《相似三角形的性质》教案

合集下载

人教版数学九年级下册27.2.2《相似三角形的性质》教案

人教版数学九年级下册27.2.2《相似三角形的性质》教案

人教版数学九年级下册27.2.2《相似三角形的性质》教案一. 教材分析人教版数学九年级下册27.2.2《相似三角形的性质》是学生在学习了相似三角形的概念和性质之后的一个深化和拓展。

本节内容主要让学生掌握相似三角形的性质,并能够运用这些性质解决一些实际问题。

教材通过生动的例题和丰富的练习,帮助学生理解和掌握相似三角形的性质,培养学生的几何思维和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经学习了相似三角形的概念和性质,对相似三角形的知识有一定的了解。

但学生在运用相似三角形的性质解决实际问题时,往往会存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,帮助学生更好地理解和运用相似三角形的性质。

三. 教学目标1.理解相似三角形的性质,并能够运用这些性质解决一些实际问题。

2.培养学生的几何思维和解决问题的能力。

3.提高学生的数学兴趣,使学生能够自主学习,提高学习效果。

四. 教学重难点1.掌握相似三角形的性质。

2.能够运用相似三角形的性质解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考和探索,从而激发学生的学习兴趣。

通过案例教学,让学生直观地理解和掌握相似三角形的性质。

通过小组合作学习,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备多媒体教学设备,如投影仪、电脑等。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾相似三角形的概念和性质,为新课的学习做好铺垫。

2.呈现(15分钟)教师通过多媒体展示相似三角形的性质,让学生直观地理解和掌握。

同时,教师结合性质给出相应的例题,让学生进一步理解和运用。

3.操练(15分钟)教师给出一些练习题,让学生独立完成。

教师在过程中给予个别学生指导,确保学生能够正确地运用相似三角形的性质解决问题。

4.巩固(10分钟)教师学生进行小组讨论,让学生分享自己的解题心得,互相学习和交流。

(完整版)《相似三角形的性质》教案

(完整版)《相似三角形的性质》教案

《相似三角形的性质》教案课标要求了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方.教学目标知识与技能:1.了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方;2.能够运用相似三角形的性质定理解决相关问题.过程与方法:通过操作、观察、猜想、类比等活动,进一步提高学生的思维能力和推理论证能力.情感、态度与价值观:通过对性质的发现和论证,提高学习热情,增强探究意识.教学重点相似三角形性质定理的理解与运用.教学难点探究相似三角形面积的性质,并运用相似三角形的性质定理解决问题.教学流程一、情境引入三角形中有各种各样的几何量,如三条边的长度,三个内角的度数,高、中线、角平分线的长度,以及周长、面积等等.问题:如果两个三角形相似,那么它们的这些几何量之间有什么关系呢?引出课题:今天,我们就来研究相似三角形的这些几何量之间的关系.二、探究归纳回顾:从相似三角形的定义出发,能够得到相似三角形的什么性质?相似三角形的对应角相等,对应边成比例.问题:相似三角形的其他几何量可能具有哪些性质?探究:如图1,△ABC∽△A′B′C′,相似比为k,它们对应高、对应中线、对应角平分线的比各是多少.图1图2问题1:如图2,△ABC ∽△A ′B ′C ′,相似比为k ,分别作△ABC 和△A ′B ′C ′对应高AD 和A ′D ′.AD 和A ′D ′的比是多少?追问:对应高在哪两个三角形中,它们相似吗?如何证明?解:∵△ABC ∽△A ′B ′C ′∴∠B =∠B ′∵△ABD 和△A ′B ′D ′都是直角三角形∴△ABD ∽△A ′B ′D ′ ∴==''''AD AB k A D A B 问题2:它们的对应中线、角平分线的比是否也等于相似k ?结论:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比. 问题3:如果△ABC ∽△A ′B ′C ′,相似比为k ,对应线段的比呢?推广:相似三角形对应线段的比等于相似比.问题4:如果△ABC ∽△A ′B ′C ′,相似比为k ,它们的周长有什么关系?结论:相似三角形的周长比等于相似比.思考:相似三角形面积比与相似比有什么关系?如图,△ABC ∽△A ′B ′C ′,相似比为k ,分别作△ABC 和△A ′B ′C ′对应高AD 和A ′D ′.21212ABCA B C BC AD S BC AD k k k S B C A DB C A D ∆'''∆⋅==⋅=⋅=''''''''⋅ 结论:相似三角形面积比等于相似比的平方.三、应用提高例:如图,在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D .若△ABC 的边BC 上的高是6,面积为125,求△DEF 的边 EF 上的高和面积.解:在△ABC 和△DEF 中,∵AB =2DE ,AC =2DF ,1.2DE DF AB AC ∴== ∵∠A =∠D ,∴△DEF ∽△ABC ,△DEF 与△ABC 的相似比为1.2∵△ABC 的边 BC 上的高是6,面积为125,∴△DEF 的边 EF 上的高为163,2⨯= 面积为211253 5.2⨯=()应用:1.判断(1)一个三角形的各边长扩大为原来的5倍,这个三角形的角平分线也扩大为原来的5倍;( )(2)一个三角形的各边长扩大为原来的9倍,这个三角形的面积也扩大为原来的9倍.( )2.如图,△ABC 与△A ′B ′C ′相似,AD 、BE 是的△ABC 高,A ′D ′、B ′E ′是的△A ′B ′C ′高,求证.AD BE A D B E =''''3.在一张复印出来的纸上,一个三角形的一条边由原来的2cm 变成了6cm ,放缩比例是多少?这个三角形的面积发生了怎样的变化?四、体验收获说一说你的收获.相似三角形的性质:1.对应角相等,对应边成比例(对应边的比等于相似比)2.对应高线、对应中线、对应角平分线的比等于相似比3.对应周长比等于相似比4.对应面积比等于相似比的平方五、拓展提升1.两个相似三角形的周长之比是2:3,它们的面积之差是60cm2那么它们的面积之和是多少?2.如图,这是比例尺为1:1000的一块三角形草坪的图形,则草坪的实际面积是多少?3cm2cm3.如图,△ABC 的面积为100,周长为80,AB=20,点D 是AB 上一点,BD=12,过点D 作DE∥BC,交AC于点E.(1)求△ADE 的周长和面积;(2)过点E 作EF∥AB,EF 交BC 于点F,求△EFC 和四边形DBFE 的面积.六、课内检测1.用放大镜看一个三角形,一条边由原来的1cm变成5cm,那么看到的图案面积是原来的()A.5倍B.15倍C.25倍D.30倍2.两个等腰直角三角形的斜边比为1:2,则它们的周长比为()A.1:1 B.1:2 C.1:4 D.23.两个相似三角形最长边分别是20cm和16cm,它们的周长之和为90cm,则较大三角形的周长为()A.40cm B.50 cm C.60 cm D.70 cm4.两个相似三角的对应高分别为6cm和4cm,则这两个三角形的周长比为_____,面积比为_____.5.已知两个相似三角形面积之比为9:25,其中一个周长为36,则另一个的周长为_______.七、布置作业必做题:教材42页习题27.2第6题.选做题:教材43页习题27.2第12题.附:板书设计教学反思:。

相似三角形的性质教案

相似三角形的性质教案

相似三角形的性质教案相似三角形的性质教案一、教学目标:1. 理解相似三角形的概念;2. 掌握相似三角形的判定方法;3. 掌握相似三角形的性质;4. 运用相似三角形的知识解决实际问题。

二、教学重点和难点:1. 相似三角形的判定方法;2. 相似三角形的性质。

三、教学内容和教学过程:1. 引入新课教师用两个相似的三角形拼接成一个平行四边形的图形,让学生通过观察推测相似三角形的特点。

2. 概念解释教师向学生解释相似三角形的概念:如果两个三角形的对应角相等,并且对应边成比例,那么这两个三角形相似。

3. 判定方法让学生尝试找出判定相似三角形的方法,并与同桌分享。

教师引导学生总结出判定相似三角形的方法:考察两个三角形的对应角是否相等以及对应边是否成比例。

4. 性质解释让学生想象两个相似三角形的比例关系,观察和分析两个相似三角形之间的性质差异。

教师引导学生总结出相似三角形的性质:(1)对应角相等性质:相似三角形的三个对应角都相等。

(2)对应边成比例性质:相似三角形的三个对应边都成比例。

(3)相似三角形的比例性质:如果两个三角形相似,那么它们的相似比等于任意两个对应边的比。

5. 实际应用教师给出一些实际问题,让学生运用相似三角形的知识解决问题,如计算高塔的高度、测量不可直接测量的距离等。

四、课堂练习在黑板上列出一些相似三角形的题目,让学生在课堂上解答,并让他们互相交流讨论解题思路。

五、板书设计相似三角形定义:如果两个三角形的对应角相等,并且对应边成比例,那么这两个三角形相似。

性质:1. 对应角相等性质:相似三角形的三个对应角都相等。

2. 对应边成比例性质:相似三角形的三个对应边都成比例。

3. 相似三角形的比例性质:如果两个三角形相似,那么它们的相似比等于任意两个对应边的比。

六、教学反思通过本节课的教学,学生能够理解并掌握相似三角形的概念、判定方法和性质。

通过实际应用的练习,学生也能够灵活运用相似三角形的知识解决问题。

相似三角形的性质优秀教案

相似三角形的性质优秀教案

相似三角形的性质
【课时安排】
2课时
【第一课时】
【教学目标】
(一)知识目标:经历探索相似三角形中对应线段比值与相似比的关系的过程,理解相似三角形的性质。

利用相似三角形的性质解决一些实际问题。

(二)能力目标:培养学生的探索精神和合作意识;通过运用相似三角形的性质,增强学生的应用意识。

在探索过程中发展学生类比的数学思想及全面思考的思维品质。

(三)情感与价值观目标:在探索过程中发展学生积极的情感、态度、价值观,体现解决问题策略的多样。

【教学重难点】
1.相似三角形性质定理的探索及应用。

2.相似三角形的性质,有条理的表达与推理。

【教学过程】
(一)探究相似三角形对应高的比。

引入语:
在前面我们学习了相似三角形的定义和判定条件,知道相似三角形的对应角相等,对应边成比例。

那么,在两个相似三角形中是否只有对应角相等、对应边成比例这个性质呢?本节课我们将研究相似三角形的其他性质。

探究活动一:
在生活中,我们经常利用相似的知识解决建筑类问题。

如图,小王依据图纸上的△ABC,以1∶2的比例建造了模型房梁△A'B'C',CD和C'D'分别是它们的立柱。

第3题图
比是______。

5.如图,梯形DBCE中,DE//BC,若S△EOD∶S△BOC =1∶9,求DE∶BC的值。

相似三角形的性质数学教案

相似三角形的性质数学教案

相似三角形的性质数学教案
标题:相似三角形的性质
一、教学目标:
1. 理解并掌握相似三角形的定义。

2. 掌握相似三角形的基本性质,并能够应用这些性质解决实际问题。

3. 培养学生的空间观念和逻辑推理能力。

二、教学重点与难点:
1. 教学重点:理解相似三角形的定义和性质。

2. 教学难点:运用相似三角形的性质解决实际问题。

三、教学过程:
(一)引入新课
通过一些生活中的实例引出相似的概念,激发学生的学习兴趣。

(二)新课讲解
1. 定义:如果两个三角形的对应角相等,那么这两个三角形就叫做相似三角形。

2. 性质:相似三角形的对应边成比例,对应高的比等于对应边的比,对应中线的比等于对应边的比,对应角平分线的比也等于对应边的比。

(三)例题解析
1. 选择适当的题目进行示范,让学生理解和掌握如何运用相似三角形的性质解决问题。

2. 让学生自己尝试解答一些题目,教师在一旁指导。

(四)课堂练习
设计一些练习题,让学生巩固所学的知识。

(五)小结与作业
1. 小结本节课的主要内容和学习的重点。

2. 分配一些课后作业,让学生在课后继续复习和巩固所学知识。

四、教学反思
在教学结束后,对整个教学过程进行反思,总结成功之处和需要改进的地方。

相似三角形的性质教案

相似三角形的性质教案

相似三角形的性质教案一、教学目标:1.知识目标:了解相似三角形的概念和相似三角形的性质。

2.能力目标:能够判断给定的两个三角形是否相似,并应用相似三角形的性质解决实际问题。

3.情感目标:培养学生的逻辑思维能力和解决问题的能力,并培养学生对数学知识的兴趣。

二、教学重难点:1.教学重点:相似三角形的性质。

2.教学难点:判断相似三角形和应用相似三角形的性质解决问题。

三、教学过程:1.激发兴趣:通过一个关于相似三角形的有趣例题,引导学生思考分析相似三角形的性质。

例题:如图,已知ΔABC ∼ΔDEF,且 AB = 3cm,BC = 4cm,AC = 5cm,DE = 6cm,寻找 x,使得 DF = x cm,EF = 8cm。

(图略)让学生思考一下,如何求得x的值?2.呈现知识:引入相似三角形的概念和性质。

(1)引入相似三角形的概念:如果两个三角形的对应角相等,那么这两个三角形是相似的。

记作ΔABC∼ΔDEF。

(2)相似三角形的性质:相似三角形的对应边成比例。

即有如下比例关系:AB/DE=BC/EF=AC/DF。

3.教学拓展:通过几个例题,帮助学生理解和应用相似三角形的性质。

例题1:如图,已知ΔABC ∼ ΔDEF,且 AB = 6cm,BC = 8cm,AC= 10cm,DE = 9cm,求 DF。

(图略)解:根据相似三角形的性质,可得AB/DE=BC/EF=AC/DF。

代入已知条件,得6/9=8/EF=10/DF。

由此可得EF = (9×8)/6 = 12cm,DF = (10×9)/6 = 15cm。

例题2:如图,已知ΔABC ∼ ΔDEF,且 AB = 4cm,AC = 8cm,DE= 10cm,以 DF 为底边,求ΔDFG 的高 GH。

(图略)解:根据相似三角形的性质,可得AB/DE=AC/DF。

代入已知条件,得 4/10 = 8/DF,解得 DF = 20/4 = 5cm。

4.7.1《相似三角形的性质》教案

4.7.1《相似三角形的性质》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形的基本概念、判定方法及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对相似三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-应用相似三角形性质解决实际问题,如证明几何问题、计算长度等。
-重点举例:
a.证明两个三角形相似,并运用相似性质计算未知长度。
b.利用相似三角形性质解释生活中的实际问题,如建筑设计、摄影等。
2.教学难点
-理解相似三角形的性质及其证明过程Байду номын сангаас尤其是对应高的比相等和对应中线的比相等。
-掌握相似三角形的判定方法,能够正确区分和应用AA、SAS、SSS相似定理。
在学生小组讨论环节,我发现有些小组在分享成果时表达不够清晰,可能是因为他们在讨论过程中没有充分交流。为了提高讨论效果,我打算在下次教学中增加一些互动环节,引导学生更好地进行思想碰撞,提高他们的沟通能力和逻辑思维能力。
最后,我希望通过这次教学反思,能够让自己在今后的教学中更加得心应手,让学生的学习效果更上一层楼。

相似三角形的判定数学教学教案【优秀10篇】

相似三角形的判定数学教学教案【优秀10篇】

相似三角形的判定数学教学教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!相似三角形的判定数学教学教案【优秀10篇】数学是人们认识自然、认识社会的重要工具。

《相似三角形的性质》教案

《相似三角形的性质》教案

《相似三角形的性质》教案教学目标知识与技能:知道相似三角形的性质,能应用性质解决简单问题;过程与方法:经历相似三角形各条性质的简单推理过程,进一步深化对相似三角形的认识; 情感态度价值观:经历讨论与交流、猜想与验证,发展说理习惯与能力,在观察、操作、推理、归纳等探索过程中,发展合理推理能力,提高学习数学的兴趣和自信心.教学重难点重点:相似三角形的性质.难点:探究相似三角形的性质.教学过程一、复习引入1、师:什么叫相似三角形?相似比指的是什么?(找两个基础差一点的学生)2、师:全等三角形是相似三角形吗?全等三角形的相似比是多少啊?(此问题可以设为让学生抢答)3、师:相似三角形的判定方法有哪些?(此问题让多个同学补充回答)4、学生小组讨论:全等三角形除对应角、对应边相等外.其它元素如对应高、对应中线、对应角平分线、对应周长、对应面积也相等.学生和老师一起总结:类比全等三角形的定义已知相似三角形具有性质①对应角相等②对应边成比例.师:相似三角形还有其它的性质吗?本节我们就来探索相似三角形的其它性质.二、做一做根据图中标的数据,解答下列问题.师:(1)这两个三角形相似性相似吗?如果相似,相似比是多少?(让学生把证明相似的B C E 2 4方法说出来,找中等的同学)师:(1)求这两个三角形周长的比.(小组合作,找代表回答)师:(2)求这两个三角形面积的比.(小组合作,找代表回答)师:(3)求这两个三角形对应线段的比.(小组合作,找代表回答)三、一起探究看大屏幕,引出一般的相似三角形(1)相似三角形的周长比与相似比有什么关系?∵△ABC ∽△A ′B ′C ′,'''''''''''''''''''''''''''''''''A B C ABC AB BC CA k A B B C C A AB kA B BC kB C AC kA C AB BC CA A B B C C A kA B kB C kA C k A B B C A C C k C ∴===∴===++∴++++==++= 生集体回答:结论:相似三角形的周长比等于相似比.类似的,我们还可以得到:相似多边形的周长比等于相似比.(2)相似三角形的面积比与相似比有什么关系?解:作AD ⊥BC 于点D ,A ′D ′⊥B ′C ′于点D∵△ABC ∽△A ′B ′C ′''''AD BC k A D B C ∴==(相似三角形对应高的比等于相似比) 2'''1''''212A B C ABC B C A D S k k k S BC AD ∆∆⋅∴==⨯=⋅ 生:结论:相似三角形面积的比等于相似比的平方.类似的,我们还可以得到:相似多边形面积的比等于相似比的平方.师:我们还可以想到那些对应元素与相似比之间还有关系呢?(学生思考,有能力的同学主动站起来回答,老师给予一定的肯定和帮助.(3)如:△ABC ∽△A′B′C′,相似比AB :A′B′=k ,AD 、A′D′分别为BC 、B′C′边上的高.(1)对应高AD ,A′D′与相似比k 之间有什么关系?`D `(小组讨论,找基础好一点的同学详细的说明解答过程.不足之处再让其他的同学补充. 老师给出答案:你是这样想的吗?△ABD 和△A′B′D′都是直角三角形,而∠B =∠B′因为有两个角对应相等,所以这两个三角形相似.那么:师:由此可以得出结论:生:相似三角形对应高的比等于相似比.师:和全等三角形类似我们可以把对应高改成哪些对应元素?(小组讨论)生:变化一:如果把对应的高改为对应边上的中线?变化二:如果把对应的高改为对应角的角平分线?此处两个变花的证明过程都由学生来完成图中,△ABC 和△A′B′C′相似,AD 、A′D′分别为对应边上的中线,BE 、B′E′分别为对应角的角平分线,那么它们之间与相似比有什么关系呢?可以得到的结论是:相似三角形对应角平分线的比等于相似比,对应中线的比也等于相似比.即相似三角形对应线段的比等于相似比.四、练习课本73页练习.五、课堂小结师:这节课你有哪些收获?六、布置作业课本74页2、3、4题.。

相似三角形的性质教案(完美版)

相似三角形的性质教案(完美版)

在线分享文档地提升自我By :麦群超相似三角形的性质一、教学目标 知识与技能2. 能熟练运用三角形相似的性质进行量的计算.过程与方法对性质定理的探究经历观察——猜想——论证——归纳的过程,培养学生主动探究、合作交流的习惯和严谨治学的态度 情感态度与价值观在学习和探讨的过程中,体验特殊到一般的认知规律;通过对生活问题的解决,体会数学知识在实际中的广泛应用 二、重、难点重点:相似三角形性质定理的探索、理解及应用难点:相似三角形性质定理的探索、理解及应用 三、教学过程(一)、课前导学:学生自学课本内容,并完成下列问题 1.相似三角形的对应角______ ,对应边 . 2.相似三角形的判定方法有那些? 三边对应 的两个三角形相似.两边 且夹角 的两个三角形相似.对应 的两个三角形相似. 直角三角形相似的判定定理:两边和它们的夹角对应 的两个三角形相似.3.回顾交流:读图,思考回答如下问题(1)三角形中有哪几条主要线段?(2)全等三角形具有哪些性质?(3)全等三角形对应边上的高、中线、角平分线相等吗?请说明。

2.(1)如果△ABC ∽△A'B'C'的相似比为2,那么△ABC 与'''C B A △的周长比是多少? 面积比呢?1. 掌握相似三角形的相似比与对应高、中线、角平分线、周长,面积的比存在的等量关系,掌握相似三角形周长比、面积比与相似比之间的关系在线分享文档让每个人平等地提升自我:麦群超(2)如果△ABC ∽△A'B'C'的相似比为k ,那么△ABC 与的周长比是多少? 面积比呢?【结论】相似三角形的周长比等于 .相似三角形的面积比等于 . (二)、合作、交流、展示例1、已知:如图,△ABC∽△A′B′C′,相似比为k ,AD 与A′D′分别是△ABC 和△A′B′C′的高, 求证:【结论】:相似三角形对应高的比等于 。

【思考】:如果两个三角形是直角三角形,钝角三角形时结果还成立吗?试试看!2、证明:相似三角形对应中线的比、对应角平分线的比等于相似比【结论】:相似三角形对应中线、对应角平分线的比等于 。

相似三角形性质教案

相似三角形性质教案

相似三角形性质教案
一、教学目标:
1. 知识与技能目标:了解相似三角形的性质,并能够运用相似三角形的性质解决实际问题。

2. 过程与方法目标:通过引入问题和解决问题的方式进行课堂教学,并通过示范、练习、讨论等方式帮助学生理解和掌握相似三角形的性质。

二、教学重点与难点:
1. 知识重点:相似三角形的性质。

2. 知识难点:通过图像和文字说明相似三角形的性质。

三、教学过程:
1. 引入问题:讲师出示一个问题,比如:“如何判断两个三角形相似?”让学生思考并讨论答案。

2. 导入知识:通过讨论和引导,引出相似三角形的定义和判定条件。

3. 介绍相似三角形的性质:
a. 相似三角形的对应角相等。

b. 相似三角形的对应边成比例。

c. 相似三角形的对应边比例为常数。

4. 示范与练习:
a. 讲师示范解题,通过图像和文字说明如何应用相似三角形的性质解决问题。

b. 学生在教师指导下进行练习,巩固相似三角形的性质。

5. 拓展练习:讲师出示一些复杂的相似三角形问题,让学生通过运用相似三角形的性质解决问题。

6. 总结回顾:讲师和学生一起回顾相似三角形的性质,并总结运用相似三角形性质解决问题的方法。

四、教学用具:
1. PPT演示或黑板。

2. 课堂练习题。

3. 学生作业本。

五、评价和反馈:
1. 教师观察学生在课堂上的表现,并进行评价。

2. 布置相应的作业,检查学生对相似三角形性质的掌握情况。

数学教案-相似三角形的性质

数学教案-相似三角形的性质

数学教案-相似三角形的性质一、教学目标1.了解相似三角形的定义和性质;2.能够判断两个三角形是否相似;3.掌握相似三角形的常用性质;4.能够应用相似三角形的性质解决实际问题。

二、教学重点1.相似三角形的定义和判定方法;2.相似三角形的性质;3.相似三角形的实际应用。

三、教学内容1.相似三角形的定义和判定方法–定义:如果两个三角形的对应角相等,并且对应边成比例,那么这两个三角形是相似的。

–判定方法:AAA 判定法(对应角相等)、已知两个角对应相等和夹角相等、已知一个角对应相等和两边成比例。

2.相似三角形的性质–对应角的性质:•对应角相等;•对应角互补;•对应角的平分线相交于一点,并且两条平分线成比例。

–对应边的性质:•对应边成比例;•对应边互补;•对应边比例平方等于对应角的比例;•三角形的两边分别与另一三角形的一边成比例,则三角形相似。

–相似三角形的面积比:•两个相似三角形的面积比等于对应边的比例的平方。

3.相似三角形的实际应用–测量高大物体的高度;–高度不便测量时,利用相似三角形的性质计算;–相似三角形在建筑物等比例缩放中的应用;–地图上的测量和比例尺的计算问题。

四、教学步骤1.导入:引入相似三角形的概念和应用背景,激发学生的学习兴趣。

2.讲解相似三角形的定义和判定方法,包括AAA 判定法、已知两个角对应相等和夹角相等、已知一个角对应相等和两边成比例。

3.指导学生通过判断两个三角形的对应角和对应边是否成比例来确定它们是否相似。

4.讲解相似三角形的性质,包括对应角的性质、对应边的性质以及面积比的性质。

5.通过例题演练,巩固相似三角形的定义、判定和性质。

6.引导学生应用相似三角形的性质解决实际问题,如测量高大物体的高度、计算地图上的实际距离等。

7.教师总结本节课的内容,强调相似三角形的重要性和应用价值。

五、课堂练习1.判断以下两个三角形是否相似,如果相似,请说明判定方法和相似的理由。

∠A = ∠D, ∠B = ∠E, ∠C = ∠F,AB/DE = 3/4, BC/EF = 4/5, AC/DF = 5/62.两个相似三角形的面积比为4:9,如果其中一个三角形的面积是72平方单位,求另一个三角形的面积。

数学教案-相似三角形的性质 第2课时

数学教案-相似三角形的性质 第2课时

数学教案-相似三角形的性质第2课时一、教学目标1.理解并掌握相似三角形的判定定理。

2.能够运用相似三角形的性质解决实际问题。

3.培养学生的观察、分析、推理能力。

二、教学重点与难点1.教学重点:相似三角形的判定定理。

2.教学难点:运用相似三角形的性质解决实际问题。

三、教学过程1.导入新课师:同学们,上一课时我们学习了相似三角形的性质,那么如何判断两个三角形是否相似呢?这就是我们本节课要学习的内容。

2.探究新知(1)探究相似三角形的判定定理师:请同学们回顾一下,我们之前学过的全等三角形的判定定理有哪些?生:全等三角形的判定定理有SAS、ASA、AAS等。

师:那么,相似三角形的判定定理是否也和全等三角形的判定定理类似呢?请同学们尝试探究。

生1:我发现,如果两个三角形的两个角分别相等,那么这两个三角形相似。

生2:对,我补充一下,如果两个三角形的两组对应边的比例相等,那么这两个三角形也相似。

(2)讲解相似三角形的判定定理师:我们来看AA定理。

如果两个三角形有两个角分别相等,那么这两个三角形相似。

这里的两个角可以是两个角对应相等,也可以是两个角互补相等。

生:老师,互补相等是什么意思?师:互补相等是指两个角的和为180度。

比如,一个三角形的两个角分别是30度和60度,另一个三角形的两个角分别是60度和30度,这两个三角形的两个角互补相等。

师:我们来看SAS定理。

如果两个三角形的两组对应边的比例相等,并且它们的夹角相等,那么这两个三角形相似。

师:我们来看SSS定理。

如果两个三角形的三组对应边的比例相等,那么这两个三角形相似。

3.练习与巩固师:下面请同学们完成练习题,巩固所学知识。

(2)已知三角形ABC中,∠A=40°,∠B=60°,∠C=80°。

若三角形DEF中,∠D=40°,∠E=60°,∠F=80°,且AB=6,BC=8,AC=10,DE=4,EF=6,DF=8。

相似三角形的性质和判定教案

相似三角形的性质和判定教案

相似三角形的判定教案(一)教学目标:1.了解相似三角形的定义,能正确找出相似三角形的对应角和对应边2.理解相似三角形中相似比的意义.重 点:相似三角形的定义和判定定理1及其应用.难 点:准确找出相似三角形的对应过和对应角及判定定理1的应用.教学过程:(一)复习引入1.什么样的两个三角形叫全等三角形?全等三角形的对应边,对应角之间有什么关系?2.什么叫相似形?师生手中含30°角的两块不同尺寸的三角板是相似形吗?(二)探究新知做一做: (1)如图.观察含30°角的两块不同尺寸的三角板,说一说它们有什么特点?引导学生发现: 三个角对应相等,即<A=<A ’,<B=<B ’,<C=<C ’.三边对应成比例,即''''''C A ACC B BCB A AB==(2) 将任意一个△ABC 放大一倍得△A ’B ’C ’,两个三角形相似吗?它们的对应角和对应边各有什么关系?对应边的比是多少?A A ’ C ’学生总结以上两例得出相似三角形的本质特征:对应角相等,对应边成比例.相似三角形的概念:(1)相似三角形的定义:三个角对应相等,三条边对应成比例的两个三角形叫作相似三角形,(2)相似三角形的表示: △AB C∽△A’B’C’(对应顶点应对齐).(3)相似三角形的相似比:相似三角形对应边的比叫相似比(或相似系数), △AB C与△A’B’C’的相似比为k, △A’B’C’与△AB C的相1,两个三角形全等是相似的一种特例,此时k=1.似比为k(三)讲解例题例1 课本P.72,例1注意:会根据条件,找相似三角形的对应角和对应边.(四)应用新知课本P.73,练习第2题.(五)课堂小结说一说:本节课学慢了哪些内容,你能用今天学习的知识判断下列各题的正误吗?(1)所有等边三角形相似; (2)全等三角形一定是相似三角形.布置作业课本习题3.3中A组第1,2题.。

相似三角形的性质教案

相似三角形的性质教案

相似三角形的性质教案一、教学目标1.了解相似三角形的定义和性质;2.掌握相似三角形的判定方法;3.能够运用相似三角形的性质解决实际问题。

二、教学内容1. 相似三角形的定义相似三角形是指具有相同形状但大小不同的三角形。

两个相似三角形的对应角度相等,对应边长成比例。

2. 相似三角形的性质1.相似三角形的对应角度相等;2.相似三角形的对应边长成比例;3.相似三角形的周长成比例;4.相似三角形的面积成比例。

3. 相似三角形的判定方法1.AA判定法:如果两个三角形的两个角分别相等,则这两个三角形相似;2.SSS判定法:如果两个三角形的三条边分别成比例,则这两个三角形相似;3.SAS判定法:如果两个三角形的两条边分别成比例,且这两条边夹角相等,则这两个三角形相似。

4. 相似三角形的应用1.求解三角形的边长和角度;2.求解三角形的面积;3.求解三角形的周长;4.求解三角形的高度和中线等。

三、教学过程1. 相似三角形的定义和性质1.引入相似三角形的概念,让学生了解相似三角形的定义;2.通过图示,让学生了解相似三角形的性质,包括对应角度相等、对应边长成比例、周长成比例和面积成比例。

2. 相似三角形的判定方法1.AA判定法:通过图示,让学生了解AA判定法的原理和应用;2.SSS判定法:通过图示,让学生了解SSS判定法的原理和应用;3.SAS判定法:通过图示,让学生了解SAS判定法的原理和应用。

3. 相似三角形的应用1.求解三角形的边长和角度:通过例题,让学生掌握如何利用相似三角形的性质求解三角形的边长和角度;2.求解三角形的面积:通过例题,让学生掌握如何利用相似三角形的性质求解三角形的面积;3.求解三角形的周长:通过例题,让学生掌握如何利用相似三角形的性质求解三角形的周长;4.求解三角形的高度和中线等:通过例题,让学生掌握如何利用相似三角形的性质求解三角形的高度和中线等。

四、教学方法1.讲解法:通过讲解相似三角形的定义、性质、判定方法和应用,让学生掌握相关知识;2.举例法:通过例题,让学生了解如何运用相似三角形的性质解决实际问题;3.练习法:通过练习题,让学生巩固所学知识。

相似三角形的性质教案

相似三角形的性质教案

4.7 相似三角形的性质(一)一、教学目标:1.经历探索相似三角形性质的过程,进一步体验由特殊到一般的归纳思想和方法,积累数学活动经验.2.了解相似三角形的性质定理:相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比。

3.在相似三角形性质的学习过程中,进一步发展勇于探究与合作交流的精神。

二、教学重难点:1、重点:相似三角形的性质及证明2、难点:相似三角形性质的简单应用三、教学过程:一、创设情境,导入新课在生活中,我们经常利用相似的知识解决建筑类问题.如图,小王依据图纸上的△ABC,以1:2的比例建造了模型房梁△A′B′C′,CD和C′D′分别是它们的立柱。

小王在图纸上量出CD的长,就可知道模型房梁的立柱C′D′的长。

你能说出其中的道理吗?意图:以现实的生活问题导入,使学生体验数学来源于生活,又运用于生活,激发学生学习兴趣,从而引出本节课的学习内容。

二、探究:相似三角形的性质问题一:(1)如果CD=1.5cm ,那么模型房的房梁立柱有多高?为什么?(2)若△ABC ∽△A ′B ′C ′,相似比为k , (3)据此,你可以发现相似三角形怎样的性质?意图:通过对问题串的解答,引发学生思维层层递进,从相似三角形的最基本性质展开研究.使学生明确相似比与对应高的比的关系. 问题二:如图:已知△ABC ∽△A ′B ′C ′,相似比为k ,它们对应角平分线的比是多少?对应中线的比是多少?请证明你的结论。

意图:通过学生小组合作探究,类比前面探究过程,引发学生主动探究意识、培养合作交流能力,发展学生的类比的思维能力,与归纳总结能力.相似三角形性质定理:相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比。

问题三:(变式拓展)如图:已知△ABC ∽△A ′B ′C ′,相似比为k ;点D,E 在BC 边上,点D ′,E ′在B ′C ′边上。

(1)若∠BAD = ∠BAC ,∠B ′A ′D ′= ∠B ′A ′C ′, (2)若BE = BC , B ′E ′= B ′C ′, (3)你还能提出哪些问题?与同伴交流意图:有了前面探索的基础,学生完全有能力独立完成“变式问1313___________AD A D =''则1313___________AE A E =''则___________AD A D =''则题”的探索,在探索过程中,发展学生类比探究的能力与独立解决问题的能力,培养学生全面思考的思维品质.三、应用举例,巩固提高例1、(口答填空):已知:两个相似三角形一对对应中线长分别是2cm 和5cm ,那么它们的相似比是 ;对应高的比是 ;如果一对对应角平分线中,较短的为3cm ,则较长的为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《相似三角形的性质》教案
课标要求
了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方.
教学目标
知识与技能:1.了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方;2.能够运用相似三角形的性质定理解决相关问题.过程与方法:通过操作、观察、猜想、类比等活动,进一步提高学生的思维能力和推理论证能力.
情感、态度与价值观:通过对性质的发现和论证,提高学习热情,增强探究意识.
教学重点
相似三角形性质定理的理解与运用.
教学难点
探究相似三角形面积的性质,并运用相似三角形的性质定理解决问题.
教学流程
一、情境引入
三角形中有各种各样的几何量,如三条边的长度,三个内角的度数,高、中线、角平分线的长度,以及周长、面积等等.
问题:如果两个三角形相似,那么它们的这些几何量之间有什么关系呢?
引出课题:今天,我们就来研究相似三角形的这些几何量之间的关系.
二、探究归纳
回顾:从相似三角形的定义出发,能够得到相似三角形的什么性质?
相似三角形的对应角相等,对应边成比例.
问题:相似三角形的其他几何量可能具有哪些性质?
探究:如图1,△ABC∽△A′B′C′,相似比为k,它们对应高、对应中线、对应角平分线的比各是多少.
图1
图2
问题1:如图2,△ABC ∽△A ′B ′C ′,相似比为k ,分别作△ABC 和△A ′B ′C ′对应高AD 和A ′D ′.AD 和A ′D ′的比是多少?
追问:对应高在哪两个三角形中,它们相似吗?如何证明?
解:∵△ABC ∽△A ′B ′C ′
∴∠B =∠B ′
∵△ABD 和△A ′B ′D ′都是直角三角形
∴△ABD ∽△A ′B ′D ′ ∴==''''AD AB k A D A B 问题2:它们的对应中线、角平分线的比是否也等于相似k ?
结论:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比. 问题3:如果△ABC ∽△A ′B ′C ′,相似比为k ,对应线段的比呢?
推广:相似三角形对应线段的比等于相似比.
问题4:如果△ABC ∽△A ′B ′C ′,相似比为k ,它们的周长有什么关系?
结论:相似三角形的周长比等于相似比.
思考:相似三角形面积比与相似比有什么关系?
如图,△ABC ∽△A ′B ′C ′,相似比为k ,分别作△ABC 和△A ′B ′C ′对应高AD 和A ′D ′.
21212
ABC
A B C BC AD S BC AD k k k S B C A D
B C A D ∆'''∆⋅==⋅=⋅=''''''''⋅ 结论:相似三角形面积比等于相似比的平方.
三、应用提高
例:如图,在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D .若△ABC 的边
BC 上的高是6,面积为125,求△DEF 的边 EF 上的高和面积. 解:在△ABC 和△DEF 中,
∵AB =2DE ,AC =2DF ,
1.2
DE DF AB AC ∴== ∵∠A =∠D ,
∴△DEF ∽△ABC ,△DEF 与△ABC 的相似比为1.2
∵△ABC 的边 BC 上的高是6,面积为125,
∴△DEF 的边 EF 上的高为163,2
⨯= 面积为211253 5.2⨯=()
应用:
1.判断
(1)一个三角形的各边长扩大为原来的5倍,这个三角形的角平分线也扩大为原来的5倍;( )
(2)一个三角形的各边长扩大为原来的9倍,这个三角形的面积也扩大为原来的9倍.( )
2.如图,△ABC 与△A ′B ′C ′相似,AD 、BE 是的△ABC 高,A ′D ′、B ′E ′是的△A ′B ′C ′高,求证.AD BE A D B E =''''
3.在一张复印出来的纸上,一个三角形的一条边由原来的2cm 变成了6cm ,放缩比例
是多少?这个三角形的面积发生了怎样的变化?
四、体验收获
说一说你的收获.
相似三角形的性质:
1.对应角相等,对应边成比例(对应边的比等于相似比)
2.对应高线、对应中线、对应角平分线的比等于相似比
3.对应周长比等于相似比
4.对应面积比等于相似比的平方
五、拓展提升
1.两个相似三角形的周长之比是2:3,它们的面积之差是60cm2那么它们的面积之和是多少?
2.如图,这是比例尺为1:1000的一块三角形草坪的图形,则草坪的实际面积是多少?
3cm2cm
3.如图,△ABC 的面积为100,周长为80,AB=20,点D 是AB 上一点,BD=12,过点D 作DE∥BC,交AC于点E.(1)求△ADE 的周长和面积;(2)过点E 作EF∥AB,EF 交BC 于点F,求△EFC 和四边形DBFE 的面积.
六、课内检测
1.用放大镜看一个三角形,一条边由原来的1cm变成5cm,那么看到的图案面积是原来的()
A.5倍B.15倍C.25倍D.30倍
2.两个等腰直角三角形的斜边比为1:2,则它们的周长比为()
A.1:1 B.1:2 C.1:4 D.2
3.两个相似三角形最长边分别是20cm和16cm,它们的周长之和为90cm,则较大三角形的周长为()
A.40cm B.50 cm C.60 cm D.70 cm
4.两个相似三角的对应高分别为6cm和4cm,则这两个三角形的周长比为_____,面积比为_____.
5.已知两个相似三角形面积之比为9:25,其中一个周长为36,则另一个的周长为
_______.
七、布置作业
必做题:教材42页习题27.2第6题.
选做题:教材43页习题27.2第12题.
附:板书设计
教学反思:。

相关文档
最新文档