2018学年高中物理教科版选修3-5学案:第4章 4 实物粒
2017-2018学年高中物理(SWSJ)教科版选修3-4教学案:第五章第1节光的干涉含答案
第1节光_的_干_涉1。
用单色光做双缝干涉实验时,屏上出现明暗相间的条纹,用白光做双缝干涉实验时,屏上出现彩色条纹。
2.屏上某点到双缝的距离之差Δr=±kλ时,该点为明条纹,屏上某点到双缝的距离之差Δr=±(2k-1)错误!时,该点为暗条纹。
3.干涉图样中,相邻两明条纹或暗条纹的间距相同。
4.薄膜干涉是膜的前后两表面的反射光的干涉,观察薄膜干涉时,观察者应与光源在薄膜的同侧。
错误!双缝干涉[自读教材·抓基础]1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象。
(如图5-1-1所示)图5-1-11.实验过程让一束平行的单色光投射到一个有两条狭缝的挡板上,两狭缝相距很近,两狭缝就成了两个光源,它们的振动情况总是相同的,两个光源发出的光在挡板后面的空间互相叠加。
2.实验现象在屏上得到明暗相间的条纹。
3.实验结论实验证明光是一种波。
[跟随名师·解疑难]1.双缝干涉实验的装置示意图实验装置如图5-1-2所示,有光源、单缝、双缝和光屏.图5-1-22.单缝屏的作用获得一个线光源,使光源有唯一的频率和振动情况。
如果用激光直接照射双缝,可省去单缝屏.杨氏那时没有激光,因此他用强光照射一条狭缝,通过这条狭缝的光再通过双缝产生相干光。
3.双缝屏的作用红色平行光照射到双缝S1、S2上,这样一束光被分成两束振动情况完全一致的相干光。
4.屏上某处出现亮、暗条纹的条件频率相同的两列波在同一点引起的振动的叠加,如亮条纹处某点同时参与的两个振动总是同相;暗条纹处总是振动反相。
具体产生亮、暗条纹的条件为:(1)亮条纹的条件:屏上某点P到两条缝S1和S2的路程差正好是波长的整数倍或半波长的偶数倍。
即:|PS1-PS2|=kλ=2k·错误!(k=0,1,2,3……)k=0时,PS1=PS2,此时P点位于屏上的O处,为亮条纹,此处的条纹叫中央亮条纹或零级亮条纹。
k为亮条纹的级次。
教科版选修3-5 第4章 章末总结 波粒二象性
二、光电效应的规律和光电效应方程
1.理解光电效应的规律的四个角度 (1)任何一种金属都有一个截止频率,入射光的频率必须大于等于这个截 止频率才能发生光电效应,低于这个截止频率则不能发生光电效应. (2)发生光电效应时,光电子的最大初动能与入射光的强度无关,随入射 光频率的增大而增大. (3)光电效应的发生几乎是瞬时的,产生电流的时间不超过10-9 s. (4)大于截止频率的光照射金属时,光电流(反映单位时间内发射出的光 电子数的多少)与入射光强度成正比.
一、量子论、光子说、光子能量的计算
1.量子论 德国物理学家普朗克提出:电磁波的发射和吸收是不连续的,是一份一 份的,每一份电磁波的能量ε=hν. 2.光子说 爱因斯坦提出:空间传播的光也是不连续的,也是一份一份的,每一份 称为一个光子,光子具有的能量与光的频率成正比,即ε=hν,其中h为 普朗克常量,h=6.63×10-34 J·s. 3.光的频率与波长的关系:ν=c .
1.Ek-ν图像 根据爱因斯坦光电效应方程得Ek=hν-W,光电子的最大初动能Ek是入 射光频率ν的一次函数,图像如图2所示.其横轴截距为金属的截止频率ν0, 纵轴截距是金属的逸出功的负值,斜率为普朗克常量h.
图2
2.I-U图像 光电流I随光电管两极间电压U的变化图像如图3所示,图中Im为饱和光 电流,U0为反向遏止电压.利用 12mvm2=eU0可得光电子的最大初动能.
λ
例1 激光器是一个特殊的光源,它发出的光便是激光,红宝石激光器 发射的激光是不连续的一道一道的闪光,每道闪光称为一个光脉冲,现 有一红宝石激光器,发射功率为1.0×1010 W,所发射的每个光脉冲持续 的时间Δt为1.0×10-11 s,波长为793.4 nm.每个光脉冲的长度l是多少? 其中含有的光子数n是多少?(普朗克常量h=6.63×10-34 J·s,光速c= 3×108 m/s) 答案 3×10-3 m 4×1017个
2020-2021学年教科版高中物理选修3-5教案设计第四章波粒二象性本章专题整合提升
本章专题整合提升专题一光电效应规律及应用概述:1.光电效应的规律(1)光电效应是单个光子和单个电子之间的相互作用产生的,金属中的某个电子只能吸收一个光子的能量,只有吸收的能量足够克服原子核的引力而逸出时,才能产生光电子,发生光电效应,而光的能量与频率有关.由此可解释光电效应的瞬时性和存在截止频率的原因.(2)光电子的动能可以介于0~E km的任意值,只有从金属表面逸出的电子才具有最大初动能,且随入射光频率的增大而增大.(3)入射光强度是指单位时间内入射到金属表面单位面积上光子的总能量,在入射频率不变的情况下,光强正比于单位时间内照射到金属表面单位面积上的光子数,但若入射光频率不同,即使光强相同,单位时间内照射到金属表面单位面积上的光子数也不相同,因此从金属表面逸出的光电子数也不相同,形成的光电流也不相同.2.光电效应方程的应用光电效应方程实质上是能量转化和守恒定律在光电效应现象中的反映,其中涉及的几个方程为E k=hν-W0,E km=12m v2m=eU c,W0=hνc.【例1】(多选)对于光电效应现象,下列判断正确的是() A.无论入射光多强,只要光的频率小于极限频率就不能产生光电效应B.无论入射光的频率多低,只要光照时间足够长就能产生光电效应C.超过极限频率的入射光强度越弱,所产生的光电子的最大初动能就越小D.超过极限频率的入射光频率越高,所产生的光电子的最大初动能就越大【解析】根据光电效应的规律,可知A正确,B、C错误.根据光电效应方程E k=hν-W0=hν-hνc=h(ν-νc),可知D正确.【答案】AD【例2】研究光电效应的电路如图所示.用频率相同、强度不相同的光分别照射密封真空管的钠极板(阴极K),钠极板发射出的光电子被阳极A吸收,在电路中形成光电流.下列光电流I与A、K之间的电压U AK的关系图象(下图中),正确的是()【解析】入射光的频率相同,则遏止电压相同;入射光越强,单位时间逸出的光电子越多,饱和光电流越大,所以C正确.【答案】 C【例3】如图所示,当开关S断开时,用光子能量为2.5 eV的一束单色光照射阴极K,发现电流表读数不为零.合上开关,调节滑动变阻器,发现当电压表读数小于0.60 V时,电流表读数仍不为零;当电压表大于或等于0.60 V时,电流表示数为零.由此可知阴极材料的逸出功为多少?【解析】如图所示的电路,在光电管上加反向电压,光电子逸出后,在电场中被减速,电场力做负功,当用2.5 eV的光子照射时电流表有示数,说明已经发生了光电效应,有光电子逸出.当闭合开关S,调节滑动变阻器,电压表读数大于0.6 V时,电流表没有示数,说明遏止电压为0.6 V,即电子在电场力作用下,临界状态是光电子到达光电管的另一极(即阳极)时速度为零.根据光电效应方程E k=hν-W0①光电子在电场中,由动能定理得eU=E k②①②联立解得W0=hν-eU=2.5×1.6×10-19 J-1.6×10-19×0.6 J =1.9×1.6×10-19 J=1.9 eV.【答案】 1.9 eV专题二从微观角度理解光的波粒二象性概述:1.光的粒子性和波动性并不矛盾经典的粒子和经典的波是对立的、矛盾的,但对光子等微观粒子来说,波动性与粒子性并不矛盾,都具有波粒二象性.2.光是一种概率波在光的干涉现象中,若曝光时间不长,在底片上只出现一些不规则的点,这些点表示光子的运动跟宏观的质点不同.但曝光时间足够长时,底片上出现有规律的干涉条纹.可见,光的波动性是大量光子表现出来的现象.在干涉条纹中,光强大的地方,光子到达的机会多,或说光子出现的概率大.光强小的地方,光子到达的概率小.所以大量光子产生的效果显示出光的波动性,少数光子产生的效果显示出粒子性,且随着光的频率的增大,波动性越来越不显著,而粒子性却越来越显著.【例4】(多选)关于物质的波粒二象性,下列说法中正确的是()A.不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性B.运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道C.波粒二象性中的波动性,是大量光子和高速运动的微观粒子的行为,这种波动性与机械波在本质上是不同的D.波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的【解析】光既具有波动性,又具有粒子性,即光具有波粒二象性,这就是微观世界具有的特殊规律;大量光子运动的规律表现出光的波动性,单个光子的运动表现出光的粒子性;光的波长越长,波动性越明显,越容易看到光的干涉和衍射现象;光波的频率越高,粒子性越明显,贯穿本领越强,故选项A、B、C、D都正确.【答案】ABCD【例5】(多选)从光的波粒二象性出发,下列说法中正确的是()A.光的频率越低,光子的能量越大B.光的频率越高,光子的能量越大C.在光的干涉现象中,暗条纹的地方是光子不会到达的地方D.在光的干涉现象中,亮条纹的地方是光子到达概率大的地方【解析】光具有波粒二象性,光的频率越高,光子的能量越大,A错误,B正确.在干涉条纹中亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,C错误,D正确.【答案】BD专题三 涉及光子说的综合分析概述:本章中关于光子的能量、物质波等知识联系非常紧密,而且与动量知识综合考查本章知识的题目很多,具有一定的难度和综合性.解此类问题的关键是找到各物理量之间的联系.【例6】 光具有波粒二象性,光子的能量E =hν,其中频率ν表征波的特征.在爱因斯坦提出光子说之后,法国物理学家德布罗意提出了光子动量p 与光波波长λ的关系为p =h λ.若某激光管以P =60 W 的功率发射波长λ=663 nm 的光束,试根据上述理论计算:(1)该管在1 s 内发射出多少个光子?(2)若光束全部被黑体表面吸收,那么该黑体表面受到的光束对它的作用力F 为多大?【解析】 (1)设在时间Δt 内发射出的光子数为n ,光子频率为ν,每个光子的能量E =hν,则P =nhνΔt. 而ν=c λ,Δt =1 s.解得n =P Δtλhc =60×1×663×10-96.63×10-34×3×108个 =2.0×1020个.(2)在时间Δt 内激光管发射出的光子全部被黑体表面吸收,光子的末动量变为零,据题中信息可知,n 个光子的总动量为p 总=np =n h λ,根据动量定理有F ·Δt =p 总,解得黑体表面对光子束的作用力为F =p 总Δt =nh λ·Δt =nhνc Δt =P c =603.0×108N =2.0×10-7 N ,又根据牛顿第三定律,得光子束对黑体表面的作用力F′=F=2.0×10-7 N.【答案】(1)2.0×1020个(2)2.0×10-7 N。
教科版高中物理选修3-5:《实物粒子的波粒二象性》教案-新版
4.4《实物粒子的波粒二象性》教案三维教学目标1、知识与技能(1)了解光既具有波动性,又具有粒子性;(2)知道实物粒子和光子一样具有波粒二象性;(3)知道德布罗意波的波长和粒子动量关系。
2、过程与方法(1)了解物理真知形成的历史过程;(2)了解物理学研究的基础是实验事实以及实验对于物理研究的重要性;(3)知道某一物质在不同环境下所表现的不同规律特性。
3、情感、态度与价值观(1)通过学生阅读和教师介绍讲解,使学生了解科学真知的得到并非一蹴而就,需要经过一个较长的历史发展过程,不断得到纠正与修正;(2)通过相关理论的实验验证,使学生逐步形成严谨求实的科学态度;(3)通过了解电子衍射实验,使学生了解创造条件来进行有关物理实验的方法。
教学重点:实物粒子和光子一样具有波粒二象性,德布罗意波长和粒子动量关系。
教学难点:实物粒子的波动性的理解。
教学方法:学生阅读-讨论交流-教师讲解-归纳总结。
教学用具:课件:PPt演示文稿(科学家介绍,本节知识结构)。
多媒体教学设备(一)引入新课提问:前面我们学习了有关光的一些特性和相应的事实表现,那么我们究竟怎样来认识光的本质和把握其特性呢?(光是一种物质,它既具有粒子性,又具有波动性。
在不同条件下表现出不同特性,分别举出有关光的干涉衍射和光电效应等实验事实)。
我们不能片面地认识事物,能举出本学科或其他学科或生活中类似的事或物吗?(二)进行新课1、光的波粒二象性讲述光的波粒二象性,进行归纳整理。
(1)我们所学的大量事实说明:光是一种波,同时也是一种粒子,光具有波粒二象性。
光的分立性和连续性是相对的,是不同条件下的表现,光子的行为服从统计规律。
(2)光子在空间各点出现的概率遵从波动规律,物理学中把光波叫做概率波。
2、光子的能量与频率以及动量与波长的关系。
hv =ελ/h p =λ/h p ==c v hv //ελ=提问:作为物质的实物粒子(如电子、原子、分子等)是否也具有波动性呢?3、粒子的波动性提问:谁大胆地将光的波粒二象性推广到实物粒子?只是因为他大胆吗?(法国科学家德布罗意考虑到普朗克能量子和爱因斯坦光子理论的成功,大胆地把光的波粒二象性推广到实物粒子。
教科版高中物理选修3-5课件第4章第3、4、5节
【精讲精析】 个别或少数光子表现出光的粒 子性,大量光子表现出光的波动性.如果时间 足够长,通过狭缝的光子数也就足够多,粒子 的分布遵从波动规律,底片上将会显示出衍射 图样,A、D选项正确.单个光子通过狭缝后, 路径是随机的,底片上也不会出现完整的衍射 图样,B、C选项错.
【答案】 AD
变式训练2 在单缝衍射实验中,中央亮纹的光 强占从单缝射入的整个光强的95%以上.假设 现在只让一个光子通过单缝,那么该光子( ) A.一定落在中央亮纹处 B.一定落在亮纹处 C.可能落在暗纹处 D.落在中央亮纹处的可能性最大
高中物理课件
(金戈铁骑 整理制作)
第3节 光的波粒二象性 第4节 实物粒子的波粒二象性
第5节 不确定关系
课标定位
课前自主学案
第
核心要点突破
5
节
课堂互动讲练
知能优化训练
课标定位
1.知道康普顿效应,理解康普顿效应实验现象. 2.知道光具有波粒二象性,且光是概率波. 3.理解德布罗意物质波假说,知道一切实物粒子 都具有波粒二象性. 4.理解不确定关系,了解不确定关系在微观世界 与宏观世界中的不同作用.
【答案】 ABD
【方法总结】 光的波粒二象性是指光具有波 动性,又具有粒子性,有时波动性更明显,有 时粒子性则更明显,但是,波动性和粒子性是 不可分割的,是从不同角度所观察到的不同性 质.
变式训练1 下列说法正确的是( )
A.有的光是波,有的光是粒子
B.光子与电子是同样的一种粒子
C.光的波长越长,其波动性越显著;波长越短, 其粒子性越显著
2.光的波动性的含义 光的波动性是光子本身的一种属性,它不同于 宏观的波,它是一种概率波,即光子在空间各 点出现的可能性大小(概率)可用波动规律描述: (1)足够能量的光(大量光子)在传播时,表现出 波的性质.
最新教科版高三物理选修3-5电子课本课件【全册】
第一章 碰撞与动量守恒
最新教科版高三物理选修3-5电子 课本课件【全册】
1 碰撞
最新教科版高三物理选修3-5电子 课本课件【全册】
2 动量
最新教科版高三物理选修3-5电子 课本课件【全册】
3 动量守恒定律
最新教科版高三物理选修3-5电子 课本课件【全册】
4 动量守恒定律的应用
最新教科版高三物理新教科版高三物理选修3-5电子 课本课件【全册】
1 电子
最新教科版高三物理选修3-5电子 课本课件【全册】
2 原子的核式结构模型
最新教科版高三物理选修3-5电子 课本课件【全册】
3 光谱 氢原子光谱
最新教科版高三物理选修3-5电子 课本课件【全册】
4 玻尔的原子模型 能级
最新教科版高三物理选修3-5电子 课本课件【全册】
最新教科版高三物理选修3-5电子 课本课件【全册】目录
0002页 0071页 0119页 0178页 0234页 0330页 0402页 0430页 0474页 0551页 0553页 0636页
第一章 碰撞与动量守恒 2 动量 4 动量守恒定律的应用 1 电子 3 光谱 氢原子光谱 第三章 原子核 2 放射性 衰变 4 原子核的结合能 6 核聚变 第四章 波粒二象性 2 光电效应与光量子假说 4 实物粒子的波粒二象性
高中物理选修3-5配套课件第四章 4-5
4 实物粒子的波粒二象性5 不确定关系[学习目标] 1.了解德布罗意物质波假说的内容,知道德布罗意波的波长和粒子动量的关系.2.知道粒子和光一样具有波粒二象性,了解电子波动性的实验验证.3.初步了解不确定关系的内容,感受数学工具在物理学发展过程中的作用.一、实物粒子的波动性1.德布罗意波(1)定义:任何运动着的物体,小到电子、质子,大到行星、太阳,都有一种波与它相对应,这种波叫物质波,又叫德布罗意波.(2)德布罗意波的波长、频率的计算公式为λ=h p ,ν=E h. (3)我们之所以看不到宏观物体的波动性,是因为宏观物体的动量太大,德布罗意波的波长太小.2.电子波动性的实验验证(1)实验探究思路:干涉、衍射是波特有的现象,如果实物粒子具有波动性,则在一定条件下,也应该发生干涉或衍射现象.(2)实验验证:1926年戴维孙观察到了电子衍射图样,证实了电子的波动性.(3)汤姆孙做电子束穿过多晶薄膜的衍射实验,也证实了电子的波动性.二、氢原子中的电子云1.定义:用点的多少表示的电子出现的概率分布.2.电子的分布:某一空间范围内电子出现概率大的地方点多,电子出现概率小的地方点少.电子云反映了原子核外的电子位置的不确定性,说明电子对应的波也是一种概率波.三、不确定关系1.定义:在经典物理学中,一个质点的位置和动量是可以同时测定的,在微观物理学中,要同时测出微观粒子的位置和动量是不太可能的,这种关系叫不确定关系.2.表达式:Δx·Δp x≥h4π.其中以Δx表示粒子位置的不确定量,以Δp x表示粒子在x方向上的动量的不确定量,h是普朗克常量.3.不确定关系在微观世界与宏观世界中的不同作用在微观世界里,由于粒子的波动性比较显著,粒子的不确定关系表现比较明显,但在宏观世界里,由于其德布罗意波的波长非常小,宏观粒子的波动性根本无法察觉,所以宏观物体的不确定关系不需要考虑.[即学即用]1.判断下列说法的正误.(1)一切宏观物体都伴随一种波,即德布罗意波.(×)(2)湖面上的水波就是德布罗意波.(×)(3)电子的衍射现象证实了实物粒子具有波动性.(√)(4)微观粒子的动量和位置不可同时确定.(√)(5)微观粒子同时具有确定的位置和动量在将来可以用实验验证.(×)(6)不确定关系不仅适用于电子和光子等微观粒子,也适用于宏观物体.(√)2.质量为1 000 kg的小汽车以v=40 m/s的速度在高速公路上行驶,则估算小汽车的德布罗意波的波长为______.(h=6.63×10-34 J·s)答案 1.66×10-38 m解析小汽车的动量p=m v=4×104 kg·m/s小汽车的德布罗意波的波长λ=h-38 m.p≈1.66×10一、对物质波的理解[导学探究]1.如图1是电子束通过铝箔后的衍射图样,结合图样及课本内容回答下列问题:图1(1)德布罗意提出“实物粒子也具有波动性”假设的理论基础是什么?(2)电子束穿过铝箔的衍射图样说明了什么?答案(1)普朗克能量子假说和爱因斯坦光子理论.(2)电子束具有波动性.2.德布罗意认为任何运动着的物体均具有波动性,可是我们观察运动着的汽车,并未感觉到它的波动性,你如何理解该问题?谈谈自己的认识.答案波粒二象性是微观粒子的特殊规律,一切微观粒子都存在波动性,宏观物体(汽车)也存在波动性,只是因为宏观物体质量大,动量大,波长短,难以观测.[知识深化]1.任何物体,小到电子、质子,大到行星、太阳都存在波动性,我们之所以观察不到宏观物体的波动性,是因为宏观物体对应的物质波的波长太小.2.物质波是一种概率波,粒子在空间各处出现的概率受波动规律支配,不能以宏观观点中的波来理解德布罗意波.3.德布罗意假说是光子的波粒二象性的一种推广,使之包括了所有的物质粒子,即光子与实物粒子都具有粒子性,又都具有波动性,与光子对应的波是电磁波,与实物粒子对应的波是物质波.例1(多选)关于物质波,下列认识中正确的是()A.任何运动的物体(质点)都伴随一种波,这种波叫物质波B.X射线的衍射实验,证实了物质波假设是正确的C.电子的衍射实验,证实了物质波假设是正确的D.宏观物体尽管可以看做物质波,但它们不具有干涉、衍射等现象答案AC解析据德布罗意物质波理论知,任何一个运动的物体,小到电子、质子,大到行星、太阳,都有一种波与之相对应,这种波就叫物质波,A选项正确;由于X射线本身就是一种波,而不是实物粒子,故X射线的衍射现象并不能证实物质波理论的正确性,即B选项错误;电子是一种实物粒子,电子的衍射现象表明运动着的实物粒子具有波动性,故C选项正确;由电子穿过铝箔的衍射实验知,少量电子穿过铝箔后所落位置是散乱的,无规律的,但大量电子穿过铝箔后所落的位置则呈现出衍射图样,即大量电子的行为表现出电子的波动性,干涉、衍射是波的特有现象,只要是波,都会发生干涉、衍射现象,故选项D 错误.例2 任何一个运动着的物体,小到电子、质子,大到行星、太阳,都有一种波与之对应,波长λ=h p,式中p 是运动物体的动量,h 是普朗克常量,人们把这种波叫做德布罗意波.现有一个德布罗意波的波长为λ1的物体1和一个德布罗意波的波长为λ2的物体2,二者相向碰撞后粘在一起,已知|p 1|<|p 2|,则粘在一起的物体的德布罗意波的波长为多少?答案 λ1λ2λ1-λ2解析 以物体2碰前速度的方向为正方向,由动量守恒定律p 2-p 1=(m 1+m 2)v 及p =h λ,得h λ2-h λ1=h λ,所以λ=λ1λ2λ1-λ2.物体德布罗意波的波长的计算1.首先计算物体的速度,再计算其动量.如果知道物体动能也可以直接用p =2mE k 计算其动量.2.再根据λ=h p计算德布罗意波的波长. 3.需要注意:德布罗意波的波长一般都很短,比一般的光波波长还要短,可以根据结果的数量级大致判断计算结果是否合理.二、不确定关系[导学探究]1.如果光子是经典的粒子,它在从光源飞出后应该做匀速直线运动,它在屏上的落点应该在缝的投影之内,即屏上亮条纹宽度与缝宽相同.但是实际上,它到达屏上的位置超出了单缝投影的范围,形成了中间宽、两侧窄、明暗相间的衍射条纹,如图2所示.微观粒子的运动是否遵循牛顿运动定律?能否用经典物理学的方法准确确定粒子到达屏上的位置和动量?图2答案按照牛顿运动定律,如果光子是经典的粒子,它在运动过程中不受力,光子应该做匀速直线运动.而由光的衍射可知,光子运动并不遵从牛顿运动定律,即对于微观粒子的运动,不能用经典物理学的方法确定其位置及动量.2.单缝衍射时,屏上各点的亮度反映了粒子到达这点的概率.图3是粒子到达屏上的概率在坐标系中的表示.图3(1)如果狭缝变窄,粒子的衍射图样中,中央亮条纹变宽.这说明当粒子的位置不确定量减小时,动量的不确定量如何变化?(2)通过狭缝后,单个粒子的运动情况能否预知?粒子出现在屏上的位置遵循什么规律?(3)粒子位置的不确定量Δx与动量的不确定量Δp x有什么关系?答案(1)变大(2)不能粒子出现在屏上的位置遵循统计规律(3)遵循不确定关系:ΔxΔp x≥h 4π[知识深化]1.粒子位置的不确定:单缝衍射现象中,入射的粒子有确定的动量,但它们经过狭缝后可以处于任何位置,也就是说,粒子的位置是完全不确定的.2.粒子动量的不确定(1)微观粒子具有波动性,会发生衍射.大部分粒子到达狭缝之前沿水平方向运动,而在经过狭缝之后,有些粒子跑到投影位置以外.这些粒子具有与其原来运动方向垂直的动量.(2)由于哪个粒子到达屏上的哪个位置是随机的,所以粒子在垂直方向上的动量也具有不确定性,不确定量的大小可以由中央亮条纹的宽度来衡量.3.位置和动量的不确定关系:Δx·Δp x≥h4π.由Δx·Δp x≥h4π可以知道,在微观领域,要准确地确定粒子的位置,动量的不确定性就更大;反之,要准确地确定粒子的动量,那么位置的不确定性就更大.4.微观粒子的位置和动量是不能同时被确定的,这也就决定了不能用“轨迹”的观点来描述粒子的运动.例3(多选)根据不确定关系Δx·Δp x≥h4π,判断下列说法正确的是()A.采取办法提高测量Δx精度时,Δp x的精度下降B.采取办法提高测量Δx精度时,Δp x的精度上升C.Δx与Δp x的测量精度与测量仪器及测量方法是否完备有关D.Δx与Δp x的测量精度与测量仪器及测量方法是否完备无关答案AD解析不确定关系表明,无论采用什么方法试图确定位置坐标和相应动量中的一个,必然引起另一个较大的不确定性,这样的结果与测量仪器及测量方法是否完备无关,无论怎样改善测量仪器和测量方法,都不可能逾越不确定关系所给出的限度.故A、D正确.例4已知h4π=5.3×10-35 J·s,试求下列情况中速度测定的不确定量,并根据计算结果,讨论在宏观和微观世界中进行测量的不同情况.(1)一个球的质量m=1.0 kg,测定其位置的不确定量为10-6 m.(2)电子的质量m e=9.0×10-31 kg,测定其位置的不确定量为10-10 m.答案见解析解析(1)m=1.0 kg,Δx1=10-6 m,由ΔxΔp x≥h4π,Δp x=mΔv知Δv1=h4πΔx1m=5.3×10-3510-6×1.0m/s=5.3×10-29 m/s这个速度不确定量在宏观世界中微不足道,可认为球的速度是确定的,其运动遵从经典的物理学理论.(2)m e=9.0×10-31 kg,Δx2=10-10 mΔv2=h4πΔx2m e=5.3×10-3510-10×9.0×10-31m/s≈5.89×105 m/s.这个速度不确定量不可忽略,不能认为原子中的电子具有确定的速度,其运动不能用经典物理学理论处理.理解不确定关系时应注意的问题1.对球这样的宏观物体,不确定量是微不足道的,对测量准确性没有任何限制,但对微观粒子却是不可忽略的.2.在微观世界中,粒子质量较小,不能同时精确地测出粒子的位置和动量,也就不能准确地把握粒子的运动状态.1.(对物质波的理解)下列说法中正确的是()A.物质波属于机械波B.只有像电子、质子、中子这样的微观粒子才具有波动性C.德布罗意认为任何一个运动的物体,小到电子、质子、中子,大到行星、太阳都有一种波与之相对应,这种波叫物质波D.宏观物体运动时,看不到它的衍射和干涉现象,所以宏观物体运动时不具有波动性答案 C解析 任何一个运动的物体都具有波动性,但因为宏观物体的德布罗意波的波长很短,所以很难看到它的衍射和干涉现象,所以C 项对,B 、D 项错;物质波不同于宏观意义上的波,故A 项错.2.(物质波公式的应用)如果一个电子的德布罗意波的波长和一个中子的相等,则下列物理量中相等的是( )A .速度B .动能C .动量D .总能量 答案 C解析 根据德布罗意波的波长公式λ=hp,可得其动量相等,故选C.3.(对不确定关系的理解)(多选)关于不确定关系Δx ·Δp x ≥h4π有以下几种理解,正确的是( )A .微观粒子的动量不可确定B .微观粒子的位置坐标不可确定C .微观粒子的动量和位置不可能同时确定D .不确定性关系不仅适用于电子和光子等微观粒子,也适用于其他宏观粒子 答案 CD4.(不确定关系式的计算)质量为10 g 的子弹与电子的速率相同,均为500 m/s ,测量准确度为0.01%,若位置和速率在同一实验中同时测量,试问它们位置的最小不确定量各为多少?(普朗克常量h =6.63×10-34J·s ,电子质量为m =9.1×10-31kg ,结果保留三位有效数字)答案 1.06×10-31m 1.15×10-3 m解析 由题意知,子弹、电子的速度不确定量为Δv =0.05 m /s ,子弹的动量的不确定量Δp x 1=5×10-4 kg·m /s ,电子动量的不确定量Δp x 2≈4.6×10-32 kg·m/s ,由Δx ≥h4πΔp x ,子弹位置的最小不确定量Δx 1= 6.63×10-344×3.14×5×10-4 m ≈1.06×10-31 m ,电子位置的最小不确定量Δx 2=6.63×10-344×3.14×4.6×10-32m ≈1.15×10-3 m.考点一 物质波1.关于物质波,下列说法正确的是( ) A .速度相等的电子和质子,电子的波长长 B .动能相等的电子和质子,电子的波长短 C .动量相等的电子和中子,中子的波长短D .如果甲、乙两电子的速度都远小于光速,甲电子速度是乙电子的3倍,则甲电子的波长也是乙电子的3倍 答案 A解析 由λ=hp 可知,动量大的波长短.电子与质子的速度相等时,电子动量小,波长长.电子与质子动能相等时,由动量与动能的关系式p = 2mE k 可知,电子的动量小,波长长.动量相等的电子和中子,其波长应相等.如果甲、乙两电子的速度远都小于光速,甲的速度是乙的三倍,甲的动量也是乙的三倍,则甲的波长应是乙的13.2.(多选)频率为ν的光子,德布罗意波的波长为λ=hp ,能量为E ,则光的速度为( )A.Eλh B .pE C.E p D.h 2Ep 答案 AC解析 根据c =λν,E =hν,λ=h p ,即可解得光的速度为Eλh 或E p .3.(多选)为了观察晶体的原子排列,可以采用下列方法:①用分辨率比光学显微镜更高的电子显微镜成像(由于电子的物质波的波长很短,能防止发生明显衍射现象,因此电子显微镜的分辨率高);②利用X 射线或中子束得到晶体的衍射图样,进而分析出晶体的原子排列. 则下列分析中正确的是( )A .电子显微镜所利用的是电子的物质波的波长比原子尺寸小得多B .电子显微镜中电子束运动的速度应很小C .要获得晶体的X 射线衍射图样,X 射线波长要远小于原子的尺寸D .中子的物质波的波长可以与原子尺寸相当 答案 AD解析 由题目所给信息“电子的物质波的波长很短,能防止发生明显衍射现象”及发生明显衍射现象的条件可知,电子的物质波的波长比原子尺寸小得多,它的动量应很大,即速度应很大,A 正确,B 错误;由信息“利用X 射线或中子束得到晶体的衍射图样”及发生明显衍射现象的条件可知,中子的物质波或X 射线的波长与原子尺寸相当,C 错误,D 正确. 4.2002年诺贝尔物理学奖中的一项是奖励美国科学家贾科尼和日本科学家小柴昌俊发现了宇宙X 射线源.X 射线是一种高频电磁波,若X 射线在真空中的波长为λ,以h 表示普朗克常量,c 表示真空中的光速,以ε和p 分别表示X 射线每个光子的能量和动量,则( ) A .ε=hλc ,p =0B .ε=hλc ,p =hλc 2C .ε=hcλ,p =0D .ε=hc λ,p =hλ答案 D解析 根据ε=hν,λ=h p ,c =λν可得X 射线每个光子的能量为ε=hcλ,每个光子的动量为p=hλ. 5.利用金属晶格(大小约10-10m)作为障碍物观察电子的衍射图样,方法是使电子通过电场加速后,让电子束照射到金属晶格上,从而得到电子的衍射图样.已知电子质量为m ,电荷量的绝对值为e,初速度为0,加速电压为U,普朗克常量为h,则下列说法中不正确的是() A.该实验说明了电子具有波动性B.实验中电子束的德布罗意波的波长为λ=h2meUC.加速电压U越大,电子的衍射现象越不明显D.若用相同动能的质子替代电子,衍射现象将更加明显答案 D解析实验得到了电子的衍射图样,说明电子这种实物粒子发生了衍射,即电子具有波动性,故A正确;由动能定理可得,eU=12m v2-0,电子加速后的速度v=2eU m,电子德布罗意波的波长λ=hp =hm v=hm2eUm=h2meU,故B正确;由电子的德布罗意波的波长公式λ=h2meU可知,加速电压U越大,电子德布罗意波的波长越短,衍射现象越不明显,故C正确;物体动能与动量的关系是p=2mE k,由于质子的质量远大于电子的质量,所以动能相同的质子的动量远大于电子的动量,由λ=hp可知,相同动能的质子的德布罗意波的波长远小于电子德布罗意波的波长,波长越小,衍射现象越不明显,因此用相同动能的质子代替电子,衍射现象将更不明显,故D错误.考点二氢原子中的电子云6.(多选)电子的运动受波动性的支配,对于氢原子的核外电子,下列说法正确的是() A.氢原子的核外电子可以用确定的坐标描述它们在原子中的位置B.电子绕核运动时,可以运用牛顿运动定律确定它的轨道C.电子绕核运动的“轨道”其实是没有意义的D.电子轨道只不过是电子出现的概率比较大的位置答案CD解析微观粒子的波动性是一种概率波,对于微观粒子的运动,牛顿运动定律已经不适用了,所以氢原子的核外电子不能用确定的坐标描述它们在原子中的位置,电子的“轨道”其实是没有意义的,电子轨道只不过是电子出现的概率比较大的位置,综上所述,C、D正确.7.关于电子的运动规律,以下说法正确的是()A.电子如果不表现波动性,则无法用轨迹来描述它们的运动,其规律遵循牛顿运动定律B.电子如果不表现波动性,则可以用轨迹来描述它们的运动,其规律遵循波动规律C.电子如果表现波动性,则无法用轨迹来描述它们的运动,空间分布的概率遵循波动规律D.电子如果表现波动性,则可以用轨迹来描述它们的运动,其规律遵循牛顿运动定律答案 C解析电子的波动性属于概率波,少量电子表现出粒子性,不遵循牛顿运动定律,无法用轨迹描述其运动,A、B错.大量电子表现出波动性,无法用轨迹描述其运动,可确定电子在某点附近出现的概率,且其遵循波动规律,C对,D错.考点三不确定关系的理解8.(多选)下列各种说法中正确的有()A.普朗克在研究黑体的热辐射问题中提出了能量子假说B.一束光照射到某种金属上不能发生光电效应,是因为该束光的照射时间太短C.在光的单缝衍射实验中,狭缝越窄,光子动量的不确定量越大D.任何一个运动物体,大到太阳、地球,小到电子、质子,都与一种波相对应,这就是物质波.物质波是概率波答案ACD解析普朗克在研究黑体的热辐射问题中提出了能量子假说,故A正确;一束光照射到某种金属上不能发生光电效应,是因为该束光的频率小于截止频率,故B错误;光的单缝衍射实验中,狭缝越窄,光子动量的不确定量越大,故C正确;任何一个运动物体,大到太阳、地球,小到电子、质子,都与一种波相对应,这就是物质波,物质波是概率波,故D正确.9.(多选)以下说法正确的是()A.微观粒子不能用“轨道”观点来描述粒子的运动B.微观粒子能用“轨道”观点来描述粒子的运动C.微观粒子位置不能精确确定D.微观粒子位置能精确确定答案AC解析微观粒子的动量和位置是不能同时精确确定的,这也就决定不能用“轨道”的观点来描述粒子的运动(轨道上运动的粒子在某时刻具有确定的位置和动量),故A正确,B错误.由微观粒子的波粒二象性可知微观粒子位置不能精确确定,故C正确,D错误.10.从衍射的规律可以知道,狭缝越窄,屏上中央亮条纹就越宽,由不确定关系ΔxΔp x≥h4π,判断下列说法正确的是()A.入射的粒子有确定的动量,射到屏上粒子就有准确的位置B.狭缝的宽度变小了,因此粒子的动量的不确定量也变小了C.更窄的狭缝可以更准确地测得粒子的位置,但粒子动量的不确定量却更大了D.可以同时确定粒子的位置和动量答案 C解析由ΔxΔp x≥h4π知,狭缝变窄了,即Δx减小了,Δp x变大,即动量的不确定量变大,故C正确,A、B、D错误.。
2017-2018学年高中物理(SWSJ)教科版选修3-5教学案:第三章第2节放射性 衰变含答案
第2节放射性__衰变(对应学生用书页码P34)一、天然放射现象的发现1.1896年,法国物理学家贝可勒尔发现,铀和含铀矿物能够发出看不见的射线,这种射线可以穿透黑纸使照相底片感光。
物质放出射线的性质称为放射性,具有放射性的元素称为放射性元素.2.玛丽·居里和她的丈夫皮埃尔·居里发现了两种放射性更强的新元素,命名为钋(Po)、镭(Ra)。
二、三种射线的本质1.α射线实际上就是氦原子核,速度可达到光速的错误!,其电离能力强,穿透能力较差.在空气中只能前进几厘米,用一张纸就能把它挡住。
2.β射线是高速电子流,它的速度更大,可达光速的99%,它的穿透能力较强,电离能力较弱,很容易穿透黑纸,也能穿透几毫米厚的铝板。
3.γ射线呈电中性,是能量很高的电磁波,波长很短,在10-10m以下,它的电离作用更小,但穿透能力更强,甚至能穿透几厘米厚的铅板和几十厘米厚的混凝土.三、原子核的衰变1.放射性元素的原子核放出某种粒子后变成新原子核的变化叫衰变。
2.能放出α粒子的衰变叫α衰变,产生的新核,质量数减少4,电荷数减少2,新核在元素周期表中的位置向前移动两位,其衰变规律是错误!X―→错误!Y+错误!He。
3.能放出β粒子的衰变叫β衰变,产生的新核,质量数不变,电荷数加1,新核在元素周期表中的位置向后移动一位,其衰变规律A Z+1Y+__0-1e。
错误!X―→4.γ射线是伴随α衰变、β衰变同时产生的.β衰变是原子核中的中子转化成一个电子,同时还生成一个质子留在核内,使核电荷数增加1.四、半衰期1.放射性元素的原子核有半数发生衰变所需要的时间,叫做这种元素的半衰期.2.放射性元素衰变的快慢是由核内部自身的因素决定的.3.跟原子所处的化学状态和外部条件没有关系.4.半衰期是大量原子核衰变的统计规律.衰变公式:N=N0(错误!)错误!,τ为半衰期,反映放射性元素衰变的快慢。
1.判断:(1)放射性元素发生α衰变时,新核的化学性质不变。
物理选修3-5(配粤教)第4章第四节
二、重核与轻核
1.重核与轻核
排在周期表比较靠后的元素对应的原子核叫 重核,排在比较靠前的叫轻核.
2.原子核中质子和中子的比例关系 自然界中较轻的原子核,其质子数与中子数 大致相等;较重的原子核,中子数大于质子 数;越重的元素,两者相差越多,如图4-4 -1所示.排在83号元素铋之后的原子核都 不稳定,它们自动分解或衰变成更轻的原子 核,排在第92号元素铀之后的原子核十分不 稳定,无法在自然状态下存在. 图 4- 4- 1
三、结合能的理解 1.结合能 原子核是核子凭借核力结合在一起构成的, 要把它们分开需要能量,这就是原子核的结 合能.它等于核子结合为原子核时放出的能 量.
2.平均结合能 (1)定义:原子核的结合能与核子数之比,称 为平均结合能,也叫比结合能. (2)与原子核稳定性的关系:比结合能越大, 表示原子核中核子结合得越牢固,原子核越稳 定.中等大小的核的比结合能最大,这些核最 稳定. (3)当比结合能较小的原子核转化成比结合能 较大的原子核时,就可释放核能,例如,一个 核子数较大的重核分裂成两个核子数小一些的 核,或者两个核子数很小的轻核结合成一个核 子数大一些的核,都能释放出巨大的核能.
即时应用(即时突破,小试牛刀)
1.(单选)关于核力的说法正确的是( ) A.核力同万有引力没有区别,都是物体间 的作用 B.核力就是电磁力
C.核力是短程力,作用范围在2×10-15 m 之内
D.核力与电荷有关
解析:选C.核力是短程力,超过2×10-15 m,核力急剧下降几乎消失,故C对;核力 与万有引力、电磁力不同,故A、B不对; 核力与电荷无关,故D错.
思考感悟
原子核很小,结构却十分复杂,除氢核外, 其他各种元素的原子核中既有带正电的质子 ,又有不带电的中子.如铀235的核内有92 个质子,143个中子.那么,质子间的静电 斥力为什么没有把它们驱散开来?
高中物理选修3-5步步高全套学案及课件第四章 4-5
2.德布罗意认为任何运动着的物体均具有波动性,可是我们观察运动着的 汽车,并未感觉到它的波动性,你如何理解该问题?谈谈自己的认识. 答案 波粒二象性是微观粒子的特殊规律,一切微观粒子都存在波动性, 宏观物体(汽车)也存在波动性,只是因为宏观物体质量大,动量大,波长短, 难以观测.
答案
[知识深化] 1.任何物体,小到电子、质子,大到行星、太阳都存在波动性,我们之所以观 察不到宏观物体的波动性,是因为宏观物体对应的物质波的波长太小. 2.物质波是一种概率波,粒子在空间各处出现的概率受波动规律支配,不能 以宏观观点中的波来理解德布罗意波. 3.德布罗意假说是光子的波粒二象性的一种推广,使之包括了所有的物质 粒子,即光子与实物粒子都具有粒子性,又都具有波动性,与光子对应的波 是电磁波,与实物粒子对应的波是物质波.
( √)
答案
2.质量为1 000 kg的小汽车以v=40 m/s的速度在高速公路上行驶,则估算小 汽车的德布罗意波的波长为___1_._6_6_×__1_0_-_3_8_m.(h=6.63×10-34 J·s) 解析 小汽车的动量p=mv=4×104 kg·m/s 小汽车的德布罗意波的波长 λ=hp≈1.66×10-38 m.
意波的波长为λ2的物体2,二者相向碰撞后粘在一起,已知|p1|<|p2|,则粘在一
起的物体的德布罗意波的波长为多少?
答案
λ1λ2 λ1-λ2
解析 答案
规律总结
物体德布罗意波的波长的计算 1.首先计算物体的速度,再计算其动量.如果知道物体动能也可以直接 用p= 2mEk 计算其动量. 2.再根据λ=h 计算德布罗意波的波长.
图2
答案
2.单缝衍射时,屏上各点的亮度反映了粒子到达这点的概率.图3是粒子 到达屏上的概率在坐标系中的表示.
高中物理选修3-5步步高全套学案及课件第四章1
1量子概念的诞生[学习目标] 1.知道热辐射、黑体和黑体辐射的概念,知道黑体辐射的实验规律.2.知道普朗克提出的能量子假说.一、热辐射1.定义:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射.2.特点:热辐射强度按波长的分布情况随物体的温度而有所不同.二、黑体与黑体辐射1.黑体:某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体.2.黑体辐射特点:黑体辐射电磁波的强度按波长的分布只与黑体的温度有关.三、能量子1.定义:普朗克认为,黑体辐射是谐振子向外辐射的各种电磁波.谐振子的能量是不连续的,而只能取一些分立的值,即E n=nhν(n=1,2,3,…),最小的一份能量称为能量子.2.大小:ε=hν,其中ν是谐振动(电磁波)的频率,h是普朗克常量,h=6.63×10-34 J·s.3.能量的量子化:在微观世界中能量是量子化的,或者说微观粒子的能量是分立的.[即学即用]1.判断下列说法的正误.(1)黑体一定是黑色的物体.(×)(2)能吸收各种电磁波而不反射电磁波的物体叫黑体.(√)(3)温度越高,黑体辐射电磁波的强度越大.(√)(4)微观粒子的能量只能是能量子的整数倍.(√)(5)能量子的能量不是任意的,其大小与电磁波的频率成正比.(√)2.人眼对绿光较为敏感,正常人的眼睛接收到波长为530 nm的绿光时,只要每秒钟有6个绿光的光子射入瞳孔,眼睛就能察觉.普朗克常量为6.63×10-34J·s,光速为3×108m/s,则人眼能察觉到绿光时所接收到的最小功率约是( ) A.2.3×10-18W B.3.8×10-19W C.7.0×10-10W D.1.2×10-18W答案 A解析 因为只要每秒钟有6个绿光的光子射入瞳孔,眼睛就能察觉.所以察觉到绿光时所接收到的最小功率P =E t ,式中t =1 s 时E =6ε,又ε=hν=h c λ,可解得P ≈2.3×10-18W.一、黑体辐射的规律 [导学探究]1.什么是黑体辐射?它与热辐射有什么不同?答案 能够完全吸收各种波长的电磁波而不发生反射的物体,叫做黑体.黑体辐射电磁波的强度按波长的分布只与温度有关,而热辐射还与其他因素有关(材料的种类和表面状况).2.黑体辐射电磁波的强度按波长分布如图1所示,当温度从1 300 K 升高到1 700 K 时,各种波长的电磁波的辐射强度怎么变化?辐射强度极大值对应的波长如何变化?图1答案 变强.辐射强度极大值向波长较短的方向移动,即变短. [知识深化]1.一般物体与黑体的比较2.随着温度的升高,黑体辐射的各种波长的辐射强度都增加,且辐射强度的极大值向波长较短的方向移动.3.现实生活中不存在理想的黑体,实际的物体都能辐射红外线(电磁波),也都能吸收和反射红外线(电磁波),绝对黑体不存在,是理想化的模型.例1 (多选)黑体辐射的实验规律如图2所示,由图可知( )图2A.随着温度升高,各种波长的辐射强度都增加B.随着温度降低,各种波长的辐射强度都增加C.随着温度升高,辐射强度的极大值向波长较短的方向移动D.随着温度降低,辐射强度的极大值向波长较长的方向移动 答案 ACD解析 由题图可知,随着温度升高,各种波长的辐射强度都增加,且辐射强度的极大值向波长较短的方向移动,当温度降低时,上述变化都将反过来. 二、能量子[导学探究] 某激光器能发射波长为λ的激光,那么激光能量子的能量可以取任意值吗?是连续的还是一份一份的?设普朗克常量为h ,那么每个激光能量子的能量是多少?如果激光发射功率为P ,那么每秒钟发射多少个能量子?(光速为c )答案 激光能量子的能量不是连续的,而是一份一份的,ε=h c λ.个数n =P ε=Pλhc .[知识深化]1.物体在发射或接收能量的时候,只能从某一状态“飞跃”地过渡到另一状态,而不可能停留在不符合这些能量规律的任何一个中间状态.2.在宏观尺度内研究物体的运动时我们可以认为:物体的运动是连续的,能量变化也是连续的,不必考虑能量量子化;在研究微观粒子时必须考虑能量量子化.3.能量子的能量ε=hν,其中h 是普朗克常量,ν是电磁波的频率.例2 (多选)对于带电微粒辐射和吸收能量时的特点,以下说法正确的是( ) A.以某一个最小能量值为单位一份一份地辐射或吸收 B.辐射和吸收的能量是某一最小值的整数倍 C.吸收的能量可以是连续的D.辐射和吸收的能量是量子化的 答案 ABD解析 带电微粒辐射或吸收能量时是以最小能量值——能量子ε的整数倍或一份一份地辐射或吸收的,是不连续的,故选项A 、B 、D 正确,C 错误.1.思维程序:c =λν→光的频率―――――――→ν=cλ能量子的能量――→ε=hν激光束的总能量E =nε→能量子的个数2.解决此类题目的关键是熟练掌握ε=hν和c =λν及E =nε=Pt 等公式.1.(对黑体辐射规律的理解)(多选)在实验室或工厂的高温炉子上开一小孔,小孔可看做黑体,由小孔的热辐射特性,就可以确定炉内的温度.如图3所示就是黑体的辐射强度与其辐射光波长的关系图像,则下列说法正确的是( )图3A.T 1>T 2B.T 1<T 2C.随着温度的升高,各种波长黑体辐射的强度都有所降低D.随着温度的升高,辐射强度的极大值向波长较短的方向移动 答案 AD解析 黑体是指在任何温度下,能够完全吸收入射的各种波长的电磁波而不反射的物体,黑体辐射的强度按波长的分布只与温度有关.实验表明,随着温度的升高,黑体辐射中各种波长的辐射强度都有所增加,辐射强度的极大值向波长较短的方向移动.从题图中可以看出,λ1<λ2,T 1>T 2,本题正确选项为A 、D.2.(对能量子的理解)(多选)关于对普朗克能量子假说的认识,下列说法正确的是( ) A.振动着的带电微粒的能量只能是某一能量值εB.带电微粒辐射或吸收的能量只能是某一最小能量值的整数倍C.能量子与电磁波的频率成正比D.这一假说与现实世界相矛盾,因而是错误的 答案 BC3.(能量量子化的理解)硅光电池是将光辐射的能量转化为电能.若有N个波长为λ0的光子打在硅光电池极板上,这些光子的总能量为(h为普朗克常量,c为真空中的光速)()A.h cλ0 B.Nh cλ0 C.Nhλ0 D.2Nhλ0答案 B解析一个光子的能量ε=hν=h cλ0,则N个光子的总能量E=Nh cλ0,选项B正确.一、选择题考点一黑体辐射的理解和应用1.关于对热辐射的认识,下列说法中正确的是()A.热的物体向外辐射电磁波,冷的物体只吸收电磁波B.温度越高,物体辐射的电磁波越强C.辐射强度按波长的分布情况只与物体的温度有关,与材料种类及表面状况无关D.常温下我们看到的物体的颜色就是物体辐射电磁波的颜色答案 B解析一切物体都在不停地向外辐射电磁波,且温度越高,辐射的电磁波越强,对于一般材料的物体,辐射强度按波长的分布除与物体的温度有关外,还与材料的种类和表面状况有关;常温下我们看到的物体的颜色是反射光的颜色.2.黑体辐射电磁波的强度按波长分布的影响因素是()A.温度B.材料C.表面状况D.以上都正确答案 A解析黑体辐射电磁波的强度按波长的分布只与黑体的温度有关,A对.3.下列描绘两种温度下黑体辐射强度与波长关系的图像中,符合黑体辐射实验规律的是()答案 A解析随着温度的升高,黑体辐射的强度与波长的关系:一方面,各种波长的辐射强度都增加,另一方面,辐射强度的极大值向波长较短的方向移动.由此规律可知应选A.4.“非典”期间,很多地方用红外线热像仪监测人的体温,只要被测者从仪器前走过,便可知道他的体温是多少,关于其中原理,下列说法正确的是()A.人的体温会影响周围空气温度,仪器通过测量空气温度便可知道人的体温B.仪器发出的红外线遇人反射,反射情况与被测者的温度有关C.被测者会辐射红外线,辐射强度以及按波长的分布情况与温度有关,温度高时辐射强且较短波长的成分强D.被测者会辐射红外线,辐射强度以及按波长的分布情况与温度有关,温度高时辐射强且较长波长的成分强答案 C解析根据辐射规律可知,随着温度的升高,各种波长的辐射强度都增加;随着温度的升高,辐射强度的极大值向波长较短的方向移动.人的体温的高低,直接决定了这个人辐射的红外线的频率和强度,通过监测被测者辐射的红外线的情况就可知道这个人的体温,C正确.5.下列叙述错误的是()A.一切物体都在辐射电磁波B.一般物体辐射电磁波的情况只与温度有关C.黑体辐射电磁波的强度按波长的分布只与黑体温度有关D.黑体能够完全吸收入射的各种波长的电磁波答案 B解析根据热辐射定义知A对;根据热辐射和黑体辐射的特点知一般物体辐射电磁波的情况除与温度有关外,还与材料种类和表面状况有关,而黑体辐射电磁波的强度按波长的分布只与黑体温度有关,B错,C对;根据黑体定义知D对.考点二能量子的理解和应用6.普朗克在1900年将“能量子”引入物理学,开创了物理学的新纪元.在下列宏观概念中,具有“量子化”特征的是()A.人的个数B.物体所受的重力C.物体的动能D.物体的长度答案 A解析 依据普朗克量子化观点,能量是不连续的,是一份一份地变化的,属于“不连续的,一份一份”的概念的是A 选项,故A 正确,B 、C 、D 错误.7.已知某种单色光的波长为λ,在真空中光速为c ,普朗克常量为h ,则电磁波辐射的能量子ε的值为( ) A.h c λ B.h λC.c hλD.以上均不正确答案 A解析 由波速公式c =λν可得:ν=c λ,由光的能量子公式得ε=hν=h cλ,故选项A 正确.8.能引起人的眼睛视觉效应的最小能量为10-18J,已知可见光的平均波长为0.6 μm ,普朗克常量h =6.63×10-34J·s,光速为3×108 m/s,若恰能引起人眼的感觉,则进入人眼的光子数至少为( )A.1个B.3个C.30个D.300个 答案 B解析 每个光子的能量为E 0=h c λ,能引起人的眼睛视觉效应的最小能量E 为10-18 J,由E =nE 0得进入人眼的光子数至少为n =E E 0=Eλhc =10-18×6×10-76.63×10-34×3×108个≈3个.故选B.9.在自然界生态系统中,蛇与老鼠和其他生物通过营养关系构成食物链,在维持生态平衡方面发挥着重要作用.蛇是老鼠的天敌,它是通过接收热辐射来发现老鼠的.假设老鼠的体温约37 ℃,它发出的最强的热辐射的波长为λmin .根据热辐射理论,λmin 与辐射源的绝对温度T 的关系近似为Tλmin =2.90×10-3 m·K,则老鼠发出的最强热辐射的波长为( )A.7.8×10-5 mB.9.4×10-6 mC.1.16×10-4 mD.9.7×10-8 m答案 B解析 由Tλmin =2.90×10-3m·K 可得,老鼠发出的最强热辐射的波长为λmin =2.90×10-3 m·kT=2.90×10-3273+37m ≈9.4×10-6 m,B 正确.10.红外遥感卫星通过接收地面物体发出的红外辐射来探测地面物体的状况.地球大气中的水汽(H 2O)、二氧化碳(CO 2)能强烈吸收某些波长范围的红外辐射,即地面物体发出的某些波长的电磁波,只有一部分能够通过大气层被遥感卫星接收.如图1所示为水和二氧化碳对某一波段不同波长电磁波的吸收情况,由图可知,在该波段红外遥感大致能够接收到的波长范围是( )图1A.2.5~3.5 μmB.4~4.5 μmC.5~7 μmD.8~13 μm答案 D解析 由题图可知,水对红外辐射吸收率最低的波长范围是8~13 μm ;二氧化碳对红外辐射吸收率最低的波长范围是5~13 μm.综上可知,应选D. 二、非选择题11.(能量子个数的计算)40瓦的白炽灯,有5%的能量转化为可见光.设所发射的可见光的平均波长为580 nm,那么该白炽灯每秒钟辐射的光子数为多少?(普朗克常量h =6.63×10-34J·s,光速c =3×108 m/s) 答案 5.8×1018个解析 波长为λ的光子能量为:ε=hν=h cλ①设白炽灯每秒内发出的光子数为n ,白炽灯电功率为P ,则:n =ηPε②式中,η=5%是白炽灯的发光效率.联立①②式得: n =ηPλhc代入题给数据得:n ≈5.8×1018个12.(能量子的理解和计算)某广播电台的发射功率为10 kW,发射的是在空气中波长为187.5 m 的电磁波,则:(普朗克常量h =6.63×10-34J·s,光速c =3×108 m/s)(1)该电台每秒从天线发射多少个能量子?(2)若发射的能量子在以天线为球心的同一球面上的分布视为均匀的,求在离天线2.5 km 处,直径为2 m 的球状天线每秒接收的能量子个数以及接收功率.(球面积公式S =4πR 2) 答案 (1)9.4×1030个 (2)3.76×1023个 4×10-4 W解析 (1)每个能量子的能量ε=hν=hc λ=6.63×10-34×3×108187.5J ≈1.06×10-27 J则能量子数N =Pt≈9.4×1030个.(2)设球状天线每秒接收的能量子数为n 个,以电台发射天线为球心,则半径为R 的球面积S =4πR 2,而球状天线的有效接收面积S ′=πr 2,所以n =N S ′S =N r 24R 2=9.4×1030×124×(2.5×103)2个=3.76×1023个接收功率P 收=nεt =3.76×1023×1.06×10-27 W ≈4×10-4 W.。
2017_2018学年高中物理第四章从原子核到夸克4.3让射线造福人类教案沪科版选修3_5
让射线造福人类关注学生的进展,培育学生的创新精神和独立试探的能力是新一轮课改的重点目标。
这就要求咱们要踊跃改革教学方式,从学生的~理特点和认知规律动身,启发学生的思维,激发学习的爱好,使他们踊跃、主动地取得知识和能力。
咱们以为学生知识的形成进程既不是被动同意式的,也不是真正发觉式的,而是通过外界导向的信息跟学生原有的认知结构彼此作用,才能实现新知识的发生。
问题驱动式教学确实是学生在教师的引导下,主动地、独立地钻研问题,通过他们踊跃有效地探讨式学习,来不断发觉事物转变的起因和内部联系,从中找出规律。
探测射线的方式是一节选学课,内容大部份是介绍性的,学生在学习时对其中的重点和难点不易把握,因此学习本节课宜在教师的引导下,通过学生的主动研究去进行。
(教学目标)1、知识与能力(1).明白什么是放射性同位素,人造和天然放射性物质的要紧不同点。
(2)明白放射线的粒子与其他物质作历时产生的一些现象。
(3)明白用肉眼不能直接看到的放射线能够用适当的仪器探测到。
(4)了解云室、气泡室和计数器的简单构造和大体原理。
二、进程和方式采纳问题驱动模式进行教学,即通过“教师设问——学生阅读——学生讨论、师生互动——教师点拨、师生一起总结”的方式来使学生达到本节的教学目标。
3、情感态度与价值观结合教学内容来培育学生学习科学的爱好和实事求是的科学态度,激发学生的创新意识。
(重点、难点分析)一、本节所介绍的三种仪器是核物理研究中最大体、最经常使用的实验仪器。
通过对仪器原理的介绍,应让学生明白,研究原子核转变中的微观现象,能够依照各类粒子产生的次级效应来进行观看和判定,进而了解核物理中这种研究问题的方式。
教学中要注意渗透这一点。
二、教学中应注意结合以前学过的知识来帮忙学生明白得本节内容。
如结合过饱和汽的知识,讲清云室的原理;结合电场的知识,讲清射线粒子进入盖革管中产生大量电子的进程。
盖革一弥勒计数器的工作原理是本节难点。
(课时安排)一课时(课前预备)教师在上课前应预备挂图、实物投影仪等教具。
2018学年高中物理粤教版选修3-5学案:第4章 第3节 放
第三节放射性同位素[先填空]1.定义:利用天然放射性的高速粒子或利用人工加速的粒子去轰击原子核,以产生新的原子核,这个过程叫做核反应.2.反应能:核反应中所放出或吸收的能量叫做反应能.3.两个典型的核反应方程(1)质子的发现:147N+42He→178O+11H.(2)中子的发现:94Be+42He→126C+10n.[再判断]1.在核反应过程中,原子核的质量数和电荷数发生变化的同时一定伴随着能量的释放和吸收.(√)2.无论是核衰变还是其他核反应,方程两边总的质量数和电荷数是守恒的.(√)3.核反应方程遵守质量数守恒,即核反应过程中,质量不变化.(×)[后思考]核反应的条件和实质分别是什么?【提示】(1)放射性元素的自发衰变;利用天然放射性的高速粒子或利用人工加速的粒子去轰击原子核.(2)核反应的过程实质是新元素的生成过程.1.对核反应的认识(1)条件:用α粒子、质子、中子,甚至用γ光子轰击原子核,使原子核发生转变.(2)实质:用粒子轰击原子核,并不是粒子与核碰撞,将原子核打开,而是粒子打入原子核内部使核发生了转变.(3)遵循规律:反应前、后电荷数和质量数守恒.2.常见的人工转变核反应(1)卢瑟福发现质子147N+42He→178O+11H.(2)查德威克发现中子94Be+42He→126C+10n.(3)居里夫妇人工制造同位素42He+2713Al→3015P+10n.30P具有放射性,自发地放出正电子(01e),与天然放射现象遵循相同的规律,15衰变方程:3015P→3014Si+01e+ν.3.书写核反应方程时的注意事项(1)核反应指的是在原子核内部核子数发生相应的变化,而化学反应指的是在原子核外最外层电子数发生变化,二者存在本质的不同.(2)核反应过程一般都不是可逆的,所以核反应方程只能用单向箭头表示反应方向,不能用等号连接.(3)核反应的生成一定要以实验事实为基础,不能依据两个守恒规律杜撰出生成物与核反应方程.(4)核反应遵循质量数守恒,而不是质量守恒,核反应过程中反应前后的总质量一般会发生变化(质量亏损)且释放出核能.1.以下是物理学史上3个著名的核反应方程x+73Li→2y y+147N→x+178O y+94Be→z+126Cx、y和z是3种不同的粒子,下列说法正确的是()A.x为α粒子B.x为质子C.y为α粒子D.y为电子E.z为中子【解析】根据质量数守恒和电荷数守恒可以确定x为质子11H,y为42He即α粒子,z为中子10n.【答案】BCE2.用中子轰击2713Al,产生2411Na和X粒子,2411Na具有放射性,它衰变后变成2412 Mg,则X为________粒子,钠的衰变过程为________衰变.【解析】无论原子核的衰变,还是原子核的人工转变,都满足质量数守恒和电荷数守恒,根据以上守恒可得如下方程:10n+2713Al→2411Na+42He,2411Na→2412Mge.显然,X粒子是α粒子,钠发生了β衰变.+0-1【答案】αβ3.完成下列各核反应方程,并指出哪个核反应是首次发现质子、中子和正电子的.(1)105B+42He→137N+()(2)94Be+()→126C+10n(3)2713Al+()→2712Mg+11H(4)147N+42He→178O+()(5)2311Na+()→2411Na+11H(6)2713Al+42He→10n+();3015P→3014Si+()【解析】(1)105B+42He→137N+10n(2)94Be+42He→126C+10n由此核反应使查德威克首次发现了中子.(3)2713Al+10n→2712Mg+11H(4)147N+42He→178O+11H此核反应使卢瑟福首次发现了质子.(5)2311Na+21H→2411Na+11H(6)2713Al+42He→10n+3015P;30P→3014Si+0+1e(正电子)15此核反应使约里奥—居里夫妇首次发现了正电子.【答案】见解析书写核反应方程的四条重要原则1.质量数守恒和电荷数守恒;2.中间用箭头,不能写成等号;3.能量守恒(中学阶段不作要求);4.核反应必须是实验中能够发生的.[先填空]1.放射性同位素(1)具有相同质子数而中子数不同的原子,在元素周期表中处于同一位置,因而互称同位素.(2)具有放射性的同位素,叫做放射性同位素.(3)发现正电子的核反应方程27Al+42He→3015P+10n1330P→3014Si+01e+ν.15ν代表中微子,它是一种中性粒子,质量近似为零.2.放射性同位素的应用放射性同位素的应用主要分为三类:(1)射线的应用;(2)示踪原子的应用;(3)半衰期的应用.3.放射线的危害及防护(1)危害人体受到长时间大剂量的射线照射,就会使细胞、组织、器官受到损伤,破坏人体DNA分子结构,有时甚至会引发癌症,或者造成下一代遗传上的缺陷,过度照射时,人常常会出现头痛、四肢无力、贫血等多种症状,重者甚至死亡.(2)防护辐射防护的基本方法有时间防护、距离防护和屏蔽防护.要防止放射性物质对水源、空气、用具、工作场所的污染,要防止射线过多地长时间地照射人体.[再判断]1.利用示踪原子来推断地层或古代文物的年代.(×)2.可以利用放射性同位素的射线进行无损探伤,生物育种等.(√)3.医学上做射线治疗用的放射性元素,应选半衰期长的.(×)[后思考]存在射线危险的地方,常能看到如图4-3-1所示的标志.你在什么地方见过这个标志?为了保护人身安全,在有这样的标志的场所,应该注意什么?图4-3-1【提示】在医院的放射室看到这个标志.一般情况要远离这些地方,特殊情况下要在医生指导下进出这些场所.1.放射性同位素分类可分为天然放射性同位素和人工放射性同位素两种,天然放射性同位素不过40多种,而人工放射性同位素已达1 000多种,每种元素都有自己的放射性同位素.2.人工放射性同位素的优点(1)放射强度容易控制;(2)可以制成各种所需的形状;(3)半衰期比天然放射性物质短得多,放射性废料容易处理.因此,凡是用到射线时,用的都是人工放射性同位素.3.放射性同位素的主要应用(1)利用它的射线.①工业部门使用射线测厚度——利用γ射线的穿透特性;②农业应用——γ射线使种子的遗传基因发生变异,杀死使食物腐败的细菌,抑制蔬菜发芽,延长保存期等;③医疗上——利用γ射线的高能量治疗癌症.(2)作为示踪原子:放射性同位素与非放射性同位素有相同的化学性质,通过探测放射性同位素的射线确定其位置.4.下列哪些应用是把放射性同位素作为示踪原子()A.γ射线探伤仪B.利用含有放射性碘131的油,检测地下输油管的漏油情况C.利用钴60治疗肿瘤等疾病D.把含有放射性元素的肥料施给农作物,用检测放射性的办法确定放射性元素在农作物内转移和分布情况,找出合理施肥的规律E.给人注射碘的放射性同位素碘131,然后定时用探测器测量甲状腺及邻近组织的放射强度,帮助诊断甲状腺的疾病【解析】A是利用了γ射线的穿透性;C利用了γ射线的生物作用;B、D、E是利用示踪原子.【答案】BDE5.关于放射性同位素的应用,下列说法中正确的有()A.放射线改变了布料的性质使其不再因摩擦而生电,因此达到了消除有害静电的目的B.利用γ射线的贯穿性可以为金属探伤C.用放射线照射作物种子能使其DNA发生变异,其结果一定是成为更优秀的品种D.用γ射线治疗肿瘤时一定要严格控制剂量,以免对人体正常组织造成太大的伤害E.不能利用γ射进行人体透视【解析】利用放射线消除有害静电是利用α射线的电离性,使空气分子电离成导体,将静电泄出,A错误;γ射线对人体细胞伤害太大,因此不能用来人体透视,在用于治疗肿瘤时要严格控制剂量,B、D、E正确;DNA变异并不一定都是有益的,C错误.【答案】BDE6.正电子发射计算机断层显像(PET)的基本原理是:将放射性同位素15O注入人体,参与人体的代谢过程.15O在人体内衰变放出正电子,与人体内负电子相遇而湮灭转化为一对光子,被探测器探测到,经计算机处理后产生清晰的图象.根据PET原理,回答下列问题:(1)写出15O的衰变和正负电子湮灭的方程式.(2)将放射性同位素15O注入人体,15O的主要用途是()A.利用它的射线B.作为示踪原子C.参与人体的代谢过程D.有氧呼吸(3)PET中所选的放射性同位素的半衰期应________.(选填“长”“短”或“长短均可”)【解析】(1)由题意得158O→157N+0+1e,0+1e+0-1e→2γ.(2)将放射性同位素15O注入人体后,由于它能放出正电子,并能与人体内的负电子产生一对光子,从而被探测器探测到,所以它的用途为作为示踪原子.B 正确.(3)根据同位素的用途,为了减小对人体的伤害,半衰期应该很短.【答案】(1)158O→157N+0+1e,0+1e+0-1e→2γ(2)B(3)短放射性同位素应用的两点提醒1.利用它的射线:α射线的电离作用,γ射线的贯穿本领和生物作用,β射线的贯穿本领.2.作为示踪原子:多数情况下用β射线,因为γ射线难以探测到.。
2018版物理选修3-5教科版全套一体资料讲义:第四章 波
4实物粒子的波粒二象性5不确定关系[目标定位] 1.了解德布罗意假说的内容,知道德布罗意波的波长和粒子动量的关系.2.知道粒子和光一样具有波粒二象性,了解电子波动性的实验验证.3.初步了解不确定关系的内容,感受数学工具在物理学发展过程中的作用.一、粒子的波动性1.德布罗意波任何一个运动的物体都有一种波与它相对应,这种波叫物质波,也称为德布罗意波.2.物质波的波长、频率关系式:E=hν,p=h λ.3.电子波动性的实验证实(1)最早从实验上证实电子衍射现象的是美国的戴维孙和革末,他们做了电子束在晶体表面上散射的实验,观察到了和X射线衍射类似的电子衍射现象,首次证实了电子的波动性.(2)汤姆孙做电子束穿过多晶薄膜的衍射实验,也证实了电子的波动性.二、氢原子中的电子云1.定义:用点的多少表示的电子出现的概率分布.2.电子的分布:某一空间范围内电子出现概率大的地方点多,电子出现概率小的地方点少.电子云反映了原子核外电子位置的不确定性,说明电子对应的波也是一种概率波.三、不确定关系1.定义:在经典物理学中,一个质点的位置和动量是可以同时测定的,在微观物理学中,要同时测出微观粒子的位置和动量是不太可能的,这种关系叫不确定性关系.2.表达式:ΔxΔp x≥h4π.其中以Δx表示粒子位置的不确定量,以Δp x表示粒子在x方向上的动量的不确定量,h是普朗克常量.3.不确定关系在微观世界与宏观世界中的不同作用在微观世界里,由于粒子的波动性比较显著,粒子的不确定关系表现比较明显,但在宏观世界里,由于其德布罗意波长非常小,宏观粒子的波动性根本无法察觉,所以宏观物体的不确定关系不需要考虑.预习完成后,请把你疑惑的问题记录在下面的表格中一、对物质波的理解1.任何物体,小到电子、质子,大到行星、太阳都存在波动性,我们之所以观察不到宏观物体的波动性,是因为宏观物体对应的波长太小的缘故.2.物质波波长的计算公式为λ=hp,频率公式为ν=εh3.德布罗意假说是光子的波粒二象性的一种推广,使之包括了所有的物质粒子,即光子与实物粒子都具有粒子性,又都具有波动性,与光子对应的波是电磁波,与实物粒子对应的波是物质波.4.德布罗意波是一种概率波,粒子在空间各处出现的概率受波动规律支配,不要以宏观观点中的波来理解德布罗意波.【例1】下列关于德布罗意波的认识,正确的解释是()A.任何一个物体都有一种波和它对应,这就是物质波B.X光的衍射证实了物质波的假设是正确的C.电子的衍射证实了物质波的假设是正确的D.宏观物体运动时,看不到它的衍射或干涉现象,所以宏观物体不具有波动性答案 C解析运动的物体才具有波动性,A项错;宏观物体由于动量太大,德布罗意波长太小,所以看不到它的干涉、衍射现象,但仍具有波动性,D项错;X光是波长极短的电磁波,是光子,它的衍射不能证实物质波的存在,B项错;只有C 项正确.【例2】如果一个中子和一个质量为10 g的子弹都以103 m/s的速度运动,则它们的德布罗意波的波长分别是多大?(中子的质量为1.67×10-27 kg,普朗克常量为6.63×10-34 J·s)答案 4.0×10-10 m 6.63×10-35 m 解析中子的动量为p1=m1v子弹的动量为p2=m2v据λ=hp知中子和子弹的德布罗意波长分别为λ1=hp1,λ2=hp2联立以上各式解得λ1=hm1v,λ2=hm2v将m1=1.67×10-27 kg,v=103 m/sh=6.63×10-34 J·s,m2=1.0×10-2kg代入上面两式可解得λ1=4.0×10-10 m,λ2=6.63×10-35 m二、对不确定关系的理解1.单缝衍射现象中,粒子在挡板左侧的位置是完全不确定的,即通过挡板前粒子的位置具有不确定性.2.单缝衍射现象中,粒子通过狭缝后,在垂直原来运动方向的动量是不确定的,即通过挡板后粒子的动量具有不确定性.3.微观粒子运动的位置不确定量Δx和动量的不确定量Δp x的关系式为ΔxΔp x≥h4π,其中h是普朗克常量,这个关系式叫不确定性关系.4.不确定性关系告诉我们,如果要更准确地确定粒子的位置(即Δx更小),那么动量的测量一定会更不准确(即Δp x更大),也就是说,不可能同时准确地知道粒子的位置和动量,也不可能用“轨迹”来描述粒子的运动.【例3】在单缝衍射实验中,若单缝宽度是1.0×10-9m,那么光子经过单缝发生衍射,动量不确定量是多少?答案Δp x≥5.3×10-26 kg·m/s解析由题意可知光子位置的不确定量Δx=1.0×10-9 m,解答本题需利用不确定性关系.单缝宽度是光子经过狭缝的位置不确定量,即Δx=1.0×10-9 m,由ΔxΔp x≥h4π有:1.0×10-9m·Δpx≥6.63×10-34 J·s4π.得Δp x≥5.3×10-26 kg·m/s.针对训练一颗质量为10 g的子弹,具有200 m/s的速率,若其动量的不确定范围为其动量的0.01%(这在宏观范围是十分精确的),则该子弹位置的不确定量范围为多大?答案 2.6×10-31 m解析子弹的动量p=m v=0.01×200 kg·m/s=2 kg·m/s,动量的不确定范围Δp x =0.01 %×p=2×10-4 kg·m/s;由不确定关系ΔxΔp x≥h4π,得子弹位置的不确定范围Δx≥h4πΔp x=6.63×10-344×3.14×2×10-4m=2.6×10-31 m.对物质波的理解1.一颗质量为10 g的子弹,以200 m/s的速度运动着,则由德布罗意理论计算,要使这颗子弹发生明显的衍射现象,那么障碍物的尺寸为()A.3.0×10-10 m B.1.8×10-11 mC.3.0×10-34 m D.无法确定答案 C解析λ=hp=hm v=6.63×10-3410×10-3×200m≈3.32×10-34 m,故能发生明显衍射的障碍物尺寸应为选项C.2.下列说法中正确的是()A.物质波属于机械波B.只有像电子、质子、中子这样的微观粒子才具有波动性C.德布罗意认为任何一个运动的物体,小到电子、质子、中子,大到行星、太阳都有一种波与之相对应,这种波叫物质波D.宏观物体运动时,看不到它的衍射和干涉现象,所以宏观物体运动时不具有波动性答案 C解析任何一个运动的物体都具有波动性,但因为宏观物体的德布罗意波波长很短,所以很难看到它的衍射和干涉现象,所以C项对,B、D项错;物质波不同于宏观意义上的波,故A项错.对不确定性关系的理解3.(多选)根据不确定性关系ΔxΔp x≥h4π,判断下列说法正确的是()A.采取办法提高测量Δx精度时,Δp x的精度下降B.采取办法提高测量Δx精度时,Δp x的精度上升C.Δx与Δp x测量精度与测量仪器及测量方法是否完备有关D.Δx与Δp x测量精度与测量仪器及测量方法是否完备无关答案AD解析不确定关系表明,无论采用什么方法试图确定位置坐标和相应动量中的一个,必然引起另一个较大的不确定性,这样的结果与测量仪器及测量方法是否完备无关,无论怎样改善测量仪器和测量方法,都不可能逾越不确定关系所给出的限度.故A、D正确.4.电子的质量m e=9.0×10-31 kg,测定其速度的不确定量为2×10-6 m/s,则该电子位置的不确定量范围为多大.(h4π=5.3×10-35 J·s) 答案Δx≥29.4 m解析由不确定关系ΔxΔp x≥h4π及Δp x=mΔv知Δx≥h4πm e·Δv=5.3×10-359.0×10-31×2×10-6m=29.4 m.(时间:60分钟)题组一对粒子波粒二象性的理解1.下列关于物质波说法中正确的是()A.实物粒子具有粒子性,在任何条件下都不可能表现出波动性B.宏观物体不存在对应波的波长C.电子在任何条件下都能表现出波动性D.微观粒子在一定条件下能表现出波动性答案 D2.在历史上,最早证明了德布罗意波存在的实验是()A.弱光衍射实验B.电子束在晶体上的衍射实验C.弱光干涉实验D.以上都不正确答案 B解析由课本知识知,最早证明德布罗意波假说的是电子束在晶体上的衍射实验.3.下列说法中正确的是()A.物质波属于机械波B.只有像电子、质子、中子这样的微观粒子才具有波动性C.德布罗意认为任何一个运动的物体,小到电子、质子、中子,大到行星、太阳都有一种波与之相对应,这种波叫物质波D.宏观物体运动时,看不到它的衍射和干涉现象,所以宏观物体运动时不具有波动性答案 C解析物质波是由实物粒子的运动形式,而机械波是由组成物体的质点做周期性运动形成,故A错;不论是微观粒子,还是宏观物体,只要它们运动,就有与之对应的物质波,故B、D均错,C对.4.下列说法中正确的是()A.质量大的物体,其德布罗意波长短B.速度大的物体,其德布罗意波长短C.动量大的物体,其德布罗意波长短D.动能大的物体,其德布罗意波长短答案 C解析由物质波的波长λ=hp,得其只与物体的动量有关,动量越大其波长越短.5.一个电子被加速后,以极高的速度在空间运动,关于它的运动,下列说法中正确的是()A.电子在空间做匀速直线运动B.电子上下左右颤动着前进C.电子运动轨迹是正弦曲线D.无法预言它的路径答案 D解析根据概率波的知识可知,某个电子在空间中运动的路径我们无法确定,只能根据统计规律确定大量电子的运动区域.故选项D正确.6.对于微观粒子的运动,下列说法中正确的是()A.不受外力作用时光子就会做匀速运动B.光子受到恒定外力作用时就会做匀变速运动C.只要知道电子的初速度和所受外力,就可以确定其任意时刻的速度D.运用牛顿力学无法确定微观粒子的运动规律答案 D解析光子不同于宏观力学的粒子,不能用宏观粒子的牛顿力学规律分析光子的运动,选项A、B错误;根据概率波、不确定关系可知,选项C错误,故选D. 7.关于物质的波粒二象性,下列说法中不正确的是()A.不仅光子具有波粒二象性,一切运动的微粒也具有波粒二象性B.运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道C.波粒二象性中的波动性,是大量光子和高速运动的微观粒子的行为,这种波动性与机械波在本质上是相同的D.波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的答案 C解析不能将微观粒子的波动性和粒子性看成宏观概念中的波和粒子,它们在本质上是不相同的.8.(多选)利用金属晶格(大小约10-10m)作为障碍物观察电子的衍射图样,方法是使电子通过电场加速后,让电子束照射到金属晶格上,从而得到电子的衍射图样.已知电子质量为m,电荷量为e,初速度为0,加速电压为U,普朗克常量为h,则下列说法中正确的是()A.该实验说明了电子具有波动性B.实验中电子束的德布罗意波长为λ=h2meUC.加速电压U越大,电子的衍射现象越明显D.若用相同动能的质子替代电子,衍射现象将更加明显答案AB解析得到电子的衍射图样,说明电子具有波动性,A正确;由德布罗意波长公式λ=h p而动量p=2mE k=2meU两式联立得λ=h2meU,B正确;由公式λ=h2meU可知,加速电压越大,电子的波长越小,衍射现象越不明显;用相同动能的质子替代电子,质子的波长小,其衍射现象不如电子的衍射现象明显.故C、D错误.题组二对不确定性关系的理解9.(多选)由不确定性关系可以得出的结论是()A.如果动量的不确定范围越小,则与它对应位置坐标的不确定范围就越大B.如果位置坐标的不确定范围越小,则动量的不确定范围就越大C.动量和位置坐标的不确定范围之间的关系不是反比例函数D.动量和位置坐标的不确定范围之间有唯一的确定关系答案ABC10.(多选)关于不确定性关系ΔxΔp x≥h4π有以下几种理解,其中正确的是()A.微观粒子的动量不可确定B.微观粒子的位置坐标不可确定C.微观粒子的动量和位置不可能同时确定D.不确定性关系不仅适用于电子和光子等微观粒子,也适用于其他宏观粒子答案CD解析本题主要考查对不确定性关系ΔxΔp x≥h4π的理解,不确定性关系表示确定位置、动量的精度相互制约,此长彼消,当粒子的位置不确定性小时,粒子动量的不确定性大;反之亦然.故不能同时准确确定粒子的位置和动量.不确定性关系是自然界中的普遍规律,对微观世界的影响显著,对宏观世界的影响不可忽略,故C、D正确.11.经150 V电压加速的电子束,沿同一方向射出,穿过铝箔后射到其后的屏上,则()A.所有电子的运动轨迹均相同B.所有电子到达屏上的位置坐标均相同C.电子到达屏上的位置坐标可用牛顿运动定律确定D.电子到达屏上的位置受波动规律支配,无法用确定的坐标来描述它的位置答案 D解析电子被加速后其德布罗意波长λ=hp=1×10-10m,穿过铝箔时发生衍射.12.已知h4π=5.3×10-35J·s,试求下列情况中速度测定的不确定量,并根据计算结果,讨论在宏观和微观世界中进行测量的不同情况.(1)一个球的质量m=1.0 kg,测定其位置的不确定量为10-6m;(2)电子的质量m e=9.1×10-31kg,测定其位置的不确定量为10-10 m. 答案见解析解析(1)球的速度测定的不确定量Δv≥h4πmΔx=5.3×10-351.0×10-6m/s=5.3×10-29m/s这个速度不确定量在宏观世界中微不足道,可认为球的速度是确定的,其运动遵从经典物理学理论.(2)原子中电子的速度测定的不确定量Δv≥h4πm eΔx=5.3×10-359.1×10-31×10-10m/s=5.8×105 m/s这个速度不确定量不可忽略,不能认为原子中的电子具有确定的速度,其运动不能用经典物理学理论处理.。
高中物理教科版选修(3-5)4.4 教学设计 《实物粒子的波粒二象性》(出版社简称)
《实物粒子的波粒二象性》本节课注重学生的自学能力,教师在教学过程中应该合理的结合视频、图片讲解所学知识,课本材料和补充的史料让学生现行阅读,通过思考、辨析后归纳得出正确结论。
1、知识与技能(1)理解德布罗意波,会计算物质的波长会解释相关现象,知道电子云。
(2)知道不确定关系的具体含义。
2、过程与方法(1)了解物理真知形成的历史过程;(2)了解物理学研究的基础是实验事实以及实验对于物理研究的重要性;(3)知道某一物质在不同环境下所表现的不同规律特性。
3、情感、态度与价值观(1)通过学生阅读和教师介绍讲解,使学生了解科学真知的得到并非一蹴而就,需要经过一个较长的历史发展过程,不断得到纠正与修正;(2)通过相关理论的实验验证,使学生逐步形成严谨求实的科学态度;(3)通过了解电子衍射实验,使学生了解创造条件来进行有关物理实验的方法。
重点:实物粒子和光子一样具有波粒二象性,德布罗意波长和粒子动量关系。
难点:实物粒子的波动性的理解。
多媒体课件及相关教材[先填空]1.德布罗意假说实物粒子象光子一样,也具有波粒二象性,与粒子相对应的波称为德布罗意波,也叫物质波.2.德布罗意关系式E =hν p =h λ3.电子波动性的实验证实(1)1926年,戴维孙和革末通过实验首次发现了电子的衍射现象.(2)1927年,汤姆孙用实验证明,电子在穿过金属片后像X 射线一样产生衍射现象,也证实了电子的波动性.(3)人们相继用实验证实原子、分子、中子等微观粒子的波动性,德布罗意关系式已成为微观粒子的波动性和粒子性之间关系的基本公式.4.氢原子中的电子云(1)概率波同光波是概率波一样,与实物粒子对应的波(德布罗意波)也是一种概率波.(2)电子云①定义电子在原子核周围出现的概率密度分布.②电子的分布。
高中物理 第3章 原子核 原子能、粒子、宇宙学案 教科版选修3-5
—————————— 新学期 新成绩 新目标 新方向 ——————————原子能、粒子、宇宙【学习目标】1.知道核力是只存在于相邻核子间的短程力;2.掌握结合能与质量亏损;3.理解爱因斯坦的质能方程;4.知道重核裂变能放出能量,并能计算核能的变化,知道链式反应;5.知道什么是聚变;6.了解铀核的裂变特点;7.了解核裂变反应堆的工作原理;8.知道聚变和聚变反应的特点;9.能写出聚变方程并计算聚变能量;10.了解可控热核反应;11.了解核电站、核武器及核能的优越性、安全性及其危害;12.了解组成物质的粒子;13.知道粒子的分类及其作用;14.了解宇宙起源的大爆炸说及恒星的演化.【要点梳理】要点一、核力与核结合能1.核反应(1)核反应的定义.衰变是原子核的自发变化,能否用人工方法使原子核发生变化呢?能.事实上质子、中子都是通过原子核的人工转变而发现的.我们把原子核在其他粒子轰击下产生新原子核的过程,称为核反应.(2)对核反应的理解.①原子核在其他粒子的轰击下产生新原子核的过程,称为核反应.原子核的人工转变,就是一种核反应.和衰变过程一样,在核反应中,质量数和核电荷数都守恒.②衰变是自发的、不受物理条件和化学条件影响的一种核变化.而原子核的人工转变需要一定的装置和条件才能发生.2.原子核的人工转变(1)质子的发现及核反应方程.1919年,卢瑟福用α粒子轰击氮原子核,α粒子被氮核俘获后形成复核,再衰变,产生质子.核反应方程为:1441717281N He O H +→+.(2)中子的发现及核反应方程.1932年,英国的物理学家查德威克对这种不知道的射线进行进一步的研究发现:这种射线的速度不到光速的十分之一,排除了γ射线.之后他用这种射线轰击氢原子和氮原子,结果打出一些氢核和氮核,并通过测定和计算,发现这种粒子的质量非常接近氢核的质量,由于它不带电,故称之为中子.核反应方程为:941214260Be He C n +→+.由于能从许多的原子核里打出中子,因而确认中子是组成原子核的一部分.3.核力原子核由质子和中子组成,中子和质子是靠强大的核力结合在一起的.(1)核力:原子核内部,核子间所特有的相互作用力.(2)核力的特点:①核力是强相互作用力,在它的作用范围内核力比库仑力大得多;②核力是短程力,作用范围在151.510m ⨯-之内.在大于150.810m ⨯-时核力表现为引力,超过151.510m ⨯-时核力急剧下降几乎消失.在小于150.810m ⨯-时核力表现为斥力,因此核子不会融合在一起;③每个核子只跟相邻的核子发生核力作用.这种性质称为核力的饱和性.无论是质子间、中子间、质子和中子间均存在核力.(3)自然界中的四种基本相互作用力:①万有引力;②电磁力;③强相互作用力;④弱相互作用力.4.核结合能由于核子间存在着巨大的核力作用,所以原子核是一个坚固的集体.要把原子核拆散成核子,需要克服核力做巨大的功,需要巨大的能量.一个氘核被拆成一个中子和一个质子时,需要能量等于或大于2.2 MeV 的γ光子照射.核反应方程为:211110H H n γ+→+.相反的过程,当一个中子和一个质子结合成一个氘核时会释放出2.2 MeV 的能量.这个能量以γ光子的形式辐射出去.核反应方程为:112101H n H γ+→+.由于核力的存在,核子结合成原子核时要放出一定的能量,原子核分解成核子时,要吸收同样多的能量.核反应中放出或吸收的能量称为核结合能.平均结合能(又叫比结合能):原子核的结合能与核子数之比平均结合能越大,表示原子核中核子结合得越牢固.原子核越稳定.5.质量亏损由于核力的本质还在研究之中,所以根据核力做功来求核能是不可能的.但物理学家却有办法求出核能.物理学家们研究了质子、中子和氘核之间的质量关系,发现氘核虽然是由一个中子和一个质子组成的,但氘核的质量要比中子和质子的质量之和要小一些.我们把组成原子核的核子的质量与原子核的质量之差叫做核的质量亏损.根据质量亏损可以计算核能.6.质能方程(1)质能方程:爱因斯坦的相对论指出,物体的能量和质量之间存在着密切的联系,其关系是 2E mc = 或 2E mc ∆=∆.这就是著名的爱因斯坦质能联系方程,简称质能方程.方程的含义是:物体具有的能量与它的质量之间存在着简单的正比关系.物体的能量增大质量也增大,能量减小质量也减小.(2)对质量亏损和质能方程的理解:在核反应中仍遵守质量守恒和能量守恒的规律.核反应中的质量亏损,并不是这部分质量消失或质量转变为能量.物体的质量应包括静止质量和运动质量,质量亏损是静止质量的减少,减少的静止质量转化为和辐射能量相联系的运动质量.另外,质量亏损也不是核子个数的减少,核反应中核子个数是不变的.7.核能的计算方法核能的计算是原子物理的重要方面和高考的热点问题,其基本方法是:(1)根据质量亏损计算,步骤如下:①根据核反应方程,计算核反应前和核反应后的质量亏损m ∆.②根据爱因斯坦质能方程2E mc =或2E mc ∆=∆计算核能.③计算过程中m ∆的单位是千克,E ∆的单位是焦耳.(2)利用原子质量单位u 和电子伏特计算.①明确原子单位u 和电子伏特间的关系由 271 u 1.660610kg =⨯-,191 eV 1.610J =⨯-.得2931.5 MeV E mc ==.②根据1原子质量单位(u )相当于931.5 MeV 能量,用核子结合成原子核时质量亏损的原子质量单位数乘以931.5 MeV ,即931.5 MeV E m ∆=∆⨯.③上式中,m ∆的单位是u ,E ∆的单位是MeV .(3)利用平均结合能来计算核能.原子核的结合能=核子的平均结合能×核子数.核反应中反应前系统内所有原子核的总结合能与反应后生成的所有新核的总结合能之差,就是该次核反应所释放(或吸收)的核能.(4)根据能量守恒和动量守恒来计算核能.参与核反应的粒子所组成的系统,在核反应过程中的动量和能量是守恒的,因此,在题给条件中没有涉及质量亏损,或者核反应所释放的核能全部转化为生成的新粒子的动能而无光子辐射的情况下,从动量和能量守恒可以计算出核能的变化.(5)应用阿伏加德罗常数计算核能.若要计算具有宏观质量的物质中所有原子核都发生核反应所放出的总能量,应用阿伏加德罗常数计算核能较为简便.①根据物体的质量m 和摩尔质量M 由m n M=求出物质的量,并求出原子核的个数: A A m N N n N M==. ②由题设条件求出一个原子核与另一个原子核反应放出或吸收的能量0E (或直接从题目中找出0E ).③再根据0E NE =求出总能量.8.衰变过程中核能的计算衰变能是不稳定原子核在进行衰变时放出来的能量,由质能方程,可以从衰变前后的质量亏损求出衰变能,也可根据直接测出衰变后产生的新原子核与α粒子的动能求得衰变能.但是,由于衰变后原子核的质量较大,反冲动能k E 较小,测量就很困难.下面我们从动量守恒定律出发,找到r E 和E α之间的关系,只要测出E α就可以知道衰变能.衰变前原子核可看做静止,动量为零,于是,根据动量守恒定律有r r m v m v αα=.α粒子的速度比光速小得多,可以不考虑相对论效应,于是衰变后新原子核的反冲动能221122r r r r rm m E m v m v E m m ααααα===. 所以, 041144r r m A E E E E E E m A A ααααα⎛⎫⎛⎫=+=+=+= ⎪ ⎪--⎝⎭⎝⎭(A 是衰变前的核的质量数). 式中,已用核的质量数之比代替核质量之比,这样做所带来的误差是很微小的.所以,要得到α衰变能0E ,需要知道α粒子的动能E α.9.对原子核中质子数与中子数比例的解释原子核越大,有些核子间的距离越来越远,随着距离的增加,核力与电磁力都会减小,但核力减小得更快.所以,原子核大到一定程度时,相距较远的质子间的核力不足以平衡它们的库仑力,这个原子核就不稳定了.这时,不再成对地增加质子和中子,而只增加中子,中子与其他核子没有库仑斥力,但有相互吸引的核力,所以有助于维系原子核的稳定.由于这个原因,稳定的重原子核里,中子数要比质子数多.由于核力的作用范围是有限的,以及核力的饱和性,如果我们继续增大原子核,一些核子间的距离会大到其间根本没有核力的作用,这时即使再增加中子,形成的核也一定是不稳定的.要点二、重核裂变及其应用1.核子的平均质量核反应有的会放出能量,有的会吸收能量,那么什么样的核反应会放出能量,这是本节需要搞清的第一个问题.也是本节的一个难点.为了弄清这个问题,就必须首先理解核子的平均质量这一概念. 精确的实验表明,原子核是由核子组成的,但原子核的质量却不等于所有核子质量之和.也就是说,原子核的质量虽然会随着核子数量的增加而增加,但两者并不成比例.例如:氢核由一个核子(质子)组成;氦核由四个核子(两个中子,两个质子)组成.但氦核的质量却不是氢核的四倍,而是比四倍小.这样在不同的原子核中,用原子核的质量除以核子数所得到的核子的平均质量就变得不相同了,换一个说法,也就是同样的核子在不同的原子核中质量不同.进一步研究表明,中等质量的原子核的核子的平均质量较小(铁核的核子平均质量最小),重核和轻核的核子平均质量大,这就为研究核反应中能量的释放建立了理论基础.当重核分裂成中等质量的原子核时,会发生质量亏损;当轻核聚合成中等质量的原子核时,也会发生质量亏损.由质能方程可知,此时核反应会放出能量.2.重核的裂变——铀核的裂变(1)铀核裂变的发现:1938年底,德国物理学家哈恩与斯特拉斯曼利用中子轰击铀核时,发现了铀核的裂变,向核能的利用迈出了第一步.(2)重核裂变:使重核分裂成中等质量的原子核的核反应叫做重核的裂变.(3)铀核裂变的一种核反应方程:235114192192056360U n Ba Kr 3n +→++.(4)链式反应:当中子进入铀235后,便形成了处于激发状态的复核,复核中由于核子的激烈运动,使核变成不规则的形状,核子间的距离增大,因而核力迅速减弱,使得核由于质子间的斥力作用而不能恢复原状,这样就分裂成几块,同时放出2或3个中子.这些中子又引起其他铀核裂变,这样,裂变就会不断地进行下去’,释放出越来越多的核能,这就叫链式反应.如图所示.(5)链式反应发生的条件:①铀块的体积大于临界体积.体积超过临界体积时,保证中子能够碰到铀核.②有足够浓度的铀235.③有足够数量的慢中子.一种链式反应的方程:235113690192054380U n Xe Sr 10n E +→+++∆.(6)重核裂变的条件重核的裂变只能发生在人为控制的核反应中,自然界不会自发地产生.如铀核裂变不能自发地进行,要使铀核裂变,首先要利用中子轰击铀核,使铀核分裂,分裂过程中,又会放出更多的中子,这些中子再去轰击更多铀核,产生更多的中子,就形成了链式反应,这个反应速度很快,不加控制的话,能量在很短的瞬间急剧释放(原子弹就是利用铀核的链式反应制造的一种威力巨大的核武器).如果采用其他方法对反应速度加以控制就可以和平地利用这种巨大的核能.核电站就是可控的链式反应.3.临界体积要发生核反应,就必须使中子击中铀核,而核的体积很小,那么在铀块不太大的情况下,中子通过铀块时,没有碰到铀核而跑到铀块外,因此,要发生链式反应,铀块的体积必须大于某一值,能发生链式反应的铀块的最小体积叫它的临界体积.4.核电站与核电站的主要组成和工作原理及优点(1)核电站:原子弹杀伤力强大的原因是核能在极短时间内释放出来.核电站是利用缓慢释放的核能来发电,这是核能的和平利用,现在世界上已有不少国家建有核电站,我国已建成使用和正在建设的核电站必将为现代化的建设提供能源保障.(2)核电站的主要组成.核电站的核心是核反应堆,核反应堆的主要组成部分及其作用是:①核燃料:反应堆使用浓缩铀(铀235占34%~%)制成铀棒,作为核燃料,释放核能.②中子减速剂:铀235具有易俘获慢中子,不易俘获快中子的特点.而核反应中释放的中子多数为快中子,应使用减速剂使它们的速度降下来.常用作减速剂的物质有石墨、重水或普通水.③控制棒:为了控制能量释放的速度,就要想办法减少中子的数目,采用在反应堆中插入镉棒的方法,利用镉吸收中子能力很强的特性,就可以容易地控制链式反应的速度.④保护层:核反应堆外层是很厚的水泥壁.可防止射线辐射出去.⑤热交换器:靠水或液态金属钠在反应堆内外的循环流动,把产生的热量传输出去.反应堆是核电站的核心,核电站是靠核反应堆产生的内能(3)核电站的优点是:①消耗的“燃料”很少;②作为核燃料的铀、钍等在地球上的可采储量大;③对环境污染比火电站要小.5.原子弹原子弹是利用快中子导致链式反应而发生原子爆炸的武器.在裂变材料的体积大于临界体积时,可以使增殖系数1K >,这时中子数可逐代倍增,最后引起原子爆炸.对纯235U ,其2K =.若01N =,则到第80代时,中子数已增到802N =个,其已大到相当于1 kg 铀的原子数,因此1 kg 纯235U 只要经过80代裂变就可以全部发生裂变.若将1 kg 铀做成球状,其直径不过5 cm ,而快中子的速度约为71210m s ⨯⋅-,所以裂变进行得极其迅猛,其爆炸可在百分之一秒内完成.原子弹的结构形式有许多种,一般是将两块或多块小于临界体积的235U (或238U 、239Pu 等)放在一个密封的弹壳内,平时这几块相隔一定的距离,所以不会爆炸.使用时可通过引爆装置使它们骤然合为一体,由于其体积超过临界体积,爆炸瞬间发生.6.为什么铀的同位素中23592U 最容易发生链式反应在天然铀中,主要有两种同位素,99.3%的是铀238,0.7%的是铀235,中子能引起这两种铀核发生裂变,但它们和中子发生作用的情况不同.23592U :俘获各种能量的中子都会发生裂变,且俘获低能量的中子发生裂变的概率大.23892U :只有俘获能量大于1 MeV 的中子才能发生核反应,且裂变的几率小.对于低于1 MeV 的中子只与铀核发生弹性碰撞,不引起核反应.因此,为了使链式反应容易发牛,最好利用纯铀235.要点三、轻核聚变及其应用1.轻核的聚变(1)聚变.把轻核结合成质量较大的核,释放出核能的反应,称为募变.聚变反应又称为热核反应.(2)聚变方程:23411120H H He n γ+→++.(3)聚变发生的条件:要使轻核聚变,就必须使轻核接近核力发生作用的距离1510m -,但是原子核是带正电的,要使它们接近1510m -就止须克服电荷间很大的斥力作用,这就要求使核具有足够的动能.要使原子核具有足够大的动能,就要给核加热,使物质达到几百万度的高温.综上所述,核聚变只有在超高温条件下才能发生.2.聚变与裂变的区别重核的裂变、轻核的聚变都能释放出巨大的核能,但两者是有区别的.(1)原理不同.重核的裂变是重核裂变成几个中等质量的原子核,放出能量,而聚变是几个轻核聚变(结合)成一个中等质量的原子核,放出巨大的能量.(2)放出能量的大小不同.重核裂变时,平均每个核子释放的能量约为1兆电子伏,而轻核的聚变,平均每个核子释放出3兆电子伏以上的能量,即聚变比裂变能放出更多的能量.(3)废料处理难度不同.裂变产生的废料处理起来比较困难,而热核反应的废料处理要简单得多.(4)“燃料”的丰富程度不同.热核反应所需要的“燃料”——氘在地球上非常丰富,1升海水中大约有003.克氘,如果用来进行热核反应,放出的能量约和燃烧300升汽油相当.而裂变燃料——铀在地球上储量有限,尤其是用于核裂变的铀235,在铀矿中仅占0.7%,相比起来聚变的燃料——氘要丰富得多.我国是一个“贫铀”国家,贮藏量不多.(5)两种反应的可控制性不同.裂变反应速度可以比较容易地进行人工控制,因此,现在国际上的核电站都是利用裂变放出能量,而聚变反应的可控制性比较困难,世界上许多国家都积极研究可控热核反应的理论和技术.我国可控热核反应的研究情况是:1984年9月,我国自行研制的可控热核反应实验装置“中国环流一号”顺利启动.1094年,具有国际先进水平的可控热核反应实验装置“HT-7超导托卡马克”已安装调试成功,我国研究可控热核反应方面已经具有一定的实力.3.轻核聚变释放核能的计算方法轻核聚变时释放出的能量的计算与上两节的方法基本相同,具体的仍然分为以下两种:(1)根据质量亏损计算.根据爱因斯坦质能方程,用核子结合成原子核时质量亏损(m ∆)的千克数乘以真空中光速(8310m/s ⨯)的平方,即 2E mc ∆=∆. ①(2)根据1原子质量单位(u )相当于931.5 MeV 能量,用核子结合成原子核时质量亏损的原子质量单位数乘以931.5 MeV ,即931.5 MeV E m ∆=∆⨯. ②要点诠释:式①中m ∆的单位为kg ,式②中m ∆的单位是u ,E ∆的单位是MeV .4.聚变比裂变反应放出更多能量的原因(1)平均每个核子放能较多,是裂变反应的34~倍.如一个氚核和一个氘核结合成一个氦核时放出能量17.6 MeV ,平均每个核子放出能量约3.5 MeV ;而铀235裂变时,平均每个核子放出能量为l MeV .(2)同样质量的情况下,轻核的核子个数多,如氘和氚聚变为1 kg 氦时放出的能量为332.6510eV ⨯. 233311000 6.021017.6MeV 2.6510eV 4E ∆=⨯⨯⨯≈⨯. 假设一个铀核裂变时平均放出的能量为200 MeV ,则l kg 铀核全部裂变时放出能量为233221000 6.0210200MeV 510eV 235E ∆=⨯⨯⨯≈⨯. 125.3E E ∆≈∆. 5.热核反应的控制技术以及聚变的应用(1)控制方法.①磁约束:利用强磁场来约束参加反应的物质.目前性能最好的磁约束装置是环流器(又称托卡马克).2002年12月“中国环流器二号”开始运行.②惯性约束:利用强激光的惯性压力约束参加反应的物质.目前可控制核聚变还处于基础研究阶段.(2)聚变的应用.①核武器——氢弹:是一种不需人工控制的轻核聚变反应装置.它利用弹体内的原子弹爆炸产生的高温高压引发热核聚变爆炸.②如果攻克了受控热核聚变的实现技术,那就可望解决全世界的“能源危机”.(3)我国的两弹发展.1964年10月16日我国第一颗原子弹爆炸成功.1967年6月17日我国的氢弹试爆成功.6.为什么轻核聚变和重核裂变都会释放能量(1)可以从核子的平均结合能上看,如图.从图中可以看出,铁的平均结合能最大,也就是核子结合成铁或铁附近的原子核时,每个核子平均放出的能量大.因此可知两个比铁轻的原子核结合时,或比铁重的重核分裂时,都要放出能量.(2)也可以根据核子的平均质量图分析,如图,由图中可以看出,铁原子核子的平均质量最小,如果原子序数较大的A 裂变成B 或C ,或者原子序数较小的D 和E 结合成F 核,都会有质量亏损,根据爱因斯坦质能方程,都要放出能量.要点四、粒子与宇宙1.“基本粒子”不基本(1)19世纪末,许多人认为光子、电子、质子和中子是组成物质的不可再分的最基本粒子.(2)从20世纪起科学家陆续发现了400多种同种类的新粒子,它们不是由质子、中子、电子组成.(3)科学家进一步发现质子、中子等本身也是复合粒子,且还有着复杂的结构.(4)粒子加速器和粒子探测器是研究粒子物理的主要工具.2.粒子的分类按照粒子与各种相互作用的关系,可以将粒子分为三大类:强子、轻子和媒介子.微观粒子分类如下表所示:实验发现,许多粒子都有和它质量相同而电荷及其他一些物理量相反的粒子,叫反粒子.例如电子和正电子,质子和反质子等.由反粒子构成的物质叫反物质.反粒子(反物质)最显著的特点是当它们与相应的正粒子(物质)相遇时,会发生“湮灭”,即同时消失而转化成其他的粒子.4.夸克模型实验表明强子是有内部结构的,1964年美国物理学家盖尔曼提出了强子的夸克模型,认为强子是由夸克构成的.5.宇宙的演化用粒子物理学可以较好地解释宇宙的演化.根据大爆炸理论,在宇宙形成之初是“粒子家族”尽显风采的时期.在大爆炸的瞬间(约4410s -,温度为3210K )产生夸克、轻子、胶子等粒子.大爆炸后约610s -,温度下降到1310K 左右,夸克构成质子和中子等强子,这个温度范围正是各种强子熙熙攘攘挤在一起的时代,称为强子时代.当温度下降到1110K (210s -),只剩下少量的夸克,而自由的光子、中微子和电子等轻子大量存在,此时代称为轻子时代.当温度下降到910K (210s ),少量的中子和质子结合成氘核,并很快生成氦核,同时有氚核、氦3等轻核及其他轻核生成,此时称为核合成时代.在3000 K 左右(510s ),电子与原子核结合成原子,此时称为复合时代.继续冷却,质子、电子、原子等与光子分离而逐步组成恒星和星系.6.恒星的演化大爆炸10万年后,温度下降到3000 K 左右.出现了由中性原子构成的宇宙尘埃.由于万有引力作用逐渐凝聚成团块,形成气态的星云团,星云团进一步凝聚收缩,使得引力势能转化为内能,温度升高,温度升到一定程度就开始发光,这样一颗恒星就诞生了.这颗星继续收缩,继续升温,当温度超过710K 时,氢聚变成氦,向外辐射能量,核能耗尽后就进入末期,末期形态主要有三种:白矮星、中子星和黑洞.7.夸克理论简介夸克理论经过几十年的完善和发展,已经逐渐为多数粒子物理学家所接受.根据夸克理论,夸克有6种,它们是上夸克(u )、奇异夸克(s )、粲夸克(c )、下夸克(d )、底夸克(b )和顶夸克(t ).它们带的电荷分别为元电荷的13-或23+.到目前为止,人们已经从实验中发现了所有6种夸克及其反夸克存在的证据.夸克模型的提出是物理学发展中的一个重大突破,它指出电子电荷不再是电荷的最小单元,即存在分数电荷.8.统一场论(微观粒子与宏观宇宙的统一)物理学向微观粒子和宇宙两个领域的研究今天得到了初步统一,统一场论在逐渐形成.物理学完整、和谐美在这里又得到了充分体现.正如绪言中所说:“物理学中研究最大和最小对象的两个分支——宇宙学和粒子物理学就奇妙地衔接在一起,犹如一条怪蟒咬住自己的尾巴.”从上面的两个图可以看到,人类所在物质世界的空间跨度与时间跨度竞呈现出如此的对称美.要点四、单元知识网络。
2017-2018学年高中物理(SWSJ)教科版选修3-5教学案:第三章章末盘点含答案
原子核错误!专题一核反应与核反应方程1.核反应常见核反应分为衰变、人工转变、裂变、聚变等几种类型:(1)衰变:α衰变:错误!U→错误!Th+错误!He(核内2错误!H+2错误!n→错误!He)β衰变:错误!Th→错误!Pa+错误!e(核内错误!n→错误!H+0-1e)γ衰变:原子核处于较高能级,辐射光子后跃迁到低能级。
衰变反应的特点:衰变是原子核自发地转变成另一种原子核,反应物只有一个放射性核,生成物中除有一个新核外,还有α粒子或β粒子.(2)人工转变:错误!7N+错误!He→错误!8O+错误!H(发现质子的核反应)错误!Be+错误!He→错误!6C+错误!n(发现中子的核反应)人工转变特点:以高能微观粒子轰击原子核为标志,反应物中除有一个原子核外,还有一个入射粒子,如α粒子、质子、中子等。
(3)裂变:错误!U+错误!n→错误!Ba+错误!Kr+3错误!n裂变特点:质量较大的重核捕获中子分裂成两个以上中等质量的核,并放出几个中子。
(4)聚变:2H+错误!H→错误!He+错误!n1聚变特点:反应物为n个质量较小的轻核,生成物包含一个质量较大的核。
2.核反应方程的书写(1)必须遵守电荷数守恒、质量数守恒规律,有些核反应方程还要考虑到能量守恒规律。
(2)核反应方程中的箭头(→)表示核反应进行的方向,不能把箭头写成等号。
(3)写核反应方程必须要有实验依据,决不能毫无根据地编造.(4)在写核反应方程时,应先将已知原子核和已知粒子的符号填入核反应方程一般形式的适当位置上;然后根据质量数守恒和电荷数守恒规律计算出未知核(或未知粒子)的电荷数和质量数;最后根据未知核(或未知粒子)的电荷数确定它们是哪种元素(或哪种粒子),并在核反应方程一般形式中的适当位置填写上它们的符号。
[例1]关于核衰变和核反应的类型,下列表述正确的有()A.错误!U→错误!Th+错误!He是α衰变B。
错误!N+错误!He→错误!O+错误!H是β衰变C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.实物粒子的波粒二象性
5.不确定关系
[先填空]
1.德布罗意假说
实物粒子象光子一样,也具有波粒二象性,与粒子相对应的波称为德布罗意波,也叫物质波.
2.德布罗意关系式
E=hνp=h λ
3.电子波动性的实验证实
(1)1926年,戴维孙和革末通过实验首次发现了电子的衍射现象.
(2)1927年,汤姆孙用实验证明,电子在穿过金属片后像X射线一样产生衍射现象,也证实了电子的波动性.
(3)人们相继用实验证实原子、分子、中子等微观粒子的波动性,德布罗意关系式已成为微观粒子的波动性和粒子性之间关系的基本公式.
4.氢原子中的电子云
(1)概率波
同光波是概率波一样,与实物粒子对应的波(德布罗意波)也是一种概率波.
(2)电子云
①定义
电子在原子核周围出现的概率密度分布.
②电子的分布
电子在空间运动的过程中,概率密度大(小)的地方,电子运动在那里的机会就多(少),电子云反映了原子核外电子位置的可能性.
[再判断]
1.电子不但具有粒子性也具有波动性.(√)
2.物质波的波长由粒子的大小决定.(×)
3.物质波的波长和粒子运动的动量有关.(√)
4.我们可以根据电子的运动轨迹判断电子的出现位置.(×)
5.微观世界中不可以同时测量粒子的动量和位置.(√)
[后思考]
既然德布罗意提出了物质波的概念,为什么我们生活中却体会不到?
【提示】平时所见的宏观物体的质量比微观粒子的质量大得多,运动的动
量很大,由λ=h
p可知,它们对应的物质波波长很小,因此,无法观察到它们的
波动性.
1.任何物体,小到电子、质子,大到行星、太阳都存在波动性,我们之所以观察不到宏观物体的波动性,是因为宏观物体对应的波长太小的缘故.2.粒子在空间各处出现的几率受统计规律支配,不要以宏观观点中的波来理解德布罗意波.
3.德布罗意假说是光子的波粒二象性的一种推广,使之包括了所有的物质粒子,即光子与实物粒子都具有粒子性,又都具有波动性,与光子对应的波是电磁波,与实物粒子对应的波是物质波.
4.求解德布罗意波波长的方法
(1)根据已知条件,写出宏观物体或微观粒子动量的表达式p=m v.
(2)根据波长公式λ=h
p求解.
(3)注意区分光子和微观粒子的能量和动量的不同表达式.如光子的能量:ε
=hν,动量p=h
λ;微观粒子的动能:E k=
1
2m v
2,动量p=m v.
1.下列说法中正确的是()
A.物质波属于机械波
B.物质波与机械波有本质区别
C.只有像电子、质子、中子这样的微观粒子才具有波动性
D.德布罗意认为,任何一个运动着的物体,小到电子、质子,大到行星、太阳,都有一种波和它对应,这种波叫物质波
E.宏观物体运动时,虽看不到它的衍射或干涉现象,但宏观物体运动时仍具有波动性
【解析】物质波是一切运动着的物体所具有的波,与机械波性质不同,A 错误,B正确;宏观物体也具有波动性,只是干涉、衍射现象不明显,看不出来,C错误,E正确;德布罗意认为,任何一个运动着的物体,小到电子、质子,大到行星、太阳,都有一种波和它对应,这种波叫物质波,D正确.【答案】BDE
2.如果一个电子的德布罗意波长和一个中子的相等,则它们的________也相等.
【导学号:11010065】【解析】本题考查德布罗意波长的公式,意在考查考生对德布罗意波长公
式的掌握.由λ=h
p可知,如果一个电子和一个中子的德布罗意波长相等,则它
们的动量p相等.
【答案】动量
3.如果一个中子和一个质量为10 g的子弹都以103m/s的速度运动,则它们的德布罗意波的波长分别是多长?(中子的质量为1.67×10-27 kg) 【解析】中子的动量为p1=m1v,
子弹的动量为p2=m2v,
据λ=h
p知中子和子弹的德布罗意波的波长分别为
λ1=h
p1,λ2=
h
p2
联立以上各式解得:λ1=
h
m1v,λ2=
h
m2v
将m1=1.67×10-27 kg,v=1×103 m/s,h=6.63×10-34 J·s,m2=1.0×10-2 kg 代入上面两式可解得
λ1=4.0×10-10 m,λ2=6.63×10-35 m.
【答案】 4.0×10-10 m 6.63×10-35 m
宏观物体波动性的三点提醒
(1)一切运动着的物体都具有波动性,宏观物体观察不到其波动性,但并不否定其波动性.
(2)要注意大量光子、个别光子、宏观物体、微观粒子等相关概念的区别.
(3)在宏观世界中,波与粒子是对立的概念;在微观世界中,波与粒子可以统一.
[先填空]
1.不确定关系
在经典物理学中,质点在任意时刻都有确定的位置和动量,沿着一定的轨道运动,在量子力学中,同时确定粒子的动量和位置时,两者的精确度有一个原则上的限制,其数学表达式称为不确定关系.
2.表达式
ΔxΔp≥h
4π.其中Δx表示粒子位置的不确定量,用Δp表示在x方向上动量的
不确定量,h是普朗克常量.表达式的意义是:粒子在某一方向位置的不确定量
和在这方向上动量的不确定量的乘积大于或等于h 4π.
[再判断]
1.经典的粒子可以同时确定位置和动量.(√)
2.微观粒子可以同时确定位置和动量.(×)
3.对于微观粒子,不可能同时准确地知道其位置和动量.(√)
[后思考]
对微观粒子的运动分析能不能用“轨迹”来描述?
【提示】 不能.微观粒子的运动遵循不确定关系,也就是说,要准确确定粒子的位置,动量(或速度)的不确定量就更大;反之,要准确确定粒子的动量(或速度),位置的不确定量就更大,也就是说不可能同时准确地知道粒子的位置和动量.因而不可能用“轨迹”来描述微观粒子的运动.
1.位置和动量的不确定性关系:Δx Δp ≥h 4π
由Δx Δp ≥h 4π可以知道,在微观领域,要准确地确定粒子的位置,动量的不
确定性就更大;反之,要准确地确定粒子的动量,那么位置的不确定性就更大.
2.微观粒子的运动没有特定的轨道
由不确定关系Δx Δp ≥h 4π可知,微观粒子的位置和动量是不能同时被确定的,
这也就决定了不能用“轨迹”的观点来描述粒子的运动.
3.经典物理和微观物理的区别
(1)在经典物理学中,可以同时用位置和动量精确地描述质点的运动,如果知道质点的加速度,还可以预言质点在以后任意时刻的位置和动量,从而描绘它的运动轨迹.
(2)在微观物理学中,不可能同时准确地知道粒子的位置和动量.因而也就不可能用“轨迹”来描述粒子的运动.但是,我们可以准确地知道大量粒子运动时的统计规律.
4.对不确定性关系Δx Δp ≥h 4π有以下几种理解,其中正确的是( )
A.微观粒子的动量不可能确定
B.微观粒子的坐标不可能确定
C.微观粒子的动量和坐标不可能同时确定
D.不确定性关系不仅适用于电子和光子等微观粒子,也适用于其他宏观物体
E.在微观物理学中,不可能用“轨迹”来描述粒子的运动
【解析】不确定性关系ΔxΔp≥h
4π表示确定位置、动量的精确度互相制约,
此长彼消,当粒子位置的不确定性变小时,粒子动量的不确定性变大;当粒子位置的不确定性变大时,粒子动量的不确定性变小,故不能同时准确确定粒子的动量和坐标.不确定性关系也适用于其他宏观物体,不过这些不确定量微乎其微.【答案】CDE
5.已知h
4π=5.3×10-
35 J·s,试求下列情况中速度测定的不确定量.
(1)一个球的质量m=1.0 kg,测定其位置的不确定量为10-6 m;
(2)电子的质量m e=9.0×10-31 kg,测定其位置的不确定量为10-10 m(即在原子的数量级).
【解析】(1)m=1.0 kg,Δx1=10-6 m,
由ΔxΔp≥h
4π,Δp=mΔv知Δv1≥
h
4πΔx1m
=5.3×10-35
10-6×1.0
m/s=5.3×10-29 m/s.
(2)m e=9.0×10-31 kg,Δx2=10-10 m
Δv2≥
h
4πΔx2m e=
5.3×10-35
10-10×9.0×10-31
m/s
=5.89×105 m/s.
【答案】(1)5.3×10-29 m/s(2)5.89×105 m/s
对不确定性关系的两点提醒
(1)不确定性关系ΔxΔp≥h
4π是自然界的普遍规律,对微观世界的影响显著,
对宏观世界的影响可忽略不计.也就是说,宏观世界中的物体质量较大,位置和
速度的不确定范围较小,可同时较精确测出物体的位置和动量.
(2)在微观世界中,粒子质量较小,不能同时精确地测出粒子的位置和动量,也就不能准确地把握粒子的运动状态了.。