3.1.2复数的概念

合集下载

选2-2 3.1.2复数的几何意义

选2-2  3.1.2复数的几何意义
[解] | z1 z2 || 1 sin cos (cos sin )i |
(1 sin cos )2 (cos sin )2
2 sin 2 cos2 2 1 sin 2 2 . 4
故|
z1

z2
| 的最大值为
3 2
,
最小值为
ax
点 Z 的横坐标是 a,纵坐标是 b,复数 z=a+bi(a、b∈R)可用点 Z(a,b)表示,这个建立了直角坐标系来表示复
数的平面叫做复平面,也叫高斯平面,x
轴叫做实轴,y
轴叫做虚轴 新疆 王新敞
奎屯
实轴上的点都表示实数 新疆 王新敞 奎屯
对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是 z=0+0i=0 表示是实数.
理解复数与从原点出发的向量的对应关系
过程与方法:
能够类比实数的几何意义
能够说出共轭复数的概念
本节内容 学情分析
学生已经学过实数的几何意义,实数的绝对值的意义,所以通过类比学生很容易理解复数的几何意 义。
教学重点 复数的几何意义以及复数的模
教学难点 复数的几何意义及模的综合应用
2.
例 3.(2004 北京理科)满足条件 |z i||3 4i| 的复数 z 在复平面上对应点的轨迹是( )
A. 一条直线 解:选 C.
B. 两条直线 C. 圆
D. 椭圆
巩固练习:
1.(2000 广东,全国文科、理科,江西、天津理科)在复平面内,把复数 3 3i 对 应的向量按顺时钟方向旋转 ,所得向量对应的复数是:( B )
乌鲁木齐市实验学校 2014-2015 学年第二学期 高中数学学科电子教案

关于复数的知识点总结

关于复数的知识点总结

关于复数的知识点总结1. 什么是复数复数是由实数与虚数组合而成的数。

其中,实数包含所有我们熟知的实际数值,如1、2、3、4等等;而虚数则是以虚部单位i表示的数,其中i是一个虚数单位,定义为i2=−1。

复数的一般表示形式为a + bi,其中a表示实部,b表示虚部,i表示虚数单位。

2. 复数的运算法则2.1. 加减法规则复数的加减法规则与实数的加减法类似,实部分别相加减,虚部分别相加减。

例如: - (2 + 3i) + (4 + 5i) = 6 + 8i - (2 + 3i) - (4 + 5i) = -2 - 2i2.2. 乘法规则复数的乘法规则遵循分配律,实部相乘减虚部相乘,且i2=−1。

例如: - (2 + 3i) × (4 + 5i) = 8 + 22i + 15i^2 = 8 + 22i - 15 = -7 + 22i2.3. 除法规则复数的除法规则可以通过乘以共轭进行简化。

- 共轭复数:一个复数的共轭是改变虚部符号所得到的复数。

例如: - (2 + 3i) / (4 + 5i) = (2 + 3i) × (4 - 5i) / (4 + 5i) × (4 - 5i) = (-8 + 23i) / 41 = -8/41 + 23i/41 = -0.195 + 0.561i3. 复数的性质3.1. 实部和虚部对于一个复数a + bi,实部即a,虚部即bi。

实部和虚部可以分别表示为re(z)和im(z),其中z表示复数。

例如: - 实部:re(2 + 3i) = 2 - 虚部:im(2 + 3i) = 33.2. 共轭复数对于一个复数a + bi,其共轭复数可以表示为a - bi。

共轭复数的实部相等,虚部互为相反数。

例如: - 共轭复数:conjugate(2 + 3i) = 2 - 3i3.3. 复数大小比较复数大小比较的方法是比较两复数的模。

模是复数的绝对值,可以使用|z|表示。

(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)

(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)

(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算本章小结阅读与欣赏聪明在于学习,天才由于积累第二章函数2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数的图象(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.3待定系数法2.3函数的应用(Ⅰ)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法本章小结阅读与欣赏函数概念的形成与发展第三章基本初等函数(Ⅰ)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)本章小结阅读与欣赏对数的发明必修二第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积实习作业1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系本章小结阅读与欣赏散发着数学芳香的碑文第二章平面解析几何初步2.1平面直角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点的距离公式本章小结阅读与欣赏笛卡儿必修三第一章算法初步1.1算法与程序框图1.1.1算法的概念1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值、输入和输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例本章小结阅读与欣赏我国古代数学家秦九韶附录1解三元一次方程组的算法、框图和程序附录2Scilab部分函数指令表第二章统计2.1随机抽样2.1.2系统抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率分布估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相关关系2.3.2两个变量的线性相关本章小结阅读与欣赏蚂蚁和大象谁的力气更大附录随机数表第三章概率3.1事件与概率3.1.1随机现象3.1.2事件与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用本章小结阅读与欣赏概率论的起源必修四第一章基本初等函数(Ⅱ)1.1任意角的概念与弧度制1.1.1角的概念的推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系式1.2.4诱导公式1.3三角函数的图象与性质1.3.1正弦函数的图象与性质1.3.2余弦函数、正切函数的图象与性质1.3.3已知三角函数值求角教学建模活动本章小结阅读与欣赏三角学的发展第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件与轴上向量坐标运算2.2向量的分解与向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在几何中的应用2.4.2向量在物理中的应用本章小结阅读与欣赏向量概念的推广与应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦、余弦和正切3.3三角函数的积化和差与和差化积本章小结阅读与欣赏和角公式与旋转对称必修五第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例本章小结阅读与欣赏亚历山大时期的三角测量第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和本章小结阅读与欣赏级数趣题无穷与悖论第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式的性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单的线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划本章小结选修1-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑联结词1.2.1“且”与“或”1.2.2“非”(否定)1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程2.1.2椭圆的几何性质2.2双曲线2.2.1双曲线及其标准方程2.2.2双曲线的几何性质2.3抛物线2.3.1抛物线级其标准方程2.3.2抛物线的几何性质本章小结阅读与欣赏圆锥面与圆锥曲线第三章导数及其应用3.1导数3.1.1函数的平均变化率3.1.2瞬时速度与导数3.1.3导数的几何意义3.2导数的运算3.2.1常数与幂函数的导数3.2.2导数公式表3.2.3导数的四则运算法则3.3导数的应用3.3.1利用导数判断函数的单调性3.3.2利用导数研究函数的极值3.3.3导数的实际应用本章小结阅读与欣赏微积分与极限思想选修1-2第一章统计案例1.1独立性检验1.2回归分析本章小结“回归”一词的由来附表相关性检验的临界值表第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法本章小结阅读与欣赏《原本》与公理化思想数学证明的机械化——机器证明第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.1.1实数系3.1.2复数的引入3.2复数的运算3.2.1复数的加法和减法3.2.2复数的乘法和除法本章小结复平面与高斯第四章框图4.1流程图4.2结构图本章小结阅读与欣赏冯·诺伊曼选修2-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑联结词1.2.1“且”与“或”1.2.2“非”(否定)1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1曲线与方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程、由方程研究曲线的性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线本章小结阅读与欣赏圆锥面与圆锥曲线第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离(选学)本章小结阅读与欣赏向量的叉积及其性质选修2-2第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何意义1.2导数的运算1.2.1常数函数与冥函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理本章小结阅读与欣赏微积分与极限思想第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法2.3.1数学归纳法2.3.2数学归纳法应用举例本意小结阅读与欣赏《原本》与公理化思想第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法本章小节阅读与欣赏复平面与高斯选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3二项式定理1.3.2杨辉三角本章小结第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布本章小结阅读与欣赏关于“玛丽莲问题”的争论第三章统计案例3.1独立性检验3.2回归分析本章小结阅读与欣赏“回归”一词的由来附表选修3-1第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身选修3-2暂缺选修3-3第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史选修3-4第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一n元对称群Sn二多项式的对称变换三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行摄影二平面与圆柱面的截线三平面与圆锥面的截线选修4-2引言第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Aa的简单表示2.特征向量在实际问题中的应用选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式,贝努利不等式本章小结阅读与欣赏附录部分中英文词汇对照表后记选修4-6引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用选修4-9引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例说明:A版适用于文件生使用,B版适用于理科生使用,B 版比A版略难。

3.1.2复数的几何意义

3.1.2复数的几何意义

【教学设计】3.1.2《复数的几何意义》福建省福清华侨中学王莺教学目标:1.知识与技能:了解复数的几何意义和复数模的几何意义,并能适当应用。

2.过程与方法:通过类比实数的几何意义来学习复数的几何意义,类比向量求模来学习求复数的模,培养学生的逻辑思维能力。

3.情感态度与价值观:通过复数几何意义的学习,培养学生数形结合的数学思想,从而激发学生学习数学的兴趣。

教学重点:复数的几何意义以及复数的模。

教学难点:复数的几何意义及模的综合应用。

教学方法:主要让学生类比实数的几何意义,探究出复数的几何意义;类比向量的模探究出复数的模。

教学过程:一、复习引入上节课引入了复数,学习了复数的定义,从而把数系由实数系扩充到了复数系,请同学们回忆:(1)复数是如何定义的?把形如z=a+bi的数叫做复数,其中a,b都是实数。

a叫实部,b叫虚部,i叫虚部单位。

i又是什么特点?(2)复数z=a+bi (a,b∈R )表示实数的条件是?表示虚数的条件是?表示纯虚数的条件是?(3)两个复数相等的充要条件是什么?我们上节课知道了,对于一般的两个复数是不能比较大小的,那么为什么不能比较大小?复数的本质是什么?又有什么意义呢?这节课我们从形的角度研究复数,学习复数的几何意义。

二、新课讲解1.复数的几何意义(1)师:在几何上,我们可以用什么来表示实数呢?------数轴上的点!师:实数与数轴上的点有着怎样的对应关系?-------一一对应!师:也就是说实数与数轴上的点,在数与形上是一一对应的,因此,在几何上,我们可以用数轴上的点来表示实数。

类比实数的表示,在几何上,我们可以用什么来表示复数呢?师:一个复数是由哪两部分唯一确定的?------由实部a与虚部b共同唯一确定的!师:若将实部a与虚部b构成一个有序实数对(a,b),那么复数z=a+bi (a,b∈R )与有序实数对(a,b)之间有怎样的对应关系呢?------一一对应!师:而有序实数对(a,b)又与直角坐标系中的点(a,b)是一一对应的。

3.1.2 复数的几何意义

3.1.2 复数的几何意义

|a+bi|(a,b∈R).
(2)求法:|z|=|������������|= ������2 + ������2(a,b∈R).
(3)模的几何意义:复数 z 的模就是复数 z=a+bi(a,b∈R)所对应
的点 Z(a,b)到原点(0,0)的距离.
名师点拨 1.实数 0 与零向量对应,故复数 0 的模为 0.
探究一
探究二
探究三
思想方法 当堂检测
数形结合思想在复数中的应用(1) 典例 已知复数z=3+ai,且|z|<4,求实数a的取值范围.
解:法一:∵z=3+ai(a∈R), ∴|z|= 32 + ������2,
由已知得 32+a2<42,
∴a2<7, ∴a∈(- 7, 7).
课堂篇探究学习
探究一
探究二
所以������������=(1,7),������������=(2,3),
由平行四边形的性质得������������ = ������������ + ������������=(3,10),而������������=(0,-3),
于是 D(3,7).
探究一
探究二
探究三
思想方法 当堂检测
3.1.2 复数的几何意义
-1-
学习目标
思维脉络
1.了解复平面的概念,理解复数的 几何意义. 2.理解复数、复平面内的点、复
平面内的向量之间的对应关系.
3.掌握复数模的概念,会求复数的 模.
课前篇自主预习
1.复平面 (1)复平面:建立了平面直角坐标系来表示复数的平面叫复平面; (2)实轴:坐标系中的x轴叫实轴,在它上面的点都表示实数; (3)虚轴:坐标系中的y轴叫虚轴,除去原点外,在它上面的点都表示 纯虚数. 2.复数的几何意义 (1)复数与复平面内的点一一对应:

2019-2020学年高二数学人教A版选修2-2教师用书:第3章 3.1.2 复数的几何意义 Word版含解析

2019-2020学年高二数学人教A版选修2-2教师用书:第3章 3.1.2 复数的几何意义 Word版含解析

3.1.2 复数的几何意义1.理解复平面、实轴、虚轴等概念.(易混点)2.掌握复数的几何意义,并能适当应用.(重点、易混点) 3.掌握复数模的定义及求模公式.[基础·初探]教材整理1 复平面与复数的几何意义 阅读教材P 104~P 105的内容,完成下列问题. 1.复平面建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴,实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数.2.复数的几何意义(1)复数z =a +b i 一一对应←———→复平面内的点Z (a ,b ). (2)复数z =a +b i 一一对应←———→平面向量OZ →.在复平面内,复数z =1-i 对应的点的坐标为( ) A .(1,i) B .(1,-i) C .(1,1)D .(1,-1)【解析】 复数z =1-i 的实部为1,虚部为-1,故其对应的坐标为(1,-1). 【答案】 D教材整理2 复数的模阅读教材P 105“右侧”,完成下列问题. 复数z =a +b i(a ,b ∈R ),对应的向量为OZ→,则向量OZ →的模叫做复数a +b i 的模,记作|z |或|a +b i|.由模的定义可知|z |=|a +b i|=r =a2+b2(r ≥0,r ∈R ).判断(正确的打“√”,错误的打“×”)(1)在复平面内,对应于实数的点都在实轴上.( ) (2)在复平面内,虚轴上的点所对应的复数都是纯虚数.( ) (3)复数的模一定是正实数.( ) 【答案】 (1)√ (2)× (3)×[小组合作型]当实数m (1)位于第四象限; (2)位于x 轴负半轴上; (3)在上半平面(含实轴).【精彩点拨】 (1)根据实部大于0,虚部小于0,列不等式组求解 (2)根据实部小于0,虚部等于0求解. (3)根据虚部大于或等于0求解.【自主解答】 (1)要使点位于第四象限,需 ⎩⎨⎧ m2-8m +15>0,m2+3m -28<0,∴⎩⎨⎧m<3或m>5,-7<m<4,解得-7<m <3.∴当-7<m <3时复数z 对应的点在第四象限. (2)要使点位于x 轴负半轴上,需 ⎩⎨⎧m2-8m +15<0,m2+3m -28=0,∴⎩⎨⎧3<m<5,m =-7或m =4,得m =4.∴当m =4时复数z 对应的点在x 轴负半轴上. (3)要使点位于上半平面(含实轴),需 m 2+3m -28≥0, 解得m ≥4或m ≤-7.∴当m ≥4或m ≤-7时,复数z 对应的点在上半平面(含实轴).解答此类问题的一般思路:(1)首先确定复数的实部与虚部,从而确定复数对应点的横、纵坐标. (2)根据已知条件,确定实部与虚部满足的关系.[再练一题]1.实数x 取什么值时,复平面内表示复数z =x 2+x -6+(x 2-2x -15)i 的点Z : (1)位于第三象限;(2)位于第四象限;(3)位于直线x -y -3=0上. 【解】 因为x 是实数,所以x 2+x -6,x 2-2x -15也是实数. (1)当实数x 满足⎩⎨⎧ x2+x -6<0,x2-2x -15<0,即-3<x <2时,点Z 位于第三象限. (2)当实数x 满足⎩⎨⎧x2+x -6>0,x2-2x -15<0,即2<x <5时,点Z 位于第四象限,(3)当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0,即3x +6=0,x =-2时,点Z 位于直线x -y -3=0上.(1)向量OZ1对应的复数是5-4i ,向量OZ 2对应的复数是-5+4i ,则OZ →1+OZ→2对应的复数是()A .-10+8iB .10-8iC .0D .10+8i(2)复数4+3i 与-2-5i 分别表示向量OA →与OB →,则向量AB →表示的复数是________.【导学号:62952101】【精彩点拨】 (1)先写出向量OZ1→,OZ →2的坐标,再求出OZ →1+OZ →2的坐标. (2)利用AB →=OB →-OA →,求出向量AB →的坐标,从而确定AB →表示的复数.【自主解答】 (1)因为向量OZ1→对应的复数是5-4i ,向量OZ →2对应的复数是-5+4i ,所以OZ→1=(5,-4),OZ →2=(-5,4),所以OZ →1+OZ →2=(5,-4)+(-5,4)=(0,0),所以OZ →1+OZ →2对应的复数是0.(2)因为复数4+3i 与-2-5i 分别表示向量OA →与OB →,所以OA →=(4,3),OB →=(-2,-5),又AB →=OB →-OA →=(-2,-5)-(4,3)=(-6,-8),所以向量AB →表示的复数是-6-8i.【答案】 (1)C (2)-6-8i解答此类题目的一般思路是先写出向量或点的坐标,再根据向量的运算求出所求向量的坐标,从而求出向量所表示的复数.[再练一题]2.上例(2)中的条件不变,试求向量-12AB →表示的复数.【解】 由上例(2)的解析知AB →=(-6,-8), ∴-12AB →=(3,4),所以向量-12AB →表示的复数是3+4i.[探究共研型]探1若复数z 满足|z |=2,则复数z 的对应点的集合是什么图形?若|z |≤3,则复数z 的对应点的集合是什么图形.【提示】 若|z |=2,则复数z 的对应点的集合是以原点为圆心,2为半径的圆.若|z |≤3,则复数z 的对应点的集合是以原点为圆心,3为半径的圆及其内部.探究2 若z +|z |=1+2i ,那么如何求复数z .【提示】 设z =x +y i(x ,y ∈R ),则|z |=x2+y2, 从而x +y i +x2+y2=1+2i , ∴⎩⎨⎧x +x2+y2=1,y =2,解得⎩⎨⎧x =-32,y =2,∴z =-32+2i.(1)已知复数z 的实部为1,且|z |=2,则复数z 的虚部是( ) A .-3B.3iC .±3iD .±3(2)求复数z 1=6+8i 及z 2=-12-2i 的模,并比较它们模的大小.【精彩点拨】 (1)设出复数z 的虚部,由模的公式建立方程求解. (2)用求模的公式直接计算.【自主解答】 (1)设复数z 的虚部为b ,∵|z |=2,实部为1,∴1+b 2=4,∴b =±3,选D.【答案】 D(2)因为z 1=6+8i ,z 2=-12-2i ,所以|z 1|=62+82=10, |z 2|=错误!=错误!. 因为10>32,所以|z 1|>|z 2|.1.计算复数的模时,应先找出复数的实部和虚部,再利用复数模的公式进行计算. 2.两个复数不能比较大小,但它们的模可以比较大小.[再练一题]3.(1)复数z =x +1+(y -2)i(x ,y ∈R ),且|z |=3,则点Z (x ,y )的轨迹是________. (2)已知复数z =3+a i ,且|z |<4,求实数a 的取值范围.【导学号:62952102】【解析】 (1)∵|z |=3,∴错误!=3,即(x +1)2+(y -2)2=32.故点Z (x ,y )的轨迹是以(-1,2)为圆心,以3为半径的圆. 【答案】 以(-1,2)为圆心,以3为半径的圆 (2)∵z =3+a i(a ∈R ),|z |= 32+a2,由已知得32+a2<4, ∴a 2<7, ∴a ∈(-7,7).1.复数z =-1+2 017i(i 是虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限【解析】 由-1<0,2 017>0得复数z =-1+2 017i(i 是虚数单位)在复平面上对应的点位于第二象限.【答案】 B2.已知复数z =2-3i ,则复数的模|z |是( ) A .5 B .8 C .6D.11【解析】 |z |=错误!=错误!. 【答案】 D3.复数z =x -2+(3-x )i 在复平面内的对应点在第四象限,则实数x 的取值范围是________.【解析】 ∵复数z 在复平面内对应的点在第四象限, ∴⎩⎨⎧x -2>0,3-x <0,解得x >3.【答案】 (3,+∞)4.已知复数z =x -2+y i(x ,y ∈R )的模是22,则点(x ,y )的轨迹方程是________. 【解析】 ∵|z |=22, ∴错误!=2错误!, ∴(x -2)2+y 2=8. 【答案】 (x -2)2+y 2=85.已知复数z 满足z +|z |=2+8i ,求复数z .【解】 设z =a +b i(a ,b ∈R ),则|z |=a2+b2, 代入方程得,a +b i +a2+b2=2+8i , ∴⎩⎨⎧a +a2+b2=2,b =8,解得⎩⎨⎧a =-15,b =8,∴z =-15+8i.。

复数的概念及其几何意义

复数的概念及其几何意义

m − 1 ≠ 0
2
即 纯虚数. 纯虚数.
2
复数z m = −1时,复数 是
练习: 练习:当m为何实数时,复数 为何实数时,
Z = m + m− 2 + (m −1)i
是 (1)实数 (2)虚数 (3)纯虚数 (m = − 2 ) (m ≠ ± 1) (m = ± 1)
如何定义两个复数的相等? 如何定义两个复数的相等?
a+i
bi
a+bi
形如a+bi(a,b∈R)的数叫做复数 ∈ 的数叫做复数 的数叫做复数. 形如
全体复数所形成的集合叫做复数集 复数集, 全体复数所形成的集合叫做复数集, 一般用字母C 一般用字母C表示 .
现在我们就引入这样一个数 i ,并且规定: 并且规定: (1)i2=−1; ) =−1 (2)实数可以与 i 进行四则运算,在进行四则运 ) 进行四则运算, 算时,原有的加法与乘法的运算率(包括交换率、 算时,原有的加法与乘法的运算率(包括交换率、结 合率和分配率)仍然成立。 合率和分配率)仍然成立。
y z=a+bi Z (a,b)
O
x
小结
求下列复数的模: 例4 求下列复数的模: (1)z1=-5i (2)z2=-3+4i (3)z3=5-5i (4)z4=1+mi(m∈R) (5)z5=4a-3ai(a<0) ∈ 解
z
1
=
5
z
2
=
5
z3 = 5 2
z4 = 1+ m 2 z5 = 25a =−5a
a b
一一对应
直角坐标系中的点Z(a,b) 直角坐标系中的点 (形) 建立了平面直角 坐标系来表示复数的 平面 ------复数平面 复数平面 (简称复平面) 简称复平面 简称复平面

人教A版数学高二选修1-2学案复数的几何意义

人教A版数学高二选修1-2学案复数的几何意义

3.1.2 复数的几何意义预习课本P52~53,思考并完成下列问题 (1)复平面是如何定义的,复数的模如何求出?(2)复数与复平面内的点及向量的关系如何?复数的模是实数还是复数?[新知初探]1.复平面2.复数的几何意义(1)复数z =a +b i(a ,b ∈R)―――――――→一一对应复平面内的点Z (a ,b )(2)复数z =a +b i(a ,b ∈R) ――――→一一对应平面向量OZ ――→.3.复数的模(1)定义:向量OZ 的模r 叫做复数z =a +b i(a ,b ∈R)的模. (2)记法:复数z =a +b i 的模记为|z |或|a +b i|. (3)公式:|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R). [点睛] 实轴、虚轴上的点与复数的对应关系实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)在复平面内,对应于实数的点都在实轴上.()(2)在复平面内,虚轴上的点所对应的复数都是纯虚数.()(3)复数的模一定是正实数.()答案:(1)√(2)×(3)×2.已知复数z=i,复平面内对应点Z的坐标为()A.(0,1)B.(1,0)C.(0,0)D.(1,1)答案:A3.向量a=(1,-2)所对应的复数是()A.z=1+2i B.z=1-2iC.z=-1+2i D.z=-2+i答案:B4.已知复数z的实部为-1,虚部为2,则|z|=________.答案: 5复数与点的对应关系[典例]求实数a分别取何值时,复数z=aa+3+(a2-2a-15)i(a∈R)对应的点Z 满足下列条件:(1)在复平面的第二象限内.(2)在复平面内的x轴上方.[解](1)点Z在复平面的第二象限内,则⎩⎪⎨⎪⎧a2-a-6a+3<0,a2-2a-15>0,解得a<-3.(2)点Z在x轴上方,则⎩⎪⎨⎪⎧a2-2a-15>0,a+3≠0,即(a+3)(a-5)>0,解得a>5或a<-3.[一题多变]1.[变设问]本例中题设条件不变,求复数z表示的点在x轴上时,实数a的值.解:点Z 在x 轴上,所以a 2-2a -15=0且a +3≠0, 所以a =5.故a =5时,点Z 在x 轴上.2.[变设问]本例中条件不变,如果点Z 在直线x +y +7=0上,求实数a 的值. 解:因为点Z 在直线x +y +7=0上, 所以a 2-a -6a +3+a 2-2a -15+7=0,即a 3+2a 2-15a -30=0,所以(a +2)(a 2-15)=0,故a =-2或a =±15.所以a =-2或a =±15时,点Z 在直线x +y +7=0上.利用复数与点的对应解题的步骤(1)找对应关系:复数的几何表示法即复数z =a +b i(a ,b ∈R)可以用复平面内的点Z (a ,b )来表示,是解决此类问题的根据.(2)列出方程:此类问题可建立复数的实部与虚部应满足的条件,通过解方程(组)或不等式(组)求解.复数的模[典例] (1)若复数z 对应的点在直线y =2x 上,且|z |=5,则复数z =( ) A .1+2i B .-1-2i C .±1±2iD .1+2i 或-1-2i(2)设复数z 1=a +2i ,z 2=-2+i ,且|z 1|<|z 2|,则实数a 的取值范围是( ) A .(-∞,-1)∪(1,+∞) B .(-1,1) C .(1,+∞)D .(0,+∞)[解析] (1)依题意可设复数z =a +2a i(a ∈R), 由|z |=5得a 2+4a 2=5,解得a =±1,故z =1+2i 或z =-1-2i. (2)因为|z 1|=a 2+4,|z 2|=4+1=5,所以a 2+4<5,即a 2+4<5,所以a 2<1, 即-1<a <1. [答案] (1)D (2)B复数模的计算(1)计算复数的模时,应先确定复数的实部和虚部,再利用模长公式计算.虽然两个虚数不能比较大小,但它们的模可以比较大小.(2)设出复数的代数形式,利用模的定义转化为实数问题求解. [活学活用]1.如果复数z =1+a i 满足条件|z |<2,那么实数a 的取值范围是( ) A .(-22,22) B .(-2,2) C .(-1,1)D .(-3,3)解析:选D 因为|z |<2,所以1+a 2<2,则1+a 2<4,a 2<3,解得-3<a < 3. 2.求复数z 1=6+8i 与z 2=-12-2i 的模,并比较它们的模的大小.解:∵z 1=6+8i ,z 2=-12-2i ,∴|z 1|=62+82=10, |z 2|=⎝⎛⎭⎫-122+(-2)2=32. ∵10>32,∴|z 1|>|z 2|.复数与复平面内向量的关系[典例] 向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,则OZ 1――→+OZ 2――→对应的复数是( )A .-10+8iB .10-8iC .0D .10+8i[解析] 因为向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,所以OZ 1――→=(-5, 4), OZ 2――→=(5, -4),所以OZ 2――→=(5,-4)+(-5,4)=(0,0),所以OZ 1――→+OZ 2――→对应的复数是0.[答案] C(1)以原点为起点的向量表示的复数等于它的终点对应的复数;向量平移后,此向量表示的复数不变,但平移前后起点、终点对应的复数要改变.(2)复数的模从几何意义上来讲,表示复数对应的点到原点的距离,类比向量的模,可以进一步引申|z -z 1|表示点Z 到点Z 1之间的距离.如|z -i|=1表示点Z 到点(0,1)之间的距离为1.[活学活用]在复平面内画出下列复数对应的向量,并求出各复数的模. z 1=1-i ;z 2=-12+32i ;z 3=-2;z 4=2+2i.解:在复平面内分别画出点Z 1(1,-1),Z 2-12,32,Z 3(-2,0),Z 4(2,2),则向量OZ 1――→,OZ 2――→, OZ 3――→,OZ 4――→分别为复数z 1,z 2,z 3,z 4对应的向量,如图所示.各复数的模分别为:|z 1|=12+(-1)2=2; |z 2|=⎝⎛⎭⎫-122+⎝⎛⎭⎫322=1; |z 3|=(-2)2=2;|z 4|=22+22=2 2.层级一 学业水平达标1.与x 轴同方向的单位向量e 1与y 轴同方向的单位向量e 2,它们对应的复数分别是( )A .e 1对应实数1,e 2对应虚数iB .e 1对应虚数i ,e 2对应虚数iC .e 1对应实数1,e 2对应虚数-iD .e 1对应实数1或-1,e 2对应虚数i 或-i 解析:选A e 1=(1,0),e 2=(0,1).2.当23<m <1时,复数z =(3m -2)+(m -1)i 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选D ∵23<m <1,∴3m -2>0,m -1<0,∴点(3m -2,m -1)在第四象限.3.已知0<a <2,复数z =a +i(i 是虚数单位),则|z |的取值范围是( )A .(1,3)B .(1,5)C .(1,3)D .(1,5)解析:选B |z |=a 2+1,∵0<a <2,∴1<a 2+1<5,∴|z |∈(1,5).5.复数z =1+cos α+isin α(π<α<2π)的模为( ) A .2cos α2B .-2cos α2C .2sin α2D .-2sin α2解析:选B |z |=(1+cos α)2+sin 2α=2+2cos α=4cos 2α2=2|cos α2|.∵π<α<2π,∴π2<α2<π,cos α2<0,于是|z |=-2cos α2. 6.复数3-5i,1-i 和-2+a i 在复平面上对应的点在同一条直线上,则实数a 的值为________.解析:由点(3,-5),(1,-1),(-2,a )共线可知a =5. 答案:57.过原点和3-i 对应点的直线的倾斜角是________. 解析:∵3-i 在复平面上的对应点是(3,-1), ∴tan α=-1-03-0=-33(0≤α<π),∴α=5π6.答案:5π69.设z 为纯虚数,且|z -1|=|-1+i|,求复数z . 解:∵z 为纯虚数,∴设z =a i(a ∈R 且a ≠0),又|-1+i|=2,由|z -1|=|-1+i|, 得a 2+1=2,解得a =±1,∴z =±i.10.已知复数z =m (m -1)+(m 2+2m -3)i(m ∈R). (1)若z 是实数,求m 的值; (2)若z 是纯虚数,求m 的值;(3)若在复平面内,z 所对应的点在第四象限,求m 的取值范围. 解:(1)∵z 为实数,∴m 2+2m -3=0, 解得m =-3或m =1. (2)∵z 为纯虚数,∴⎩⎪⎨⎪⎧ m (m -1)=0,m 2+2m -3≠0. 解得m =0. (3)∵z 所对应的点在第四象限,∴⎩⎪⎨⎪⎧m (m -1)>0,m 2+2m -3<0. 解得-3<m <0. 故m 的取值范围为(-3,0).层级二 应试能力达标1.已知复数z 1=2-a i(a ∈R)对应的点在直线x -3y +4=0上,则复数z 2=a +2i 对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B 复数z 1=2-a i 对应的点为(2,-a ),它在直线x -3y +4=0上,故2+3a +4=0,解得a =-2,于是复数z 2=-2+2i ,它对应点的点在第二象限,故选B.2.复数z =(a 2-2a )+(a 2-a -2)i 对应的点在虚轴上,则( ) A .a ≠2或a ≠1 B .a ≠2且a ≠1 C .a =0D .a =2或a =0解析:选D ∵z 在复平面内对应的点在虚轴上, ∴a 2-2a =0,解得a =2或a =0.3.若x ,y ∈R ,i 为虚数单位,且x +y +(x -y )i =3-i ,则复数x +y i 在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选A ∵x +y +(x -y )i =3-i ,∴⎩⎪⎨⎪⎧x +y =3,x -y =-1,解得⎩⎪⎨⎪⎧x =1,y =2,∴复数1+2i 所对应的点在第一象限.4.在复平面内,复数z 1,z 2对应点分别为A ,B .已知A (1,2),|AB |=25,|z 2|=41,则z 2=( )A .4+5iB .5+4iC .3+4iD .5+4i 或15+325i解析:选D 设z 2=x +y i(x ,y ∈R),由条件得,⎩⎪⎨⎪⎧ (x -1)2+(y -2)2=20,x 2+y 2=41. ∴⎩⎪⎨⎪⎧x =5,y =4或⎩⎨⎧x =15,y =325.故选D.5.若复数z =(m 2-9)+(m 2+2m -3)i 是纯虚数,其中m ∈R ,则|z |=________.解析:由条件知⎩⎪⎨⎪⎧m 2+2m -3≠0,m 2-9=0,∴m =3,∴z =12i ,∴|z |=12.答案:126.已知复数z =x -2+y i 的模是22,则点(x ,y )的轨迹方程是________. 解析:由模的计算公式得 (x -2)2+y 2=22,∴(x -2)2+y 2=8. 答案:(x -2)2+y 2=87.已知复数z 0=a +b i(a ,b ∈R),z =(a +3)+(b -2)i ,若|z 0|=2,求复数z 对应点的轨迹.解:设z =x +y i(x ,y ∈R),则复数z 的对应点为P (x ,y ),由题意知⎩⎪⎨⎪⎧x =a +3,y =b -2,∴⎩⎪⎨⎪⎧a =x -3,b =y +2. ① ∵z 0=a +b i ,|z 0|=2,∴a 2+b 2=4. 将①代入得(x -3)2+(y +2)2=4.∴点P 的轨迹是以(3,-2)为圆心,2为半径的圆.8.已知复数z 1=3+i ,z 2=-12+32i.(1)求|z 1|及|z 2|并比较大小;(2)设z ∈C ,满足条件|z 2|≤|z |≤|z 1|的点Z 的轨迹是什么图形? 解:(1)|z 1|= (3)2+12=2,|z 2|=⎝⎛⎭⎫-122+322=1,∴|z 1|>|z 2|. (2)由|z 2|≤|z |≤|z 1|及(1)知1≤|z |≤2.因为|z |的几何意义就是复数z 对应的点到原点的距离,所以|z |≥1表示|z |=1所表示的圆外部所有点组成的集合,|z |≤2表示|z |=2所表示的圆内部所有点组成的集合,故符合题设条件点的集合是以O 为圆心,以1和2为半径的两圆之间的圆环(包含圆周),如图所示.。

高中数学_复数的概念教学设计学情分析教材分析课后反思

高中数学_复数的概念教学设计学情分析教材分析课后反思

3.1.2复数的概念教学设计§3.1.1数系的扩充和复数的概念教学目标:1.知识与技能:理解并掌握虚数单位i;理解复数的基本概念及复数相等的充要条件;2.过程与方法:在问题情境中了解数系的扩充过程及引入复数的必要性;3.情感、态度与价值观:通过数系的扩充过程体会实际需求与数学内部的矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。

教学重点:虚数单位i、复数及其相关概念、复数的分类(实数、虚数、纯虚数)、复数相等的充要条件。

教学难点:虚数单位i的引进及复数概念的理解。

教学过程:x+=在实数集中无解,联系从自然数系到实数系的扩充过程,你一、创设情景:方程210能设想一种方法,使得这个方程有解吗?(意图:创设问题情境,使学生明确这里要解决什么问题,联系旧知识,了解解决问题的大致方向)二、探究新知:1.学生回顾从自然数系到实数系的扩充过程:(教师可以通过提问的方式帮助学生回顾数系的扩充过程)(意图:使学生能够通过从自然数系到实数系的扩充过程体会体会实际需求与数学内部的矛盾在数系扩充中的作用。

)2.学生探究,引入虚数单位i:x-=在有理数集中无解的问题,怎么解决方程问题1:就可以解决方程220210x+=在实数集中无解的问题?(意图:通过类比,使学生了解扩充数系要从引入新数开始,引导学生引入虚数单位i)3.对虚数单位i 的理解:(1)虚数单位i 的平方等于-1,即 21i =-;(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.(3)i 的周期性:41n ii +=, 421n i +=-, 43n i i +=-, 41()n i n Z =∈ 4.复数的引入:问题2:把实数和新引入的虚数单位i 像实数那样进行加法、乘法运算,并希望运算时有关的加法、乘法算律仍然成立,你能得到怎样的数?(意图:1.使学生感受为什么把集合{}|,a bi a b R +∈作为实数集扩充后的新数集) (方法:由学生自己动手试做,然后讨论,最后统一认识)(1)定义:把集合{}|,C a bi a b R =+∈中的数,即形如(,)a bi a b R +∈的数叫复数,其中i 叫做虚数单位,全体复数所成的集合叫做复数集,用字母C 表示。

步步高高中数学 步步高选修2-2 第三章3.1.2

步步高高中数学 步步高选修2-2  第三章3.1.2

3.1.2 复数的几何意义[学习目标] 1.理解用复平面内的点或以原点为起点的向量表示复数,及它们之间的一一对应关系.2.掌握实轴、虚轴、模等概念.3.掌握用向量的模表示复数的模的方法.知识点一 复平面的概念和复数的几何意义 1.复平面的概念根据复数相等的定义,任何一个复数z =a +b i ,都可以由一个有序实数对(a ,b )唯一确定.因为有序实数对(a ,b )与平面直角坐标系中的点一一对应,所以复数与平面直角坐标系中的点之间可以建立一一对应.如图所示,点Z 的横坐标是a ,纵坐标是b ,复数z =a +b i 可用点Z (a ,b )表示.这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴.显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.2.复数的几何意义按照这种表示方法,每一个复数,有复平面内唯一的一个点和它对应;反过来,复平面内的每一个点,有唯一的一个复数和它对应.因此,复数集C 和复平面内所有的点所成的集合是一一对应的,即复数z =a +b i复平面内的点Z (a ,b ),这是复数的一种几何意义.3.复数集与复平面中的向量的一一对应关系在平面直角坐标系中,每一个平面向量都可以用一个有序实数对来表示,而有序实数对与复数是一一对应的.这样,我们还可以用平面向量来表示复数.如图所示,设复平面内的点Z 表示复数z =a +b i ,连接OZ ,显然向量OZ →由点Z 唯一确定;反过来,点Z (相对于原点来说)也可以由向量OZ →唯一确定.因此,复数集C 与复平面内的向量所成的集合也是一一对应的(实数0与零向量对应),即复数z =a +b i 平面向量OZ →,这是复数的另一种几何意义.思考 (1)虚轴上的点都对应着唯一的纯虚数吗? (2)象限内的点与复数有何对应关系? 答案 (1)不是.(2)第一象限的复数特点:实部为正,且虚部为正; 第二象限的复数特点:实部为负,且虚部为正; 第三象限的复数特点:实部为负,且虚部为负; 第四象限的复数特点:实部为正,且虚部为负. 知识点二 复数的模1.如图所示,向量OZ →的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|.如果b =0,那么z =a +b i 是一个实数a ,它的模等于|a |(就是a 的绝对值).由模的定义可知:|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R ).2.复数的模的性质,设z 1,z 2是任意两个复数,则(1)|z 1·z 2|=|z 1|·|z 2|,⎪⎪⎪⎪z 1z 2=|z 1||z 2|(|z 2|≠0)(复数的乘、除法将在下节学习到).(2)|z n 1|=|z 1|n (n ∈N *).(3)|||z 1|-|z 2|≤|z 1+z 2|≤|z 1|+|z 2|,等号成立的条件是:①当|z 1+z 2|=|z 1|+|z 2|时,即z 1,z 2所对应的向量同向共线;②当||z 1|-|z 2||=|z 1+z 2|时,即z 1,z 2所对应的向量反向共线.(4)||z 1|-|z 2||≤|z 1-z 2|≤|z 1|+|z 2|,等号成立的条件是:①当|z 1-z 2|=|z 1|+|z 2|时,即z 1,z 2所对应的向量反向共线;②当||z 1|-|z 2||=|z 1-z 2|时,即z 1,z 2所对应的向量同向共线. 思考 复数的模的几何意义是什么?答案 复数z 在复平面内对应的点为Z ,复数z 0在复平面内对应的点为Z 0,r 表示一个大于0的常数,则:①满足条件|z |=r 的点Z 的轨迹为以原点为圆心,r 为半径的圆,|z |<r 表示圆的内部,|z |>r 表示圆的外部;②满足条件|z -z 0|=r 的点Z 的轨迹为以Z 0为圆心,r 为半径的圆,|z -z 0|<r 表示圆的内部,|z -z 0|>r 表示圆的外部.题型一 复数与复平面内的点例1 在复平面内,若复数z =(m 2-2m -8)+(m 2+3m -10)i 对应的点:(1)在虚轴上;(2)在第二象限;(3)在第二、四象限;(4)在直线y =x 上,分别求实数m 的取值范围. 解 复数z =(m 2-2m -8)+(m 2+3m -10)i 的实部为m 2-2m -8,虚部为m 2+3m -10. (1)由题意得m 2-2m -8=0. 解得m =-2或m =4.(2)由题意,⎩⎪⎨⎪⎧m 2-2m -8<0,m 2+3m -10>0,∴2<m <4.(3)由题意,(m 2-2m -8)(m 2+3m -10)<0, ∴2<m <4或-5<m <-2.(4)由已知得m 2-2m -8=m 2+3m -10,故m =25.反思与感悟 复数实部、虚部分别对应了复平面内相应点的横坐标和纵坐标,在复平面内复数所表示的点所处的位置,决定了复数实部、虚部的取值特征.跟踪训练1 实数m 取什么值时,复数z =(m 2+5m +6)+(m 2-2m -15)i. (1)对应的点在x 轴上方; (2)对应的点在直线x +y +4=0上.解 (1)由m 2-2m -15>0,得m <-3或m >5,所以当m <-3或m >5时,复数z 对应的点在x 轴上方.(2)由(m 2+5m +6)+(m 2-2m -15)+4=0, 得m =1或m =-52,所以当m =1或m =-52时,复数z 对应的点在直线x +y +4=0上. 题型二 复数的模的几何意义例2 设z ∈C ,在复平面内对应点Z ,试说明满足下列条件的点Z 的集合是什么图形. (1)|z |=2; (2)1≤|z |≤2.解 (1)方法一 |z |=2说明复数z 在复平面内对应的点Z 到原点的距离为2,这样的点Z 的集合是以原点O 为圆心,2为半径的圆.方法二 设z =a +b i ,由|z |=2,得a 2+b 2=4.故点Z 对应的集合是以原点O 为圆心,2为半径的圆.(2)不等式1≤|z |≤2可以转化为不等式组⎩⎪⎨⎪⎧|z |≤2,|z |≥1.不等式|z|≤2的解集是圆|z|=2及该圆内部所有点的集合.不等式|z|≥1的解集是圆|z|=1及该圆外部所有点的集合.这两个集合的交集,就是满足条件1≤|z|≤2的点的集合.如图中的阴影部分,所求点的集合是以O为圆心,以1和2为半径的两圆所夹的圆环,并且包括圆环的边界.反思与感悟解决复数的模的几何意义的问题,应把握两个关键点:一是|z|表示点Z到原点的距离,可依据|z|满足的条件判断点Z的集合表示的图形;二是利用复数的模的概念,把模的问题转化为几何问题来解决.跟踪训练2若复数z满足|z-i|≤2(i为虚数单位),则z在复平面所对应的图形的面积为.答案2π解析设z=x+y i(x,y∈R),则z-i=x+y i-i=x+(y-1)i,∴|z-i|=x2+(y-1)2,由|z -i|≤2知x2+(y-1)2≤2,x2+(y-1)2≤2.∴复数z对应的点(x,y)构成以(0,1)为圆心,2为半径的圆面(含边界),∴所求图形的面积为S=2π.故填2π.题型三复数的模及其应用例3已知复数z=3+a i,且|z|<4,求实数a的取值范围.解方法一∵z=3+a i(a∈R),∴|z|=32+a2,由已知得32+a2<42,∴a2<7,∴a∈(-7,7).方法二利用复数的几何意义,由|z|<4知,z在复平面内对应的点在以原点为圆心,以4为半径的圆内(不包括边界),由z=3+a i知z对应的点在直线x=3上,所以线段AB(除去端点)为动点Z的集合.由图可知:-7<a<7.反思与感悟利用模的定义将复数模的条件转化为其实、虚部满足的条件,是一种复数问题实数化思想;根据复数模的意义,结合图形,也可利用平面几何知识解答本题. 跟踪训练3 已知复数|z |=1,求复数3+4i +z 的模的最大值及最小值. 解 令ω=3+4i +z ,则z =ω-(3+4i). ∵|z |=1,∴|ω-(3+4i)|=1,∴复数ω在复平面内对应的点的轨迹是以(3,4)为圆心,1为半径的圆,如图,容易看出,圆上的点A 所对应的复数ωA 的模最大,为32+42+1=6;圆上的点B 所对应的复数ωB 的模最小,为32+42-1=4,∴复数3+4i +z 的模的最大值和最小值分别为6和4.复数与函数的综合应用对于求复数的题目,一般的解题思路是:先设出复数的代数形式,如z =a +b i(a ,b ∈R ),利用题目给出的条件,结合复数的相关概念和性质,列出方程(或方程组),求出a ,b ,最后将复数的代数形式写出来.例4 已知f (z )=|2+z |-z ,且f (-z )=3+5i ,求复数z .分析 题目中出现了f (z )与f (-z )的关系式,可由f (z )得到f (-z )的另一种关系式.要求复数z ,只需设z =a +b i(a ,b ∈R ),求出a ,b 即可.利用复数相等的充要条件即可列方程组求解. 解 设复数z =a +b i(a ,b ∈R ). ∵f (z )=|2+z |-z ,∴f (-z )=|2-z |+z . 又∵f (-z )=3+5i ,∴|2-z |+z =3+5i , ∴|2-(a +b i)|+a +b i =3+5i. 即(2-a )2+(-b )2+a +b i =3+5i. 根据复数相等的充要条件,得⎩⎨⎧(2-a )2+(-b )2+a =3,b =5,解得⎩⎪⎨⎪⎧a =-10,b =5.∴复数z =-10+5i.1.在复平面内,复数z=i+2i2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案 B解析∵z=i+2i2=-2+i,∴实部小于0,虚部大于0,故复数z对应的点位于第二象限.2.在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C 对应的复数是()A.4+8iB.8+2iC.2+4iD.4+i答案 C解析由题意知点A的坐标为(6,5),点B的坐标为(-2,3).由中点坐标公式,得线段AB的中点C的坐标为(2,4),故点C对应的复数为2+4i.3.复数z1=a+2i,z2=-2+i,如果|z1|<|z2|,那么实数a的取值范围是.答案(-1,1)解析因为|z1|=a2+4,|z2|=(-2)2+12= 5.又因|z1|<|z2|,所以a2+4<5,解得-1<a<1.4.在复平面内表示复数z=(m-3)+2m i的点在直线y=x上,则实数m的值为.答案9解析∵z=(m-3)+2m i表示的点在直线y=x上,∴m-3=2m,解得m=9.5.已知z1=2(1-i),且|z|=1,求|z-z1|的最大值.解如图所示,因为|z|=1,所以z的轨迹可看作是半径为1,圆心为(0,0)的圆,而z1对应坐标系中的点为Z1(2,-2),所以|z-z1|的最大值可以看成点(2,-2)到圆上的点的最大距离,则|z-z1|max=22+1.1.复数的几何意义有两种:复数和复平面内的点一一对应,复数和复平面内以原点为起点的向量一一对应.2.研究复数的问题可利用复数问题实数化思想转化为复数的实、虚部的问题,也可以结合图形利用几何关系考虑.一、选择题1.设x =3+4i ,则复数z =x -|x |-(1-i)在复平面上的对应点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限答案 B解析 ∵x =3+4i ,∴|x |=32+42=5, ∴z =3+4i -5-(1-i)=(3-5-1)+(4+1)i =-3+5i.∴复数z 在复平面上的对应点在第二象限.2.当23<m <1时,复数z =(3m -2)+(m -1)i 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限答案 D解析 复数z 在复平面内对应的点为Z (3m -2,m -1).由23<m <1,得3m -2>0,m -1<0.所以点Z 位于第四象限.故选D. 3.在复平面内,O 为原点,向量OA →对应的复数为-1+2i ,若点A 关于直线y =-x 的对称点为B ,则向量OB →对应的复数为( ) A.-2-i B.-2+i C.1+2i D.-1+2i答案 B解析 ∵A (-1,2)关于直线y =-x 的对称点B (-2,1),∴向量OB →对应的复数为-2+i. 4.已知复数z 满足|z |2-2|z |-3=0,则复数z 对应点的轨迹是( ) A.1个圆 B.线段 C.2个点 D.2个圆答案 A解析 由题意可知(|z |-3)(|z |+1)=0, 即|z |=3或|z |=-1. ∵|z |≥0,∴|z |=3.∴复数z 对应的轨迹是1个圆.5.若θ∈⎝⎛⎭⎫3π4,5π4,则复数(cos θ+sin θ)+(sin θ-cos θ)i 在复平面内所对应的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限答案 B解析 ∵θ∈⎝⎛⎭⎫3π4,5π4,∴cos θ+sin θ<0,sin θ-cos θ>0.∴选B.6.设A 、B 为锐角三角形的两个内角,则复数z =(cos B -tan A )+tan B i 对应的点位于复平面的( )A.第一象限B.第二象限C.第三象限D.第四象限 答案 B解析 因A 、B 为锐角三角形的两个内角,所以A +B >π2,即A >π2-B ,sin A >cos B .cos B-tan A =cos B -sin Acos A <cos B -sin A <0,又tan B >0,所以点(cos B -tan A ,tan B )在第二象限,故选B. 二、填空题7.设z =log 2(m 2-3m -3)+i·log 2(m -3)(m ∈R ),若z 对应的点在直线x -2y +1=0上,则m 的值是 . 答案15解析 由题意知,复数z =x +y i(x ,y ∈R )的实部x 和虚部y 满足方程x -2y +1=0, 故log 2(m 2-3m -3)-2log 2(m -3)+1=0, 则log 2m 2-3m -3(m -3)2=-1,∴m 2-3m -3(m -3)2=12,∴m =±15.∵⎩⎪⎨⎪⎧m 2-3m -3>0,m -3>0, ∴m >3+212,∴m =15.8.若复数z =5cos α-4i(i 为虚数单位,-π<α<0)在复平面上的对应点在直线y =x -1上,则sin α= . 答案 -45解析 ∵复数z =5cos α-4i 在复平面上的对应点在直线y =x -1上,∴-4=5cos α-1, 即cos α=-35.又∵-π<α<0,∴sin α=-1-cos 2α=-1-⎝⎛⎭⎫-352=-45. 9.已知0<a <2,复数z 的实部为a ,虚部为1,则|z |的取值范围是 . 答案 (1,5)解析 由题意可知z =a +i.根据复数的模的定义,得|z |=a 2+1,而0<a <2,故1<|z |< 5. 10.复数z =log 123+ilog 3 12对应的点位于复平面内的第 象限.答案 三解析 log 123<0,log 3 12<0,∴z =log 123+ilog 3 12对应的点位于复平面内的第三象限.三、解答题11.设复数z =lg(m 2+2m -14)+(m 2-m -6)i ,求当实数m 为何值时: (1)z 为实数;(2)z 对应的点位于复平面的第二象限.解 (1)由题意得⎩⎪⎨⎪⎧m 2-m -6=0,m 2+2m -14>0,解得m =3(m =-2舍去). 故当m =3时,z 是实数.(2)由题意得⎩⎪⎨⎪⎧lg (m 2+2m -14)<0,m 2-m -6>0,即⎩⎪⎨⎪⎧0<m 2+2m -14<1,m 2-m -6>0. 即⎩⎪⎨⎪⎧m 2+2m -14>0,m 2+2m -15<0,m 2-m -6>0,得⎩⎪⎨⎪⎧m <-1-15或m >-1+15,-5<m <3,m <-2或m >3.解得-5<m <-1-15.故当-5<m <-1-15时,z 对应的点位于复平面内的第二象限. 12.已知z 1=-3+4i ,|z |=1,求|z -z 1|的最大值和最小值.解 如图,|z |=1表示复数z 对应的点在以(0,0)为圆心,1为半径的圆上,而z 1在坐标系中的对应点的坐标为(-3,4),∴|z -z 1|可看作是点(-3,4)到圆上的点的距离.由图可知,点(-3,4)到圆心(即原点)的距离为(-3)2+42=5,故|z -z 1|max =5+1=6,|z -z 1|min =5-1=4.13.设全集U =C ,A ={z |||z |-1|=1-|z |,z ∈C },B ={z ||z |<1,z ∈C },若z ∈A ∩(∁U B ),求复数z 在复平面内对应的点的轨迹. 解 ∵z ∈C ,|z |∈R ,∴1-|z |∈R . ∵||z |-1|=1-|z |,∴1-|z |≥0,即|z |≤1, ∴A ={z ||z |≤1,z ∈C }.又∵B ={z ||z |<1,z ∈C },∴∁U B ={z ||z |≥1,z ∈C }. ∵z ∈A ∩(∁U B ),∴z ∈A 且z ∈∁U B ,∴⎩⎪⎨⎪⎧|z |≤1,|z |≥1,∴|z |=1. 由复数的模的几何意义知,复数z 在复平面内对应的点的轨迹是以原点为圆心,1为半径的圆.。

3.1复数的概念(2)

3.1复数的概念(2)

【课题】 3.1复数的概念(二)【教学目标】知识目标:(1)理解复数的几何意义.(2)会求复数的模、辐角和辐角主值以及复数的三角形式.能力目标:通过复数的模、辐角和辐角主值以及复数的三角形式的学习,使学生的计算技能得到锻炼和提高.【教学重点】(1)复数的几何表示.(2)复数的三角形式、指数形式、极坐标形式.【教学难点】复数的代数形式转化为三角形式.【教学设计】在讲解复平面和复数的几何表示时,自然的建立了复数iz a b=+与直角坐标平面内的点Z(,a b)之间的一一对应关系,于是复数z=i+(,a b∈R)可以用直角坐标系平面中的a b点(,)Z a b表示.建立了直角坐标系用来表示复数的平面叫做复平面,在复平面内,x轴叫做实轴,y轴叫做虚轴,实轴上的点都表示实数,虚轴上除去原点以外的点都表示纯虚数.要特别强调虚轴不包括原点,虚轴的单位与实轴一样都是1.复平面与复数的点表示是复数的向量表示的基础.例4是理解复平面的实际操作训练题.例5是用向量表示复数的知识巩固性题目.包含了与坐标轴平行和不平行的情况.例6介绍了求复数i+(,a b∈R)的模与a b辐角θ的方法.将复数的代数形式化为三角形式,关键是求出复数的模和辐角.有了例6的铺垫,进行这种转化的例7,就比较容易完成了.要注意依照教材规范解题的步骤进行规范.将三角式化为代数式,只需按照分配律计算出结果.例8给出了具体的步骤,要引导学生独立完成.在计算中要帮助学生复习三角函数诱导公式.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】探索新知复数的三角形式4,表示复数i z a b =+的向量OZ的大小(模)与方向(与x 轴正方向所成的角)来确定.的模叫做复数i z a b =+的模(如图【教师教学后记】第3章复数及其应用(教案)。

3.1.2复数的几何意义

3.1.2复数的几何意义

5. 设 z 3 2i,z z 在复平面内对应 的点分别为A和B,O为坐标原点,则 AOB的面积为 .
课堂练习
5. 设 z 3 2i,z z 在复平面内对应 的点分别为A和B,O为坐标原点,则 AOB的面积为 .
6. 若复数z满足|z-3i|=5,求|z+2| 的最大值和最小值.
例2. 若复数 z1 1 2i , z 2 2 3i ,
z 3 3 2i , z4 2 i 在复平面内 对应的点分别为z1 , z 2 , z 3 , z4 , 试判 断这4个点是否在同一个圆上 ?并证 明你的结论.
例3 . 实数m分别取什么数值时,复数
z=(m2+5m+6)+(m2-2m-15)i是:
O
a
x
讲授新课 复数 z=a+bi 一一对应 平面向量 OZ
y
b Z:a+bi
O
a
x
实数绝对值的
复数绝对值的
几何意义 数 z=a+bi在复平面上 对应的点Z(a,b)到原点的 距离。
几何意义
实数a在数轴上 所对应的点 A 到原点 O的距离。
能否把实数绝对值概念 推广到复数范围呢?
讲授新课
复数集C和复平面内所有的点所组成 的集合是一一对应的,即 复数 z=a+bi
一一对应
复平面内的 点Z(a, b)
讲授新课
设复平面内的点Z表示复数z=a+bi, 连结OZ,显然向量 OZ 由点Z唯一确定; 反过来,点Z(相对于原点来说)也可以由 向量 OZ 唯一确定.因此,复数集C与复平 面内的向量所成的集合 y 也是一一对应的(实数0 Z:a+bi b 与零向量对应),即
O
a
x
讲授新课 每一个复数,有复平面内唯一的一个 点和它对应;反过来,复平面内的每一个 点,有唯一的复数和它对应.

19-20版 第3章 3.1 3.1.1 3.1.2 第2课时 复数的几何意义

19-20版 第3章 3.1 3.1.1 3.1.2 第2课时 复数的几何意义

第2课时复数的几何意义一、复数的几何意义及复数的模1.复平面(1)定义:建立了直角坐标系来表示复数的平面叫做复平面;(2)实轴:在复平面内,x轴叫做实轴,单位是1,实轴上的点都表示实数;(3)虚轴:在复平面内,y 轴叫做虚轴,单位是i ,除原点外,虚轴上的点都表示纯虚数;(4)原点:原点(0,0)表示实数0. 2.复数的几何意义(1)复数z =a +b i(a ,b ∈R )―――→一一对应复平面内的点Z (a ,b ). (2)复数z =a +b i(a ,b ∈R ) ―――→一一对应平面向量OZ→. 为方便起见,我们常把复数z =a +b i 说成点Z 或说成向量OZ →,并且规定,相等的向量表示同一个复数.3.复数的模向量OZ →的长度叫做复数z =a +b i 的模,记作|z |或|a +b i|,且|a +b i|=a 2+b 2. 二、共轭复数 1.定义如果两个复数的实部相等,而虚部互为相反数,则这两个复数叫做互为共轭复数.2.表示复数z 的共轭复数用z 表示,即当z =a +b i(a ,b ∈R )时,则z =a -b i.1.判断(正确的打“√”,错误的打“×”) (1)在复平面内,对应于实数的点都在实轴上. ( ) (2)复数的模一定是正实数.( )(3)复数z 1>z 2的充要条件是|z 1|>|z 2|. ( )[解析] (1)正确.根据实轴的定义,x 轴叫实轴,实轴上的点都表示实数,反过来,实数对应的点都在实轴上,如实轴上的点(2,0)表示实数2.(2)错误.复数的模一定是实数但不一定是正实数,如:0也是复数,它的模为0不是正实数.(3)错误.两个复数不一定能比较大小,但两个复数的模总能比较大小. [答案] (1)√ (2)× (3)×2.复数z =cos θ+isin θ(i 为虚数单位)其中θ∈⎝ ⎛⎭⎪⎫π,32π,则复数z 在复平面上所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] ∵θ∈⎝ ⎛⎭⎪⎫π,32π,∴cos θ<0且sin θ<0,∴该复数所对应的点位于复平面上第三象限. [答案] C3.若x -2+y i 和3x -i 互为共轭复数,则实数x 与y 的值分别是________,________.[解析] ∵x -2+y i 和3x -i 互为共轭复数, ∴⎩⎨⎧ x -2=3x ,y =1,解得⎩⎨⎧x =-1,y =1. [答案] -1 1对应的点满足下列条件时,求a的值(或取值范围).(1)在实轴上;(2)在第三象限;(3)在抛物线y2=4x上.[思路探究]解答本题可先确定复数z的实部、虚部,再根据要求列出关于a的方程(组)或不等式(组)求解.[解]复数z=(a2-1)+(2a-1)i的实部为a2-1,虚部为2a-1,在复平面内对应的点为(a2-1,2a-1).(1)若z对应的点在实轴上,则有2a -1=0,解得a =12.(2)若z 对应的点在第三象限,则有 ⎩⎨⎧a 2-1<0,2a -1<0,解得-1<a <12. (3)若z 对应的点在抛物线y 2=4x 上,则有(2a -1)2=4(a 2-1),即4a 2-4a +1=4a 2-4, 解得a =54.复数集与复平面内所有的点组成的集合之间存在着一一对应关系.每一个复数都对应着一个有序实数对,复数的实部、虚部分别对应点的横坐标、纵坐标,从而讨论复数对应点在复平面内的位置,关键是确定复数的实、虚部,由条件列出相应的方程(或不等式)组.1.在复平面内,若复数z =(m 2-m -2)+(m 2-3m +2)i 对应点:(1)在虚轴上;(2)在第二象限;(3)在直线y =x 上,分别求实数m 的值或取值范围.[解] 复数z =(m 2-m -2)+(m 2-3m +2)i 的实部为m 2-m -2,虚部为m 2-3m +2.(1)由题意得m 2-m -2=0, 解得m =2或m =-1. (2)由题意得⎩⎨⎧m 2-m -2<0,m 2-3m +2>0,∴⎩⎨⎧-1<m <2,m >2或m <1, ∴-1<m <1.(3)由已知得m 2-m -2=m 2-3m +2, ∴m =2.【例2】 已知平面直角坐标系中O 是原点,向量OA ,OB 对应的复数分别为2-3i ,-3+2i ,求向量BA→对应的复数.[思路探究] 复数→求向量OA →,OB →的坐标→ 计算向量BA→的坐标→确定对应的复数[解] 向量OA→,OB →对应的复数分别为2-3i ,-3+2i ,根据复数与复平面内的点一一对应,可得向量OA→=(2,-3),OB →=(-3,2).由向量减法的坐标运算可得向量BA →=OA →-OB →=(2+3,-3-2)=(5,-5),根据复数与复平面内的点一一对应,可得向量BA→对应的复数是5-5i.1.根据复数与平面向量的对应关系,可知当平面向量的起点为原点时,向量的终点对应的复数即为向量对应的复数.反之,复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.2.解决复数与平面向量一一对应的题目时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.2.在复平面内,O 是原点,向量OA→对应的复数为2+i.(1)如果点A 关于实轴的对称点为点B ,求向量OB→对应的复数;(2)如果(1)中的点B 关于虚轴的对称点为点C ,求点C 对应的复数. [解] (1)设向量OB →对应的复数为z 1=x 1+y 1i(x 1,y 1∈R ),则点B 的坐标为(x 1,y 1),由题意可知,点A 的坐标为(2,1).根据对称性可知:x 1=2,y 1=-1,故z 1=2-i. (2)设点C 对应的复数为z 2=x 2+y 2i(x 2,y 2∈R ),则点C 的坐标为(x 2,y 2),由对称性可知:x 2=-2,y 2=-1,故z 2=-2-i.1.若z ∈C ,则满足|z |=2的点Z 的集合是什么图形?[提示] 因为|z |=2,即|OZ →|=2,所以满足|z |=2的点Z 的集合是以原点为圆心,2为半径的圆,如图所示.2.若z ∈C ,则满足2<|z |<3的点Z 的集合是什么图形? [提示] 不等式2<|z |<3可化为不等式组⎩⎨⎧|z |>2,|z |<3,不等式|z |>2的解集是圆|z |=2外部所有的点组成的集合, 不等式|z |<3的解集是圆|z |=3内部所有的点组成的集合,这两个集合的交集就是上述不等式组的解集.因此,满足条件2<|z |<3的点Z 的集合是以原点为圆心、分别以2和3为半径的两个圆所夹的圆环,但不包括圆环的边界,如图所示.【例3】 已知复数z 1=-3+i ,z 2=-12-32i. (1)求|z 1|与|z 2|的值,并比较它们的大小;(2)设复平面内,复数z 满足|z 2|≤|z |≤|z 1|,复数z 对应的点Z 的集合是什么? [思路探究] (1)利用复数模的定义来求解.若z =a +b i(a ,b ∈R ),则|z |=a 2+b 2.(2)先确定|z |的范围,再确定点Z 满足的条件,从而确定点Z 的图形. [解] (1)|z 1|=(-3)2+12=2.|z 2|=⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫-322=1. ∵2>1,∴|z 1|>|z 2|.(2)由(1)知|z 2|≤|z |≤|z 1|,则1≤|z |≤2.因为不等式|z |≥1的解集是圆|z |=1上和该圆外部所有点的集合,不等式|z |≤2的解集是圆|z |=2上和该圆的内部所有点组成的集合,所以满足条件1≤|z |≤2的点Z 的集合是以原点O 为圆心,以1和2为半径的两圆所夹的圆环,且包括圆环的边界.1.两个复数不全为实数时不能比较大小;而任意两个复数的模均可比较大小.2.复数模的意义是表示复数对应的点到原点的距离,这可以类比实数的绝对值,也可以类比以原点为起点的向量的模来加深理解.3.|z 1-z 2|表示点Z 1,Z 2两点间的距离,|z |=r 表示以原点为圆心,以r 为半径的圆.3.如果复数z=1+a i满足条件|z|<2,那么实数a的取值范围是________.[解析] 由|z |<2知,z 在复平面内对应的点在以原点为圆心,以2为半径的圆内(不包括边界),由z =1+a i 知z 对应的点在直线x =1上,所以线段AB (除去端点)为动点Z 的集合,由图可知-3<a < 3.[答案] (-3, 3)1.在复平面内,若OZ →=(0,-5),则OZ →对应的复数为() A .0 B .-5C .-5iD .5[解析] OZ →对应的复数z =0-5i =-5i.[答案] C2.在复平面内,复数z =sin 2+icos 2对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限[解析] ∵π2<2<π,∴sin 2>0,cos 2<0.故z =sin 2+icos 2对应的点在第四象限.[答案] D3.已知复数z =2-3i ,则复数的模|z |是( )A .5B .8C .6 D.11[解析] |z |=(2)2+(-3)2=11.[答案] D4.若复数z 1=3+a i ,z 2=b +4i(a ,b ∈R ),且z 1与z 2互为共轭复数,则z =a +b i 的模为________.[解析] ∵z 1=3+a i ,z 2=b +4i 互为共轭复数,∴⎩⎨⎧ 3=b ,a =-4,∴z =-4+3i ,∴|z |=(-4)2+32=5.[答案] 55.已知复数z 满足z +|z |=2+8i ,求复数z .[解] 设z =a +b i(a ,b ∈R ),则|z |=a 2+b 2,代入方程得,a +b i +a 2+b 2=2+8i ,∴⎩⎨⎧ a +a 2+b 2=2,b =8,解得⎩⎨⎧a =-15,b =8. ∴z =-15+8i. 课时分层作业(九)(建议用时:40分钟)[基础达标练]一、选择题1.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i[解析] 由题意知A (6,5),B (-2,3),则AB 中点C (2,4)对应的复数为2+4i.[答案] C2.复数z =1+3i 的模等于( )A .2B .4C.10 D .2 2[解析] |z |=|1+3i|=12+32=10,故选C.[答案] C3.复数z 1=a +2i ,z 2=-2+i ,如果|z 1|<|z 2|,则实数a 的取值范围是( )A .(-1,1)B .(1,+∞)C .(0,+∞)D .(-∞,-1)∪(1,+∞)[解析] ∵|z 1|=a 2+4,|z 2|=5, ∴a 2+4<5,∴-1<a <1.[答案] A4.在复平面内,O 为原点,向量OA→对应的复数为-1+2i ,若点A 关于直线y =-x 的对称点为B ,则向量OB→对应的复数为( ) A .-2-iB .-2+iC .1+2iD .-1+2i[解析] 因为A (-1,2)关于直线y =-x 的对称点为B (-2,1),所以向量OB→对应的复数为-2+i.[答案] B5.已知复数z 对应的点在第二象限,它的模是3,实部为-5,则z 为( )A .-5+2iB .-5-2iC .-5+3iD .-5-3i[解析] 设z =-5+b i(b ∈R ),由|z |=(-5)2+b 2=3,解得b =±2,又复数z 对应的点在第二象限,则b =2, ∴z =-5+2i.[答案] A二、填空题6.在复平面内,复数z 与向量(-3,4)相对应,则|z |=________.[解析] 由题意知z =-3+4i ,∴|z |=(-3)2+42=5.[答案] 57.已知复数x 2-6x +5+(x -2)i 在复平面内对应的点在第三象限,则实数x 的取值范围是________.[解析] 由已知得⎩⎨⎧ x 2-6x +5<0,x -2<0,∴⎩⎨⎧ 1<x <5,x <2,∴1<x <2.[答案] (1,2)8.已知△ABC 中,AB→,AC →对应的复数分别为-1+2i ,-2-3i ,则BC →对应的复数为________.[解析] 因为AB→,AC →对应的复数分别为-1+2i ,-2-3i , 所以AB→=(-1,2),AC →=(-2,-3). 又BC→=AC →-AB →=(-2,-3)-(-1,2)=(-1,-5),所以BC →对应的复数为-1-5i.[答案] -1-5i三、解答题9.若复数z =x +3+(y -2)i(x ,y ∈R ),且|z |=2,则点(x ,y )的轨迹是什么图形?[解] ∵|z |=2, ∴(x +3)2+(y -2)2=2,即(x +3)2+(y -2)2=4.∴点(x ,y )的轨迹是以(-3,2)为圆心,2为半径的圆.10.实数m 取什么值时,复平面内表示复数z =(m -3)+(m 2-5m -14)i 的点:(1)位于第四象限;(2)位于第一、三象限;(3)位于直线y =x 上.[解] (1)由题意得⎩⎨⎧m -3>0,m 2-5m -14<0,得3<m <7,此时复数z 对应的点位于第四象限.(2)由题意得⎩⎨⎧ m -3>0,m 2-5m -14>0,或⎩⎨⎧m -3<0,m 2-5m -14<0,∴m >7或-2<m <3,此时复数z 对应的点位于第一、三象限.(3)要使复数z 对应的点在直线y =x 上,只需m 2-5m -14=m -3,∴m 2-6m -11=0,∴m =3±25,此时,复数z 对应的点位于直线y =x 上.[能力提升练]1.已知a ∈R ,且0<a <1,i 为虚数单位,则复数z =a +(a -1)i 的共轭复数z 在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 [解析] ∵0<a <1,∴1-a >0,故复数z =a +(a -1)i 的共轭复数z =a +(1-a )i 在复平面内所对应的点(a,1-a )位于第一象限.[答案] A2.已知实数a ,x ,y 满足a 2+2a +2xy +(a +x -y )i =0,则点(x ,y )的轨迹是( )A .直线B .圆心在原点的圆C .圆心不在原点的圆D .椭圆 [解析] 因为a ,x ,y ∈R ,所以a 2+2a +2xy ∈R ,a +x -y ∈R .又a 2+2a +2xy +(a +x -y )i =0,所以⎩⎨⎧a 2+2a +2xy =0,a +x -y =0,消去a 得(y -x )2+2(y -x )+2xy =0,即x 2+y 2-2x +2y =0,亦即(x -1)2+(y +1)2=2,该方程表示圆心为(1,-1),半径为2的圆.[答案] C3.若复数z 对应的点在直线y =2x 上,且|z |=5,则复数z =________.[解析] 依题意可设复数z =a +2a i(a ∈R ),由|z |=5,得a 2+4a 2=5,解得a =±1,故z =1+2i 或z =-1-2i.[答案] 1+2i 或-1-2i4.已知O 为坐标原点,OZ 1→对应的复数为-3+4i ,OZ 2→对应的复数为2a +i(a ∈R ).若OZ 1→与OZ 2→共线,求a 的值. [解] 因为OZ 1→对应的复数为-3+4i , OZ 2→对应的复数为2a +i , 所以OZ 1→=(-3,4),OZ 2→=(2a,1). 因为OZ 1→与OZ 2→共线,所以存在实数k 使OZ 2→=kOZ 1→, 即(2a,1)=k (-3,4)=(-3k,4k ),所以⎩⎨⎧ 2a =-3k ,1=4k ,所以⎩⎪⎨⎪⎧ k =14,a =-38,即a 的值为-38.。

数学复数形式变化规则-概述说明以及解释

数学复数形式变化规则-概述说明以及解释

数学复数形式变化规则-概述说明以及解释1.引言概述部分是文章的引言,用来介绍和概述整篇文章的内容。

在数学复数形式变化规则的文章中,引言部分应该对复数的基本概念和形式变化规则进行简要介绍,为读者提供一个全面的背景知识,并提出本文的目的和结构。

以下是对于文章1.1 概述的一个例子:引言数学中的复数是指由实数部分和虚数部分组成的数。

它们在数学和工程等领域中具有广泛的应用和重要性。

复数不仅可以表示平面上的点,还可以用于描述电路、信号处理、量子力学等领域中的实际问题。

本文旨在介绍复数的形式变化规则,重点探讨复数的极坐标形式和指数形式。

通过研究和总结复数的形式变化规律,我们可以更好地理解和应用复数,将其运用到其他领域中去。

文章结构如下:第2节中我们将介绍复数的定义和基本性质。

我们将解释什么是复数,复数和实数的关系,以及复数的加减乘除等基本运算规则。

通过这些基础知识的了解,读者将能够掌握复数的基本概念和性质。

第3节将详细介绍复数的极坐标形式。

我们将解释复数的模和幅角的概念,并详细讨论复数在极坐标形式下的运算法则。

复数的极坐标形式能够更方便地表示复数的乘法和除法,使得计算更加简化。

第4节将探究复数的指数形式。

我们将介绍复数的指数形式的定义,并研究复数在指数形式下的运算法则。

通过理解复数的指数形式,我们可以更加便捷地进行复数的乘除运算,以及复数的幂运算。

最后,我们将在结论部分对复数形式变化规则进行总结,并探讨复数形式变化规则在实际应用中的重要性和应用领域。

同时,我们也会提出一些探索和发展的方向,希望能够引起更多对复数形式变化规则的研究和应用的兴趣。

通过本文的阅读,读者将能够全面了解复数的形式变化规则,进一步掌握复数的性质和运算法则,并能够将复数在实际问题中应用得更加灵活和高效。

让我们深入探索数学复数的奥妙吧!1.2 文章结构文章结构部分的内容应该包括对整篇文章的组织和框架进行介绍,让读者对接下来的内容有一个整体的把握。

3.1.2复数的基础知识

3.1.2复数的基础知识
2
5
例题讲解
例.实数m取什么数值时,复数z=m +1+(m-1)i是:
(1)实数? (2)虚数?(3)纯虚数? 解:复数z=m+1+(m-1)i 中,因为m∈R,所以m+1,m-1 都是实数,它们分别是z的实部和虚部,
∴ (1)m=1时,z是实数; (2)m≠1时,z是虚数; (3)当 m 1 0 时,即m=-1时,z是纯虚数;
复数z=a+bi
(数)
z=a+bi
Z(a,b)
b
a
o
x
贺君敬
y轴------虚轴
7
实数绝对值的几何意义: 实数 a 在数轴上所对应的点 A 到原点O的距离。
复数的绝对值(复数的模)的 几何意义: 复数 z=a+bi在复平面上对应的 点Z(a,b)到原点的距离。
a
O A X | a | = | OA |
的平方根为i. 形如a+bi(a,b∈R)的数叫做复数.
全体复数所成的集合叫做复数集. 复数a+bi(a, b∈R)由两部分组成,实数a与b分别称为复数
a+bi的实部与虚部,1与i分别是实数单位和虚数单位, 当b=0时,a+bi就是实数,
当b≠0时,a+bi是虚数,其中a=0且b≠0时称为纯虚数。
m 1 0
练习.当m为何实数时,复数 Z m2 m 2 (m 2 1)i 是
(1)实数
(2)虚数
(3)纯虚数 (4)0
对上题中的虚数Z,若实部是虚部的两倍,求实数m的值。
贺君敬 6
我们都知道实数可以用数轴上的点来表示。实数与数轴上的 点形成了一一对应的关系。那么我们如何来找到表示复数的 几何模型? 有序实数对(a,b) 一一对应 直角坐标系中的点Z(a,b) (形) y 建立了平面直角坐标系来表示 复数的平面 ------复数平面 (简称复平面) x轴------实轴
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
荣成市第四中学高二数学组《选修 2-2》3.1 数系的扩充与复数的概念
高一数学学习任务导学案
【课题】数学选修 2-2 第三章 3.1.2 复数的概念 【学习目标】
1.掌握复数的相关概念及其分类; 2.掌握复数相等的充要条件 自主学习: (预习课本 83 页---85 页,找出疑惑之处) (一) .复习旧知 复习 1:实数系、数系的扩充脉络是: 用集合符号表示为: → → → ,
2
2,
0.618,
,3i ,
0,
i2
5 2i
(1 3)i
4i
2.下列数是否是复数,试找出它们各自的实部和虚部。 2 3i , 8 4i , 2 9i , i , 0 , 7i , 8 实部: 虚部: 对于复数 z a bi(a R, b R) 当 ,z 是实数;当 ,z 是虚数;当 ,z 是纯虚数.
(1) z 是实数; (2) z 是虚数;(3) z 是纯数;
【习题评价解疑】
请同学们做完题,认真学习助学微视频 ZY5 学习中还有不能解决,有疑惑的问题记录下来。
4
4
【检测评价】
(x y)i x 1,则实数 x,y 的值为( 1.如果
A. 1,-1 B. 0,-1 C. 1,0 ) D. 0,0
荣成市第四中学高二数学组《选修 2-2》3.1 数系的扩充与复数的概念
2.以 2i 5 的虚部为实部,以 5i 2 的实部为虚部的新复数是( A.2+2i B.2+i C.
.则说这两个复
(2) ( x y 1) ( x y 2)i 0
例 1:实数 x 取什么值时,复数 z ( x 2) ( x 3)i
是(1)实数?(2)虚数(3)纯虚数?
复习 2:判断下列方程在实数集中的解的个数 (1) x 2 3x 4 0 (2) x 2 4 x 5 0 (3) x 2 2 x 1 0 (4) x 2 1 0 (二)新课导学 任务一:复数的定义 问题:方程 x 2 1 0 的解是什么?

5 5i
D. 5 5i )
3.若复数(m2-3m-4)+(m2-5m-6) i 是虚数,则实数 m 满足 ( A. m≠-1 B. m≠6 C .m≠-1 或 m≠6 D. m≠-1 且 m≠6 4.下列命题中,假命题是( ) A.两个复数不可以比较大小 C. 两个虚数不可以比较大小
B.两个实数可以比较大小 D. 一虚数和一实数不可以较大小
任务二:复数的相等 若两个复数 a bi 与 c di 的实部与虚部分别 ,即: 数相等. a bi c di = ; a bi 0 注意:两复数 比较大小. 练习:求适合下列方程的 x, y (1) ( x 2 y) - i 6 x ( x y)i
, .
为了解决此问题,我们定义 i i 在这个数集中就有解为
i 2 1 ,把新数添进实数集中去,得到一个新的数集,那么此方程
.
练习:试问 x 取何值时,复数 (x 2 x 2) ( x 2 3x 2)i 是实数?是虚数?是纯虚数?
新知:形如 a bi 的数叫做 ____ ,通常记为 ______ ,其中 i 叫 __ 单位, a 叫 ______ , b 叫 _______, 数集 C a bi | a, b R叫做复数集.比如:3 4i是复数,实部是 3,虚部是 4 试试:1.判断哪些是实数?哪些是虚数?哪些是复数?
5.求适合下列方程的实数想 x,y 的值: (1) ( x 2 y) (2 x 3 y)i 3 3i (2) (3x y 3) ( x y 3)i
6.已知 m R , z
a 2 7a 6 (a 2 5a 6)i ,当 m 为何值时, 2 a 1
相关文档
最新文档