6-3定积分的经济应用2概论

合集下载

定积分的部分应用

定积分的部分应用

第六章 定积分的应用§6-1 微元法用定积分解决已知变化率求总量问题的过程.若某量在[a ,b ]上的变化率f (x ),求它在[a ,b]上的总累积量S : 因为分割区间、取i 都要求有任意性,求和、求极限又是固定模式,故可简述过程:再简化一下,则变成:称为微元.以求曲边梯形面积A 问题为例,用微元法就可以简写成这样:任取微段[x ,x +dx ],曲边梯形在此微段部分的面积微元dA =f (x )dx ,所以A =⎰ba dx x f )(.§6-2定积分在几何中的应用一、平面图形的面积1. 直角坐标系下平面图形的面积 (1)X -型与Y -型平面图形的面积把由直线x =a,x =b (a <b )及两条连续曲线y =f 1(x ), y =f 2(x ),(f 1(x )≤f 2(x ))所围成的平面图形称为X y =d (c <d )y ) ≤g 2(y ))注意 构成图形的两条直线,有时也可能蜕化为点.把X -型图形称为X -型双曲边梯形,把Y -型图形称为Y -型双曲边梯形.1)用微元法分析X -型平面图形的面积取横坐标x 为积分变量,x ∈[a ,b ].在区间[a ,b ]上任取一微段[x ,x +dx ],该微段上的图形的面积dA 可以用高为f 2(x )-f 1(x )、底为dx 的矩形的面积近似代替.因此dA =[ f 2(x )-f 1(x )]dx , 从而 A =.)]()([ 12⎰-ba dx x f x f (1)2)微元法分析Y -型图形的面积A =.)]()([ 12⎰-dc dy y g y g (2)对于非X -型、非Y -型平面图形,我们可以进行适当的分割,划分成若干个X -型图形和Y -型图形,然后利用前面介绍的方法去求面积.例1 求由两条抛物线y 2=x , y =x 2所围成图形的面积A .解 解方程组,,22x y x y ==得交点(0,0),(1,1).将该平面图形视为X -型图形,确定积分变量为x ,积分 区间为[0,1].由公式(1),所求图形的面积为A =1 0 31 0 23132)(23x x dx x x -=-⎰=31. 例2 求由曲线y 2=2x 与直线y =-2x +2所围成图形的面积A . 解解方程组,22 ,22+-==x y x y 得交点(21,1),(2,-2). 积分变量选择y ,积分区间为[-2,1].所求图形的面积为 A =12- 31 2- 22]6141[]21)211[(y y y dy y y ⎰--=--=49.例3 求由曲线y =sin x ,y =cos x 和直线x =2π及y 轴所围成图形的面积A .解 在x =0与x =2π之间,两条曲线有两个交点: B (4π,22),C (45π,-22). 由图易知,整个图形可以划分为[0,4π],[4π,45π],[45π,2π]三段,在每一段上都是X -型图形.应用公式(1),所求平面图形的面积为A =⎰⎰⎰-+-+-4455 02)sin (cos )cos (sin )sin (cos πππππdx x x dx x x dx x x =42.2. 极坐标系中曲边扇形的面积在极坐标系中,称由连续曲线r =r (θ)及两条射线θ=α, θ=β,(α<β)所围成的平面图形为曲边扇形.在[α,β]上任取一微段[θ,θ+d θ],面积微元dA 表示1这个角内的小曲边扇形面积,dA =21[r (θ)]2d θ 所以 A =⎰βαθθ 2)]([21d r . (3) 例5 求心形线r =a (1+cos θ),(a >0)所围成图形的积A .解 因为心形线对称于极轴,所以所求图形的面积 A 是极轴上方图形A 1的两倍.极轴上方部分所对应的极角变化范围为θ∈[0,π],由 公式(3),所求图形的面积为A =2⨯⎰βαθθ 2)]([21d r=⎰⎰++=+ππθθθθθ 022 02)cos cos 21()]cos 1([d a d a=)23|2sin 41sin 22302=++ ⎝⎛πθθθa πa 2.二、空间立体的体积 1. 一般情形设有一立体,它夹在垂直于x 轴的两个平面x =a , x =b 之间(包括只与平面交于一点的情况),其中a <b ,如图所示.如果用任意垂直于x 轴的平面去截它,所得的截交面面积A 可得为A =A (x ),则用微元法可以得到立体的体积V 的计算公式.过微段[x ,x +dx ]两端作垂直于x 轴的平面,截得立体一微片,对应体积微元dV =A (x )dx . 因此立体体积V =.)( ⎰ba dx x A (4)例5 经过一如图所示的椭圆柱体的底面的短轴、与底面交成角α的一平面,可截得圆柱体一块楔形块, 求此楔形块的体积V .解 据图,椭圆方程为64422y x +=1. 过任意x ∈[-2,2]处作垂直于x 轴的平面,与楔形块 截交面为图示直角三角形,其面积为A (x )=21y ⋅y tan α=21y 2tan α=32(1-42x )tan α=8(4-x 2)tan α, 应用公式(4)V =⎰--22 2)4(tan 8dx x α=16tan α⎰-22)4(dx x =3256tan α.2. 旋转体的体积旋转体就是由一个平面图形绕这平面内的一条直线l 旋转一周而成的空间立体,其中直线l 称为该旋转体的旋转轴.把X -型图形的单曲边梯形绕x 旋转得到旋转体,则公式(4)中的截面面积A (x )是很容易得到的.如图,设曲边方程为y =f (x ), x ∈[a ,b ](a <b ),旋转体体积记作V x .过任意x ∈[a ,b ]处作垂直于x 轴的截面,所得截面是半径为|f (x )|的圆,因此截面面积 A (x )= π|f (x )|2.应用公式(4),即得V x =π⎰ba dx x f 2)]([ (5)类似可得Y -型图形的单曲边梯形绕y 轴旋转得到的旋转体的体积V y 计算公式 V y =π⎰d c dy y g 2)]([ (6)其中的x =g (y )是曲边方程,c ,d (c <d )为曲边梯形的上下界.例6 求曲线y =sin x (0≤x ≤π)绕x 轴旋转一周所得的旋转体体积V x .解 V x =π⎰b a dx x f 2)]([=π⎰π0 2)(sin dx x=⎰-=-ππππ0 0 ]22sin [2)2cos 1(2x x dx x =22π. 例7 计算椭圆2222bya x +=1(a >b >0)绕x 轴及y 轴旋转而成的椭球体的体积V x ,V y . 解 (1)绕x 轴旋转,旋转椭球体如图所示,可看作上半椭圆y =22x a ab-及x 轴围成的单曲边梯形绕x 轴旋转而成的,由公式(5)得V x =π⎰-a a dx x a a b - 222)(=⎰-a dx x a a b 02222)(2π =a 0 3222]3[2x x a a b -π=34πab 2.(2)绕y 轴旋转,旋转椭球体如图所示,可看作右半 椭圆x =22y b ba-及y 轴围成的单曲边梯形绕y 轴旋转而成的,由公式(6)得V y =π⎰-bb dy y b b a - 222)(=⎰-b dy y b ba 0 2222)(2π =b 0 3222]3[2y y b ba -π=34πa 2b .f (x当a =b =R 时,即得球体的体积公式V =34πR 3. 例8 求由抛物线y =x 与直线y =0,y =1和y 轴围成的平面图形,绕y 轴旋转而成的旋转体的体积V y .解 抛物线方程改写为x =y 2,y ∈[0,1]. 由公式(6)可得所求旋转体的体积为 V y =π55])[(1 0514122ππ===⎰⎰y dy y dy y .三、平面曲线的弧长1. 表示为直角坐标方程的曲线的长度计算公式称切线连续变化的曲线为光滑曲线.若光滑曲线C 由直角坐标方程y =f (x ),(a ≤x ≤b ),则导数f '(x )在[a ,b ]上连续.如图所示,在[a ,b ]上任意取一微段[x ,x +dx ],对应的曲线微段为AB ,C 在点A 处的切线也有对应微段AP .以AP 替代AB ,注意切线改变量是微分,即得曲线长度微元d s 的计算公式d s=22)()(dy dx +, (7) 得到的公式称为弧微分公式.以C 的方程y =f (x )代入,得 ds =2)]([1x f '+dx.据微元法,即得直角坐标方程表示的曲线长度的一般计算公式s =⎰ba ds =⎰'+ba dx x f 2)]([1 (8)若光滑曲线C 由方程x =g (y )(c ≤y ≤d )给出,则g '(y )在[c ,d ]上连续,根据弧微分公式(7)及微元法,同样可得曲线C 的弧长计算公式为 s =⎰'+d cdy y g 2)]([1 (9)例9 求曲线y =41x 2-21ln x (1≤x ≤e )的弧长s . 解 y '=21x -x 21=21(x -x1),ds =2)]([1x f '+dx =)1(21)1(4112x dx x x +=-+dx , 所求弧长为s =⎰ba ds =41]ln 21[21)1(21e1 2 1=+=+⎰x x dx x x e (e 2+1). 例10 求心形线r =a (1+cos θ) (a >0)的全长.解 θ∈[0,2π];又因为心形线关于极轴对称,全长是其半长的两倍,所以θ∈[0,π].ds =22)]([)]([θθr r +'d θ=2)cos 1(2θ+d θ=2a cos 2θd θ,所以 s =2⎰πθθ2cos2d a =8a .§6—3 定积分在物理中的部分应用一、变力做功物体在一个常力F 的作用下,沿力的方向作直线运动,则当物体移动距离s 时,F 所作的功W =F ⋅s .物体在变力作用下做功的问题,用微元法来求解.设力F 的方向不变,但其大小随着位移而连续变化;物体在F 的作用下,沿平行于力的作用方向作直线运动.取物体运动路径为x 轴,位移量为x ,则F =F (x ).现物体从点x =a 移动到点x =b ,求力F 作功W .在区间[a ,b ]上任取一微段[x ,x +dx ],力F 在此微段上做功微元为dW .由于F (x )的连续性,物体移动在这一微段时,力F (x )的变化很小,它可以近似的看成不变,那么在微段dx 上就可以使用常力做功的公式.于是,功的微元为dW =F (x )dx . 作功W 是功微元dW 在[a ,b ]上的累积,据微元法W =⎰ba dW =⎰ba dx x F )(. (12)例1 在弹簧弹性限度之内,外力拉长或压缩弹簧,需要克服弹力作功.已知弹簧每拉长0.02m 要用9.8N 的力,求把弹簧拉长0.1m 时,外力所做的功W .解 据虎克定律,在弹性限度内,拉伸弹簧所需要的外力F 和弹簧的伸长量x 成正比,即 F (x )=kx ,其中k 为弹性系数. 据题设,x =0.02m 时,F =9.8N ,所以 9.8=0.02k ,得k =4.9⨯102(N/m).所以外力需要克服的弹力为 F (x )=4.9⨯102x .由(12)可知,当弹簧被拉长0.1m 时,外力克服弹力作功W =⎰⨯1.0 0 2109.4xdx =21⨯4.9⨯1021.0 0 2x =2.45(J).例2 一个点电荷O 会形成一个电场,其表现就是对周围的其他电荷A 产生沿径向OA作用的引力或斥力;电场内单位正电荷所受的力称为电场强度.据库仑定律,距点电荷r =OA 处的电场强度为F (r )=k 2r q(k 为比例常数,q 为点电荷O 的电量). 现若电场中单位正电荷A 沿OA 从r =OA =a 移到r =OB =b (a <b ),求电场对它所作的功W .解 这是在变力F (r )对移动物体作用下作功问题.因 为作用力和移动路径在同一直线上,故以r 为积分变量,可应用公式(12),得W =⎰b adr rq k 2=kq b a r ]1[-=kq (b a 11-).二、液体的压力单位面积上所受的垂直于面的压力称为压强,即p=ρ⋅h,(其中ρ是液体密度,单位是kg/3m,h是深度,单位是m).如果沉于一定深度的承压面平行于液体表面,则此时承压面上所有点处的h是常数,承压面所受的压力P=ρ⋅h⋅A,其中A是单位为m2的承压面的面积.若承压面不平行于液体表面,此时承压面不同点处的深度未必相同,压强也就因点而异.考虑一种特殊情况:设承压面如图那样为一垂直于液体表面的薄板,薄板在深度为x 处的宽度为f(x),求液体对薄板的压力.薄板沿深度为x的水平线上压强相同,为ρ⋅x,现在在薄板深x处取一高为dx的微条(见图中斜线阴影区域),设其面积为dA.微条上受液体压力为压力微元dP.近似认为在该微条上压强相同,为ρ⋅x,则dP=ρ⋅xdA;又深度为x处薄板宽为f(x),故dA=f(x)dx,因此dP=ρ⋅x⋅f(x)dx.若承压面的入水深度从a到b(a<b),则薄板承压面上液体总压力是x从a到b所有压力微元dP的累积.据微元法P=⎰badxxxf)(ρ=ρ⎰badxxxf)(.(13)。

第六章 定积分 《经济数学》PPT课件

第六章  定积分  《经济数学》PPT课件

6.4.2 定积分的分部积分法
设函数u=u(x),v=v(x)在区间[a,b]上有连续导数,则有 (uv)'=u'v+uv',即uv'=(uv)'-u'v,等式两端在[a,b]上的定积分为 ,即:
➢ 这就是定积分的分部积分公式.
06 P A R T
6.5
广义积分
前面我们是在有限区间上讨论有界函数的定积分.但是,无论在理
CHAPTER
06
第6章 定 积分
PART
06
6.1
定积分的概念
6. 1. 2 定积分的定义
➢ 定义6-1 设函数f(x)在区间[a,b]上有定义,用点
a=x0<x1<x2<…<xn=b将区间[a,b]任意分成n个小区间[xi-
1,xi](i=1,2,…,n),其长度为Δxi=xi-xi-1,在每个小区间[xi-1,xi]上
一个有效数为6位数的近似值.
• 注意:对于分段函数不能求其积分的精确值,但可求近似值,即再
用“N”命令.
由定理可知,在运用换元法计算定积分时应注意以下两点:
用变量代换x=φ(t)把原来变量x代换成新变量t 时,积分限一定要换成相应于新变量t的积分限;
求出f[φ(t)]φ'(t)的一个原函数F[φ(t)]后,不需要 再把t变换成原来变量x的函数,而只需把新变量t 的上、下限分别代入F[φ(t)]中,然后求出增量即 可.
பைடு நூலகம்
的值与
被积函数f(x)和积分区间[a,b]有关,而与积分变量用什么字母表
示无关,即:
➢ (2)定义中假定a<b,如果b<a,我们规定
,特

高等数学(同济第六版)课件 第六章 6.3定积分物理应用

高等数学(同济第六版)课件  第六章 6.3定积分物理应用
第三节 定积分在物理学上的应用
一、变力沿直线所作的功
F a x
F
x+dx b
常力 F 沿直线对物体所作的功为:W=F · S 若力是变力: F F ( x )
dW F ( x )dx
W F ( x )dx
a
b
例1 一个带 +q 电量的点电荷放在 r 轴上坐标原点处, 产生一个电场. 若将一个单位正电荷从r 轴上r = a 处 沿 r 轴移动到 r = b处,求场力 F 所作的功. 解 取r为积分变量,
20 x 20 x dW2 (10 0.05)dx (10 )dx 4 80
x
功元素
1 20 x dW [ x (10 )]dx 10 80
20

W
0
1 20 x [ x (10 )]dx 10 80
=217.5(千克米) =2131.5(焦耳)
l l 解 取y为积分变量 y [ , ], 2 2 取任一小区间[ y , y+dy ] 小段的质量为 dy ,
小段与质点的距离为 r a y ,
2 2
m dx 引力 dF k 2 , 2 a y amdy dFx k 2 , 2 (a y )
3 2
l y 2 y dy
解 建立坐标系如图
面积元素 2(a x )dx ,
dP ( x 2a ) 2(a x )dx
2a
o
a
2a
7 3 P 2( x 2a )(a x )dx a . 0 3
a
x
三、 引力
质量分别为m1, m2相距为 r 的两个质点间的引力 大小:F k m1m2 , 其中k为引力系数, r2 引力的方向沿着两质点的连线方向. 例6 有一长度为l、线密度为 的均匀细棒, 在其中垂线上距棒 a 单位处有一质量为 m 的 质点M, 计算该棒对质点 M 的引力.

高等数学第六章《定积分的应用》

高等数学第六章《定积分的应用》

第六章 定积分的应用一、内容提要(一)主要定义【定义】 定积分的元素法 如果(1)所求量U 是与一个变量x 的变化区间[]b a ,有关的一个整体量; (2)U 对区间[]b a ,具有可加性; (3)部分量i U ∆可表示为()i i i U f x ξ∆≈∆.则可按以下步骤计算定积分(1)选取一个变量x 或y ,并确定它的变化区间[]b a ,;(2)把区间[]b a ,分成n 个小区间, 求任一小区间[],x x dx +的部分量U ∆的近似dU .()U dU f x dx ∆≈=; (3)计算()U=baf x dx ⎰.(二)主要定理与公式根据定积分的元素法可建立一些几何和物理方面的定积分表达式. 1.平面图形面积 (1)直角坐标情形①由()(),(0),,y f x f x x a x b =≥==所围图形的面积()bas f x dx =⎰.②由()()12,,,y f x y f x x a x b ====所围图形的面积()()12 bas f x f x dx =-⎰.③由()()12,,,x y x y y c y d ϕϕ====所围图形的面积()()12dcs y y dy ϕϕ=-⎰(2)参数方程情形 由曲线l :()()x t y t ϕψ=⎧⎪⎨=⎪⎩,12t t t ≤≤,x 轴及,x a x b ==所围图形的面积 ()()21t t s t t dt ψϕ'=⎰(3)极坐标情形① 由(),,ρϕθθαθβ===所围图形的面积()212s d βαϕθθ=⎰ ② 由()()12,,,ρϕθρϕθθαθβ====所围图形的面积()()222112s d βαϕθϕθθ⎡⎤=-⎣⎦⎰ 2.体积(1)旋转体的体积① 由()0,,,y y f x x a x b ====所围图形绕x 轴旋转所得旋转体体积:()2b a V f x dx π=⎡⎤⎣⎦⎰. 当0a b ≤<时,上述曲边梯形绕y 轴旋转所得旋转体的体积: ()22bbaaV x y dx x f x dx ππ==⎰⎰.② 由(),0,,x y x y c y d ϕ====所围图形绕y 轴旋转一周形成的立体体积:()2d c V y dy πϕ=⎡⎤⎣⎦⎰ (2)平行截面面积为已知的立体的体积设以()[],A x C a b ∈表示立体Ω的过点x 且垂直于x 轴的截面面积,且立体Ω夹在平面x a x b ==与之间,则立体Ω的体积:()baV A x dx =⎰.3.平面曲线的弧长(1)光滑曲线():,l y f x a x b =≤≤的弧长为as =⎰.(2)光滑曲线()(),: ,x x t l t y y t αβ=⎧⎪≤≤⎨=⎪⎩的弧长为s βα=⎰.(3)光滑曲线():, l ρϕθαθβ=≤≤的弧长为s βαθ=⎰4.变力沿直线做功、水压力 (1)变力沿直线做功设物体在变力()F x 的作用下,沿变力的方向由x a =移到x b =,在物体的位移区间[],a b 内任一子区间[],x x dx +上功的元素为 ()dW F x dx =,全部功()baW F x dx =⎰.(2)水压力设平板铅直地放入液体中,液体的密度为ρ,平板位于液面下的深度在区间[]0,b 内任一子区间[],x x dx +上,液体深x 处的压强为p gx ρ=,压力元素()dp gx f x dx ρ=⋅. 全部压力为 ()0bp gx f x dx ρ=⋅⎰.二、典型题解析(一)填空题【例6.1】 由曲线,xxy e y e -==及直线1x =所围成图形的面积是 . 解 所求面积 ()()1112xx x x S ee dx e e e e ---=-=+=+-⎰.故应填12e e -+-. 【例6.2】 由222,82x y x y =+=所围成图形(见图6.1)面积A (上半平面部分),则A = .解 两曲线22228x y x y ⎧=⎪⎨⎪+=⎩的交点为()()2,2,2,2-.所求的面积为222)2x A dx -=⎰328226x ⎫=-⎪⎭423π=+. 故应填423π+. 【例6.3】 曲线sin 02y x x π⎛⎫=≤≤⎪⎝⎭与直线,02x y π==围成一个平面图形,此平面图形绕x 轴旋转产生的旋转体的体积 .解 2220s i n 4V x d x πππ==⎰. 故应填24π.【例6.4】 阿基米德螺线()0aeλθρλ=>从0θ=到θα=一段弧长s = .解 0s αθ=⎰ ()01eλαθλ==-⎰.)1eλα-.【例6.5】 曲线322y x x x =-++与x 轴所围成的图形的面积A = . 解 函数322(2)(1)y x x x x x x =-++=--+与x 轴的交点为()()()1,0,0,02,0-.()()023232122A x x x dx x x x dx -=--+++-++⎰⎰3712=. (二)选择题图6.122x y =228x y +=【例6.6】 曲线x y e =与其过原点的切线及y 轴所围成的图形(见图6.2)面积为[ ](A ) ()1x e ex dx -⎰; (B )()1ln ln ey y y dy -⎰;(C )()1e x x e xe dx -⎰; (D )()1ln ln y y y dy -⎰.解 曲线x y e =在任意点(),x y 的切线方程为()x x Y e e X x -=-,由于切线过原点,可以求出1x =,于是过原点的切线方程为Y eX =.所求平面图形的面积等于()1xeex dx -⎰. 故选择A.【例6.7】 由曲线()()12y x x x =--与x 轴围成的平面图形的面积为 [ ]. (A )()()()()12011212x x x dx x x x dx -----⎰⎰;(B )()()212x x x dx ---⎰;(C )()()()()12011212x x x dx x x x dx ---+--⎰⎰;(D )()()212x x x dx --⎰.解 在区间[]0,1,0y <,在区间[]1,2,0y >, 所以 ()()112S x x x dx =---⎰()()2112x x x dx +--⎰.故选择C.【例 6.8】 曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积为 [ ](A )2π (B )π (C )212π (D )2π. 解 2222cos2V xdx ππππ-==⎰.故选择C.图6.2【例6.9】 双纽线()22222x yx y +=-围成的平面图形的面积为 [ ](A )402cos 2d πθθ⎰; (B )404cos 2d πθθ⎰;(C)2θ; (D )()2401cos 22d πθθ⎰.解 双纽线的极坐标方程为2cos 2 r θ=,(,44ππθ-≤≤35)44ππθ≤≤由对称性 2244001422S r d r d ππθθ=⨯=⎰⎰402cos 2d πθθ=⎰. 故选择A.【例6.10】 曲线()2ln 1y x =-上102x ≤≤的一段弧长l = [ ].(A); (B )1222011x dx x +-⎰; (C); (D ). 解 曲线是直角坐标表示的曲线,采用公式al =⎰.由曲线方程()2ln 1y x =-可得210x ->,221x y x -'=-,则1222011x l dx x +==-⎰. 故选择B .(三)非客观题 1. 平面图形的面积解题方法 (1)先画出草图;(2)求出交点;(3)选取积分变量、区间,找出面积元素,然后积分. (1)直角坐标情形【例6.11】求曲线22,ax y ay x ==所围(见图6.3)的面积. 解 如图所示,交点为()(),00,0A a O 及.图6.32ax y =2y ax =所围的面积()23232002)333aax x aS dx ax a aa ⎡⎤==-=⎢⎥⎣⎦⎰. 【例6.12】 求介于由曲线2121,2+==x y x y 和x 轴围成的平面图形(见图6.4)的面积.解 (法一)设此面积为S ,有12101111()d ()d 2222S x x x x x -=+++-⎰⎰0122310()()42423x x x x x -=+++-23=(法二)13122002(21)]d ()3S y y y y y =-=-+⎰23=.【例6.12】 求0,2x x π==之间由曲线sin y x =和cos y x =所围成的图形(见图6.5)的面积. 解 20sin cos A x x dx π=-⎰()40cos sin x x dx π=-⎰()544sin cos x x dx ππ+-⎰()254cos sin x x dx ππ+-⎰=【例6.13】 求抛物线243y x x =-+-及其在点()0,3-和()3,0处的切线所围成的图形(见图6.6)的面积.解 由24y x '=-+得过点()0,3-和()3,0的切线方程为1:43l y x =-和2:26l y x =-+,图 6.4图 6.24π54π2π图 6.5图 6.6且可得12,l l 交点坐标为3,32⎛⎫⎪⎝⎭,则所围图形的面积为()32204343A x x x dx ⎡⎤=---+-⎣⎦⎰()32322643x x x dx ⎡⎤+-+--+-⎣⎦⎰94=. 【例6.14】求由曲线322,0a y y a x==+所围的面积. 解 所求面积为33222202lim b b a dx S dx a dx a x a x+∞-∞→+∞==++⎰⎰ 3212limarctan b a b a aπ→+∞==. 【例6.15】确定常数k ,使曲线2y x =与直线,2,0x k x k y ==+=所围成图形的面积最小. 解 选x 为积分变量,变化区间为[],2k k +,面积元素2dA x dx =,所求面积为()()22 k kA k x dx k +=-∞<<+∞⎰,要求k 使()A k 取最小值,()A k 是积分上(下)限函数,故()()22241dA k k k dk=+-=+, 令0dA dk =,解得驻点1k =-,因为2240d Adk=>,则1k =-为()A k 在(),-∞+∞内唯一极小值点,即当1k =-时,所围成图形的面积最小. (2)参数方程情形【例6.16】求摆线()()sin ,1cos x a t t y a t =-=-()020t y π≤≤=及所围的面积. 解 所求面积为20(1cos )(1cos )S a t a t dt π=-⋅-⎰图 6.72220(12cos cos )a t t dt π=-+⎰221cos 2(12cos )2tat dt π+=-+⎰20312sin sin 224t t t π⎡⎤=-+⎢⎥⎣⎦23a π=【例6.17】求椭圆渐趋线()2233222cos ,sin c c x t y t c a b a b===-所围面积. 解 所求面积为223324sin cos c c S t t dt b a π'⎛⎫= ⎪⎝⎭⎰22322034sin cos sin c c t t tdt b aπ=⎰4422012sin (1sin )c t t dt abπ=--⎰438c abπ=.(3)极坐标情形【例6.18】求曲线2(2cos )r a θ=+所围成图形(见图6.7)的面积. 解 所求面积为()201222cos 2S a d πθθ=⋅+⎡⎤⎣⎦⎰ ()220444cos cos a d πθθθ=++⎰201cos 2444cos 2a d πθθθ+⎛⎫=++ ⎪⎝⎭⎰209sin 244sin 24a πθθθ⎡⎤=++⎢⎥⎣⎦ 218a π=【例6.19】 求心脏线1cos r θ=+与圆3cos r θ=公共部分(见图6.8)的面积. 解 由3cos 1cos θθ=+得交点坐标为3,23π⎛⎫± ⎪⎝⎭,()2232031121cos (3cos )22S d d πππθθθθ⎡⎤=++⎢⎥⎣⎦⎰⎰54π=. 【例6.20】 求由双纽线()()222222x ya x y +=-所围成且在圆周22212x y a +=内部的图形(见图6.9)的面积.解将r =代入方程22cos2r a θ=中得6πθ=.令0r =代入22cos 2r a θ=中得4πθ=,故 226410611cos 222A d a d πππθθθ=+⎰⎰ 224611sin 22264a a πππθ=⋅⋅+2(633)24a π=+-, 214(66a A A π∴==+-.【例6.21】求由曲线2cos2r r θθ==及所围成的图形的公共部分(见图6.10)的面积.解 解方程组2cos 2r r θθ⎧=⎪⎨=⎪⎩,得两曲线的交点坐标为26π⎛⎫ ⎪ ⎪⎝⎭. 所求的面积为1r =+图 6.9)2646112cos222S d dπππθθθθ=+⎰⎰[]64061112sin2sin2242πππθθθ⎡⎤=-+⎢⎥⎣⎦1626ππ=+=.2.体积的计算(1)旋转体的体积【例6.22】将抛物线24y ax=及直线x x=()x>所围成的图形绕x轴旋转,计算所得的旋转抛物体的体积.解()2,dV f x dxπ=其中()f x=所求体积()00222002x xV f x dx dx axπππ===⎰⎰.【例6.23】求曲线22,0y x x y=-=所围图形分别绕ox轴,oy轴旋转所成旋转体的体积.解所求体积为()22216215xV x x dxππ=-=⎰;()228223yV x x x dxππ=-=⎰。

高等数学-第七版--6-3定积分应用习题课

高等数学-第七版--6-3定积分应用习题课

求星形线在第一象限的弧段对这质点的引力.
分析
积分变量: t 积分区间: [0, ]
y
d
F

G
(x2 x2
y
2
)
3 2
y2
d
s
G( x 2

2
y
2
)
1 2
d
s
B
d Fx

d
F

cos

G(
x2

y
2
)
1 2

x
x2
G x d s 3Ga2 cos4 t sin td t
y2
ds
d s (x,

o
y)
Ax
d Fy d F sin G y d s 3Ga2 cos t sin4 td t
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
例5 求由曲线x=acos3t,y=asin3t的所围成的图形的面积
例6 求曲线

所围成图形的公共部分的面积 . r2 a(cos sin )
o
r1 a cos
二、题型练习
(一)面积 (二)体积 (三)弧长 (四)物理应用
二、题型练习
(一)面积 (二)体积 (三)弧长 (四)物理应用
二、题型练习
(一)面积 (二)体积 (三)弧长 (四)物理应用

定积分及其应用

定积分及其应用
1.建立坐标系,选定积分变量并确定积分区间; 2.找打相应的元素; 3.以此元素作积分表达式,在积分区间上求定积分.
下面我们将应用这一方法来讨论一些问题.
、平面图形的面积
根据围成平面图形的曲线的不同情况,我们分为以下两种情形
(1)由一条曲线 和直线x=a,x=b(a<b)及x轴围成的平面图形
O
(8,4)
-2
y
y+dy
4
A1
A2
(2,-2)
y2=2x
y=x-4
x
y
图6-11
O
x
a
b
xy=f(x)ຫໍສະໝຸດ 图 6-13( b) y x+dx
x
1
x
O
图6-14
x
图6-15
(a)
y
y+dy
2
1
y
O
(b)
O
a
A(x)
b
x
图 6-16
O B x a P Q
01
02
A
a
x
R
03
图6-17
y
当 在区间[a,b]上的值有正有负时,则由曲线 和直线x=a,x=b(a<b)及 x轴围成的曲边梯形的面积A是在x轴上方和下方的曲边梯形面积之差.
O
x
b
a
y=f ( x)
y=g( x)

图 6-9
x
y
O
x
x+dx
y
O
图6-10
y
a
b
x+dx
x
-a
本章的基本要求 理解定积分的概念,了解定积分的性质,知道函数连续是可积的充分条件,函数有界是可积的必要条件;理解变上限积分作为其上限的函数及其求导定理,熟练掌握牛顿―莱布尼茨公式;熟练掌握定积分的换元法与分部积分法;掌握用定积分表达一些几何量(如面积和体积)的方法;了解反常积分及其收敛、发散的概念等. 重点 定积分的概念和性质, 牛顿―莱布尼茨公式, 定积分换元法和分部积分法, 利用定积分计算平面图形的面积.

最新6-3定积分在物理上的应用

最新6-3定积分在物理上的应用

ox
y
则梯形A的 B 的腰 方程为
xdx 16
y1x23. 2
A x
小 梯 形 片 上 各 处 的 压 强 近 似 相 等 pg(x N/m 2)
小 梯 形 片 的 面 积 近 似 等 于 2(1x23)dx.
2
机动 目录 上页 下页 返回 结束
此闸门一侧受到静水压力为
P216 g(x 1x2)3 dx
gRR 2x 2 d (R 2x 2) 0
g32
R2x2
3R 0
2gR3(牛顿 ).
3
机动 目录 上页 下页 返回 结束
说明: 当桶内充满液体时, 小窄条上的压强为 g(Rx),
侧压力元素 dP2g(Rx)R 2x 2d x ,
故端面所受侧压力为
4RgR R2x2dx 0 令xRsitn
奇函数
0
2
g(x3323x2)106
g(140 926 325) 6
3
45.6272 g 10(k0/g m 03)
4.43170(牛)顿 .
机动 目录 上页 下页 返回 结束
例 7 一个横放着的圆柱形水桶,桶内盛有半桶
水,设桶的底半径为 R,水的密度为Hale Waihona Puke ,计算桶的一端面上所受的压力.
解 在端面建立坐标系如图
的点处压强p不相等,平板一侧所受的水压力
就不能直接使用此公式,而采用“微元法” 思想.
机动 目录 上页 下页 返回 结束
例6 一等腰梯形闸,如门图所示 ,梯形的上下底 分别为50米和30米,高为20米,如果闸门
顶部高出水4面米,求闸门一侧所受的水
的静压力 . 记水的密度为.
4 B
解 如图建立坐标系,

第六章 定积分的应用(教学笔记)

第六章 定积分的应用(教学笔记)
例 计算抛物线 y 2 = 2 x 与直线 y = x − 4 所围成的图形面积。 解:1 、先画所围的图形简图, 交点: (2,−2) 和 (8,4) 。
2 .选择积分变量并定区间:选取 x 为积分变量,则 0 ≤ 3 .给出面积元素在 0 ≤ x ≤ 2 上, 在 2 ≤ x ≤ 8 上, 4 .列定积分表达式
4
−4
事实上, 也可以选择 x 为积分变量, 积 分 区 间 为 [0, 如图, 当小区间 8] . 面积微元为 [ x, x + dx] 取 在 [0, 2] 中 时 ,
dA = [ 2 x − (− 2 x )]dx , 而当小区间取
在 [2, 8] 中 时 , 面 积 微 元 为
4
y
y = 2x
(8,4)
dA = [ 2 x − ( x − 4)]dx , 因此, 积分区间
须分成 [0, 即所给图形由 2] 和 [2, 8] 两部分,
o
x=4 -y
y = − 2x
x
直线 x = 2 分成两部分, 分别计算两部分的面积再相加, 得所求面积, 即
A = ∫ [ 2 x − (− 2 x )]dx + ∫ [ 2 x − ( x − 4)]dx
解:
a 0 x = a cos t , (0 ≤ t ≤ 2π ) , S = 4 ∫ ydx = 4∫π b sin td (a cos t ) = π ab 0 2 y = b sin t ,
或S = 4

b
0
xdy = 4 ∫ 2 a cos td (b sin t ) = π ab
n
i
的极限
方才是精确值 A 。关键是确定 ∆ Ai ≈ f (ξ i ) ∆ x i ( ∆ Ai − f (ξ i ) ∆ xi = o ( ∆ xi ) )

合肥工业大学-高等数学-上-6-3-定积分在物理学中的应用资料

合肥工业大学-高等数学-上-6-3-定积分在物理学中的应用资料

的两质点之间的引力为 F
k
m1m2 r2
,其中 k
为引力系数,且引力的方
向沿着两质点的连线方向.
如果考虑的不是两个质点之间的引力,而是一根细棒对一个 质点的引力,或者是一根细棒对另一根细棒的引力,就不能直接 运用上述公式,此时的问题相对复杂一些,现举例说明用定积分 的微元法计算一根细棒对一个质点的引力.
解 如图建立坐标系,并取 x 为积分变量.
⑴⑵ x 的的变变化化范范围围[[0a,,aa]],,类在似[a我, a们] 上得任到取压小力区的间微[元x, x为 dx] ,对应
于[x, x dx] 上窄条所dF受的2b压力g近x 似a2于 x2 dx ,
(a x) 2 y dx g 2ba g(a x) a2 x2dx,
解 设第 n 次击打后,桩被打进地下 xn 米,第 n 次击打时,
汽锤所作功为Wn (n 1, 2,3) .由题设,当桩被打进地下的深度
为 x 时,土层对桩的阻力的大小为 kx ,所以
W1
x1 0
kxdx
k 2
x12

W2
x2 x1
kxdx
k 2
(
x22
x12
a
所故以所压受力的元压素力为为dF 2b g(a x) a2 x2 dx , 故所受压力为
FF
aa 0a
22bb aa
gg(xa
a ax2 )
xa22dx
x2
d23xa2bag2b( g牛(顿牛)顿.).
例 6.3.4 某闸门的形状与大小如图所示,其中直线l 为对称轴,闸门的
上部为矩形 ABCD,下部由二次抛物线与线段 AB(长度为米)围成.当
1
闸门下部承受的水压力为

高数例题 第六章 定积分的应用

高数例题  第六章  定积分的应用

s

t t dt
例17. 计算摆线

x a sin y a 1 cos

一拱
(0 2 ) 的长度。
2、直角坐标情形 设曲线弧由直角坐标方程
y f x a x b 给出 f x 在a, b
球体体积的一半,试求该圆孔的直径.
(二)平行截面面积为已知的立体的体积
已知立体在过点 x a, x b且垂直于x 轴的两个平面之间,且垂直于轴的截面 面积为 A x , A x 为连续函数, 则
V A x dx
a
b
例14.一平面经过半径为R的圆柱体 的底圆中心,并与底面交成角

,计
算这平面截圆柱体所得立体的体积.
例15.求以半径为R的圆为底,平行 且等于底圆直径的线段为顶,高为h
的正劈锥体的体积。
例16. 证明由平面图形
0 a x b 0 y f ( x)

y
轴旋转所成的旋转体的体积
b

V 2 xf x dx
a
三、平面曲线的弧长 (一)平面曲线弧长的概念 1、定义:设A,B是曲线弧上的两个端 点,在弧 AB 上依次任取分点
把区间 a, b 分成许多部分区间,则所求 量相应地分成许多部分量 ui ,而所求 量等于所有部分量之和,这一性质称为 所求量对于区间 a, b 具有可加性。
三.用定积分来表达的量 u 应具备的条件 1. 是与一个变量 x 的变化区间 a, b 有关的量。 2.量 对于区间 a, b 具有数量的可 加性。 3.部分量 ui 的近似值可表示为
在 , 上 , 围成,

定积分的应用94128

定积分的应用94128
2) 设想把区间[a,b]分成n个小区间,取其中任 一小区间并记为[x, xdx],求出相应于这 小区间的部分量U的近似值.如果U能近 似地表示为[a,b]上的一个连续函数在x处的 值f (x)与dx的乘积,就把f (x)dx称为量U 的元素且记作dU,即dU f(x)dx;
3)以 所 求 量 U的 元 素 f(x)d为 x被 积 表 达 式 , 在
(4) 求极限,得A的精确值
n
Alim
0i1
f(i)xi

b f (x)dx
a
提示
若用A 表示任一小区间 [x, x x]上的窄曲边梯形的面积,y
则A A,并取A f (x)dx, 于是A f (x)dx
面 积 元 素
dA
yf(x)
A li m f(x )dx
, 记 a x ()b ,x ()( a , b 或 b a )
则由曲 C及 线直x线 a,xb和x轴所围图形面积公
A y(t)x'(t)d.t
•二 参数方程
如果曲边梯形的曲边为参数方程
x y

j y
(t) (t)
曲边梯形的面积A t2y(t)j(t)dt . t1
成 许 多 部 分 量 , 而 U 等 于 所 有 部 分 量 之 和 ;
( 3 ) 部 分 量 U i 的 近 似 值 可 表 示 为 f ( i ) x i ;
就 可 以 考 虑 用 定 积 分 来 表 达 这 个 量 U
元素法的一般步骤:
1 ) 根 据 问 题 的 具 体 情 况 , 选 取 一 个 变 量 例 如 x 为 积 分 变 量 , 并 确 定 它 的 变 化 区 间 [ a ,b ] ;

第九节 定积分的经济应用(2节课)

第九节 定积分的经济应用(2节课)
解:边际利润为
L (x ) MR MC (18 0.06x ) 3 15 0.06 x

L (x ) 15 0.06x 0
得唯一驻点: x
250
故产量为250件时,利润最大。
在最大利润的基础上再生产30件产品,利润的该变量为
280 27 L (MR MC )dx (15 0.06x )dx (15x 0.03x ) 250 250 250
2500 0.015 10 0.002 10 2 C 274 .05 则 C 24 10 2500 C (x ) 0.015 x 0.002 x 24 故平均成本为: x
3 C (x ) x C (x ) 2500 24x 0.015x 2 0.002x (元) 总成本为: 固定成本为: C (0) 2500(元)
60
60
(三)已知边际利润,求总利润
已知边际利润 ML L (x ) R (x ) C (x ),
则销量为x时的总利润为:
L (x ) R (x ) C (x )
x 0

x
0
x R (x )dx C (x )dx C 0 0
R (x ) C (x )dx C 0
0
30
38 (0.6Q 20)dQ 100 0 (18 0.6Q )dQ 100
30
30
0
(18Q 0.3Q )
2
40 30
30 0
100 170 (元)
40 30
(2)L [R (Q ) C (Q )]dQ 38 (0.6Q 20)dQ

定积分的求解方法及其应用

定积分的求解方法及其应用

定积分的求解方法及其应用摘要:在数学分析这门课程里,定积分是最普遍而又重要的内容之一,同时也是数学研究中的重要工具,随着数学在生活中的广泛应用,定积分的相关解法和应用所蕴藏的巨大潜力越来越引起人们的关注.本论文从定积分的基本理论出发,系统阐述了牛顿莱布尼茨公式、换元法、分部积分法、凑微分法等几种常见的求解方法,并列举了相关的例子,更直观的了解求解定积分的方法的精髓.另外本文又介绍了定积分在数学、物理学和经济学当中的应用,实现了定积分在实际生活中的应用.通过这一系列的总结,可以进一步提升对定积分的认识,为以后的学习奠定了基础.关键词:定积分;求解方法;应用一、定积分的求解方法1.1 定积分概念定义1 不妨设在闭区间[m ,n ]中,不包含两个端点,共有1-k 个点,按照大小分别为m =0x <1x <2x <…<1-k x <k x =n ,这些点将闭区间[m ,n ]分割为大小不一的子区间,共有k 个,用i ∆表示这些子区间,即i ∆=[1-i x ,i x ],i =1,2, …,k 。

可以将k x x x ......,10点或[]n i xi x i i ......12,,1==∆-子区间视为分割了闭区间[m ,n ],令集合=A {0x ,1x ,…,k x }或{1∆,2∆,…,k ∆}.定义2 假设函数g 的定义域为 [m ,n ]。

将区间[m ,n ]分割为k 个,得分割区间的集合=A {1∆,2∆,…,k ∆},在区间i ∆上随意取点i ψ,即i ψ∈i ∆,i =1,2, …,k ,将该点函数值与自变量之差做乘积,累次相加得()iki ix g ∆∑=1ψ,该式是函数g 在定义域[m ,n ]上的积分和.定义3 假设函数g 的定义域为 [m ,n ],S 是给定的实数。

假如总能找到某个的正数θ,以及任何正数σ,在定义域 [m ,n ]进行任意大小的分割A ,并且在分割出来的区间中随意选择一个点组成集合{i φ},当A <θ时,存在σφ<-∆∑=S xg ni ii1)(,则函数g在定义域[m ,n ]上可积,即⎰=nmdx x g S )(。

定积分的经济应用

定积分的经济应用

例2 已知对某种商品的需求量是价格 P 的函数, 且边际需求Q'(P) 4, 该商品的最大需求量为80 (即P=0时,Q 80), 求需求量与价格的函数关系.
解 由边际需求的不定积分公式,可得需求量
Q(P) Q'(P)dP = 4dP 4P C (C 为积分常数).
代入Q( P ) P0 80
1560 6
260(元)
例 5 设某产品每天生产 x单位时,边际成本为
C(x) 4x(元/单位),其固定成本为 10 元,总收入
R(x)的变化率也是产量 x的函数:R(x) 60 2x
求每天生产多少单位产品时,总利润 L( x)最大?

x
C( x) C0 Cv 10 2x2 10
4 xdx
0
10 2x2
x 0
R(x)
x
0 (60 2x)dx
60x x2
L(x) R(x) C(x) (60x x2 ) (2x2 10)
3x2 60x 10
由 L(x) 60 6x 0 得 x 10 且 L(x) 6 0
所以每天生产10个单位产品可获得最大利润, 最大利润为 L(10) 290(元)。
F ( x) 求不定积分, 则可求得原经济函数
F( x) F( x)dx
其中, 积分常数 C 可由经济函数的具体条件确定.
也可由 N L 公式
x
F (t)dt F ( x) F (0),
0
求得原经济函数 F ( x)
x
F (t)dt F (0)
0
由 N L公式, 可求出原经济函数从a 到 b 的变
二 、 某 地 区 居 民 购 买 冰箱 的 消 费 支 出W ( x)的 变 化 率 是 居 民 总 收 入x的 函 数 ,W ( x) 1 , 200 x 当 居 民 收 入 由 4 亿 元 增加 到 9 亿 元 时 , 购 买 冰 箱 的 消 费 支 出 增 加 多少 ?

变上限函数6-3牛顿莱布尼兹公式

变上限函数6-3牛顿莱布尼兹公式

牛顿
莱布尼兹公式
01x2dx
x3 3
1

0
计算:8 1dx 2 x
解:
8 2
1 dx x
解:
x2dxx33
ห้องสมุดไป่ตู้
C
0
cos2
xdx 2
2 x 120(1coxs)dx
例计算 cos dx. 01c2osxdx
12(0dx0coxsd)x
0 2 1xsinx
20 0
解:
例计算 1 x4 dx.
根据这个 (定 x)理 axf(t), d为 t 函 连数 续
f(x)在闭区[a间 ,b]上的一个原函数。
6-3牛顿—莱布尼兹公式
牛顿:英国数学家
莱布尼兹:
德国数学家
根据牛顿
莱布尼兹公式
牛顿(1642. 12. 25—1727. 3. 20)生平简介
牛顿是英国数学家、物理学家和天文学家。祖父和父亲都是农民。
牛顿的幼年是不幸的,他是个遗腹子,又是早产儿,生下来只有3 磅重,人们都担心他活不长久,可谁料到,就在这个小的可怜的头
脑里孕育着非凡的才智,他的思想影响了人类数百年。 牛顿一生为近代自然科学奠定了重要的基础,被益为“有史以来最伟大的科 学家”。在60 多年的科学生涯中,牛顿共撰写专著12本,其中科学著作6本 ,年代学2本,宗教著作4本。作为数学家,牛顿从二项式定理到微积分,从 代数和数论到古典几何和解析几何,有限差分、曲线分类、计算方法和逼近 论,甚至在概率论等方面,都有创造性的成就和贡献。莱布尼兹曾说:“在 从世界开始到牛顿生活的时代的全部数学中,牛顿的工作超过一半。”
6-2、变上限函数
记为
称它为变上限定积 分所确定的函数, (变上限定积分)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前页 后页 结束
二、由边际函数求总量函数的改变量
前页 后页 结束
更一般的,设F ( x)为经济应用函数, 且F '(x) f (x),则,F(x)当自变量 由x a变到x b时的改变量为:

b
a f (x)dx a F '(x)dx F(b) F(a)
前页 后页 结束
例3 设某产品在时刻t总产量的变化率为 f (t) 100 12t 0.6t2,求从t 2到t 4 时刻的总产量。
设经济应用函数u(x)的边际函数是u '(x),则
x
u '(t)dt
u(x) u(0),从而
0
x
u(x) u(0) u '(t)dt
0
例1 生产某产品的边际成本函数是
C '(x) 3x2 14x 100,固定成本
C(0) 10000,求生产x个产品的总成本函数。
前页 后页 结束
例2 设某种商品每天生产Q单位时固定成本 为20元,边际成本函数C '(Q) 0.4Q (2 元 / 单位) 求总成本函数C(Q)。如果规定销售价为18元, 且产品可以全部售出,求总利润函数L(Q), 并求每天生产多少单位时才能获得最大利润?
例4 生产某产品的边际成本函数为 C '(x) 150 0.2x,当产量由200增加 到300时,需追加的成本为多少?
前页 后页 结束
例5 某工厂生产某产品Q(单位:百台)的 总成本函数C(Q)(单位:万元)的边际成本 C '(Q) 2(单位:万元 / 百台),已知固定成 本为0万元,总收入函数(单位:万元)的 边际收入为R '(Q) 7 2Q(单位:万元/百台), 求(1)总陈本、总收入、总利润函数; (2)产量为多少时,总利润最大?最大利润是多少? (3)在总利润最大的基础上又多生产了50台,则总 利润如何变化?变化多少?
第六章
第三节(二) 定积分在经济学上的应用
结束
设y f (x)是经济量的函数(如需求函数,生产函 数,成本函数,总收益函数等),则导数f'(x)是为f (x) 的边际函数或变化率.能否根据边际函数求出总函数 (即原函数)或总函数在区间[a, b]上的改变量?
前页 后页 结束
一、 由边际函数求原函数
前页 后页 结束
相关文档
最新文档