稳恒磁场-5

合集下载

大学物理稳恒磁场解读

大学物理稳恒磁场解读

2018/9/27
24

r the displacement from
I dl
I
Idl toward P.
dB
the contribution of Idl to the magnetic induction at point P.
r
P
B
the magnetic field of I at point P.
I
S
2018/9/27 5
I
Magnetic field lines surrounding a long and straight wires
2018/9/27
6
I
Magnetic field lines for a tightly wound solenoid of finite length carrying a steady current.

Gauss’ theorem
B dS 0

Ampere’s circulation theorem (Ampere’s Law) L B d l 0 Ii
i
11
2018/9/27

Affect of magnetic field force on currents
right hand rule
26
Superposition Principle of Magnetic Induction
B d B
L
B Bi
u Idl r B d B= 4 r

L

0
L
3
2018/9/27
27
DISCUSSION

稳恒磁场知识点复习

稳恒磁场知识点复习

解: RA mAvA 1 2 1 : 2 TA mA 1mB
(2)
例2: 如图所示,在均匀磁场中,半径为R的薄圆盘以角速
度绕中心轴转动,圆盘电荷面密度为。求它的磁矩、
所受的磁力矩以及磁矩的势能。
解:取半径为r的环状面元,圆盘转动时, 它相当于一个载流圆环,其电流:
计,电流I均匀分布,与铜片共面到近边距离为b 的一点 P的磁感应强度 B 的大小为________。
解:
dB 0dI 0 Idr 2r 2ar
dI I dr a
Ia dr
bB
rP
B dB 0I ab dr 0I ln a b
2a b r 2a b
(6)
例5: 如图, 一扇形薄片, 半径为R, 张角
5. 均匀磁场中载流线圈受到的力矩: 6. 均匀磁场中载流线圈的磁矩势能:
M
pm
B
Wm pm B
7. 带电粒子在磁场中的运动
回转半径: R mv qB
回转周期: T 2m
qB
例1: A、B为两个电量相同的带电粒子,它们的质量之比 mA:mB=1/4,都垂直于磁场方向射入一均匀磁场而作圆 周运动。A粒子的速率是B粒子速率的两倍。设RA,RB 分别为A粒子与B粒子的轨道半径;TA、TB分别为它们 各自的周期。则RA∶RB=? TA∶TB=?
F dF 0I1I2 dl 2d
例3:一弯曲的载流导线在同一平面内,形状如图(O点
是半径为R1和R2的两个半圆弧的共同圆心,电流自无穷 远来到无穷远去),则O点磁感应强度
的大小是______________。
解: B 0I 0I 0I 4R1 4R2 4R2
I
R1
O
R2

第五章 稳恒磁场典型例题

第五章  稳恒磁场典型例题

第五章 稳恒磁场设0x <的半空间充满磁导率为μ的均匀介质,0x >的半空间为真空,今有线电流沿z 轴方向流动,求磁感应强度和磁化电流分布。

解:如图所示令 110A I H e r = 220A IH e r= 由稳恒磁场的边界条件知,12t t H H = 12n n B B = 又 B μ= 且 n H H =所以 1122H H μμ= (1) 再根据安培环路定律H dl I ⋅=⎰得 12IH H rπ+= (2) 联立(1),(2)两式便解得,21120I I H r rμμμμπμμπ=⋅=⋅++012120I I H r rμμμμπμμπ=⋅=⋅++ 故, 01110IB H e r θμμμμμπ==⋅+ 02220IB H e rθμμμμμπ==⋅+ 212()M a n M M n M =⨯-=⨯ 220()B n H μ=⨯-00()0In e rθμμμμπ-=⋅⋅⨯=+ 222()M M M J M H H χχ=∇⨯=∇⨯=∇⨯0000(0,0,)zJ Ie z μμμμδμμμμ--=⋅=⋅++ 半径为a 的无限长圆柱导体上有恒定电流J 均匀分布于截面上,试解矢势A 的微分方程,设导体的磁导率为0μ,导体外的磁导率为μ。

?解: 由电流分布的对称性可知,导体内矢势1A 和导体外矢势2A 均只有z e 分量,而与φ,z 无关。

由2A ∇的柱坐标系中的表达式可知,只有一个分量,即 210A J μ∇=- 220A ∇= 此即101()A r J r r r μ∂∂=-∂∂21()0A r r r r∂∂=∂∂ 通解为 21121ln 4A Jr b r b μ=-++212ln A c r c =+ 当0r =时,1A 有限,有10b =由于无限长圆柱导体上有恒定电流J 均匀分布于截面上,设r a =时, 120A A ==,得202121ln 04Ja b c a c μ-+=+=)又r a =时,12011e A e A ρρμμ⨯∇⨯=⨯∇⨯,得 112c Ja a μ-=所以 2221220111,,224c Ja c Ja b Ja μμμ=-=-=所以, 22101()4A J r a μ=--221ln 2a A Ja rμ=写成矢量形式为 22101()4A J r a μ=--221ln 2a A Ja rμ=设无限长圆柱体内电流分布,0()z J a rJ r a =-≤求矢量磁位A 和磁感应B 。

稳恒磁场

稳恒磁场

r oR
R2
1
解:应用磁介质中的安培 环路定理求解 取图示半径为 的圆形 闭合回路,在圆周上 的大小分别为常 数, 方向沿圆周切线方向,则
r
R2
o
R1
rr
o
R1 1
R2
5. 描述稳恒磁场的两条基 本定律 (1)磁场的高斯定理
s
磁场是无源场(涡旋场) B d s 0
(2)安培环路定理 n
L i 1
L
I1
B d l I 0 i
I2
I3
用安培环路定理计算磁场的条件和方法 I i 正负的确定:规定回路环形方向,由 右手螺旋法则定出
2( R x ) I 0 圆形截流导线圆心处的磁场 B 2R
2
2 32
载流长直螺旋管轴线上的磁场 B 0 nI
无限长的载流圆柱体 内 B 0 Ir 2
2R

0 I B 2r
i 0 无限大的均匀带电的平板 B 2
4、运动电荷的磁场(注意电荷的正负)
0 qv r0 B 4 r 2
I
p
a
N
(3)半径为R的半圆形载流 线圈,通以电流I,在均匀磁场 B 中,若 以 oo 为轴,线圈受到的磁力矩为多少?
o
I
o
B
1 2 M m B,m IR n 2 M mB sin (

2
)
1 IR 2 B 2 方向:沿oo轴向上
I1
A
I2
dl dF
Idl
o B b x
a
x C
方向: AC
4、+q以速度 沿x轴运动,求使+q不偏 转需加多大的 E

第7章稳恒磁场

第7章稳恒磁场

o
L
P
x
结论 任意平面载流导线在均匀磁场 中所受的力,与其始点和终点相同的载流 直导线所受的磁场力相同.
42
二 物理学 均匀磁场对载流线圈的作用力矩
将平面载流线圈放入均匀磁场中,
da边受到安培力大小:
Fda
Il
2
B
sin(
2
)
bc边受到安培力大小:
Fbc
Il 2 B
sin(
2
)
o
Fda
d
a
I
l1
qvB m v2 R
m qBR v
70 72 73 74 76
质谱仪的示意图
锗的质谱
30
物理学
霍耳效应
31
物理学
B
霍耳电压 Fm
UH
RH
IB d
b
d
vd+
+ ++
+q
+
- - - - - I
UH
Fe
qEH qvd B I qnvd S qnvdbd
EH vd B U H vd Bb
× ×
××0
粒子做匀速圆周运动
物理学
(3)
0与B成角
// 0 cos
0 sin
R m m0 sin
qB
qB

0 //
B
B
T 2R 2m qB
螺距 h : h //T 0 cos T 2m0 cos
qB
h //
0
q R
物理学
例题1 :请根据磁感应强度的方向规定,给 出下列情况运动电荷的受力方向:
B
c
en

《稳恒磁场》PPT课件

《稳恒磁场》PPT课件

d B 0nd lSv q r
4 π r3
B
q+
r
v
又 dNndls
故运动电荷的磁场
B d dN B 4 π 0q v r 3r
B
q
r
v
7-4 安培环路定律
预习要点 1. 安培环路定律的内容及数学表达式是怎样的?注意
其中电流正、负号的规定. 2. 注意安培环路定律所描述的稳恒磁场的性质. 3. 领会用安培环路定律计算磁感应强度的方法.
23一磁场叠加原理一磁场叠加原理几个电流共同激发磁场任意电流是无数小电流首尾相接组成其上任一电流元在某场点产生的磁感应强度为任意载流导线在点p处的磁感强度电流元在空间一点p产生的磁感应强度
《稳恒磁场》PPT课件
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
一、安培环路定律
合路在径真的空积的分稳的恒值磁(场即中B ,的磁环感流应)强,度等于B沿0任乘一以闭该
闭合路径所包围的各电流的代数和.
n
安培环路定理 Bdl 0 Ii
i1
电流I正负的规定: I与L成右螺旋时, I为正;反
之为负.
在场的理论中,把环流不等于零的场称为涡旋 场,所以,稳恒磁场是涡旋场.
大小与 q,v无关
磁感应强度大小定义为:B Fmax qv
二、洛由伦实兹验电力荷量为q的电荷以速度v
在磁场中运动时受到的磁场力:
Fm
F m q v B
运动电荷在磁场中所受的力
q+
B

大学物理电子教案之稳恒磁场

大学物理电子教案之稳恒磁场

第7章稳恒磁场前面我们研究了相对于观察者静止的电荷所激发的电场的性质与作用规律。

从本章起我们看到,在运动电荷周围,不仅存在着电场而且还存在着磁场。

磁场和电场一样也是物质的一种形态。

1820年,丹麦的奥斯特发现了电流的磁效应,当电流通过导线时,引起导线近旁的小磁针偏转,开拓了电磁学研究的新纪元,打开了电应用的新领域。

1837年惠斯通、莫尔斯发明了电动机,1876年美国的贝尔发明了电话。

……迄今,无论科学技术、工程应用、人类生活都与电磁学有着密切关系。

电磁学给人们开辟了一条广阔的认识自然、征服自然的道路。

7.1磁场磁感强度Fe O)能吸引铁。

十一磁现象的发现要比电现象早得多。

早在公元前人们知道磁石(34世纪我国发明了指南针。

但是,直到十九世纪,发现了电流的磁场和磁场对电流的作用以后,人们才逐渐认识到磁现象和电现象的本质以及它们之间的联系,并扩大了磁现象的应用范围。

到二十世纪初,由于科学技术的进步和原子结构理论的建立和发展,人们进一步认识到磁现象起源于运动电荷,磁场也是物质的一种形式,磁力是运动电荷之间除静电力以外的相互作用力。

7.1.1 基本磁现象磁场无论是天然磁石或是人工磁铁都有吸引铁、钴、镍等物质的性质,这种性质叫做磁性。

条形磁铁及其它任何形状的磁铁都有两个磁性最强的区域,叫做磁极。

将一条形磁铁悬挂起来,其中指北的一极是北极(用N表示),指南的一极是南极(用S表示)。

实验指出,极性相同的磁极相互排斥,极性相反的磁极相互吸引。

在相当长的一段时间内,人们一直把磁现象和电现象看成彼此独立无关的两类现象。

直到1820年,奥斯特首先发现了电流的磁效应。

后来安培发现放在磁铁附近的载流导线或载流线圈,也要受到力的作用而发生运动。

进一步的实验还发现,磁铁与磁铁之间,电流与磁铁之间,以及电流与电流之间都有磁相互作用。

上述实验现象导致了人们对“磁性本源”的研究,使人们进一步认识到磁现象起源于电荷的运动,磁现象和电现象之间有着密切的联系。

第十一章稳恒磁场

第十一章稳恒磁场
于π)的正弦成正比,即: 结论
式的中 单K位为有比关例。系数,其值与介质的种dB类和选用
14
在国际单位制中, μ0称为真空磁导率,
K
0
0
4
/ 4P
10r7 Tθ
mId lA
I
1
故有:
dB的方向用右手螺旋法则确定:
右手弯曲的四指由Idl的方
向沿小于180°的θ角转向 r的方向,则伸直拇指的指 向就是dB 的方向。
5
一、磁感应强度
为了描述磁场中各点的磁场强弱和方向,引入磁 感应强度。用B表示,
定义
B Fm q0v
单位:特斯拉(T)。
比值B是一个与运动电荷的性质无关、仅与该点 磁场的性质有关的常量。
B为矢量,其方向用右手螺旋法则确定:
6
特斯拉
右手螺旋法则:
将右手拇指与其余四指垂直,先将四指的指向与 7 Fm方向相同,再使其向的v方向弯曲,这时拇指
大多数生物大分子是抗磁质,少数是顺磁质,极少呈铁磁质
43
三、超导体及其磁学特性
1、超导体 超导现象:当物质的温度下降到某一定值时, 该物质的电阻完全消失的现象称为超导现象。 超导性:物质失去电阻的性质叫超导性。 超导体:具有超导性的物质叫超导体。 超导体失去电阻的温度称为临界温度Tc, 可能成为超导体的物质是:①位于元素周期表 中部的金属元素(除一价金属、铁磁质、和抗 磁质)②许多化合物或合金。
磁感应线的特点:
I
I
通电螺线管的磁感应线
磁感应线是闭合的曲线,密集的地方磁场较
强,稀疏的地方磁场较弱。
9
1、磁通量
通过某曲面磁感应线的总数 称为通过该曲面的磁通量。
用Φ表示。
通过面积元dS的磁通量为:

基础物理学 第5章 稳恒磁场

基础物理学 第5章 稳恒磁场

n 是载流子浓度;e 是载流子电荷量。
5.1.2 稳恒电场 欧姆定律
1. 稳恒电场 导体的电荷分布不随时间变化所激发的电场。
2020年3月18日星期三
吉林大学 物理教学中心
2. 欧姆定律
通过一段导体的电流与导体两端电压成正比
I
U R
-1 )。
(1)电阻与材料长度l成正比、横截面积S成反比;
线等于穿出r磁感r 应线,即
Ñ S B dS 0 (5.18)
此式称为磁场高斯定理,说明
r
磁场是无源场。
B
2020年3月18日星期三
吉林大学 物理教学中心
例 5.1 在通有电流 I 的无限长直导线旁有一矩形回路,且两者共
面。试计算通过该回路所包围面积的磁通量。
解 取直电流处为坐标原点,
向右为x轴,在S面内任一 点的磁感应强度为
有相互作用。
基本磁现象 磁悬浮
2020年3月18日星期三
吉林大学 物理教学中心
5.2.2 磁 场
磁场是一种特殊形态的物质。 对外表现:
(1)磁场对引入磁场中的运动电荷或载流导体
有磁力的作用;
(2)载流导体在磁场中移动时,磁场的作用力
对载流导体做功,可见,磁场具有能量。
这表明了磁场的物质性。
对磁现象的解释:
2020年3月18日星期三
吉林大学 物理教学中心
对不同的磁介质,磁导率量值为:
顺磁质: m 0,r 1 抗铁磁 磁质质::mm、0r,值很r 大1,是Hr 的非单值函数 真空中:m 0,r 1, 0
5.5.3 铁磁质
铁磁质
具有以下主要性质:
1. 磁导率大 铁磁质具有很大的磁导率。
2. 磁饱和现象

大学物理D-06稳恒磁场

大学物理D-06稳恒磁场
34
大学物理
单位时间内通过横截面S的电量即为电流强度I:
I qnvS
j
电流元在P点产生的磁感应强度
S
0 qnvS d l sin dB 2 4 r
设电流元内共有dN个以速度v运动的带电粒子:
dl
d N nS d l
每个带电量为q的粒子以速度v通过电流元所在 位置时,在P点产生的磁感应强度大小为:
I
I
21
大学物理
在高技术领域,磁技术在扮演着重要的角色。磁悬浮 列车就是利用磁相互作用而悬浮的。其产生磁场的磁 体一般是永磁体或超导磁体或它们组合的复合磁体。
动画1:磁悬浮现象
动画2:磁悬浮现象
动画3:超导磁悬浮
22
大学物理 在生物磁学方面应用最成功的是核磁共振层析成像又称 核磁共振CT(CT是计算机化层析术的英文缩写)。这是利 用核磁共振的方法和计算机的处理技术等来得到人体、 生物体和物体内部一定剖面的一种原子核素,也即这种 核素的化学元素的浓度分布图像。左图为核磁共振成像 机 ,右图是脑瘤病人头部的CT成像和X射线成像
磁感应线——磁场的定性表示
规定:曲线上每一点的切线方向就是该点的磁感 强度 B 的方向,曲线的疏密程度表示该点的磁感强度 B 的大小.
磁感应线(Magnetic induction line)是法 拉第提出的,用于形象的表示磁场。
27
大学物理
28
大学物理
几种磁场的磁感应强度(T)
种类 脉冲星 超导材料制 成的磁铁 大型电磁铁 磁疗器 核磁共振仪
*
E _ Ri +
*
正极
负极
电源
15
电源的电动势 E和内阻 Ri
大学物理

稳恒磁场内容.

稳恒磁场内容.

Ⅱ 内容提要一.磁感强度B 的定义用试验线圈(P m )在磁场中受磁力矩定义:大小 B=M max /p m ,方向 试验线圈稳定平衡时p m 的方向.二.毕奥—沙伐尔定律1.电流元I d l 激发磁场的磁感强度d B =[μ0 /( 4π)]I d l ×r /r 3三.磁场的高斯定理1.磁感线(略);2.磁通量 Φm =S d ⋅⎰B S3.高斯定理 d 0⋅=⎰S B S 稳恒磁场是无源场.四.安培环路定理真空中0d i l I μ⋅=∑⎰ B l介质中 0d i l I ⋅=∑⎰ H l稳恒磁场是非保守场,是涡旋场或有旋场.五.磁矩 P m :1.定义 p m = I ⎰S d S3. 载流线圈在均匀磁场中受力矩M= p m ×B六.洛伦兹力1.表达式 F m = q v ×B (狭义)F = q (E +v ×B ) (广义)2.带电粒子在均匀磁场中运动:回旋半径R=mv sinα/(qB)回旋周期T=2πm /(qB)回旋频率ν= qB /(2πm)螺距d=2π mv cosα/(qB)七.安培力1. 表达式d F m= I d l ×B;八.介质的磁化3. 磁场强度矢量各向同性介质B=μ0μr H=μH九.几种特殊电流的磁场:1.长直电流激发磁场有限长B=μ0 I (cosθ1-cosθ2) / (4πr) 无限长B=μ0I / (2πr)方向都沿切向且与电流成右手螺旋;2.园电流在轴线上激发磁场B=μ0IR2/[2(x2+R2)3/2]中心B=μ0I/(2R )张角α的园弧电流中心的磁感强度B=[μ0I/(2R )]⋅[α/(2π)]方向都沿轴向且与电流成右手螺旋;3.无限长密饶载流螺线管激发的磁场管内B=μ0nI管外B=04.密绕载流螺饶环环内磁场B=μ0NI //(2πr)5.无限大均匀平面电流激发磁场B=μ0 j/26.无限长均匀圆柱面电流激发磁场:柱面内B=0,柱面外B=μ0I /(2πr)7.无限长均匀圆柱体电流激发磁场:柱内B=μ0Ir/(2πR2)柱外B=μ0I /(2πr)1.半径为R的薄圆盘均匀带电,总电量为Q . 令此盘绕通过盘心且垂直盘面的轴线作匀速转动,角速度为ω,求轴线上距盘心x处的磁感强度的大小和旋转圆盘的磁矩.在圆盘上取细圆环电荷元dQ=σ2πrdr,[σ=Q/(πR 2) ],等效电流元为dI=dQ/T=σ2πrdr/(2π/ω)=σωrdr(1)求磁场, 电流元在中心轴线上激发磁场的方向沿轴线,且与ω同向, 大小为dB=μ0dIr 2/[2(x 2+r 2)3/2]=μ0σωr 3dr/[2(x 2+r 2)3/2]()()()2223003/232222200d d 42R Rr r x r r B r x r x μσωμσω+==++⎰⎰ =()()()2222032220d 4R r x r x r x μσω+++⎰ =()()222032220d 4Rx r x r x μσω++⎰ =222022002R R x r x r x μσω⎛⎫ ⎪++ ⎪+⎝⎭=220222222Q R x x R R x μωπ⎛⎫+- ⎪+⎝⎭(2)求磁距. 电流元的磁矩dP m =dI S=σωrdr πr 2=πσωr 2dr30Rm P r dr πσω=⎰=π σ ωR 4/4=ω QR 2/41、无限长直圆柱体,半径为R ,沿轴向均匀流有电流. 设圆柱体内(r < R)的磁感强度感强度为B2,则有:(A 为B1,圆柱体外(r >R)的磁) B1、B2均与r 成正比.(B) B1、B2均与r 成反比.(C) B1与r 成正比, B2与r 成反比.(D) B1与r 成反比, B2与r 成正比.【C 】3. 在图12.1(a)和12.1(b)中各有一半径相同的圆形回路L1和L2,圆周内有电流I 2和I 2,其图12.1∙ ∙ ∙ P 1 I 1 I 2 L 1 (a ) I 3 L 2P 2 ∙ ∙ ∙ I 1 I 2 ∙(b )分布相同,且均在真空中,但在图12.1(b )中,L2回路外有电流I 3,P1、P2为两圆形回路上的对应点,则:(A) 1 d L ⋅⎰B l =2 d L ⋅⎰ B l , 12P P =B B . (B) 1 d L ⋅⎰B l ≠2 d L ⋅⎰ B l , 12P P =B B . (C) 1 d L ⋅⎰ B l =2 d L ⋅⎰ B l , 12P P ≠B B . (D) 1 d L ⋅⎰ B l ≠2d L ⋅⎰ B l , 12P P ≠B B . 【C 】.5. 如图12.3,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知(A) d 0 L ⋅=⎰ B l , 且环路上任意点B ≠0.(B) d 0 L ⋅=⎰ B l , 且环路上任意点B=0.(C) d 0 L ⋅≠⎰ B l , 且环路上任意点B ≠0.(D) d 0 L ⋅≠⎰ B l , 且环路上任意点B=0. I LO 图12.2【A 】6. 三条无限长直导线等距地并排安放, 导线Ⅰ、Ⅱ、Ⅲ分别载有1A 、2A 、3A 同方向的电流,由于磁相互作用的结果,导线单位长度上分别受力F1、F2和F3,如图13.2所示,则F1与F2的比值是:(A) 7/8. (B)5/8.(C) 7/18. (D)5/4.【A 】二、填空题1. 如图13.3所示, 在真空中有一半径为R 的3/4圆弧形的导线, 其中通以稳恒电流I, 导线置于均匀外磁场中,且B 与导线所在平面平行.则该载流导 O O B I cb R a 图13.3R Ⅲ Ⅱ Ⅰ F3 F 2 F 1 3A 2A 1A 图13.2线所受的大小为 BIR .2. 磁场中某点磁感强度的大小为2.0Wb/m 2,在该点一圆形试验线圈所受的磁力矩为最大磁力矩 6.28×10-6m ⋅N,如果通过的电流为10mA,则可知线圈的半径为 10-2m, 这时线圈平面法线方向与该处磁场方向的夹角为 π/2 m M P B =⨯ .3. 一半圆形闭合线圈, 半径R = 0.2m , 通过电流I =5A , 放在均匀磁场中. 磁场方向与线圈平面平行, 如图13.4所示. 磁感应强度B = 0.5T. 则线圈所受到磁力矩为 0.157N·m .三、计算题1. 如图13.5所示,半径为R 的半圆线圈 ACD 通有电流I 2, 置于电流为I 1的无限长直线 电流的磁场中, 直线电流I 1 恰过半圆的直径, 两导线相互绝缘. 求半圆线圈受到长直线电流 I 1的磁力. RI B 图13.4 C D I 1 I 2A 图13.5解:在圆环上取微元I2dl= I2Rdθ该处磁场为B=μ0I1/(2πRcosθ)I2dl与B垂直,有dF= I2dl B sin(π/2) dF=μ0I1I2dθ/(2πcosθ)dFx=dFcosθ=μ0I1I2dθ /(2π)dFy=dFsinθ=μ0I1I2sinθdθ /(2πcosθ) 201222x I I dFππμθπ-=⎰=μ0I1I2/2因对称Fy=0.故F=μ0I1I2/2 方向向右.。

大学物理D-05稳恒磁场、电磁感应定律-参考答案

大学物理D-05稳恒磁场、电磁感应定律-参考答案

0i ,选回路的绕行方向为顺时针方向, 2r
dr r
Bds
0 I ldr 2 r
当矩形线圈距离长直导线为 R 时,通过矩形线圈的磁通量为
d
Ra
R
0 I I Ra ldr 0 l ln R 2 r 2
d I
l
4
a
Ra d ln 1 dR 0 R 1 d lI n n 0 l I 则: n dt 2 2 dt R R a dt
2 B2 lv
0 Ilv 得 2 ( d a )
n( 1 2)
0 Ilvn 1 1 ( ) d d a 2
1
2
5
a点电势高于O点.∴ U a U b 2 1
1 16 15 3 BL2 BL2 BL2 BL2 50 50 50 10
如果金属细杆绕杆中央旋转,则ab两端电势差为0. 5.2.5 如图所示,一无限长直导线通有电流 I=5.0A,一矩形单匝线圈与此长直导线共面。设矩形线圈 以 v=2.0m/s 的速度垂直于长直导线向右运动。已知:l=0.40m, a=0.20m, d=0.20m,求矩形线圈中的感应电 动势。 (不计线圈的自感) 解:方法(一)如图,距离长直导线为 r 处的磁感应强度为: B 则通过窄条面积 ds 的磁通量为: d
B dS 0 说明了下面的哪些叙述是正确的?



A )
穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数; 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数; 一根磁感应线可以终止在闭合曲面内; 一根磁感应线可以完全处于闭合曲面内。
(A)ad; (B)ac; (C)cd; (D)ab。 5.2.3. 如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导 线固定不动,则载流三角形线圈将 (A) 向着长直导线平移; (B) 离开长直导线平移; (C) 转动; (D) 不动。

稳恒磁场

稳恒磁场
r1
r2
I 2 dl2
电流元1对电流元2的磁力为 0 I 2 dl2 ( I1dl1 r12 ) SI 制
I2
dF 12
载流回路1对载流元2的磁力为 dF12 0 I1dl1 r12 I1 dF 2 dF 12 I 2 dl2 r12 r2 r1 3 1 1 4 r12 S q 为 vdt 载流回路1对载流元2中电荷的磁力 0 nVq I1dl1 r12 v n I2 nvqS F q qv 3 dt nvqSv dt 1 4 r12 I 2 dl2 dl2 v dt V dl2 S dF 2 nVFq nvdtSFq
4
SI 中 B 之单位为特斯拉 (T) 3. 规定: 与 的方向使得 的方向一致
oq ⊕ p
B
y
x
v
此即微小磁针在磁场中处于平衡位置时N极所指的方向
二、磁场的描述——磁感应强度
总结: B
大小为:
F qv sin
典 型 B 值
方向为: 沿零力线,且 qv B 与 F 同向 人体心脏 具有矢量叠加性。 确定了磁场中各点的磁感应强度也就确定了磁场! 一般情况: 特殊情况: 稳恒磁场 各处磁感应强度相等的磁场 匀强磁场 磁感应线(磁力线) 磁感应强度空间分布的几何表示 充满磁场分布区域中有向曲线 每根有向曲线上任一点的切向之一沿同一点的磁感应强度 通过垂直于某处 的单位面积的磁力线数目正比于 若干典型磁场的磁力线 磁棒 载流圆环 载流线圈 载流直线 磁感应强度的名称问题
磁场的本质表现:对处于其中的永久磁铁、传导电流载体和
运动的荷电个体施以磁场力
为确定给定电流的磁场,首先研究磁场的本质表现—磁力。 1、Ampere定律 18201204,Ampere通过四个精心设计的实验得 到了两个载流闭合回路上电流元之间的磁力 O 电流元2: 2 dl2 I 电流元1:I1dl1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

v v Pm = I S
—— 轨道磁矩
轨道磁矩在量子力学中有精确的表达形式, 轨道磁矩在量子力学中有精确的表达形式,并且是对原子进 行研究, 行研究,我们这儿对分子讨论的正负电荷中心结构是个模糊的 概念。 概念。 事实上负电荷中心除了绕正电荷中心运动外还在做“自旋” 事实上负电荷中心除了绕正电荷中心运动外还在做“自旋” 运动,也有磁矩效应, 自旋磁矩。 运动,也有磁矩效应,—— 自旋磁矩。
5
所以分子结构的磁矩应该是所有磁矩矢量叠加, 所以分子结构的磁矩应该是所有磁矩矢量叠加,理论指出 顺磁性和抗磁性的根源就是磁矩最后叠加结果不同所致的。 顺磁性和抗磁性的根源就是磁矩最后叠加结果不同所致的。
等效正电荷中心
顺磁介质
抗磁介质
单个分子的“各种” 单个分子的“各种”磁矩叠加 的结果不是零,对外有磁矩; 的结果不是零,对外有磁矩; 电流系统等效为一个圆运动结 构 单个分子的“各种” 单个分子的“各种”磁矩叠加 的结果等于零,对外没有磁矩; 的结果等于零,对外没有磁矩 电流系统等效为两个结构相同 电流系统等效为两个结构相同 运动方向相反的圆运动结构
v 电介质放入外场 E0
v v v E = E0 + E'
v v E < E0
E=
E0
因为当介质放入外加磁场时要产生磁性, 因为当介质放入外加磁场时要产生磁性,所以 定义介质相对磁导率为
εr
E0 εr = E
介质的相对介电常数
µr = B B0
v v v B = B'+ B0
2
描写磁介质 磁性质的物 B ≠ B0 定义介质相对磁导率为 µr = B B0 理量, 理量,反映 了物质被磁 同样定义介质的磁导率 同样定义介质的磁导率 µ = µ0µr 化的程度及 µ0 真空磁导率 说明: 说明: 磁介质对磁 相对介电常数和磁导率是个比值没有量纲, 相对介电常数和磁导率是个比值没有量纲,但 场影响的程 是介质的介电常数和磁导率是有量刚的物理量。 度。 是介质的介电常数和磁导率是有量刚的物理量。 3. 磁介质的分类 根据被磁化后对原来场影响情况不同,将磁介质分为: 根据被磁化后对原来场影响情况不同,将磁介质分为: 弱磁性的物质 强磁性的物质 相对磁导非常率 接近于1的介质 接近于 的介质 相对磁导率远 大于1的介质 大于 的介质
v P m v P m
v B0
v fm
所以上边运动角速度增大,下边运动角速度减小; 所以上边运动角速度增大,下边运动角速度减小;上边运流电 流增大,下边运流电流减小;上边运动磁矩增大, 流增大,下边运流电流减小;上边运动磁矩增大,下边运动磁矩 减小,所以合成磁矩不再为零。 减小,所以合成磁矩不再为零。 对外显示为磁矩方向向下,所以产生的附加场与原场方向相 对外显示为磁矩方向向下, 反,所以
v P ≠0 m
等效负电荷中心
v P v m P =0 v m P m
但是,无论单个分子对外是否有磁矩,由于分子热运动,导 但是,无论单个分子对外是否有磁矩,由于分子热运动, 致分子排列杂乱无序,所以介质整体对外都没有磁矩, 致分子排列杂乱无序,所以介质整体对外都没有磁矩,所以没 有磁性。 有磁性。
因为当介质放入外加磁场时要产生磁性, 因为当介质放入外加磁场时要产生磁性,所以
3
抗磁质 弱磁性 相对磁导非常率 的物质 接近于 的介质 接近于1的介质
µr <1 减弱原场 B < B0
µr >1
2
水银、 如 锌、铜、水银、铅等 顺磁质 增强原场 B > B0
如 锰、铬、铂、氧等
( 强磁性 相对磁导率远 铁磁质 µr >> 110 ~ 10 )通常不是常数 的物质 大于 的介质 大于1的介质 具有显著的增强原磁场的性质 F C Ni
LHale Waihona Puke v v ∫ B⋅ dS = 0
真空中的磁场高斯定理和安培环路定理 说明磁场是无源有旋场, 说明磁场是无源有旋场,那么在磁介质 Ii内 中高斯定理和安培回路定理又如何呢? 中高斯定理和安培回路定理又如何呢?
1. 磁介质中的高斯定理
v v v 由于磁化而产生附加 B = B0 + B' 场是由束缚电流产生
13
(2) 磁介质中安培回路定理
v v ∫ H ⋅ dl = ∑I0
L
空间的磁场强度由传导电 流决定,与束缚电流无关; 流决定,与束缚电流无关;公 式中磁场强度由空间所有传导 式中磁场强度由空间所有传导 激发, 电流激发 电流激发,但是积分结果只与 回路包围的传导电流有关。 回路包围的传导电流有关。
1
§11.7
物质的磁性
一、磁介质及其分类
1. 磁介质 —— 在磁场中显示磁性并反过来影响磁场分布的物 在磁场中显示磁性并反过来影响磁场分布的物 任何实物都是磁介质 磁介质。 质,任何实物都是磁介质。 物质在磁场中在磁场作用下显示磁性的过程成为磁化。 物质在磁场中在磁场作用下显示磁性的过程成为磁化。 2. 磁导率 —— 描写磁介质磁性质的物理量,它反映了物质被 描写磁介质磁性质的物理量, 磁化的程度及磁介质对磁场影响的程度。 磁化的程度及磁介质对磁场影响的程度。
4
e
o
二、顺磁和抗磁的微观解释-分子电流结构 顺磁和抗磁的微观解释-
1. 分子电流结构模型 在电介质中我们已经建立了分子的电结构模型即正电荷中心 和负电荷中心的组合。事实上负电荷中心是绕正电荷中心 负电荷中心是绕正电荷中心“ 和负电荷中心的组合。事实上负电荷中心是绕正电荷中心“运 这种运动等效成有磁效应的圆电流, 分子电流。 动”,这种运动等效成有磁效应的圆电流,—— 分子电流。 4
前面,我们建立了磁场的概念, 前面,我们建立了磁场的概念,从力的角度引述磁场大小 和方向的物理量磁感应强度, 和方向的物理量磁感应强度,之后就是利用叠加原理和理想模 型电流元磁感应强度分布规律来求解磁感应强度分布; 型电流元磁感应强度分布规律来求解磁感应强度分布; 在此过程中我们学习了磁感应强度的高斯定理和安培回路 定理,得出静磁场是无源有旋场, 定理,得出静磁场是无源有旋场,并且利用回路定理来求解特 殊情况磁感应强度分布和磁通量求解; 殊情况磁感应强度分布和磁通量求解; 关于第一块的学习中大家除了掌握作业中需要的知识和方 法还要有意识的注意我们讲课时推证或者例题中说过的理解和 思维方式。 思维方式。 第二块就是磁场对电流及运动电荷的作用: 第二块就是磁场对电流及运动电荷的作用:主要应该掌握 力如何求、功如何求; 力如何求、功如何求;在非均匀场部分尽管考试和作业涉及很 少但是我们讲的比较多, 少但是我们讲的比较多,主要是为了帮助大家学会利用简单结 果来理解复杂结果。 果来理解复杂结果。 下面学习磁场与物质的作用
整体对外不显磁性 v 时负电荷中心圆周运动的向心力由库仑力提供。 B0 = 0 时负电荷中心圆周运动的向心力由库仑力提供。
v 时负电荷中心圆周运动向心力 B0 ≠ 0 由库仑力和洛仑兹力合力提供
减小
增大
v fm
v P m v P m
假设外加磁场方向如图, 假设外加磁场方向如图,分析洛仑兹力方向 对于上边运动 对于下边运动
L
我们知道由于介质磁化会在介质 表面处产生束缚电流 束缚电流, 表面处产生束缚电流,磁场由传导 电流和束缚电流共同激发 电流是等价的,但是不易求出 电流是等价的,

L
v v B⋅ dl = µ0 ∑(I传导内 + I束缚内 ) 是存在的对于激发磁场与传导
v v B0 = 0 P = 0 m
v B0
v P v m v B 0 P m
增大 减小
v v P ≠ 0 B0 ≠ 0 m
12
为了避免求解束缚电流, 为了避免求解束缚电流,所以在磁介质存在时我们引入另一 磁场强度。( 。(我们在静电场中为 个描写磁场的辅助物理量 —— 磁场强度。(我们在静电场中为 了避免求解极化电荷而引入辅助量电位移矢量) 了避免求解极化电荷而引入辅助量电位移矢量) (1) 磁场强度
6
单个分子的“各种” 2. 顺磁、抗磁效应 单个分子的“各种”磁矩叠加 顺磁、 v 的结果不是零,对外有磁矩; 的结果不是零,对外有磁矩; (1) 顺磁效应 P ≠0 m 电流系统等效为一个圆运动结 构 由于分子热运动,导致分子排列杂乱无序, 由于分子热运动,导致分子排列杂乱无序,所以介质整体对 外都没有磁矩,所以不显磁性。 外都没有磁矩,所以不显磁性。
v 时负电荷中心圆周运动的向心力由库仑力提供。 B0 = 0 时负电荷中心圆周运动的向心力由库仑力提供。 减小 v 时负电荷中心圆周运动向心力 v 增大 B0 ≠ 0 由库仑力和洛仑兹力合力提供
fm
假设外加磁场方向如图, 假设外加磁场方向如图,分析洛仑兹力方向 对于上边运动 对于下边运动
v v v fn = fe + fm = mω2R fn增大 v v v = mω2R fn减小 fn = fe + fm
磁介质存在时,磁力线仍是一系列无头无尾的闭合曲线, 磁介质存在时,磁力线仍是一系列无头无尾的闭合曲线,所以
v v v v v v ∫ B⋅ dS = ∫ B0 ⋅ dS + ∫ B'⋅dS = 0
S
S
S
v v (含磁介质的 ∫ B⋅ dS = 0 磁高斯定理)
S
11
2. 磁介质中的安培回路定理
v v ∫ B⋅ dl =µ0 ∑Ii内
v v v = mω2R fn增大 fn = fe + fm v v v = mω2R fn减小 fn = fe + fm
v B0
v fm
所以上边运动角速度增大,下边运动角速度减小; 所以上边运动角速度增大,下边运动角速度减小;上边运流电 流增大,下边运流电流减小;上边运动磁矩增大, 流增大,下边运流电流减小;上边运动磁矩增大,下边运动磁矩 8 减小,所以合成磁矩不再为零而向下。 减小,所以合成磁矩不再为零而向下。
相关文档
最新文档