等领域中的应用,激发学生的学习兴趣。
2. 数列与其他学科的交叉:探讨数列在其他学科如物理、化学、生物等方面的应用,拓宽学生的知识视野。
八、教学反思在课后,教师应反思本节课的教学效果,包括学生的学习兴趣、教学方法的适用性、学生对数列知识的掌握程度等,以便对后续教学进行调整和改进。
九、课后作业布置一些有关数列的练习题,包括填空题、选择题和解答题,让学生巩固所学知识,提高解题能力。
《数列综合应用举例》教案
《数列综合应用举例》教案一、教学目标1. 让学生掌握数列的基本概念和性质,包括等差数列、等比数列等。
2. 培养学生运用数列知识解决实际问题的能力,提高学生的数学思维水平。
3. 通过对数列综合应用的学习,培养学生分析问题、解决问题的能力,提高学生的综合素质。
二、教学内容1. 等差数列的应用:等差数列的求和公式、等差数列的通项公式等。
2. 等比数列的应用:等比数列的求和公式、等比数列的通项公式等。
3. 数列的极限:数列极限的定义、数列极限的性质等。
4. 数列的收敛性:收敛数列的定义、收敛数列的性质等。
5. 数列的应用举例:如数列在实际问题中的应用,如人口增长、放射性衰变等。
三、教学方法1. 采用讲授法,讲解数列的基本概念、性质和应用。
2. 运用案例分析法,分析数列在实际问题中的应用。
3. 组织学生进行小组讨论,培养学生的团队协作能力。
4. 设置课后习题,巩固所学知识,提高学生的实际应用能力。
四、教学步骤1. 引入数列的基本概念,讲解等差数列和等比数列的定义和性质。
2. 引导学生运用数列知识解决实际问题,如人口增长、放射性衰变等。
3. 讲解数列的极限和收敛性,分析数列在实际中的应用。
4. 组织学生进行小组讨论,分享数列在实际问题中的应用案例。
5. 通过课后习题,检查学生对数列知识的掌握程度。
五、教学评价1. 课后习题的完成情况,检验学生对数列知识的掌握。
2. 课堂讨论的参与度,评估学生的团队协作能力和思维水平。
3. 学生对数列应用案例的分析,评估学生的实际应用能力。
4. 定期进行教学质量调查,了解学生的学习需求,调整教学方法。
六、教学资源1. 教学PPT:制作数列综合应用的教学PPT,包含数列的基本概念、性质、应用案例等内容。
2. 案例素材:收集数列在实际问题中的应用案例,如人口增长、放射性衰变等。
3. 课后习题:编写具有代表性的课后习题,检验学生对数列知识的掌握。
4. 教学视频:寻找相关的教学视频,如数列的极限、收敛性的讲解等,辅助学生理解难点内容。
初中数学教案数列与函数的综合应用
初中数学教案数列与函数的综合应用初中数学教案:数列与函数的综合应用一、引言数学中的数列与函数是学生们在初中阶段学习的重要内容之一。
本教案旨在通过综合应用数列与函数的知识,帮助学生们更好地理解和应用这些概念。
教案将涵盖数列与函数的定义、数列的性质、函数的图像及其应用等内容。
二、数列的定义与性质数列是一系列按特定顺序排列的数字。
不同的数列由不同的公式或规律确定。
既然数列是按顺序排列的,我们可以通过找到数列的通项公式来计算数列的任意一项。
1. 等差数列等差数列指的是每一项与它的前一项之差都相等的数列。
一个等差数列可以由首项和公差来确定。
常见的等差数列有算术数列。
2. 等比数列等比数列指的是每一项与它的前一项的比值都相等的数列。
一个等比数列可以由首项和公比来确定。
常见的等比数列有几何数列。
3. 裴列裴列是一种既不是等差数列也不是等比数列的数列。
它是通过前两项之和与后一项的差来确定的。
三、函数的图像与性质函数是一个数值之间的关系,其中每个输入值(自变量)都对应一个唯一的输出值(因变量)。
函数可以通过图像、公式或映射表达。
1. 函数图像函数的图像是函数在平面直角坐标系中的表现形式,将自变量的取值映射到对应的函数值,并以点的形式展示出来。
根据函数图像的特征,我们可以判断函数的性质,如增减性、奇偶性等。
2. 函数的性质函数的性质包括定义域、值域、单调性、奇偶性等。
这些性质对于我们理解函数的特征和应用有着重要的指导作用。
四、综合应用综合应用是数列与函数教学的重要环节,通过综合应用,学生可以将所学的数列与函数的知识应用到实际问题中,培养解决实际问题的能力。
1. 数据分析通过分析实际情境中的数据,学生可以将其转化为数列或函数。
例如,分析某地区的人口增长情况,可以将年份作为自变量,人口数量作为因变量,建立相应的函数关系。
2. 函数的应用函数在实际生活中的应用非常广泛。
通过分析问题,学生可以建立函数模型,并通过求解函数方程的方法解决实际问题。
数列综合题和应用性问题教案
数列综合题和应用性问题教案一、教学目标1. 让学生掌握数列的基本概念和性质,包括等差数列、等比数列等。
2. 培养学生解决数列综合题的能力,提高逻辑思维和运算能力。
3. 培养学生将数列知识应用于实际问题中,提高解决问题的能力。
二、教学内容1. 数列的基本概念和性质2. 等差数列的通项公式和求和公式3. 等比数列的通项公式和求和公式4. 数列的极限概念5. 数列综合题的解法及应用三、教学重点与难点1. 重点:数列的基本概念、性质、通项公式和求和公式。
2. 难点:数列综合题的解法和应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究数列的知识点。
2. 通过案例分析,让学生了解数列在实际问题中的应用。
3. 利用数列软件或板书演示数列的性质和规律,帮助学生直观理解。
4. 组织小组讨论,培养学生合作学习和解决问题的能力。
五、教学过程1. 引入:通过生活中的实例,如级数求和、存贷款等问题,引发学生对数列的兴趣。
2. 讲解数列的基本概念和性质,引导学生掌握数列的基础知识。
3. 讲解等差数列和等比数列的通项公式和求和公式,让学生熟练运用。
4. 引入数列的极限概念,引导学生理解数列的极限性质。
5. 解析数列综合题,培养学生解决实际问题的能力。
6. 课堂练习:布置相关数列综合题,让学生巩固所学知识。
7. 总结与反馈:对学生的学习情况进行总结,及时调整教学策略。
六、教学评价1. 评价目标:检查学生对数列基本概念、性质、通项公式和求和公式的掌握程度,以及解决数列综合题的能力。
2. 评价方法:课堂提问、作业批改、小组讨论、笔试考试等。
3. 评价内容:数列的基本概念和性质、等差数列和等比数列的通项公式和求和公式、数列综合题的解法及应用。
七、教学资源1. 教材:数列相关教材或教学辅导书。
2. 课件:数列知识点、案例分析、数列软件演示等。
3. 习题库:数列综合题及应用性问题。
4. 教学板书:用于演示数列性质和规律。
八、教学进度安排1. 数列的基本概念和性质:2课时2. 等差数列的通项公式和求和公式:2课时3. 等比数列的通项公式和求和公式:2课时4. 数列的极限概念:1课时5. 数列综合题的解法及应用:3课时6. 教学评价:1课时九、教学作业布置1. 课后习题:数列综合题和应用性问题。
数列综合应用教案
数列综合应用教案【篇一:《数列的综合应用》教案】个性化教案授课时间年级高三备课时间学生姓名教师姓名课题数列的进一步认识教学目标(1)熟练掌握等差数列、等比数列的前n项和公式,以及非等差数列、等比数列求和的几种常见方法。
教学重点教学设计教学内容(2)理解与掌握“等价转化”、“变量代换”思想(3)能在具体的问题情境中识别数列的相应关系,并能用相关知识解决相应的问题1、数列求和的几种常见方法2、识别数列的相关关系,并能利用“等价转化”、“变量代换”思想解决相关数列问题一、检查并点评学生的作业。
检查过程中,要特别注意反映在学生作业中的知识漏洞,并当场给学生再次讲解该知识点,也可出题让学生做,检查效果。
二、检查学生上节课或在校一周内的知识点掌握情况,帮助学生再次梳理知识。
三、讲授新内容数列求和数列求和的常用方法 1、公式法(1)直接利用等差数列、等比数列的前n项公式求和;(2)一些常见的数列的前n项和:n∑k=n(n+1)k=12n∑k2=16n(n+1)(2n+1)k=1nk3=14n2(n+1)2k=12、倒序相加法如果一个数列{an},首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法。
等差数列的前n项和即是用此法推导的。
3、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的;例:sn=1*2+2*4+3*8+??+n*2n①2sn=1*4+2*8+3*16+??+(n-1)*2n+n*2n+1②①-②得 -sn=2-(4+8+16+??+2n)-n*2n+1 即:sn=(n-1)2n+1-64、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和;注:用裂项相消法求数列前n项和的前提是:数列中的每一项均能分裂成一正一负两项,这是用裂项相消法的前提。
高三数学教案数列与概率的综合应用
高三数学教案数列与概率的综合应用高三数学教案:数列与概率的综合应用数学教学内容:数列与概率的综合应用教学目标:通过学习数列与概率的综合应用,学生能够掌握数列的定义及性质,并能够灵活运用概率知识解决实际问题。
一、引入1. 教师通过简单的例子引导学生回顾数列和概率的知识,激发学生学习的兴趣。
2. 引导学生思考数列与概率的联系,如何运用数列解决概率问题。
二、数列与概率的初步认识1. 教师通过课堂演示,让学生观察并总结数列的性质:公差、通项公式等。
2. 引导学生思考如何将数列与概率相结合,设计问题引入。
(案例一:班级同学去游乐园,乘坐过山车时,每个同学要扔掉一枚硬币,抛出正面则获得额外一次乘坐机会。
考虑每个同学的正面次数构成的数列,计算概率。
三、基于数列的概率问题1. 引导学生通过数列的公差、通项公式等性质,计算问题中的数列的通项。
2. 介绍概率的计算公式,引导学生计算概率。
四、综合应用1. 在实际生活问题中,引导学生识别数列和概率的应用场景,并进行实际问题的分析。
(案例二:购买彩票问题,每期彩票中奖号码均构成数列,求中奖概率)2. 引导学生运用数列的知识,分析问题,利用概率的计算公式解决问题。
3. 案例分析和解答,激发学生思考与讨论。
五、拓展应用1. 引导学生思考更多数列与概率的结合应用场景,如生产过程中的质量控制、投资收益等。
2. 帮助学生分析问题,运用数列和概率知识解决实际问题。
六、练习与巩固1. 教师设计相关练习,巩固学生所学知识。
2. 引导学生自主解答问题,并进行讨论和交流。
七、总结与延伸1. 教师对本节课的内容进行总结,梳理数列与概率的综合应用要点。
2. 引导学生思考如何将数学知识运用到实际生活中,并进行拓展延伸。
教学反思:通过本节课的教学,学生能够通过学习数列与概率的综合应用,掌握数列的定义及性质,并能够灵活运用概率知识解决实际问题。
教师在教学中注重培养学生的分析问题和解决问题的能力,通过案例分析和讨论,激发了学生的思维能力和创造力。
高中数学数列教案文件
高中数学数列教案文件
一、教学目标:
1. 知识目标:了解数列的概念、性质及常见数列的求和公式。
2. 能力目标:掌握数列的概念和性质,能够运用数列的知识解决实际问题。
3. 情感目标:激发学生对数学的兴趣,培养学生的逻辑思维能力和解决问题的能力。
二、教学重点和难点:
1. 教学重点:数列的概念、性质和常见数列的求和公式。
2. 教学难点:能够灵活运用数列的知识解决实际问题。
三、教学过程:
1. 导入:通过提出一个实际问题引入数列的概念,让学生了解数列的定义和常见的数列类型。
2. 讲解:介绍数列的概念和性质,如等差数列、等比数列等,并讲解常见数列的求和公式。
3. 练习:布置练习题让学生通过练习加深对数列的理解和运用。
4. 拓展:引导学生运用数列的知识解决实际问题,拓展学生的思维广度。
5. 总结:总结数列的知识点,强化学生对数列的掌握和应用能力。
四、课堂作业:
1. 完成练习题,加深对数列的理解和掌握。
2. 找出身边的例子,分析是否符合数列的概念。
3. 思考如何运用数列的知识解决实际问题。
五、教学反馈:
及时对学生的作业进行批改和评价,引导学生对数列的理解和应用进行反思和总结,及时
纠正和加强学生的掌握程度。
教案数列的应用和拓展
教案数列的应用和拓展教案:数列的应用和拓展一、引言数列是数学中一种重要的数学概念,广泛应用于实际生活和科学研究中。
本教案旨在介绍数列的基本概念和应用,并进一步拓展数列的应用领域。
二、数列的概念和基本性质数列是按照一定规律排列的一组数,通常用字母an表示。
数列可以根据规律进行分类,常见的数列包括等差数列和等比数列。
等差数列的每一项与前一项的差相等,而等比数列的每一项与前一项的比值相等。
数列的一般形式可以表示为:an = a1 + (n-1)d(等差数列)或an =a1 * q^(n-1)(等比数列),其中a1为首项,d为公差(等差数列)或q 为公比(等比数列),n为项数。
数列的基本性质包括子数列、前n项和、通项公式等。
子数列是从原数列中选取某些项按原有顺序组成的数列。
前n项和是指将数列的前n项相加得到的和。
通项公式是描述数列通项与项数n之间的关系。
三、数列的应用1. 经济学中的应用数列在经济学中有广泛的应用。
例如,经济学家可以通过观察一段时间内商品价格的变化,建立一个数列来描述其价格的波动情况。
通过分析数列的规律,经济学家可以预测未来商品价格的趋势,为决策提供依据。
2.自然科学中的应用数列在自然科学中也有着重要的应用。
例如,研究物种数量随时间变化的规律时,可以建立一个数列来记录每个时期的物种数量。
通过分析数列的特点,科学家可以了解物种数量的增长或减少趋势,为生态保护和物种管理提供参考。
3.计算机科学中的应用数列在计算机科学中也有着广泛应用。
例如,在编程中,可以利用数列来设计算法,解决一些复杂的问题。
数列的规律和性质可以帮助算法设计者优化程序,提高计算效率。
四、数列的拓展应用除了以上介绍的领域,数列还有许多拓展应用。
以下是一些数列的拓展应用示例:1. 金融学中的递推数列递推数列是一种特殊的数列,其中每一项都依赖于前一项。
在金融学中,递推数列常用于计算复利、投资收益等问题。
通过建立递推数列模型,可以帮助人们做出更明智的金融决策。
高考数学复习知识点讲解教案第38讲 数列的综合问题
4.某商场为了满足广大数码爱好者的需求,开展商品分期付款活动.已知某商品一次性付款的金额为元,计划以分期付款的形式等额分成 期付清,每期期末所付款是元,每期利率为,则 _ _________.
[解析] 由题意得 ,, .
5.假设每次用相同体积的清水清洗一件衣服,且每次能洗去污垢的 ,那么至少要清洗___次才能使存留的污垢在 以下.
3.[教材改编] 假设某银行的活期存款年利率为 ,某人存入10万元后,既不加进存款也不取款,每年到期利息连同本金自动转存.如果不考虑利息税及利率的变化,经过年到期时的存款余额为万元,那么 ________________________.
,
[解析] 由题意得, ,, ,则易知 .
题组二 常错题
(1) 求数列 的通项公式;
解:因为,所以,,故,,所以等比数列 的公比,故,所以,即等比数列 的通项公式为 .
(2) 记,的前项和分别为,,求满足 的所有数对 .
解: 由已知得,由(1)可知 ,因为,所以 ,则,可得,因为为正整数, ,所以,8,10,则当时,,当时, ,当时,,故满足条件的所有数对为,, .
[总结反思]解决与数列有关的实际问题的一般步骤:首先要认真阅读,学会翻译(数学化),其次考虑用熟悉的数列知识建立数学模型,然后求出问题的解,最后还需验证求得的解是否符合实际.
变式题(1) 某牧场2022年年初牛的存栏数为1200头,计划以后每年存栏数的增长率为 ,且在每年年底卖出100头牛,按照该计划预计_______年年初牛的存栏量首次超过8900头.(参考数据:, )
所以数列是公比为2的等比数列,又 ,,所以,即 ,所以,可得.因为,所以 ,则,由,得 ,可得,所以不等式的解有无限个,故D正确.故选 .
《数列综合应用举例》教案
《数列综合应用举例》教案第一章:数列的概念与性质1.1 数列的定义引导学生理解数列的概念,理解数列是一种特殊的函数。
通过实例让学生了解数列的基本形式,如等差数列、等比数列等。
1.2 数列的性质引导学生学习数列的基本性质,如数列的项数、首项、末项、公差、公比等。
通过实例让学生掌握数列的性质,并能够运用性质解决实际问题。
第二章:数列的求和2.1 等差数列的求和引导学生学习等差数列的求和公式,理解公差、首项、末项与求和的关系。
通过实例让学生掌握等差数列的求和方法,并能够运用求和公式解决实际问题。
2.2 等比数列的求和引导学生学习等比数列的求和公式,理解公比、首项、末项与求和的关系。
通过实例让学生掌握等比数列的求和方法,并能够运用求和公式解决实际问题。
第三章:数列的极限3.1 数列极限的概念引导学生理解数列极限的概念,理解数列极限与数列收敛的关系。
通过实例让学生了解数列极限的性质,如保号性、单调性等。
3.2 数列极限的计算引导学生学习数列极限的计算方法,如夹逼定理、单调有界定理等。
通过实例让学生掌握数列极限的计算方法,并能够运用极限的概念解决实际问题。
第四章:数列的应用4.1 数列在数学分析中的应用引导学生学习数列在数学分析中的应用,如级数、积分等。
通过实例让学生了解数列在数学分析中的重要性,并能够运用数列解决实际问题。
4.2 数列在其他学科中的应用引导学生学习数列在其他学科中的应用,如物理学、经济学等。
通过实例让学生了解数列在不同学科中的作用,并能够运用数列解决实际问题。
第五章:数列的综合应用5.1 数列在经济管理中的应用引导学生学习数列在经济管理中的应用,如库存管理、成本分析等。
通过实例让学生了解数列在经济管理中的重要性,并能够运用数列解决实际问题。
5.2 数列在工程科技中的应用引导学生学习数列在工程科技中的应用,如信号处理、结构分析等。
通过实例让学生了解数列在工程科技中的作用,并能够运用数列解决实际问题。
数列教案优秀3篇
数列教案优秀3篇数列教案篇一在本节课教学设计中,以学生身边的一个事例为背景,创设一个数学情境,激发了学生的学习兴趣和探究热情,体现了“人人学有价值的数学”的教学理念。
教师引进著名数学家高斯十岁时所做的一道计算题,通过此题的解法让学生发现规律,从而探索出等差数列的前n项和公式的推导过程。
这个过程反映了数学思维方法的灵活性,从学生丰富多彩的解答中,我们看到了“不同的人在数学上得到不同的发展”。
【教学背景】所授班级为普通班,学生的数学认知水平高低不一,所以,教师在问题探究的设置上要体现出知识的层次,力求使所有学生都能参与各种问题的探究。
【教学设计】一、教材分析1.教学内容“等差数列的前n项和”为苏教版必修5第二章第二节的第一课时,主要内容是等差数列前n项和的推导过程和简单应用。
2.地位与作用本节对“等差数列的前n项和”的推导,是在学生学习了等差数列通项公式的基础上进一步研究等差数列,其实学生已掌握等差数列的性质以及高斯求和法等相关知识。
对本节的研究,为学习数列求和提供了一种重要的思想方法――倒序相加求和法,具有承上启下的重要作用。
二、目标分析1.教学目标(1)掌握等差数列的前n项和公式及推导过程。
(2)会简单运用等差数列的前n项和公式。
(3)结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。
2.教学重点、难点(1)重点:等差数列前n项和公式的推导和应用。
(2)难点:等差数列前n项和公式的推导过程中渗透倒序相加的思想方法。
三、教学模式与教法、学法本课采用“探究―发现”教学模式。
教师的教法:突出活动的组织设计与方法的引导。
学生的学法:突出探究、发现与交流。
四、教学活动设计1.新课引入创设情境:一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支。
这个V形架上共放着多少支铅笔?问题就是(板书)“1+2+3+4+…+100=?”设计意图:利用实际,生活引入新课,形象直观。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备注
课堂检测——数列综合运用(1)姓名:
1、已知等差数列{an}的前n项和为Sn,若 ,且A、B、C三点共线(该直线不过原点O),则S203=
2、在 中,tanA是以-4为第三项,4为第七项的等差数列的公差:tanB是以 为第三项,9为第六项的等比数列的公比,则 的形状是
3、互不相等的三个实数a,b,c成等差数列,且a,c,b成等比数列,则a:b:c=
4、已知数列 的前n项和 ,a1=a,an+1=sn+3n,
(1)求证: 为等比数列;(2)若数列 为递增数列,求a取值范围。
课外作业——数列综合运用(1)姓名:
1、等差数列 中,其前n项和Sn,已知an=4+(n-l)d,若它的第—、七、十项分别为等比数列的前三项,且Sn=11,则n=
数列综合应用教案
课题:数列综合运用班级姓名:
一:学习目标
能解决数列与函数、不等式等综合问题.
二:课前预习
1、等比数列 中, ,若 ,则
2、等比数列 中, ,数列 满足 (a为常数),且 ,则 ;数列 的前n项和 =
3、设等差数列 的公差 不为0, ,若 是 与 的等比中项,则
4、已知两个等差数列 和 的前 项和分别为A 和 ,且 ,则使得 为整数的正整数 的个数是
5_______.
三:课堂研讨
例1,设数列
(1)设 求数列 的通项公式。
(2)若 ,求 的取值范围。
例2,在数列
(1)求证:数列 是等差数列。
(2)设 中是否存在三项,它们可以构成等差数列?存在求出,不存在,说明理由。
例3若对于正整数 , 表示 的最大奇数因数, 。
2、设 .数列 的最大项为 ,最小项为 ,则
3、设等差数列 的前 项和为 ,若 ,则 的最大值为______
4、已知数列 的前n项和 满足 ,求数列 .