[九年级数学]圆切线的性质与判定的应用教学设计(定稿)
九年级数学下册 3.2.2 圆的切线的判定、性质和画法教案 湘教版【教案】
九年级数学下册3.2.2 圆的切线的判定、性质和画法教案湘教版一、教学目的要求:1.知识目的:(1)掌握切线的判定定理.(2)应用切线的判定定理证明直线是圆的切线,初步掌握圆的切线证明问题中辅助线的添加方法.2.能力目的:(1)培养学生动手操作能力.(2)培养学生观察、探索、分析、总结、推理论证等能力.3.情感目的:通过直观教具的演示和指导学生动手操作的过程,激发学生学习几何的积极性.二、教学重点、难点1.重点:切线的判定定理.2.难点:圆的切线证明问题中,辅助线的添加方法.三、教学过程:(一)复习引入回答下列问题:(投影显示)1.直线和圆有哪三种位置关系?这三种位置关系是如何定义?如何判定的?2.什么叫做圆的切线?根据这个定义我们可以怎样来判定一条直线是不是一个圆的切线?(要求学生举手回答,教师用教具演示)我们可以用切线的定义来判定一条直线是不是一个圆的切线,但有时使用起来很不方便,为此,我们还要学习切线的判定定理.(二)新课讲解1.切线判定定理的导出上节课讲了“圆心到一条直线的距离等于该圆的半径,则该直线就是一条切线”.下面请同学们按我口述的上不骤作图(一同学到黑板上作):先画⊙O,在⊙O上任取一点A,边结OA,过A点作⊙O的切线L.请学生回顾作图过程,切线L是如何作出来的?它满足哪些条件?引导学生总结出:①经过关径外端,②垂直于这条半径.如果一条直线满足以上两个条件,它就是一条切线,这就是本节要讲的“切线的判定定理”.(板书定理)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.请同学们思考一下,该判定定理的两个条件缺少一个可以吗?下图中L是不是圆的切线?(用教具演示下面两个反例)图(1)中直线L经过半径外端,但不与半径垂直.图(2)中直线L与半径垂直,但不经过径外端.从以上两个反例可看出,只满足其中一个条件的直线不是圆的切线.接着提出问题:若把定理中的“半径”改为“直径”可以吗?答案是肯定的.然后引导学生分析,切线的判定定理是由前一节所讲的“圆心到直线的距离等于半径时直线与圆相切”直接得到的,只是为了便于应用才把它改写成“经过半径外端并且垂直于这条半径的直线是圆的切线”这种形式,所以定理不再需要另加证明.提问:判定一条直线是圆的切线,我们有多少种方法呢?经过学生讨论后,师生小结以下三种方法(板书):①与圆有唯一公共点的直线是圆的切线.②与圆心的距离等于半径的直线是圆的切线.③经过半径外端并且垂直于这条半径的直线是圆的切线.2.应用举例例1:已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.已知:直线AB是⊙O的切线.分析:已知直线AB和⊙O有一个公共点C,要证AB是⊙O的切线,只需连结这个公共点C和圆心O,得到半径OC,再证这条半径和直线AB垂直即可.证明:连结OC∵OA=OB,CA=CB∴OC是等腰三角形OAB底边AB上的中线∴AB⊥OC直线AB经过半径OC的外端C,并且垂直于半径OC,所以AB是⊙O的切线.例2:已知:⊙O的直径长6cm,OA=OB=5cm,AB=8cm.求证:AB与⊙O相切.分析:题目中不明确直线和圆有公共点,故证明相切,宣用方法2,因此只要证点O到直线AB的距离等于半径即可,从而想到作辅助线OC⊥AB于C.证明:过O点作OC⊥AB于C∵OA=OB=5cm,AB=8cm∴AC=BC=4cm∴OC=OA2-AC2 =52-42 =3cm.又∵⊙O的直径长6cm∴圆心O到直线AB的距离OC等于半径等于3cm.∴AB与⊙O相切.让学生根据以上例题总结一下,证明直线与圆相切时,作辅助线的一般规律,以及证明方法的一般规律.经学生讨论后得出:①已明确直线和圆有公共点,辅助线的作法是连结圆心和公共点,即得“半径”,再证“直线与半径垂直”.②不明确直线和圆有公共点,辅助线的作法是过圆心作直线的垂线,再证“圆心到直线的距离等于半径”.注意:当题目中不明确直线和圆有公共点时,不能将圆上任意一点当作公共点而连结出半径.3.课堂练习:4.课堂小结:5.布置作业:。
圆的切线判定和性质(教案)
圆的切线判定和性质(教案)第一章:圆的切线定义和判定1.1 圆的切线定义引入圆的切线概念,讲解切线的定义和特点展示圆的切线示意图,让学生理解切线与圆的关系1.2 圆的切线判定条件讲解圆的切线的判定条件通过示例和练习,让学生掌握如何判断一条直线是否为圆的切线第二章:圆的切线性质2.1 圆的切线性质介绍圆的切线的性质,如切线与半径垂直、切线与圆心连线垂直等展示切线性质的示意图,让学生理解并记忆这些性质2.2 圆的切线定理讲解圆的切线定理,如切线定理、切线长定理等通过示例和练习,让学生掌握切线定理的应用和证明方法第三章:圆的切线方程3.1 圆的切线方程的定义和特点讲解圆的切线方程的定义和特点展示切线方程的示意图,让学生理解切线方程的形式和含义3.2 圆的切线方程的求法讲解如何求解圆的切线方程通过示例和练习,让学生掌握求解切线方程的方法和技巧第四章:圆的切线与圆的位置关系4.1 圆的切线与圆相切讲解圆的切线与圆相切的情况和特点展示切线与圆相切的示意图,让学生理解切线与圆的切点、切线与半径的关系4.2 圆的切线与圆相离讲解圆的切线与圆相离的情况和特点通过示例和练习,让学生掌握如何判断切线与圆的位置关系第五章:圆的切线应用5.1 圆的切线与圆的切点应用讲解如何利用切点性质解决问题,如求解切线长度、切线与半径的关系等通过示例和练习,让学生掌握切点性质的应用方法5.2 圆的切线与圆的方程应用讲解如何利用切线方程解决问题,如求解切线方程、判断切线与圆的位置关系等通过示例和练习,让学生掌握切线方程的应用方法第六章:圆的切线与圆的交点应用6.1 圆的切线与圆的交点性质讲解圆的切线与圆的交点的性质,如切线与圆的交点与圆心连线垂直、交点到圆心的距离等于半径等展示切线与圆的交点性质的示意图,让学生理解并记忆这些性质6.2 圆的切线与圆的交点应用讲解如何利用切线与圆的交点解决问题,如求解交点坐标、判断交点与圆的关系等通过示例和练习,让学生掌握切线与圆的交点的应用方法第七章:圆的切线与圆的切线应用7.1 圆的切线与圆的切线相交讲解圆的切线与圆的切线相交的情况和特点展示切线与切线相交的示意图,让学生理解切线与切线的交点、切线与半径的关系7.2 圆的切线与圆的切线平行讲解圆的切线与圆的切线平行的情况和特点通过示例和练习,让学生掌握如何判断切线与切线的位置关系第八章:圆的切线与圆的切线综合应用8.1 圆的切线与圆的切线相切讲解圆的切线与圆的切线相切的情况和特点展示切线与切线相切的示意图,让学生理解切线与切线的切点、切线与半径的关系8.2 圆的切线与圆的切线综合应用讲解如何利用切线与切线综合解决问题,如求解切线与切线的交点、判断切线与圆的位置关系等通过示例和练习,让学生掌握切线与切线综合的应用方法第九章:圆的切线与圆的应用实例9.1 圆的切线与圆的切割应用实例讲解圆的切线与圆的切割应用实例,如切割线段、切割角度等展示切割应用实例的示意图,让学生理解切割原理和应用9.2 圆的切线与圆的轨迹应用实例讲解圆的切线与圆的轨迹应用实例,如轨迹方程、轨迹图形等通过示例和练习,让学生掌握切线与圆的轨迹的应用方法第十章:圆的切线综合练习10.1 圆的切线综合练习题提供一系列圆的切线综合练习题,让学生巩固所学知识通过解答练习题,让学生提高解题能力和综合运用能力10.2 圆的切线综合练习解答提供练习题的解答和解析,帮助学生理解和掌握解题方法通过练习解答,让学生巩固知识,提高学习效果重点和难点解析一、圆的切线定义和判定(第一章)重点关注内容:圆的切线的定义和特点,以及如何判断一条直线是否为圆的切线。
圆的切线的性质和判定(教案)
切线的判定与性质(复习)教案一、教学内容:中考数学复习——切线的判定与性质二、教学目标:1、知识技能:(1)掌握切线的判定定理,能判断一条直线是否为圆的切线;(2)掌握切线的性质定理,能利用切线的性质定理解决相关问题。
2、能力技能(1)通过观察、比较切线的判定方法,发展学生的推理与归纳能力;(2)学生通过运用切线的性质解决问题的过程,逐渐形成用数学语言表述问题的能力。
(3)通过学习添加辅助线,提高思维能力。
3.情感、态度与价值观经历复习圆的切线的判定与性质的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累学习经验,获得成功的体验;利用数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望.三、重、难点:重点:掌握切线的判定定理和性质定理难点:切线的判定定理和性质定理应用四、教学过程(一)知识简要归纳——温故而知新1.经过半径的 并且 的直线是圆的切线。
如图所示,它的符号语言表示为:2.判断一条直线是否为圆的切线,现已有 种方法:一是看直线与圆公共点的个数:( 与圆有 公共点的直线是圆的切线)二看圆心到直线的距离d与圆的半径之间的关系;(当d r 时,直线是圆的切线) 三是利用 。
3.认真观察下列图形,看看下列说法是否正确(1).与圆有公共点的直线是圆的切线. ( )(2).和圆心距离等于圆的半径的直线是圆的切线; ( )(3).垂直于圆的半径的直线是圆的切线; ( )(4)4.切线的性质定理:圆的切线 的半径。
如图所示,它的符号语言表示为:(二)、合作探究图(1) 图(2) 图(3) 图(4) 图(5)例1直线A B经过⊙O上的点C,并且O A=O B,C A=C B,求证:直线A B是⊙O的切线.归纳小结:象例1 这种证明方法可简记为:有“切点”,连半径,证垂直。
例2:已知:O为∠B A C平分线上一点,O D⊥A B于D,以O为圆心,O D为半径作⊙O。
求证:⊙O与A C相切。
圆的切线的判定(教案)
圆的切线的判定(教案)第一章:圆的切线定义与性质1.1 圆的切线定义引入圆的切线概念,讲解圆的切线是如何与圆相切的。
通过图形和实例,让学生理解圆的切线的特点。
1.2 圆的切线性质讲解圆的切线的性质,包括切线与半径垂直、切线与圆心连线垂直等。
提供相关的定理和公式,让学生能够熟练掌握。
第二章:圆的切线判定定理2.1 第一判定定理讲解第一判定定理,即如果一条直线与圆相切,这条直线的斜率等于过切点的半径的斜率。
提供定理的证明和相关的例题,让学生能够理解和应用。
2.2 第二判定定理讲解第二判定定理,即如果一条直线与圆相切,这条直线与圆的切点处的切线垂直于直线。
提供定理的证明和相关的例题,让学生能够理解和应用。
第三章:圆的切线方程3.1 切线方程的定义讲解切线方程的定义,即切线的一般式和点斜式。
引导学生理解切线方程与圆的切线的关系。
3.2 切线方程的求法讲解如何求解圆的切线方程,包括给定圆的方程和切点的坐标等。
提供相关的例题和练习题,让学生能够熟练掌握。
第四章:圆的切线与圆的位置关系4.1 切线与圆相离讲解切线与圆相离的情况,即切线与圆没有交点。
提供相关的例题和练习题,让学生能够理解和应用。
4.2 切线与圆相切讲解切线与圆相切的情况,即切线与圆只有一个交点。
提供相关的例题和练习题,让学生能够理解和应用。
第五章:圆的切线综合应用5.1 切线与圆的交点问题讲解如何求解切线与圆的交点,包括切线与圆的方程联立等。
提供相关的例题和练习题,让学生能够熟练掌握。
5.2 切线与圆的切点问题讲解如何求解切线与圆的切点,包括切线的斜率和切线方程等。
提供相关的例题和练习题,让学生能够熟练掌握。
第六章:圆的切线与圆的性质6.1 切线与圆的切点性质讲解切线与圆的切点的性质,如切点处的切线与半径垂直。
提供相关的定理和公式,让学生能够熟练掌握。
6.2 切线与圆的切线性质讲解切线与圆的切线的性质,如切线与圆心连线垂直。
提供相关的定理和公式,让学生能够熟练掌握。
圆的切线的判定(教案)
圆的切线的判定(教案)章节一:圆的切线的定义与性质1.1 教学目标让学生了解圆的切线的定义。
让学生掌握圆的切线的性质。
1.2 教学内容圆的切线的定义。
圆的切线的性质。
1.3 教学步骤1.3.1 引入利用实物或图片展示圆和切线,引导学生思考圆的切线的定义。
1.3.2 讲解讲解圆的切线的定义,强调圆的切线与圆的接触点是切点。
讲解圆的切线的性质,如切线与半径垂直,切线与圆的切点处的切线斜率为0等。
1.3.3 练习提供一些图形,让学生判断哪些是圆的切线,并解释原因。
1.4 教学评价通过学生的练习和提问,评估学生对圆的切线的定义和性质的理解程度。
章节二:圆的切线的判定定理2.1 教学目标让学生了解圆的切线的判定定理。
让学生能够运用判定定理判断一条直线是否为圆的切线。
2.2 教学内容圆的切线的判定定理。
判定定理的应用。
2.3 教学步骤2.3.1 引入回顾上一章节的圆的切线的性质,引导学生思考如何判断一条直线是否为圆的切线。
2.3.2 讲解讲解圆的切线的判定定理,包括定理的表述和证明过程。
讲解判定定理的应用,如何通过已知条件判断一条直线是否为圆的切线。
2.3.3 练习提供一些题目,让学生运用判定定理判断直线是否为圆的切线,并提供解题思路和步骤。
2.4 教学评价通过学生的练习和提问,评估学生对圆的切线的判定定理的理解程度和应用能力。
章节三:圆的切线方程的求法3.1 教学目标让学生了解圆的切线方程的求法。
让学生能够运用求法求出圆的切线方程。
3.2 教学内容圆的切线方程的求法。
切线方程的求法应用。
3.3 教学步骤3.3.1 引入回顾上一章节的内容,引导学生思考如何求出圆的切线方程。
3.3.2 讲解讲解圆的切线方程的求法,包括切线方程的一般形式和求法步骤。
讲解切线方程的求法应用,如何根据已知条件求出圆的切线方程。
3.3.3 练习提供一些题目,让学生运用求法求出圆的切线方程,并提供解题思路和步骤。
3.4 教学评价通过学生的练习和提问,评估学生对圆的切线方程的求法的理解程度和应用能力。
圆的切线的性质及判定定理优秀教学设计
圆的切线判定和性质【教学目标】(一)知识与技能:1.掌握圆的切线判定和性质,并能熟练运用切线的判定与性质进行证明和计算。
2.掌握圆的切线常用添加辅助线的方法(二)过程与方法:1.运用圆的切线的性质与判定解决数学问题的过程中,进一步培养学生运用已有知识综合解决问题的能力;2.进一步感悟数形结合、转化和分类的思想的重要性,培养观察、分析、归纳、总结的能力。
(三)情感态度与价值观:形成知识体系,教育学生用动态的眼光、运动的观点看待数学问题。
【教学重点】对切线的判定方法及其性质的准确、熟练、灵活地运用。
【教学难点】综合型例题分析和论证的思维过程。
【教学方法】先学后教,当堂训练【教学过程】一、一学一归纳:1、作图1:过⊙O外一点P作直线,复习指导:1、通过作图1,你能发现直线与圆有几种位置关系吗?2、你能用数量关系来确定直线与圆的位置关系吗?(设计意图:通过简单作图和复习指导,①回顾直线与圆的三种位置关系:相交、相切、相离,并能从公共点个数判断,得出切线概念;②从数的角度即数量关系上体会圆的切线判别方法:当圆心到直线的距离等于半径时,直线与圆相切,体会数形结合思想)P O A作图2:若点A 为⊙O 上的一点,如何过点A 作⊙O 的切线呢?(请学生上黑板按要求作图,并尝试说出作法)提问:你是怎样判断所作直线是圆的切线的?(设计意图:利用作图,体会切线的判定方法:①圆心到直线的距离等于半径②定义③经过半径的外端并且垂直于半径)2.已知⊙O 直径为8cm ,直线L 到圆心O 的距离为4 cm ,则直线L与⊙O 的位置关系为 。
3.PA 切⊙O 于点A ,PA=4,OP=5,则⊙O 的半径是____(设计意图:应用圆的切线判别方法及性质解决简单数学问题,同时归纳出切线性质,并在性质应用时体现辅助线做法指导:见切线,连半径,得垂直,体会转化和数形结合的数学思想,至此形成知识体系。
)二、二学二归纳:4.已知:直线AB 经过⊙O 上的点C ,并且OA=OB ,CA =CB .①求证:直线AB 是⊙O 的切线。
切线的判定和性质数学教案
切线的判定和性质数学教案标题:切线的判定与性质——数学教案一、教学目标1. 知识目标:理解和掌握圆的切线的定义,以及切线的判定和性质。
2. 能力目标:通过解决相关问题,提高学生的逻辑推理能力和空间想象能力。
3. 情感态度价值观目标:培养学生积极思考、勇于探索的学习态度,增强学生对数学学习的兴趣。
二、教学重点与难点1. 教学重点:切线的判定方法和性质。
2. 教学难点:理解并应用切线的判定定理和性质解决实际问题。
三、教学过程(一)引入新课教师引导学生回顾上节课关于圆的知识,提出问题:“如何判断一条直线是否为圆的切线?”以此引出本节课的主题——切线的判定和性质。
(二)讲解新知1. 切线的定义:与圆只有一个公共点的直线叫做圆的切线。
2. 切线的判定:(1) 判定定理1:经过半径的外端并且垂直于这条半径的直线是圆的切线。
(2) 判定定理2:到圆心的距离等于半径的直线是圆的切线。
3. 切线的性质:(1) 性质1:过圆心且垂直于切线的直线必经过切点。
(2) 性质2:从圆外一点引圆的两条切线,它们的切线长相等。
(三)课堂练习设计一些相关的练习题,让学生在实践中巩固所学知识。
如:例题1:已知OA,OB为圆O的两条半径,∠AOB=60°,P为劣弧AB上的动点,过P作圆O的切线PC,设∠APB=α,求证:tanα=2sinα。
例题2:已知△ABC中,∠A=90°,AB=AC,D是BC边的中点,E是AC边上的任意一点,DE与以C为圆心,CA为半径的圆相切于F点,证明:AF⊥BE。
(四)课堂小结引导学生总结本节课的主要内容,包括切线的定义、判定定理和性质,并强调这些知识在解题中的重要性。
(五)课后作业布置适量的课后作业,帮助学生进一步巩固和应用所学知识。
四、教学反思在教学过程中,应注重引导学生主动参与,鼓励他们通过独立思考和合作交流来解决问题。
同时,要关注学生的个体差异,提供有针对性的教学指导,以满足他们的不同学习需求。
圆的切线的判定和性质参考教案
圆的切线的判定和性质一、学习目的:1:理解切线的性质定理,判定定理及两个推论,能利用定理及推论解决相关的几何问题2能归纳并正确表述由圆的切线的性质定理和两个推论整合而成的定理二、学习重点:切线的性质定理,判定定理及两个推论三、学习难点:切线的性质定理,判定定理及两个推论的应用。
四、学习内容:(一)自主学习1:判断直线与圆的位置关系.方法一:解析法当直线与圆有____________公共点时,直线与圆相交,当直线与圆有___________公共点时,直线与圆相切,当直线与圆___________时,直线与圆相离.方法二:几何法设⊙O的半径为r,直线l与圆心O的距离为d___________ ⇔直线与圆相离____________⇔直线与圆相切_____________⇔直线与圆相交2 切线的判定定理: 过________且___________的直线是圆的切线3切线的性质定理: 圆的切线_________________半径.推论1经过圆心且垂直于切线的直线必经过______________________推论2: 经过切点且垂直于切线的直线必经过__________________4切线长定理从圆外一点引圆的两条切线,它们的切线长__________,圆心和这一点的连线___________ 两条切线的夹角(二)合作探究例1:见课本例1例2:见课本例2题型一:切线的作法例3:作经过一定点C的圆的切线(1)点C在圆上(2)点C在圆外题型二:证明切线问题∠交AC于点,点D在AB 例4:如图,在Rt△ABC中,90∠=BE平分ABCC上,DE EB⊥求证:AC是△BDE的外接圆的切线题型三:圆的切线的性质和判定定理的应用⊥,P是OA上任意一点,例5:如图,OA和OB是圆O的半径,并且OA OBBP的延长线交圆O于Q,过Q作圆O的切线交OA的延长线于R,求证:△PQR 为等腰三角形。
五:学习与小结1:圆的切线的判定方法2圆的切线的性质定理及它的两个推论,概括起来就是三点,这三点是?六达标与检测1 下列说法(1)与原有公共点的直线是圆的切线(2)垂直于圆的半径的直线是圆的切线(3)与原心的距离等于半径的直线是圆的切线(4)过半径的端点,垂直于止境的直线是圆的切线。
九年级数学:切线的判定和性质(教学设计方案)
( 数学教案 )学校:_________________________年级:_________________________教师:_________________________教案设计 / 精品文档 / 文字可改九年级数学:切线的判定和性质(教学设计方案)Mathematics is a tool subject, it is the basis for learning other subjects, and it is also a subject that improves people's judgment, analysis, and comprehension abilities.九年级数学:切线的判定和性质(教学设计方案)(一)教学目标:1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题;2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的能力;3、通过学生自己实践发现定理,培养学生学习的主动性和积极性.教学重点:切线的判定定理和切线判定的方法;教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视.教学过程设计(一)复习、发现问题1.直线与圆的三种位置关系在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系?2、观察、提出问题、分析发现(教师引导)图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢?如图,直线l到圆心O的距离OA等于圆O的半径,直线l是⊙O的切线.这时我们来观察直线l与⊙O的位置.发现:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C.这样我们就得到了从位置上来判定直线是圆的切线的方法——切线的判定定理.(二)切线的判定定理:1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.2、对定理的理解:引导学生理解:①经过半径外端;②垂直于这条半径.请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.(三)切线的判定方法教师组织学生归纳.切线的判定方法有三种:①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.(四)应用定理,强化训练'例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则AB过半径OC的外端,只需证明OC⊥OB。
圆的切线的判定(教案)
圆的切线的判定(教案)第一章:圆的切线定义与性质1.1 圆的切线定义引入圆的切线的概念,给出圆的切线的定义。
通过图形和实例解释圆的切线的性质和特点。
1.2 圆的切线性质探讨圆的切线的性质,如切线与半径垂直、切线与圆只有一个交点等。
通过几何证明和实例来加深对圆的切线性质的理解。
第二章:圆的切线判定定理2.1 切线判定定理的引入引入圆的切线判定定理,并解释其意义和作用。
通过图形和实例来展示切线判定定理的应用。
2.2 切线判定定理的证明几何证明切线判定定理,解释定理的证明过程和逻辑推理。
通过证明过程来加深对切线判定定理的理解和应用。
第三章:圆的切线方程3.1 切线方程的引入引入圆的切线方程,并解释其意义和作用。
通过图形和实例来展示切线方程的应用。
3.2 切线方程的求解学习如何求解圆的切线方程,包括斜率存在和不存在的情况。
通过例题和练习来掌握切线方程的求解方法。
第四章:圆的切线与圆的位置关系4.1 切线与圆相切探讨切线与圆相切的情况,包括切线与圆的切点和切线与圆的切线。
通过图形和实例来展示切线与圆相切的特点和性质。
4.2 切线与圆相离和相交探讨切线与圆相离和相交的情况,包括切线与圆的交点和切线与圆的内切。
通过图形和实例来展示切线与圆相离和相交的特点和性质。
第五章:圆的切线在实际问题中的应用5.1 切线在几何问题中的应用探讨圆的切线在几何问题中的应用,如求解角度、距离等问题。
通过例题和练习来展示切线在几何问题中的应用方法。
5.2 切线在实际生活中的应用探讨圆的切线在实际生活中的应用,如自行车轮子、圆形操场等。
通过实例来展示切线在日常生活中的重要性和作用。
第六章:圆的切线判定定理的拓展6.1 切线判定定理的推广探讨将切线判定定理应用到更一般的情况下,如非圆形的曲线。
通过图形和实例来展示切线判定定理的推广应用。
6.2 切线判定定理与其他数学概念的联系探讨切线判定定理与其他数学概念的联系,如代数、几何等。
通过例题和练习来展示切线判定定理与其他数学概念的结合应用。
九年级数学下册《切线的性质和判定》教案、教学设计
4.设计不同难度的例题和练习题,由浅入深,让学生逐步掌握切线相关知识,培养逻辑推理能力和数学运算能力。
(三)情感态度与价值观
1.培养学生对几何图形的审美情趣,激发他们对数学学科的兴趣和热爱。
2.培养学生勇于探索、严谨治学的学习态度,让他们在解决问题的过程中体验成功的喜悦。
九年级数学下册《切线的性质和判定》教案、教学设计
一、教学目标
(一)知识与技能
1.理解并掌握切线的定义,能够准确判断一个直线是否为给定圆的切线。
2.掌握切线的性质,如切线与半径垂直、切线段为半径的外切三角形的一条边等。
3.学会使用判定定理判断一个直线是否为圆的切线,如通过圆心到直线的距离等于圆的半径来判断。
4.能够运用切线相关知识解决实际问题,如求圆的切线长度、切线与弦的交点等。
(二)过程与方法
在本章节的教学过程中,学生将通过以下方法培养数学思维与解题能力:
1.通过实际操作和观察,引导学生发现切线的性质,培养观察能力和动手能力。
2.引导学生运用几何画板等教学软件,进行动态演示,激发学生的学习兴趣,提高直观想象能力。
6.开展课堂小结活动,鼓励学生分享自己在学习过程中的收获和困惑,及时反馈教学效果,为后续教学提供参考。
7.教学评价方面,注重过程性评价与终结性评价相结合,关注学生在课堂上的表现、作业完成情况以及解决问题的能力。
8.加强课后辅导,针对学生在学习过程中遇到的问题,提供个性化指导,帮助他们克服难点,提高学习效果。
(2)在平面直角坐标系中,已知圆心为(3,4),半径为5,求过点A(1,1)的切线方程。
3.拓展练习题:
新人教版初中数学九年级上册《第二十四章圆:切线的概念切线的判定和性质》优质课教案_0
切线的判定定理与性质定理
教学目标:
1.掌握圆的切线的判定定理和性质定理,并利用切线的判定定理和性质定理解决相关问题.
2.在解题过程中体会数形结合的思想.
3.体会数学与实际生活密切相关,感受生活中蕴含的数学美.
学习重点:
切线的判定定理和性质定理的应用.
教学过程:
1、复习直线和圆的位置关系:
思考:直线与圆相切有哪几种判断方法?
2、探究切线的判定定理
书本P97思考:
在⊙O中,经过半径 OA 的外端点 A 作直线l⊥OA,则圆心 O 到直线 l 的距离是多少?直线 l 和⊙O有什么位置关系?
从作图中可以得出:经过_________________并且___________与这条半径的的直线是圆的切线。
思考:它的数学语言该怎样表示呢?
思考作图:已知:点A为⊙o上的一点,如何过点A作⊙o的切线呢?
交流总结:根据直线要想与圆相切必须d=r,所以连接OA过A点作OA的垂线。
3、探究切线的性质定理:
书本P97思考:
在⊙O 中,如果直线 l 是⊙O 的切线,切点为 A,那么半径 OA 与直线 l 是不是一定垂直呢?
总结交流:圆的切线垂直于过切点的半径。
4、运用切线的性质和判定定理解决简单问题:
例已知:△ABC 为等腰三角形,O 是底边 BC 的中点,腰 AB 与⊙O 相切于点 D.
求证: AC 是⊙O 的切线.
5、课堂小结:
(1)切线的判定定理与性质定理是什么?它们有怎样的联系?
(2)在应用切线的判定定理和性质定理时,需要注意什么?
6、作业布置:
教科书习题 24.2 第 4,5,12 题.。
圆的切线判定和性质(教案)
圆的切线判定和性质(教案)第一章:引言1.1 课程背景本节课主要学习圆的切线判定和性质。
通过学习,学生能够掌握圆的切线的判定方法,理解圆的切线性质,并能运用到实际问题中。
1.2 教学目标了解圆的切线的判定方法掌握圆的切线性质能够运用圆的切线判定和性质解决实际问题第二章:圆的切线判定2.1 判定方法一:点斜式讲解点斜式的定义和判定条件举例说明如何根据点斜式判定一条直线是否为圆的切线2.2 判定方法二:切线垂直于过切点的半径讲解切线垂直于过切点的半径的定义和判定条件举例说明如何根据切线垂直于过切点的半径判定一条直线是否为圆的切线第三章:圆的切线性质3.1 性质一:切线与半径垂直讲解切线与半径垂直的性质举例说明如何应用这一性质解决问题3.2 性质二:切线与圆心连线垂直讲解切线与圆心连线垂直的性质举例说明如何应用这一性质解决问题第四章:应用举例4.1 例题一:判断一条直线是否为圆的切线给出直线和圆的信息引导学生运用切线判定方法进行判断4.2 例题二:求圆的切线方程给出圆的信息和切点信息引导学生运用切线性质求解切线方程回顾本节课学习的圆的切线判定和性质强调重点和难点5.2 练习给出练习题目引导学生独立完成练习,巩固所学知识第六章:拓展学习圆的割线与切线的关系6.1 割线的定义讲解割线的定义及其与切线的区别举例说明割线在圆的性质中的应用6.2 割线定理介绍割线定理的内容演示如何运用割线定理解决问题第七章:圆的切线与圆的方程7.1 圆的切线方程的求法讲解如何根据圆的切点坐标求切线方程举例说明切线方程的求法7.2 切线方程与圆的相交问题探讨切线与圆相交的情况引导学生如何解决相关的几何问题第八章:实际应用圆的切线问题在工程和几何中的运用8.1 圆的切线在工程中的应用讲解圆的切线在工程中的实际应用案例分析切线知识在工程问题中的重要性8.2 圆的切线在几何中的运用探讨圆的切线在几何证明中的应用举例说明切线性质在几何问题解决中的作用第九章:课堂活动与互动9.1 小组讨论组织学生进行小组讨论,探讨圆的切线判定和性质的应用鼓励学生分享自己的解题经验和思路9.2 问题解答邀请学生回答课堂提出的问题通过问答形式巩固学生对圆的切线判定和性质的理解第十章:作业布置与课后自学建议10.1 作业布置布置相关的练习题目,巩固所学知识提醒学生按时完成作业,并鼓励自我检查10.2 课后自学建议推荐学生阅读相关的数学书籍和资料鼓励学生参与数学社团或在线数学学习平台,拓展知识面重点和难点解析六、拓展学习圆的割线与切线的关系割线与切线的区别和联系是本节课的新知识点,学生可能难以理解。
圆的切线判定和性质(教案)
圆的切线判定和性质(教案)第一章:圆的切线定义和判定1.1 圆的切线定义引导学生回顾圆的定义,理解圆上所有点到圆心的距离相等。
引入切线的概念:与圆相切且与圆心的连线垂直的直线。
1.2 圆的切线判定条件利用几何图形和实际情境,引导学生理解切线的判定条件。
判定条件1:直线过圆外一点,且与圆的切点在圆的直径上。
判定条件2:直线过圆内一点,且与圆的切点在圆的半径上。
第二章:圆的切线性质2.1 圆的切线性质1:切线与半径垂直通过几何证明和实际情境,引导学生理解切线与半径垂直的性质。
引导学生运用性质1解决相关问题。
2.2 圆的切线性质2:切线与圆心连线垂直通过几何证明和实际情境,引导学生理解切线与圆心连线垂直的性质。
引导学生运用性质2解决相关问题。
第三章:圆的切线方程3.1 圆的切线方程的定义引导学生理解切线方程的概念:描述切线位置和方向的方程。
3.2 圆的切线方程的求法引导学生运用点斜式和一般式求解切线方程。
引导学生运用判定条件和性质求解切线方程。
第四章:圆的切线与圆的位置关系4.1 圆的切线与圆相切引导学生理解圆的切线与圆相切的概念。
引导学生运用判定条件和性质判断圆的切线与圆相切。
4.2 圆的切线与圆相离引导学生理解圆的切线与圆相离的概念。
引导学生运用判定条件和性质判断圆的切线与圆相离。
第五章:圆的切线应用5.1 圆的切线长度引导学生理解圆的切线长度的概念。
引导学生运用切线性质和几何证明求解切线长度。
5.2 圆的切线与弦的关系引导学生理解圆的切线与弦的关系。
引导学生运用切线性质和几何证明解决相关问题。
第六章:圆的切线与圆的切点6.1 圆的切线与圆的切点的定义引导学生理解圆的切线与圆的切点的概念。
强调切线与圆的切点是切线与圆的唯一交点。
6.2 圆的切线与圆的切点的性质引导学生理解圆的切线与圆的切点的性质。
性质1:切线与圆的切点,圆心与切点的连线垂直。
性质2:切线与圆的切点,切线与半径的交点在圆心与切点连线上。
圆的切线判定和性质(教案)
圆的切线判定和性质(教案)章节一:圆的切线判定教学目标:1. 理解圆的切线的定义2. 学习圆的切线的判定方法教学内容:1. 圆的切线的定义2. 圆的切线的判定方法教学步骤:1. 引入圆的切线的定义,引导学生理解圆的切线与圆的关系。
2. 讲解圆的切线的判定方法,引导学生通过实例进行理解和掌握。
教学活动:1. 引导学生通过图形观察和理解圆的切线的定义。
2. 组织学生进行小组讨论,探讨圆的切线的判定方法。
教学评价:1. 通过测试题检查学生对圆的切线的定义的理解。
2. 通过解答题检查学生对圆的切线的判定方法的掌握。
章节二:圆的切线性质教学目标:1. 理解圆的切线的性质2. 学习圆的切线的性质的证明和应用教学内容:1. 圆的切线的性质2. 圆的切线的性质的证明和应用教学步骤:1. 引入圆的切线的性质,引导学生理解圆的切线的性质。
2. 讲解圆的切线的性质的证明和应用,引导学生通过实例进行理解和掌握。
教学活动:1. 引导学生通过图形观察和理解圆的切线的性质。
2. 组织学生进行小组讨论,探讨圆的切线的性质的证明和应用。
教学评价:1. 通过测试题检查学生对圆的切线的性质的理解。
2. 通过解答题检查学生对圆的切线的性质的证明和应用的掌握。
章节三:圆的切线方程教学目标:1. 理解圆的切线的方程2. 学习圆的切线的方程的求法教学内容:1. 圆的切线的方程2. 圆的切线的方程的求法教学步骤:1. 引入圆的切线的方程,引导学生理解圆的切线的方程的概念。
2. 讲解圆的切线的方程的求法,引导学生通过实例进行理解和掌握。
教学活动:1. 引导学生通过图形观察和理解圆的切线的方程的概念。
2. 组织学生进行小组讨论,探讨圆的切线的方程的求法。
教学评价:1. 通过测试题检查学生对圆的切线的方程的理解。
2. 通过解答题检查学生对圆的切线的方程的求法的掌握。
章节四:圆的切线与圆的位置关系教学目标:1. 理解圆的切线与圆的位置关系2. 学习圆的切线与圆的位置关系的判定方法教学内容:1. 圆的切线与圆的位置关系2. 圆的切线与圆的位置关系的判定方法教学步骤:1. 引入圆的切线与圆的位置关系,引导学生理解圆的切线与圆的位置关系的概念。
初中圆与切线的定理教案
初中圆与切线的定理教案教学目标:1. 理解圆的切线的定义和性质;2. 掌握切线的判定方法;3. 能够应用切线的定理解决实际问题。
教学重点:1. 圆的切线的定义和性质;2. 切线的判定方法。
教学难点:1. 圆的切线的性质的理解和应用;2. 切线的判定方法的推导和证明。
教学准备:1. 圆和直线的模型;2. 直尺、圆规和三角板。
教学过程:一、导入(5分钟)1. 引入圆的定义:一个平面上所有点到圆心的距离都相等的点的集合。
2. 引入切线的定义:一个直线与圆相交,且只在一个点相交的直线。
二、新课讲解(15分钟)1. 讲解圆的切线的性质:圆的切线垂直于经过切点的半径。
2. 讲解切线的判定方法:经过半径的外端并且垂直于这条半径的直线是圆的切线。
3. 通过示例和练习,让学生理解和掌握圆的切线的性质和判定方法。
三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固对圆的切线的性质和判定方法的理解。
2. 教师对学生的练习进行指导和解答,帮助学生纠正错误和解决疑问。
四、应用拓展(10分钟)1. 让学生思考和探讨如何应用圆的切线的定理解决实际问题。
2. 教师给出一些实际问题,让学生分组讨论和解答,如求圆的切线长度、求圆的切线方程等。
五、总结(5分钟)1. 回顾本节课所学的内容,让学生总结圆的切线的性质和判定方法。
2. 强调圆的切线的性质和判定方法在几何学习和实际问题中的应用。
教学反思:本节课通过讲解和练习,让学生掌握了圆的切线的性质和判定方法。
在教学过程中,注意引导学生理解和掌握切线的定义和性质,以及判定方法的推导和证明。
同时,通过课堂练习和应用拓展,让学生能够将所学的知识应用于实际问题中,提高解决问题的能力。
但在教学过程中,也发现部分学生对于切线的性质和判定方法的理解不够深入,需要在今后的教学中加强练习和讲解,帮助学生更好地掌握这部分知识。
九上数学《切线的判定和性质(教学设计)》
九上数学《切线的判定和性质(教学设计)》第7课时《切线的判定和性质》【知识与技能】能判定一条直线是否为一条切线,会过圆上一点作圆的切线.会运用切线的判定定理和性质定理解决问题.【过程与方法】经历切线的判定定理及性质定理的探究过程,养成学生既能自主探究,又能合作探究的良好学习习惯.【情感态度】体验切线在实际生活中的应用,感受数学就在我们身边,感受证明过程的严谨性及结论的正确性.【教学重点】切线的判定定理及性质定理的探究和运用.【教学难点】切线的判定定理和性质的应用.一、情境导入,初步认识情境1 下雨天,小孩子总喜欢转动雨伞,你发现雨伞的水珠顺着伞面的边缘飞出,水珠是顺着什么方向飞出的?情况二用机器磨削铁件时,铁屑朝哪个方向飞出?情境3用细线系一个球。
当你快速旋转细线时,球会移动形成一个圆。
突然,球掉了下来,沿着圆的边缘飞了起来。
你知道球会朝哪个方向飞吗?【教学说明】通过观察生活中的实例,使学生初步感知直线与圆相切的情景,深化学生思想中的数学模型.二、思考探究,获取新知 1.切线的判定定理思考1 如图,在⊙O中,经过半径OA的外端点A,作直线l⊥OA,则圆心O到直线l的距离是多少?直线l和⊙O有什么位置关系?分析:∵直线l⊥OA,而点A是⊙O的半径OA的外端点.∴直线l与⊙O只有一个交点,并且圆心O到直线l的距离是垂线段OA,即是⊙O的半径.∴直线l与⊙O相切.【归纳总结】切线的判定定理:经过半径的外端(点)并且垂直于这条半径的直线是圆的切线.【教学说明】结合切线的定义以及“如果圆心到直线的距离等于半径,那么直线和圆相切”,引导学生得出结论.在切线的判定定理中,“经过外端”和“垂直于半径”两者缺一不可.试一试(1)已知一个圆和圆上的一点,如何过这个点画出圆的切线?(只能作一条直线)(2)下图中的直线是圆的切线吗?(都不是圆的切线)2.切线的性质定理思考2 已知直线l是⊙O的切线,切点为A,那么半径OA与直线l是不是一定垂直呢?为什么?(学生讨论,由学生代表回答)教师点评:由于l是⊙O的切线,点A为切点,∴圆心O到l 的距离等于半径,所以OA就是圆心O到直线l的距离.∴OA⊥直线l.切线的性质定理:圆的切线垂直于过切点的半径.符号语言:∵直线l是⊙O的切线,切点为A.∴OA⊥直线l.【教学说明】这个问题在引导学生分析时,直接证明比较困难,我们可以运用反证法.假设OA与l不垂直,过点O作OM⊥l,垂足为M,根据垂线段最短的性质,有OM<OA,这说明圆心O到直线l的距离小于半径OA,直线l与⊙O就相交了,而这与直线l与⊙O相切矛盾.因此,OA垂直于直线l.三、典例精析,掌握新知例1 教材98页例1.(要证明一条直线是圆的切线,必须符合两个条件,即“经过半径外端”和“垂直于这条半径”.引导学生分析.例2(1)如图(1),AB是⊙O的弦,PA是⊙O的切线,A是切点,∠PAB=30°,求∠AOB.(2)如图(2),AB 是⊙O的直径,DC切⊙O于点C,连接CA、CB,AB=12,∠ACD=30°,求AC的长.解:(1)∵△OAB为等腰三角形,∴∠OAB=∠OBA.又∵PA是⊙O的切线,∴由切线的性质可知:PA⊥OA,∴∠OAP=90°,∴∠OAB=∠OAP-∠BAP=90°-30°=60°,∴∠AOB=180°-2∠OAB=180°-2×60°=60°.(2)连接OC,∵CD是⊙O的切线,∴OC⊥CD,而∠ACD=30°,.∴∠OCA=60°,∴△OAC是等边三角形,AC=OA=r=1/2×AB=1/2×12=6.【教学说明】例1是对切线的判定定理的应用,要使学生掌握用这个定理来证明切线的关键(紧扣两点).例2是利用切线的性质解题.在解决与圆有关的切线的问题时,常见辅助线有:(1)已知直线是圆的切线时,通常连接过切点的半径,则这条半径垂直于切线.(2)要证明一条直线是圆的切线:①若直线过圆上某一点,则连接这点和圆心得到辅助半径,再证这条半径与直线垂直.即:已知公共点,连半径证垂直.②若直线与圆的公共点不确定,则过圆心作直线的垂线段,证明这条垂线段长等于圆的半径长.即:未知公共点,作垂线证半径.这种题型后面会给出练习.四、运用新知,深化理解 1.完成教材第98页练习1、2.2.如图,已知PA是∠BA C的平分线,AB是⊙O的切线,切点为E,求证:AC是⊙O的切线.【教学说明】教材上的练习1、2由学生自主完成,加深对切线的判定及性质的理解掌握;第2题是对切线的性质与判定的综合应用,教师可先让学生独立思考,再加以提示.最后,师生共同完成解题.【答案】1.(1)∵AT=AB,∴∠B=∠T=45°,∴∠A=180°-∠B-∠T=90°.又∵AB是⊙O的直径,∴AT是⊙O的切线.(2)l1∥l2,理由如下:∵AB是⊙O的直径,且l1、l2是⊙O的切线,∴l1⊥AB,l2⊥AB,∴l1∥l2.2.过O点作OF⊥AC于点F,连接OE.则OE⊥AE.∴∠OEA=∠OFA=90°,又∵PA是∠BAC的平分线,∴∠OAE=∠OAF,∵AO=AO,∴△OAF≌△OAE,∴OF=OE.又∵OE是半径,∴OF也为半径长.∴AC是⊙O的切线.五、师生互动,课堂小结1.让学生回顾本堂课的两个知识点.2.试着让学生自己总结切线的证明方法,然后相互交流.【教学说明】在这一环节,教师要尽可能地让学生自主总结与交流,然后适当地予以点评和补充.1.布置作业:从教材“习题24.2”中选取.2.完成练习册中本课时练习的“课后作业”部分.本节课从常见的生活情况入手,引入切线的概念,能激发学生的求知欲,接着又得出切线的判定方法及过圆上一点作已知圆的切线,又从另一侧面利用反证法,证明了切线的性质定理,这样,既证明了定理又复习了反证法.黄麓镇中心学校2013-2014学第一学期九年级数学教案24.2.2.2切线的判定和性质教学设计备课人:杨智刚时间:2013年11月18日【教学目标】1.知识和技能:1。
圆的切线判定和性质(教案)
圆的切线判定和性质(教案)第一章:圆的切线判定1.1 引入:复习圆的定义和基本概念,引出切线的概念。
1.2 讲解:讲解圆的切线的判定条件,即切线与半径垂直。
1.3 例题:给出几个判断题,让学生判断给定的直线是否为圆的切线。
1.4 练习:让学生独立判断一些直线是否为圆的切线,并解释原因。
第二章:圆的切线性质2.1 引入:复习上一章的内容,引出圆的切线性质。
2.2 讲解:讲解圆的切线的性质,如切线与半径垂直,切线与圆只有一个交点等。
2.3 例题:给出几个关于圆的切线性质的题目,让学生解答。
2.4 练习:让学生独立解答一些关于圆的切线性质的题目,并解释原因。
第三章:圆的切线方程3.1 引入:复习上一章的内容,引出圆的切线方程的求法。
3.2 讲解:讲解如何求解圆的切线方程,包括切点在圆内和切点在圆外的情况。
3.3 例题:给出几个求解圆的切线方程的题目,让学生解答。
3.4 练习:让学生独立求解一些圆的切线方程,并解释原因。
第四章:圆的切线与圆的位置关系4.1 引入:复习上一章的内容,引出圆的切线与圆的位置关系。
4.2 讲解:讲解圆的切线与圆的位置关系,包括相切、相离和相交的情况。
4.3 例题:给出几个关于圆的切线与圆的位置关系的题目,让学生解答。
4.4 练习:让学生独立解答一些关于圆的切线与圆的位置关系的题目,并解释原因。
第五章:圆的切线与圆的切点5.1 引入:复习上一章的内容,引出圆的切线与圆的切点的关系。
5.2 讲解:讲解圆的切线与圆的切点的关系,如切线与切点的切线垂直,切线与切点的切线相交于切点等。
5.3 例题:给出几个关于圆的切线与圆的切点的题目,让学生解答。
5.4 练习:让学生独立解答一些关于圆的切线与圆的切点的题目,并解释原因。
第六章:圆的切线与圆的切线6.1 引入:复习上一章的内容,引出圆的切线与圆的切线的关系。
6.2 讲解:讲解圆的切线与圆的切线的关系,如两条切线相交于圆内一点,两条切线平行等。
九年级数学上册《切线的概念切线的判定和性质》教案、教学设计
(五)总结归纳
1.回顾本节课所学内容,引导学生总结切线的定义、判定定理和性质。
2.强调切线在实际问题中的应用,如最短路线、圆的切线方程等。
3.提醒学生注意切线知识在后续学习中的重要性,为后续课程打下基础。
4.鼓励学生在生活中观察、发现切线相关的现象,将数学知识运用到实际中。
4.老师将根据作业完成情况,给予评价和反馈,帮助学生不断提高。
3.实践应用:
-设计具有挑战性的问题,让学生运用切线知识解决实际问题,提高学生的应用能力。
-组织学生进行小组讨论,分享解题思路,培养学生的合作精神和交流能力。
-针对不同难度的练习题,给予学生适当的指导,帮助他们突破难点,提高解题能力。
4.教学方法:
-采用启发式教学,引导学生主动思考,培养他们的创新意识。
2.切线的判定定理:讲解切线的判定定理,如“过圆上一点的直线,若与圆的切线垂直,则该直线为圆的切线”。
3.切线的性质:引导学生观察切线与半径的关系,推导出切线的性质,如“切线垂直于过切点的半径”。
4.实例讲解:通过具体实例,讲解切线判定定理和性质的应用。
(三)学生小组讨论ຫໍສະໝຸດ 1.分组:将学生分成若干小组,每个小组讨论以下问题:
在教学过程中,注重学生的个体差异,关注学生的成长需求,充分调动学生的积极性、主动性和创造性,使学生在轻松愉快的环境中掌握知识,提高能力。同时,注重情感教育,培养学生的道德品质和人文素养,为学生的全面发展奠定基础。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了圆的基本概念和相关性质,但对于切线的概念及其判定与性质的理解尚浅。在学习本章节时,学生可能面临以下问题:对切线定义的理解不够深入,难以区分切线与割线;对切线判定方法的掌握不够熟练,容易混淆判定条件;对切线性质的应用不够灵活,难以解决实际问题。因此,在教学过程中,应注重以下几点:
九年级数学上册教学教案圆的切线的判定和性质
九年级数学上册教学教案 课 题9课时24.2.2 圆的切线的判定和性质 课 型 新授课 执笔人 总页数 教师寄语今日事,今日毕。
不要把今天的事拖到明天。
学习目标理解切线的判定定理,会准确过圆上一点画圆的切线 教学重点理解切线的判定定理,会准确过圆上一点画圆的切线 教学难点会用圆的判定定理进行简单的证明 教学方法 自主学习、合作探究学习过程 二次备课一、自主学习(教材P95-96)⒈切线的定义:直线与圆有 公共点时,这条直线叫做圆的切线.2.切线的判定方法:(1)和圆有 公共点的直线是圆的切线.(即切线的定义)(2)到圆心的距离 半径的直线是圆的切线.活动1:阅读教材p95的“思考”:(1)做一做:如图1,在⊙O 中,经过半径OA 的外端点A 作直线l OA ⊥,则圆心O 到直线l 的距离是多少?直线l 和⊙O 有什么位置关系?为什么?(2)从作图中得到切线的判定定理:经过____________并且_______于这条半径的的直线是圆的切线.定理必须满足哪两个条件,如果只满足一个条件,画图看一看,此时所画的 直线是不是圆的切线.定理的几何语言:如图2,________________,_________ ∴直线l 是⊙O 的切线(3)已知一个圆和圆上的一个点,如何过这个点画出圆的切线?画一画! 活动2: 如图3,直线AB 经过⊙O 上的点C,并且OA=OB,CA=CB,求证:直线AB 是⊙O 的切线.(分析:已知AB 经过圆上的点C ,要用上面的判定定理,应该连接 ,证明:小结:当直线与圆有公共点,常连接 和公共点得半径,证明直线垂直于 .活动3: 已知:如图4,P 是∠AOB 的角平分线OC 上一点.PE ⊥OA 于E .以P 点为圆心,PE 长为半径作⊙P .求证:⊙P 与OB 相切.(分析:OB 与圆没有公共点,应该选用哪种判定方法?怎样作辅助线?) 小结:当直线与圆没有公共点,常过圆心作直线的 ,证明圆心到直线的距离等于 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三第一轮复习教学设计
切线的判定与性质的应用
【教学目标】
知识与技能
1、通过再现切线的判定和性质的形成过程及以题点知的练习回顾知识,并形成相应的知识结构;
2、举例说明切线的性质与判定的应用,简要说出“切线”与“垂直”的密切关系(“半径”纽带的辅助作用);
3、通过题组训练,有效提升应用切线的判定和性质解决问题的技能。
1、借助典型例题及其变式的交流的学习,发现通性,归纳解题思路和一般规律;
2、类比例题与技能训练题的解题通性方法,分析对几何图形的分解与知识之间的转化
技巧。
情感态度与价值观
说出切线在解决直线与圆的相关问题的作用,克服复习课疲态,体会到“课课有新知”,逐渐树立获取解题思路和方法的类比与归纳意识。
【教学重点】
切线的判定与性质的应用
【教学难点】
切线的判定与性质的应用思维的概括
【设计说明】本课时是初三第一轮中考复习《圆》中的第4节,前面学生已复习了圆的基本概念、圆中的计算以及与圆的位置关系。
本设计面向中上层次学生,定位是在巩固切线判定与性质的基础知识的前提下,对解题方法进行归纳总结,有效提升学生利用相关知识解决问题的能力,并感受转化与分类讨论的数学思想方法。
【教学环节】
环节一、以题点知回顾应用(4’)
环节二、经典再现突出主题(1’)
环节三、典例分析学习共享(20’)
环节四、技能训练提高有效(15’)
环节五、目标检测落实重点(课后限时完成)
环节六、拓展探索展翅高飞(学有余力者为之奋斗)
【教学过程】
,
,AB的中点为点
(1)定义
(2)d=r
(3)切线的判定定理DF⊥CB于F点
E
的直径,
.70
相交于点O,∠AOC=30°,
的圆心在射线OA上,且圆心与
)如图,动点A从点M出发,沿着MP的方向运动(运即停),动点B从点P出发,沿着PN方向运动,
12)cm,连接1cm/s,已知PM=(18+3
同时出发几秒后,△APB为直角三角形且直
附:环节五、目标检测 落实重点(课后完成1-5题,限时20分钟)
1、已知⊙O 的半径为4,圆心O 的坐标(4,5),则x 轴与⊙O 的位置关系是 ,y 轴与⊙O 的位置关系是 ;
2、如图,⊙O 是△ABC 的内切圆,若∠OBC=15°,∠OCB=40°,则∠A= °
3、如图,AB 是圆O 的直径,AC 是圆O 的切线,A 为切点,连结BC
交圆O 于点D ,连结AD ,若45ABC ∠=°,则下列结论正确的是( ) A .12
AD BC = B .12
AD AC = C .AC AB > D .AD DC >
4、如图,AC 是⊙O 的直径,CB 与⊙O 相切于点C ,AB 交⊙O 于点D .已知 51B ∠=︒,则DOC ∠等于 度.
5.如图9,AB 是⊙O 的直径,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .
(1)求证:CD 是⊙O 的切线;
(2)若2CB =,4CE =,求AE 的长.
环节六、拓展探索 展翅高飞 ※(想挑战自己吗?再来试试下面这一题吧)
6、如图,形如量角器的半圆O 的直径DE =12cm ,形如三角板的△ABC 中,∠ACB =90°,∠ABC =30°,BC =12cm .半圆O 以2cm/s 的速度从左向右运动,在运动过程中,点D 、E 始终在直线BC 上.设运动时间为t (s),当t =0s 时,半圆O 在△ABC 的左侧,OC =8cm . 问:当t 为何值时,△ABC 的一边所在的直线与半圆O 所在的圆相切?
A
E
图9
→ C B
目标检测参考答案
1、相离,相切
2、70°
3、A
4、78°
5、(1)证明:连结OE ,如图3. AE 平分BAF ∠
BAE DAE ∴=∠∠ OE OA =
BAE OEA ∴=∠∠ OEA DAE ∴=∠∠, OE AD ∴∥ AD CD ⊥ OE CD ∴⊥
CD ∴是O 的切线
(2)设r 是
O 的半径
在Rt CEO △中,2
2
2
CO OE CE =+ 即2
2
2
(2)4r r +=+ 解得3r =
OE AD ∥ CEO CDA ∴△∽△ CO OE CE
AC AD CD ∴==
即53484AD ED
==
+ 解得2412
55
AD ED ==,
AE ∴=
=6、解:(1)①如图1,当点E 与点C 重合时,AC OE ⊥,6OC OE ==cm ,所以AC 与半圆O 所在的
圆相切.此时点O 运动了2cm ,所求运动时间为:
2
1()2
t s =
=.
E 图
3
②如图2,当点O 运动到点C 时,过点O 作OF AB ⊥,垂足为F .
在Rt △FOB 中,30FBO ∠=,12OB = cm ,则6OF =cm ,即OF 等于半圆O 的半径,所以AB 与半圆O 所在的圆相切.此时点O 运动了8cm ,所求运动时间为:
8
4()2
t s =
=
③如图3
6cm ,所以AC 与半圆O 所在的圆相切.此时点
O 运动了14cm ,所求运动时间为:14
7()2
t s ==.
④如图4
O 作OQ ⊥直线AB ,垂足为Q . 在Rt △QOB 中,30OBQ ∠=,则6OQ =cm ,即OQ 等于半圆O 所在的圆的半径,
所以直线AB 与半圆O 所在的圆相切.此时点O 运动了32cm ,所求运动时间为:32
16()2
t s ==. 因为半圆O 在运动中,它所在的圆与AC 所在的直线相切只有上述①、③两种情形;与AB 所在的直线相切只有上述②、④两种情形;与BC 所在直线始终相交.所以只有当t 为1s ,4s ,7s ,16s 时, △ABC 的一边所在的直线与半圆O 所在圆相切.
A。