数学知识点-学年高一数学上学期期末考试试题及答案(新人教A版 第4套)-总结

合集下载

2019-2020学年人教A版天津市部分区高一上学期期末数学试卷及答案 (解析版)

2019-2020学年人教A版天津市部分区高一上学期期末数学试卷及答案 (解析版)

2019-2020学年高一上学期期末数学试卷一、选择题1.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=()A.{2,5} B.{3,6} C.{2,5,6} D.{2,3,5,6,8} 2.下列函数中既是奇函数,又在R上单调递增的是()A.B.y=sin x C.y=x3D.y=lnx3.函数f(x)=lnx+x﹣3的零点所在区间为()A.(4,5)B.(1,2)C.(2,3)D.(3,4)4.在平面直角坐标系中,若角α以x轴的非负半轴为始边,且终边过点,则sinα的值为()A.B.C.D.5.已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.c>b>a B.b>c>a C.a>b>c D.b>a>c6.为了得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象上所有的点()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位7.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若,则不等式f(2x﹣1)<0的解集为()A.B.C.D.8.若α、β都是锐角,且sinα=,cos(α+β)=﹣,则sinβ的值是()A.B.C.D.9.下列命题正确的是()A.命题“∃x∈R,使得2x<x2”的否定是“∃x∈R,使得2x≥x2”B.若a>b,c<0,则C.若函数f(x)=x2﹣kx﹣8(k∈R)在[1,4]上具有单调性,则k≤2D.“x>3”是“x2﹣5x+6>0”的充分不必要条件10.已知函数在区间上单调递增,且存在唯一使得f(x0)=1,则ω的取值范围为()A.B.C.D.二、填空题11.幂函数f(x)的图象经过(2,4),则f(3)=.12.函数的定义域为.13.已知lga+lg(2b)=1,则a+b的最小值是.14.酒驾是严重危害交通安全的违法行为,为了保障交通安全,根据国家有关规定:100ml 血液中酒精含量达到20〜79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/ml,如果在停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少,那么他至少要经过t小时后才可以驾驶机动车.则整数t的值为(参考数据:lg2≈0.30,lg3≈0.48)三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤. 15.设集合A={x|x2﹣x﹣6>0},B={x|﹣4<3x﹣7<8}.(1)求A∪B,A∩B;(2)已知集合C={x|a<x<2a+1},若C⊆B,求实数a的取值范围.16.已知函数.(1)在给出的直角坐标系中,画出y=f(x)的大致图象;(2)根据图象写出f(x)的单调区间;(3)根据图象写出不等式f(x)>0的解集.17.已知sinα=,α∈(,π),cosβ=,β∈(0,).(1)求cos(α﹣β)的值;(2)求tan(2β+)的值.18.已知函数.(1)判断f(x)的单调性,并用函数单调性的定义证明;(2)判断f(x)的奇偶性,并说明理由.19.已知函数.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值;(3)若关于x的不等式mf(x)+3m≥f(x)在R上恒成立,求实数m的取值范围.参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.第I卷(选择题共40分)1.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=()A.{2,5} B.{3,6} C.{2,5,6} D.{2,3,5,6,8} 【分析】由全集U及B,求出B的补集,找出A与B补集的交集即可;解:∵全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},∴∁U B={2,5,8},则A∩∁U B={2,5}.故选:A.2.下列函数中既是奇函数,又在R上单调递增的是()A.B.y=sin x C.y=x3D.y=lnx【分析】分别判断函数的奇偶性和单调性即可.解:A.f(x)是奇函数,在定义域(﹣∞,0)∪(0,+∞)上不单调,不满足条件.B.f(x)是奇函数,则R上不是单调函数,不满足条件.C.f(x)是奇函数,在R上是增函数,满足条件.D.函数的定义域为(0,+∞),为非奇非偶函数,不满足条件.故选:C.3.函数f(x)=lnx+x﹣3的零点所在区间为()A.(4,5)B.(1,2)C.(2,3)D.(3,4)【分析】根据对数函数单调性和函数单调性的运算法则,可得f(x)=lnx+x﹣3在(0,+∞)上是增函数,再通过计算f(1)、f(2)、f(3)的值,发现f(2)•f(3)<0,即可得到零点所在区间.解:∵f(x)=lnx+x﹣3在(0,+∞)上是增函数f(1)=﹣2<0,f(2)=ln2﹣1<0,f(3)=ln3>0∴f(2)•f(3)<0,根据零点存在性定理,可得函数f(x)=lnx+x﹣3的零点所在区间为(2,3)故选:C.4.在平面直角坐标系中,若角α以x轴的非负半轴为始边,且终边过点,则sinα的值为()A.B.C.D.【分析】利用三角函数定义直接求解.解:在平面直角坐标系中,角α以x轴的非负半轴为始边,且终边过点,∴,r==1,∴sinα==.故选:D.5.已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.c>b>a B.b>c>a C.a>b>c D.b>a>c【分析】利用指数与对数函数的单调性即可得出.解:∵a=log20.3<0,b=20.3>1,0<c=0.30.2<1,∴b>c>a.故选:B.6.为了得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象上所有的点()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【分析】由函数y=A sin(ωx+φ)的图象变换规律,可得结论.解:∵y=sin(2x﹣)=sin[2(x﹣)],∴将函数y=sin2x的图象上所有的点向右平移个单位,即可得到函数y=sin(2x﹣)的图象.故选:C.7.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若,则不等式f(2x﹣1)<0的解集为()A.B.C.D.【分析】根据函数的奇偶性和单调性的性质将不等式进行转化求解即可.解:∵f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,∴若,则不等式f(2x﹣1)<0等价为f(|2x﹣1|)<f(),即|2x﹣1|<,即﹣<2x﹣1<,得<x<,即不等式的解集为(,),故选:A.8.若α、β都是锐角,且sinα=,cos(α+β)=﹣,则sinβ的值是()A.B.C.D.【分析】利用同角三角函数间的关系式的应用,可求得sin(α+β)与cosα的值,再利用两角差的正弦函数,可求得sinβ=sin[(α+β)﹣α]的值.解:∵cos(α+β)=﹣,α、β都是锐角,∴sin(α+β)==;又sinα=,∴cosα==,∴sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=×﹣(﹣)×=.故选:A.9.下列命题正确的是()A.命题“∃x∈R,使得2x<x2”的否定是“∃x∈R,使得2x≥x2”B.若a>b,c<0,则C.若函数f(x)=x2﹣kx﹣8(k∈R)在[1,4]上具有单调性,则k≤2D.“x>3”是“x2﹣5x+6>0”的充分不必要条件【分析】A由命题的否命题,既要对条件否定,也要对结论否定,注意否定形式,可判断;B由条件,注意举反例,即可判断;C由二次函数的图象,即可判断;D先求出不等式x2﹣5x+6>0的解集,再由充分必要条件的定义,即可判断.解:对于A,命题“∃x∈R,使得2x<x2”的否定是“∀x∈R,使得2x≥x2”,故A错误;对于B,由条件知,比如a=2,b=﹣3,c=﹣1,则=﹣<=,故B错误;对于C,若函数f(x)=x2﹣kx﹣8(k∈R)在[1,4]上具有单调性,则≤1或≥4,故k≤2或k≥8,故C错误;对于D,x2﹣5x+6>0的解集为{x|x<2或x>3},故“x>3”是“x2﹣5x+6>0”的充分不必要条件,正确.故选:D.10.已知函数在区间上单调递增,且存在唯一使得f(x0)=1,则ω的取值范围为()A.B.C.D.【分析】由函数f(x)在[﹣,]上单调递增求出0<ω≤,再由存在唯一使得f(x0)=1求出≤ω<3;由此求得ω的取值范围.解:由于函数f(x)=sin(ωx+)(ω>0)在[﹣,]上单调递增;x∈[﹣,],ωx+∈[﹣ω+,ω+],﹣≤﹣ω+且ω+≤,解得ω≤且ω≤,所以0<ω≤;又存在唯一使得f(x0)=1,即x∈[0,]时,ωx+∈[,ω+];所以≤ω+<,解得≤ω<3;综上知,ω的取值范围是[,].故选:B.二、填空题:本大题共4小题,每小题4分,共20分.11.幂函数f(x)的图象经过(2,4),则f(3)=9 .【分析】设幂函数f(x)=x a,由幂函数f(x)的图象经过(2,4),解得f(x)的解析式,由此能求出f(3).解:设幂函数f(x)=x a,∵幂函数f(x)的图象经过(2,4),∴2a=4,解得a=2,∴f(x)=x2,∴f(3)=32=9.故答案为:9.12.函数的定义域为(﹣1,4).【分析】由分母中根式内部的代数式大于0且对数式的真数大于0联立不等式组求解.解:由,得﹣1<x<4.∴函数的定义域为(﹣1,4).故答案为:(﹣1,4).13.已知lga+lg(2b)=1,则a+b的最小值是2.【分析】利用对数运算性质可得ab,再利用基本不等式的性质即可得出.解:∵lga+lg(2b)=1,∴2ab=10,即ab=5.a,b>0.则a+b≥2=2,当且仅当a=b=时取等号.因此:a+b的最小值是2.故答案为:2.14.酒驾是严重危害交通安全的违法行为,为了保障交通安全,根据国家有关规定:100ml 血液中酒精含量达到20〜79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/ml,如果在停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少,那么他至少要经过t小时后才可以驾驶机动车.则整数t的值为 5 (参考数据:lg2≈0.30,lg3≈0.48)【分析】100ml血液中酒精含量达到60ml,由题意得则60(1﹣20%)t<20由此利用对数的性质能求出整数t的值.解:某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/ml,则100ml血液中酒精含量达到60ml,在停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少,他至少要经过t小时后才可以驾驶机动车.则60(1﹣20%)t<20,∴0.8t<,∴t>=﹣=﹣=≈=4.8.∴整数t的值为5.故答案为:5.三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤. 15.设集合A={x|x2﹣x﹣6>0},B={x|﹣4<3x﹣7<8}.(1)求A∪B,A∩B;(2)已知集合C={x|a<x<2a+1},若C⊆B,求实数a的取值范围.【分析】(1)求出集合A,B,由此能求出A∪B,A∩B.(2)当C=∅时,a≥2a+1,a≤﹣1,当C≠∅时,,由此能求出实数a的取值范围.解:(1)∵集合A={x|x2﹣x﹣6>0}={x|x>3或x<﹣2},B={x|﹣4<3x﹣7<8}={x|1<x<5},∴A∪B={x|x<﹣2或x>1},A∩B={x|3<x<5}.(2)∵集合C={x|a<x<2a+1},C⊆B,∴当C=∅时,a≥2a+1,a≤﹣1,当C≠∅时,,解得1≤a≤2,综上,实数a的取值范围是(﹣∞,﹣1]∪[1,2].16.已知函数.(1)在给出的直角坐标系中,画出y=f(x)的大致图象;(2)根据图象写出f(x)的单调区间;(3)根据图象写出不等式f(x)>0的解集.【分析】根据各段函数的解析式作图即可解:(1)如图,(2)由图可知f(x)的单调递增区间为(﹣∞,﹣2),(0,1);单调递减区间为(﹣2,0),(1,+∞);(3)由图可知f(x)>0时,x∈(﹣4,﹣1).17.已知sinα=,α∈(,π),cosβ=,β∈(0,).(1)求cos(α﹣β)的值;(2)求tan(2β+)的值.【分析】(1)由题意利用同角三角函数的基本关系,两角差的余弦公式,求得结果.(2)由题意利用同角三角函数的基本关系,两角和的正切公式,求得结果.解:(1)∵已知sinα=,α∈(,π),∴cosα=﹣=﹣.∵cosβ=,β∈(0,),∴sinβ==,∵cos(α﹣β)=cosαcosβ+sinαsinβ=﹣•+•==﹣.(2)由以上可得tanβ==2,∴tan2β===﹣,tan(2β+)===﹣.18.已知函数.(1)判断f(x)的单调性,并用函数单调性的定义证明;(2)判断f(x)的奇偶性,并说明理由.【分析】(1)根据函数单调性的定义进行证明即可;(2)根据函数奇偶性的定义进行证明即可.解:(1)函数的定义域为R,设x1<x2,则f(x1)﹣f(x2)=﹣﹣+=﹣==,∵x1<x2,∴<,则﹣<0,即f(x1)﹣f(x2)<0,则f(x1)<f(x2),即函数f(x)为增函数.(2)f(x)==,则f(﹣x)===﹣f(x),即f(x)是奇函数.19.已知函数.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值;(3)若关于x的不等式mf(x)+3m≥f(x)在R上恒成立,求实数m的取值范围.【分析】(1)根据f(x)=sin(2x﹣)可求最小正周期;(2)利用x∈以及正弦函数单调区间即可求出最大最小值;(3)令t=sin(2x﹣),将不等式化成m≥=1﹣对∀t∈[﹣1,1]恒成立,即可求出m取值范围.解:f(x)=sin2x﹣cos2x=2sin(2x﹣),(1)T==π,即f(x)的最小正周期为π;(2)当x∈时,则2x﹣∈[﹣,π],sin(2x﹣)∈[﹣,1],所以f(x)∈[﹣,2],即f(x)最大值为2,最小值为﹣;(3)mf(x)+3m≥f(x)即2m sin(2x﹣)+3m≥2sin(2x﹣),令t=f(x)=sin(2x﹣),则t∈[﹣1,1],所以2t+3∈[1,5]根据题意得2mt+3m≥2t对∀t∈[﹣1,1]恒成立,即有m≥=1﹣对∀t∈[﹣1,1]恒成立,因为1﹣最大为1﹣=,所以m≥.。

期末知识点总结和方法专练 不等式-2022-2023学年高一上学期数学人教A版(2019)必修第一册

期末知识点总结和方法专练 不等式-2022-2023学年高一上学期数学人教A版(2019)必修第一册

2022-2023 高一数学上期末知识点总结和方法专练---不等式一、不等式的性质 (1)基本性质①a >b ⇔b <a(对称性) ②a >b ,b >c ⇒a >c(传递性) ③a >b ⇒a+c >b+c(加法单调性)④a >b ,c >0⇒ac >bc,a >b ,c <0⇒ac <bc(乘法单调性) (2)运算性质①a >b ,c >d ⇒a +c >b+d(同向不等式相加) ②a >b ,c <d ⇒a -c >b -d(异向不等式相减) ③a >b >0,c >d >0⇒ac >bd(同向不等式相乘) ④a >b >0,0<c <d ⇒c a >db(异向不等式相除) ⑤a >b >0⇒n a >n b (n ∈Z ,且n >1)(开方法则) ⑥a >b >0⇒a n >b n (n ∈Z ,且n >1)(乘方法则)【例1】 已知a <0,-1<b <0,那么下列不等式成立的是__________.(填序号) ① a >ab >ab 2 ② ab 2>ab >a ③ ab >a >ab 2 ④ ab >ab 2>a【例2】设a ,b ,c ∈R ,且a >b ,则__________.(填序号)① ac >bc ② 1a <1b ③ a 2>b 2 ④ a 3>b 3【例3】已知a,b ∈R,且a<b<0,那么 ( )【例4】已知12<a <60, 15<b <36,求a -b 及ab 的取值范围.【例5】已知a <b <0,那么下列不等式成立的是( )A .a 3<b 3B .a 2<b 2C .(-a )3<(-b )3D .(-a )2<(-b )2【例6】若角α,β满足-π2<α<β<π3,则α-β的取值范围是________.211A.B.01C.D.a b a ab b a bba b<<<>>【例7】(多选)已知a b c d ,,,均为实数,则下列命题正确的是( )A .若,a b c d >>,则ac bd >B .若0,0ab bc ad >->,则0c da b -> C .若,a b c d >>,则a d b c ->- D .若,0a b c d >>>,则a bd c >【例8】 若ln ln a b >,则下列不等式成立的是( ) A .11a b a b-<- B .24a bb a +<C .()2021lg lg b a a b -<-D .lg lg 2021b a b a --<【例9】 若01,1a b c <<<>,则( ) A .a b c c < B .cc ba ab <C .b a bc a c-<- D .log log a b c c <【例10】若a>b>0,且ab=1,则下列不等式成立的是A .21log ()2a ba ab b +<<+ B . 21log ()2a b a b a b <+<+ C . 21log ()2a b a a b b +<+< D . 21log ()2a ba b a b +<+<【例11】已知0<a +b <π2,-π2<a -b <π3,求2a 和3a -b3的取值范围.【例12】已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ .【例13】已知则的取值范围是 ( )二.一元二次不等式的概念及形式设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:0>∆ 0=∆ 0<∆二次函数c bx ax y ++=2 (0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x <有两相等实根ab x x 221-==无实根 的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax{}21x x xx <<∅∅● 一元二次不等式的解法:先将二次项系数化为正数,解出对应方程的两根,根据不等号方向写出解集(大于取两边,小于取中间)注意:二次项系数为字母或两根表达式含字母时要类讨论开口方向及根的大小。

四川省成都七中高一数学上学期期末模拟试题(含解析)-人教版高一全册数学试题

四川省成都七中高一数学上学期期末模拟试题(含解析)-人教版高一全册数学试题

2015-2016学年某某省某某七中高一(上)期末数学模拟试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|﹣2≤x≤3},B={x|x<﹣1或x>4},则A∩∁R B=()A.{x|﹣2≤x<4} B.{x|x≤3或x≥4}C.{x|﹣2≤x≤﹣1} D.{x|﹣1≤x≤3}2.下列对应f:A→B是从集合 A到集合 B的函数的是()A.A={x|x>0},B={y|y≥0},f:y=B.A={x|x≥0},B={y|y>0},f:y=x2C.A={x|x是三角形},B={y|y是圆},f:每一个三角形对应它的内切圆D.A={x|x是圆},B={y|y是三角形},f:每一个圆对应它的外切三角形3.设,,,则()A.a<b<c B.c<b<a C.c<a<b D.b<a<c4.函数y=lg(1﹣x)+lg(1+x)的图象关于()A.y轴对称B.x轴对称C.原点对称 D.点(1,1)对称5.当时,幂函数y=xα的图象不可能经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.函数f(x)=2x﹣log x的零点所在区间为()A.B.C.(,0)D.(1,2)7.夏季来临,人们注意避暑.如图是某某市夏季某一天从6时到14时的温度变化曲线,若该曲线近似地满足函数y=Asin(ωx+φ)+B,则某某市这一天中午12时天气的温度大约是()A.25°C B.26°C C.27°C D.28°C8.已知函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则a的取值X围是()A.(﹣∞,4] B.(﹣∞,2] C.(﹣4,4] D.(﹣4,2]9.若函数的定义域和值域都是[0,1],则a=()A.2 B.C.D.10.如图,半径为1的圆M,切直线AB于点O,射线OC从OA出发,绕O点顺时针方向旋转到OB,旋转过程中OC交⊙M于P,记∠PMO为x,弓形PNO的面积S=f(x),那么f (x)的图象是()A.B.C.D.11.已知f(x)是[﹣1,1]上的偶函数,当x∈[0,1]时,f(x)=log2(x+1),则()A.f(sin)>f(cos)B.f(sin)<f(cos)C.f(sin)>f(cos)D.f(sin)>f(cos)12.已知函数y=f(x)(x∈R)满足f(x+1)=,且当x∈[﹣1,1]时,f(x)=|x|,函数g(x)=,则函数h(x)=f(x)﹣g(x)在区间[﹣5,5]上的零点的个数为()A.8 B.9 C.10 D.11二、填空题求值=.14.已知,则=.15.已知函数f(x)对任意x∈R都有f(x+6)+f(x)=2f(3),且函数y=f(x﹣1)的图象关于点(1,0)对称,则f(2013)=.16.给出下列命题:①函数f(x)=的定义域为[3,+∞);②将函数y=tanx图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再把图象向左平移个单位,得到g(x)的图象,则g(x)的单调递增区间是;③已知函数f(x)=(a是常数且a>0),若f(x)>0在上恒成立,则a的取值X围是[1,+∞);④已知函数f(x)=(a是常数且a>0),对任意的x1,x2<0且x1≠x2,恒有;⑤已知函数f(x)=,若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值X围是a<0或a>1.其中正确命题的序号是.(写出所有正确命题的序号)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.一辆汽车在某段路程中的行驶速度与时间的关系如图所示,(1)求图中阴影部分的面积,并说明实际意义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2010km,试建立汽车行驶这段路程时汽车里程表读数S和时间t的函数关系式.18.若函数y=为奇函数.(1)求a的值;(2)求函数的定义域;(3)讨论函数的单调性.19.函数在同一个周期内,当时y取最大值1,当时,y取最小值﹣1.(1)求函数的解析式y=f(x).(2)函数y=sinx的图象经过怎样的变换可得到y=f(x)的图象?(3)若函数f(x)满足方程f(x)=a(0<a<1),求在[0,2π]内的所有实数根之和.20.已知函数f(x)=(x﹣a)|x﹣2|,g(x)=2x+x﹣2,其中a∈R.(1)写出f(x)的单调区间(不需要证明);(2)如果对任意实数m∈[0,1],总存在实数n∈[0,2],使得不等式f(m)≤g(n)成立,某某数a的取值X围.21.定义在R上的单调函数f(x)满足:f(x+y)=f(x)+f(y).(Ⅰ)求证:f(x)是奇函数;(Ⅱ)若F(x)=f(asinx)+f(sinx+cos2x﹣3)在(0,π)上有零点,求a的取值X围.22.已知函数f(x)=|x﹣a|,g(x)=x2+2ax+1(a为正实数),满足f(0)=g(0);函数F(x)=f(x)+g(x)+b定义域为D.(1)求a的值;(2)若存在x0∈D,使F(x0)=x0成立,某某数b的取值X围;(3)若n为正整数,证明:<4.(参考数据:lg3=0.3010, =0.1342, =0.0281, =0.0038)2015-2016学年某某省某某七中高一(上)期末数学模拟试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|﹣2≤x≤3},B={x|x<﹣1或x>4},则A∩∁R B=()A.{x|﹣2≤x<4} B.{x|x≤3或x≥4}C.{x|﹣2≤x≤﹣1} D.{x|﹣1≤x≤3}【考点】交、并、补集的混合运算.【专题】计算题.【分析】由全集U=R,找出R中不属于集合B的部分,求出B的补集,找出B补集与A的公共部分,即可求出所求的集合.【解答】解:∵B={x|x<﹣1或x>4},全集U=R,∴C R B={x|﹣1≤x≤4},又A={x|﹣2≤x≤3},则A∩C R B={x|﹣1≤x≤3}.故选D【点评】此题考查了交、并、补集的混合运算,是一道基本题型.学生求补集时注意全集的X 围.2.下列对应f:A→B是从集合 A到集合 B的函数的是()A.A={x|x>0},B={y|y≥0},f:y=B.A={x|x≥0},B={y|y>0},f:y=x2C.A={x|x是三角形},B={y|y是圆},f:每一个三角形对应它的内切圆D.A={x|x是圆},B={y|y是三角形},f:每一个圆对应它的外切三角形【考点】函数的概念及其构成要素.【专题】函数的性质及应用.【分析】根据函数的定义,分别进行判断即可.【解答】解:A.集合A中的任意元素x,满足在集合B中有唯一的y对应,满足条件.B.集合A中的元素0,在集合B中没有y与x对应,不满足条件.C.函数是数集合数集的对应,集合A,B,不是数集,不满足条件.D.集合A中的任意元素x,满足在集合B中有唯一的y对应,不满足条件.故选:A【点评】本题主要考查函数的定义,根据函数的定义是解决本题的关键.3.设,,,则()A.a<b<c B.c<b<a C.c<a<b D.b<a<c【考点】对数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】根据<0,∈(0,1),>1,可得a、b、c的大小关系.【解答】解:根据<=0, =3﹣0.2∈(0,1),=>1,则a、b、c的大小关系为 a<b<c,故选A.【点评】本题主要考查对数函数、指数函数的单调性和特殊点,属于中档题.4.函数y=lg(1﹣x)+lg(1+x)的图象关于()A.y轴对称B.x轴对称C.原点对称 D.点(1,1)对称【考点】函数奇偶性的判断;奇偶函数图象的对称性.【专题】函数的性质及应用.【分析】先求出函数的定义域,判断函数的奇偶性即可得到结论.【解答】解:要使函数f(x)有意义,则,即,即﹣1<x<1,则函数的定义域为(﹣1,1),则f(﹣x)=lg(1+x)+lg(1﹣x)=f(x),故函数f(x)是偶函数,关于y轴对称,故选:A【点评】本题主要考查函数图象的对称性的判断,根据函数奇偶性的定义是解决本题的关键.5.当时,幂函数y=xα的图象不可能经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】幂函数的性质.【专题】分类讨论;函数的性质及应用.【分析】利用幂函数的图象特征和性质,结合答案进行判断.【解答】解:当α=、1、2、3 时,y=xα是定义域内的增函数,图象过原点,当α=﹣1 时,幂函数即y=,图象在第一、第三象限,故图象一定不在第四象限.∴答案选 D.【点评】本题考查幂函数的图象和性质,体现了分类讨论的数学思想,属于基础题.6.函数f(x)=2x﹣log x的零点所在区间为()A.B.C.(,0)D.(1,2)【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】由函数的解析式求得 f()f()<0,再根据函数的零点的判定定理,可得函数f(x)=2x﹣log x的零点所在区间.【解答】解:∵函数f(x)=2x﹣log x,∴f()=﹣2<0,f()=﹣1>0,可得 f()f()<0.根据函数的零点的判定定理,可得函数f(x)=2x﹣log x的零点所在区间为,故选:B.【点评】本题主要考查函数的零点的判定定理的应用,根据函数的解析式求函数的值,判断函数的零点所在的区间的方法,属于基础题.7.夏季来临,人们注意避暑.如图是某某市夏季某一天从6时到14时的温度变化曲线,若该曲线近似地满足函数y=Asin(ωx+φ)+B,则某某市这一天中午12时天气的温度大约是()A.25°C B.26°C C.27°C D.28°C【考点】在实际问题中建立三角函数模型.【专题】计算题.【分析】通过函数的图象,求出A,B,求出函数的周期,推出ω,利用函数经过(14,30)求出φ,得到函数的解析式,从而可求中午12时天气的温度.【解答】解:由题意以及函数的图象可知,A+B=30,﹣A+B=10,所以A=10,B=20∵,∴T=16∵,∴∴y=10sin(x+φ)+20∵图象经过点(14,30)∴30=10sin(×14+φ)+20∴sin(×14+φ)=1∴φ可以取∴y=10sin(x+)+20当x=12时,y=10sin(×12+)+20=10×≈27.07故选C.【点评】通过函数的图象求出函数的解析式,是三角函数常考题型,注意图象经过的特殊点,注意函数解析式的X围容易出错遗漏.8.已知函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则a的取值X围是()A.(﹣∞,4] B.(﹣∞,2] C.(﹣4,4] D.(﹣4,2]【考点】复合函数的单调性;二次函数的性质;对数函数的单调区间.【专题】计算题.【分析】若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)>0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值X围.【解答】解:若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则当x∈[2,+∞)时,x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数即,f(2)=4+a>0解得﹣4<a≤4故选C【点评】本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键.9.若函数的定义域和值域都是[0,1],则a=()A.2 B.C.D.【考点】函数的值域;函数的定义域及其求法.【专题】计算题.【分析】由函数的定义域和值域都是[0,1],有复合函数的性质分析可得f(x)为增函数,把x=1代入即可求出a的值.【解答】∵在x∈[0,1]上递减,∴当a>1时,y=f(x)是减函数,∴f(0)=1解得a=1(舍),当0<a<1时,y=f(x)增函数,∴f(1)=1,解得a=.故选D.【点评】本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性.10.如图,半径为1的圆M,切直线AB于点O,射线OC从OA出发,绕O点顺时针方向旋转到OB,旋转过程中OC交⊙M于P,记∠PMO为x,弓形PNO的面积S=f(x),那么f (x)的图象是()A.B.C.D.【考点】函数的图象与图象变化.【专题】计算题.【分析】写出函数S=f ( x )的解析式.根据函数的单调性和极值判断出函数图象的大体形状即可.【解答】解:由题意得S=f ( x )=x﹣f′(x)=≥0当x=0和x=2π时,f′(x)=0,取得极值.则函数S=f ( x )在[0,2π]上为增函数,当x=0和x=2π时,取得极值.结合选项,A正确.故选A.【点评】本题考查了函数的解析式的求法以及函数的求导,根据函数的性质判断函数的图象,求出函数的解析式是解决此题的关键.11.已知f(x)是[﹣1,1]上的偶函数,当x∈[0,1]时,f(x)=log2(x+1),则()A.f(sin)>f(cos)B.f(sin)<f(cos)C.f(sin)>f(cos)D.f(sin)>f(cos)【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】根据题意,x∈[0,1]时,f(x)=log2(x+1),则f(x)在区间[0,1]上为增函数,结合函数为偶函数依次分析选项即可得答案.【解答】解:根据题意,x∈[0,1]时,f(x)=log2(x+1),则f(x)在区间[0,1]上为增函数,依次分析选项可得:对于A、sin=,cos=,即0<sin<cos<1,则有f(sin)<f(cos),故A错误;对于B、sin=,cos=,即0<cos<sin<1,则有f(sin)>f(cos),故B错误;对于C、sin=sin=,cos=﹣cos=﹣,即0<|cos|<sin<1,则有f(sin)>f(cos),故C正确;对于D、sin=sin=,cos=﹣cos=﹣,即0<sin<|cos|<1,则有f (sin)<f(cos),故D错误;故选:C.【点评】本题考查函数的单调性与奇偶性的综合运用,涉及对数函数的图象变化,解题的关键是综合利用函数的奇偶性与单调性.12.已知函数y=f(x)(x∈R)满足f(x+1)=,且当x∈[﹣1,1]时,f(x)=|x|,函数g(x)=,则函数h(x)=f(x)﹣g(x)在区间[﹣5,5]上的零点的个数为()A.8 B.9 C.10 D.11【考点】正弦函数的图象;根的存在性及根的个数判断.【专题】三角函数的图像与性质.【分析】由题意可得可得f(x+2)=f(x),函数f(x)是周期为2的周期函数.本题即求函数f(x)的图象和函数g(x)的图象在区间[﹣5,5]上的交点的个数,数形结合可得结论【解答】解:由f(x+1)=,可得f(x+2)=f(x),故函数f(x)是周期为2的周期函数.函数h(x)=f(x)﹣g(x)在区间[﹣5,5]上的零点的个数,即函数f(x)的图象和函数g(x)=的图象在区间[﹣5,5]上的交点的个数,当x∈[﹣1,1]时,f(x)=|x|,如图所示:数形结合可得函数f(x)的图象和函数g(x)的图象在区间[﹣5,5]上的交点的个数为10,故选:C.【点评】本题主要考查方程的根的存在性及个数判断,正弦函数的图象,体现了化归与转化、数形结合的数学思想,属于基础题.二、填空题求值= 3 .【考点】对数的运算性质.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用对数性质、运算法则求解.【解答】解:=lg5•3lg2+3lg5+3(lg2)2=3lg2(lg5+lg2)+3lg5=3(lg2+lg5)=3.故答案为:3.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意对数性质、运算法则的合理运用.14.已知,则=.【考点】运用诱导公式化简求值.【专题】计算题;转化思想;分析法;三角函数的求值.【分析】利用诱导公式求得=cos(α﹣)=sin(),即可得解.【解答】解:∵,∴=cos(α﹣)=,故答案为:.【点评】本题主要考查了诱导公式的应用,属于基础题.15.已知函数f(x)对任意x∈R都有f(x+6)+f(x)=2f(3),且函数y=f(x﹣1)的图象关于点(1,0)对称,则f(2013)= 0 .【考点】函数的值.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】由已知推导出f(x+12)=f(x),f(x)是奇函数,f(3)=f(﹣3)=0,由此能求出f(2013).【解答】解:由f(x+6)+f(x)=2f(3),知f(x+12)+f(x+6)=2f(3),两式相减,得f(x+12)=f(x)由y=f(x﹣1)的图象关于点(1,0)对称,知f(x﹣1)+f(1﹣x)=0,故f(x)是奇函数.由f(x+6)+f(x)=2f(3),令x=﹣3,得f(3)=f(﹣3),于是f(3)=f(﹣3)=0,于是f(2013)=f(2013﹣12×167)=f(9)=f(﹣3)=0.故答案为:0.【点评】本题考查函数值的求法,是基础题,解题时要注意函数的周期性、奇偶性的合理运用.16.给出下列命题:①函数f(x)=的定义域为[3,+∞);②将函数y=tanx图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再把图象向左平移个单位,得到g(x)的图象,则g(x)的单调递增区间是;③已知函数f(x)=(a是常数且a>0),若f(x)>0在上恒成立,则a的取值X围是[1,+∞);④已知函数f(x)=(a是常数且a>0),对任意的x1,x2<0且x1≠x2,恒有;⑤已知函数f(x)=,若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值X围是a<0或a>1.其中正确命题的序号是①④⑤.(写出所有正确命题的序号)【考点】命题的真假判断与应用.【专题】数形结合;分类讨论;转化法;函数的性质及应用;简易逻辑.【分析】①根据函数成立的条件进行求解.②根据三角函数的图象以及三角函数的单调性进行求解判断.③根据函数恒成立,利用参数分离法进行求解.④根据凹函数的性质,利用数形结合进行判断.⑤由g(x)=f(x)﹣b有两个零点可得f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a的X围.【解答】解:①要使函数有意义,则,即,得x≥3,即函数的定义域为[3,+∞);故①正确,②将函数y=tanx图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y=tan,再把图象向左平移个单位,得到y=tan(x+)=tan(x+),即g(x)=tan(x+),由kπ﹣<x+<kπ+,k∈Z,得2kπ﹣<x<2kπ+,k∈Z,即函数的单调递增区间为为(2kπ﹣,2kπ+),k∈Z,故②错误,③已知函数f(x)=(a是常数且a>0),若f(x)>0在上恒成立,则2ax﹣1>0,即a>,∵当x≥时,≤=1,则a>1,即a的取值X围是(1,+∞);故③错误,④已知函数f(x)=(a是常数且a>0),对任意的x1,x2<0且x1≠x2,若,则函数为凹函数,作出函数y=f(x)在x<0时的图象如图:则函数为凹函数,满足条件.故④正确;⑤解:∵g(x)=f(x)﹣b有两个零点,∴f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,由x3=x2可得,x=0或x=1当a>1时,函数f(x)的图象如图所示,此时存在b,满足题意,故a>1满足题意当a=1时,由于函数f(x)在定义域R上单调递增,故不符合题意当0<a<1时,函数f(x)单调递增,故不符合题意④a=0时,f(x)单调递增,故不符合题意⑤当a<0时,函数y=f(x)的图象如图所示,此时存在b使得,y=f(x)与y=b有两个交点综上可得,a<0或a>1,故⑤正确,故答案为:①④⑤【点评】本题主要考查命题的真假判断,涉及三角函数以及函数的性质,综合性较强,难度较大.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.一辆汽车在某段路程中的行驶速度与时间的关系如图所示,(1)求图中阴影部分的面积,并说明实际意义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2010km,试建立汽车行驶这段路程时汽车里程表读数S和时间t的函数关系式.【考点】函数解析式的求解及常用方法.【专题】阅读型;方程思想;函数的性质及应用.【分析】(1)根据矩形面积公式,我们易得阴影部分的面积,由于在计算面积时,S=速度×时间=路程,我们易得到所求面积的实际意义;(2)根据图象我们分析出三个小时内的速度分别为50,80,90,根据辆汽车的里程表在汽车行驶这段路程前的读数为2010km,我们易得到汽车行驶这段路程时汽车里程表读数S表示为时间t的分段函数形式.【解答】解:(1)由已知中的图象可得,阴影部分的面积为50×1+80×1+90×1=220.由图象表示辆汽车在某段路程中的行驶速度与时间的关系故图象的面积表示汽车行驶的路程,∴阴影部分的面积表示汽车在3小时内行驶的路程为220km.(2)根据图示,三个小时内的速度分别为50,80,90,故有S=.【点评】本题所涉及的数学模型是确定的,需要利用问题中的数据及其蕴含的关系建立数学模型,此例分段函数模型刻画实际问题.要注意培养自己的读图能力,懂得图象是函数对应关系的一种重要表现形式,另外要注意路程S和自变量t的取值X围(即函数的定义域),注意t的实际意义.属于中档题.18.若函数y=为奇函数.(1)求a的值;(2)求函数的定义域;(3)讨论函数的单调性.【考点】奇偶性与单调性的综合.【专题】综合题.【分析】(1)根据函数y=f(x)=为奇函数,可得f(﹣x)+f(x)=0,由此可得,从而可求a的值;(2)f(x)=,令2x﹣1≠0,即可得到函数的定义域;(3)f(x)=在(﹣∞,0)和(0,+∞)上为增函数,再利用单调性的定义进行证明.【解答】解:(1)∵函数y=f(x)=为奇函数,∴f(﹣x)+f(x)=0∴=0∴∴a=﹣(2)f(x)=,∴2x﹣1≠0,∴2x≠1,∴x≠0∴函数的定义域为(﹣∞,0)∪(0,+∞)(3)f(x)=在(﹣∞,0)和(0,+∞)上为增函数证明:任取x1,x2∈(0,+∞),且x1<x2,则2x1<2x2,2x1﹣1>0,2x2﹣1>0,∴f(x1)﹣f(x2)=()﹣()=<0,∴f(x1)<f(x2),∴f(x)在(0,+∞)上为增函数.任取x1,x2∈(﹣∞,0)且x1<x2,则﹣x1>﹣x2>0,因为f(x)在(0,+∞)上为增函数,所以f(﹣x1)>f(﹣x2),因为f(x)是奇函数,所以f(﹣x1)=﹣f(x1),f(﹣x2)=﹣f(x2),∴﹣f(x1)>﹣f(x2),∴f(x1)<f(x2),∴f(x)在(﹣∞,0)上为增函数.【点评】本题考查函数单调性与奇偶性的结合,考查函数单调性的定义,解题的关键是掌握函数单调性定义的证题步骤.19.函数在同一个周期内,当时y取最大值1,当时,y取最小值﹣1.(1)求函数的解析式y=f(x).(2)函数y=sinx的图象经过怎样的变换可得到y=f(x)的图象?(3)若函数f(x)满足方程f(x)=a(0<a<1),求在[0,2π]内的所有实数根之和.【考点】函数y=Asin(ωx+φ)的图象变换;正弦函数的图象.【专题】计算题;数形结合.【分析】(1)通过同一个周期内,当时y取最大值1,当时,y取最小值﹣1.求出函数的周期,利用最值求出φ,即可求函数的解析式y=f(x).(2)函数y=sinx的图象经过左右平移,然后是横坐标变伸缩变换,纵坐标不变,可得到y=f (x)的图象,确定函数解析式.(3)确定函数在[0,2π]内的周期的个数,利用f(x)=a (0<a<1)与函数的对称轴的关系,求出所有实数根之和.【解答】解:(1)∵,∴ω=3,又因,∴,又,得∴函数;(2)y=sinx的图象向右平移个单位得的图象,再由图象上所有点的横坐标变为原来的.纵坐标不变,得到的图象,(3)∵的周期为,∴在[0,2π]内恰有3个周期,∴在[0,2π]内有6个实根且同理,,故所有实数之和为.【点评】本题考查函数y=Asin(ωx+φ)的图象变换,正弦函数的图象,考查数形结合的思想,考查计算能力,是中档题.20.已知函数f(x)=(x﹣a)|x﹣2|,g(x)=2x+x﹣2,其中a∈R.(1)写出f(x)的单调区间(不需要证明);(2)如果对任意实数m∈[0,1],总存在实数n∈[0,2],使得不等式f(m)≤g(n)成立,某某数a的取值X围.【考点】函数恒成立问题;函数单调性的判断与证明.【专题】函数的性质及应用.【分析】(1)利用绝对值的定义,去掉绝对值,将函数f(x)转化成分段函数,再对分段函数的每一段研究它的单调性,即可确定f(x)的单调区间;(2)将问题转化为f(x)在[0,1]上的最大值小于等于g(x)在[0,2]上的最大值,即分别求f(x)在[0,1]上的最大值和g(x)在[0,2]上的最大值.对于g(x)易判断出它的单调性,即可求得g(x)在[0,2]上的最大值;对于f(x),结合(1)的结论,分类讨论即可求得f(x)在[0,1]上的最大值.列出不等式,即可求出实数a的取值X围.【解答】解:(1)∵f(x)=(x﹣a)|x﹣2|,∴,①当a=2时,f(x)的递增区间是(﹣∞,+∞),f(x)无减区间;②当a>2时,f(x)的递增区间是(﹣∞,2),,f(x)的递减区间是;③当a<2时,f(x)的递增区间是,(2,+∞),f(x)的递减区间是.(2)∵对任意实数m∈[0,1],总存在实数n∈[0,2],使得不等式f(m)≤g(n)成立,∴f(x)在[0,1]上的最大值小于等于g(x)在[0,2]上的最大值,当x∈[0,2]时,g(x)=2x+x﹣2单调递增,∴g(x)max=g(2)=4.当x∈[0,1]时,f(x)=﹣(x﹣a)(x﹣2)=﹣x2+(2+a)x﹣2a,①当,即a≤﹣2时,f(x)max=f(0)=﹣2a,∴g(x)max≤f(x)max,即﹣2a≤4,解得a≥﹣2,∴a=﹣2;②当,即﹣2<a≤0时,f(x)max=,∴g(x)max≤f(x)max,即,解得﹣2≤a≤6,∴﹣2<a≤0;③当,即a>0时,f(x)max=f(1)=1﹣a,∴g(x)max≤f(x)max,即1﹣a≤4,解得a≥﹣3,∴a>0.综合①②③,实数a的取值X围是[﹣2,+∞).【点评】本题考查了分段函数的性质,主要考查了分段函数的单调性和最值的求解.对于分段函数的问题,一般选用分类讨论和数形结合的数学思想方法进行研究.属于中档题.21.定义在R上的单调函数f(x)满足:f(x+y)=f(x)+f(y).(Ⅰ)求证:f(x)是奇函数;(Ⅱ)若F(x)=f(asinx)+f(sinx+cos2x﹣3)在(0,π)上有零点,求a的取值X围.【考点】抽象函数及其应用;函数奇偶性的性质;函数零点的判定定理.【专题】计算题;证明题;函数的性质及应用.【分析】(Ⅰ)令x=y=0可得f(0)=0,再令y=﹣x,从而可得f(x)+f(﹣x)=0,从而证明;(Ⅱ)F(x)=f(asinx)+f(sinx+cos2x﹣3)在(0,π)上有零点可化为asinx=﹣sinx﹣cos2x+3在(0,π)上有解,即a==sinx+﹣1;从而求解.【解答】解:(Ⅰ)证明:令x=y=0,则f(0)=2f(0),则f(0)=0;再令y=﹣x,则有f(x﹣x)=f(x)+f(﹣x)=0,且f(x)定义域为R,关于原点对称.∴f(x)是奇函数.(Ⅱ)F(x)=f(asinx)+f(sinx+cos2x﹣3)在(0,π)上有零点.∴f(asinx)+f(sinx+cos2x﹣3)=0在(0,π)上有解;∴f(asinx)=﹣f(sinx+cos2x﹣3)=f(﹣sinx﹣cos2x+3)在(0,π)上有解;又∵函数f(x)是R上的单调函数,∴asinx=﹣sinx﹣cos2x+3在(0,π)上有解.∵x∈(0,π),∴sinx≠0;∴a==sinx+﹣1;令t=sinx,t∈(0,1];则a=t+﹣1;∵y=t+在(0,1]上单调递减,∴a≥2.【点评】本题考查了函数的奇偶性的判断与函数的单调性的应用,属于基础题.22.已知函数f(x)=|x﹣a|,g(x)=x2+2ax+1(a为正实数),满足f(0)=g(0);函数F(x)=f(x)+g(x)+b定义域为D.(1)求a的值;(2)若存在x0∈D,使F(x0)=x0成立,某某数b的取值X围;(3)若n为正整数,证明:<4.(参考数据:lg3=0.3010, =0.1342, =0.0281, =0.0038)【考点】分段函数的应用.【专题】转化思想;分析法;函数的性质及应用;不等式的解法及应用.【分析】(1)由f(0)=g(0),解方程可得a=1;(2)求得f(x)+g(x)+b的解析式,由条件讨论x≥1,x<1时,分离参数,解不等式可得b的X围;(3)设,由n为正整数,化简G(n),讨论G(n)的单调性,即可得证.【解答】解:(1)∵f(0)=g(0),即|a|=1,又a>0,∴a=1.(2)由(1)知,f(x)+g(x)+b=.当x≥1时,有x2+3x+b=x,即b=﹣x2﹣2x=﹣(x+1)2+1.∵x≥1,∴﹣(x+1)2+1≤﹣3,此时b≤﹣3.当x<1时,有x2+x+2+b=x,即b=﹣x2﹣2∵x<1,∴﹣x2﹣2≤﹣2,此时b≤﹣2.故要使得f(x)+g(x)+b在其定义域内存在不动点,则实数b的取值X围应(﹣∞,﹣2];(3)证明:设.由n为正整数,∴.∴.当时,,即,亦即,∴.由于n为正整数,因此当1≤n≤3时,G(n)单调递增;当n≥4时,G(n)单调递减.∴G(n)的最大值是max{G(3),G(4)}.又,,∴G(n)≤G(4)<4.【点评】本题考查函数的解析式的求法,考查函数方程的转化思想,同时考查不等式的证明,注意运用单调性,考查推理和运算求解能力,属于中档题.。

高中数学 期末检测试卷(B)精品练习(含解析)新人教A版必修第一册-新人教A版高一第一册数学试题

高中数学 期末检测试卷(B)精品练习(含解析)新人教A版必修第一册-新人教A版高一第一册数学试题

期末检测试卷(B)C .充要条件D .既不充分又不必要条件8.设f (x )为偶函数,且x ∈(0,1)时,f (x )=-x +2,则下列说法正确的是( )A .f (0.5)<f ⎝ ⎛⎭⎪⎫π6B .f ⎝⎛⎭⎪⎫sin π6>f (sin 0.5)C .f (sin 1)<f (cos 1)D .f (sin 2)>f (cos 2)二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下面各式中,正确的是( )A .sin ⎝ ⎛⎭⎪⎫π4+π3=sin π4cos π3+32cos π4B .cos 5π12=22sin π3-cos π4cos π3C .cos ⎝ ⎛⎭⎪⎫-π12=cos π4cos π3+64D .cos π12=cos π3-cos π4 10.函数f (x )=log a |x -1|在(0,1)上是减函数,那么( ) A .f (x )在(1,+∞)上递增且无最大值 B .f (x )在(1,+∞)上递减且无最小值 C .f (x )在定义域内是偶函数 D .f (x )的图象关于直线x =1对称 11.下面选项正确的有( ) A .存在实数x ,使sin x +cos x =π3B .α,β是锐角△ABC 的内角,是sin α>cos β的充分不必要条件C .函数y =sin ⎝ ⎛⎭⎪⎫23x -7π2是偶函数D .函数y =sin 2x 的图象向右平移π4个单位,得到y =sin ⎝⎛⎭⎪⎫2x +π4的图象12.若函数f (x )=a x-a -x(a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象不可以是( )三、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.若扇形的面积为3π8、半径为1,则扇形的圆心角为________.14.设x >0,y >0,x +y =4,则1x +4y的最小值为________.15.定义在R 上的函数f (x )满足f (x )=3x -1(-3<x ≤0),f (x )=f (x +3),则f (2 019)=________.16.函数f (x )=⎩⎪⎨⎪⎧2x,x ≥0-x 2-2x +1,x <0,函数f (x )有________个零点,若函数y =f (x )-m 有三个不同的零点,则实数m 的取值X 围是________.(本题第一空2分,第二空3分)四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)设函数f (x )=6+x +ln(2-x )的定义域为A ,集合B ={x |2x>1}. (1)求A ∪B ;(2)若集合{x |a <x <a +1}是A ∩B 的子集,求a 的取值X 围.18.(12分)已知sin ⎝ ⎛⎭⎪⎫β-π4=15,cos (α+β)=-13,其中0<α<π2,0<β<π2. (1)求sin 2β的值; (2)求cos ⎝ ⎛⎭⎪⎫α+π4的值.19.(12分)已知f (x )=⎩⎪⎨⎪⎧2x+1,x ≤0,log 2x +1,x >0.(1)作出函数f (x )的图象,并写出单调区间;(2)若函数y =f (x )-m 有两个零点,某某数m 的取值X 围.期末检测试卷(B)1.解析:因为A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2xx -2>1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +2x -2>0={x |x <-2或x >2},B ={x |1<2x <8}={x |0<x <3},因此A ∩B ={x |2<x <3}.故选A.答案:A2.解析:要使f (x )有意义,则⎩⎪⎨⎪⎧x +3≥0,x +1≠0,解得x ≥-3,且x ≠-1,∴f (x )的定义域为{x |x ≥-3,且x ≠-1}. 答案:A3.解析:sin 140°cos 10°+cos 40°sin 350° =sin 40°cos 10°-cos 40°sin 10° =sin (40°-10°)=sin 30°=12.答案:C4.解析:∵f (2)=log 32-1<0,f (3)=log 33+27-9=19>0,∴f (2)·f (3)<0,∴函数在区间(2,3)上存在零点. 答案:C5.解析:若命题p 是假命题,则“不存在x 0∈R ,使得x 20+2ax 0+a +2≤0”成立, 即“∀x ∈R ,使得x 2+2ax +a +2>0”成立,所以Δ=(2a )2-4(a +2)=4(a 2-a -2)=4(a +1)(a -2)<0,解得-1<a <2, 所以实数a 的取值X 围是(-1,2),故选B. 答案:B6.解析:x =ln π>ln e=1,y =log 52<log 55=12,z =1e >14=12,且z <1,故y <z <x . 答案:C7.解析:因为函数f (x )的图象向左平移π6个单位长度后得到函数g (x )的图象,所以g (x )=sin ⎝ ⎛⎭⎪⎫2x +φ+π3, 因为g (x )为偶函数,所以φ+π3=π2+k π(k ∈Z ),即φ=π6+k π(k ∈Z ),因为φ=π6可以推导出函数g (x )为偶函数,而函数g (x )为偶函数不能推导出φ=π6,所以“φ=π6”是“g (x )为偶函数”的充分不必要条件.答案:A8.解析:x ∈(0,1)时,f (x )=-x +2,则f (x )在(0,1)上单调递减,A :0.5<π6,所以f (0.5)>f ⎝ ⎛⎭⎪⎫π6,A 错误;B :0.5<π6,∴0<sin 0.5<sin π6<1,∴f ⎝ ⎛⎭⎪⎫sin π6<f (sin 0.5),B 错误;C :∵0<cos 1<sin 1<1,∴f (sin 1)<f (cos 1),C 正确;D :-1<cos2<0,f (cos 2)=f (-cos 2),sin 2-(-cos 2)=sin 2+cos 2=2sin ⎝⎛⎭⎪⎫2+π4>0,所以1>sin2>(-cos 2)>0,所以f (sin 2)<f (-cos 2)=f (cos 2),D 错误.故选C.答案:C9.解析:∵sin ⎝ ⎛⎭⎪⎫π4+π3=sin π4cos π3+cos π4sin π3=sin π4cos π3+32cos π4,∴A 正确;∵cos 5π12=-cos 7π12=-cos ⎝ ⎛⎭⎪⎫π3+π4=22sin π3-cos π4cos π3,∴B 正确;∵cos ⎝ ⎛⎭⎪⎫-π12=cos ⎝ ⎛⎭⎪⎫π4-π3=cos π4cos π3+64,∴C 正确;∵cos π12=cos ⎝ ⎛⎭⎪⎫π3-π4≠cos π3-cos π4,∴D 不正确.故选ABC.答案:ABC10.解析:由|x -1|>0得,函数y =log a |x -1|的定义域为{x |x ≠1}.设g (x )=|x -1|=⎩⎪⎨⎪⎧x -1,x >1-x +1,x <1,则g (x )在(-∞,1)上为减函数,在(1,+∞)上为增函数,且g (x )的图象关于直线x =1对称,所以f (x )的图象关于直线x =1对称,D 正确;因为f (x )=log a |x -1|在(0,1)上是减函数,所以a >1,所以f (x )=log a |x -1|在(1,+∞)上递增且无最大值,A 正确,B 错误; 又f (-x )=log a |-x -1|=log a |x +1|≠f (x ),所以C 错误.故选AD. 答案:AD11.解析:A 选项:sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4,则sin x +cos x ∈[-2, 2 ].又-2<π3<2,∴存在x ,使得sin x +cos x =π3,可知A 正确; B 选项:∵△ABC 为锐角三角形,∴α+β>π2,即α>π2-β∵β∈⎝ ⎛⎭⎪⎫0,π2,∴π2-β∈⎝ ⎛⎭⎪⎫0,π2,又α∈⎝ ⎛⎭⎪⎫0,π2且y =sin x 在⎝ ⎛⎭⎪⎫0,π2上单调递增∴sin α>sin ⎝ ⎛⎭⎪⎫π2-β=cos β,可知B 正确;C 选项:y =sin ⎝ ⎛⎭⎪⎫23x -7π2=cos 2x 3,则cos2-x 3=cos 2x 3,则y =sin ⎝ ⎛⎭⎪⎫23x -7π2为偶函数,可知C 正确;D 选项:y =sin 2x 向右平移π4个单位得:y =sin 2⎝ ⎛⎭⎪⎫x -π4=sin ⎝ ⎛⎭⎪⎫2x -π2=-cos 2x ,可知D 错误.本题正确选项ABC.答案:ABC12.解析:函数y =log a (|x |-1)是偶函数,定义域为(-∞,-1)∪(1,+∞), 由函数f (x )=a x-a -x(a >0且a ≠1)在R 上为减函数, 得0<a <1.当x >1时,函数y =log a (|x |-1)的图象可以通过函数y =log a x 的图象向右平移1个单位得到,结合各选项可知只有D 选项符合题意.故选ABC.答案:ABC13.解析:设扇形的圆心角为α,则∵扇形的面积为3π8,半径为1,∴3π8=12·α·12,∴α=3π4. 答案:3π414.解析:∵x +y =4,∴1x +4y =14⎝ ⎛⎭⎪⎫1x +4y (x +y )=14⎝ ⎛⎭⎪⎫5+y x +4x y ,又x >0,y >0,则y x+4xy≥2y x ·4x y =4⎝ ⎛⎭⎪⎫当且仅当y x =4x y ,即x =43,y =83时取等号, 则1x +4y ≥14×(5+4)=94. 答案:9415.解析:∵f (x )=f (x +3), ∴y =f (x )表示周期为3的函数, ∴f (2 019)=f (0)=3-1=13.答案:1316.解析:作出函数f (x )的图象如下图所示,由图象可知,函数f (x )有且仅有一个零点,要使函数y =f (x )-m 有三个不同的零点,则需函数y =f (x )与函数y =m 的图象有且仅有三个交点,则1<m <2.答案:1 (1,2)17.解析:(1)由⎩⎪⎨⎪⎧6+x ≥02-x >0得,-6≤x <2;由2x>1得,x >0;∴A =[-6,2),B =(0,+∞);∴A ∪B =[-6,+∞); (2)A ∩B =(0,2);∵集合{x |a <x <a +1}是A ∩B 的子集; ∴⎩⎪⎨⎪⎧a ≥0a +1≤2;解得0≤a ≤1;∴a 的取值X 围是[0,1].18.解析:(1)因为sin ⎝ ⎛⎭⎪⎫β-π4=22(sin β-cos β)=15,所以sin β-cos β=25, 所以(sin β-cos β)2=sin 2β+cos 2β-2sin βcos β=1-sin 2β=225,所以sin 2β=2325.(2)因为sin ⎝ ⎛⎭⎪⎫β-π4=15,cos(α+β)=-13, 其中0<α<π2,0<β<π2,所以cos ⎝ ⎛⎭⎪⎫β-π4=265,sin(α+β)=223, 所以cos ⎝ ⎛⎭⎪⎫α+π4=cos ⎣⎢⎡⎦⎥⎤α+β-⎝⎛⎭⎪⎫β-π4=cos(α+β)cos ⎝⎛⎭⎪⎫β-π4+sin(α+β)sin ⎝⎛⎭⎪⎫β-π4=⎝ ⎛⎭⎪⎫-13×265+223×15=22-615.19.解析:(1)画出函数f (x )的图象,如图所示:由图象得f (x )在(-∞,0],(0,+∞)上单调递增. (2)若函数y =f (x )-m 有两个零点, 则f (x )和y =m 有2个交点,结合图象得1<m ≤2. 20.解析:(1)f (x )=32sin 2x -12cos 2x +cos 2x =32sin 2x +12cos 2x =sin ⎝⎛⎭⎪⎫2x +π6.所以f (x )的最小正周期为T =2π2=π.(2)因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6.当2x +π6=π2,即x =π6时,f (x )取得最大值1;当2x +π6=7π6,即x =π2时,f (x )取得最小值-12.21.解析:(1)由题意可得处理污染项目投放资金为(100-x )百万元, 所以N (x )=0.2(100-x ),所以y =50x10+x +0.2(100-x ),x ∈[0,100].(2)由(1)可得,y =50x 10+x +0.2(100-x )=70-⎝ ⎛⎭⎪⎫50010+x +x 5=72-⎝⎛⎭⎪⎫50010+x +10+x 5≤72-20=52,当且仅当50010+x =10+x5,即x =40时等号成立.此时100-x =100-40=60.∴y 的最大值为52百万元,分别投资给植绿护绿项目、污染处理项目的资金为40百万元,60百万元.22.解析:(1)若y =f k (x )是偶函数,则f k (-x )=f k (x ),即2-x+(k -1)·2x =2x+(k -1)·2-x即2-x -2x =(k -1)·2-x -(k -1)·2x =(k -1)(2-x -2x),则k -1=1,即k =2; (2)∵f 0(x )+mf 1(x )≤4,即2x -2-x +m ·2x ≤4,即m 2x ≤4-2x +2-x, 则m ≤4-2x+2-x2x=4·2-x +(2-x )2-1,设t =2-x, ∵1≤x ≤2,∴14≤t ≤12.word- 11 - / 11 设4·2-x +(2-x )2-1=t 2+4t -1,则y =t 2+4t -1=(t +2)2-5, 则函数y =t 2+4t -1在区间⎣⎢⎡⎦⎥⎤14,12上为增函数, ∴当t =12时,函数取得最大值y max =14+2-1=54,∴m ≤54. 因此,实数m 的取值X 围是⎝⎛⎦⎥⎤-∞,54; (3)f 0(x )=2x -2-x ,f 2(x )=2x +2-x ,则f 2(2x )=22x +2-2x =(2x -2-x )2+2, 则g (x )=λf 0(x )-f 2(2x )+4=λ(2x -2-x )-(2x -2-x )2+2,设t =2x -2-x ,当x ≥1时,函数t =2x -2-x 为增函数,则t ≥2-12=32, 若y =g (x )在[1,+∞)有零点,即g (x )=λ(2x -2-x )-(2x -2-x )2+2=λt -t 2+2=0在t ≥32上有解,即λt =t 2-2,即λ=t -2t, ∵函数y =t -2t 在⎣⎢⎡⎭⎪⎫32,+∞上单调递增,则y min =32-2×23=16,即y ≥16.∴λ≥16,因此,实数λ的取值X 围是⎣⎢⎡⎭⎪⎫16,+∞.。

高一上学期期中考重难点归纳总结(解析版)--人教版高中数学精讲精练必修一

高一上学期期中考重难点归纳总结(解析版)--人教版高中数学精讲精练必修一

【答案】B
【解析】由 A 1,3, 5 , B 3, 4, 5 ,得 A B 1,3, 4,5 ,
所以 ðU A B 2, 6 ,
故选:B
2.(2023 秋·江苏盐城·高一校联考期末)设全集U R ,集合 A x x 2 , B x x 2 或 x 6,则
A ðU B ( ) A.x x 2
秋·辽宁抚顺·高一抚顺一中校考阶段练习)已知集合
M
x∣x
m
1 6
,m
Z

N
x∣x
n
1
,
n
Z

P
x∣x
p
1 , p Z ,则 M
,N
, P 的关系为(

23
26
A. M N P
B. M N P
C. M N P
D. N P M
【答案】B
【解析】因为 M
∣ x x
m1,
m
Z
所以实数 a 的取值范围是{a | 0 a 4} .
故选:D
考点五 不等式的性质
【例 5】(2023 秋·上海浦东新 )已知 a b c d ,下列选项中正确的是( )
A. a d b c
B. a c b d
C. ad bc
D. ac bd
【答案】B
【解析】对于选项 A,因为 a 3,b 2,c 1, d 10 ,满足 a b c d ,但不满足 a d b c ,所以选项 A
数是( ) A.0
B.1
C.2
D.4
【答案】C
【解析】因为 A x, y x y 0 , B x, y | x2 2y2 1 ,
所以集合 A 是直线 x y 0 上的点的集合,集合 B 是椭圆 x2 2y2 1 上的点的集合; 因为 M A B ,所以若要求 M 中的元素个数,只需联立方程即可;

山西省晋中市高一数学上学期期末试卷(含解析)-人教版高一全册数学试题

山西省晋中市高一数学上学期期末试卷(含解析)-人教版高一全册数学试题

2015-2016学年某某省晋中市高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.已知全集为R,A=[1,+∞),B=(0,+∞),则(∁R A)∩B等于()A.(﹣∞,0)B.(0,1)C.(0,1] D.(1,+∞)2.将样本数据按某标准分组,并制成频率分布直方图,已知样本数据在其中一组[m,n)中的频率为p,且该组在频率分布直方图上的高为h,则|m﹣n|等于()A.B.C.ph D.与h,p无关3.已知函数f(x)=,则f(f(2))等于()A.3 B.﹣3 C.D.﹣4.某公司从代理的A,B,C,D四种产品中,按分层抽样的方法抽取容量为110的样本,已知A,B,C,D四种产品的数量比是2:3:2,:4,则该样本中D类产品的数量为()A.22 B.33 C.44 D.555.下列函数在其定义域内,既是奇函数又是增函数的为()A.y=﹣B.y=ln(x+5)C.y=x2﹣1 D.y=x|x|6.当n=4时,执行如图所示的程序框图,输出S的值是()A.7 B.9 C.11 D.167.当0<a<1时,不等式log a(4﹣x)>﹣log x的解集是()A.(0,+∞)B.(0,2)C.(2,4)D.(0,4)8.同时掷2枚硬币,那么互为对立事件的是()A.恰好有1枚正面和恰有2枚正面B.至少有1每正面和恰好有1枚正面C.至少有2枚正面和恰有1枚正面D.最多有1枚正面和恰有2枚正面9.以下叙述中正确的个数有()①为了了解高一年级605名学生的数学学习情况,打算从中抽取一个容量为30的样本,考虑用系统抽样,则分段的间隔k为30;②函数y=e x﹣e﹣x是偶函数;③线性回归直线方程=x+恒过(,),且至少过一个样本点;④若f(log2x)=x+2,则f(1)=2.A.0 B.1 C.2 D.310.已知一个算法的程序图如图所示,当输入x∈[﹣2,9]时,则输出的y属于()A.[﹣1,2] B.[0,2] C.[﹣1,)D.[0,)11.在甲、乙两个盒子中分别装有标号为1,2,3,4,5的五个球,现从甲乙两个盒子中各取出1个球,球的标号分别记做a,b,每个球被取出的可能性相等,则|a﹣b|≤1的概率为()A.B.C.D.12.已知f(x)对任意x∈[0,+∞)都有f(x+1)=﹣f(x),且当x∈[0,1)时,f(x)=x,若函数g(x)=f(x)﹣log a(x+1)(0<a<1)在区间[0,4]上有两个零点,则实数a 的取值X围是()A.[,] B.[,) C.[,) D.[,]二、填空题:本大题共4个小题,每小题5分.、共20分.13.执行如下的程序,若输入的n=﹣3,则输出的m=.14.函数f(x)=x﹣()x+a的零点在区间(1,+∞)上,则实数a的取值X围是.15.已知在正方形ABCD中,点E是边BC的中点,在边AB上任取一点F,则△ADF与△BFE 的面积之比不小于1的概率是.16.已知非空集合S={x|﹣≤x≤m}满足:当k∈S时,有x2∈S,则实数m的取值X围是.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.分别抽取甲、乙两名同学本学期同科目各类考试的6X试卷,并将两人考试中失分情况记录如下:甲:18、19、21、22、5、11乙:9、7、23、25、19、13(1)用茎叶图表示甲乙两人考试失分数据;(2)从失分数据可认否判断甲乙两人谁的考试表现更好?请说明理由.18.已知集合B={x|﹣3<x<2},C={x|2x﹣1≥0}.(1)求B∩C,B∪C;(2)设函数f(x)=的定义域为A,且A⊆C,某某数m的最大值.19.某企业上半年产品产量与单位成本资料如表:月份产量(千件)单位成本(元)1 2 732 3 723 4 714 3 735 4 696 5 68且已知产量x与成本y具有线性相关关系(a,b用小数表示,结果精确到0.01).(1)求出y关于x的线性回归方程(给出数据x i y i=1481);(2)指出产量每增加1000件时,单位成本平均变动多少?(3)假定产量为6000件时,单位成本为多少元?20.已知函数f(x)=log a x(a>0且a≠1),g(x)=﹣(x﹣)2.(1)若a=3,f()f(3x)=﹣5,求x的值;(2)若f(3a﹣1)>f(a),求g(a)的取值X围.21.某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).(1)求样本容量n和频率分布直方图中的x,y的值;(2)估计本次竞赛学生成绩的中位数和平均分;(3)在选取的样本中,从竞赛成绩在50分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中至少有一人得分在[90,100]内的频率.22.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)设g(x)=log4(a•2x﹣a)(a<100),若函数f(x)与g(x)的图象只有一个公共点,求整数a的个数.2015-2016学年某某省晋中市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.已知全集为R,A=[1,+∞),B=(0,+∞),则(∁R A)∩B等于()A.(﹣∞,0)B.(0,1)C.(0,1] D.(1,+∞)【考点】交、并、补集的混合运算.【专题】对应思想;定义法;集合.【分析】根据补集与交集的定义,求出A在R中的补集∁R A,求出(∁R A)∩B即可.【解答】解:全集为R,A=[1,+∞),∴∁R A=(﹣∞,1),又B=(0,+∞),∴(∁R A)∩B=(0,1).故选:B.【点评】本题考查了补集与交集的定义与应用问题,是基础题目.2.将样本数据按某标准分组,并制成频率分布直方图,已知样本数据在其中一组[m,n)中的频率为p,且该组在频率分布直方图上的高为h,则|m﹣n|等于()A.B.C.ph D.与h,p无关【考点】频率分布直方图.【专题】计算题;函数思想;定义法;概率与统计.【分析】频率分布直方图中,小矩形的高等于每一组的,它们与频数成正比,小矩形的面积等于这一组的频率,则组距等于频率除以高,建立关系即可解得.【解答】解:小矩形的面积等于这一组的频率,小矩形的高等于每一组的,则组距等于频率除以高,即|m﹣n|=.故选:A【点评】本题考查频率及频率分布直方图,频数等有关知识,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识.3.已知函数f(x)=,则f(f(2))等于()A.3 B.﹣3 C.D.﹣【考点】函数的值.【专题】计算题;规律型;函数的性质及应用.【分析】利用分段函数由里及外逐步求解即可.【解答】解:函数f(x)=,则f(f(2))=f(22﹣4×2)=f(﹣4)=.故选:D.【点评】本题考查分段函数的应用,函数值的求法,是基础题.4.某公司从代理的A,B,C,D四种产品中,按分层抽样的方法抽取容量为110的样本,已知A,B,C,D四种产品的数量比是2:3:2,:4,则该样本中D类产品的数量为()A.22 B.33 C.44 D.55【考点】频率分布直方图.【专题】计算题;对应思想;定义法;概率与统计.【分析】根据总体中产品数量比与样本中抽取的产品数量比相等,计算样本中D型号的产品的数量.【解答】解:根据总体中产品数量比与样本中抽取的产品数量比相等,∴样本中B型号的产品的数量为110×=44.故选:C.【点评】本题考查了分层抽样的定义,熟练掌握分层抽样的特征是关键.5.下列函数在其定义域内,既是奇函数又是增函数的为()A.y=﹣B.y=ln(x+5)C.y=x2﹣1 D.y=x|x|【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】函数思想;综合法;函数的性质及应用.【分析】根据反比例函数在定义域上的单调性,奇函数图象的对称性便可判断出A,B,C都错误,从而得出D正确.【解答】解:A.在定义域内没有单调性,∴该选项错误;B.y=ln(x+5)的图象不关于原点对称,不是奇函数,∴该选项错误;C.y=x2﹣1是偶函数,不是奇函数,∴该选项错误;D.设y=f(x),f(x)定义域为R,且f(﹣x)=﹣x|﹣x|=﹣x|x|=﹣f(x);∴f(x)为奇函数;;∴f(x)在[0,+∞)上单调递增,在(﹣∞,0)上单调递增,且02=﹣02;∴f(x)在定义域R上是增函数,∴该选项正确.故选:D.【点评】考查反比例函数在定义域上的单调性,奇函数图象的对称性,熟悉对数函数和二次函数的图象,熟悉平移变换,以及奇函数的定义,含绝对值函数的处理方法:去绝对值号,二次函数的单调性,以及分段函数单调性的判断.6.当n=4时,执行如图所示的程序框图,输出S的值是()A.7 B.9 C.11 D.16【考点】程序框图.【专题】计算题;图表型;分析法;算法和程序框图.【分析】模拟执行程序,依次写出每次循环得到的S,m的值,当m=4时,不满足条件m<4,退出循环,输出S的值,从而得解.【解答】解:模拟执行程序框图,可得n=4,m=1,S=1满足条件m<4,S=1+1=2,m=1+1=2满足条件m<4,S=2+2=4,m=2+1=3满足条件m<4,S=4+3=7,m=3+1=4不满足条件m<4,退出循环,输出S的值为7.故选:A.【点评】本题主要考查了程序框图和算法,考查了循环结构和条件语句,依次写出每次循环得到的S,m的值是解题的关键,属于基本知识的考查.7.当0<a<1时,不等式log a(4﹣x)>﹣log x的解集是()A.(0,+∞)B.(0,2)C.(2,4)D.(0,4)【考点】指、对数不等式的解法.【专题】计算题;转化思想;数学模型法;不等式的解法及应用.【分析】由对数的运算性质把已知不等式变形,然后利用对数函数的性质把对数不等式转化为一元一次不等式组求解.【解答】解:∵﹣log x=log a x,∴原不等式等价于log a(4﹣x)>log a x,∵0<a<1,∴,解得2<x<4.∴原不等式的解集为(2,4).故选:C.【点评】本题考查对数不等式的解法,考查了对数函数的单调性,是基础题.8.同时掷2枚硬币,那么互为对立事件的是()A.恰好有1枚正面和恰有2枚正面B.至少有1每正面和恰好有1枚正面C.至少有2枚正面和恰有1枚正面D.最多有1枚正面和恰有2枚正面【考点】互斥事件与对立事件.【专题】计算题;规律型;概率与统计.【分析】利用对立事件的概念求解.【解答】解:恰好有1枚正面和恰好有2枚正面有可能同时不发生,不互为对立事件,故A错误;至少有1枚正面和恰好有1枚正面有可能同时发生,不互为对立事件,故B错误;至少有2枚正面和恰好有1枚正面有可能同时不发生,不互为对立事件,故C错误.最多有1枚正面和至少有2枚正面不可能同时发生,也不可能同时不发生,互为对立事件,故D正确;故选:C.【点评】本题考查对立事件的判断,是基础题,解题时要注意对立事件的性质的合理运用.9.以下叙述中正确的个数有()①为了了解高一年级605名学生的数学学习情况,打算从中抽取一个容量为30的样本,考虑用系统抽样,则分段的间隔k为30;②函数y=e x﹣e﹣x是偶函数;③线性回归直线方程=x+恒过(,),且至少过一个样本点;④若f(log2x)=x+2,则f(1)=2.A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【专题】整体思想;综合法;简易逻辑.【分析】①根据系统抽样的定义进行判断.②根据函数奇偶性的定义进行判断.③根据线性回归的性质进行判断.④根据函数表达式进行求解即可.【解答】解:①为了了解高一年级605名学生的数学学习情况,打算从中抽取一个容量为30的样本,考虑用系统抽样,则分段的间隔k为20;故①错误,②∵f(﹣x)=e﹣x﹣e x=﹣(e x﹣e﹣x)=﹣f(x),∴函数y=e x﹣e﹣x是奇函数;故②错误,③线性回归直线方程=x+恒过(,),但不一定过样本点;故③错误,④若f(log2x)=x+2,则f(1)=f(log22)=2+2=4.故④错误,故正确的个数为0个,故选:A.【点评】本题主要考查命题的真假判断,涉及的知识点较多,综合性较强,难度不大.10.已知一个算法的程序图如图所示,当输入x∈[﹣2,9]时,则输出的y属于()A.[﹣1,2] B.[0,2] C.[﹣1,)D.[0,)【考点】程序框图.【专题】计算题;函数思想;定义法;算法和程序框图.【分析】根据程序框图知:算法的功能是求y=的值,求分段函数的值域可得答案.【解答】解:当﹣2≤x<1时,y=2x+,则y∈[,),当1≤x≤9时,y=1+,则y∈[﹣1,1],∴y∈[﹣1,)故选:C.【点评】本题考查了选择结构的程序框图,分段函数求值域的方法是先在不同的段上值域,再求并集.11.在甲、乙两个盒子中分别装有标号为1,2,3,4,5的五个球,现从甲乙两个盒子中各取出1个球,球的标号分别记做a,b,每个球被取出的可能性相等,则|a﹣b|≤1的概率为()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【专题】计算题;整体思想;定义法;概率与统计.【分析】所有的数对(a,b)共有5×5=25个,而满足|a﹣b|≤1的数对用列举法求得有13个,由此求得所求事件的概率.【解答】解:所有的数对(a,b)共有5×5=25个,而满足|a﹣b|≤1的数对(a,b)有(1,1),(1,2),(2,1)、(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(4,5),(5,4),(5,5)共计13个,故|a﹣b|≤1的概率为故选:B.【点评】本题考主要查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,列举法,是解决古典概型问题的一种重要的解题方法,属于基础题.12.已知f(x)对任意x∈[0,+∞)都有f(x+1)=﹣f(x),且当x∈[0,1)时,f(x)=x,若函数g(x)=f(x)﹣log a(x+1)(0<a<1)在区间[0,4]上有两个零点,则实数a 的取值X围是()A.[,] B.[,) C.[,) D.[,]【考点】函数零点的判定定理;抽象函数及其应用.【专题】计算题;函数思想;数形结合法;函数的性质及应用.【分析】根据f(x)的周期和[0,1)的解析式画出f(x)在[0,4]的图象,根据图象交点个数列出不等式组解出a的X围.【解答】解:∵f(x+1)=﹣f(x),∴f(x+2)=﹣f(x+1)=f(x),∴f(x)的周期为2.当x∈[1,2)时,x﹣1∈[0,1),∴f(x)=﹣f(x+1)=﹣f(x﹣1)=﹣(x﹣1)=1﹣x.作出f(x)和y=log a(x+1)的函数图象如图:∵函数g(x)=f(x)﹣log a(x+1)(0<a<1)在区间[0,4]上有两个零点,∴log a(2+1)>﹣1,log a(4+1)≤﹣1.解得≤a.故选C.【点评】本题考查了抽象函数的应用,函数零点个数的判断,作出f(x)的图象是关键.二、填空题:本大题共4个小题,每小题5分.、共20分.13.执行如下的程序,若输入的n=﹣3,则输出的m= 3 .【考点】程序框图.【专题】计算题;分类讨论;分析法;算法和程序框图.【分析】模拟执行程序,可得程序的功能是计算并输出m=的值,从而可得当n=﹣3时,m=﹣2×(﹣3)﹣3=3.【解答】解:模拟执行程序,可得程序的功能是计算并输出m=的值,∵当n=﹣3时,﹣3<﹣3不成立,∴m=﹣2×(﹣3)﹣3=3.故答案为:3.【点评】本题主要考查了选择结构的程序算法,模拟执行程序,得程序的功能是解题的关键,属于基础题.14.函数f(x)=x﹣()x+a的零点在区间(1,+∞)上,则实数a的取值X围是a<﹣.【考点】函数零点的判定定理.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】确定函数f(x)=x﹣()x+a单调递增,利用函数f(x)=x﹣()x+a的零点在区间(1,+∞)上,可得f(1)=+a<0,即可求出实数a的取值X围.【解答】解:f′(x)=1﹣()x ln>0,∴函数f(x)=x﹣()x+a单调递增,∵函数f(x)=x﹣()x+a的零点在区间(1,+∞)上,∴f(1)=+a<0,∴a<﹣.故答案为:a<﹣.【点评】正确把问题等价转化、熟练掌握利用导数研究函数的单调性是解题的关键.15.已知在正方形ABCD中,点E是边BC的中点,在边AB上任取一点F,则△ADF与△BFE 的面积之比不小于1的概率是.【考点】几何概型.【专题】计算题;概率与统计.【分析】根据题意,利用S△ADF:S△BFE≥1时,可得≥,由此结合几何概型计算公式,即可算出使△ADF与△BFE的面积之比不小于1的概率.【解答】解:由题意,S△ADF=AD•AF,S△BFE=BE•BF,当S△ADF:S△BFE≥1时,可得≥,∴△ADF与△BFE的面积之比不小于1的概率P=.故答案为:.【点评】本题给出几何概型,求△ADF与△BFE的面积之比不小于1的概率.着重考查了三角形的面积公式和几何概型计算公式等知识,属于基础题.16.已知非空集合S={x|﹣≤x≤m}满足:当k∈S时,有x2∈S,则实数m的取值X围是0≤m≤1.【考点】集合的包含关系判断及应用.【专题】计算题;转化思想;综合法;集合.【分析】由题意可得m≥﹣,再结合当x∈S时,有x2∈S,从而求m.【解答】解:∵集合S={x|﹣≤x≤m}是非空集合,∴m≥﹣,又∵当x∈S时,有x2∈S,∴m2≤m,∴0≤m≤1.故答案为:0≤m≤1.【点评】本题考查了集合的化简与应用,属于基础题.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.分别抽取甲、乙两名同学本学期同科目各类考试的6X试卷,并将两人考试中失分情况记录如下:甲:18、19、21、22、5、11乙:9、7、23、25、19、13(1)用茎叶图表示甲乙两人考试失分数据;(2)从失分数据可认否判断甲乙两人谁的考试表现更好?请说明理由.【考点】极差、方差与标准差;茎叶图.【专题】计算题;对应思想;定义法;概率与统计.【分析】(1)用茎叶图表示出甲乙两人考试失分数据即可;(2)计算甲、乙二人的平均数与方差,比较大小即可.【解答】解:(1)用茎叶图表示甲乙两人考试失分数据,如下;(2)甲的平均数为=(5+11+18+19+21+22)=16,方差为= [(5﹣16)2+(11﹣16)2+(18﹣16)2+(19﹣16)2+(21﹣16)2+(22﹣16)2]=;乙的平均数为=(7+9+13+19+23+25)=16,方差为= [(7﹣16)2+(9﹣16)2+(13﹣16)2+(19﹣16)2+(23﹣16)2+(25﹣16)2]=;∵=,<,∴甲的考试表现更稳定,即甲的考试表现更好.【点评】本题考查了利用茎叶图求平均数与方差的应用问题,是基础题目.18.已知集合B={x|﹣3<x<2},C={x|2x﹣1≥0}.(1)求B∩C,B∪C;(2)设函数f(x)=的定义域为A,且A⊆C,某某数m的最大值.【考点】函数的定义域及其求法;并集及其运算;交集及其运算.【专题】计算题;函数思想;数学模型法;不等式的解法及应用;集合.【分析】(1)求出集合C={x|x≥0},则B∩C,B∪C的答案可求;(2)由题意列出不等式组,求解得到,又A⊆C,则,求出m的X围即可得到实数m的最大值.【解答】解:(1)集合B={x|﹣3<x<2},C={x|2x﹣1≥0}={x|x≥0}.则B∩C={x|﹣3<x<2}∩{x|x≥0}={x|0≤x<2},B∪C={x|﹣3<x<2}∪{x|x≥0}={x|x>﹣3};(2)由题意知,解得:2x+m≥1即.又A⊆C,∴.∴m≤1.∴实数m的最大值为1.【点评】本题考查了交集、并集及其运算,考查了函数的定义域及其求法,考查了对数函数的性质,是中档题.19.某企业上半年产品产量与单位成本资料如表:月份产量(千件)单位成本(元)1 2 732 3 723 4 714 3 735 4 696 5 68且已知产量x与成本y具有线性相关关系(a,b用小数表示,结果精确到0.01).(1)求出y关于x的线性回归方程(给出数据x i y i=1481);(2)指出产量每增加1000件时,单位成本平均变动多少?(3)假定产量为6000件时,单位成本为多少元?【考点】线性回归方程.【专题】函数思想;综合法;概率与统计.【分析】(1)利用回归系数公式计算回归系数,得出回归方程;(2)根据回归方程中的b回答;(2)把x=6代入回归方程求出成本的估计值.【解答】解:(1)==3.5, ==71.=22+32+42+32+42+52=79, =1481,∴b==≈﹣1.82.a==71+1.82×3.5=77.37.∴y关于x的线性回归方程是=﹣1.82x+77.37.(2)∵b=﹣1.82<0,产量x的单位为千件,∴产量每增加1000件时,单位成本平均减少1.82元.(3)当x=6时, =﹣1.82×6+77.37=66.45.∴当产量为6000件时,单位成本大约为66.45元.【点评】本题考查了线性回归方程的解法,线性回归方程的含义,利用回归方程进行数值估计,属于基础题.20.已知函数f(x)=log a x(a>0且a≠1),g(x)=﹣(x﹣)2.(1)若a=3,f()f(3x)=﹣5,求x的值;(2)若f(3a﹣1)>f(a),求g(a)的取值X围.【考点】对数函数的图象与性质.【专题】函数思想;综合法;函数的性质及应用.【分析】(1))由题意得(﹣)(+)=﹣5,设t=,即(3﹣t)(1+t)=﹣5,解出即可;(2)求出a的X围,根据g(x)的最大值是0,求出g(a)的X围即可.【解答】解:(1)由题意得:(﹣)(+)=(﹣)(+)=﹣5,设t=,即(3﹣t)(1+t)=﹣5,∴t2﹣2t﹣8=0,解得:t=4或﹣2,∴=4或=﹣2,解得:x=81或x=;(2)当a>1,3a﹣1>a>0,∴a>,又a>1,∴a>1,当0<a<1,0<3a﹣1<a,∴<a<,综上,a∈(,)∪(1,+∞),∴a=时,g(x)max=0,又g()=g()=﹣,g(1)=﹣,∴g(a)∈(﹣∞,﹣)∪(﹣,0].【点评】本题考查了对数函数的性质,考查二次函数的性质,是一道中档题.21.某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).(1)求样本容量n和频率分布直方图中的x,y的值;(2)估计本次竞赛学生成绩的中位数和平均分;(3)在选取的样本中,从竞赛成绩在50分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中至少有一人得分在[90,100]内的频率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图;众数、中位数、平均数.【专题】计算题;整体思想;定义法;概率与统计.【分析】(1)由样本容量和频数频率的关系易得答案;(2)根据平均数的定义和中位数的定义即可求出.(3)由题意可知,分数在[80,90)内的学生有5人,记这5人分别为a1,a2,a3,a4,a5,分数在[90,100]内的学生有2人,记这2人分别为b1,b2,列举法易得【解答】解:(1)由题意可知,样本容量n==50,y==0.004,x=0.100﹣0.004﹣0.010﹣0.016﹣0.040=0.030;(2)设本次竞赛学生成绩的中位数为m,平均分为,则[0.016+0.03+(m﹣70)×0.040]×10=0.5,解得m=71,=(55×0.016+65×0.030+75×0.040+85×0.010+95×0.004]×10=70.6,(3)由题意可知,分数在[80,90)内的学生有5人,记这5人分别为a1,a2,a3,a4,a5,分数在[90,100]内的学生有2人,记这2人分别为b1,b2.抽取的2名学生的所有情况有21种,分别为:(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,a5),(a2,b1),(a2,b2),(a3,a4),(a3,a5),(a3,b1),(a3,b2),(a4,a5),(a4,b1),(a4,b2),(a5,b1),(a5,b2),(b1,b2).其中2名同学的分数都不在[90,100]内的情况有10种,分别为:(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a2,a3),(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5).∴所抽取的2名学生中至少有一人得分在[90,100]内的概率P=1﹣=【点评】本题考查列举法求古典概型的概率,涉及频率分布直方图,属基础题.22.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)设g(x)=log4(a•2x﹣a)(a<100),若函数f(x)与g(x)的图象只有一个公共点,求整数a的个数.【考点】对数函数的图象与性质;函数奇偶性的性质.【专题】函数思想;综合法;函数的性质及应用.【分析】(1)利用偶函数定义求解即可(2)利用已知条件转化为22x+1=(a•2x﹣a)•2x,令t=2x,则方程可化为(a﹣1)t2at﹣1=0,分类讨论利用二次函数求解即可.【解答】解:(1)∵函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.∴f(﹣x)=f(x)log4(4﹣x+1)﹣kx=log4(4x+1)+kx(k∈R)根据对数性质化简得出:﹣x﹣kx=kx即﹣1﹣k=kk=﹣(2)∵函数f(x)与g(x)的图象只有一个公共点,∴log4(4x+1)﹣x=log4(a•2x﹣a)有且只有一个实数根.即22x+1=(a•2x﹣a)•2x,令t=2x,则方程可化为(a﹣1)t2at﹣1=0,①a=1,t=②△=0,a=或a=﹣3,③一个正根一个负根,a>1,∵a<100,∴1<a<100,综上a=﹣3,2,3,4,…99,共99个【点评】本题综合考查了函数的定义性质,方程的运用,分类讨论的思想,属于中档题.。

高一数学上学期期末考试试题(含解析)-人教版高一全册数学试题

高一数学上学期期末考试试题(含解析)-人教版高一全册数学试题

某某省实验中学2017-2018学年高一数学上学期期末考试试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】则故选2. 直线的倾斜角是()A. B. C. D.【答案】C【解析】直线的斜率为直线的倾斜角为:,可得:故选3. 计算,其结果是()A. B. C. D.【答案】B【解析】原式故选4. 已知四面体中,,分别是,的中点,若,,,则与所成角的度数为()A. B. C. D.【答案】D【解析】如图,取的中点,连接,,则,(或补角)是与所成的角,,,,,而故选5. 直线在轴上的截距是()A. B. C. D.【答案】B【解析】直线在轴上的截距就是在直线方程中,令自变量,直线在轴上的截距为故选6. 已知,是两个不同的平面,给出下列四个条件:①存在一条直线,使得,;②存在两条平行直线,,使得,,,;③存在两条异面直线,,使得,,,;④存在一个平面,使得,.其中可以推出的条件个数是()A. 1B. 2C. 3D. 4【答案】B【解析】当,不平行时,不存在直线与,都垂直,,,故正确;存在两条平行直线,,,,,,则,相交或平行,所以不正确;存在一个平面,使得,,则,相交或平行,所以不正确;故选7. 已知梯形是直角梯形,按照斜二测画法画出它的直观图(如图所示),其中,,,则直角梯形边的长度是()A. B. C. D.【答案】B【解析】根据斜二测画法,原来的高变成了方向的线段,且长度是原高的一半,原高为而横向长度不变,且梯形是直角梯形,故选8. 经过点的直线到,两点的距离相等,则直线的方程为()A. B.C. 或D. 都不对【答案】C【解析】当直线的斜率不存在时,直线显然满足题意;当直线的斜率存在时,设直线的斜率为则直线为,即由到直线的距离等于到直线的距离得:,化简得:或(无解),解得直线的方程为综上,直线的方程为或故选9. 已知函数的图象与函数(,)的图象交于点,如果,那么的取值X围是()A. B. C. D.【答案】D【解析】由已知中两函数的图象交于点,由指数函数的性质可知,若,则,即,由于,所以且,解得,故选D.点睛:本题考查了指数函数与对数函数的应用,其中解答中涉及到指数函数的图象与性质、对数函数的图象与性质,以及不等式关系式得求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,本题的解答中熟记指数函数与对数函数的图象与性质,构造关于的不等式是解答的关键,试题比较基础,属于基础题.10. 矩形中,,,沿将矩形折成一个直二面角,则四面体的外接球的体积是()A. B. C. D.【答案】B【解析】由题意知,球心到四个顶点的距离相等,球心在对角线上,且其半径为长度的一半为故选11. 若关于的方程在区间上有解,则实数的取值X围是()A. B. C. D.【答案】A【解析】由题意可得:函数在区间上的值域为实数的取值X围是故选点睛:本小题考查的是学生对函数最值的应用的知识点的掌握。

湖南省郴州市高一数学上学期期末试卷(含解析)-人教版高一全册数学试题

湖南省郴州市高一数学上学期期末试卷(含解析)-人教版高一全册数学试题

某某省某某市2014-2015学年高一上学期期末数学试卷一、选择题(每小题4分,共40分)1.(4分)若集合A={x|﹣2≤x<1},B={x|0<x≤2},则A∩B=()A.{x|﹣2≤x≤2}B.{x|﹣2≤x<0} C.{x|0<x<1} D.{x|1<x≤2}2.(4分)下列函数中,在R上单调递减的是()A.y=|x| B.y=log2x C.y=x D.y=()x3.(4分)函数f(x)=的定义域为()A.③若m⊥α,m∥β,则α⊥β.其中真命题的个数是()A.0 B.1 C.2 D.36.(4分)三视图如图的几何体的全面积是()A.B.C.D.7.(4分)已知正三棱锥的侧棱长是底面边长的2倍,则侧棱与底面所成角的余弦值等于()A.B.C.D.8.(4分)函数f(x)=log3x﹣8+2x的零点一定位于区间()A.(5,6)B.(3,4)C.(2,3)D.(1,2)9.(4分)设点P是Z轴上一点,且点P到M(1,0,2)与点N(1,﹣3,1)的距离相等,则点P的坐标是()A.(﹣3,﹣3,0)B.(0,0,3)C.(0,﹣3,﹣3)D.(0,0,﹣3)10.(4分)设r>0,两圆(x﹣1)2+(y+3)2=r2与x2+y2=16可能()A.相离B.相交C.内切或内含或相交D.外切或外离二、填空题(每小题4分,共20分)11.(4分)如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于.12.(4分)已知点A(1,2)、B(3,1),则线段AB的垂直平分线的方程是.13.(4分)已知函f(x)=,则f(f())=.14.(4分)若f(x)为奇函数,当x<0时,f(x)=x2+ax,且f(3)=6,则实数a的值为.15.(4分)过点的直线l将圆(x﹣2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=.三、解答题16.(6分)求经过直线l1:3x+2y﹣5=0,l2:3x﹣2y﹣1=0的交点且平行于直线2x+y﹣5=0的直线方程.17.(8分)已知函数f(x)=(a>1)(Ⅰ)判断函数f(x)的奇偶性(Ⅱ)判断f(x)在(﹣∞,+∞)上的单调性,并用定义证明.18.(8分)如图,已知等腰直角三角形RBC,其中∠RBC=90°,RB=BC=2,点A,D分别是RB,RC的中点,现将△RAD沿着边AD折起到△PAD位置,使PA⊥AB,连结PB,PC(Ⅰ)求证:BC⊥PB(Ⅱ)求PC与平面ABCD所成角的余弦值.19.(9分)如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,设AE=x,绿地面积为y.(1)写出y关于x的函数关系式,并指出这个函数的定义域.(2)当AE为何值时,绿地面积最大?20.(9分)已知圆方程x2+y2﹣2x﹣4y+m=0.(1)若圆与直线x+2y﹣4=0相交于M,N两点,且OM⊥ON(O为坐标原点)求m的值;(2)在(1)的条件下,求以MN为直径的圆的方程.某某省某某市2014-2015学年高一上学期期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)若集合A={x|﹣2≤x<1},B={x|0<x≤2},则A∩B=()A.{x|﹣2≤x≤2}B.{x|﹣2≤x<0} C.{x|0<x<1} D.{x|1<x≤2}考点:交集及其运算.专题:集合.分析:由A与B,求出两集合的交集即可.解答:解:∵A={x|﹣2≤x<1},B={x|0<x≤2},∴A∩B={x|0<x<1}.故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(4分)下列函数中,在R上单调递减的是()A.y=|x| B.y=log2x C.y=x D.y=()x考点:函数单调性的性质.专题:函数的性质及应用.分析:根据函数单调性的性质分别进行判断即可.解答:解:y=|x|在(﹣∞,0]上为减函数,在分析:利用分式分母不为零,偶次方根非负,得到不等式组,求解即可.解答:解:由题意解得x∈解答:解:a=2﹣1=,b=log3<0,c=()﹣1=,所以b<a<c,故选:B.点评:本题主要考查了指数函数的性质和对数函数的性质,属于基础题.5.(4分)已知直线m、n与平面α,β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中真命题的个数是()A.0 B.1 C.2 D.3考点:平面与平面之间的位置关系;空间中直线与平面之间的位置关系.专题:综合题.分析:根据线面平行的性质,线面垂直的性质,面面平行的判定,结合空间点线面之间的关系,我们逐一分析已知中的三个命题即可得到答案.解答:解:m∥α,n∥α,时,m与n可能平行、可能异面也可能相交,故①错误;m∥α,n⊥α时,存在直线l⊂α,使m∥l,则n⊥l,也必有n⊥m,故②正确;m⊥α,m∥β时,直线l⊂β,使l∥m,则n⊥β,则α⊥β,故③正确;故选C点评:本题考查的知识点是平面与平面之间的位置关系,空间中直线与平面之间的位置关系,熟练掌握空间线面关系的判定方法,建立良好的空间想象能力是解答本题的关键.6.(4分)三视图如图的几何体的全面积是()A.B.C.D.考点:由三视图求面积、体积.专题:计算题.分析:由三视图知几何体是一个四棱锥,四棱锥的底面是一个边长为1的正方形,一条侧棱与底面垂直,且侧棱的长是1,另外两条侧棱长,得到表面积.解答:解:由三视图知几何体是一个四棱锥,四棱锥的底面是一个边长为1的正方形,一条侧棱与底面垂直,且侧棱的长是1,∴四棱锥的表面积是1×+2×=2+故选A.点评:本题考查由三视图还原几何体,本题解题的关键是看出几何体的各个部分的长度,本题是一个基础题.7.(4分)已知正三棱锥的侧棱长是底面边长的2倍,则侧棱与底面所成角的余弦值等于()A.B.C.D.考点:棱锥的结构特征.专题:计算题.分析:由题意可知,本题需作辅助线,可以根据三角形的特征,进行求解.解答:解:已知正三棱锥的侧棱长是底面边长的2倍,设底面边长为1,侧棱长为2,连接顶点与底面中心,则侧棱在底面上的射影长为,所以侧棱与底面所成角∠PAO的余弦值等于,故选A.点评:本题考查学生的空间想象能力,以及学生对三角形的利用,是基础题.8.(4分)函数f(x)=log3x﹣8+2x的零点一定位于区间()A.(5,6)B.(3,4)C.(2,3)D.(1,2)考点:根的存在性及根的个数判断.专题:计算题.分析:根据函数零点存在定理,若f(x)=log3x﹣8+2x若在区间(a,b)上存在零点,则f(a)•f(b)<0,我们根据函数零点存在定理,对四个答案中的区间进行判断,即可得到答案.解答:解:当x=3时,f(3)=log33﹣8+2×3=﹣1<0当x=4时,f(4)=log34﹣8+2×4=log34>0即f(3)•f(4)<0又∵函数f(x)=log3x﹣8+2x为连续函数故函数f(x)=log3x﹣8+2x的零点一定位于区间(3,4)故选B点评:本题考查的知识点是零点存在定理,我们求函数的零点通常有如下几种方法:①解方程;②利用零点存在定理;③利用函数的图象,其中当函数的解析式已知时(如本题),我们常采用零点存在定理.9.(4分)设点P是Z轴上一点,且点P到M(1,0,2)与点N(1,﹣3,1)的距离相等,则点P的坐标是()A.(﹣3,﹣3,0)B.(0,0,3)C.(0,﹣3,﹣3)D.(0,0,﹣3)考点:空间两点间的距离公式.专题:空间位置关系与距离.分析:设出M点的坐标,利用点P到M(1,0,2)与点N(1,﹣3,1)的距离相等,列出方程即可求出M的坐标.解答:解:由题意设P(0,0,z),因为点P到M(1,0,2)与点N(1,﹣3,1)的距离相等,所以,=解得z=﹣3.所以P的坐标为(0,0,﹣3).故选:D.点评:本题考查空间两点的距离公式的求法,考查计算能力.10.(4分)设r>0,两圆(x﹣1)2+(y+3)2=r2与x2+y2=16可能()A.相离B.相交C.内切或内含或相交D.外切或外离考点:圆与圆的位置关系及其判定.专题:计算题.分析:先计算两圆的圆心距,再与半径的和差比较,可判断.解答:解:∵两圆圆心坐标为(1,﹣3),(0,0)∴两圆的圆心距的平方为(0﹣1)2+(0+3)2=10,半径分别为4,r,∴当时,两圆相交;当时,两圆内切;当时,两圆内含.故选C.点评:本题主要考查圆与圆的位置关系,利用代数方法可解.二、填空题(每小题4分,共20分)11.(4分)如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于2π.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:设圆柱的高为:h,轴截面为正方形的圆柱的底面直径为h,由圆柱的侧面积是4π,得h2π=4π,求出h=2,由此能求出圆柱的体积.解答:解:设圆柱的高为h,轴截面为正方形的圆柱的底面直径为:h,因为圆柱的侧面积是4π,所以h2π=4π,∴h=2,所以圆柱的底面半径为:1,圆柱的体积:π×12×2=2π.故答案为:2π.点评:本题考查圆柱的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.12.(4分)已知点A(1,2)、B(3,1),则线段AB的垂直平分线的方程是4x﹣2y﹣5=0.考点:直线的点斜式方程.专题:计算题.分析:要求线段AB的垂直平分线,即要求垂直平分线线上一点与直线的斜率,根据中点坐标公式求出AB的中点M的坐标,利用A与B的坐标求出直线AB的斜率,根据两直线垂直时斜率乘积为﹣1得到垂直平分线的斜率,根据M的坐标和求出的斜率写出AB的垂直平分线的方程即可.解答:解:设M的坐标为(x,y),则x==2,y==,所以M(2,)因为直线AB的斜率为=﹣,所以线段AB垂直平分线的斜率k=2,则线段AB的垂直平分线的方程为y﹣=2(x﹣2)化简得4x﹣2y﹣5=0故答案为:4x﹣2y﹣5=0点评:此题考查学生会利用中点坐标公式求线段中点的坐标,掌握两直线垂直时斜率的关系,会根据一点和斜率写出直线的点斜式方程,是一道中档题.13.(4分)已知函f(x)=,则f(f())=.考点:对数的运算性质;函数的值.专题:函数的性质及应用.分析:利用分段函数直接进行求值即可.解答:解:由分段函数可知f()=,f(f())=f(﹣2)=.故答案为:.点评:本题主要考查分段函数求值,比较基础.14.(4分)若f(x)为奇函数,当x<0时,f(x)=x2+ax,且f(3)=6,则实数a的值为5.考点:函数奇偶性的性质.分析:利用函数是奇函数,由f(3)=6,得到f(﹣3)=﹣f(3)=﹣6,代入表达式即可求解.解答:解:因为f(x)为奇函数,当x<0时,f(x)=x2+ax,且f(3)=6,所以f(﹣3)=﹣f(3)=﹣6,即f(﹣3)=9﹣3a=﹣6,所以3a=15,解得a=5.故答案为:5.点评:本题主要考查函数奇偶性的应用,比较基础.15.(4分)过点的直线l将圆(x﹣2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=.考点:直线的斜率;直线和圆的方程的应用.专题:压轴题;数形结合.分析:本题考查的是直线垂直时斜率之间的关系,及直线与圆的相关性质,要处理本题我们先要画出满足条件的图形,数形结合容易得到符合题目中的条件的数理关系,由劣弧所对的圆心角最小弦长最短,及过圆内一点最短的弦与过该点的直径垂直,易得到解题思路.解答:解:如图示,由图形可知:点A在圆(x﹣2)2+y2=4的内部,圆心为O(2,0)要使得劣弧所对的圆心角最小,只能是直线l⊥OA,所以.点评:垂径定理及其推论是解决直线与圆关系时常用的定理,要求大家熟练掌握,垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.相关推论,过圆内一点垂直于该点直径的弦最短,且弦所地的劣弧最短,优弧最长,弦所对的圆心角、圆周角最小….三、解答题16.(6分)求经过直线l1:3x+2y﹣5=0,l2:3x﹣2y﹣1=0的交点且平行于直线2x+y﹣5=0的直线方程.考点:待定系数法求直线方程.专题:直线与圆.分析:联立,解得交点坐标(1,1),与直线2x+y﹣5=0平行的直线为:2x+y+m=0,把(1,1)代入解得即可.解答:解:联立,解得,交点坐标(1,1).与直线2x+y﹣5=0平行的直线为:2x+y+m=0,把(1,1)代入可得2+1+m=0,解得m=﹣3.∴所求的直线方程为:2x+y﹣3=0.点评:本题考查了直线的交点坐标、平行线的斜率之间的关系,考查了计算能力,属于基础题.17.(8分)已知函数f(x)=(a>1)(Ⅰ)判断函数f(x)的奇偶性(Ⅱ)判断f(x)在(﹣∞,+∞)上的单调性,并用定义证明.考点:函数单调性的判断与证明;函数奇偶性的判断.专题:函数的性质及应用.分析:(Ⅰ)由题意可得函数的定义域为R,可得f(﹣x)=﹣f(x),可得奇函数;(Ⅱ)设x1,x2∈(﹣∞,+∞)且x1<x2,可判定f(x1)﹣f(x2)的符号,由单调性的定义可得结论.解答:解:(Ⅰ)可得函数的定义域为R,f(﹣x)===﹣=﹣f(x),∴函数f(x)为奇函数;(Ⅱ)函数f(x)在(﹣∞,+∞)为增函数,证明如下:设x1,x2∈(﹣∞,+∞)且x1<x2,则f(x1)﹣f(x2)=﹣==,∵a>1且x1<x2,∴﹣<0,∴<0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴f(x)在(﹣∞,+∞)上是增函数.点评:本题考查函数的单调性和奇偶性,涉及单调性的定义法证明,属基础题.18.(8分)如图,已知等腰直角三角形RBC,其中∠RBC=90°,RB=BC=2,点A,D分别是RB,RC的中点,现将△RAD沿着边AD折起到△PAD位置,使PA⊥AB,连结PB,PC(Ⅰ)求证:BC⊥PB(Ⅱ)求PC与平面ABCD所成角的余弦值.考点:直线与平面所成的角.专题:空间位置关系与距离;空间角.分析:(Ⅰ)由已知条件AD∥BC,PA⊥AD,从而得到BC⊥PA,再由BC⊥AB,即可得到BC⊥平面PAB,从而得出BC⊥PB;(Ⅱ)由PA⊥AD,PA⊥AB即可得到PA⊥平面ABCD,从而连接AC,∠PCA便是PC与平面ABCD 所成角,从而求出AC,PC的长,在直角三角形PAC中即可求出cos∠PCA.解答:解:(Ⅰ)证明:∵A、D分别是RB、RC的中点;∴AD∥BC,∠PAD=∠RAD=∠RBC=90°;∴PA⊥AD,PA⊥BC;又BC⊥AB,PA∩AB=A;∴BC⊥平面PAB;∵PB⊂平面PAB;∴BC⊥PB;(Ⅱ)由PA⊥A D,PA⊥AB,AD∩AB=A;∴PA⊥平面ABCD;连接AC,则∠PCA是直线PC与平面ABCD所成的角;∵AB=1,BC=2,∴AC=;又PA=1,PA⊥AC,∴PC=;∴在Rt△PAC中,cos;∴PC与平面ABCD所成角的余弦值为.点评:考查三角形中位线的性质,弄清折叠前后不变的量,线面垂直的判定定理及其性质,线面角的概念及求法,直角三角形边的关系.19.(9分)如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,设AE=x,绿地面积为y.(1)写出y关于x的函数关系式,并指出这个函数的定义域.(2)当AE为何值时,绿地面积最大?考点:函数模型的选择与应用;函数的最值及其几何意义.专题:应用题.分析:(1)先求得四边形ABCD,△AHE的面积,再分割法求得四边形EFGH的面积,即建立y关于x的函数关系式;(2)由(1)知y是关于x的二次函数,用二次函数求最值的方法求解.解答:解:(1)S△AEH=S△CFG=x2,(1分)S△BEF=S△DGH=(a﹣x)(2﹣x).(2分)∴y=S ABCD﹣2S△AEH﹣2S△BEF=2a﹣x2﹣(a﹣x)(2﹣x)=﹣2x2+(a+2)x.(5分)由,得0<x≤2(6分)∴y=﹣2x2+(a+2)x,0<x≤2(7分)(2)当,即a<6时,则x=时,y取最大值.(9分)当≥2,即a≥6时,y=﹣2x2+(a+2)x,在(0,2]上是增函数,则x=2时,y取最大值2a﹣4(11分)综上所述:当a<6时,AE=时,绿地面积取最大值;当a≥6时,AE=2时,绿地面积取最大值2a﹣4(12分)点评:本题主要考查实际问题中的建模和解模能力,注意二次函数求最值的方法.20.(9分)已知圆方程x2+y2﹣2x﹣4y+m=0.(1)若圆与直线x+2y﹣4=0相交于M,N两点,且OM⊥ON(O为坐标原点)求m的值;(2)在(1)的条件下,求以MN为直径的圆的方程.考点:直线和圆的方程的应用.专题:直线与圆.分析:(1)将圆的方程与直线方程联立,设M(x1,y1),N(x2,y2),利用OM⊥ON,可得x1x2+y1y2=0,利用韦达定理,即可求出m的值;(2)确定圆心坐标与半径,即可求以MN为直径的圆的方程.解答:解:(1)由x2+y2﹣2x﹣4y+m=0得(x﹣1)2+(y﹣2)2=5﹣m由5﹣m>0,可得m<5…(2分)于是由题意把x=4﹣2y代入x2+y2﹣2x﹣4y+m=0,得 5y2﹣16y+8+m=0…..(3分)设M(x1,y1),N(x2,y2),则,…(4分)∵OM⊥ON,∴x1x2+y1y2=0…(5分)∴5y1y2﹣8(y1+y2)+16=0∴,满足题意…(8分)(2)设圆心为(a,b),则a=,b=….(9分)半径r==•=…(12分)∴圆的方程…(13分)点评:本题考查直线与圆的位置关系,考查韦达定理的运用,考查圆的方程,正确运用韦达定理是关键.。

浙江省杭州市余杭区高一数学上学期期末试卷(含解析)-人教版高一全册数学试题

浙江省杭州市余杭区高一数学上学期期末试卷(含解析)-人教版高一全册数学试题

2015-2016学年某某省某某市余杭区高一(上)期末数学试卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合U={1,2,3,4,5,6,7},集合A={2,4,5},则∁U A=()A.∅B.{1,3,5} C.{1,3,6,7} D.{1,3,5,7}2.当a>1时,在同一坐标系中,函数y=a x与y=log a x的图象是()A.B.C.D.3.下列函数中,是奇函数且在区间(0,1)内单调递减的函数是()A.y=log2x B.y=x﹣C.y=﹣x3D.y=tanx4.把函数y=sin3x的图象向右平移个长度单位,所得曲线的对应函数式()A.y=sin(3x﹣)B.y=sin(3x+)C.y=sin(3x﹣)D.y=sin(3x+)5.若cosθ=(﹣<θ<0),则cos(θ﹣)的值是()A. B.C. D.6.函数f(x)=5|x|的值域是()A.(﹣∞,1] B.[1,+∞)C.(0,1] D.(0,+∞)7.函数f(x)=的最大值是()A.1 B.2 C.3 D.48.已知函数f(x)是R上的增函数,对实数a,b,若a+b>0,则有()A.f(a)+f(b)>f(﹣a)+f(﹣b) B.f(a)+f(b)<f(﹣a)+f(﹣b)C.f(a)﹣f(b)>f(﹣a)﹣f(﹣b)D.f(a)﹣f(b)<f(﹣a)﹣f(﹣b)9.若log a2<log b2<0,则a,b满足的关系是()A.1<a<b B.1<b<a C.0<a<b<1 D.0<b<a<110.函数y=sinx+tanx,x∈[﹣,]的值域是()A.[﹣,] B.[﹣2,2] C.[﹣﹣1,] D.[﹣﹣1,+1]11.若sin(α+β)=,则为()A.5 B.﹣1 C.6 D.12.已知f(x)为偶函数,当x≥0时,f(x)=﹣(x﹣1)2+1,则满足f[f(a)+]=的实数a的个数为()A.2 B.4 C.6 D.8二.填空题(本大题共6小题,单空每小题6分,多空每小题6分,共28分,将答案填在答题卷的相应位置.)13.若函数f(x)=3sin(x+),则f(x)的周期是;f(π)=.14.若tanα=2,则=;sinα•cosα=.15.已知某扇形的周长是16,圆心角是2弧度,则该扇形的面积是.16.若函数f(x)=3x2﹣5x+a的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,则实数a的取值X围是.17.已知f(x)=log2(4﹣ax)在区间[﹣1,3]上是增函数,则a的取值X围是.18.已知定义在R上的函数f(x)满足:f(x+1)=,当x∈(0,1]时,f(x)=2x,则f(log29)等于.三.解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或验算步骤.)19.函数f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π)图象的一段如图所示(1)求此函数的解析式;(2)求函数f(x)在区间上的最大值和最小值.20.已知函数f(x)=为奇函数.(1)某某数a的值;(2)试判断函数的单调性并加以证明;(3)对任意的x∈R,不等式f(x)<m恒成立,某某数m的取值X围.21.已知函数f(x)=2x﹣1(x∈R).(1)求函数f(x)的单调递减区间;(2)若f(x0)=,,求cos2x0的值.22.如图,正方形ABCD的边长为1,P,Q分别为AB,DA上动点,且△APQ的周长为2,设 AP=x,AQ=y.(1)求x,y之间的函数关系式y=f(x);(2)判断∠PCQ的大小是否为定值?并说明理由;(3)设△PCQ的面积分别为S,求S的最小值.2015-2016学年某某省某某市余杭区高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合U={1,2,3,4,5,6,7},集合A={2,4,5},则∁U A=()A.∅B.{1,3,5} C.{1,3,6,7} D.{1,3,5,7}【考点】补集及其运算.【专题】计算题;定义法;集合.【分析】由全集U及A,求出A的补集即可.【解答】解:∵集合U={1,2,3,4,5,6,7},集合A={2,4,5},∴∁U A={1,3,6,7},故选:C.【点评】此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.2.当a>1时,在同一坐标系中,函数y=a x与y=log a x的图象是()A.B.C.D.【考点】对数函数的图象与性质.【专题】作图题;函数思想;定义法;函数的性质及应用.【分析】根据底数与指数(对数)函数单调性即可判断.【解答】解:a>1时,函数y=a x与y=log a x的均为增函数,故选:B.【点评】本题考查的知识是对数函数的图象与性质,指数函数的图象与性质,熟练掌握底数与指数(对数)函数单调性的关系是解答本题的关键.3.下列函数中,是奇函数且在区间(0,1)内单调递减的函数是()A.y=log2x B.y=x﹣C.y=﹣x3D.y=tanx【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】函数思想;综合法;函数的性质及应用.【分析】由奇函数的图象关于原点对称便可判断出A错误,可判断y=x和y=在(0,1)内单调递增便可判断B错误,而根据奇函数和减函数的定义即可判断出C正确,根据y=tanx 的图象便可判断出D错误.【解答】解:A.根据y=log2x的图象知该函数不是奇函数,∴该选项错误;B.y=x和在(0,1)内都单调递增,∴在(0,1)内单调递增,∴该选项错误;C.y=﹣x3为奇函数,且x增大时,y减小,∴该函数在(0,1)内单调递减,∴该选项正确;D.由y=tanx的图象知该函数在(01,1)内单调递增,∴该选项错误.故选C.【点评】考查奇函数图象的对称性,一次函数和反比例函数的单调性,奇函数和减函数的定义,清楚y=log2x和y=tanx的图象.4.把函数y=sin3x的图象向右平移个长度单位,所得曲线的对应函数式()A.y=sin(3x﹣)B.y=sin(3x+)C.y=sin(3x﹣)D.y=sin(3x+)【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;数形结合;分析法;三角函数的图像与性质.【分析】根据函数y=Asin(ωx+φ)的图象变换规律即可求解.【解答】解:把函数y=sin3x的图象向右平移个长度单位,所得曲线的对应函数式为y=sin[3(x﹣)]=sin(3x﹣).故选:A.【点评】本题主要考查了函数y=Asin(ωx+φ)的图象变换规律,属于基础题.5.若cosθ=(﹣<θ<0),则cos(θ﹣)的值是()A. B.C. D.【考点】两角和与差的余弦函数.【专题】函数思想;综合法;三角函数的求值.【分析】由同角三角函数基本关系可得sinθ,代入两角差的余弦公式计算可得.【解答】解:∵﹣<θ<0且cosθ=,∴sinθ=﹣=﹣,∴cos(θ﹣)=cosθ+sinθ=+=.故选:C.【点评】本题考查两角和与差的三角函数,涉及同角三角函数基本关系,属基础题.6.函数f(x)=5|x|的值域是()A.(﹣∞,1] B.[1,+∞)C.(0,1] D.(0,+∞)【考点】指数函数的图象变换.【专题】数形结合;数形结合法;函数的性质及应用.【分析】在x上加绝对值的图象表明去掉绝对值后的原函数图象只保留x>0部分,然后关于y轴对称后得到的图象就是填绝对值的图象.【解答】解:∵y=5x为指数函数,且其图象是过(0,1),单调递增的,而y=5|x|的左侧图象是指数函数y=5x的图象中y轴右侧的图象关于y轴对称后产生的新的图象,具体图象如下:故选:B.【点评】本题主要考查指数函数图象,和在x上填绝对值后的图象特点.属于基础题.7.函数f(x)=的最大值是()A.1 B.2 C.3 D.4【考点】简单线性规划.【专题】数形结合;数形结合法;不等式.【分析】作出分段函数的图象,数形结合可得.【解答】解:作出分段函数f(x)=的图象(如图),数形结合可得最大值为4,故选:D.【点评】本题考查函分段函数图象,准确作图是解决问题的关键,属中档题.8.已知函数f(x)是R上的增函数,对实数a,b,若a+b>0,则有()A.f(a)+f(b)>f(﹣a)+f(﹣b) B.f(a)+f(b)<f(﹣a)+f(﹣b)C.f(a)﹣f(b)>f(﹣a)﹣f(﹣b)D.f(a)﹣f(b)<f(﹣a)﹣f(﹣b)【考点】函数单调性的性质.【专题】证明题.【分析】先利用不等式的性质将a+b>0转化为两实数的大小形式,再利用函数f(x)的单调性,比较函数值的大小,最后利用同向不等式相加性得正确不等式【解答】解:∵a+b>0,∴a>﹣b,b>﹣a∵函数f(x)是R上的增函数∴f(a)>f(﹣b),f(b)>f(﹣a)∴f(a)+f(b)>f(﹣a)+f(﹣b)故选 A【点评】本题考查了不等式的基本性质,利用函数的单调性比较大小的方法,转化化归的思想方法9.若log a2<log b2<0,则a,b满足的关系是()A.1<a<b B.1<b<a C.0<a<b<1 D.0<b<a<1【考点】对数值大小的比较.【专题】计算题;方程思想;综合法;函数的性质及应用.【分析】利用对数函数的性质求解.【解答】解:∵log a2<log b2<0=log a1,∴0<a<1,0<b<1,∵2>1,要使log b2<0∴0<b<1∵log a2<log b2<0,∴a>b,且0<a<1,∴0<b<a<1.故选:D.【点评】本题考查两个数的大小的比较,是基础题,解题时要认真审题,注意对数函数的性质的合理运用.10.函数y=sinx+tanx,x∈[﹣,]的值域是()A.[﹣,] B.[﹣2,2] C.[﹣﹣1,] D.[﹣﹣1,+1]【考点】函数的值域.【专题】计算题;函数思想;函数的性质及应用;三角函数的图像与性质.【分析】直接利用函数的单调性求得函数值域.【解答】解:∵函数y=sinx+tanx在x∈[﹣,]上为增函数,∴,.故选:D.【点评】本题考查函数值域的求法,训练了利用函数单调性求函数的值域,是基础题.11.若sin(α+β)=,则为()A.5 B.﹣1 C.6 D.【考点】三角函数的恒等变换及化简求值.【专题】计算题.【分析】由两角和差的正弦公式,解得sinαcosβ=,cosαsinβ=,相除求得的值.【解答】解:由题意可得sinαcosβ+cosαsinβ=,sinαcosβ﹣cosαsinβ=,解得sinαcosβ=,cosαsinβ=,∴=5,故选A.【点评】本题考查两角和差的正弦公式,同角三角函数的基本关系,求出sinαcosβ=,cosαsinβ=,是解题的关键.12.已知f(x)为偶函数,当x≥0时,f(x)=﹣(x﹣1)2+1,则满足f[f(a)+]=的实数a的个数为()A.2 B.4 C.6 D.8【考点】根的存在性及根的个数判断;函数奇偶性的性质.【专题】数形结合;分类讨论;转化法;函数的性质及应用.【分析】利用换元法将函方程转化为f(t)=,利用数形结合进行求解即可.【解答】解:设t=f(a)+,则条件等价为f(t)=,若x≤0,则﹣x≥0,∵当x≥0时,f(x)=﹣(x﹣1)2+1,∴当﹣x≥0时,f(﹣x)=﹣(﹣x﹣1)2+1=﹣(x+1)2+1,∵f(x)为偶函数,∴f(﹣x)=﹣(x+1)2+1=f(x),即f(x)=﹣(x+1)2+1,x≤0,作出函数f(x)的图象如图:当x≥0时,由﹣(x﹣1)2+1=,得(x﹣1)2=,则x=1+或x=1﹣,∵f(x)为偶函数,∴当x<0时,f(x)=的解为x3=﹣1﹣,x4=﹣1+;综上所述,f(t)=得解为t1=1+或t2=1﹣,t3=﹣1﹣,t4=﹣1+;由t=f(a)+得,若t1=1+,则f(a)+=1+,即f(a)=+>1,此时a无解,若t2=1﹣,则f(a)+=1﹣,即f(a)=﹣﹣∈(﹣∞,0),此时a有2个解,若t3=﹣1﹣,则f(a)+=﹣1﹣,即f(a)=﹣﹣∈(﹣∞,0),此时a有2个解,若t4=﹣1+,则f(a)+=﹣1+,即f(a)=﹣+∈(﹣∞,0),此时a有2个解,故共有2+2+2=6个解.故选:C.【点评】本题主要考查函数与方程的应用,利用换元法结合数形结合进行求解是解决本题的关键.综合性较强,有一定的难度.二.填空题(本大题共6小题,单空每小题6分,多空每小题6分,共28分,将答案填在答题卷的相应位置.)13.若函数f(x)=3sin(x+),则f(x)的周期是4π;f(π)=.【考点】正弦函数的图象.【专题】计算题;函数思想;分析法;函数的性质及应用.【分析】利用三角函数的周期公式可求周期,利用特殊角的三角函数值即可计算得解.【解答】解:∵f(x)=3sin(x+),∴f(x)的周期T==4π,f(π)=3sin(+)=3sin=3sin=.故答案为:4π,.【点评】本题主要考查了三角函数的周期公式,特殊角的三角函数值的应用,属于基础题.14.若tanα=2,则=2;sinα•cosα=.【考点】同角三角函数基本关系的运用;三角函数的化简求值.【专题】转化思想;综合法;三角函数的求值.【分析】由条件利用同角三角函数的基本关系,求得要求式子的值.【解答】解:∵tanα=2,则==tanα=2,sinα•cosα===,故答案为:2;.【点评】本题主要考查同角三角函数的基本关系,属于基础题.15.已知某扇形的周长是16,圆心角是2弧度,则该扇形的面积是16.【考点】扇形面积公式.【专题】计算题;方程思想;综合法;三角函数的求值.【分析】设出扇形的半径,求出扇形的弧长,利用周长公式,求出半径,然后求出扇形的面积.【解答】解:设扇形的半径为:R,所以2R+2R=16,所以R=4,扇形的弧长为:8,半径为4,扇形的面积为:S=×8×4=16故答案为:16.【点评】本题是基础题,考查扇形的面积公式的应用,考查计算能力.16.若函数f(x)=3x2﹣5x+a的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,则实数a的取值X围是(﹣12,0).【考点】二分法求方程的近似解.【专题】计算题;转化思想;定义法;函数的性质及应用.【分析】根据函数f(x)=3x2﹣5x+a的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,得到,解得即可.【解答】解:∵f(x)=3x2﹣5x+a的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,∴,即解得﹣12<a<0,故a的取值X围为(﹣12,0),故答案为:(﹣12,0).【点评】本题考查函数零点的判断定理,理解零点判定定理的内容,将题设条件转化为关于参数的不等式组是解本题的关键.17.已知f(x)=log2(4﹣ax)在区间[﹣1,3]上是增函数,则a的取值X围是﹣4<a<0.【考点】对数函数的图象与性质;复合函数的单调性.【专题】计算题;转化思想;函数的性质及应用.【分析】若f(x)=log2(4﹣ax)在区间[﹣1,3]上是增函数,则内函数t=4﹣ax在区间[﹣1,3]上是增函数,且恒为正,进而得到答案.【解答】解:∵f(x)=log2(4﹣ax)在区间[﹣1,3]上是增函数,故内函数t=4﹣ax在区间[﹣1,3]上是增函数,且恒为正,故,解得:﹣4<a<0,故答案为:﹣4<a<0.【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质是解答的关键.18.已知定义在R上的函数f(x)满足:f(x+1)=,当x∈(0,1]时,f(x)=2x,则f(log29)等于.【考点】函数的周期性;函数的值.【专题】计算题;函数的性质及应用.【分析】根据题意,算出f(x+2)=f(x),得f(x)是最小正周期为2的周期函数.从而算出f(log29)=f(log2).由x∈(0,1]时f(x)=2x,结合f(x+1)f(x)=1算出f(log2)==,即可得到所求的函数值.【解答】解:∵f(x+1)=,∴f(x+2)===f(x),可得f(x)是最小正周期为2的周期函数∵8<9<16,2>1∴log28<log29<log216,即log29∈(3,4)因此f(log29)=f(log29﹣2)=f(log2)∵f(log2)==而f(log2)==,∴f(log29)=f(log2)==故答案为:【点评】本题给出函数满足的条件,求特殊自变量对应的函数值.着重考查了函数的周期性及其证明、对数的运算法则和函数性质的理解等知识,属于中档题.三.解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或验算步骤.)19.函数f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π)图象的一段如图所示(1)求此函数的解析式;(2)求函数f(x)在区间上的最大值和最小值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【专题】函数思想;数形结合法;三角函数的图像与性质.【分析】(1)由图象可得A值,由周期公式可得ω,代点结合角的X围可得φ,可得解析式;(2)由和三角函数的最值可得.【解答】解:(1)由图象可得A=,由=﹣﹣(﹣)=可得周期T=π,∴ω==2,∴f(x)=sin(2x+φ),∵,∴又0<φ<π,∴,故,可得,∴此函数的解析式为:;(2)∵,∴,∴f(x)在即x=0时取得最大值,f(x)在即时取得最小值.【点评】本题考查三角函数的图象和解析式,涉及三角函数的最值,属中档题.20.已知函数f(x)=为奇函数.(1)某某数a的值;(2)试判断函数的单调性并加以证明;(3)对任意的x∈R,不等式f(x)<m恒成立,某某数m的取值X围.【考点】函数奇偶性的性质;函数单调性的判断与证明;函数恒成立问题.【专题】证明题;综合题;函数思想;函数的性质及应用.【分析】(1)解f(0)=0可得a值;(2)由单调性的定义可得;(3)由(1)(2)可得函数f(x)为增函数,当x趋向于正无穷大时,f(x)趋向于1,可得m≥1.【解答】解:(1)由函数为奇函数可得f(0)==0,解得a=﹣1;(2)由(1)可得f(x)===1﹣,可得函数在R上单调递增,下面证明:任取实数x1<x2,则f(x1)﹣f(x2)=﹣=<0,∴函数f(x)=R上的增函数;(3)∵函数f(x)为增函数,当x趋向于正无穷大时,f(x)趋向于1,要使不等式f(x)<m恒成立,则需m≥1【点评】本题考查函数的奇偶性和单调性以及恒成立问题,属中档题.21.已知函数f(x)=2x﹣1(x∈R).(1)求函数f(x)的单调递减区间;(2)若f(x0)=,,求cos2x0的值.【考点】三角函数中的恒等变换应用;正弦函数的图象.【专题】计算题;转化思想;分析法;三角函数的求值;三角函数的图像与性质.【分析】(1)由三角函数恒等变换的应用化简函数可得解析式f(x)=2sin(2x+),由2kπ≤2x+≤2kπ+,即可解得f(x)的单调递减区间.(2)由(1)及,则可求,由,可求2x0+∈[,],解得cos(2x0+)=﹣,利用两角差的余弦函数公式即可计算得解.2分)【解答】(本题满分为12分)解:(1)由f(x)=2x﹣1得:f(x)=(2sinxcosx)+(2cos2x﹣1)=sin2x+cos2x=2sin(2x+).…由2kπ≤2x+≤2kπ+得k≤x≤k,(k∈Z).所以函数f(x)的单调递减区间是[k,k],(k∈Z).…(2)由(1)知,,又由已知,则.…因为,则2x0+∈[,],因此,所以cos(2x0+)=﹣,…于是cos2x0=cos[(2x0+)﹣]=cos(2x0+)cos+sin(2x0+)sin=(﹣)×+=.…【点评】本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,两角差的余弦函数公式的应用,考查了计算能力和转化思想,属于中档题.22.如图,正方形ABCD的边长为1,P,Q分别为AB,DA上动点,且△APQ的周长为2,设 AP=x,AQ=y.(1)求x,y之间的函数关系式y=f(x);(2)判断∠PCQ的大小是否为定值?并说明理由;(3)设△PCQ的面积分别为S,求S的最小值.【考点】基本不等式在最值问题中的应用;函数解析式的求解及常用方法.【专题】综合题;方程思想;综合法;函数的性质及应用;不等式.【分析】(1)由已知可得PQ=2﹣x﹣y,根据勾股定理有(2﹣x﹣y)2=x2+y2,即可求x,y之间的函数关系式y=f(x);(2)求得∴∠DCQ+∠BCP=,即可判断∠PCQ的大小;(3)表示△PCQ的面积,利用基本不等式求S的最小值.【解答】解:(1)由已知可得PQ=2﹣x﹣y,根据勾股定理有(2﹣x﹣y)2=x2+y2,…化简得:y=(0<x<1)…(2)tan∠DCQ=1﹣y,tan∠BCP=1﹣x,…tan(∠DCQ+∠BCP)==1 …∵∠DCQ+∠BCP∈(0,),∴∠DCQ+∠BCP=,∴∠PCQ=﹣(∠DCQ+∠BCP)=,(定值)…(3)S=1﹣﹣(1﹣x)﹣(1﹣y)=(x+y﹣xy)=•…令t=2﹣x,t∈(1,2),∴S=•(t+)﹣1,∴t=时,S的最小值为﹣1.…【点评】本题考查三角函数知识,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.。

函数y=Asin(ωx φ) 期末复习测试题-2022-2023学年高一上学期数学人教A版含答案

函数y=Asin(ωx φ)  期末复习测试题-2022-2023学年高一上学期数学人教A版含答案

第6节函数y =Asin(ωx+φ) 期末复习测试题一、单选题(12题)1.为了得到函数πsin(2)3y x =+的图象,可以将函数2πcos 23y x ⎛⎫=- ⎪⎝⎭的图象( )A .向左平移π2个单位B .向左平移π4个单位C .向右平移π2个单位D .向右平移π4个单位2.将函数sin 2y x =的图象向左平移(0)ϕϕ>个单位长度后,所得图象经过点π,12⎛⎫⎪⎝⎭,则ϕ的最小值为( ) A .π12 B .π4C .3π4D .11π123.设0ω>,将函数()sin 43f x x πω⎛⎫=-+ ⎪⎝⎭的图象向左平移3ωπ个单位长度,再向下平移4个单位长度,得到函数y g x 的图象.若()g x 在区间,123ππ⎛⎤- ⎥⎝⎦上单调递增,在区间5,312ππ⎡⎫⎪⎢⎣⎭上单调递减,则ω=( )A .362k -,k ∈NB .362k +,k ∈N C .32D .34.将函数sin(3)4y x π=+的图象上各点的横坐标伸长到原来的3倍,再向右平移2π个单位,再向上平移1个单位,得到的新函数的一个对称中心是( ) A .(,1)2πB .(,1)9πC .(,0)2πD .(,1)4π5.要得到函数sin cos y x x =+的图象,只需将函数y x =的图象上所有的点( ) A .先向右平移8π个单位长度,再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变) B .先向左平移8π个单位长度,再把所得图象上各点的横坐标缩短到原来的12(纵坐标不变) C .先向右平移4π个单位长度,再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变) D .先向左平移4π个单位长度,再把所得图象上各点的横坐标缩短到原来的12(纵坐标不变)6.已知函数()2sin f x x =,为了得到函数()2sin 23g x x π⎛⎫=- ⎪⎝⎭的图象,只需( )A .先将函数()f x 图象上点的横坐标变为原来的2倍,再向右平移6π个单位 B .先将函数()f x 图象上点的横坐标变为原来的12,再向右平移6π个单位 C .先将函数()f x 图象向右平移6π个单位,再将点的横坐标变为原来的12 D .先将函数()f x 图象向右平移3π个单位,再将点的横坐标变为原来的2倍7.三角函数()sin(2)cos 26f x x x π=-+的振幅和最小正周期分别是( )A π2B ,πC π2D8.要得到函数()2cos 23f x x π⎛⎫=+ ⎪⎝⎭的图象,只需()sin 23g x x π⎛⎫=+ ⎪⎝⎭的图象( )A .向左平移2π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变) B .向左平移2π个单位,再把各点的纵坐标缩短到原来的12倍(横坐标不变)C .向左平移4π个单位,再把各点的纵坐标伸长到原来的12倍(横坐标不变)D .向左平移4π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)9.已知函数()()πcos 202f x x ϕϕ⎛⎫=+<< ⎪⎝⎭的图象的一个对称中心为π,06⎛⎫ ⎪⎝⎭,则下列说法不正确的是( ) A .直线5π12x =是函数()f x 的图象的一条对称轴 B .函数()f x 在π0,6⎡⎤⎢⎥⎣⎦上单调递减C .函数()f x 的图象向右平移π6个单位长度可得到cos 2y x =的图象D .函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最小值为1-10.将函数sin y x =的图像C 向左平移6π个单位长度得到曲线1C ,然后再使曲线1C 上各点的横坐标变为原来的13得到曲线2C ,最后再把曲线2C 上各点的纵坐标变为原来的2倍得到曲线3C ,则曲线3C 对应的函数是( )A .2sin 36y x π⎛⎫=- ⎪⎝⎭B .2sin36y x π⎛⎫=- ⎪⎝⎭C .2sin 36y x π⎛⎫=+ ⎪⎝⎭D .2sin36y x π⎛⎫=+ ⎪⎝⎭11.已知函数()sin()(01)4f x x πωω=+<<在区间()2ππ,内没有零点,则ω的取值范围是( )A .308⎛⎫ ⎪⎝⎭,B .3370848⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭,, C .3748⎡⎤⎢⎥⎣⎦,D .3370848⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦,, 12.已知函数()2sin22sin 1f x x x =-+,给出下列四个结论( )①函数()f x 的最小正周期是2π; ①函数()f x 在区间π,85π8⎡⎤⎢⎥⎣⎦上是减函数;①函数()f x 的图象关于直线π8x =对称;①函数()f x 的图象可由函数y x =的图象向左平移π4个单位得到.其中正确结论的个数是( ) A .1B .2C .3D .4二、填空题(4题)13.若函数π()sin(2)0,02f x A x A ϕϕ⎛⎫=+><< ⎪⎝⎭部分图像如图所示,则函数()f x 的图像可由sin 2y A x =的图像向左平移___________个单位得到.14.将函数()sin 06y x πωω⎛⎫=-> ⎪⎝⎭的图像分别向左、向右各平移6π个单位长度后,所得的两个函数图像的对称轴重合,则ω的最小值为___________.15.若函数()sin y A x ωϕ=+(0,0π)ωϕ>≤<的部分图象如图所示,则此函数的解析式为__________.16.将函数3sin(2π)y x =-上的点,先保持纵坐标不变,将横坐标放大为原来的两倍,再向左平移π4个单位,得到的函数解析式是______.三、解答题(4题)17.已知函数()22sin cos 213f x x x π⎛⎫=+-- ⎪⎝⎭(1)求6f π⎛⎫⎪⎝⎭的值;(2)将函数()f x 的图象向左平移()0m m >个单位长度,所得函数图象与函数cos 2y x =的图象重合,求实数m 的最小值;(3)若2x πθ⎡⎤∈⎢⎥⎣⎦,时,()f x 的最小值为1-,求θ的最大值18.函数()3sin(2)6f x x π=+的部分图像如图所示.(1)写出图中0x 、0y 的值; (2)将函数()f x 的图像向右平移6π个单位,再将所得图像上所有点的纵坐标缩短为原来的13倍,横坐标不变,得到函数()g x 的图像,求方程1()2g x =在区间[,]-ππ上的解.19.已知函数()()sin f x A x =+ωϕ(其中0,0,2A πωϕ>><)的图像如图所示.(1)求函数()f x 的解析式;(2)若将函数()y f x =的图像上的所有点的纵坐标不变,横坐标伸长到原来的3倍,得到函数()g x 的图像,求当50,4x π⎡⎤∈⎢⎥⎣⎦时,函数()y g x =的值域.20.已知函数()()π0,2f x x ωϕωϕ⎛⎫=+>≤ ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 的图象向左平移π4个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变)得到函数()g x 的图象,若关于x 的方程()20g x m -=在区间[]0,π上有两个不同的实数解,求实数m 的取值范围.参考答案:1.B【分析】先将两个三角的名字根据诱导公式化为相同,然后再平移即可. 【详解】2ππππcos 2cos 2sin 23626y x x x ⎛⎫⎛⎫⎛⎫=-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭将函数向左平移π4个单位得:πππsin 2sin(2).463y x x ⎡⎤⎛⎫=+-=+ ⎪⎢⎥⎝⎭⎣⎦故选:B 2.C【分析】利用三角函数图象平移规律得到函数[]sin 2()y x ϕ=+的图象,由所得图象经过点π,12⎛⎫ ⎪⎝⎭和ϕ的范围可得答案. 【详解】将函数sin 2y x =的图象向左平移(0)ϕϕ>个单位长度后,得到函数[]sin 2()y x ϕ=+的图象,由所得图象经过点π,12⎛⎫⎪⎝⎭,可得()sin π21ϕ+=,则ππ22π2k ϕ+=+,k ∈Z ,则ππ4k ϕ=-+,k ∈Z ,又0ϕ>,所以ϕ的最小值为3π4.故选:C . 3.C【分析】由图象变换知识得到()()sin g x x ω=,根据3x π=时取得最大值得到362k ω=+,由单调区间长度小于等于半个周期,求出ω的范围,从而确定ω的值.【详解】由题意知,()()sin g x x ω=.当3x π=时,函数()g x 取得最大值,所以232k ππωπ⋅=+,Z k ∈.解得362k ω=+,N k ∈.因为()g x 在区间,123ππ⎛⎤- ⎥⎝⎦上递增,在5,312ππ⎡⎫⎪⎢⎣⎭上递减,所以312πππω≥+且5123πππω≥-,解得1205ω<≤.因此32ω=.故选:C【点睛】求三角函数的解析式时,由2Tπω=即可求出ω;确定ϕ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标0x ,则令00x ωϕ+=或0x ωϕπ+=),即可求出ϕ,否则需要代入点的坐标,利用一些已知点的坐标代入解析式,再结合函数的性质解出ω和ϕ,若对,A ω的符号或对ϕ的范围有要求,则可用诱导公式变换使其符合要求. 4.D【分析】先根据三角函数图象变换规律写出所得函数的解析式,再根据三角函数的性质求出函数的对称中心,确定选项.【详解】解:函数sin(3)4y x π=+的图象上各点的横坐标伸长到原来的3倍得到图象的解析式为sin()4y x π=+再向右平移2π个单位得到图象的解析式为sin[()]sin 2(4)4y x x πππ=-+=-再向上平移1个单位得到图象的解析式为sin()14y x π=-+,令()4x k k Z ππ-=∈解得()4x k k Z ππ=+∈,故函数的对称中心为(),41k k Z ππ⎛⎫+∈ ⎪⎝⎭当0k =时对称中心为,14π⎛⎫ ⎪⎝⎭,所以,14π⎛⎫ ⎪⎝⎭是函数sin()14y x π=-+的一个对称中心.故选:D .【点睛】本题考查了三角函数图象变换规律,三角函数图象、性质.是三角函数中的重点知识,在试题中出现的频率相当高. 5.A【分析】利用两角和的余弦公式化简为4π⎛⎫=- ⎪⎝⎭y x ,再由函数()cos ωϕ=+y A x 的图象变换规律得出结论.【详解】sin cos 4y x x x π⎛⎫=+=- ⎪⎝⎭,将函数y x 的图象上所有的点向右平移8π个单位长度得到284y x x ππ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭,再把所得图象上各点的横坐标伸长到原来的2倍得到4π⎛⎫=- ⎪⎝⎭y x ,故选:A . 6.B【分析】直接利用三角函数图像变换可得.【详解】对于A :先将函数()f x 图象上点的横坐标变为原来的2倍,得到12sin 2y x =,故A错误;对于B :先将函数()f x 图象上点的横坐标变为原来的12,得到2sin 2y x =,再右移6π个单位,得到2sin 26y x π⎛⎫=- ⎪⎝⎭,即为2sin 23y x π⎛⎫=- ⎪⎝⎭,故B 正确;对于C: 先将函数()f x 图象向右平移6π个单位,得到2sin 6y x π⎛⎫=- ⎪⎝⎭,再将点的横坐标变为原来的12,得到2sin 26y x π⎛⎫=- ⎪⎝⎭,故C 错误;对于D: 先将函数()f x 图象向右平移3π个单位,得到2sin 3y x π⎛⎫=- ⎪⎝⎭,再将点的横坐标变为原来的2倍,得到12sin 26y x π⎛⎫=- ⎪⎝⎭,故D 错误;【点睛】:关于三角函数图像平移伸缩变换:先平移的话,如果平移a 个单位长度那么相位就会改变ωa ;而先伸缩势必会改变ω大小,这时再平移要使相位改变值仍为ωa ,那么平移长度不等于a . 7.D【分析】根据差角正弦公式展开,再由辅助角公式化为基本三角函数,最后根据正弦函数性质求振幅与周期.【详解】3()sin(2)cos 2sin cos 2cos sin 2cos 2cos 226662f x x x x x x x xπππ=-+=-+=)3x π=-周期为T=22π=π.故选:D 8.D【分析】先将函数()y f x =的解析式化为()52sin 26x x f π⎛⎫+⎝=⎪⎭,再利用三角函数图象的变换规律得出正确选项. 【详解】()2cos 22sin 22sin 233243f x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因此,将函数()sin 23g x x π⎛⎫=+ ⎪⎝⎭的图象向左平移4π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变),可得到函数()2cos 23f x x π⎛⎫=+ ⎪⎝⎭的图象,故选D.【点睛】本题考查三角函数的图象变换,处理这类问题的要注意以下两个问题:(1)左右平移指的是在自变量x 上变化了多少;(2)变换时两个函数的名称要保持一致. 9.C【分析】先求得ϕ的值,然后根据三角函数的对称性、单调性、图象变换、最值等知识对选项进行分析,从而确定正确答案. 【详解】依题意ππcos 063f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ5π0,2336ϕϕ<<<+<,所以πππ,326ϕϕ+==, 所以()πcos 26f x x ⎛⎫=+ ⎪⎝⎭,5π5ππcos cos π11266f ⎛⎫⎛⎫=+==- ⎪ ⎪⎝⎭⎝⎭,所以A 选项说法正确. ππππ0,26662x x ≤≤≤+≤,所以函数()πcos 26f x x ⎛⎫=+ ⎪⎝⎭在π0,6⎡⎤⎢⎥⎣⎦上单调递减,B 选项说法正确.函数()f x 的图象向右平移π6个单位长度得到πππ6cos 2cos 266y x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以C 选项说法错误.πππ7π0,22666x x ≤≤≤+≤,所以当π5π2π,612x x +==时, ()f x 取得最小值为1-,D 选项说法正确.故选:C 10.C【分析】利用图像变换方式计算即可.【详解】由题得1C :sin 6y x π⎛⎫=+ ⎪⎝⎭,所以2C :sin 36y x π⎛⎫=+ ⎪⎝⎭,得到3C :2sin 36y x π⎛⎫=+ ⎪⎝⎭故选:C 11.D【分析】根据题意若要函数()f x 在区间()2ππ,内没有零点,由2444x ππππωωωπ+<+<+,又因为01ω<<,所以24πωππ+≤或2244ππωπππωπ⎧+≤⎪⎪⎨⎪+≥⎪⎩,化简即可得解.【详解】由2x ππ<<,且01ω<<, 所以2444x ππππωωωπ+<+<+,由题意可得24πωππ+≤或2244ππωπππωπ⎧+≤⎪⎪⎨⎪+≥⎪⎩,解得83ω≤或7834ωω⎧≤⎪⎪⎨⎪≥⎪⎩,因为01ω<<,所以308ω<≤或者3748ω≤≤,故选:D 12.B【分析】由题意知,()π24f x x ⎛⎫=+ ⎪⎝⎭,由此即可判断出答案.【详解】()2πsin22sin 1sin2cos224f x x x x x x ⎛⎫=-+=++ ⎪⎝⎭,①因为2ω=,则()f x 的最小正周期πT =,结论错误.①当π8π,85x ⎡⎤∈⎢⎥⎣⎦时,ππ3π2,422x ⎡⎤+∈⎢⎥⎣⎦,则()f x 在区间π5π,88⎡⎤⎢⎥⎣⎦上是减函数,结论正确.①因为π8f ⎛⎫= ⎪⎝⎭()f x 的最大值,则()f x 的图象关于直线π8x =对称,结论正确.①设()g x x ,则()πππ2442g x x x x f x ⎛⎫⎛⎫⎛⎫++=+=≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,结论错误, 故选:B. 13.π12【分析】根据图像可确定π()2sin(2)6f x x =+,进而根据平移即可求解. 【详解】由图最高点可知2A =,周期2π2πT ==,所以可得最高点5π15πππ--1241246A x T ===,故π,26A ⎛⎫ ⎪⎝⎭,将其代入πππ()2sin(2)=2=2π632f x k ϕϕ=⨯+⇒++,由于π02ϕ<<,故π=6ϕ,所以π()2sin(2)6f x x =+,故可由sin 2y A x =的图像向左平移π12个单位得到. 故答案为:π1214.3【分析】由两个正弦型函数图象的对称轴重合,可得两个图象的相位相差π的整数倍,再结合函数图象平移的“左加右减”原则,即可得解. 【详解】将函数sin (0)6y x πωω⎛⎫=-> ⎪⎝⎭的图象分别向左、向右各平移6π个单位长度后, 得到sin[()]sin(6)666y x x ππωππωω=+-=+-,sin[()]2sin(6666)y x x ππωππωω=--=--,因为两个函数图象的对称轴重合, 所以()66663()k ωππωππωππ----==,k ∈Z , 所以3k ω=,k ∈Z ,因为0ω>,所以当1k =时,ω取得最小值为3. 故答案为:3. 15.π3sin 23y x ⎛⎫=+ ⎪⎝⎭【分析】根据图象,可得()3332A --==,πT =,图象过点π,03⎛⎫ ⎪⎝⎭,且在π3x =附近单调递减.进而可求出2ω=,π22ππ,3k k ϕ⨯+=+∈Z ,根据ϕ的范围即可解出ϕ,进而得到解析式.【详解】由已知可得,函数最大值为3,最小值为-3,所以()3332A --==. 又由图象知,5πππ2632T =-=,所以πT =. 因为0ω>,所以2ππT ω==,所以2ω=,所以()3sin 2y x ϕ=+.又由图象可推得,图象过点π,03⎛⎫ ⎪⎝⎭,且在π3x =附近单调递减,所以有π22ππ,3k k ϕ⨯+=+∈Z ,解得π2π,3k k ϕ=+∈Z .又0πϕ≤<,所以π3ϕ=. 所以,函数的解析式为π3sin 23y x ⎛⎫=+ ⎪⎝⎭.故答案为:π3sin 23y x ⎛⎫=+ ⎪⎝⎭.16.π3sin 4y x ⎛⎫=-+ ⎪⎝⎭【分析】先结合诱导公式化简函数,再根据三角函数图象的伸缩变换与平移变换求得最终函数解析式即可.【详解】解:由于3sin(2π)3sin 2y x x =-=-.将横坐标放大为原来的两倍得解析式为3sin y x =-,再向左平移π4个单位,得到的函数解析式为π3sin 4y x ⎛⎫=-+ ⎪⎝⎭.故答案为:π3sin 4y x ⎛⎫=-+ ⎪⎝⎭.17.(1)12;(2)3m π=;(3)6π-. 【分析】先对函数解析式化简, (1)直接代入求解;(2)利用图形变换和诱导公式求出m 的最小值;(3)利用正弦型函数的定义域和值域,即可求出θ的最大值.【详解】()22sin cos 213f x x x π⎛⎫=+-- ⎪⎝⎭cos 2cos 2cos sin 2sin33x x x ππ=-++12cos 22x x =- sin 26x π⎛⎫=- ⎪⎝⎭(1)1sin 2sin 66662f ππππ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭;(2)将函数()f x 的图象向左平移()0m m >个单位长度,得到sin 226y x m π⎛⎫=+- ⎪⎝⎭,与cos 2y x =重合,所以2262m k πππ-=+,由m >0,所以当k =0时,3m π=;(3)当2x πθ⎡⎤∈⎢⎥⎣⎦,时,522666x πππθ⎡⎤-∈-⎢⎥⎣⎦,时,因为()f x 的最小值为1-,所以26πθ-可以取到2π-,即262ππθ-≤-,所以6πθ≤-,即θ的最大值为6π-. 18.(1)076x π=,03y =;(2)5,,,6622ππππ⎧⎫--⎨⎬⎩⎭. 【分析】(1)根据正弦型函数图象性质直接可求0x 、0y 的值;(2)根据函数伸缩平移变换可得()g x ,进而可求方程的解. 【详解】(1)由正弦型函数的对称轴性质可知:2262x k πππ+=+,Z k ∈,解得:6x k ππ=+,Z k ∈,故076x π=; ()max 3f x =,故03y =;(2)由(1)及题意可得()sin 2sin 2666g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由1()2g x =可得1sin 262x π⎛⎫-= ⎪⎝⎭,2266x k πππ∴-=+或52266x k πππ-=+,k ∈Z , 解得6x k ππ=+或2x k ππ=+,k ∈Z ,[,]x ,①方程1()2g x =的解为5,,,6622ππππ⎧⎫--⎨⎬⎩⎭. 19.(1)()sin 23f x x π⎛⎫=+ ⎪⎝⎭(2)1,12⎡⎤-⎢⎥⎣⎦【分析】(1)根据图像得到A =1,741234T πππ=-=,进而求得ω,再由点7,112π⎛⎫-⎪⎝⎭在图像上求解;(2)利用伸缩变换得到()2sin 33g x x π⎛⎫=+ ⎪⎝⎭,再利用正弦函数的性质求解. 【详解】(1)解:由图像知:A =1,741234T πππ=-=,则T π=,22T πω==, 所以()()sin 2f x x ϕ=+,因为点7,112π⎛⎫- ⎪⎝⎭在图像上,所以7sin 16πϕ⎛⎫+=- ⎪⎝⎭, 所以732,Z 62k k ππϕπ+=+∈,解得2,Z 3k k πϕπ=+∈, 因为2πϕ<,所以3πϕ=,所以()sin 23f x x π⎛⎫=+ ⎪⎝⎭;(2)解:由题意得()2sin 33g x x π⎛⎫=+⎪⎝⎭, 因为50,4x π⎡⎤∈⎢⎥⎣⎦,则27,3336x πππ⎡⎤+∈⎢⎥⎣⎦,所以,当2332x ππ+=,即4x π=时,()2sin 33g x x π⎛⎫=+ ⎪⎝⎭有最大值1;当27336x ππ+=,即54=x π时,()2sin 33g x x π⎛⎫=+ ⎪⎝⎭有最小值12-所以()21sin ,1332g x x π⎛⎫⎡⎤=+∈- ⎪⎢⎥⎝⎭⎣⎦,即()g x 的值域为1,12⎡⎤-⎢⎥⎣⎦.20.(1)()π24f x x ⎛⎫=- ⎪⎝⎭(2)1,22⎡⎢⎣⎭【分析】(1)结合图象和2πT ω=,求得ω的值,再根据3π8f ⎛⎫= ⎪⎝⎭ϕ,即可得()f x 的解析式;(2)根据函数图象的变换求出()g x 的解析式,再结合正弦函数的图象运算求解. 【详解】(1)由图可得:7π3π288T =-,即2π=πT ω=,则2ω=,故()()2f x x ϕ+,①3π8f ⎛⎫= ⎪⎝⎭3πsin 218ϕ⎛⎫⨯+= ⎪⎝⎭,则3πsin 14ϕ⎛⎫+= ⎪⎝⎭,①3ππ2π,Z 42k k ϕ+=+∈,则π2π,Z 4k k ϕ=-+∈, 又①π2ϕ≤,则π4ϕ=-,故()π24f x x ⎛⎫=- ⎪⎝⎭.(2)根据题意:将函数()f x 的图象向左平移π4个单位,得到ππππ224444y f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=++-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变)得到函数()π4g x x ⎛⎫=+ ⎪⎝⎭, ①()20g x m -=,则()2g x m =,由题意可得:直线2y m =与函数()π4g x x ⎛⎫=+ ⎪⎝⎭有两个不同的交点,又①0πx ≤≤,则ππ5π444x ≤+≤,①πsin 124x ⎛⎫≤+≤ ⎪⎝⎭,当且仅当ππ42x +=,即π4x =时,πsin 14x ⎛⎫+= ⎪⎝⎭,故()g x ⎡∈⎣,则可得:12m ≤<122m ≤<,故m 的取值范围为12⎡⎢⎣⎭.。

河南省郑州市一中高一数学上学期期末试卷(含解析)-人教版高一全册数学试题

河南省郑州市一中高一数学上学期期末试卷(含解析)-人教版高一全册数学试题

2015-2016学年某某省某某市一中高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={﹣1,0,1},N={x|x2≤x},则M∩N=()A.{0} B.{0,1} C.{﹣1,1} D.{﹣1,0,1}2.下列函数中,在(﹣∞,1)内是增函数的是()A.y=1﹣x3B.y=x2+x C.y=D.y=3.已知a=log5,b=log23,c=1,d=3﹣0.6,那么()A.a<c<b<d B.a<d<c<b C.a<b<c<d D.a<c<d<b4.若函数f(x)=2ax2﹣x﹣1在(0,1)内恰有一个零点,则a的取值X围是()A.(1,+∞)B.(﹣∞,﹣1) C.(﹣1,1)D.[0,1)5.下列命题中正确的是()A.有两个面平行,其余各面都是平行四边形的几何体叫棱柱B.有一个面是多边形,其余各面都是三角形的几何体叫棱锥C.由五个面围成的多面体一定是四棱锥D.棱台各侧棱的延长线交于一点6.四面体ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则EF与CD所成的角等于()A.30° B.45° C.60° D.90°7.如图,在正方体ABCD﹣A1B1C1D1中,A1B与平面BB1D1D所成的角的大小是()A.90° B.30° C.45° D.60°8.在矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B﹣AC﹣D,则四面体ABCD的外接球的体积为()A.πB.πC.πD.π9.函数f(x)=log a(ax﹣2)在[1,3]上单调递增,则a的取值X围是()A.(1,+∞)B.(0,2)C.(0,)D.(2,+∞)10.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知△ABC的顶点A(2,0),B(0,4),且AC=BC,则△ABC的欧拉线的方程为()A.x+2y+3=0 B.2x+y+3=0 C.x﹣2y+3=0 D.2x﹣y+3=011.方程=k(x﹣1)+2有两个不等实根,则k的取值X围是()A.(,+∞)B.(,1] C.(0,)D.(,1]12.设集合A={(x,y)|x2+y2≤|x|+|y|,x,y∈R},则集合A所表示图形的面积为()A.1+π B.2 C.2+π D.π二、填空题:本大题共4小题,每小题5分,共20分.13.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为.14.(log3)2﹣3+log0.25+()﹣4=.15.当x∈(1,3)时,不等式x2+mx+4<0恒成立,则m的取值X围是.16.圆C的方程为x2+y2﹣6x+8=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知集合A={x|x2﹣x﹣12<0},集合B={x|x2+2x﹣8>0},集合C={x|x2﹣4ax+3a2<0,a≠0},(Ⅰ)求A∩(C R B);(Ⅱ)若C⊇(A∩B),试确定实数a的取值X围.18.分别求出适合下列条件的直线方程:(Ⅰ)经过点a>2,t=2且在x轴上的截距等于在y轴上截距的2倍;(Ⅱ)经过直线2x+7y﹣4=0与7x﹣21y﹣1=0的交点,且和A(﹣3,1),B(5,7)等距离.19.一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的,(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?20.如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰在CD上,即A1O⊥平面DBC.(Ⅰ)求证:BC⊥A1D;(Ⅱ)求证:平面A1BC⊥平面A1BD;(Ⅲ)求点C到平面A1BD的距离.21.如图,已知圆心坐标为(,1)的圆M与x轴及直线y=x分别相切于A,B两点,另一圆N与圆M外切、且与x轴及直线y=x分别相切于C、D两点.(1)求圆M和圆N的方程;(2)过点B作直线MN的平行线l,求直线l被圆N截得的弦的长度.22.已知函数,其反函数为y=g(x).(Ⅰ)若g(mx2+2x+1)的定义域为R,某某数m的取值X围;(Ⅱ)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a);(Ⅲ)是否存在实数m>n>2,使得函数y=h(x)的定义域为[n,m],值域为[n2,m2],若存在,求出m、n的值;若不存在,则说明理由.2015-2016学年某某省某某市一中高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={﹣1,0,1},N={x|x2≤x},则M∩N=()A.{0} B.{0,1} C.{﹣1,1} D.{﹣1,0,1}【考点】交集及其运算.【专题】计算题.【分析】求出集合N,然后直接求解M∩N即可.【解答】解:因为N={x|x2≤x}={x|0≤x≤1},M={﹣1,0,1},所以M∩N={0,1}.故选B.【点评】本题考查集合的基本运算,考查计算能力,送分题.2.下列函数中,在(﹣∞,1)内是增函数的是()A.y=1﹣x3B.y=x2+x C.y=D.y=【考点】函数单调性的判断与证明.【专题】计算题;规律型;函数的性质及应用.【分析】逐一判断函数的单调性,推出正确结果即可.【解答】解:y=1﹣x3函数在(﹣∞,1)内是减函数.y=x2+x对称轴为x=﹣,在(﹣∞,1)内不是增函数.y==﹣1,在(﹣∞,1)内是增函数,满足题意.y=,函数在(﹣∞,1)内是减函数.故选:C.【点评】本题考查函数的单调性的判断,是基础题.3.已知a=log5,b=log23,c=1,d=3﹣0.6,那么()A.a<c<b<d B.a<d<c<b C.a<b<c<d D.a<c<d<b【考点】对数值大小的比较.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用对数函数、指数数的性质求解.【解答】解:∵a=log5<=﹣2,b=log23>log22=1,c=1,0<d=3﹣0.6<30=1,∴a<d<c<b.故选:B.【点评】本题考查四个数的大小的比较,是基础题,解题时要认真审题,注意对数函数、指数数的性质的合理运用.4.若函数f(x)=2ax2﹣x﹣1在(0,1)内恰有一个零点,则a的取值X围是()A.(1,+∞)B.(﹣∞,﹣1) C.(﹣1,1)D.[0,1)【考点】函数零点的判定定理.【专题】计算题.【分析】根据函数零点存在性定理,若函数f(x)=2ax2﹣x﹣1在(0,1)内恰有一个零点,则f(0)f(1)<0,可得关于a的不等式,解不等式,即可求出a的X围.【解答】解:当△=0时,a=﹣,此时有一个零点x=﹣2,不在(0,1)上,故不成立.∵函数f(x)=2ax2﹣x﹣1在(0,1)内恰有一个零点,∴f(0)f(1)<0,即﹣1×(2a﹣1)<0,解得,a>1,故选A【点评】本题考查了函数零点存在性定理,属基础题,必须掌握.5.下列命题中正确的是()A.有两个面平行,其余各面都是平行四边形的几何体叫棱柱B.有一个面是多边形,其余各面都是三角形的几何体叫棱锥C.由五个面围成的多面体一定是四棱锥D.棱台各侧棱的延长线交于一点【考点】命题的真假判断与应用.【专题】综合题;转化思想;综合法;简易逻辑.【分析】根据棱柱、棱锥、棱台的几何特征,即可得出结论.【解答】解:有两个面平行,其余各面是相邻的公共边都相互平行的平行四边形的几何体叫棱柱,故A错误;有一个面是多边形,其余各面都是有公共顶点三角形的几何体叫棱锥,故B错误;由5个面成的多面体可能是四棱锥或三棱柱,故C不正确;拿一个平行于底面的平面截棱锥,底面与截面之间的部分叫棱台,故棱台各侧棱的延长线交于一点,即D正确.【点评】本题考查的知识点是棱柱的几何特征,棱锥的几何特征,棱台的几何特征,熟练掌握相关定义是解答的关键.6.四面体ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则EF与CD所成的角等于()A.30° B.45° C.60° D.90°【考点】异面直线及其所成的角.【专题】空间角.【分析】取AD的中点G,连接EG、FG,由三角形中位线定理得EG∥CD,从而得到∠GEF是EF与CD所成的角,由此能求出EF与CD所成的角的大小.【解答】解:设CD=2AB=2,取AD的中点G,连接EG、FG,∵E、F分别为AC、BD中点,∴EG∥CD,且EG=,FG∥AB,且FG==.∵EF⊥AB,FG∥AB,∴EF⊥FG.∵EG∥CD,∴∠GEF是EF与CD所成的角,在Rt△EFG中,∵EG=1,GF=,EF⊥FG,∴∠GEF=30°,即EF与CD所成的角为30°.故选:A.【点评】本题考查异面直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.7.如图,在正方体ABCD﹣A1B1C1D1中,A1B与平面BB1D1D所成的角的大小是()A.90° B.30° C.45° D.60°【考点】直线与平面所成的角.【专题】计算题.【分析】连接A1C1交B1D1于O,连接OB,说明∠A1BO为A1B与平面BB1D1D所成的角,然后求解即可.【解答】解:连接A1C1交B1D1于O,连接OB,因为B1D1⊥A1C1,A1C1⊥BB1,所以A1C1⊥平面BB1D1D,所以∠A1BO为A1B与平面BB1D1D所成的角,设正方体棱长为1,所以A1O=,A1B=,sin∠A1BO=,∠A1BO=30°.故选B.【点评】本题考查直线与平面所成角的求法,找出直线与平面所成角是解题的关键,考查计算能力.8.在矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B﹣AC﹣D,则四面体ABCD的外接球的体积为()A.πB.πC.πD.π【考点】球的体积和表面积.【专题】计算题.【分析】球心到球面各点的距离相等,即可知道外接球的半径,就可以求出其体积了.【解答】解:由题意知,球心到四个顶点的距离相等,所以球心在对角线AC上,且其半径为AC长度的一半,则V球=π×()3=.故选C.【点评】本题考查学生的思维意识,对球的结构和性质的运用,是基础题.9.函数f(x)=log a(ax﹣2)在[1,3]上单调递增,则a的取值X围是()A.(1,+∞)B.(0,2)C.(0,)D.(2,+∞)【考点】复合函数的单调性.【专题】转化思想;综合法;函数的性质及应用.【分析】由题意可得可得,由此解得a的X围.【解答】解:函数f(x)=log a(ax﹣2)在[1,3]上单调递增,可得,解得a>2,【点评】本题主要考查复合函数的单调性,对数函数的性质,属于基础题.10.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知△ABC的顶点A(2,0),B(0,4),且AC=BC,则△ABC的欧拉线的方程为()A.x+2y+3=0 B.2x+y+3=0 C.x﹣2y+3=0 D.2x﹣y+3=0【考点】待定系数法求直线方程.【专题】直线与圆.【分析】由于AC=BC,可得:△ABC的外心、重心、垂心都位于线段AB的垂直平分线上,求出线段AB的垂直平分线,即可得出△ABC的欧拉线的方程.【解答】解:线段AB的中点为M(1,2),k AB=﹣2,∴线段AB的垂直平分线为:y﹣2=(x﹣1),即x﹣2y+3=0.∵AC=BC,∴△ABC的外心、重心、垂心都位于线段AB的垂直平分线上,因此△ABC的欧拉线的方程为:x﹣2y+3=0.故选:C.【点评】本题考查了欧拉线的方程、等腰三角形的性质、三角形的外心重心垂心性质,考查了推理能力与计算能力,属于中档题.11.方程=k(x﹣1)+2有两个不等实根,则k的取值X围是()A.(,+∞)B.(,1] C.(0,)D.(,1]【考点】函数的零点与方程根的关系.【专题】计算题;函数思想;数形结合法;函数的性质及应用.【分析】由题意可得,函数y=的图象和直线y=k(x﹣1)+2有2个交点,数形结合求得k的X围.【解答】解:方程=k(x﹣1)+2有两个不等实根,即函数y=的图象和直线y=k(x﹣1)+2有2个交点.而函数y=的图象是以原点为圆心,半径等于1的上半圆(位于x轴及x轴上方的部分),直线y=k(x﹣1)+2,即kx﹣y+2﹣k=0 的斜率为k,且经过点M(1,2),当直线和半圆相切时,由=1,求得k=.当直线经过点A(﹣1,0)时,由0=k(﹣1﹣2)+3求得k=1.数形结合可得k的X围为(,1],【点评】本题主要考查方程的根的存在性及个数判断,体现了函数和方程的转化及数形结合的数学思想,属于中档题.12.设集合A={(x,y)|x2+y2≤|x|+|y|,x,y∈R},则集合A所表示图形的面积为()A.1+π B.2 C.2+π D.π【考点】圆方程的综合应用;Venn图表达集合的关系及运算.【专题】综合题;数形结合;分类讨论;直线与圆.【分析】根据不等式,分别讨论x,y的取值,转化为二元二次不等式组,结合圆的性质进行求解即可.【解答】解:若x≥0,y≥0,则不等式等价为x2+y2≤x+y,即(x﹣)x2+(y﹣)2≤,若x≥0,y<0,则不等式等价为x2+y2≤x﹣y,即(x﹣)x2+(y+)2≤,若x≤0,y≤0,则不等式等价为x2+y2≤﹣x﹣y,即(x+)x2+(y+)2≤,若x<0,y≥0,则不等式等价为x2+y2≤﹣x+y,即(x+)x2+(y﹣)2≤,则对应的区域如图:在第一象限内圆心坐标为C(,),半径=,则三角形OAC的面积S==,圆的面积为×=π,则一个弓弧的面积S=π﹣,则在第一象限的面积S=π×()2﹣2×(π﹣)=﹣+=+,则整个区域的面积S=4×(+)=2+π,故选:C【点评】本题主要考查区域面积的计算,根据条件利用分类讨论的数学数学化简条件,利用圆的面积公式是解决本题的关键.综合性较强,比较复杂.二、填空题:本大题共4小题,每小题5分,共20分.13.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为.【考点】由三视图求面积、体积.【专题】图表型.【分析】由已知中的三视图,我们可以判断出该几何体的形状,及关键数据,代入棱锥体积公式,即可求出答案.【解答】解:由已知中的三视图可得,该几何体有一个半圆锥和一个四棱维组合而成,其中半圆锥的底面半径为1,四棱锥的底面是一个边长为2为正方形,他们的高均为则V=(+4)•=故答案为:【点评】本题考查的知识点是由三视图求体积,其中根据已知中的三视图判断出几何体的形状是解答本题的关键.14.(log3)2﹣3+log0.25+()﹣4=.【考点】对数的运算性质.【专题】计算题;规律型;函数的性质及应用.【分析】直接利用对数运算法则化简求解即可.【解答】解:(log3)2﹣3+log0.25+()﹣4=﹣4+1+4=.故答案为:.【点评】本题考查对数运算法则的应用,考查计算能力.15.当x∈(1,3)时,不等式x2+mx+4<0恒成立,则m的取值X围是(﹣∞,﹣5].【考点】函数的最值及其几何意义.【专题】函数的性质及应用.【分析】利用一元二次函数图象分析不等式在定区间上恒成立的条件,再求解即可.【解答】解:∵解:利用函数f(x)=x2+mx+4的图象,∵x∈(1,3)时,不等式x2+mx+4<0恒成立,∴,即,解得m≤﹣5.∴m的取值X围是(﹣∞,﹣5].故答案为:(﹣∞,﹣5].【点评】本题考查不等式在定区间上的恒成立问题.利用一元二次函数图象分析求解是解决此类问题的常用方法.16.圆C的方程为x2+y2﹣6x+8=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.【考点】直线与圆的位置关系.【专题】计算题;方程思想;综合法;直线与圆.【分析】由于圆C的方程为(x﹣3)2+y2=1,由题意可知,只需(x﹣43)2+y2=4与直线y=kx ﹣2有公共点即可.【解答】解:∵圆C的方程为x2+y2﹣6x+8=0,整理得:(x﹣3)2+y2=1,即圆C是以(3,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣3)2+y2=4与直线y=kx﹣2有公共点即可.设圆心C′(3,0)到直线y=kx﹣2的距离为d,则d=≤2,即5k2﹣12k≤0,∴0≤k≤.∴k的最大值.故答案为:.【点评】本题考查直线与圆的位置关系,将条件转化为“(x﹣3)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知集合A={x|x2﹣x﹣12<0},集合B={x|x2+2x﹣8>0},集合C={x|x2﹣4ax+3a2<0,a≠0},(Ⅰ)求A∩(C R B);(Ⅱ)若C⊇(A∩B),试确定实数a的取值X围.【考点】一元二次不等式的解法;集合的包含关系判断及应用;交集及其运算;补集及其运算.【专题】计算题.【分析】(Ⅰ)先通过解一元二次不等式化简集合A和B,再求集合B的补集,最后求出A∩(C R B)即可;(Ⅱ)由于一元二次方程x2﹣4ax+3a2=0的两个根是:a,3a.欲表示出集合C,须对a进行分类讨论:①若a=0,②若a>0,③若a<0,再结合C⊇(A∩B),列出不等关系求得a的取值X围,最后综合得出实数a的取值X围即可.【解答】解:(Ⅰ)依题意得:A={x|﹣3<x<4},B={x|x<﹣4或x>2},(C R B)={x|﹣4≤x≤2}∴A∩(C R B)=(﹣3,2](Ⅱ)∴A∩B={x|2<x<4}①若a=0,则C={x|x2<0}=∅不满足C⊇(A∩B)∴a≠0②若a>0,则C={x|a<x<3a},由C⊇(A∩B)得③若a<0,则C={x|3a<x<a},由C⊇(A∩B)得综上,实数a的取值X围为【点评】本小题主要考查一元二次不等式的解法、集合的包含关系判断及应用、交集及其运算=补集及其运算不等式的解法等基础知识,考查运算求解能力,考查分类讨论思想.属于基础题.18.分别求出适合下列条件的直线方程:(Ⅰ)经过点a>2,t=2且在x轴上的截距等于在y轴上截距的2倍;(Ⅱ)经过直线2x+7y﹣4=0与7x﹣21y﹣1=0的交点,且和A(﹣3,1),B(5,7)等距离.【考点】直线的一般式方程.【专题】方程思想;综合法;直线与圆.【分析】(Ⅰ)分别讨论直线过原点和不过原点两种情况,设出直线方程,解出即可;(Ⅱ)先求出直线的交点坐标,设出直线方程,再根据点到直线的距离公式求出斜率k即可.【解答】解:(Ⅰ)当直线不过原点时,设所求直线方程为+=1,将(﹣3,2)代入所设方程,解得a=,此时,直线方程为x+2y﹣1=0.当直线过原点时,斜率k=﹣,直线方程为y=﹣x,即2x+3y=0,综上可知,所求直线方程为x+2y﹣1=0或2x+3y=0.…(Ⅱ)有解得交点坐标为(1,),当直线l的斜率k存在时,设l的方程是y﹣=k(x﹣1),即7kx﹣7y+(2﹣7k)=0,由A、B两点到直线l的距离相等得,解得k=,当斜率k不存在时,即直线平行于y轴,方程为x=1时也满足条件.所以直线l的方程是21x﹣28y﹣13=0或x=1.…【点评】本题考察了求直线方程问题,考察点到直线的距离公式,是一道中档题.19.一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的,(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?【考点】函数模型的选择与应用.【专题】应用题.【分析】(1)根据每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,设每年砍伐面积的百分比为x 可建立方程,解之即可得到每年砍伐面积的百分比;(2)设经过m年剩余面积为原来的.根据题意:到今年为止,森林剩余面积为原来的.可列出关于m的等式,解之即可;(3)根据题意设从今年开始,以后砍了n年,再求出砍伐n年后剩余面积,由题意,建立关于n的不等关系,利用一些不等关系即可求得今后最多还能砍伐多少年.【解答】解:(1)设每年砍伐面积的百分比为x ( 0<x<1).则,即,解得(2)设经过m年剩余面积为原来的,则,即,,解得m=5故到今年为止,已砍伐了5年.(3)设从今年开始,以后砍了n年,则n年后剩余面积为令≥,即(1﹣x)n≥,≥,≤,解得n≤15故今后最多还能砍伐15年.【点评】本题主要考查函数模型的选择与应用、不等式的解法及指数式与对数式的互化.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.20.如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰在CD上,即A1O⊥平面DBC.(Ⅰ)求证:BC⊥A1D;(Ⅱ)求证:平面A1BC⊥平面A1BD;(Ⅲ)求点C到平面A1BD的距离.【考点】点、线、面间的距离计算;平面与平面垂直的判定.【专题】证明题;转化思想;综合法;空间位置关系与距离.【分析】(Ⅰ)由线面垂直得A1O⊥BC,再由BC⊥DC,能证明BC⊥A1D.(Ⅱ)由BC⊥A1D,A1D⊥A1B,得A1D⊥平面A1BC,由此能证明平面A1BC⊥平面A1BD.(III)由=,能求出点C到平面A1BD的距离.【解答】证明:(Ⅰ)∵A1O⊥平面DBC,∴A1O⊥BC,又∵BC⊥DC,A1O∩DC=O,∴BC⊥平面A1DC,∴BC⊥A1D.(Ⅱ)∵BC⊥A1D,A1D⊥A1B,BC∩A1B=B,∴A1D⊥平面A1BC,又∵A1D⊂平面A1BD,∴平面A1BC⊥平面A1BD.解:(III)设C到平面A1BD的距离为h,∵=,∴=,又∵=S△DBC,,∴.∴点C到平面A1BD的距离为.【点评】本题考查异面直线垂直的证明,考查面面垂直的证明,考查点到平面的距离的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.21.如图,已知圆心坐标为(,1)的圆M与x轴及直线y=x分别相切于A,B两点,另一圆N与圆M外切、且与x轴及直线y=x分别相切于C、D两点.(1)求圆M和圆N的方程;(2)过点B作直线MN的平行线l,求直线l被圆N截得的弦的长度.【考点】直线和圆的方程的应用.【专题】计算题;证明题.【分析】(1)圆M的圆心已知,且其与x轴及直线y=x分别相切于A,B两点,故半径易知,另一圆N与圆M外切、且与x轴及直线y=x分别相切于C、D两点,由相似性易得其圆心坐标与半径,依定义写出两圆的方程即可.(2)本题研究的是直线与圆相交的问题,由于B点位置不特殊,故可以由对称性转化为求过A点且与线MN平行的线被圆截得弦的长度,下易解.【解答】解:(1)由于⊙M与∠BOA的两边均相切,故M到OA及OB的距离均为⊙M的半径,则M在∠BOA的平分线上,同理,N也在∠BOA的平分线上,即O,M,N三点共线,且OMN为∠BOA的平分线,∵M的坐标为(,1),∴M到x轴的距离为1,即⊙M的半径为1,则⊙M的方程为,设⊙N的半径为r,其与x轴的切点为C,连接MA,NC,由Rt△OAM∽Rt△O可知,OM:ON=MA:NC,即得r=3,则OC=,则⊙N的方程为;(2)由对称性可知,所求的弦长等于过A点直线MN的平行线被⊙N截得的弦的长度,此弦的方程是,即:x﹣﹣=0,圆心N到该直线的距离d=,则弦长=2.【点评】本题考查直线与圆的位置关系以及直线与圆相交的性质,属于直线与圆的方程中综合性较强的题型,题后注意题设中条件转化的技巧.22.已知函数,其反函数为y=g(x).(Ⅰ)若g(mx2+2x+1)的定义域为R,某某数m的取值X围;(Ⅱ)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a);(Ⅲ)是否存在实数m>n>2,使得函数y=h(x)的定义域为[n,m],值域为[n2,m2],若存在,求出m、n的值;若不存在,则说明理由.【考点】函数的最值及其几何意义;反函数.【专题】分类讨论;分析法;函数的性质及应用.【分析】(Ⅰ)求得g(x)=,由定义域为R,可得mx2+2x+1>0恒成立,即有m>0,判别式小于0,解不等式即可得到所求X围;(Ⅱ)令,即有y=t2﹣2at+3=(t﹣a)2+3﹣a2,讨论对称轴和区间的关系,运用单调性,即可得到所求最小值;(III)h(x)=7﹣4x,x∈(2,+∞),且h(x)在x∈(2,+∞)上单调递减,可得h(n)=m2,h(m)=n2,两式相减,即可判断.【解答】解:(Ⅰ)由函数,可得其反函数为y=,因为定义域为R,即有mx2+2x+1>0恒成立,所以,解得m∈(1,+∞);(Ⅱ)令,即有y=t2﹣2at+3=(t﹣a)2+3﹣a2,当a>2,区间[,2]为减区间,t=2时,y min=7﹣4a;当≤a≤2,t=a时,y min=3﹣a2;当a<,区间[,2]为增区间,t=时,y min=﹣a.则;(III)h(x)=7﹣4x,x∈(2,+∞),且h(x)在x∈(2,+∞)上单调递减.所以,两式相减得,m+n=4,与m>n>2矛盾,所以不存在m,n满足条件.【点评】本题考查函数的定义域和值域的求法,考查二次函数的最值的求法,注意运用分类讨论的思想方法,考查运算能力,属于中档题.。

精练03 基本不等式-高一上学期数学期末考点(新教材人教A版必修第一册)

精练03 基本不等式-高一上学期数学期末考点(新教材人教A版必修第一册)

精练03基本不等式1.【内蒙古赤峰市2019-2020学年高一期末】已知0x >,0y >满足22280x y xy y x +--=,则2y x +的最小值为( )A .B .4C .D【答案】C 【详解】由22280x y xy y x +--=知:(2)8xy x y y x +=+,而0x >,0y >∴182y x x y +=+,则21816(2)(2)()101018y x y x y x x y x y +=++=++≥=∴2y x +≥ 故选:C2.【湖北省荆州市2019-2020学年高一期末】若正数x ,y 满足21x y +=,则12x y+的最小值为( )A .4B .3+C .8D .9【答案】C 【详解】解:因为正数x ,y 满足21x y +=,所以()12422248x y x y x y y x ⎛⎫++=+++≥+=⎪⎝⎭, 当且仅当4x y y x =,即11,42x y ==时取等号, 所以12x y+的最小值为8, 故选:C3.【宁夏回族自治区银川一中2019-2020学年高一期末】下列函数的最小值为2的是( ) A .1y x x=+B .1sin (0)sin 2y x x x π=+<<C .y =D .1tan (0)tan 2y x x x π=+<<【详解】 对于A. 1y x x=+,当0x <时,0y <,所以最小值为不是2,A 错误; 对于B. 1sin 0sin 0sin 2y x x x x π⎛⎫=+<<> ⎪⎝⎭,,所以1sin 2sin x x +≥=时, 即sin 1x =,此时无解,所以原式取不到最小值2 ,B 错误.对于C.2y =≥2=,此方程无解,则y 的最小值取不到2,C 错误;对于D,1tan (0)tan?2y x x x π=+<<,因为tan 0x >,所以1tan 2tan x x +≥=, 当且仅当tan 1x =,即4x π=时,y 有最小值2,满足,D 正确;故选:D.4.【江西省南昌市2019-2020学年高一期末】已知a ,0b >,且满足21a ab +=,则3a b +的最小值为( )A B C .D .【答案】C 【详解】 ∵21a ab +=, ∴1b a a=-.即11332a b a a a a a +=+-=+≥=当且仅当2a =时取等号.∴3a b +的最小值为5.【河北省石家庄市2019-2020学年高一期末】如果x >0,y >0,且111x y+=,则xy 有( ) A .最小值4 B .最大值4 C .最大值14D .最小值14【答案】A 【详解】x >0,y >0,且111x y+=,又11x y +≥1≤,114xy ≤, 即4xy ≥,当2x y ==时取等号, 则xy 有最小值4, 故选:A6.【贵州省毕节市威宁县2019-2020学年高一期末】已知正实数a ,b 满足1a b +=,则2241a ba b--+的最小值为( ) A .11 B .9C .8D .7【答案】C 【详解】解:因为正实数a ,b ,且1a b +=,所以2241a b a b--+41a b a b =-+- 41()b a a b =+-+ 41()()1b a a b =+⋅+- 44b a a b =++4≥8=当且仅当4b a a b =即223a b ==时,取等号. 所以2241a b a b--+的最小值为8. 故选:C.7.【广东省佛山市禅城区2019-2020学年高一期末】若0a >,0b >,2a b +=,则下列不等式对一切满足条件的a ,b 恒成立的是( )A .1ab ≤B ≤C .22a b +≥D .223a b +≥【答案】A 【详解】对于A ,0a >,0b >,a b ∴+≥12a b+≤=,即1ab ≤,当且仅当1a b ==时取等号,故A 正确;对于B ,224a b =++=+≤2≤,当且仅当1a b ==时取等号,故B 错误; 对于C , 不妨设32a =,12b =时,23172244a b =+=<+,故B 错误; 对于D ,()2222422+=+-≥-=a b a b ab ,当且仅当1a b ==时取等号,故D 错误. 故选:A8.【广东省佛山市南海区2019-2020学年高一期末】若函数()()40,0af x x x a x=+>>当且仅当2x =时取得最小值,则实数a 的值为( ) A .12 B .24C .16D .36【答案】C 【详解】()4af x x x=+≥24x a =,∴22x ==,解得:16a =, 故选:C.9.【黑龙江省哈尔滨市第三十二中学2019-2020学年高一期末】已知0,0x y >>,231x y +=,则48x y+的最小值为( )A .8B .6C .D .【答案】C 【详解】∵00x y >>,,231x y +=,∴232482x y x y ≥+=+= 当且仅当2322x y =即11,46x y ==时,等号成立,所以48x y +的最小值为. 故选:C10.【安徽省合肥市第十一中学2019-2020学年高一期末】若正数x ,y 满足x+3y=5xy ,则3x+4y 的最小值是( ) A .245B .285C .5D .6【答案】C 【详解】由已知可得31155x y +=,则3194123131234()(34)555555555y x x y x y x y x y +=++=+++≥+=,所以34x y +的最小值5,应选答案C .11.【山西省晋中市祁县第二中学2019-2020学年高一期末】若两个正实数,x y 满足112x y+=,且不等式2x y m m +<-有解,则实数m 的取值范围是( )A .()1,2-B .()4,1-C .()(),12,-∞-+∞D .()(),14,-∞-+∞【答案】C 【解析】正实数x ,y 满足112x y+=, 则()111112222224y x x y x y x y x y ⎛⎫+=++=+++= ⎪⎝⎭,当且仅当1,y x x y ==+取得最小值2. 由2x y m m +<-有解,可得22m m ->, 解得m >2或m <−1. 本题选择C 选项.12.【安徽省宿州市十三所省重点中学2019-2020学年高一期末】已知2m >,0n >,3m n +=,则112m n+-的最小值为( ) A .3 B .4C .5D .6【答案】B 【详解】因为2m >,0n >,3m n +=,所以21m n -+=,则()1111222224222n m m n m n m n m n-⎛⎫+=+-+=++≥+= ⎪---⎝⎭, 当且仅当22n m m n -=-且3m n +=,即51,22m n ==时取等号, 故选:B.13.【安徽省宣城市2019-2020学年高一期末】已知m ,0n >,4121m n+=+,则m n +的最小值为( ) A .72B .7C .8D .4【答案】A 【详解】 ∵m ,0n >,4121m n+=+, ∴()()4111411911554122122n m m n m n m n m n +⎛⎫⎛⎫++=+++⨯=++≥+= ⎪ ⎪++⎝⎭⎝⎭, 当且仅当411n m m n +=+且4121m n+=+,即2m =,32n =时取等号, 故m n +的最小值72.故选:A.14.【湖北省武汉市部分重点中学(武汉六中等)2019-2020学年高一期末】已知1x >,0y >,且1211x y+=-,则2x y +的最小值为( ) A .9 B .10 C .11D .726+【答案】B 【详解】1x >,10x ->,又0y >,且1211x y+=-, 2(1)21x y x y ∴+=-++[]12(1)211x y x y ⎛⎫=-+++ ⎪-⎝⎭22(1)61y x x y -=++- 22(1)621y x x y-+⋅-10=, 当且仅当22(1)1y x x y-=-,解得4x =,3y =时等号成立, 故2x y +的最小值为10. 故选:B .15.【湖南省长沙市长沙县实验中学2019-2020学年高一期末】设正实数x ,y ,z 满足22340x xy y z -+-=,则当xyz取得最大值时,212x y z +-的最大值为( )A .0B .3C .94D .1【答案】D 【详解】由正实数x ,y ,z 满足22340x xy y z -+-=,2234z x xy y ∴=-+.∴2211434432?3xy xy x y zx xy y x y y xy x===-++--,当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+,当且仅当1y =时取等号, 即212x y z+-的最大值是1. 故选:D16.【广东省惠州市2019-2020学年高一期末】函数2241y x x =++的最小值为__. 【答案】3 【详解】函数2241y x x =++, 即()224111y x x =++-+1413≥=-=, 当且仅当212+=x ,即1x =±时,取等号, 则函数的最小值为3, 故答案为:3.17.【吉林省长春市实验中学2019-2020学年高一期末】已知32310x x k --+⋅->对任意实数x 恒成立,则实数k 的取值范围是________.【答案】(),1-∞ 【详解】由于不等式32310x x k --+⋅->对任意实数x 恒成立,则3231x x k -<+⋅-,由基本不等式可得323111x x -+⋅-≥=,当且仅当323x x -=⋅时,即当31log 22x =时,等号成立,所以,1k <,因此,实数k 的取值范围是(),1-∞.故答案为:(),1-∞.18.【湖南省长沙市雨花区2019-2020学年高一期末】设1x >,则函数151y x x =++-的最小值为_____ 【答案】8【详解】 1x >,∴函数115(1)62(1)68111y x x x x x x =++=-++-+=---,当且仅当2x =时取等号. 因此函数151y x x =++-的最小值为8. 故选:A .19.【湖北省仙桃市、天门市、潜江市2019-2020学年高一期末】已知0a >,0b >,且24ab a b =++,则ab 的最小值为______. 【答案】4 【详解】0a >,0b >,,可得24ab ≥,当且仅当a b =时取等号.)120∴≥,∴2≥1≤-(舍去),4ab ∴≥.故ab 的最小值为4. 故答案为:4.20.【四川省凉山州2019-2020学年高一期末】已知0a >,0b >,1a b +=,则1aa b+的最小值为______. 【答案】3 【详解】依题意1113a a b a b a a b a b a b ++=+=++≥+=. 当且仅当12a b ==时等号成立. 故答案为:321.【河北省唐山市第一中学2019-2020学年高一期末】若441x y +=,则x y +的取值范围是____________.【答案】(],1-∞- 【详解】由基本不等式可得1144222x y x y x y +++=+≥=⨯=,10x y ∴++≤,解得1x y +≤-.所以,x y +的取值范围是(],1-∞-. 故答案为:(],1-∞-.22.【安徽省淮南市第一中学2019-2020学年高一期末】已知x ,0y >,且194x y+=,则x y +的最小值________. 【答案】4 【详解】因为x ,0y >,且194x y+=,所以x y +()11919110104444⎛⎛⎫⎛⎫=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝y x x y x y x y 当且仅当9y xx y=,,即1,3x y ==时,取等号, 所以x y +的最小值为4, 故答案为:423.【山西省2019-2020学年高一期末】已知0a >,0b >,1a b +=,则161a b+的最小值为__________. 【答案】25 【详解】()1611611617b a a b a b a b a b ⎛⎫+=++=++ ⎪⎝⎭17172425≥+=+⨯= 当且仅当2216a b =,即45a =,15b = 时取等号. 故答案为:2524.【重庆市巴蜀中学2019-2020学年高一半期考试】设2020a b +=,0b >,则当a =____________时,12020a a b+取得最小值.【答案】20202019-【详解】由已知有:22212020202020202020a a a a b a b a b a b a a b++=+=++212020≥-+221140392202020202020=-+⨯=, 当且仅当0a <,22020a b a b =时,等号成立. 即222202020192020a a b ⇒=-=. 故答案为:20202019-. 25.【四川省乐山市2019-2020学年高一期末】已知a ,b ,c 均为正数,且abc =4a +9b ,则a +b +c 的最小值为_____.【答案】10【详解】49abc a b =+4994a b c ab a b+∴==+9410a b c a b a b ++=+++≥=(当且仅当3,2a b ==时,取等号) 故答案为:1026.【湖北省仙桃市、天门市、潜江市2019-2020学年高一期末】一家货物公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:每月土地占地费1y (单位:万元)与仓库到车站的距离x (单位:km )成反比,每月库存货物费2y (单位:万元)与x 成正比;若在距离车站2km 处建仓库,则1y 和2y 分别为10万元和1.6万元.这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?并求出这个最小值.【答案】5km 处,最小值为8万元..【详解】解:设仓库建在距离车站km x 处时,两项费用之和为y 万元.根据题意可设1y x λ=,2y x μ=.由题可知,当2x =时,110y =,2 1.6y =,则20λ=,45μ=. 所以()20405y x x x =+>.根据均值不等式可得8y ≥=, 当且仅当2045x x =,即5x =时,上式取等号. 故这家公司应该把仓库建在距离车站5km 处,才能使两项费用之和最小,且最小值为8万元.27.【安徽省池州市2019-2020学年高一期末】已知函数2(4)()x f x x+=(0)x >. (1)解不等式:f (x )>503; (2)求函数f (x )的最小值.【答案】(1)8|03x x ⎧<<⎨⎩或}6x >;(2)16 【详解】 (1)220(4)50()(4)5033x x f x x x x>⎧+⎪=>⇔⎨+>⎪⎩, 208|03264803x x x x x >⎧⎧⇔⇔<<⎨⎨-+>⎩⎩或}6x >. (2)22(4)81616()8816x x x f x x x x x +++===++≥=, 当且仅当16x x =,即4x =时函数2(4)()x f x x+=取得最小值16. 28.【浙江省宁波市慈溪市2019-2020学年高一期末】已知0a >,0b >且3a b +=.(Ⅰ)求11()a b +的最大值及此时a ,b 的值; (Ⅱ)求2231a b a b +++的最小值及此时a ,b 的值.【答案】(Ⅰ)32a b==时,11a b⎛⎫+⎪⎝⎭取得最大值为2-;(Ⅱ)6a=-,3b=-+3+;【详解】解:(Ⅰ)1133224233333333333a b a b b a b aa b a b a b a b a b+++=+=+=+++=,当且仅当33b aa b=且3a b+=,即32a b==时取等号,311423loga b⎛⎫∴+=-⎪⎝⎭即最大值为2-,(Ⅱ)3a b+=,∴223313131(1)121111a ba b a ba b a b a b a b++=++-+=+-++=++++++3113(1)3(2()()332314444(1)4(1)a b b aba b a b b++=+++=+++=+++,当且仅当3(1)44(1)b aa b+=+且3a b+=,即6a=-3b=-+29.【黑龙江省哈尔滨市第三中学2019-2020学年高一期末】已知0a>,0b>.(1)求证:()2232a b b a b+≥+;(2)若2a b ab+=,求ab的最小值.【答案】(1)证明见解析;(2)1.【详解】证明:(1)∵()()222223220a b b a b a ab b a b+-+=-+=-≥,∴()2232a b b a b+≥+.(2)∵0a>,0b>,∴2ab a b=+≥2ab≥1,∴1≥ab.当且仅当1a b==时取等号,此时ab取最小值1.和分析法来一起证明,属于中档题.30.【安徽省合肥市第十一中学2019-2020学年高一期末】某村计划建造一个室内面积为800平方米的矩形蔬菜温室,温室内沿左右两侧与后墙内侧各保留1米宽的通道,沿前侧内墙保留3米宽的空地.(1)设矩形温室的一边长为x 米,请用S 表示蔬菜的种植面积,并求出x 的取值范围;(2)当矩形温室的长、宽各为多少时,蔬菜的种植面积最大?最大种植面积为多少.【答案】(1)()80042S x x ⎛⎫=-⋅- ⎪⎝⎭, 4400x <<;(2)长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m .【详解】解:(1)矩形的蔬菜温室一边长为x 米,则另一边长为800x 米, 因此种植蔬菜的区域面积可表示()80042S x x ⎛⎫=-⋅- ⎪⎝⎭, 由4080020x x->⎧⎪⎨->⎪⎩得: 4400x <<; (2)()80016001600 4280828084S x x x x x x =-⋅-=-+≤⎛⎫⎛⎫ ⎪ ⎪⋅⎝-⎝⎭⎭2808160648m =-=, 当且仅当1600x x=,即()404,400x =∈时等号成立. 因此,当矩形温室的两边长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m .。

湖北省随州市高一数学上学期期末试卷(含解析)-人教版高一全册数学试题

湖北省随州市高一数学上学期期末试卷(含解析)-人教版高一全册数学试题

2015-2016学年某某省随州市高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.设集合A={4,5,6},B={2,3,4],则A∪B中有()个元素.A.1 B.4 C.5 D.62.下列两个函数相同的是()A.f(x)=lnx2,g(x)=2lnx B.f(x)=x,g(x)=()2C.f(x)=cosx•tanx,g(x)=sinx D.f(x)=x2,g(x)=3.下列四个函数中,在闭区间[﹣1,1]上单调递增的函数是()A.y=x2B.y=2x C.y=log2x D.y=sin2x4.若函数f(x)=,则f[fA.0 B.2 C.﹣3 D.﹣45.已知a=log,b=log,c=sin,则()A.c<a<b B.a<b<c C.b<a<c D.b<c<a6.tan2016°的值所在的大致区间为()A.(﹣1,﹣)B.(﹣,0)C.(0,)D.(,1)7.方程log2x+x=2的解所在的区间为()A.(0.5,1)B.(1,1.5)C.(1.5,2)D.(2,2.5)8.已知平面向量,满足||=,||=2,•=﹣3,则|+2|=()A.1 B.C.4+D.29.已知角α的终边上一点P的坐标为(sin,cos),则角α的最小正角为()A.B.πC.πD.π10.已知定义在R上的函数f(x)在[1,+∞)上单调递增,且f(x+1)为偶函数,则()A.f(0)<f()B.f(﹣2)>f(2) C.f(﹣1)<f(3) D.f(﹣4)=f(4)11.P是△A BC所在平面上一点,满足++=2,若S△ABC=12,则△PAB的面积为()A.4 B.6 C.8 D.1612.已知f(x)=,则方程2f2(x)﹣3f(x)+1=0的解的个数为()A.2 B.3 C.4 D.5二、填空题:本大题共4个小题,每小题5分.、共20分.13.A={2,lnx},B={x,y},若A∩B={0},则y=.14.化简(log43+log83)(log32+log92)=.15.若f(x)=e x﹣ae﹣x为奇函数,则f(x﹣1)<e﹣的解集为.16.定义[x]与{x}是对一切实数都有定义的函数,[x]的值等于不大于x的最大整数,{x}的值是x﹣[x],则下列结论正确的是(填上正确结论的序号).①[﹣x]=﹣[x];②[x]+[y]≤[x+y];③{x}+{y}≥{x+y};④{x}是周期函数.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.已知A(1,﹣2),B(2,1),C(3,2),D(2,3).(1)求+﹣;(2)若+λ与垂直,求λ的值.18.已知函数f(x)=定义域为集合A,函数g(x)=lg(﹣x2+mx+4)定义域为集合B.(1)若m=3,求A∩(∁R B);(2)若A∪B=A,求m的取值X围.19.函数f(x)=Asin(ωx+φ)+k(A>0,ω>0,|φ<)的图象如图所示.(1)直接写出f(x)表达式;(2)将f(x)图象上所有点纵坐标不变,横坐标缩短为原来的,然后再向右平移得到g(x)图象,求g(x)的单调区间.20.随州市汽车配件厂,是生产某配件的专业厂家,每年投入生产的固定成本为40万元,每生产1万件该配件还需要再投入16万元,该厂信誉好,产品质量过硬,该产品投放市场后供应不求,若该厂每年生产该配件x万件,每万件的销售收入为R(x)万元,且R(x)=.(1)写出年利润关于年产量x(万件)的函数解析式;(2)当年产量为多少万件时,该厂获得的利润最大?并求出最大利润.21.已知f(x)=lgx,g(x)=x+,h(x)=f[g(x)].(1)证明h(x)既是R上的奇函数又是R上的增函数;(2)若(x+)(y+)=,求证:x+2y=0.22.已知f(x)=1﹣,g(x)=2sin(2x﹣).(1)若函数g(x)=(2x+1)•f(x)+k有零点,某某数k的取值X围;(2)对任意x1∈(0,1),总存在x2∈[﹣,],使不等式f(x1)﹣m•2>g(x2)成立,某某数m的取值X围.2015-2016学年某某省随州市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.设集合A={4,5,6},B={2,3,4],则A∪B中有()个元素.A.1 B.4 C.5 D.6【考点】并集及其运算.【分析】根据集合的运算性质求出A∪B即可.【解答】解:∵集合A={4,5,6},B={2,3,4],则A∪B={2,3,4,5,6},有5个元素,故选:C.2.下列两个函数相同的是()A.f(x)=lnx2,g(x)=2lnx B.f(x)=x,g(x)=()2C.f(x)=cosx•tanx,g(x)=sinx D.f(x)=x2,g(x)=【考点】判断两个函数是否为同一函数.【分析】分别判断两个函数的定义域和对应法则是否一致,否则不是同一函数.【解答】解:对于A,f(x)=lnx2的定义域为{x|x≠0},g(x)=2lnx的定义域为{x|x>0},定义域不同,不是相同函数;对于B,f(x)=x的定义域为R,g(x)==x的定义域为{x|x≥0},定义域不同,不是相同函数;对于C,f(x)=cosx•tanx的定义域为{x|x≠kπ+,k∈Z},g(x)=sinx的定义域为R,定义域不同,不是相同函数;对于D,f(x)=x2的定义域为R,g(x)==x2的定义域为R,定义域相同,对应关系也相同,所以是相同数.故选:D.3.下列四个函数中,在闭区间[﹣1,1]上单调递增的函数是()A.y=x2B.y=2x C.y=log2x D.y=sin2x【考点】函数单调性的判断与证明.【分析】根据y=x2,y=2x,y=log2x,y=sin2x性质判断即可.【解答】解:①y=x2在[﹣1,0]单调递减,故A不正确;②y=2x在闭区间[﹣1,1]上单调递增,故B正确;③y=log2x在[﹣1,0]无意义,故C不正确;④y=sin2x在[,1]单调递减,故D不正确;故选;B4.若函数f(x)=,则f[fA.0 B.2 C.﹣3 D.﹣4【考点】对数的运算性质;函数的值.【分析】根据分段函数的表达式进行转化求解即可.【解答】解:由分段函数的表达式得f=﹣22+1=﹣4+1=﹣3,则f[f=﹣3,故选:C5.已知a=log,b=log,c=sin,则()A.c<a<b B.a<b<c C.b<a<c D.b<c<a【考点】对数值大小的比较.【分析】利用对数的运算性质比较a,b的大小,且得到a,利用三角函数的单调性可知c=sin,则答案可求.【解答】解:∵a=log=log32<1,且,b=log=log23>1,c=sin,∴c<a<b.故选:A.6.tan2016°的值所在的大致区间为()A.(﹣1,﹣)B.(﹣,0)C.(0,)D.(,1)【考点】运用诱导公式化简求值.【分析】由条件利用诱导公式、正切函数的单调性,得出结论.【解答】解:∵tan2016°=tan=tan36°,又∵tan30°=,tan45°=1,36°∈(30°,45°),函数y=tanx在(0°,90°)上单调递增,故tan36°∈(,1),故选:D.7.方程log2x+x=2的解所在的区间为()A.(0.5,1)B.(1,1.5)C.(1.5,2)D.(2,2.5)【考点】函数零点的判定定理.【分析】判断f(x)=log2x+x﹣2,在(0,+∞)上单调递增.根据函数的零点存在性定理得出:f(1)•f(1.5)<0,可得出f(x)的零点在(1,1.5)区间内,即可得出答案.【解答】解:设f(x)=log2x+x﹣2,在(0,+∞)上单调递增.∵f(1)=0+1﹣2=﹣1<0,f(1.5)=log21.5﹣0.5=log21.5﹣log2>0∴根据函数的零点存在性定理得出:f(x)的零点在(1,1.5)区间内∴方程log2x+x=2的解所在的区间为(1,1.5)故选:B.8.已知平面向量,满足||=,||=2,•=﹣3,则|+2|=()A.1 B.C.4+D.2【考点】平面向量数量积的运算.【分析】运用向量的数量积的性质,向量的平方即为模的平方,代入计算即可得到.【解答】解:由于||=,||=2,•=﹣3,则|+2|===.故选B.9.已知角α的终边上一点P的坐标为(sin,cos),则角α的最小正角为()A.B.πC.πD.π【考点】任意角的三角函数的定义.【分析】先α的终边上一点的坐标化简求值,确定α的正余弦函数值,再确定角α的取值X围.【解答】解:由题意可知角α的终边上一点的坐标为(sin,cos),即(,﹣),∴sinα=﹣,cosα=,∴α=+2kπ(k∈Z),故角α的最小正值为:.故选:D.10.已知定义在R上的函数f(x)在[1,+∞)上单调递增,且f(x+1)为偶函数,则()A.f(0)<f()B.f(﹣2)>f(2) C.f(﹣1)<f(3) D.f(﹣4)=f(4)【考点】奇偶性与单调性的综合.【分析】根据条件判断函数f(x)关于x=1对称,利用函数对称性和单调性的关系将不等式进行转化即可得到结论.【解答】解:∵f(x+1)为偶函数,∴f(x+1)=f(﹣x+1),即函数f(x)关于x=1对称,∵f(x)在[1,+∞)上单调递增,∴f(x)在(﹣∞,1]上单调递减,∴f(0)>f(),f(﹣2)=f(4)>f(2),f(﹣1)=f(3),f(﹣4)=f(6)>f(4),故选:B.11.P是△ABC所在平面上一点,满足++=2,若S△ABC=12,则△PAB的面积为()A.4 B.6 C.8 D.16【考点】向量在几何中的应用.【分析】根据++=2,可得3=,所以∥并且方向一样,由此可求S△PAB.【解答】解:∵ ++=2=2(+)∴3=∴∥并且方向一样设AP与BC的距离为h,则∵S△PAB=||h,S△ABC=||h∵||=3||,S△ABC=12∴S△PAB=S△ABC=4故选A.12.已知f(x)=,则方程2f2(x)﹣3f(x)+1=0的解的个数为()A.2 B.3 C.4 D.5【考点】根的存在性及根的个数判断.【分析】法1:利用换元法设t=f(x),求出t的大小,利用分段函数进行求解;法2:作出函数f(x)的图象,利用数形结合进行求解即可.【解答】解:法1.设t=f(x),由2f2(x)﹣3f(x)+1=0得2t2﹣3t+1=0得t=1或t=,若x>0,则由|lgx|=1得lgx=±1,则x=10或,由|lgx|=得lgx=±,则x=或,若x≤0,则由2|x|=1得|x|=0,则x=0,由2|x|=得|x|=﹣1.不成立,综上方程根的个数为5个,法2:作出函数f(x)的图象如图,当f(x)=1时,有3个根,当f(x)=时,有2个根,故方程根的个数为5个,故选:D.二、填空题:本大题共4个小题,每小题5分.、共20分.13.A={2,lnx},B={x,y},若A∩B={0},则y= 0 .【考点】交集及其运算.【分析】由A与B,以及两集合的交集,确定出y的值即可.【解答】解:∵A={2,lnx},B={x,y},且A∩B={0},∴lnx=y=0,解得:x=1,y=0,故答案为:0.14.化简(log43+log83)(log32+log92)=.【考点】对数的运算性质.【分析】根据对数的运算法则进行计算;【解答】解:(log43+log83)(log32+log92)=()()=()(+)=×=,故答案为:.15.若f(x)=e x﹣ae﹣x为奇函数,则f(x﹣1)<e﹣的解集为(﹣∞,2).【考点】函数单调性的性质;函数奇偶性的性质.【分析】根据函数奇偶性的性质先求出a的值,结合函数单调性的性质进行求解即可.【解答】解:∵f(x)=e x﹣ae﹣x为奇函数,∴f(0)=0,即f(0)=1﹣a=0,则a=1,即f(x)=e x﹣e﹣x,则函数f(x)在(﹣∞,+∞)上为增函数,则f(1)=e﹣,则不等式f(x﹣1)<e﹣等价为f(x﹣1)<f(1),即x﹣1<1,解得x<2,即不等式的解集为(﹣∞,2),故答案为:(﹣∞,2).16.定义[x]与{x}是对一切实数都有定义的函数,[x]的值等于不大于x的最大整数,{x}的值是x﹣[x],则下列结论正确的是②③④(填上正确结论的序号).①[﹣x]=﹣[x];②[x]+[y]≤[x+y];③{x}+{y}≥{x+y};④{x}是周期函数.【考点】命题的真假判断与应用;函数解析式的求解及常用方法;函数的值.【分析】根据已知中,[x]和{x}的定义,逐一分析四个结论的真假,可得答案.【解答】解:当x为整数时,[﹣x]=﹣[x],当x不是整数时,[﹣x]=﹣[x]﹣1,故①错误;当{x}+{y}<1时,[x]+[y]=[x+y];当{x}+{y}≥1时,[x]+[y]=[x+y]﹣1<[x+y];故[x]+[y]≤[x+y],即②正确;当{x}+{y}<1时,{x}+{y}={x+y};当{x}+{y}≥1时,{x}+{y}>{x+y};故{x}+{y}≥{x+y},即③正确;{x+1}={x}恒成立,故{x}是周期为1的周期函数.故④正确,故答案为:②③④三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.已知A(1,﹣2),B(2,1),C(3,2),D(2,3).(1)求+﹣;(2)若+λ与垂直,求λ的值.【考点】平面向量的坐标运算.【分析】(1)利用向量的坐标运算性质即可得出;(2)利用向量的坐标运算性质、向量垂直与数量积运算性质即可得出.【解答】解:(1)+﹣=++==(1,5)+(﹣1,1)=(0,6).(2)=(2,4),=(1,3),=(﹣1,1).∴+λ=(2+λ,4+3λ),∵+λ与垂直,∴(+λ)•=﹣(2+λ)+4+3λ=0,解得λ=﹣1.18.已知函数f(x)=定义域为集合A,函数g(x)=lg(﹣x2+mx+4)定义域为集合B.(1)若m=3,求A∩(∁R B);(2)若A∪B=A,求m的取值X围.【考点】集合的包含关系判断及应用;交、并、补集的混合运算.【分析】(1)先分别求出函数f(x)和g(x)的定义域,再求出集合B的补集,再根据交集的定义求出所求;(2)若A∪B=A,B⊆A,﹣x2+mx+4>0在(﹣1,5]上恒成立,即可求m的取值X围.【解答】解:函数f(x)=的定义域为集合A={x|﹣1<x≤5}(1)若m=3,函数g(x)=lg(﹣x2+3x+4)的定义域为集合B={x|﹣1<x<4}C R B={x|x≤﹣1或x≥4}∴A∩(∁R B)=[4,5](2)∵A∪B=A,∴B⊆A,∴﹣x2+mx+4>0在(﹣1,5]上恒成立,∴,∴m∈∅.19.函数f(x)=Asin(ωx+φ)+k(A>0,ω>0,|φ<)的图象如图所示.(1)直接写出f(x)表达式;(2)将f(x)图象上所有点纵坐标不变,横坐标缩短为原来的,然后再向右平移得到g(x)图象,求g(x)的单调区间.【考点】函数y=Asin(ωx+φ)的图象变换;由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】(1)由题意求出A,T,利用周期公式求出ω,利用当x=时取得最大值,求出φ,得到函数的解析式,即可得解.(2)由题意根据函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再根据正弦函数的图象的单调性,求得g(x)的单调区间.【解答】解:(1)由题意可知A=2,T=2(﹣)=π,ω=2,由A+k=,﹣A+k=﹣,解得:A=,k=1,当x=时取得最大值,所以=sin(2×+φ)+1,所以:2×+φ=2kπ+,k∈Z,因为:|φ|<.所以φ=,函数f(x)的解析式:f(x)=sin(2x+)+1.(2)将函数y=f(x)的图象上所有点的纵坐标不变,横坐标缩短为原来的倍,可得函数y=sin(3x+)+1的图象.再将所得函数图象向右平移个单位,得到函数y=g(x)=sin[3(x﹣)+]+1=sin (3x﹣)+1,令2kπ+≤3x﹣≤2kπ+,k∈z,求得g(x)的单调递减区间为[kπ+,kπ+],k∈z.令2kπ﹣≤3x﹣≤2kπ+,k∈z,求得g(x)的单调递增区间为[kπ﹣,kπ+],k∈z.20.随州市汽车配件厂,是生产某配件的专业厂家,每年投入生产的固定成本为40万元,每生产1万件该配件还需要再投入16万元,该厂信誉好,产品质量过硬,该产品投放市场后供应不求,若该厂每年生产该配件x万件,每万件的销售收入为R(x)万元,且R(x)=.(1)写出年利润关于年产量x(万件)的函数解析式;(2)当年产量为多少万件时,该厂获得的利润最大?并求出最大利润.【考点】函数模型的选择与应用.【分析】(1)利润=收入﹣成本(2)由分段函数,在各个段上讨论.利用基本不等式,可得最值.【解答】解:(1)设年利润为w万元,则年利润=年收入﹣年成本∴w(x)=xR(x)﹣16x﹣40=(2)∵利润与产量的函数为分段函数①0<x≤40时,w(x)=﹣6x2+384x﹣40x=32时,w(x)取最大,最大值为11634②x>40时,w(x)=﹣16x﹣+7360≤﹣1600+7360=6000当且仅当x=50时,取等号.由①,②得,当x=50时,即产量我50万件时,利润取得最大,最大利润为6000万元.21.已知f(x)=lgx,g(x)=x+,h(x)=f[g(x)].(1)证明h(x)既是R上的奇函数又是R上的增函数;(2)若(x+)(y+)=,求证:x+2y=0.【考点】对数函数图象与性质的综合应用;函数奇偶性的判断;根式与分数指数幂的互化及其化简运算.【分析】(1)先求出,容易得到h(﹣x)=﹣h(x),即得到h (x)为奇函数,可以求导数h′(x)>0,从而得出h(x)为R上的增函数;(2)由便可得到,两边取以10为底的对数,根据h(x)的解析式可得到h(x)+h(2y)=0,而由h(x)为奇函数且为增函数便可得到x+2y=0.【解答】证明:(1);恒成立;∴h(x)的定义域为R,且==﹣h(x);∴h(x)为R上的奇函数;又=;∴h(x)为R上的增函数;(2)=;∴;∴==h(x)+h(2y)=0;∴h(x)=﹣h(2y);∵h(x)为R上的奇函数且是增函数;∴h(x)=h(﹣2y);∴x=﹣2y;∴x+2y=0.22.已知f(x)=1﹣,g(x)=2sin(2x﹣).(1)若函数g(x)=(2x+1)•f(x)+k有零点,某某数k的取值X围;(2)对任意x1∈(0,1),总存在x2∈[﹣,],使不等式f(x1)﹣m•2>g(x2)成立,某某数m的取值X围.【考点】函数恒成立问题;函数零点的判定定理.【分析】(1)由题意可得g(x)=0,即为1﹣k=2x,由指数函数的值域,即可得到所求X围;(2)当x2∈[﹣,],可得2x﹣∈[﹣,],运用正弦函数的图象和性质可得g(x2)的最小值为g(﹣)=﹣2,由题意可得f(x1)﹣m•2>﹣2,即m<=+在(0,1)恒成立,运用指数函数的单调性,可得右边函数的值域,再由恒成立思想即可得到所求X围.【解答】解:(1)g(x)=(2x+1)•f(x)+k=2x﹣1+k,由题意可得g(x)=0,即为1﹣k=2x,由2x>0,可得k<1;(2)当x2∈[﹣,],可得2x﹣∈[﹣,],则g(x2)的最小值为g(﹣)=﹣2,即有不等式f(x1)﹣m•2>g(x2)成立,即为f(x1)﹣m•2>﹣2,即m<=+在(0,1)恒成立,由h(x)=+在(0,1)递减,可得h(x)的值域为(,2),可得m≤.。

江西省南昌市莲塘一中高一数学上学期期末试题(含解析)-人教版高一全册数学试题

江西省南昌市莲塘一中高一数学上学期期末试题(含解析)-人教版高一全册数学试题

2015-2016学年某某省某某市莲塘一中高一(上)期末数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知A={锐角},B={第一象限角},C={小于90°的角},那么A,B,C的关系式()A.A=B∩C B.B⊆C C.A∪C=C D.A=B=C2.三个数0.76,60.7,log0.76的大小关系为()A.0.76<log0.76<60.7B.0.76<60.7<log0.76C.log0.76<60.7<0.76D.log0.76<0.76<60.73.sin1cos2tan3的值()A.大于0 B.小于0 C.等于0 D.不确定4.要得到函数的图象,只需将y=sin的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位5.若||=1,||=,(﹣)⊥,则与的夹角为()A.30°B.45°C.60°D.75°6.定义在R上的函数f(x)既是偶函数又是周期函数.若f(x)的最小正周期是π,且当x∈[0,]时,f(x)=sinx,则f()的值为()A.﹣B.C.﹣D.7.函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则这个函数的周期和初相分别是()A.2,﹣B.2,﹣C.π,﹣D.π,﹣8.中国最高的摩天轮是“某某之星”,它的最高点离地面160米,直径为156米,并以每30分钟一周的速度匀速旋转,若从最低点开始计时,则摩天轮进行5分钟后离地面的高度为()A.41米B.43米C.78米D.118米9.若0<α<,﹣<β<0,cos(+α)=,cos(﹣)=,则cos(α+)=()A.B.﹣C.D.﹣10.如图,AB=2,O为圆心,C为半圆上不同于A,B的任意一点,若P为半径OC上的动点,则(+)的最小值等于()A.﹣B.﹣2 C.﹣1 D.﹣11.函数的图象与函数y=2sinπx(﹣4≤x≤2)的图象所有交点的横坐标之和等于()A.4 B.6 C.﹣4 D.﹣612.已知O为△ABC所在平面内一点,且满足,则O点的轨迹一定通过△ABC的()A.外心B.内心C.重心D.垂心二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数y=+lg(4﹣x2)的定义域是(结果用区间表示)14.若等边△ABC的边长为,平面内一点M满足=+,则=.15.设α为锐角,若cos(α+)=,则sin(2α+)的值为.16.下列说法正确的序号是.①第一象限角是锐角;②函数的单调增区间为(﹣∞,﹣3);③函数f(x)=|cosx|是周期为2π的偶函数;④方程只有一个解x=0.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知A(﹣1,2),B(2,8),(1)若=, =﹣,求的坐标;(2)设G(0,5),若⊥,∥,求E点坐标.18.(1)已知角α终边经过点P(﹣4,3),求的值?(2)已知函数,(b>0)在0≤x≤π的最大值为,最小值为﹣,求2a+b的值?19.已知f(x)=4sinαcosα﹣5sinα﹣5cosα.(1)若f(x)=1,求sinα+cosα的值;(2)当时,求f(x)的值域.20.已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.21.已知向量,函数的图象关于直线对称,且经过点,其中ω,λ为实数,ω∈(0,2).(1)求f(x)的解析式;(2)若锐角α,β满足,求β的值.22.已知函数f(x)是定义在(0,+∞)上的函数,且对于任意的实数x,y有f(xy)=f (x)+f(y),当x>1时,f(x)>0.(1)求证:f(x)在(0,+∞)上是增函数;(2)若f(2)=1,对任意实数t,不等式f(t2+1)﹣f(t2﹣kt+1)≤2恒成立,某某数k 的取值X围.2015-2016学年某某省某某市莲塘一中高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知A={锐角},B={第一象限角},C={小于90°的角},那么A,B,C的关系式()A.A=B∩C B.B⊆C C.A∪C=C D.A=B=C【考点】任意角的概念.【专题】计算题;函数思想;定义法;三角函数的求值.【分析】分别判断,A,B,C的X围即可求出【解答】解:∵A={锐角}=(0,90°),B={第一象限角}=(0,90°+k360°),k∈Z,C={小于90°的角}=(﹣∞,90°)∴A∪C=C,故选:C.【点评】本题考查了任意角的概念和角的X围,属于基础题.2.三个数0.76,60.7,log0.76的大小关系为()A.0.76<log0.76<60.7B.0.76<60.7<log0.76C.log0.76<60.7<0.76D.log0.76<0.76<60.7【考点】指数函数单调性的应用.【专题】计算题;转化思想.【分析】由对数函数的图象和性质,可得到log0.76<0,再指数函数的图象和性质,可得0.76<1,60.7>1从而得到结论.【解答】解:由对数函数y=log0.7x的图象和性质可知:log0.76<0由指数函数y=0.7x,y=6x的图象和性质可知0.76<1,60.7>1∴log0.76<0.76<60.7故选D【点评】本题主要考查指数函数,对数函数的图象和性质,在比较大小中往往转化为函数的单调性或图象分面来解决.3.sin1cos2tan3的值()A.大于0 B.小于0 C.等于0 D.不确定【考点】三角函数值的符号.【专题】计算题;函数思想;定义法;三角函数的求值.【分析】首先判断出角1、2、3所在的象限,得到对应三角函数值的符号,则答案可求.【解答】解:∵0<1<,∴sin1>0,∵<2<π,∴cos2<0,∵<3<π,∴tan3<0.∴sin1cos2tan3>0.故选:A.【点评】本题考查了三角函数值的符号,解答的关键是熟记象限符号,同时注意角X围的确定,是基础题.4.要得到函数的图象,只需将y=sin的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;数形结合法;三角函数的图像与性质.【分析】利用平移原则求解即可得解.【解答】解:函数y=sin(﹣)=sin(x﹣),只需将y=sin x的图象向右平移个单位,即可得到函数y=sin(﹣)的图象,故选:B.【点评】本题考查三角函数的图象的平移,注意自变量x的系数,属于基础题.5.若||=1,||=,(﹣)⊥,则与的夹角为()A.30°B.45°C.60°D.75°【考点】平面向量数量积的运算.【专题】计算题;方程思想;向量法;平面向量及应用.【分析】设与的夹角为θ,由(﹣)⊥,可得(﹣)=0,展开后可求得与的夹角.【解答】解:设与的夹角为θ(0°≤θ≤180°),则由||=1,||=,(﹣)⊥,得(﹣)==0,即1﹣,∴cosθ=,∴θ=45°.故选:B.【点评】本题考查平面向量的数量积运算,考查了向量垂直与数量积的关系,是中档题.6.定义在R上的函数f(x)既是偶函数又是周期函数.若f(x)的最小正周期是π,且当x∈[0,]时,f(x)=sinx,则f()的值为()A.﹣B.C.﹣D.【考点】函数单调性的性质;函数的周期性.【专题】计算题;压轴题.【分析】要求f(),则必须用f(x)=sinx来求解,那么必须通过奇偶性和周期性,将变量转化到区间[0]上,再应用其解析式求解.【解答】解:∵f(x)的最小正周期是π∴f()=f(﹣2π)=f(﹣)∵函数f(x)是偶函数∴f()=f()=sin=.故选D【点评】本题主要考查了函数的奇偶性,周期性以及应用区间上的解析性求函数值,是基础题,应熟练掌握.7.函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则这个函数的周期和初相分别是()A.2,﹣B.2,﹣C.π,﹣D.π,﹣【考点】y=Asin(ωx+φ)中参数的物理意义.【专题】三角函数的图像与性质.【分析】根据图象,求出函数f(x)的周期,得出ω的值,再利用点的坐标,求出φ即可.【解答】解:由图象知,函数f(x)=2sin(ωx+φ)的T=﹣(﹣)==,∴最小正周期T==π,解得ω=2;又由函数f(x)的图象经过(,2),∴2=2sin(2×+φ),∴+φ=2kπ+,(k∈Z),即φ=2kπ﹣;又由﹣<φ<,∴φ=﹣;∴这个函数的周期是π,初相是﹣.故选:D.【点评】本题考查了函数y=Asin(ωx+φ)(A>0,ω>0)的图象与性质的应用问题,解题的关键是确定初相的值,是基础题目.8.中国最高的摩天轮是“某某之星”,它的最高点离地面160米,直径为156米,并以每30分钟一周的速度匀速旋转,若从最低点开始计时,则摩天轮进行5分钟后离地面的高度为()A.41米B.43米C.78米D.118米【考点】弧长公式.【专题】应用题;数形结合;数形结合法;三角函数的求值.【分析】5分钟后可算出所转的角度,根据半径的长以及构造的直角三角形,可求出答案.【解答】解:作CD⊥OB于D,如图所示:∵∠COD=5×=60°,OC=78,∴∠OCD=30°,∴OD=OC=39,∴摩天轮进行5分钟后离地面的高度为:DA=OA﹣OD=160﹣78﹣39=43(米).故选:B.【点评】本题考查了解直角三角形的应用、生活中的旋转现象,属于基础题.9.若0<α<,﹣<β<0,cos(+α)=,cos(﹣)=,则cos(α+)=()A.B.﹣C.D.﹣【考点】三角函数的恒等变换及化简求值.【专题】三角函数的求值.【分析】先利用同角三角函数的基本关系分别求得sin(+α)和sin(﹣)的值,进而利用cos(α+)=cos[(+α)﹣(﹣)]通过余弦的两角和公式求得答案.【解答】解:∵0<α<,﹣<β<0,∴<+α<,<﹣<∴sin(+α)==,sin(﹣)==∴cos(α+)=cos[(+α)﹣(﹣)]=cos(+α)cos(﹣)+sin(+α)sin(﹣)=故选C【点评】本题主要考查了三角函数的恒等变换及化简求值.关键是根据cos(α+)=cos[(+α)﹣(﹣)],巧妙利用两角和公式进行求解.10.如图,AB=2,O为圆心,C为半圆上不同于A,B的任意一点,若P为半径OC上的动点,则(+)的最小值等于()A.﹣B.﹣2 C.﹣1 D.﹣【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】由题意可得+=2,从而把要求的式子化为﹣2||||,再利用基本不等式求得||||≤,从而求得则(+)的最小值.【解答】解:∵+=2,∴( +)=2=﹣2|||,∵||+||=||=1.再利用基本不等式可得1≥2,故有||||≤,﹣||||≥﹣,∴(+)=﹣2||||≥﹣,故选:A.【点评】本题主要考查向量在几何中的应用、以及基本不等式的应用问题,属于中档题目.11.函数的图象与函数y=2sinπx(﹣4≤x≤2)的图象所有交点的横坐标之和等于()A.4 B.6 C.﹣4 D.﹣6【考点】正弦函数的图象;函数的图象.【专题】转化思想;数形结合法;函数的性质及应用.【分析】分别作出两个函数的图象,根据图象的对称性即可得到交点坐标问题.【解答】解:作出函数y=的图象,则函数关于点(﹣1,0)对称,同时点(﹣1,0)也是函数y=2sinπx(﹣4≤x≤2)的对称点,由图象可知,两个函数在[﹣4,2]上共有4个交点,两两关于点(﹣1,0)对称,设对称的两个点的横坐标分别为x1,x2,则x1+x2=2×(﹣1)=﹣2,∴4个交点的横坐标之和为2×(﹣2)=﹣4.故选:C.【点评】本题主要考查函数交点个数以及数值的计算,根据函数图象的性质,利用数形结合是解决此类问题的关键,难度较大,综合性较强.12.已知O为△ABC所在平面内一点,且满足,则O点的轨迹一定通过△ABC的()A.外心B.内心C.重心D.垂心【考点】轨迹方程.【专题】综合题;转化思想;向量法;综合法;平面向量及应用.【分析】把用表示,代入已知向量等式整理得答案.【解答】解:∵,、,∴由,得,∴,即,∴,则OC⊥AB,OA⊥BC,OB⊥AC.∴O是△ABC的垂心.故选:D.【点评】本题考查了向量在几何中应用,主要利用向量的线性运算以及数量积进行化简证明,是中档题.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数y=+lg(4﹣x2)的定义域是{x|﹣2<x≤﹣或0≤x≤} (结果用区间表示)【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据函数成立的条件,即可求出函数的定义域.【解答】解:要使函数有意义,则,即,则﹣2<x≤﹣或0≤x≤,故函数的定义域为{x|﹣2<x≤﹣或0≤x≤},故答案为:{x|﹣2<x≤﹣或0≤x≤}.【点评】本题主要考查函数定义域的求法,要求熟练掌握常见函数成立的条件,比较基础.14.若等边△ABC的边长为,平面内一点M满足=+,则= ﹣2 .【考点】相等向量与相反向量.【专题】平面向量及应用.【分析】先合理建立直角坐标系,因为三角形是正三角形,故设,这样利用向量关系式,求得M,然后求得,,运用数量积公式解得为﹣2【解答】解:以C点为原点,以AC所在直线为x轴建立直角坐标系,可得,∴,,∵=+=,∴M,∴,,=(,)(,)=﹣2.故答案为:﹣2.【点评】本试题考查了向量的坐标运算.也体现了向量的代数化手段的重要性.考查了基本知识的综合运用能力.15.设α为锐角,若cos(α+)=,则sin(2α+)的值为.【考点】三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.【专题】三角函数的求值;三角函数的图像与性质.【分析】先设β=α+,根据cosβ求出sinβ,进而求出sin2β和cos2β,最后用两角和的正弦公式得到sin(2α+)的值.【解答】解:设β=α+,∴sinβ=,sin2β=2sinβcosβ=,cos2β=2cos2β﹣1=,∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.【点评】本题要我们在已知锐角α+的余弦值的情况下,求2α+的正弦值,着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式,考查了三角函数中的恒等变换应用,属于中档题.16.下列说法正确的序号是②④.①第一象限角是锐角;②函数的单调增区间为(﹣∞,﹣3);③函数f(x)=|cosx|是周期为2π的偶函数;④方程只有一个解x=0.【考点】命题的真假判断与应用.【专题】对应思想;定义法;函数的性质及应用;简易逻辑.【分析】①根据象限角的定义判断;②根据符合函数的单调性求解;③根据周期函数的定义判断即可;④结合函数的图象可判断.【解答】解:①第一象限角是指终边落在第一象限的角,不一定是锐角,故错误;②函数为符合函数,单调增区间为x2+2x﹣3的减区间且有意义,解得x的X围为(﹣∞,﹣3),故正确;③函数f(x)=|cosx|是周期为π的偶函数,故错误;④结合y=x和y=tanx的图象可知,方程只有一个解x=0,故正确.故答案为②④.【点评】考查了象限角,符合函数的单调性和周期函数的判断及利用函数的交点解决方程问题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知A(﹣1,2),B(2,8),(1)若=, =﹣,求的坐标;(2)设G(0,5),若⊥,∥,求E点坐标.【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】(1)利用向量的数乘运算、坐标运算、三角形法则即可得出.(2)利用向量的共线定理、向量垂直与数量积的关系即可得出.【解答】解:(1)∵=(3,6),∴==(1,2),=﹣=(﹣2,﹣4),∴==(2,4)﹣(1,2)=(1,2).(2)设E(x,y),则=(x+1,y﹣2),=(x﹣2,y﹣8),∵=(﹣2,﹣3),⊥,∥,∴,解得.∴E点坐标(﹣,).【点评】本题考查了向量的数乘运算、坐标运算、三角形法则、向量的共线定理、向量垂直与数量积的关系,考查了计算能力,属于基础题.18.(1)已知角α终边经过点P(﹣4,3),求的值?(2)已知函数,(b>0)在0≤x≤π的最大值为,最小值为﹣,求2a+b的值?【考点】运用诱导公式化简求值;任意角的三角函数的定义.【专题】三角函数的求值.【分析】(1)利用三角函数的定义求出正切函数值,利用诱导公式化简所求表达式为正切函数形式,代入求解即可.(2)通过角的X围求解得到,利用最值求解a、b即可.【解答】解:(1)∵角α终边经过点P(﹣4,3),∴…(2分)∴…(6分)(2)∵0≤x≤π∴…(7分)∴…(9分)∵b>0并且在0≤x≤π的最大值为,最小值为﹣∴,…(11分)解得:…(12分)∴2a+b=3.…(13分)【点评】本题考查三角函数的化简求值,考查计算能力.19.已知f(x)=4sinαcosα﹣5sinα﹣5cosα.(1)若f(x)=1,求sinα+cosα的值;(2)当时,求f(x)的值域.【考点】三角函数中的恒等变换应用;同角三角函数基本关系的运用;三角函数的化简求值.【专题】计算题;转化思想;综合法;三角函数的求值.【分析】(1)令sinα+cosα=t,换元平方得2sinαcosα=t2﹣1,由此利用二次函数和三角函数的性质能求出sinα+cosα的值.(2)令t=sinα+cosα,推导出,由此利用二次函数性质能求出f(x)的值域.【解答】解:(1)令sinα+cosα=t,换元平方得2sinαcosα=t2﹣1,∵f(x)=1,∴2(t2﹣1)﹣5t=1,即2t2﹣5t﹣3=0,解得又∵,∴(2)令t=sinα+cosα,∵,∴,即,∴,由二次函数图象可知:.【点评】本题考查函数值和函数的值域的求法,是中档题,解题时要认真审题,注意换元法的合理运用.20.已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.【考点】函数y=Asin(ωx+φ)的图象变换;运用诱导公式化简求值.【专题】三角函数的图像与性质.【分析】(Ⅰ)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线x=对称,结合﹣≤φ<可得φ 的值.(Ⅱ)由条件求得sin(α﹣)=.再根据α﹣的X围求得cos(α﹣)的值,再根据cos(α+)=sinα=sin[(α﹣)+],利用两角和的正弦公式计算求得结果.【解答】解:(Ⅰ)由题意可得函数f(x)的最小正周期为π,∴=π,∴ω=2.再根据图象关于直线x=对称,可得2×+φ=kπ+,k∈z.结合﹣≤φ<可得φ=﹣.(Ⅱ)∵f()=(<α<),∴sin(α﹣)=,∴sin(α﹣)=.再根据 0<α﹣<,∴cos(α﹣)==,∴cos(α+)=sinα=sin[(α﹣)+]=sin(α﹣)cos+cos(α﹣)sin=+=.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,两角和差的三角公式、的应用,属于中档题.21.已知向量,函数的图象关于直线对称,且经过点,其中ω,λ为实数,ω∈(0,2).(1)求f(x)的解析式;(2)若锐角α,β满足,求β的值.【考点】正弦函数的图象;平面向量数量积的运算.【专题】转化思想;综合法;三角函数的图像与性质.【分析】(1)由条件利用两个向量的数量积公式,正弦函数的图象的对称性,求得ω的值,可得函数的解析式,再根据函数的图象经过特殊点,求得λ的值,从而得到函数的解析式.(2)由条件利用同角三角的基本关系求得α、α+β的正弦和余弦,再利用两角差的余弦公式求得cosβ的值,可得β的值.【解答】解:(1)由得=1﹣cos2ωx+sin2ωx+λ=2sin(2ωx﹣)+λ+1,可得.由于函数f(x)的图象关于直线对称,∴,解得:,∵ω∈(0,2),∴ω=1.又因为f(x)经过点,可得:λ=﹣1,因此.(2)由.∵α为锐角且,∴,又α,β为锐角,∴,又,∴,∴,∴,∴.【点评】本题主要考查两个向量的数量积公式,正弦函数的图象的对称性,同角三角的基本关系,两角差的余弦公式,属于中档题.22.已知函数f(x)是定义在(0,+∞)上的函数,且对于任意的实数x,y有f(xy)=f (x)+f(y),当x>1时,f(x)>0.(1)求证:f(x)在(0,+∞)上是增函数;(2)若f(2)=1,对任意实数t,不等式f(t2+1)﹣f(t2﹣kt+1)≤2恒成立,某某数k 的取值X围.【考点】函数恒成立问题;抽象函数及其应用.【专题】函数的性质及应用;不等式的解法及应用.【分析】(1)设出(0,+∞)上的任意两个实数x1,x2,且x1>x2,由此可得,结合f(xy)=f(x)+f(y),得,说明f(x1)>f(x2),得到f(x)在(0,+∞)上是增函数;(2)由f(2)=1,得2=f(4),把对任意实数t,不等式f(t2+1)﹣f(t2﹣kt+1)≤2恒成立,转化为对任意实数t,恒成立,分别求出使①,②恒成立时k的X围取交集得答案.【解答】(1)证明:设x1,x2是(0,+∞)上的任意两个实数,且x1>x2,则,∴,由f(xy)=f(x)+f(y),得,∵,∴f(x1)>f(x2).则f(x)在(0,+∞)上是增函数;(2)解:由f(2)=1,得2=2f(2)=f(2)+f(2)=f(4).又对任意实数t,不等式f(t2+1)﹣f(t2﹣kt+1)≤2恒成立,即f(t2+1)≤f(t2﹣kt+1)+f(4)=f(4t2﹣4kt+4)恒成立,则对任意实数t,恒成立.由①得:(﹣k)2﹣4<0,解得﹣2<k<2;由②得:3t2﹣4kt+3≥0,则(﹣4k)2﹣4×3×3≤0,解得:.∴实数k的取值X围是.【点评】本题考查了函数恒成立问题,考查了抽象函数的应用,考查了数学转化思想方法,训练了二次函数恒成立问题,是中高档题.。

2024-2025学年初中八年级上学期数学(第11-12章)第一次月考卷及答案(人教版)

2024-2025学年初中八年级上学期数学(第11-12章)第一次月考卷及答案(人教版)

2024-2025学年八年级数学上学期第一次月考卷01(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版八年级上册第十一章~第十二章。

5.难度系数:0.85。

一、选择题(本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列长度的三条线段能组成三角形的是()A.6,2,3B.3,3,3C.4,3,8D.4,3,72.如图,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的()A.全等形B.稳定性C.灵活性D.对称性3.如图,CM是△ABC的中线,AB=10cm,则BM的长为()A.7cm B.6cm C.5cm D.4cm4.画△AAAAAA的AAAA边上的高AAAA,下列画法中正确的是()A.B.C.D.5.一个多边形的内角和等于540°,则它的边数为()A.4 B.5 C.6 D.86.请仔细观察用直尺和圆规作一个角∠AA′OO′AA′等于已知角∠AAOOAA的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠AA′OO′AA′=∠AAOOAA的依据是()A.SAS B.ASA C.AAS D.SSS7.如图,△ABE≌△ACF,若AB=5,AE=2,则EC的长度是()A.2 B.3 C.4 D.58.如图,若要用“HL”证明Rt△AAAAAA≌Rt△AAAAAA,则还需补充条件()A.∠AAAAAA=∠AAAAAA B.∠AA=∠AA C.AAAA=AAAA D.AAAA=AAAA9.如图,在Rt△AAAAAA中,∠AA=90°,∠AAAAAA的平分线AAAA交AAAA于点D,AAAA=3,则点D到AAAA的距离是()A.6 B.2 C.3 D.410.如图,已知△AAAAAA为直角三角形,∠AA=90°,若沿图中虚线剪去∠AA,则∠1+∠2的度数为()A.210°B.250°C.270°D.300°11.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去12.如图1,∠AADDDD=20°,将长方形纸片AAAAAAAA沿直线DDDD折叠成图2,再沿折痕为AADD折叠成图3,则∠AADDDD的度数为()A.100°B.120°C.140°D.160°二、填空题(本题共6小题,每小题2分,共12分.)13.在Rt△ABC中,∠C=90°,∠A=40°,则∠B= .14.如图,AAAA是△AAAAAA的高,∠AAAAAA=90°.若∠AA=35°,则∠AAAAAA的度数是.15.如图所示的两个三角形全等,则∠1的度数是.16.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.17.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=15°,∠ACP=50°,则∠P= °.18.如图,在射线OOAA,OOAA上分别截取OOAA1=OOAA1,连接AA1AA1,在AA1AA1、AA1AA上分别截取AA1AA2=AA1AA2,连接AA2AA2,…按此规律作下去,若∠AA1AA1OO=αα,则∠AA2023AA2023OO=.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:|−2|−6×�−12�+(−4)2+8.20.(6分)解不等式组�2xx+1>xx−123xx−1≤5,并写出它的所有正整数解.21.(8分)如图,AC和BD相交于点0,OA=OC,OB=OD,求证:DC//AB.22.(8分)如图△AAAAAA中,∠AA=40°,∠AAAAAA=∠AA.(1)作∠AAAAAA的平分线,交AAAA于点AA(用直尺和圆规按照要求作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求∠AAAAAA的大小.23.(10分)某校学生处为了了解全校1200名学生每天在上学路上所用的时间,随机调查了30名学生,下面是某一天这30名学生上学所用时间(单位:分钟):20,20,30,15,20,25,5,15,20,10,15,35,45,10,20,25,30,20,15,20,20,10,20,5,15,20,20,20,5,15.通过整理和分析数据,得到如下不完全的统计图.根据所给信息,解答下列问题:(1)补全条形统计图;(2)这30名学生上学所用时间的中位数为______ 分钟,众数为______ 分钟;(3)若随机问这30名同学中其中一名学生的时间,最有可能得到的回答是______ 分钟;(4)20分钟及以下的人数.24.(10分)中央大街工艺品店销售冰墩墩徽章和冰墩墩摆件,若购买4个冰墩墩徽章和2个冰墩墩摆件需要130元,购买3个冰墩墩徽章和5个冰墩墩摆件需要220元.(1)求每个冰墩墩徽章和每个冰墩墩摆件各需要多少钱?(2)若某旅游团计划买冰墩墩徽章和冰墩墩摆件共50个,所用钱数不超过1150元,则该旅游团至少买多少个冰墩墩徽章?25.(12分)如图,已知△AAAAAA中,AAAA=AAAA=20cm,AAAA=16cm,点AA为AAAA的中点.(1)如果点P在线段AAAA上以6cm/s的速度由A点向B点运动,同时,点Q在线段AAAA上由点B向C点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△AAAAAA与△AABBAA是否全等?说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△AAAAAA与△AABBAA全等?(2)若点Q以②中的运动速度从点B出发,点P以原来的运动速度从点A同时出发,都逆时针沿△AAAAAA三边运动,求经过多长时间点P与点Q第一次在△AAAAAA的哪条边上相遇?26.(12分)如图,在△AAAAAA中,∠AAAAAA=90°,AAAA=AAAA,点D为AAAA的中点.点E是直线AAAA上的一动点,连接AADD,作AADD⊥AADD交直线AAAA于点F.(1)如图1,若点E与点A重合时,请你直接写出线段AADD与AADD的数量关系;(2)如图2,若点E在线段AAAA上(不与A、B重合)时,请判断线段AADD与AADD的数量关系并说明理由;(3)若点E在AAAA的延长线上时,线段AADD与AADD的数量关系是否仍然满足上面(2)中的结论?请利用图3画图并说明理由.2024-2025学年八年级数学上学期第一次月考卷01(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2013-2014学年高一数学上学期期末试题及答案(新人教A版 第44套)

2013-2014学年高一数学上学期期末试题及答案(新人教A版 第44套)

高一期末考试数学试题一、选择题(本大题10小题,每小题5分,共50分)在每小题列出的四个选项中,只有一项是符合题目要求的.1.设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )A. {2}B. {2}-C. {2,2}-D. ∅ 2.若0log log 22<<b a ,则( )A. 10<<<a bB. 10<<<b aC. 1>>a bD. 1>>b a3.已知)2,3(-=,)0,1(-=,向量+λ与垂直,则实数λ的值为( )A.21 B. 21- C. 31 D. 31- 4.函数)0(,)21sin(πϕϕ≤≤-=x y 是R 上的偶函数,则ϕ的值是( )A .0B .4πC .2π D .π5.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )6.函数()2x f x e x =+-的零点所在的区间是( )A .1(0,)2B .1(,1)2C .)2,1(D .)3,2(7.在ABC ∆中,若1tan tan 0<⋅<B A ,那么C tan 的值( )A.恒大于0B.恒小于0C.可能为0D.可正可负 8.在ABC △中,c AB =,b AC =.若点D 满足DC BD 3=,则AD =( )A .4743+-B . 4143-C .4143+D .4341+9. 定义在R 上的函数)(x f 满足)2()(+=x f x f ,当]3,1[∈x 时,22)(--=x x f ,则xxA .B .C .D .B D CA第8题图( )A .)6(sin )3(sin ππf f > B . )32(cos )32(sin ππf f < C .)4(cos)3(cosππf f < D .)4(tan)6(tanππf f <10.已知函数)(x f 的定义域为R ,若存在常数0>m ,对任意R x ∈,有x m x f ≤)(,则称函数)(x f 为-F 函数.给出下列函数:①2)(x x f =;②1)(2+=x xx f ;③()2x f x =;④()sin 2f x x =.其中是-F 函数的序号为( )A .①②B .①③C .②④D .③④二、填空题(本大题6小题,每小题5分,共30分)请把答案填写在答题卡相应的位置上. 11.已知21sin =α,则)2cos(απ+的值为______________. 12.已知函数⎩⎨⎧<≥=)0()0(0)(x x x f π,则))1((-f f 的值等于______________.13.已知a 、b 均为单位向量,它们的夹角为3π等于 . 14.函数]),0[)(62sin(2ππ∈-=x x y 为减函数的区间是______________.15.若函数⎪⎩⎪⎨⎧<->=0),(log 0,log )(212x x x x x f ,若0)(<a f ,则实数a 的取值范围是___________.16.设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x =++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为________.三、解答题(本大题共有5小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题满分14分)设函数1cos sin 22cos 3)(++=x x x x f . (1)求)3(πf 的值;(2)若)2,0(π∈x ,求函数)(x f 的最大值.18.(本题满分14分)已知函数()),22,0,0)(sin(πϕπωϕω<<->>+=A x A x f 其部分图象如下图所示.(1)求函数 )(x f y =的表达式;(2)若,66ππα⎛⎫∈-⎪⎝⎭,且53)(=αf ,试求αsin 的值.19.(本题满分14分)为方便游客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元. 根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.设每辆自行车的日租金x (元)),203(*∈≤≤N x x ,用y (元)表示出租自行车的日净收入(即一日出租自行车的总收入减去管理费用后的所得)(1)求函数)(x f y =的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?20.(本题满分14分)设函数)0(1)(2>+=x xxx g ,22()(1)f x ax a x =-+,其中0a >,区间}0)({>=x f x I(1)证明:函数)(x g 在]1,0(单调递增;(2)求I 的长度(注:区间(,)αβ的长度定义为βα-);(3)给定常数(0,1)k ∈,当k a k +≤≤-11时,求I 长度的最小值.21.(本题满分14分)设a 为非负实数,函数()f x x x a a =--. (1)当2a =时,求函数的单调区间;(2)讨论函数()y f x =的零点个数,并求出零点.高一数学期末考试试题参考答案 BBDCA ABCBC11.21-12.0 13.1 14.]65,3[ππ 15. )1,0()1,(⋃--∞ 16.87a ≤-17.解:(1)法1:∵1cos sin 22cos 3)(++=x x x x f∴113cos 3sin 232cos 3)3(=++=ππππf ………5分 法2:∵1)2cos 232sin 21(21cos sin 22cos 3)(++=++=x x x x x x f1)32sin(2++=πx∴11)332sin(2)3(=++=πππf ………10分(2)∵1)2cos 232sin 21(21cos sin 22cos 3)(++=++=x x x x x x f ………8分1)32sin(2++=πx ………10分∵20π<<x , ∴34323πππ<+<x ………11分∴当232ππ=+x 时,即12π=x 时,)32sin(π+x 有最大值1,此时,函数)(x f 有最大值3. ………14分18.解:(1)由图象知 (4,1==T A ,12,2)632===-Tπωπππ ………3分 将 )1,6(π代入)sin()(ϕ+=x x f ,得 ,1)6sin(=+ϕπ因为2π-<ϕ<2π ,3263πϕππ<+<-,所以26πϕπ=+ ,即3πϕ=………5分所以 R x x x f ∈+=),3sin()(π………6分(2)因为3()5f α=,所以3sin()35πα+= ………7分,,66632πππππαα-<<∴<+< 4cos()35πα∴+=………9分sin sin()sin()cos cos()sin333333314352510ππππππαααα∴=+-=+-+=⨯-=………14分 19.解:(1)当*,63N x x ∈≤≤时,11550-=x y ………3分 当*,206N x x ∈≤<时, 115)]6(350[---=x x y ………6分故⎩⎨⎧∈≤<-+-∈≤≤-==*),206(115683*),63(11550)(2N x x x x N x x x x f y ………7分 (2)对于)63(11550)(≤≤-=x x x f , ∵)(x f 在]6,3[递增,∴当6=x 时,185max =y (元) ………9分对于)206(3811)334(3115683)(22≤<+--=-+-=x x x x x f ∵)(x f 在]334,6[递增,在]20,334[递减又*∈N x ,且)12()11(f f >………12分当11=x 时,270max =y (元) ………13分185270> ,∴当每辆自行车的日租金定在11元时,才能使一日的净收入最多.………14分 20.解: (1)∵)1)(1()1)((11)()(2221212122221121x x x x x x x x x x x g x g ++--=+-+=- 若1021≤<<x x ,则021<-x x ,0121>-x x ,0121>+x ,0122>+x则0)()(21<-x g x g ,即)()(21x g x g < ∴函数)(x g 在]1,0(单调递增. ………5分 (2)∵0])1([)(2>+-=x a a x x f∴)1,0(2a a x +∈,即区间I 长度为21a a+.………7分(3) 由(1)知,)1)(1()1)(()()(2221212121x x x x x x x g x g ++--=- 若211x x <≤,则021<-x x ,0121<-x x ,0121>+x ,0122>+x则0)()(21>-x g x g ,即)()(21x g x g > ∴)(x g 在),1[+∞单调递减,………9分由(2)知,21)(aaa g I +==,又∵211,1-10),1,0(<+<<<∈k k k , ∴函数)(a g 在]1,1[k -单调递增,)(a g 在]1,1[k +单调递减;………11分 ∴当k a k +≤≤-11时, I 长度的最小值必在k a -=1或k a +=1处取得,而122)1(11)1(11)1()1(323222<+---=+++-+-=+-k k k k k k k kk g k g ,又0)1(>+k g 故)1()1(k g k g +<-………13分所以2221)1(1k k kk g I k a +--=--=取最小值时,当. ………14分 21.解:(1)当2a =时,2222,2()2222,2x x x f x x x x x x ⎧--≥⎪=--=⎨-+-<⎪⎩, ----1分① 当2x ≥时,22()22(1)3f x x x x =--=--, ∴()f x 在(2,)+∞上单调递增; ------2分② 当2x <时,22()22(1)1f x x x x =-+-=---,∴()f x 在(1,2)上单调递减,在(,1)-∞上单调递增; ---------3分综上所述,()f x 的单调递增区间是(,1)-∞和(2,)+∞,单调递减区间是(1,2). ------4分(2)①当0a =时,()||f x x x =,函数()y f x =的零点为00x =; -----5分②当0a >时,22,(),x ax a x af x x x a a x ax a x a⎧--≥⎪=--=⎨-+-<⎪⎩, --------6分故当x a ≥时,22()()24a a f x x a =---,二次函数对称轴2a x a =<, ∴()f x 在(,)a +∞上单调递增,0)(<-=a a f ; -----------7分 当x a <时,22()()24a a f x x a =--+-,二次函数对称轴2a x a =<, ∴()f x 在(,)2a a 上单调递减,在(,)2a-∞上单调递增; ------------8分又22()()2224a a a a f a a a =-+⨯-=-, 1 当()02af <,即04a <<时,函数()f x 与x 轴只有唯一交点,即唯一零点,由20x ax a --=解之得函数()y f x =的零点为0x =或0x =(舍去); --------10分2 当()02af =,即4a =时,函数()f x 与x 轴有两个交点,即两个零点,分别为12x =和222a x +==+ ------11分3 当()02af >,即4a >时,函数()f x 与x 轴有三个交点,即有三个零点,由20x ax a -+-=解得,a x =,∴函数()y f x =的零点为x =0x =. -------12分综上可得,当0a =时,函数的零点为0;当04a <<时,函数有一个零点,且零点为2a +;当4a =时,有两个零点2和2+当4a >时,函数有三个零点2a 和2a +. -----------14分。

湖南省张家界市高一数学上学期期末试卷(含解析)-人教版高一全册数学试题

湖南省张家界市高一数学上学期期末试卷(含解析)-人教版高一全册数学试题

2015-2016学年某某省某某市高一(上)期末数学试卷(A卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的,请将所选答案填涂在答题卷中对应位置.1.已知集合A={0,1,2},集合B={0,2,4},则A∩B=()A.{0,1,2} B.{0,2} C.{0,4} D.{0,2,4}2.对数型函数y=log a x+1(a>0,且a≠1)的图象过定点()A.(0,0)B.(0,1)C.(1,2)D.(1,1)3.设函数f(x)满足f(x+2π)=f(x),f(0)=0,则f(4π)=()A.0 B.πC.2πD.4π4.用二分法求方程x3﹣2x﹣5=0在区间[2,3]上的实根,取区间中点x0=2.5,则下一个有根区间是()A.[2,2.5] B.[2.5,3] C.D.以上都不对5.某种计算机病毒是通过电子进行传播的,表格是某公司前5天监测到的数据:第x天 1 2 3 4 5被感染的计算机数量y(台)12 24 49 95 190则下列函数模型中能较好地反映在第x天被感染的数量y与x之间的关系的是()A.y=12x B.y=6x2﹣6x+12 C.y=6•2x D.y=12log2x+126.的值是()A.2 B.1 C.﹣2 D.﹣17.已知=(1,2),=(﹣2,0),且k+与垂直,则k=()A.﹣1 B.C.D.8.将函数f(x)=sin(2x﹣)的图象左移,再将图象上各点横坐标压缩到原来的,则所得到的图象的解析式为()A.y=sinx B.y=sin(4x+)C.y=sin(4x﹣)D.y=sin(x+)9.已知幂函数y=f(x)的图象经过点,且f(a+1)<f(10﹣2a),则实数a的取值X围是()A.(﹣1,5)B.(﹣∞,3)C.(3,+∞)D.(3,5)10.设函数f(x)定义在R上,它的图象关于直线x=1对称,且当x≥1时,f(x)=3x﹣1,则有()A.B.C.D.11.设f(x)是定义在R上的奇函数,且f(x+3)•f(x)=﹣1,f(1)=﹣2,则f(2015)=()A.0 B.0.5 C.﹣2 D.212.△ABC中三个内角为A、B、C,若关于x的方程x2﹣xcosAcosB﹣cos2=0有一根为1,则△ABC一定是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中对应题号后的横线上.13.sin420°=.14.函数的单调递增区间是.15.设向量,定义两个向量之间的运算“⊗”为,若向量,则向量=.16.设函数f(x)=2cos(ωx+φ)对任意的x都有,若设函数g(x)=3sin(ωx+φ)﹣1,则的值是.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知全集为实数集,集合A={x|1<x<4},B={x|3x﹣1<x+5}.(1)求集合B及∁R A;(2)若C={x|x≤a},(∁R A)∩C=C,某某数a的取值X围.18.已知,.(1)求tanα的值;(2)求的值.19.已知函数f(x)=.(1)求f(1),f[f(﹣2)]的值;(2)若f(a)=10,某某数a的值.20.已知向量与的夹角为30°,且=, =1.(1)求;(2)求的值;(3)如图,设向量,求向量在方向上的投影.21.已知函数的部分图象如图所示.(1)求函数f(x)的解析式;(2)当,,若g(x)=1+2cos2x,求g(x0)的值;(3)若h(x)=1+2cos2x+a,且方程f(x)﹣h(x)=0在上有解,某某数a的取值X围.22.已知函数.(1)写出该函数的单调递减区间;(2)若函数g(x)=f(x)﹣m恰有1个零点,某某数m的取值X围;(3)若不等式f(x)≤n2﹣2bn+1对所有x∈[﹣1,1],b∈[﹣1,1]恒成立,某某数n的取值X围.2015-2016学年某某省某某市高一(上)期末数学试卷(A卷)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的,请将所选答案填涂在答题卷中对应位置.1.已知集合A={0,1,2},集合B={0,2,4},则A∩B=()A.{0,1,2} B.{0,2} C.{0,4} D.{0,2,4}【考点】交集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】利用交集定义求解.【解答】解:∵集合集合A={0,1,2},集合B={0,2,4},∴A∩B={0,2}.故选:B.【点评】本题考查交集的求法,解题时要认真审题,是基础题.2.对数型函数y=log a x+1(a>0,且a≠1)的图象过定点()A.(0,0)B.(0,1)C.(1,2)D.(1,1)【考点】对数函数的图象与性质.【专题】转化思想;演绎法;函数的性质及应用.【分析】根据对数函数必要(1,0)点,结合函数图象的平移变换法则,可得答案.【解答】解:对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),函数y=log a x+1(a>0,且a≠1)的图象由对数函数y=log a x(a>0,且a≠1)的图象向上平移一个单位得到,故函数y=log a x+1(a>0,且a≠1)的图象过定点(1,1),故选:D.【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.3.设函数f(x)满足f(x+2π)=f(x),f(0)=0,则f(4π)=()A.0 B.πC.2πD.4π【考点】函数的值.【专题】计算题;转化思想;函数的性质及应用.【分析】由已知可得函数的周期为2π,进而可得f(4π)=f(2π)=f(0).【解答】解:∵函数f(x)满足f(x+2π)=f(x),∴f(4π)=f(2π)=f(0)=0,故选:A.【点评】本题考查的知识点是函数的周期性,函数求值,难度不大,属于基础题.4.用二分法求方程x3﹣2x﹣5=0在区间[2,3]上的实根,取区间中点x0=2.5,则下一个有根区间是()A.[2,2.5] B.[2.5,3] C.D.以上都不对【考点】二分法求方程的近似解.【专题】计算题.【分析】方程的实根就是对应函数f(x)的零点,由 f(2)<0,f(2.5)>0 知,f(x)零点所在的区间为[2,2.5].【解答】解:设f(x)=x3﹣2x﹣5,f(2)=﹣1<0,f(3)=16>0,f(2.5)=﹣10=>0,f(x)零点所在的区间为[2,2.5],方程x3﹣2x﹣5=0有根的区间是[2,2.5],故选A.【点评】本题考查用二分法求方程的根所在的区间的方法,方程的实根就是对应函数f(x)的零点,函数在区间上存在零点的条件是函数在区间的端点处的函数值异号.5.某种计算机病毒是通过电子进行传播的,表格是某公司前5天监测到的数据:第x天 1 2 3 4 5被感染的计算机数量y(台)12 24 49 95 190则下列函数模型中能较好地反映在第x天被感染的数量y与x之间的关系的是()A.y=12x B.y=6x2﹣6x+12 C.y=6•2x D.y=12log2x+12【考点】线性回归方程.【专题】函数思想;分析法;概率与统计.【分析】根据表格中y的增长速度进行判断.【解答】解:由表格可知,每一天的计算机被感染台数大约都是前一天的2倍,故增长速度符合指数型函数增长.故选:C.【点评】本题考查了不同函数模型的增长速度问题,属于基础题.6.的值是()A.2 B.1 C.﹣2 D.﹣1【考点】二倍角的正弦.【专题】计算题.【分析】原式先利用对数的运算法则计算,再利用二倍角的正弦函数公式及特殊角的三角函数值化简即可求出值.【解答】解:原式=log2sinπcosπ=log2sinπ=log22﹣2=﹣2.故选C【点评】此题考查了二倍角的正弦函数公式,以及对数的运算性质,熟练掌握公式是解本题的关键.7.已知=(1,2),=(﹣2,0),且k+与垂直,则k=()A.﹣1 B.C.D.【考点】平面向量数量积的运算.【专题】计算题;方程思想;向量法;平面向量及应用.【分析】由已知向量的坐标求出k+的坐标,再由数量积的坐标表示列式求得k值.【解答】解:∵=(1,2),=(﹣2,0),∴k+=k(1,2)+(﹣2,0)=(k﹣2,2k),由k+与垂直,得,即1×(k﹣2)+2×2k=0,解得:k=.故选:C.【点评】本题考查平面向量的数量积运算,考查了数量积的坐标表示,是基础题.8.将函数f(x)=sin(2x﹣)的图象左移,再将图象上各点横坐标压缩到原来的,则所得到的图象的解析式为()A.y=sinx B.y=sin(4x+)C.y=sin(4x﹣)D.y=sin(x+)【考点】正弦函数的图象.【专题】三角函数的图像与性质.【分析】先由“左加右减”的平移法则和再将图象上各点横坐标压缩到原来的,即可求出.【解答】解:将函数f(x)=sin(2x﹣)的图象左移可得y=sin2[(x+)﹣)]=sin (2x+),再将图象上各点横坐标压缩到原来的,可得y=sin(4x+),故选:B.【点评】本题主要考查三角函数的平移及周期变换.三角函数的平移原则为左加右减上加下减.周期变换的原则是y=sinx的图象伸长(0<ω<1)或缩短(ω>1)到原理的可得y=sinωx的图象.9.已知幂函数y=f(x)的图象经过点,且f(a+1)<f(10﹣2a),则实数a的取值X围是()A.(﹣1,5)B.(﹣∞,3)C.(3,+∞)D.(3,5)【考点】幂函数的概念、解析式、定义域、值域.【专题】转化思想;待定系数法;函数的性质及应用.【分析】利用待定系数法求出y=f(x)的解析式,再利用函数的单调性把不等式f(a+1)<f(10﹣2a)化为等价的不等式组,求出解集即可.【解答】解:幂函数y=f(x)=xα的图象经过点,∴4α=,解得α=﹣;∴f(x)=,x>0;又f(a+1)<f(10﹣2a),∴,解得3<a<5,∴实数a的取值X围是(3,5).故选:D.【点评】本题考查了用待定系数法求函数解析式以及利用函数的单调性求不等式的应用问题,是基础题目.10.设函数f(x)定义在R上,它的图象关于直线x=1对称,且当x≥1时,f(x)=3x﹣1,则有()A.B.C.D.【考点】指数函数单调性的应用;函数单调性的性质.【专题】证明题.【分析】先利用函数的对称性,得函数的单调性,再利用函数的对称性,将自变量的值化到同一单调区间上,利用单调性比较大小即可【解答】解:∵函数f(x)定义在R上,它的图象关于直线x=1对称,且x≥1时函数f(x)=3x﹣1为单调递增函数,∴x<1时函数f(x)为单调递减函数,且f()=f()∵<<<1∴,即故选B【点评】本题考查了函数的对称性及其应用,利用函数的单调性比较大小的方法11.设f(x)是定义在R上的奇函数,且f(x+3)•f(x)=﹣1,f(1)=﹣2,则f(2015)=()A.0 B.0.5 C.﹣2 D.2【考点】函数奇偶性的性质;函数的值.【专题】计算题;转化思想;函数的性质及应用.【分析】根据已知可得函数f(x)是周期为6的周期函数,结合函数奇偶性,可得答案.【解答】解:∵f(x+3)•f(x)=﹣1,∴f(x+3)•f(x+6)=﹣1,∴f(x+6)=f(x),即函数f(x)是周期为6的周期函数,又f(1)=﹣2,故f(2015)=f(﹣1)=﹣f(1)=2,故选:D.【点评】本题考查的知识点是函数奇偶性的性质,函数求值,函数的周期性,是函数图象和性质的综合应用,难度中档.12.△ABC中三个内角为A、B、C,若关于x的方程x2﹣xcosAcosB﹣cos2=0有一根为1,则△ABC一定是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形【考点】解三角形.【专题】计算题.【分析】先把1代入方程,然后利用余弦的二倍角化简整理,最后利用两角和公式求得cos (A﹣B)=1推断出A=B,则可知三角形的形状.【解答】解:依题意可知1﹣cosAcosB﹣cos2=0,∵cos2===∴1﹣cosAcosB﹣=0,整理得cos(A﹣B)=1∴A=B∴三角形为等腰三角形.故选B【点评】本题主要考查了解三角形和三角形的形状判断.解三角形常与三角函数的性质综合考查,应注意积累三角函数的基本公式.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中对应题号后的横线上.13.sin420°=.【考点】运用诱导公式化简求值.【专题】三角函数的求值.【分析】由诱导公式化简后根据特殊角的三角函数值即可求解.【解答】解:sin420°=sin(360°+60°)=sin60°=.故答案为:.【点评】本题主要考查了诱导公式的应用,属于基础题.14.函数的单调递增区间是[2,+∞).【考点】函数的单调性及单调区间.【专题】计算题;函数思想;综合法;函数的性质及应用;导数的综合应用.【分析】可求导数,根据导数符号即可判断f(x)在定义域上为增函数,从而便可得出f (x)的单调递增区间.【解答】解:;∴f(x)在定义域[2,+∞)上单调递增;即f(x)的单调递增区间是[2,+∞).故答案为:[2,+∞).【点评】考查根据导数符号判断函数单调性以及求函数单调区间的方法,清楚增函数的定义,注意正确求导.15.设向量,定义两个向量之间的运算“⊗”为,若向量,则向量= (﹣3,﹣2).【考点】平面向量的坐标运算.【专题】计算题;对应思想;定义法;平面向量及应用.【分析】直接利用新定义即可求出.【解答】解:向量,则向量=(x,y),∴(x,2y)=(﹣3,﹣4),∴x=﹣3,y=﹣2,∴向量=(﹣3,﹣2),故答案为:(﹣3,﹣2).【点评】本题考新定义的应用,以及向量的坐标运算,属于基础题.16.设函数f(x)=2cos(ωx+φ)对任意的x都有,若设函数g(x)=3sin(ωx+φ)﹣1,则的值是﹣1 .【考点】余弦函数的图象.【专题】转化思想;待定系数法;函数的性质及应用.【分析】根据,得出x=是函数f(x)的一条对称轴,从而求出φ的表达式,再函数g(x)的解析式以及的值.【解答】解:∵函数f(x)=2cos(ωx+φ)对任意的x都有,∴x=是函数f(x)的一条对称轴,∴cos(ω+φ)=±1,即ω+φ=kπ,k∈Z,∴φ=kπ﹣ω,k∈Z;∴函数g(x)=3sin(ωx+φ)﹣1=3sin(ωx+kπ﹣ω)﹣1,k∈Z;∴=3sin(ω+kπ﹣ω)=3sinkπ﹣1=﹣1.故答案为:﹣1.【点评】本题主要考查三角函数的对称轴的问题.注意正余弦函数在其对称轴上取最值,是基础题目.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知全集为实数集,集合A={x|1<x<4},B={x|3x﹣1<x+5}.(1)求集合B及∁R A;(2)若C={x|x≤a},(∁R A)∩C=C,某某数a的取值X围.【考点】交、并、补集的混合运算.【专题】对应思想;定义法;集合.【分析】(1)化简集合B,求出集合A在R中的补集即可;(2)根据交集的定义,计算得出C⊆∁R A,再求出a的取值X围即可.【解答】解:(1)∵B={x|3x﹣1<x+5},∴B={x|x<3},(2分)又∵A={x|1<x<4},∴∁R A={x|x≤1或x≥4};(5分)(2)∵(∁R A)∩C=C,∴C⊆∁R A={x|x≤1或x≥4},(7分)又C={x|x≤a},∴a≤1.(10分)【点评】本题考查了集合的定义与运算问题,是基础题目.18.已知,.(1)求tanα的值;(2)求的值.【考点】三角函数的化简求值.【专题】计算题;转化思想;分析法;三角函数的求值.【分析】(1)由角的X围及同角三角函数基本关系式的应用可求cosα的值,进而利用同角三角函数基本关系式可求tanα的值.(2)利用诱导公式,同角三角函数基本关系式化简所求,利用(1)的结论即可计算求值.【解答】(本题满分为12分)解:(1)∵,∴,…(3分)∴;…(6分)(2)原式==,…(9分)=…(12分)【点评】本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.19.已知函数f(x)=.(1)求f(1),f[f(﹣2)]的值;(2)若f(a)=10,某某数a的值.【考点】分段函数的应用;函数的值.【专题】分类讨论;分类法;函数的性质及应用.【分析】(1)由已知中函数f(x)=,将x=1,x=﹣2代入计算,可得答案;(2)根据函数f(x)=,分类讨论满足f(a)=10的a值,综合讨论结果,可得答案;【解答】解:(1)∵函数f(x)=∴(2分)f[f(﹣2)]=f(4)=10;(6分)(2).,(8分),不合题意,舍去;(10分)当a≥2时,10log4a=10,a=4合题意;.(11分)∴.(12分)【点评】本题考查的知识点是分段函数的应用,函数求值,分类讨论思想,难度中档.20.已知向量与的夹角为30°,且=, =1.(1)求;(2)求的值;(3)如图,设向量,求向量在方向上的投影.【考点】平面向量数量积的运算.【专题】计算题;转化思想;向量法;平面向量及应用.【分析】(1)直接由已知结合数量积公式求解;(2)利用,等式右边展开后代入数量积得答案;(3)由,代入投影公式化简即可.【解答】解:向量与的夹角为30°,且=, =1.(1);(2);(3)∵,∴.【点评】本题考查平面向量的数量积运算,考查向量模的求法,对于(3)的求解,需要掌握向量在向量方向上的投影的概念,是中档题.21.已知函数的部分图象如图所示.(1)求函数f(x)的解析式;(2)当,,若g(x)=1+2cos2x,求g(x0)的值;(3)若h(x)=1+2cos2x+a,且方程f(x)﹣h(x)=0在上有解,某某数a的取值X围.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【专题】计算题;转化思想;三角函数的图像与性质.【分析】(1)由图求出A,ω,φ的值,可得函数f(x)的解析式;(2)根据,,求出x0,代入g(x)=1+2cos2x,可求g(x0)的值;(3)(3),,进而得到答案.【解答】解:(1)由图知A=2,(解法只要合理,均可给分)(1分),(2分)∴f(x)=2sin(2x+φ),∴,∴,,(3分)∴;(4分)(2),(6分);(8分)(3),,(9分)=,(10分)∵,(11分)∴a∈[﹣2,1].(12分)【点评】本题考查的知识点是正弦型函数的图象和性质,熟练掌握正弦型函数的图象和性质,是解答的关键.22.已知函数.(1)写出该函数的单调递减区间;(2)若函数g(x)=f(x)﹣m恰有1个零点,某某数m的取值X围;(3)若不等式f(x)≤n2﹣2bn+1对所有x∈[﹣1,1],b∈[﹣1,1]恒成立,某某数n的取值X围.【考点】分段函数的应用;函数零点的判定定理.【专题】综合题;数形结合;转化思想;函数的性质及应用.【分析】(1)根据分段函数的表达式结合函数的单调性进行求解.(2)利用函数与方程之间的关系转化为函数f(x)与y=m的交点问题进行求解,(3)根据不等式恒成立,转化为为以B为变量的参数问题,结合一元一次函数的性质进行求解即可.【解答】解:(1)当x≤0时,函数f(x)为增函数,当x>0时,函数的对称轴为x=1,则函数的单调递减区间是(0,1);(2分)(2)函数g(x)=f(x)﹣m恰有1个零点等价于直线y=m与函数y=f(x)的图象恰有1个交点,,(4分)∴;(7分)(3)若要使f(x)≤n2﹣2bn+1对所有x∈[﹣1,1]恒成立,则需,而[f(x)]max=f(0)=1,(9分)即n2﹣2kn+1≥1,∴﹣2nb+n2≥0在b∈[﹣1,1]恒成立,,(10分)∴,(11分)∴n≤﹣2或n=0或n≥2.(12分)【点评】本题主要考查分段函数的应用以及不等式恒成立问题,利用数形结合是解决本题的关键.。

2013-2014学年高一数学上学期期末考试试题(含解析)及答案(新人教A版 第104套)

2013-2014学年高一数学上学期期末考试试题(含解析)及答案(新人教A版 第104套)

福建省三明市A 片区高中联盟校2013-2014学年高一数学上学期期末考试试题(含解析))新人教A 版第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{A =-,{B =-,则A B =ð( )A .{}0 B .{- C .{}1- D .{-3.若()1cos 3πα+=-,则cos α的值为( )A .13 B .13- C .3D .3-【答案】A 【解析】试题分析:由()cos cos παα+=-,所以1cos 3α=,故选A. 考点:诱导公式.4.已知幂函数()f x x α=的图像过点(4,2),若()3f m =,则实数m 的值为( )A. C .9± D .96.已知函数()y f x =的对应关系如下表,函数()y g x =的图像是如下图的曲线ABC ,其中(1,3),(2,1),(3,2)A B C 则的()2f g ⎡⎤⎣⎦值为( )A. 3B. 2C. 1D. 07.若集合{A x y ==,{}22B y y x ==+,则A B =( )A .[)1,+∞0B .()1,+∞C .[)2,+∞D .()2,+∞ 【答案】C 【解析】试题分析:由{{}{}|10|1A x y x x x x ===-≥=≥,{}{}22|2B y y x y y ==+=≥,所以[1,),[2,)A B =+∞=+∞,故[2,)A B ⋂=+∞,选C.考点:1.集合的交集运算;2.函数的定义域与值.8.我国大西北某地区荒漠化土地面积每年平均比上一年增长10.4%,专家预测经过x 年可能增长到原来的y 倍,则函数的图像大致为( )【答案】D 【解析】试题分析:设初始年份的荒漠化土地面积为(0)a a ≠,则1年后荒漠化土地面积为(10.104)a +,2年后荒漠化土地面积为2[(10.104)](10.104)(10.104)a a +⨯+=+,3年后荒漠化土地面积为23[(10.104)](10.104)(10.104)a a +⨯+=+,所以x 年后荒漠化土地面积为(10.104)x a +,依题意有(10.104)x y a a ⨯=+即 1.104x y =, 1.1041>,由指数函数的图像可知,选D.考点:1.指数函数的图像与性质;2.函数模型及其应用.9.已知sin15cos15a =︒︒,22cos sin 66b ππ=-,2tan 301tan 30c ︒=-︒,则,,a b c 的大小关系是( )A .a b c <<B .a b c >>C .c a b >>D .a c b <<11.已知函数()2()cos 1f x x m =-+在cos 1x =-时取得最大值,在cos x m =时取得最小值,则实数m 的取值范围是( )A .1m ≤-B .1m ≥C .0m 1≤≤D .10m -≤≤12.函数()sin y x x R π=∈的部分图像如图所示,设O 为坐标原点,P 是图像的最高点,B 是图像与x 轴的交点,则tan OPB ∠的值为( )A .10B .8C .87D .47【答案】B 【解析】第Ⅱ卷(共90分)二、填空题(每题4分,满分16分,将答案填在答题纸上)13.函数y=的定义域为 .15.若1a =,2b =,()0a b a -=,则a 与b 的夹角为 .16.函数()0ay x x x=+>有如下性质:若常数0a >,则函数在(上是减函数,在)+∞ 上是增函数。

期末知识点总结和方法专练 函数的定义及表示-2022-2023学年高一上学期数学人教A版(2019

期末知识点总结和方法专练 函数的定义及表示-2022-2023学年高一上学期数学人教A版(2019

2022-2023 高一数学上期末知识点总结和方法专练---函数的定义与表示一、 函数定义:函数是定义在两个非空数集A ,B 上的一种特殊对应关系,对于A 中每一个数x ,在B 中都有唯一的数与之对应(每一个x 对应唯一一个y )。

函数图像与x 轴的垂线至多有一个公共点;当非空集合A 中有m 个元素,B 中有n 个元素时,则A 中每个元素在B 中的相都可以有n 种不同情况,故由A 到B 的函数共有n m 个.【例1】:下列图形可以表示函数y =f (x )图象的是( )【例2】:下列对应为A 到B 的函数的是( )A .A R =,{|0}B x x =>,:||f x y x →= B .A Z =,*B N =,2:f x y x →=C .A Z =,B Z =,:f x y x →=D .[1A =-,1],{0}B =,:0f x y →=【例3】:已知集合P ={x|-4≤x≤4},Q ={y|-2≤y≤2},下列函数不表示从P 到Q 的函数的是( )A .2y =xB . y 2=12(x +4)C .y =14x 2-2 D .x 2=-8y【例4】:已知函数f (x )的定义域为,值域为,则满足条件的函数f (x )的个数为( )二、 同一函数的判断方法:表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备). 定义域、值域与解析式三个中只有一个不同就不是同一函数. 【例1】:f (x )与g (x )表示同一函数的是( )A .f (x )=x 2-1与g (x )=x -1·x +1B .f (x )=x 与g (x )=x 3+xx 2+1C .y =x 与y =(x )2D .f (x )=x 2与g (x )=3x 3【例2】:(多选)f (x )与g (x )表示同一函数的有( ) A .32y x =-与2y x x =- B .()2y x =与y x =C .11y x x =+⋅-与()()11y x x =+- D .()221f x x x =--与()221g t t t =--E. ()3f x x =-与2()69g x x x =-+;F. ()1f x x =-与2()21g t t t =-+; 三、定义域求法:(1)分式函数中分母不等于零,0指数幂的底数不为0. (2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域为R . (4)对数的真数要大于0, 底数大于0且不等于1.(5)y =a x (a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R . (6)y =tan x 的定义域为{x |x ≠k π+π2,k ∈Z }. (7)实际问题满足实际意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

景洪市第四中学2013-2014学年高一上学期期末考试
数学试题
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至4页,第Ⅱ卷4至6页,共6页。

全卷100分,考试时间100分钟。

第Ⅰ卷(选择题 共60分)
注意事项:
1.答卷前,务必就自己的考号、姓名、考场号和座次号等信息正确填涂在机读卡或答题卡指定位置。

2.每小题选出答案后,请填涂在机读卡上,答在试卷上无效。

一、单选题(每小题3分,共54分) 1.记全集{}{}{}642532187654321,,,B ,,,,A ,,,,,,,U ===则图中阴影部分所表示的集合是( )
A 、{}8764,,,
B 、{}2
C 、{}87,
D 、
{}654321,,,,,
2.下列表示方法正确的是( )
A 、φ∈O
B 、}{O ∈φ
C 、}{O ∉φ
D 、}{O o ∈ 3.已知


⎧<+≥-=)6()2()6(5
)(x x f x x x f ,则f(3)为( ) A 2 B 3 C 4 D 5 4..函数
x y 2log =的图象大致是( )
5.函数
的定义域是( )
6.下列函数中,是偶函数的为( )
A.1y x =
B.2
1y x =+ C. x y )2
1(= D. 2log y x =
8.
已知为第几象限角则∂>∂
∙∂,0cos sin ( )
A. 第一,二象限
B. 第一,三象限
C. 第一,四象限
D.第二,四象限 9. 求3tan 2cos 1sin ∙∙
A. > 0
B. < 0
C. 0≤
D.0≥
10. 计算:16cos 3π⎛⎫
-= ⎪⎝⎭
A. 12
-
B.
12
C. 11. 计算
的值为
12. 已知1(2P 在角a 的终边上,则sin a 的值是( )
A.
1213.已知3
sin 5
a =,则cos 2a 的值为( )
A.2425
B.725
C.725-
D.45
- 14. 偶函数()f x 在区间[](),0m n m n <<其中上是单调递减函数,则()[],f x n m --在区间上是( ) A. 单调递减函数,且有最小值()f m - B. 单调递减函数,且有最大值()f m -
C. 单调递增函数,且有最小值()f m
D. 单调递增函数,且有最大值()f m
15. 函数()2log 26f x x x =+-的零点所在的大致区间是( )
A. 1,12⎛⎫ ⎪⎝⎭
B. (1,2)
C. (2,3)
D. (3,4)
16. 为了得到函数1cos 3y x ⎛⎫
=- ⎪⎝
⎭的图象,只需把函数cos y x =图象上所有的点( )
A. 向左平行移动13π个单位
B. 向左平行移动1
3个单位
C. 向右平行移动1
3
π个单位
D. 向右平行移动
1
3
个单位
17. 若11
3
2210933
a log .,
b ,
c ()-
===则( )
A .a<b<c
B .a<c<b
C .c<a<b
D .b<c<a
18. 函数)0)(sin(2)(>+=ωϕωx x f 的图象经过)2,12(--
πA 、)2,4

B 两点,则ω( ) A .最大值为3 B .最小值为3
C .最大值为6
D .最小值为6.
第Ⅱ卷(非选择题 共46分)
(注意:请在答题卡上作答,否则不给分)
二、填空题(每小题4分,共16分)
19. 若函数()3(21)f x m x =-是幂函数,则m =_________。

20. 已知函数,
,则函数
的解析式是
.
21. 计算22
1
log 8log 2
+的值是_________。

22. 若2log 2,log 3,m n
a a m n a
+=== ;
三、解答题:(本大题共4小题,共30分,解答应写出文字说明,证明过程或演算步骤.) 23. 计算:(本小题满分8分,其中第(1)4分,第(2)4分) (1)cos 73cos13cos17sin13︒︒+︒︒ (2) 函数()log a f x x =(a >0,且1≠a )在区间[2,8]上的最大值为6,求a
25. (本小题满分7分)
已知函数
1)(2-=x x f ,证明函数()f x 在)0,(-∞的单调性。

26. (本小题满分7分,其中(1)问4分,(2)问3分)
为了保护水资源,提倡节约用水,某市对居民生活用水收费标准如下:每户每月用水不超过6吨时每吨3元,当用水超过6吨但不超过15吨时,超过部分每吨5元,当用水超过15吨时,超过部分每吨10元。

(1)求水费y (元)关于用水量x (吨)之间的函数关系式; (2)若某户居民某月所交水费为93元,试求此用户该月的用水量。

2013-2014学年高一上学期期末考试试卷答案
1,选择题
2,填空题 19, 1 20, )1,0(,2)(≠>=a a x f x 21, 2 22, 12
3,计算题
25,证明:略
26,18
93)15(1063,6393),2(15
),15(1063)156(),6(518)60(,3),1(=⇒=-+∴>⎪⎩

⎨⎧>-+≤<-+≤≤=x x x x x x x x y。

相关文档
最新文档