2013年中考数学模拟题(五)
2013年中考数学模拟题(含答案)
2013年中考数学模拟题一、选择题(每小题3分,共15分)1.下列运算正确的是 ( )A. x 2·x 3=x 6B. –2x -2=- 14x 2 C.(-x 2)3=x 5 D.-x 2-2x 2=-3x 2 2.在平面直角坐标系中,点P (-1,-1)关于x 轴的对称点在( ) A.第一象限 B. 第二象限C.第三象限D. 第四象限3.某班5位同学的身高(单位:厘米)分别155,160,160,161,169,这组数据中,下列说法错误的是 ( )A.众数是160B.中位数是160C.平均数是161D.方差是24.如图,PA 切⊙O 于A ,∠P=30°,OP =2,则⊙O 的半径的是 ( )A.21B.1C. 2D.45.已知圆锥的母线长为5cm ,底面半径为3cm ,则此圆锥的侧面积为 ( )A. 12πcm 2B. 15πcm 2C. 20πcm 2D. 30πcm 2二、填空题(每小题4分,共20分)6.已知代数式2x 2-x+1的值等于2,则代数式 4x 2-2x+5的值为___________.7.若反比例函数y=- x8的图象经过点(m ,-2m ),则m 的值为___________.8、十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率是________.9.如图,CD⊥AB,BE⊥AC,请你再添加一个条件:________使ΔABE≌ΔACD。
10.如图,在 RtΔABC中,∠C=90°,AB=4cm,AC=23cm,以B为圆心,以BC为半径作弧交AB于D,则阴影部分的面积是 _____cm2。
三、解答题(每小题6分,共30分)11.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x 的值,其中x=2007”。
甲同学把“x=2007”错抄成“x=2070”,但他的计算结果也是正确的,你说这是怎么回事?12. ,并把解集在数轴上表示出来。
2013年浙江中考数学第一轮复习课件 专题突破强化训练专题五三角形
A. 1∶ 2 B. 2∶ 3 C. 1∶ 3 D. 1∶4
DE 解析:∵ AD、BE 是△ABC 的两条中线,∴DE 是△ABC 的中位线.∴DE∥AB , = AB 1 .∴△EDC∽△ABC,∴S△EDC∶S△ABC=1∶4. 2
答案:D
2 3.如图,在▱ABCD 中,E 为 AD 的三等分点,AE= AD,连结 BE,交 AC 于点 F,AC 3 =12,则 AF 为( )
25 π, S2=2π, 8
1 1 1 1 AB2 2 2 2 解析:如图,在 Rt △ABC 中,AB =AC +BC ,∴ π·AB = π·AC + π·BC ,∴ π· = 8 8 8 2 4 1 AC2 1 BC2 25 9 π· + π· ,即 S1=S 2+S3.∴S 3= S1- S2= π-2π= π. 2 4 2 4 8 8
(2) △ABE≌△ CAD → ∠ ABE=∠CAD → ∠BFD=∠BAC=60°
【解析】(1)证明:∵△ABC 是等边三角形, ∴∠BAC=∠C= 60° ,AB=AC.在△ABE 和△CAD 中, ∵AB=AC,∠BAE=∠C,AE=CD . ∴△ABE≌△CAD. (2)∵△ABE≌△CAD, ∴∠ABE=∠CAD. ∵∠BFD=∠ABE+∠BAD, ∴∠BFD=∠CAD+∠BAD=∠BAC=60° .
12.如图所示,直线 a 经过正方形 ABCD 的顶点 A,分别过正方形的顶点 B、D 作 BF ⊥a 于点 F,DE⊥a 于点 E,若 DE=8,BF= 5,则 EF 的长为________.
解析:可证△ABF≌△DAE,可得 AF=DE=8,AE=BF=5.∴EF=8+5=13.
答案:13
13 . 如图 ,已 知 AC = BD ,要 使△ ABC ≌ △ DCB , 则只 需添 加 一个 适当 的 条件是 ________.(填一个即可 )
2013年佛山中考数学试卷
2013年佛山市高中阶段招生考试模拟试题数学科试卷 (二)第Ⅰ卷(选择题 共30 分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.答案选项填涂在答题卡上) 1、5的相反数是( )A 、 5B 、5-C 、51D 、51- 2、下列运算中正确的是 ( )A 、532a a a =+ B 、842a a a =⋅ C 、632)(a a = D 、326a a a =÷ 33、一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“毒”字相对的字是( )A .卫B .防C .讲D .生4、.下列图形中,不是..轴对称图形的是( )A.B.C. D5、去年参加我市初中毕业生学业考试的考生总数为45730人,这个数据用科学记数法表示为( )A .0.4573×105B .4.573×104C .-4.573×104D .45.73×1046、在半径为3的圆中,弦AB=3,则 A B 的长度为( ) A 、π91B 、π32 C 、π D 、π317、 如图,在菱形ABCD 中,对角线AC=4,∠BAD=120°,则菱形ABCD 的周长为( )A .15B .16C .18D .20 8、下列事件是必然事件的是( ) A .明天一定会下雨B .打开电视机,任选一个频道,屏幕上正在播放篮球比赛节目C .某种彩票的中奖率为1%,买100张彩票一定中奖D .13名学生中一定有两个人在同一个月过生日 9、题数轴上点P 表示的数可能是( )(第3题图)讲 卫 生防 病 毒B. C. 3.2- D.10、如图,在ΔABC 中,D 、E 分别为AB 、AC 的中点, 连接DE ,ADE S ∆=1,则ABC S ∆=( ) A 、2 B 、3 C 、4 D 、6第Ⅱ卷(非选择题 共90二、填空题(本大题共5小题,每小题3分,共15分.把答案填在答题卡中). 11、若单项式m y x 22与331y x n -是同类项,则n m +的值是 。
2013年中考数学模拟试卷(五)及答案201380
2013年中考数学模拟试卷(五)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分)1. 1||3-的相反数是【 】A .13B .-13C .3D .-32. 地球上水的总储量为1.39×1018 m 3,但目前能被人们利用的水只占总储量的0.77%,即约为0.010 7×1018 m 3,因此我们要节约用水.能被人们利用的水可用科学记数法表示为【 】 A .1.07×1016 m 3B .0.107×1017 m 3C .10.7×1015 m 3D .1.07×1017 m 33. 下列说法正确的是【 】A .要了解全市居民对环境的保护意识,应采用全面调查的方式B .若甲组数据的方差2S 甲=0.1,乙组数据的方差2S 乙=0.2,则甲组数据比乙组稳定C .随机抛一枚硬币,落地后正面一定朝上D .若某彩票中奖概率为1%,则购买100张彩票就一定会中奖一次 4. 下列四个几何体中,主视图与左视图相同的几何体有【 】④球③圆锥②圆柱①正方体A .1个B .2个C .3个D .4个 5. 若直线y =-2x -4与直线y =4x +b 的交点在第三象限,则b 的取值范围是【 】A .-4<b <8B .-4<b <0C .b <-4或b >8D .-4≤b ≤86. 如图,若点M 是x 轴正半轴上的任意一点,过点M 作PQ ∥y 轴,分别交函数1k y x =(x >0)和2ky x=(x >0)的图象于点P 和点Q ,连接OP ,OQ ,则下列结论正确的是【 】 A .∠POQ 不可能等于90° B .12PM k QM k = C .这两个函数的图象一定关于x 轴对称 D .△POQ 的面积是1212k k (||+||)yxOM QP7. 如图,P A ,PB 是⊙O 的切线,A ,B 是切点,点C 是劣弧AB 上的一个动点,若∠P =40°,则∠ACB 的度数是【 】 A .80°B .110°C .120°D .140°C POAByxA'B'C'A BCO第7题图 第8题图8. 如图,菱形OABC 的一边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至OA'B'C'的位置,若OB =23,∠C =120°,则点B′的坐标为【 】 A .(3,3)B . (3,3)-C .(6,6)D .(6,6)-二、填空题(每小题3分,共21分)9. 使13a -有意义的实数a 的取值范围是_________.10. 如图,直线BD ∥EF ,AE 与BD 交于点C ,若∠ABC =30°,∠BAC =75°,则∠CEF 的大小为___________.F EDC BABDAN MC第10题图 第12题图11. 小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x ,乙立方体朝上一面上的数字为y ,这样就确定点P 的一个坐标(x ,y ),那么点P 落在双曲线6y x=上的概率为___________. 12. 如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =23,则四边形MABN 的面积是_______________.13. 若x 1,x 2(x 1<x 2)是方程(x -a )(x -b )+2=0(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为___________.14. 如图,在平面直角坐标系xOy 中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线y =kx +b 和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果A 1(1,1),A 27(2,3)2,那么点A n 的纵坐标是__________.OB 1A 1A 2y A 3y=kx+bB 2B 3x15. 在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB =5,BC =6,则CE +CF 的值为__________. 三、解答题(本大题共8小题,满分75分)16. (8分)若实数x ,y 满足26190x x x y ++-++=,求代数式2211yx y x y x y⎛⎫+÷ ⎪-+-⎝⎭的值.17. (9分)某市中小学全面开展“体艺2+1”活动,该市一学校根据实际情况,决定开设A :篮球,B :乒乓球,C :声乐,D :健美操四种活动项目,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成两幅不完整的统计图.408020图1图2B10% ADC人数/人100806040200AB CD项目请解答下列问题:(1)这次被调查的学生共有______人; (2)请你将统计图1补充完整;(3)求统计图2中D 项目对应的扇形圆心角的度数;(4)已知该校有学生2 400人,请根据调查结果估计该校最喜欢乒乓球的学生人数.18. (9分)如图,△ABC 内接于⊙O ,AD ⊥BC ,OE ⊥BC ,OE =12BC . (1)将△ACD 沿AC 折叠为△ACF ,将△ABD 沿AB 折叠为△ABG ,延长FC 和GB 相交于点H ,求证:四边形AFHG 是正方形; (2)若BD =6,CD =4,求AD 的长.FCE D AOGBH19. (9分)如图,矩形ABOD 的顶点A 是函数1ky x=与函数2(1)y x k =--+的图象在第二象限内的交点,AB ⊥x 轴于点B ,AD ⊥y 轴于点D ,且矩形ABOD 的面积为3.(1)求两函数的解析式以及两交点A ,C 的坐标; (2)直接写出当12y y >时x 的取值范围;(3)若点P 是y 轴上一点,且S △APC =5,求点P 的坐标.yAB OxCD20.(9分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:两问的计算结果均精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)C B AN QP M45°30°21.(10分)整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲、乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%,对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?哪种方案花费最少?最少为多少?22. (10分)正方形ABCD 中,点O 是对角线AC 的中点,P 是对角线AC 上一动点,过点P 作PF ⊥CD 于点F .如图1,当点P 与点O 重合时,显然有DF =CF .(1)如图2,若点P 在线段AO 上(不与点A ,O 重合),PE ⊥PB 且PE 交CD 于点E . ①求证:DF =EF ;②写出线段PC ,P A ,CE 之间的一个等量关系,并证明你的结论. (2)若点P 在线段CA 的延长线上,PE ⊥PB 且PE 交直线CD 于点E .请补全图3,并判断(1)中的结论①、②是否仍成立,若不成立,请写出相应的结论.(所写结论均不必证明)P E F O图3图2图1PO BADCBAD CP (O )F CD BA23. (11分)已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E . (1)求过点E ,D ,C 的抛物线的解析式.(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为65,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由.(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C ,G 构成的△PCG 是等腰三角形?若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由.BC DOE A xy2013年中考数学模拟试卷(五)参考答案一、选择题1 2 3 4 5 6 7 8 B A B D A D B D二、填空题 9.3a >10.105°11.1912.18313.12a x x b <<< 14.132n -⎛⎫ ⎪⎝⎭15.232211322++或三、解答题 16.3.17.(1)200;(2)统计图略;(3)72°;(4)960人.18.(1)证明略;(2)12.19.(1)1232y y x x =-=-+,,(1 3) (3 1)A C --,,,;(2)10 3x x -<<>或;(3)1219(0 )(0 )22P P -,,,. 20.(1)5.6米;(2)需要挪走,理由略.21.(1)降价前甲、乙两种药品每盒的零售价格分别是15.8元、18元; (2)有3种搭配方案:方案一,甲种药品58箱,乙种药品42箱; 方案二,甲种药品59箱,乙种药品41箱; 方案三,甲种药品60箱,乙种药品40箱. 方案一花费最少,最少是6 740元.22.(1)①证明略;②2PC PA CE -=,证明略;(2)结论①仍成立;结论②不成立,此时PC ,PA ,CE 之间的数量关系是2PC PA CE +=.23.(1)2513166y x x =-++;(2)成立,证明略;(3)存在,1237127(2 2)(1 )( )355Q Q Q ,,,,,.。
江岸区2013年中考数学模拟试题(五)
武汉市江岸区中考数学模拟试题(5)考试时间:120分钟 试卷满分:120分一、选择题(共10小题,每小题3分,共30分) 1.在2-,π,0,2这四个数中最大的数是( )A. 2-B.πC. 0D. 22.函数x y -=2中自变量x 的取值范围是( )A 、2≥xB 、2-≥xC 、2<xD 、2≤x3、不等式23125x x +⎧⎨-⎩≤≤的解集在数轴上表示正确的是( ).(A) (B) (C) (D)4、下列事件是必然事件的是( ).(A)随意购买一张电影票,座位号恰好是“7排8号” (B) 某射击运动员射击一次,命中靶心; (C)抛一枚硬币,正面朝上; (D)13名同学中,至少有两名同学出生的月份相同.5、若x 1、x 2是一元二次方程x 2-6x -5=0的两个根,则x 1·x 2的值为( ) (A)-6 (B)6 (C)-5 (D)56、下图几何体的俯视图是( ).(A) (B) (C) (D)7、如图,把一张矩形纸片ABCD 沿EF 折叠后,点C D , 分别落在C D '',的位置上,EC '交AD 于点G . 已知64EFG ∠=°,那么BEG ∠=( ). A .64° B .54° C .52°D .46°A B E C D F G C 'D '8、图1中是1个正方形;将图1中的正方形剪开得到图2,图2中共有4个正方形;将图2中一个正方形剪开得到图3,图3中共有7个正方形;将图3中一个正方形剪开得到图4,图4中共有10个正方形;…;如此下去,则第7个图中正方形的个数是( ). (A)22 (B)19(C)25 (D)289、为了解某品牌电动自行车的销售情况,对某专卖店第一季度该品牌A 、B 、C 、D 四种型号的销量做了统计,绘制成如下两幅统计图(均不完整).根据以上信息,下列判断: ①该店第一季度售出这种品牌的电动自行车共600辆; ②扇形图中A 占25%;③若该专卖店计划订购这四款型号电动自行车共1800辆,C 型电动自行车应订购600辆.(A)只有①② (B)只有②③ (C)只有①③ (D)①②③10、如图,∠XOY=45°,一把直角三角尺ABC 的两个顶点A 、B 分别在OX ,OY 上移动,其中AB=10,那么点O 到顶点A 的距离的最大值为( ) A 、 8 B 、 10 C 、 28 D 、210二、填空题(共6小题,每小题3分,共18分) 11、计算sin 30°=_______12、今年某市约有102000名应届初中毕业生参加中考.102000用科学记数法表示为DC B A35%30%型号(第10题图)图4图3图2图1OC13、某班第二组男生参加体育测试,引体向上成绩(单位:个)如下: 6, 9, 11, 13, 11, 7, 10, 8, 12中位数是_________,14、甲、乙两车同时出发向A 地前进,甲、乙从出发到到达A 地所走的路程y 甲、y 乙(千米)与行驶时间X (时)的关系如图,若甲到达A 地后则立即按原来速度返回,则甲车在返回途中与乙车相遇时距离A 地 千米。
2013年广州中考数学模拟试题题型 (5)
作者:陈燕辉BA图6CFEO DCBA2013年广州中考数学模拟试题题型81.如图,下列水平放置的几何体中,左视图不是..矩形的是( ) 2.关于近似数2.4×103,下列说法正确的是( )A .精确到十分位,有2个有效数字 B. 精确到百位,有4个有效数字 C. 精确到百位,有2个有效数字 D. 精确到十分位,有4个有效数字3. 在一次学校运动会上,参加男子跳高的15名运动员的成绩如下表:跳高成绩(m) 1.20 1.25 1.30 1.35 1.40 1.45跳高人数132351这些运动员跳高成绩的中位数和众数分别是( )A .1.35,1.40B .1.40,1.35C .1.40,1.40D .3,5 4.正方形网格中,∠AOB 如图放置,则cos ∠AOB 的值为( ) A .12 B .22C .32D .33 5.下列说法正确的是( ).(A)若明天降水概率为50%,那么明天一定会降水 (B)任意掷一枚均匀的1元硬币,一定是正面朝上 (C)任意时刻打开电视,都正在播放动画片《喜洋洋》(D)本试卷共22小题 6.如果点P (y x ,)关于原点的对称点为(–2,3),则x+y= .7.不等式组⎩⎨⎧>-≤-01202x x 的整数解是 .8.小明的讲义夹里放了大小相同的试卷共10页,其中语文4页、数学3页、英语5页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为 .9.某中学在校内安放了几个圆柱形饮水桶的木制支架(如图①),若不计木条的厚度,其俯视图如图②所示,已知AD 垂直平分BC ,AD=BC=40cm ,则圆柱形饮水桶的底面半径的最大值是 cm.10.直角梯形OABC 的直角顶点是坐标原点,边OA,OC 分别在x 轴,y 轴的正半轴上.OA∥BC,D 是BC 上一点,124BD OA ==,AB=3, ∠OAB=45°,E ,F分别是线段OA,AB 上的两个动点,且始终保持∠DEF=45°,设OE=x ,AF=y ,则y 与x 的函数关系式为 ;如果△AEF 是等腰三角形.△AEF 沿EF 对折得△A′EF与五边形OEFBC 重叠部分的面积 . 11、计算:()()02333sin 3031880.12552⎛⎫+--+⨯- ⎪-⎝⎭12、梯形ABCD 中, DC ∥AB ,点E 是BC 的中点,连结AE 并延长与DC 的延长线相交于点F ,连结BF ,AC ,求证:四边形ABFC是平行四边形;13. 先化简22()5525x x xx x x -÷---,然后从不等组23212x x --≤⎧⎨<⎩的解集中,选取一个你认为符合题意的x 的值代入求值.14、小明以3米/秒的速度从山脚A 点爬到山顶B 点,已知点B 到山脚的垂直距离BC 为24米,且山坡坡角∠A 的度数为28º,问小明从山脚爬上山顶需要多少时间?(结果精确到0.1).(参考数据:sin28º=0.46, cos28º=0.87,tan28º=0.53)15.在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的圆O 与AD 、AC分别交于点E 、F ,且∠ACB=∠DCE .判断直线CE 与⊙O 的位置关系,并证明你的结论;16.如图1,Rt △ABC 两直角边的边长为AC =1,BC =2. (1)如图2,⊙O 与Rt △ABC 的边AB 相切于点X ,与边CB 相切于点Y .请你在图2中作出并标明⊙O 的圆心O ;(用尺规作图,保留作图痕迹,不写作法和证明) (2)P 是这个Rt △ABC 上和其内部的动点,以P 为圆心的⊙P 与Rt △ABC 的两条边相切.设⊙P 的面积为s ,你认为能否确定s 的最大值?若能,请你求出s 的最大值;若不能,请你说明不能确定s 的最大值的理由.第23题图2YXBCAA第23题图1CBBA作者:陈燕辉17、某课桌生产厂家研究发现,倾斜12°~24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图1,AB 可绕点A 旋转,在点C 处安装一根可旋转的支撑臂CD ,AC=30cm . (1)如图2,当∠BAC =24°时,CD⊥AB,求支撑臂CD 的长;(2)如图3,当∠BAC =12°时,求AD 的长.(结果保留根号)(参考数据: sin24°≈0.40,cos24°≈0.91,tan24°≈0.46, sin12°≈0.20)18、我市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有 _________ 人达标;(3)若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?19.五一节假日,爸爸带着儿子小宝去方特欢乐世界游玩,进入方特大门,看见游客特别多,小宝想要全部玩完所有的主题项目是不可能的.(1)于是爸爸咨询导游后,让小宝上午先从A :太空世界;B :神秘河谷中随机选择一个项目, 下午再从C :恐龙半岛;D :儿童王国;E :海螺湾中随机选择两个项目游玩,请用树状图或列表法表示小宝所有可能的选择方式.(用字母表示)。
中考数学模拟题(五)
初中毕业生中考数学模拟试题一、选择题1.2011的倒数是( ). A .12011 B .2011 C .2011- D .12011- 2.在实数2、0、1-、2-中,最小的实数是( ). A .2 B .0 C .1- D .2- 3.下面四个图形中,∠1=∠2一定成立的是( ).4.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是( ).5.下列运算正确的是( ).A. 22232x x x -= B .22(2)2a a -=- C .222()a b a b +=+ D .()2121a a --=-- 6.如图,已知Rt △ABC 中,∠C =90°,BC=3, AC=4, 则sinA 的值为( ).A .34B .43C .35D .457.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的 俯视图是( ).8.直线1y kx =-一定经过点( ).A .(1,0)B .(1,k)C .(0,k)D .(0,-1) 9.若点 P (a ,a -2)在第四象限,则a 的取值范围是( ).A .-2<a <0B .0<a <2C .a >2D .a <010.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( ).A .2(1)2y x =-++B .2(1)4y x =--+C .2(1)2y x =--+D .2(1)4y x =-++ 二、填空题11.因式分解:22a a += .12.我市在临桂新区正在建设的广西桂林图书馆、桂林博物馆、桂林大剧院及文化广场,建成后总面积达163500平方米,将成为我市“文化立市”和文化产业大发展的新标志,把163500平方米用科学记数法可表示为 平方米.13.当2x =-时,代数式21x x -的值是 .14、已知函数y=-3(x-2)2+4,当x=_______时,函数取得最大值为_________ 15、在Rt △ABC 中,∠C=90°,AC=3,BC=4,则AB=_____ ,sinA=____16.如图,等腰梯形ABCD 中,AB ∥DC,BE ∥AD, 梯形ABCD 的周长为26,DE=4,则△BEC 的周长为 .17.双曲线1y 、2y 在第一象限的图像如图,14y x=,过1y 上的任意一点A ,作x 轴的平行线交2y 于B ,交y 轴于C ,若1AOB S ∆=,则2y 的解析式是 . 18.若111a m =-,2111a a =-,3211a a =-,… ;则2011a 的值为 . 三、解答题19.计算:01(21)22452tan -︒+--+-20.解二元一次方程组:35 382 x yy x=-⎧⎨=-⎩21.求证:角平分线上的点到这个角的两边距离相等.已知:求证:证明:22、如图,在方格纸中建立直角坐标系,已知一次函数y1=-x+b的图象与反比例函数的图象相交于点A(5,1)和A1.(1)求这两个函数的关系式;(2)由反比例函数的图象特征可知:点A和A1关于直线y=x对称.请你根据图象,填写点A1的坐标及y1<y2时x的取值范围.23.“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.24.某市为争创全国文明卫生城,2008年市政府对市区绿化工程投入的资金是2000万元,2010年投入的资金是2420万元,且从2008年到2010年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2012年需投入多少万元?25、如图,在直角坐标系中,点A的坐标为(0,8),点 B(b,t)在直线x=b上运动,点D、E、F分别为OB、0A、AB的中点,其中b是大于零的常数.(1)判断四边形DEFB的形状.并证明你的结论;(2)试求四边形DEFB的面积S与b的关系式;(3)设直线x=b与x轴交于点C,问:四边形DEFB能不能是矩形?若能.求出t的值;若不能,说明理由.26.某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得一盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒?(用含x的代数式表示).(2)该敬老院至少有多少名老人?最多有多少名老人?27.如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心,12AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连结AE、AD、DC.(1)求证:D是 AE的中点;(2)求证:∠DAO =∠B +∠BAD;(3)若12CEF OCD S S ∆∆=,且AC=4,求CF 的长.28.已知二次函数21342y x x =-+的图象如图.(1)求它的对称轴与x 轴交点D 的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x 轴,y 轴的交点分别为A 、B 、C 三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M ,以AB 为直径,D 为圆心作⊙D ,试判断直线CM 与⊙D 的位置关系,并说明理由.① ②35382x y y x =-⎧⎨=-⎩参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ADBCACCDDBBA二、填空题:13.(2)a a + 14.51.63510⨯ 15.43- 16.1817.26y x =18.11m- 三、解答题:19.(本题满分 6分)解:原式=112122--⨯+ ………4分(求出一个值给1分)=12……………………6分20.(本题满分6分)解: 把①代入②得:382(35)y y =-- ……………………1分 2y = ……………………3分把2y =代入①可得:325x =⨯- ……………………4分1x = ……………………5分所以此二元一次方程组的解为12x y =⎧⎨=⎩. ……………………6分21.(本题满分8分)已知:如图,OC 是∠AOB 的平分线,P 是OC 上任意一点,PE ⊥OA ,PF ⊥OB ,垂足分别为E 、F ……………2分 求证:PE=PF ……………3分 证明:∵OC 是∠AOB 的平分线∴∠POE=∠POF ……………4分 ∵PE ⊥OA ,PF ⊥OB∴∠PEO=∠PFO ……………………5分又∵OP=OP ………………6分∴△POE≌△POF ……………………7分∴PE=PF ……………………8分22.(本题满分8分)解:(1)100 ;………………2分(2)条形统计图:70,………………4分扇形统计图:赞成:10﹪,反对:70﹪;………………6分(3)25. ………………8分23.(本题满分8分)解:(1)设该市对市区绿化工程投入资金的年平均增长率为x………………1分根据题意得,22000(1)2420x+=…………3分得110%x=,22.1x=-(舍去)…………5分答:该市对市区绿化工程投入资金的年平均增长率为10﹪. …………6分(2)2012年需投入资金:22420(110%)2928.2⨯+=(万元)…………7分答:2012年需投入资金2928.2万元. …………8分24.(本题满分8分)解:(1)牛奶盒数:(538)x+盒…………1分(2)根据题意得:5386(1)55386(1)1x xx x+--<⎧⎨+--≥⎩…………4分∴不等式组的解集为:39<x≤43 …………6分∵x为整数∴x=40,41,42,43答:该敬老院至少有40名老人,最多有43名老人. …………8分25.(本题满分10分)证明:(1)∵AC是⊙O的直径∴AE⊥BC …………1分∵OD ∥BC∴AE ⊥OD …………2分 ∴D 是 AE 的中点 …………3分 (2)方法一:如图,延长OD 交AB 于G ,则OG ∥BC …4分 ∴∠AGD=∠B∵∠ADO=∠BAD+∠AGD …………5分 又∵OA=OD ∴∠DAO=∠ADO∴∠DAO=∠B +∠BAD …………6分 方法二:如图,延长AD 交BC 于H …4分 则∠ADO=∠AHC∵∠AHC=∠B +∠BAD …………5分 ∴∠ADO =∠B +∠BAD 又∵OA=OD∴∠DAO=∠B +∠BAD …………6分 (3) ∵AO=OC ∴12OCD ACD S S ∆∆=∵12CEF OCD S S ∆∆= ∴14CEF ACD S S ∆∆= …………7分 ∵∠ACD=∠FCE ∠ADC=∠FEC=90° ∴△ACD ∽△FCE …………………8分 ∴2()CEF ACD S CF S AC∆∆= 即: 21()44CF = …………9分 ∴CF=2 …………10分26.(本题满分12分)解: (1)由21342y x x =-+得 32bx a=-= …………1分 ∴D(3,0)…………2分(2)方法一:如图1, 设平移后的抛物线的解析式为21342y x x k =-++ …………3分则C (0,)k OC=k令0y = 即 213042x x k -++=得 1349x k =++ 2349x k =-+ …………4分 ∴A (349,0)k -+,B (349,0)k ++∴22(493349)1636AB k k k =++-++=+………5分222222(349)(349)AC BC k k k k +=+-+++++22836k k =++……………………6分∵222AC BC AB += 即: 228361636k k k ++=+得 14k = 20k =(舍去) ……………7分∴抛物线的解析式为213442y x x =-++ ……………8分方法二:∵ 21342y x x =-+∴顶点坐标93,4⎛⎫⎪⎝⎭设抛物线向上平移h 个单位则得到()0,C h ,顶点坐标93,4M h ⎛⎫+ ⎪⎝⎭……………………3分 ∴平移后的抛物线: ()219344y x h =--++……………………4分 当0y =时, ()2193044x h --++= 1349x h =-+ 1349x h =++∴ A (349,0)h -+ B (349,0)h ++ ……………………5分 ∵∠ACB=90° ∴△AOC ∽△COB∴2OC =OA ·OB ……………………6分()()2493493h h h =+-++ 解得 14h =,()20h =舍去 …………7分∴平移后的抛物线: ()()22191253434444y x x =--++=--+…………8分(3)方法一:如图2, 由抛物线的解析式213442y x x =-++可得 A(-2 ,0),B(8,0) ,C(4,0) ,M 25(3,)4…………9分 过C 、M 作直线,连结CD ,过M 作MH 垂直y 轴于H则3MH = ∴2225625()416DM == 22222252253(4)416CM MH CH =+=+-= 在Rt △COD 中,CD=22345+==AD∴点C 在⊙D 上 …………………10分 ∵2225625()416DM ==2222225256255()16416CD CM +=+== ……11分 ∴222DM CM CD =+∴△CDM 是直角三角形,∴CD ⊥CM∴直线CM 与⊙D 相切 …………12分方法二:如图3, 由抛物线的解析式可得A(-2 ,0),B(8,0) ,C(4,0) ,M 25(3,)4…………9分 作直线CM,过D 作DE ⊥CM 于E, 过M 作MH 垂直y 轴于H 则3MH =, 254DM = 由勾股定理得154CM =∵DM ∥OC∴∠MCH=∠EMD∴Rt △CMH ∽Rt △DME …………10分 ∴DE MD MH CM= 得 5DE = …………11分 由(2)知10AB =∴⊙D 的半径为5∴直线CM 与⊙D 相切 …………12分。
中考数学模拟试卷(5)(含解析)(2021年整理)
湖南省益阳市2017年中考数学模拟试卷(5)(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖南省益阳市2017年中考数学模拟试卷(5)(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖南省益阳市2017年中考数学模拟试卷(5)(含解析)的全部内容。
2017年湖南省益阳市中考数学模拟试卷(5)一、选择题(本大题共8小题,每小题5分,共40分)1.在﹣3,0,﹣2,四个数中,最小的数是()A.﹣3 B.0 C.﹣2D.2.如图,C、B是线段AD上的两点,若AB=CD,BC=2AC,那么AC与CD的关系是为()A.CD=2AC B.CD=3AC C.CD=4BD D.不能确定3.学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:颜色黄色绿色白色紫色红色学生人数10018022080750学校决定采用红色,可用来解释这一现象的统计知识是()A.平均数 B.中位数 C.众数D.方差4.如图所示,数轴上表示2,的对应点分别为C,B,点C是AB的中点,则点A表示的数是( )A.﹣B.2﹣C.4﹣D.﹣25.若不等式组的解集是x<2,则a的取值范围是( )A.a<2 B.a≤2 C.a≥2 D.无法确定6.如图,在△ABC中,AB=AC,∠BAC=120°,D,E是BC上的两点,且∠DAE=30°,将△AEC绕点A顺时针旋转120°后,得到△AFB,连接DF.下列结论中正确的个数有( )①∠FBD=60°;②△ABE∽△DCA;③AE平分∠CAD;④△AFD是等腰直角三角形.A.1个B.2个C.3个D.4个7.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有( )A.1个B.2个C.3个D.4个8.我们将1×2×3×…×n记作n!(读作n的阶乘),如:2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是( )A.0 B.1 C.1008 D.2016二、填空题(本大题共6小题,每小题5分,共30分)9.计算:12﹣7×(﹣4)+8÷(﹣2)的结果是.10.对于实数x,规定(x n)′=nx n﹣1,若(x2)′=﹣2,则x= .11.已知在等腰三角形ABC中,BC=8,AB,AC的长为方程x2﹣10x+m=0的根,则m= .12.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标为.13.已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为米.14.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P 作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是.三、解答题(本大题共3小题,每小题8分,共24分)15.先化简,再求值:,其中x=6tan30°﹣2.16.已知一次函数的图象过A(﹣3,﹣5),B(1,3)两点.(1)求这个一次函数的表达式;(2)试判断点P(﹣2,1)是否在这个一次函数的图象上.17.如图,已知E是平行四边形ABCD的边AB上的点,连接DE.(1)在∠ABC的内部,作射线BM交线段CD于点F,使∠CBF=∠ADE;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)的条件下,求证:△ADE≌△CBF.四、解答题(本大题共3小题,每小题10分,共30分)18.据某市2016年国民经济和社会发展统计公报显示,2016年该市新开工的住房有商品房.廉租房、经济适用房和公共租赁房四种类型,老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全频数分布直方图;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生.如果对2016年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果计划2017年新开工廉租房建设的套数比2016年增长10%,那么2017年新开工廉租房有多少套?19.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?20.如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系.已知该材料在加热前的温度为4℃,加热一段时间使材料温度达到28℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系,已知当第12分钟时,材料温度是14℃.(1)分别求出该材料加热和停止加热过程中y与x的函数关系式(写出x的取值范围);(2)根据该食品制作要求,在材料温度不低于12℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理的时间为多少分钟?五、解答题(本题满分12分)21.如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN 是等边三角形.(1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立,请证明,若不成立,请说明理由;(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.六、解答题(本题满分14分)22.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.2017年湖南省益阳市中考数学模拟试卷(5)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分)1.在﹣3,0,﹣2,四个数中,最小的数是()A.﹣3 B.0 C.﹣2D.【考点】实数大小比较.【分析】先确定2与3的大小关系,再比较﹣2与﹣3的大小,因为这四个数中,正数大于0,0大于负数.【解答】解:∵2=,3=,∵,∴2<3,∴﹣2>﹣3,∴﹣3<0,∴最小的数是﹣3,故选A.2.如图,C、B是线段AD上的两点,若AB=CD,BC=2AC,那么AC与CD的关系是为()A.CD=2AC B.CD=3AC C.CD=4BD D.不能确定【考点】比较线段的长短.【分析】由AB=CD,可得,AC=BD,又BC=2AC,所以,BC=2BD,所以,CD=3AC;【解答】解:∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC;故选B.3.学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:颜色黄色绿色白色紫色红色学生人数10018022080750学校决定采用红色,可用来解释这一现象的统计知识是()A.平均数 B.中位数 C.众数D.方差【考点】统计量的选择.【分析】根据平均数、中位数、众数及方差的有关知识判断即可.【解答】解:喜欢红色的学生最多,是这组数据的众数,故选C.4.如图所示,数轴上表示2,的对应点分别为C,B,点C是AB的中点,则点A表示的数是()A.﹣B.2﹣C.4﹣D.﹣2【考点】实数与数轴.【分析】首先可以求出线段BC的长度,然后利用中点的性质即可解答.【解答】解:∵表示2,的对应点分别为C,B,∴CB=﹣2,∵点C是AB的中点,则设点A的坐标是x,则x=4﹣,∴点A表示的数是4﹣.故选C.5.若不等式组的解集是x<2,则a的取值范围是()A.a<2 B.a≤2 C.a≥2 D.无法确定【考点】解一元一次不等式组.【分析】解出不等式组的解集,与已知解集x<2比较,可以求出a的取值范围.【解答】解:由(1)得:x<2由(2)得:x<a因为不等式组的解集是x<2∴a≥2故选:C.6.如图,在△ABC中,AB=AC,∠BAC=120°,D,E是BC上的两点,且∠DAE=30°,将△AEC 绕点A顺时针旋转120°后,得到△AFB,连接DF.下列结论中正确的个数有( )①∠FBD=60°;②△ABE∽△DCA;③AE平分∠CAD;④△AFD是等腰直角三角形.A.1个B.2个C.3个D.4个【考点】相似三角形的判定与性质;等腰直角三角形;旋转的性质.【分析】根据旋转的性质得出∠ABF=∠C,求出∠ABC=∠C=30°,即可判断①;根据三角形外角性质求出∠ADC=∠BAE,根据相似三角形的判定即可判断②;求出∠EAC大于30°,而∠DAE=30°,即可判断③;求出△AFD是直角三角形,但是不能推出是等腰三角形,即可判断④.【解答】解:∵在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=∠C=30°,∵将△AEC绕点A顺时针旋转120°后,得到△AFB,∴△AEC≌△AFB,∴∠ABF=∠C=30°,∴∠FBD=30°+30°=60°,∴①正确;∵∠ABC=∠DAE=30°,∴∠ABC+∠BAD=∠DAE+∠BAD,即∠ADC=∠BAE,∵∠ABC=∠C,∴△ABE∽△DCA,∴②正确;∵∠C=∠ABC=∠DAE=30°,∠BAC=120°,∴∠BAD+∠EAC=120°﹣∠DAE=90°,∴∠ABC+∠BAD<90°,∴∠ADC<90°,∴∠DAC>60°,∴∠EAC>30°,即∠DAE≠∠EAC,∴③错误;∵将△AEC绕点A顺时针旋转120°后,得到△AFB,∴AF=AE,∠EAC=∠BAF,∵∠BAC=120°,∠DAE=30°,∴∠BAD+∠EAC=90°,∴∠DAB+∠BAF=90°,即△AFD是直角三角形,∵在△DAE中,∠ADE=∠BAC+∠BAD,∠AED=∠C+∠EAC,∠ABC=∠C,但是根据已知不能推出∠BAD=∠EAC,∴∠ADE和∠AED不相等,∴AD和AE不相等,即△AFD是直角三角形,但是不一定是等腰三角形,∴④错误;故选B.7.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有( )A.1个B.2个C.3个D.4个【考点】二次函数的性质.【分析】若y1=y2,记M=y1=y2.首先求得抛物线与直线的交点坐标,利用图象可得当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;然后根据当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;即可求得答案.【解答】解:∵当y1=y2时,即﹣x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;∴①错误;∵抛物线y1=﹣x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=﹣x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y2>y1;当M=2,﹣x2+4x=2,x1=2+,x2=2﹣(舍去),∴使得M=2的x值是1或2+,∴④错误;∴正确的有②③两个.故选:B.8.我们将1×2×3×…×n记作n!(读作n的阶乘),如:2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是()A.0 B.1 C.1008 D.2016【考点】规律型:数字的变化类;有理数的除法.【分析】由(n+1)!=1×2×3×…×n×(n+1)=(n+1)×n!=n×n!+n!知,可将原式两边都加上1!+2!+3!+…+2016!,即可得S=2017!﹣1,从而得出答案.【解答】解:∵(n+1)!=1×2×3×…×n×(n+1)=(n+1)×n!=n×n!+n!,∴S+1!+2!+3!+…+2016!=1×1!+2×2!+3×3!+…+2016×2016!+1!+2!+3!+…+2016!,即S+1!+2!+3!+…+2016!=1!+2!+3!+…+2017!,则S=2017!﹣1,∴==2016!…1,故选:B.二、填空题(本大题共6小题,每小题5分,共30分)9.计算:12﹣7×(﹣4)+8÷(﹣2)的结果是36 .【考点】有理数的混合运算.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=12+28﹣4=40﹣4=36,故答案为:3610.对于实数x,规定(x n)′=nx n﹣1,若(x2)′=﹣2,则x= ﹣1 .【考点】解一元一次方程.【分析】根据规定,得:当n=2时,则(x2)′=2x,解方程即可.【解答】解:根据题意得:2x=﹣2,x=﹣1.故答案为:﹣1.11.已知在等腰三角形ABC中,BC=8,AB,AC的长为方程x2﹣10x+m=0的根,则m= 25或16 .【考点】等腰三角形的性质;一元二次方程的解;根的判别式.【分析】讨论:根据等腰三角形性质当AB=BC=8,把x=8代入方程可得到m=16,此时方程另一根为2,满足三角形三边关系;当AB=AC,根据根与系数得关系得AB+AC=10,所以AB=AC=5,所以m=5×5=25.【解答】解:当AB=BC=8,把x=8代入方程得64﹣80+m=0,解得m=16,此时方程为x2﹣10x+16=0,解得x1=8,x2=2;当AB=AC,则AB+AC=10,所以AB=AC=5,则m=5×5=25.故答案为:25或16.12.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标为(3,﹣1).【考点】菱形的性质;坐标与图形性质.【分析】首先连接AB交OC于点D,由菱形OACB中,点C的坐标是(6,0),点A的纵坐标是1,即可求得点B的坐标.【解答】解:∵连接AB交OC于点D,∵四边形ABCD是菱形,∴AB⊥OC,OD=CD,AD=BD,∵点C的坐标是(6,0),点A的纵坐标是1,∴OC=6,BD=AD=1,∴OD=3,∴点B的坐标为:(3,﹣1).故答案为:(3,﹣1).13.已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26 米.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】首先根据题意画出图形,根据坡度的定义,由勾股定理即可求得答案.【解答】解:如图,由题意得:斜坡AB的坡度:i=1:2.4,AE=10米,AE⊥BD,∵i==,∴BE=24米,∴在Rt△ABE中,AB==26(米).故答案为:26.14.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是 2 .【考点】切线的性质.【分析】作直径AC,连接CP,得出△APC∽△PBA,利用=,得出y=x2,所以x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2.【解答】解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴△APC∽△PBA,∴,∵PA=x,PB=y,半径为4,∴=,∴y=x2,∴x﹣y=x﹣x2=﹣x2+x=﹣(x﹣4)2+2,当x=4时,x﹣y有最大值是2,故答案为:2.三、解答题(本大题共3小题,每小题8分,共24分)15.先化简,再求值:,其中x=6tan30°﹣2.【考点】分式的化简求值;特殊角的三角函数值.【分析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当x=6tan30°﹣2=2﹣2时,原式=.16.已知一次函数的图象过A(﹣3,﹣5),B(1,3)两点.(1)求这个一次函数的表达式;(2)试判断点P(﹣2,1)是否在这个一次函数的图象上.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)设一次函数解析式为y=kx+b,将A(﹣3,﹣5),B(1,3)代入解得k、b可得解析式;(2)将x=﹣2代入一次函数解析式可判断结果.【解答】解:(1)设一次函数解析式为y=kx+b,将A(﹣3,﹣5),B(1,3)代入得,,解得,,∴一次函数解析式为:y=2x+1;(2)把x=﹣2代入y=2x+1,解得y=﹣3,∴点P(﹣2,1)不在一次函数图象上.17.如图,已知E是平行四边形ABCD的边AB上的点,连接DE.(1)在∠ABC的内部,作射线BM交线段CD于点F,使∠CBF=∠ADE;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)的条件下,求证:△ADE≌△CBF.【考点】作图—复杂作图;全等三角形的判定;平行四边形的性质.【分析】(1)作∠CBM=∠ADE,其中BM交CD于F;(2)根据平行四边形的性质可得∠A=∠C,AD=BC,由ASA可证△ADE≌△CBF.【解答】(1)解:如图所示.(2)证明:∵四边形ABCD是平行四边形∴∠A=∠C,AD=BC,∵∠ADE=∠CBF,∴△ADE≌△CBF(ASA).四、解答题(本大题共3小题,每小题10分,共30分)18.据某市2016年国民经济和社会发展统计公报显示,2016年该市新开工的住房有商品房.廉租房、经济适用房和公共租赁房四种类型,老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全频数分布直方图;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生.如果对2016年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果计划2017年新开工廉租房建设的套数比2016年增长10%,那么2017年新开工廉租房有多少套?【考点】概率公式;用样本估计总体;频数(率)分布直方图;扇形统计图.【分析】(1)根据扇形统计图中公租房所占比例以及条形图中公租房数量即可得出,新开工的住房总数,进而得出经济适用房的套数;(2)根据申请购买经济适用房共有950人符合购买条件,经济适用房总套数为475套,得出老王被摇中的概率即可;(3)根据2016年廉租房共有6250×8%=500套,得出500(1+10%)=550,即可得出答案.【解答】解:(1)根据题意得:住房总数为1500÷24%=6250(套),则经济适用房的数量为6250×7。
2013年中考数学模拟试卷及答案
2013年第一次升学模拟考试数学试卷亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平。
答题时,请注意以下几点:1.全卷共4页,有三大题,24小题。
全卷满分150分。
考试时间120分钟。
2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效。
3.参考公式:抛物线y=ax²+bx+c(c≠0)的顶点坐标是(24,24b ac ba a--)祝你成功!一、选择题(共10小题,每小题4分,满分40分)1.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N2.某校羽毛球训练队共有8名队员,他们的年龄(单位:岁)分別为:12,13,13,14,12,13,15,13,则他们年龄的众数为()A.12 B.13 C.14 D.153.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A. B. C.D.4.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6) B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6) D.(2,3),(﹣4,6)5. a4b﹣6a3b+9a2b分解因式得正确结果为()A.a2b(a2﹣6a+9) B.a2b(a﹣3)(a+3)C.b(a2﹣3)2 D.a2b(a﹣3)26.下列调查:①调查一批灯泡的使用寿命;②调查全班同学的身高;③调查市场上某种食品的色素含量是否符合国家标准;④企业招聘,对应聘人员进行面试.其中符合用抽样调查的是()A.①②B.①③C.②④D.②③7. 2012年7月27日国际奥委会的会旗将在伦敦上空升起,会旗上的图案由五个圆环组成.如图,在这个图案中反映出的两圆的位置关系有()A.内切、相交 B.外离、内切 C.外切、外离 D.外离、相交8.下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y9.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为()A.B. C. D.10.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A.3个 B.2个C.1个 D.0个二.填空题(共6小题,每题5分,共30分)11.已知x+y=﹣5,xy=6,则x2+y2= _________ .12.小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数.根据调查结果绘制了人数分布直方图.若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为_________ °.13.如图,直线y=﹣x+3与x轴、y轴分别交于A、B两点,把△AOB绕点A旋转90°后得到△AO′B′,则点B′的坐标是_________ .第12题图第13题图第16题图14.已知(a﹣)<0,若b=2﹣a,则b的取值范围是_________ .15.如果关于x的不等式组的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有_________ 个.16.如图,点M是反比例函数y=在第一象限内图象上的点,作MB⊥x轴于B.过点M的第一条直线交y轴于点A1,交反比例函数图象于点C1,且A1C1=A1M,△A1C1B的面积记为S1;过点M的第二条直线交y轴于点A2,交反比例函数图象于点C2,且A2C2=A2M,△A2C2B的面积记为S2;过点M的第三条直线交y轴于点A3,交反比例函数图象于点C3,且A3C3=A3M,△A3C3B的面积记为S3;以此类推…;则S1+S2+S3+…+S8= _________ .三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:.(2)解方程:(x﹣3)2﹣9=0.18.(8分)如图,已知线段AB,(1)线段AB为腰作一个黄金三角形(尺规作图,要求保留作图痕迹,不必写出作法);(友情提示:三角形两边之比为黄金比的等腰三角形叫做黄金三角形)(2)若AB=2,求出你所作的黄金三角形的周长.19.(8分)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是________ ;(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解).20.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.21.(10分)已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.22.(10分)如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径R.23.(12分)库尔勒某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A 村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨,A,B两村运香梨往两仓库的运输费用分别为y A元,y B元.(1)请填写下表,并求出y A,y B与x之间的函数关系式;C D 总计A x吨200吨B 300吨总计240吨260吨500吨(2)当x为何值时,A村的运费较少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.24.(14分)如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2.(1)求点D的坐标,并直接写出t的取值范围.(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF 的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S 的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?浙江省温州市2013年第一次学业模拟考试数学参考答案一、选择题(共10小题,每题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10答案 A B A A D B D D B B 二.填空题(共6小题,每题5分,共30分)题号11 12 13 14 15 16答案13 144 (﹣1,﹣2)或(5,2)2﹣<b<2 6第16题:解:过点M作MD⊥y轴于点D,过点A1作A1E⊥BM于点E,过点C1作C1F⊥BM 于点F,∵点M是反比例函数y=在第一象限内图象上的点,∴OB×BM=1,∴=OB×MB=,∵A1C1=A1M,即C1为A1M中点,∴C1到BM的距离C1F为A1到BM的距离A1E的一半,∴S1===,∴=BM•A 2到BM距离=×BM×BO=,∵A2C2=A2M,∴C2到BM的距离为A2到BM的距离的,∴S2===,同理可得:S3=,S4=…∴++…++,=++…++,=,三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17. (1)解:=1﹣8+3+2 (3分)=﹣2.(5分)(2)解:移项得:(x﹣3)2=9,开平方得:x﹣3=±3,(1分)则x﹣3=3或x﹣3=﹣3,(3分)解得:x1=6,x2=0.(5分)18. 解:(1)可分为两种情况:底与腰之比均为黄金比的等腰三角形如图1,(2分)腰与底之比为黄金比为黄金比如图2,(4分)(2)∵如图1,AB=2,当底与腰之比为黄金比时:∴=,∴AD=﹣1,∴AB+AD+BD=,(6分)如图2,当腰与底之比为黄金比时,=,∴AC=+1,∴△ABC周长为.(8分)19. 解:(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,故P(所画三角形是等腰三角形)=;(2分)(2)用“树状图”或利用表格列出所有可能的结果:∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,(6分)∴所画的四边形是平行四边形的概率P==.(8分)20. 解:过点C作CE⊥AD于点E,由题意得,AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=30°,(2分)即可得AB=BC=30m,(4分)设BE=x,在Rt△BCE中,可得CE=x,又∵BC2=BE2+CE2,即900=x2+3x2,(6分)解得:x=15,即可得CE=15m.(8分)答:小丽自家门前的小河的宽度为15m.21.证明:①∵CN∥AB,∴∠DAC=∠NCA,(1分)在△AMD和△CMN中,∵,∴△AMD≌△CMN(ASA),(2分)∴AD=CN,(3分)又∵AD∥CN,∴四边形ADCN是平行四边形,(4分)∴CD=AN;(5分)②∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,(6分)∴MD=MC,(7分)由①知四边形ADCN是平行四边形,∴MD=MN=MA=MC,(8分)∴AC=DN,(9分)∴四边形ADCN是矩形.(10分)22.(1)证明:过O点作OE⊥CD于点E,∵AM切⊙O于点A,∴OA⊥AD,(1分)又∵DO平分∠ADC,∴OE=OA,(2分)∵OA为⊙O的半径,∴OE是⊙O的半径,且OE⊥DC,(3分)∴CD是⊙O的切线.(4分)(2)解:过点D作DF⊥BC于点F,∵AM,BN分别切⊙O于点A,B,∴AB⊥AD,AB⊥BC,(5分)∴四边形ABFD是矩形,∴AD=BF,AB=DF,(6分)又∵AD=4,BC=9,∴FC=9﹣4=5,(7分)∵AM,BN,DC分别切⊙O于点A,B,E,∴DA=DE,CB=CE,(8分)∴DC=AD+BC=4+9=13,(9分)在Rt△DFC中,DC2=DF2+FC2,∴DF==12,∴AB=12,(10分)∴⊙O的半径R是6.23.(1)填写如下:每空1分C D 总计A (200﹣x)吨B (240﹣x)吨(60+x)吨由题意得:y A=40x+45(200﹣x)=﹣5x+9000;y B=25(240﹣x)+32(60+x)=7x+7920;(2)对于y A=﹣5x+9000(0≤x≤200),∵k=﹣5<0,∴此一次函数为减函数,则当x=200吨时,y A最小,其最小值为﹣5×200+9000=8000(元)(3分)(3)设两村的运费之和为W,则W=y A+y B=﹣5x+9000+7x+7920=2x+16920(0≤x≤200),(8分)∵k=2>0,∴此一次函数为增函数,(10分)则当x=0时,W有最小值,W最小值为16920元.(11分)此时调运方案为:从A村运往C仓库0吨,运往D仓库为200吨,B村应往C仓库运240吨,运往D仓库60吨.(12分)24.(1)由题意可知,当t=2(秒)时,OP=4,CQ=2,在Rt△PCQ中,由勾股定理得:PC===4,∴OC=OP+PC=4+4=8,(2分)又∵矩形AOCD,A(0,4),∴D(8,4).点P到达终点所需时间为=4秒,点Q到达终点所需时间为=4秒,由题意可知,t的取值范围为:0<t<4.(4分)(2)结论:△AEF的面积S不变化.∵AOCD是矩形,∴AD∥OE,∴△AQD∽△EQC,(5分)∴,即,解得CE=.由翻折变换的性质可知:DF=DQ=4﹣t,则CF=CD+DF=8﹣t.(6分)S=S梯形AOCF+S△FCE﹣S△AOE=(OA+CF)•OC+CF•CE﹣OA•OE=[4+(8﹣t)]×8+(8﹣t)•﹣×4×(8+)(8分)化简得:S=32为定值.所以△AEF的面积S不变化,S=32.(9分)(3)若四边形APQF是梯形,因为AP与CF不平行,所以只有PQ∥AF.由PQ∥AF可得:△CPQ∽△DAF,(10分)∴,即,化简得t2﹣12t+16=0,(11分)解得:t1=6+2,t2=6﹣2,(13分)由(1)可知,0<t<4,∴t1=6+2不符合题意,舍去.∴当t=(6﹣2)秒时,四边形APQF是梯形.(14分)。
2013年安徽省中考数学模拟试卷
2012年安徽省中考数学模拟试卷(五)2013年安徽省中考数学模拟试卷一、选择题(本大题共10小题,每小越4分,满分40分,每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选,选错,或选出的代号超过一个的不论是否写在括号内一律得0分.)1.计算(﹣2)3+2×(﹣2)2的值是()A.0 B.﹣8 C.16 D.﹣162.(2009•威海)如图,AB=AC,BD=BC,若∠A=40°,则∠ABD的度数是()A.20°B.30°C.35°D.40°3.2012年1月13日,中国人民银行公布的《2011年四季度金融统计数据表》显示,201 1年12月末中国外汇储备为31811.48亿美元,用科学记数法表示31811.48亿正确的为(保留三个有效数字)()A.318亿B.3.18×108C.3.18×1010 D.3.18×10124.(2006•眉山)数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是()A.甲B.乙C.丙D.丁20户家庭的月用水量,结果如下表:则关于这20户家庭的月用水量,下列说法错误的是()A.方差是1.5吨B.中位数是6吨 C.平均数是6.2吨D.众数是6吨6.下列几何体中,主视图、左视图、俯视图相同的是()A.B.C.D.7.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点E,AB=10,CD=8,那么AE的长为()A.2 B.3 C.4 D.58.解方程=的结果是()A.x=﹣3 B.x=3 C.x=6 D.无解9.如图,某种型号链条每节长为2.5cm,每两节链条相连接部分重叠的网的直径为0.8cm,则这种链条60节的总长度为()A.150cm B.104.5cm C.102.8cm D.102cm10.(2010•烟台)如图,AB为半圆的直径,点P为AB上一动点,动点P从点A出发,沿AB匀速运动到点B,运动时间为t,分别以AP与PB为直径做半圆,则图中阴影部分的面积S与时间t之间的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.已知关于x的一元二次方程x2+(k+3)x+k=O有一个实数根是1,则这个方程的另一个实数根是_________.12.将一个三角形纸板按如图所示的方式放置在量角器上,使得点C在量角器的边缘(半圆周)上.已知点A、B 的读数分别为86°、30°,,则∠ACB的大小为_________.13.对于任意实数a,b,定义一种新运算“*”,使得a*b=ab﹣a2,例如2*5=2×5﹣22=6,那么(﹣1)*3=_________.14.根据图1所示的程序,得到了y与x的函数图象,如图2.若点M是y轴正半轴上任意一点,过点M作PQ∥x 轴交图象于点P,Q,连接OP,OQ.则以下结论:①x<0时,y=.②△OPQ的面积为定值.③x>0时,y随的增大而增大.④MQ=2PM.⑤∠POQ可以等于90°.其中正确结论有_________.(把你认为正确的结论序号全部填上)三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:÷,其中a=+1.16.甲,乙两位同学在解方程组时,甲正确地解得方程组的解为.乙因大意,错误地将方程中系数C写错了,得到的解为;若乙没有再发生其他错误,试确定a,b,c的值.四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,点A的坐标为(1,2):将∠AOB绕点A逆时针旋转900得到△ACD,点O的对应点C恰好落在双曲线y1=(x>O)上.直线AC交双曲线于点E.(1)求双曲线y1=(x>O)与直线AC的解析式y2=kx+b;(2)结合图象指出,当x取何值时,y1>y2,y1<y2?18.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A (﹣l,2),B(﹣4,5),C(1,8):(1)画出△ABC及其绕点A顺时针旋转90°后得到的△AB1C1.(2)求在上述旋转过程中,点B转动到点B1所经过的路程,及△ABC扫过的面积.五、(本大题共2小题,每小题10分,满分20分)19.如图,CD、EF表示高度不同的两座建筑物,小颖站在A处,正好越过前面建筑物的顶端C看到它后面的建筑物的顶端E,仰角为45°;小颖沿直线FA由点A后移10米到达位置点N,正好看到建筑物EF上的点M,仰角为30°.已知小颖的眼睛距离地面1.5米,CD、EF两座建筑物间的距离为25米,求建筑物CD、EF的高(结果保留根号).20.如图,在△ABC中,∠ACB=90°,点D是BC的中点,且∠B+∠ADC=90°,过点B、D作⊙O,使圆心D在AB上,⊙O交AB于点E.(1)求证:直线AD与⊙0相切;(2)若AC=6,求AE的长.六、(本题满分12分)21.如图,已知菱形ABCD的边长为2,∠DAB=60°,E、F分别是AD、CD上的两个动点,且满足AE+CF=2.连接BD.(1)图中有几对三角三全等?试选取一对全等的三角形给予证明;(2)判断△BEF的形状,并说明理由.(3)当△BEF的面积取得最小值时,试判断此时EF与BD的位置关系.七、(本题满分12分)22.连续两次抛掷一枚质地均匀、六个面分别刻有数字1﹣6的正方体骰子,观察其朝上一面的点数.(1)第一次出现的点数恰好能被第二次出现的点数整除的概率是多少?(2)两次出现的点数分别作为一个两位数的十位数字和个位数字,则这个两位数恰好是3的倍数的概率是多少?(3)两次出现的点数分别作为一个点的横坐标、纵坐标,则这个点在抛物线y=﹣x2+5x上的概率是多少?八、(本题满分14分)23.如图(1),已知抛物线y=ax2+bx+c经过原点O,它的顶点坐标为(5,),在抛物线内作矩形ABCD,使顶点C、.D落在抛物线上,顶点A,B落在x轴上.(1)求抛物线的解析式;(2)若AB=6,求AD的长;(3)设矩形ABCD的周长为L,求L的最大值.(4)如图(2),若直线y=x交抛物线的对称轴于点N,P为直线y=X上一个动点,过点P作X轴的垂线交抛物线于点Q.问在直线y=x上是否存在点P,使得以P、N、Q为顶点的三角形是等腰直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.2012年安徽省中考数学模拟试卷(五)参考答案与试题解析一、选择题(本大题共10小题,每小越4分,满分40分,每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选,选错,或选出的代号超过一个的不论是否写在括号内一律得0分.)1.计算(﹣2)3+2×(﹣2)2的值是()A.0 B.﹣8 C.16 D.﹣16考点:有理数的乘方。
2013年江苏省盐城市中考数学模拟试卷(5月份)解析word版
2013年江苏省盐城市中考数学模拟试卷(5月份)一、选择题(下列各题所给答案中,只有一个答案是正确的,每小题3分,共24分)1.(3分)(2013•盐城模拟)2012年元月的某一天,我市的最低气温为﹣3℃,最高气温为4℃,那么这一天我市的日3.(3分)(2013•盐城模拟)图中圆与圆之间不同的位置关系有()4.(3分)(2013•盐城模拟)如图,BC∥DE,∠1=105°,∠AED=65°,则∠A的大小是()5.(3分)(2013•盐城模拟)四名运动员参加了射击预选赛,他们成绩的平均环数及其方差s2如表所示.如果选)6.(3分)(2013•盐城模拟)如图是一个机器零件的三视图,根据标注的尺寸,这个零件的侧面积(单位:mm2)是()7.(3分)(2005•徐州)如果反比例函数y=的图象如图所示,那么二次函数y=kx 2﹣k 2x ﹣1的图象大致为( ).BC .D8.(3分)(2013•盐城模拟)下列说法正确的个数是( ) ①“对顶角相等”的逆命题是真命题 ②所有的黄金三角形都相似 ③若数据1、﹣2、3、x 的极差为6,则x=4 ④方程x 2﹣mx ﹣3=0有两个不相等的实数根 ⑤已知关于x 的方程的解是正数,那么m 的取值范围为m >﹣6.二、填空题(每小题3分,共30分) 9.(3分)(2013•盐城模拟)函数中,自变量x 的取值范围是 _________ .10.(3分)(2013•盐城模拟)我市今年初中毕业生为12870人,将12870用科学记数法表示为_________ (保留两个有效数字). 11.(3分)(2011•宁德)如图,人民币旧版壹角硬币内部的正多边形每个内角度数是 _________ °.12.(3分)(2013•盐城模拟)如图,直线l 1:y 1=x+1与直线l 2:y 2=mx+n 相交于点P (1,b ).当y 1>y 2时,x 的取值范围为 _________ .13.(3分)(2013•盐城模拟)六•一儿童节前,苗苗来到大润发超市发现某种玩具原价为100元,经过两次降价,现售价为81元,假设两次降价的百分率相同,则每次降价的百分率为_________.14.(3分)(2013•盐城模拟)如图所示,在建立平面直角坐标系后,△ABC顶点A的坐标为(1,﹣4),若以原点O为位似中心,在第二象限内画△ABC的位似图形△A′B′C′,使△A′B′C′与△ABC的位似比等于,则点A′的坐标为_________.15.(3分)(2013•盐城模拟)如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B 顺时针旋转90°至CB,那么点C的坐标是_________.16.(3分)(2013•盐城模拟)定义:如图,若双曲线(k>0)与它的其中一条对称轴y=x相交于两点A,B,则线段AB的长称为双曲线(k>0)的对径.若某双曲线(k>0)的对径是,则k的值为_________.17.(3分)(2013•盐城模拟)如图,已知四边形ABCD是菱形,∠A=72°,将它分割成如图所示的四个等腰三角形,那么∠1+∠2+∠3=_________度.18.(3分)(2013•盐城模拟)在矩形纸片ABCD中,AB=8,BC=20,F为BC的中点,沿过点F的直线翻折,使点B落在边AD上,折痕交矩形的一边于G,则折痕FG=_________.三、简答题(共96分)19.(8分)(2013•盐城模拟)(1)计算:﹣sin30°(2)解方程:.20.(6分)(2013•盐城模拟)先化简(),再选取一个你喜欢的a的值代入求值.21.(8分)(2008•黄石)在一个口袋中有n个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,从袋中随机地取出一个球,它是红球的概率是.(1)求n的值;(2)把这n个球中的两个标号为1,其余分别标号为2,3,…x=5,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率.22.(10分)(2013•盐城模拟)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=_________,b=_________;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?23.(10分)(2013•盐城模拟)如图,自来水公司的主管道从A小区向北偏东60°方向直线延伸,测绘员在A处测得要安装自来水的M小区在A小区北偏东30°方向,测绘员沿主管道测量出AC=200米,小区M位于C的北偏西60°方向,(1)请你找出支管道连接点N,使得N到该小区铺设的管道最短.(在图中标出点N的位置)(2)求出AN的长.24.(10分)(2013•盐城模拟)如图,在△ABC中,AD平分∠BAC,交BC于D,将A、D重合折叠,折痕交AB 于E,交AC于F,连接DE、DF,(1)判断四边形AEDF的形状并说明理由;(2)若AB=6,AC=8,求DF的长.25.(10分)(2013•盐城模拟)已知四边形ABCD的外接圆⊙O的半径为5,对角线AC与BD的交点为E,且AB2=AE•AC,BD=8,(1)判断△ABD的形状并说明理由;(2)求△ABD的面积.26.(10分)(2013•盐城模拟)某种商品在30天内每件销售价格P(元)与时间t(天)的函数关系用如图所示的两条线段表示,该商品在30天内日销售量Q(件)与时间t(天)之间的函数关系是Q=﹣t+40(0<t≤30,t是整数).(1)求该商品每件的销售价格P与时间t的函数关系式,并写出自变量t的取值范围;(2)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?(日销售金额=每件的销售价格×日销售量)27.(12分)(2013•盐城模拟)如图,矩形ABCD中,AD=8,AB=4,点E沿A→D方向在线段AD上运动,点F 沿D→A方向在线段DA上运动,点E、F速度都是每秒2个长度单位,E、F两点同时出发,且当E点运动到D点时两点都停止运动,设运动时间是t(秒).(1)当0<t<2时,判断四边形BCFE的形状,并说明理由;(2)当0<t<2时,射线BF、CE相交于点O,设S△FEO=y,求y与t之间的函数关系式;(3)问射线BF与射线CE所成的锐角是否能等于60°?若有可能,请求出t的值;若不能,请说明理由.28.(12分)(2013•盐城模拟)如图(1),分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上)交y轴于另一点Q,抛物线经过A、C两点,与x轴的另一交点为G,M是FG的中点,B点坐标为(2,2).(1)求抛物线的函数解析式和点E的坐标;(2)求证:ME是⊙P的切线;(3)如图(2),点R从正方形CDEF的顶点E出发以1个单位/秒的速度向点F运动,同时点S从点Q出发沿y轴以5个单位/秒的速度向上运动,连接RS,设运动时间为t秒(0<t<1),在运动过程中,正方形CDEF在直线RS下方部分的面积是否变化?若不变,说明理由并求出其值;若变化,请说明理由;2013年江苏省盐城市中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(下列各题所给答案中,只有一个答案是正确的,每小题3分,共24分)1.(3分)(2013•盐城模拟)2012年元月的某一天,我市的最低气温为﹣3℃,最高气温为4℃,那么这一天我市的日3.(3分)(2013•盐城模拟)图中圆与圆之间不同的位置关系有()4.(3分)(2013•盐城模拟)如图,BC∥DE,∠1=105°,∠AED=65°,则∠A的大小是()5.(3分)(2013•盐城模拟)四名运动员参加了射击预选赛,他们成绩的平均环数及其方差s2如表所示.如果选)甲6.(3分)(2013•盐城模拟)如图是一个机器零件的三视图,根据标注的尺寸,这个零件的侧面积(单位:mm2)是()圆锥的母线长是:×7.(3分)(2005•徐州)如果反比例函数y=的图象如图所示,那么二次函数y=kx 2﹣k 2x ﹣1的图象大致为( ).BC .D)>8.(3分)(2013•盐城模拟)下列说法正确的个数是( ) ①“对顶角相等”的逆命题是真命题 ②所有的黄金三角形都相似 ③若数据1、﹣2、3、x 的极差为6,则x=4④方程x 2﹣mx ﹣3=0有两个不相等的实数根 ⑤已知关于x 的方程的解是正数,那么m 的取值范围为m >﹣6.二、填空题(每小题3分,共30分)9.(3分)(2013•盐城模拟)函数中,自变量x的取值范围是...10.(3分)(2013•盐城模拟)我市今年初中毕业生为12870人,将12870用科学记数法表示为 1.3×104(保留两个有效数字).11.(3分)(2011•宁德)如图,人民币旧版壹角硬币内部的正多边形每个内角度数是140°.12.(3分)(2013•盐城模拟)如图,直线l1:y1=x+1与直线l2:y2=mx+n相交于点P(1,b).当y1>y2时,x的取值范围为x>1.13.(3分)(2013•盐城模拟)六•一儿童节前,苗苗来到大润发超市发现某种玩具原价为100元,经过两次降价,现售价为81元,假设两次降价的百分率相同,则每次降价的百分率为10%.14.(3分)(2013•盐城模拟)如图所示,在建立平面直角坐标系后,△ABC顶点A的坐标为(1,﹣4),若以原点O为位似中心,在第二象限内画△ABC的位似图形△A′B′C′,使△A′B′C′与△ABC的位似比等于,则点A′的坐标为(﹣,2).,的位似比等于(﹣,﹣),即(﹣,15.(3分)(2013•盐城模拟)如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B 顺时针旋转90°至CB,那么点C的坐标是(﹣2,1).16.(3分)(2013•盐城模拟)定义:如图,若双曲线(k>0)与它的其中一条对称轴y=x相交于两点A,B,则线段AB的长称为双曲线(k>0)的对径.若某双曲线(k>0)的对径是,则k的值为9.AB=6OA=OB=3,)3=17.(3分)(2013•盐城模拟)如图,已知四边形ABCD是菱形,∠A=72°,将它分割成如图所示的四个等腰三角形,那么∠1+∠2+∠3=90度.18.(3分)(2013•盐城模拟)在矩形纸片ABCD中,AB=8,BC=20,F为BC的中点,沿过点F的直线翻折,使点B落在边AD上,折痕交矩形的一边于G,则折痕FG=5或4.F=BF=E==5F=BF=E==4或三、简答题(共96分)19.(8分)(2013•盐城模拟)(1)计算:﹣sin30°(2)解方程:.进行计算即可得解;﹣(﹣﹣×,,,x=时,+1×)≠x=20.(6分)(2013•盐城模拟)先化简(),再选取一个你喜欢的a的值代入求值.)﹣21.(8分)(2008•黄石)在一个口袋中有n个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,从袋中随机地取出一个球,它是红球的概率是.(1)求n的值;(2)把这n个球中的两个标号为1,其余分别标号为2,3,…x=5,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率.)依题意由上表知所求概率为=22.(10分)(2013•盐城模拟)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=20%,b=12%;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?23.(10分)(2013•盐城模拟)如图,自来水公司的主管道从A小区向北偏东60°方向直线延伸,测绘员在A处测得要安装自来水的M小区在A小区北偏东30°方向,测绘员沿主管道测量出AC=200米,小区M位于C的北偏西60°方向,(1)请你找出支管道连接点N,使得N到该小区铺设的管道最短.(在图中标出点N的位置)(2)求出AN的长.MC=AC=×NC=MC=5024.(10分)(2013•盐城模拟)如图,在△ABC中,AD平分∠BAC,交BC于D,将A、D重合折叠,折痕交AB 于E,交AC于F,连接DE、DF,(1)判断四边形AEDF的形状并说明理由;(2)若AB=6,AC=8,求DF的长.∴x=DF=25.(10分)(2013•盐城模拟)已知四边形ABCD的外接圆⊙O的半径为5,对角线AC与BD的交点为E,且AB2=AE•AC,BD=8,(1)判断△ABD的形状并说明理由;(2)求△ABD的面积.∴,BD=4=3的面积是BD=BG=的面积是:×26.(10分)(2013•盐城模拟)某种商品在30天内每件销售价格P(元)与时间t(天)的函数关系用如图所示的两条线段表示,该商品在30天内日销售量Q(件)与时间t(天)之间的函数关系是Q=﹣t+40(0<t≤30,t是整数).(1)求该商品每件的销售价格P与时间t的函数关系式,并写出自变量t的取值范围;(2)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?(日销售金额=每件的销售价格×日销售量),27.(12分)(2013•盐城模拟)如图,矩形ABCD中,AD=8,AB=4,点E沿A→D方向在线段AD上运动,点F 沿D→A方向在线段DA上运动,点E、F速度都是每秒2个长度单位,E、F两点同时出发,且当E点运动到D点时两点都停止运动,设运动时间是t(秒).(1)当0<t<2时,判断四边形BCFE的形状,并说明理由;(2)当0<t<2时,射线BF、CE相交于点O,设S△FEO=y,求y与t之间的函数关系式;(3)问射线BF与射线CE所成的锐角是否能等于60°?若有可能,请求出t的值;若不能,请说明理由.则= =OM=EH=42=t=﹣∴,即,解得OM=y=OM EF=×;CH=EH=4,,t=)ED=t=)﹣28.(12分)(2013•盐城模拟)如图(1),分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上)交y轴于另一点Q,抛物线经过A、C两点,与x轴的另一交点为G,M是FG的中点,B点坐标为(2,2).(1)求抛物线的函数解析式和点E的坐标;(2)求证:ME是⊙P的切线;(3)如图(2),点R从正方形CDEF的顶点E出发以1个单位/秒的速度向点F运动,同时点S从点Q出发沿y轴以5个单位/秒的速度向上运动,连接RS,设运动时间为t秒(0<t<1),在运动过程中,正方形CDEF在直线RS下方部分的面积是否变化?若不变,说明理由并求出其值;若变化,请说明理由;y=∴y=﹣x x+2=0,=,.,=,与下方部分的面积不变,为。
2013年北京市中考数学模拟试卷(五)
2013年北京市中考数学模拟试卷(五)2013年北京市中考数学模拟试卷(五)一、选择题(本题共14小题.每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的..4.(3分)(2009•湘西州)一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,.C D.5.(3分)(2007•锦州一模)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕点O自由转动,就做成了一个测量工件,则A′B′的长等于内槽宽AB,则判定△OAB≌△OA′B′的理由是()7.(3分)(2009•黄冈)化简的结果是()8.(3分)(2006•临沂)如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=10,DF=4,则菱形ABCD 的边长为().C9.(3分)(2006•临沂)小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm,幻灯片到屏幕的距离是1.5m,幻灯片上小树的高度是10cm,则屏幕上小树的高度是()11.(3分)(2008•枣庄)如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为(),﹣),﹣),)13.(3分)(2006•临沂)如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()14.(3分)(2006•临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是()二、填空题(本大题共5小题.每小题3分,共15分)把答案填在题中横线上.15.(3分)(2006•临沂)关于x的不等式3x﹣2a≤﹣2的解集如图所示,则a的值是_________.16.(3分)(2006•临沂)若圆周角α所对弦长为sinα,则此圆的半径r为_________.17.(3分)(2006•临沂)如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的面积为_________cm2(不考虑接缝等因素,计算结果用π表示).18.(3分)(2006•临沂)如图,Rt△ABC中,∠A=90°,AB=4,AC=3,D在BC上运动(不与B、C重合),过D点分别向AB、AC作垂线,垂足分别为E、F,则矩形AEDF的面积的最大值为_________.19.(3分)(2006•临沂)判断一个整数能否被7整除,只需看去掉一节尾(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.如果这个和能被7整除,则原数就能被7整除.如126,去掉6后得12,12+6×5=42,42能被7整除,则126能被7整除.类似地,还可通过看去掉该数的一节尾后与此一节尾的n倍的差能否被7整除来判断,则n=_________(n是整数,且1≤n<7).三、开动脑筋.你一定能做对20.(6分)(2006•临沂)为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 195 180 250 270 455 170请你用统计初步的知识,计算小亮家平均每年(每年按52周计算)的日常生活消费总费用.21.(7分)(2006•临沂)小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.22.(8分)(2006•临沂)(探索题)某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商店出售的这种瓷砖有大,小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大,小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?四、认真思考,你一定能成功!23.(9分)(2006•临沂)如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.24.(10分)(2006•临沂)某厂从2005年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)按照这种变化规律,若2010年已投入技改资金5万元.①预计生产成本每件比2009年降低多少万元?②如果打算在2009年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)五、相信自己.加油呀25.(10分)(2006•临沂)△ABC中,BC=a,AC=b,AB=c.若∠C=90°,如图1,根据勾股定理,则a2+b2=c2.若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.26.(13分)(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.(1)求此抛物线的解析式;(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.①求证:PB=PS;②判断△SBR的形状;③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.2013年北京市中考数学模拟试卷(五)参考答案与试题解析一、选择题(本题共14小题.每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的..4.(3分)(2009•湘西州)一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,.C D.=5.(3分)(2007•锦州一模)如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′可以绕点O自由转动,就做成了一个测量工件,则A′B′的长等于内槽宽AB,则判定△OAB≌△OA′B′的理由是()7.(3分)(2009•黄冈)化简的结果是()8.(3分)(2006•临沂)如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=10,DF=4,则菱形ABCD 的边长为().CBD+DF=×9.(3分)(2006•临沂)小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm,幻灯片到屏幕的距离是1.5m,幻灯片上小树的高度是10cm,则屏幕上小树的高度是()11.(3分)(2008•枣庄)如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为(),﹣),﹣),)OC=BC=.,﹣)13.(3分)(2006•临沂)如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()14.(3分)(2006•临沂)已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是()∠∠PCB=((+∠(﹣BCP=∠∠﹣∠(﹣二、填空题(本大题共5小题.每小题3分,共15分)把答案填在题中横线上.15.(3分)(2006•临沂)关于x的不等式3x﹣2a≤﹣2的解集如图所示,则a的值是﹣..观察数轴知其解集为∴.16.(3分)(2006•临沂)若圆周角α所对弦长为sinα,则此圆的半径r为.AC==,=r=.17.(3分)(2006•临沂)如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的面积为300πcm2(不考虑接缝等因素,计算结果用π表示).=18.(3分)(2006•临沂)如图,Rt△ABC中,∠A=90°,AB=4,AC=3,D在BC上运动(不与B、C重合),过D点分别向AB、AC作垂线,垂足分别为E、F,则矩形AEDF的面积的最大值为3.∴BE=﹣)+4x19.(3分)(2006•临沂)判断一个整数能否被7整除,只需看去掉一节尾(这个数的末位数字)后所得到的数与此一节尾的5倍的和能否被7整除.如果这个和能被7整除,则原数就能被7整除.如126,去掉6后得12,12+6×5=42,42能被7整除,则126能被7整除.类似地,还可通过看去掉该数的一节尾后与此一节尾的n倍的差能否被7整除来判断,则n=2(n是整数,且1≤n<7).三、开动脑筋.你一定能做对20.(6分)(2006•临沂)为了了解家庭日常生活消费情况,小亮记录了他家一年中7周的日常生活消费费用.数据如下(单位:元):230 195 180 250 270 455 170请你用统计初步的知识,计算小亮家平均每年(每年按52周计算)的日常生活消费总费用.21.(7分)(2006•临沂)小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.22.(8分)(2006•临沂)(探索题)某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商店出售的这种瓷砖有大,小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大,小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?=16x+320四、认真思考,你一定能成功!23.(9分)(2006•临沂)如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.24.(10分)(2006•临沂)某厂从2005年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)按照这种变化规律,若2010年已投入技改资金5万元.①预计生产成本每件比2009年降低多少万元?②如果打算在2009年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)∴.7.2=解得.y=y=3.2=.五、相信自己.加油呀25.(10分)(2006•临沂)△ABC中,BC=a,AC=b,AB=c.若∠C=90°,如图1,根据勾股定理,则a2+b2=c2.若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.26.(13分)(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.(1)求此抛物线的解析式;(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.①求证:PB=PS;②判断△SBR的形状;③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.,a=xa=y=y=a aNS=a(∴MR=.x+bc=0∴SR=2.∴∴MT=PQ=∴参与本试卷答题和审题的老师有:lk;Liuzhx;zhehe;feng;lf2-9;wdxwwzy;lanchong;zhjh;蓝月梦;hbxglhl;csiya;kuaile;hnaylzhyk;cook2360;算术;张超。
成都初三2013年中考数学模拟五
2013年中考数学模拟五 姓名:A 卷一、选择题(每题3分,共30分) 1.2-的倒数是( ) A .12B .12- C .2 D .2-2.下列运算正确的是( )A 、4222a a a =+ B 、552233=+C 、()112-=- D 、()42242a a =-3.2008年元月我国南方遭受暴雪冰冻灾害,国家给予某地区821万元救灾,这个数用科学记数法表示且保留两个有效数字为( )元. A 28.210⨯ B.58210⨯ C.58.210⨯ D.58.2010⨯ 4.如果23321133a b xy x y+--与是同类项,那么a 、b的值分别是( ) A .12a b =⎧⎨=⎩ B .02a b =⎧⎨=⎩C .21a b =⎧⎨=⎩D .11a b =⎧⎨=⎩5.下列是由一些相同的小正方体构成的几何体的三视图,在这个几何中,小正方体的个数是( )A .5 B.6 C. 7 D.8主视图 左视图 俯视图 6、如图CD 是Rt △ABC 斜边上的高,AC=4,BC=3,则cos ∠BCD 的值是( ). A .35B .34C .43D .457.下列命题正确的是( )A. 一组对边相等,另一组对边平行的四边形一定是平行四边形 B. 对角线相等的四边形一定是矩形C. 两条对角线互相垂直的四边形一定是菱形D. 两条对角线相等且互相垂直平分的四边形一定是正方形 8、函数=y x中,自变量x 的取值范围是( )A 、x ≠0;B 、x ≥-3;C 、x >-3;D 、x ≥-3且x ≠0 9、如图,已知⊙O 的直径AB 与弦AC 的夹角为35°,过点C 的切线PC 与AB 的延长线交于点P ,那么∠P 等于( ) A .15° B .20° C .25° D .30°10、一个底面半径为5cm ,母线长为16cm 的圆锥,•它的侧面展开图的面积是( )A .80πcm 2B .40πcm 2C .80cm 2D .40cm 2 二、填空题(每题4分,共16分) 11、分解因式:x 3-4x=__ ______12、如图所示,∠E=∠F=90°,∠B=∠C ,AE=AF ,给出下列结论:①∠1=∠2;②BE=CF ; ③△ACN ≌△ABM ;④CD=DN ,其中正确的结论是_________.13、某班50名学生的年龄统计结果如上表所示: 这个班学生年龄的众数是____,中位数是______。
人教版中考模拟考试数学试卷及答案(共七套)
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号
√
√ቤተ መጻሕፍቲ ባይዱ
√
由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,
2013广州中考数学模拟(预测题)及答案-2013.06.06
2013年广州中考数学模拟(预测)试题及答案数学试卷(黄立宗2013.06.06)本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,时间120分钟,可以使用计算器. 注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的学校、班级、姓名、座位号、考号;再用2B 铅笔把对应号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题号的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将本练习卷和答题卡一并交回.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、-2013的相反数是( * )A .-2013B . 2013C .12013-D .120132、如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是( * )A .B .C .D .3、太阳的直径约为1390000千米,这个数用科学记数法表示为( )A.70.13910⨯ B.61.3910⨯ C.513.910⨯ D.413910⨯4、某校九年级(3)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16. 这组数据的中位数、众数分别为( * )A. 8,16B. 10,16C. 8,8D. 16,165、将4个红球和若干个白球放入不透明的一个袋子内,摇匀后随机摸出一球,若摸出红球的概率为23,那么白球的个数为( ﹡ )主视方向 第2题6、已知圆锥的母线长是5cm ,侧面积是15πcm 2,则这个圆锥底面圆的半径是( ﹡ ).A.6cmB.4cmC.3cmD.32cm7、二元一次方程x-2y=1有无数多个解,下列四组值中不是该方程的解的是( ﹡ ) A.11x y =⎧⎨=⎩ B.10x y =⎧⎨=⎩ C.00.5x y =⎧⎨=-⎩ D.11x y =-⎧⎨=-⎩8、下列每组数分别表示三根小木棒的长度(单位:cm ),将它们首尾相接后能摆成三角形的是( * ) A .1,2,3 B .5,7,12 C .6,6,13 D .6,8,10 9、已知二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,给出以下结论: ①a>0; ②该函数的图像关于直线x=1对称;③当x=-1或3时,函数y 的值都等于0.其中正确的有( ﹡ ) A.0 B.1 C.2 D.3 第9题10、如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形面积为1,则第2个矩形面积为14,则第n 个矩形的面积为( ﹡ )二、填空题(本大题共6小题,每小题3分,满分18分)11、分解因式:224a ab -= ﹡ . 12、函数21-=x y 有意义,则x 的取值范围是 ﹡ .13、如图,直线b a 、被直线c 所截,且a b ∥,如果︒=∠651,那么=∠2 ﹡ . 14、方程1311+=-x x 的根是 ﹡ . 15、在平面直角坐标系中,点()2P m m -,在第四象限内,则m 的取值范围是 .16、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB 连续作旋转变换,依次得到三角形 (1)、(2)、(3)、(4)、…,那么第(7)个三角形的直角顶点的坐标是 * ,第(2013)的直角顶点的坐标是 ﹡ .图1cb a21abc(第13题图)三、解答题17、解不等式组:23 1........(1)110.......(2)2x x -≤⎧⎪⎨+>⎪⎩ 并把解集在数轴上表示出来.18、已知x=1是关于x 的一元二次方程2240x mx m -+=的根,求代数式2(2)(3)(3)m m m m --+-值.19、已知:如图,AB 与⊙O 相切于点C ,OA OB =,⊙O 的直径为4,8AB =. 求:(1)OB 的长;(2)sin A 的值.20、已知函数2y x=和()10y kx k =+≠. (1)若这两个函数的图象都经过点()1a ,,求a 和k 的值;(2)当k 取何值时,这两个函数的图象总有公共点?21、广州市某中学综合实践科组为了解学生最喜欢的球类运动,对足球、乒乓球、篮球、排球四个项目进行了调查,并将调查的结果绘制成如下的两幅统计图(说明:每位同学只选一种自己最喜欢的球类),请你根据图中提供的信息解答下列问题:(1)求这次接受调查的学生人数,并补全条形统计图; (2)求扇形统计图中喜欢排球的圆心角度数;(3)若调查到爱好“乒乓球”的5名学生中有3名男生,2名女生,现从这5名学生中任意抽取2名学生,请用列表法或树形图的方法,求出刚好抽到一男一女的概率.22、如图,图形中每一小格正方形的边长为1,已知ABC △, (1) AC 的长等于_______.(结果保留根号)(2)将ABC △向右平移2个单位得到A B C '''△,则A 点的对应点A '的坐标是______; (3) 画出将ABC △绕点C 按顺时针方向旋转90后得到∆A 1B 1C 1, 并写出A 点对应点A 1的坐标,并求出A 点走过的路径长。
2013年中考数学模拟题
2013年中考数学模拟题(仿真卷)一、选择题(每小题3分,共15分)1.∣-3∣的相反数是 ( )A. -3B. 3C. -31D.312.一次课堂练习,小华做了如下4道因式分解题,你认为小华做得不够完整的一题是 ( )A. x 3-x =x(x 2-1)B. x 2-2xy+y 2=(x-y)2C. x 2y-xy 2=xy(x-y)D. x 2-y 2=(x+y)(x-y)3.如图所示的两个圆盘中,指针落在同一个圆盘的每一个区域的机会均等,则两个指针同时落在偶数区域的概率是 ( )A. 121B. 61C. 21D.654.如图,MB=ND ,∠MBA=∠NDC ,下列条件中, 不能判定ΔABM ≌ΔCDN 的是 ( )A. ∠M=∠NB.AB=CDC. AM=CND. AM ∥CN5.如图,⊙O 的半径是5,弦AB 的长是8,M 为弦AB 上的动点,则线段OM 长的最小值是 ( )A. 2B. 3C. 4D. 5二、填空题(每小题4分,共20分)6.函数y=x 24 的自变量x 的取值范围是 ___________.7.0.00624用科学记数法表示为___________.8. 已知不等式组无解,则9.如图,两直线a、b 被第三条直线c所截,若a ∥b∠1=70°,则∠2 =_____度。
10.如图,圆锥的主视图是边长为6的正三角形ABC ,则这个圆锥侧面展开图的圆心角是_____度。
三、解答题(每小题6分,共30分)11. 先化简,再求值:a a 2-1 ÷(1+ 1a-1),其中 a = 3-1 .12.已知ΔABC (如图)。
求作:(1)线段AB 的中点O ;(2)以O 为旋转中心,将ΔABC 旋转180°后的ΔA ′B ′C ′。
(要求用直尺圆规作图,用不用写画法,但要保留作图痕迹)。
13. 已知一次函数y=kx+k P (4,n )。
(1)求n 的值;(214. 如图,在ΔABC 中,∠ACB=90°,CD ⊥AB 于D 。
2013年辽宁省大连市五十八中中考数学模拟试卷
2013年辽宁省大连市五十八中中考数学模拟试卷2013年辽宁省大连市五十八中中考数学模拟试卷一、选择题(在每小题给出的四个选项中,只有一个正确答案.本题共8小题,每小题3分,共24分). C D ..CD .5.(3分)(2013•长海县模拟)在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红6.(3分)(2013•长海县模拟)如图,在平面直角坐标系中,平移△ABC 后,点A 的对应点A ′的坐标为(﹣3,0),则点B 的对应点B ′的坐标为( )7.(3分)(2013•长海县模拟)如图,过原点O 的直线与反比例函数的图象相交于点A 、B ,根据图中提供的信息可知,这个反比例函数的解析式为( )D.8.(3分)(2013•本溪一模)如图,将矩形纸片ABCD沿EF折叠,使得点C落在边AB上的点H处,点D落在点G处,若∠AHG=40°,则∠GEF的度数为()二、填空题(本题共9小题,每小题3分,共27分)9.(3分)(2010•大连二模)在检测排球质量过程中,规定超过标准的克数为正数,不足的克数记为负数,根据下表提供的检测结果,你认为质量最接近标准的是_________号排球.10.(3分)(2013•长海县模拟)方程的解是_________.11.(3分)(2013•长海县模拟)如图,在△ABC中,∠B=30°,直线CD垂直平分AB,则∠ACD的度数为_________.12.(3分)(2013•长海县模拟)如图,△OAB是等腰直角三角形,∠AOB=90°,AB=8,且AB与⊙O相切,则⊙O的半径为_________.13.(3分)(2013•长海县模拟)某高校有两名男生和一名女生被录用为世博会的志愿者,如果从中随机选派两人做语言翻译,那么这两人都是男生的概率是_________.14.(3分)(2013•长海县模拟)某商场为了解服务质量,随机调查到该商场购物的部分顾客.根据调查结果绘制如图所示的扇形统计图.如果有一天有5 000名顾客在该商场购物,请你根据统计图中的信息,估计对商场服务质量表示不满意的约有_________人.15.(3分)(2013•长海县模拟)如图,在等腰梯形ABCD中,AB=2,AD=2,BC=4,DE∥AB,DE交BC于点E,则∠A的度数为_________.16.(3分)(2013•长海县模拟)如图,小红站在水平面上的点A处,测得旗杆BC顶点C的仰角为60°,点A到旗杆的水平距离为a米.若小红的水平视线与地面的距离为b米,则旗杆BC的长为_________米.(用含有a、b 的式子表示).17.(3分)(2013•长海县模拟)如图是函数y=x2+bx﹣1的图象,根据图象提供的信息,确定使﹣1≤y≤2的自变量x 的取值范围是_________.三、解答题(本题共3小题,每小题12分,共36分)18.(12分)(2010•大连二模)求的值,其中19.(12分)(2013•长海县模拟)如图,点A、B、C在一条直线上,AE∥DF,AE=DF,AB=CD.求证:∠E=∠F.20.(12分)(2004•云南)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15(2)假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.四、解答题(本题共3小题,其中21题9分,22题10分,23题9分,共28分)21.(9分)(2010•大连二模)某公司有甲、乙两个水池,现将甲池中的水匀速注入乙池做水质处理后,再将乙池中的水全部注入甲池,且注水的速度不变.甲池水注入乙池的过程中,两个水池中水的深度y(m)与注水时间x(h)之间的关系如图,根据图象提供的信息,回答下列问题:(1)求甲池水注入乙池的过程中,甲池中水的深度y(m)与注水时间x(h)之间的函数关系式;(2)在将乙池中的水注入甲池过程中,需要多长时间才能使甲、乙两个水池的水一样深?(要求:先补充相应的图象,再直接写出结果)22.(10分)(2010•大连二模)如图,△ABC内接于⊙O,AB是直径,点D是弧BC的中点,连接AD,交BC于点F.(1)过点D作DE∥BC,交AC的延长线于点E,判断DE是否是⊙O的切线,并说明理由;(2)若CD=6,AC:AF=4:5,求⊙O的半径.23.(9分)(2010•大连二模)足球比赛中,某运动员将在地面上的足球对着球门踢出,图中的抛物线是足球的飞行高度y(m)关于飞行时间x(s)的函数图象(不考虑空气的阻力),已知足球飞出1s时,足球的飞行高度是2.44m,足球从飞出到落地共用3s.(1)求y关于x的函数关系式;(2)足球的飞行高度能否达到4.88米?请说明理由;(3)假设没有拦挡,足球将擦着球门左上角射入球门,球门的高为2.44m(如图所示,足球的大小忽略不计).如果为了能及时将足球扑出,那么足球被踢出时,离球门左边框12m处的守门员至少要以多大的平均速度到球门的左边框?五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(11分)(2011•顺城区二模)如图,直线AB与x轴、y轴分别交于点A、B,AB=5,cos∠OAB=,直线分别与直线AB、x轴、y轴交于点C、D、E.(1)求证:∠OED=∠OAB;(2)直线DE上是否存在点P,使△PBE与△AOB相似,若存在,求点P的坐标;若不存在,请说明理由.25.(12分)(2010•大连二模)如图,在四边形ABCD中,AB∥CD,AB=CD,AB=kBC,点P是四边形ABCD内一点,且∠BAP=∠BCP,连接PB、PD.猜想∠ABP与∠ADP的关系,并证明.说明:如果你经过反复探索没有解决问题,可以补充条件k=1.在补充条件后,先画图,再完成上面的问题.26.(12分)(2010•大连二模)有一张长比宽多8cm的矩形纸板.如果在纸板的四个角处各剪去一个正方形(如图所示),可制成高是4cm,容积是512cm3的一个无盖长方体纸盒.(1)求矩形纸板的长和宽;(2)在操作过程中,由于不小心,矩形纸板被剪掉一角,其直角边长分别为3cm和6cm.如果在剩余的纸板上先裁剪一个各边与原矩形纸板各边平行或重合的矩形,然后再按如图裁剪方式制作高仍是4cm的无盖长方体纸盒,那么你认为如何裁剪才能使制作的长方体纸盒的容积最大,请画出草图,并说明理由.2013年辽宁省大连市五十八中中考数学模拟试卷参考答案与试题解析一、选择题(在每小题给出的四个选项中,只有一个正确答案.本题共8小题,每小题3分,共24分),进而即可判断与.C D.不等式的解集在数轴表示为:.C D.5.(3分)(2013•长海县模拟)在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红=0.36.(3分)(2013•长海县模拟)如图,在平面直角坐标系中,平移△ABC后,点A的对应点A′的坐标为(﹣3,0),则点B的对应点B′的坐标为()7.(3分)(2013•长海县模拟)如图,过原点O的直线与反比例函数的图象相交于点A、B,根据图中提供的信息可知,这个反比例函数的解析式为()D.,y=8.(3分)(2013•本溪一模)如图,将矩形纸片ABCD沿EF折叠,使得点C落在边AB上的点H处,点D落在点G处,若∠AHG=40°,则∠GEF的度数为()二、填空题(本题共9小题,每小题3分,共27分)9.(3分)(2010•大连二模)在检测排球质量过程中,规定超过标准的克数为正数,不足的克数记为负数,根据下表提供的检测结果,你认为质量最接近标准的是五号排球.10.(3分)(2013•长海县模拟)方程的解是x=﹣2.11.(3分)(2013•长海县模拟)如图,在△ABC中,∠B=30°,直线CD垂直平分AB,则∠ACD的度数为60°.12.(3分)(2013•长海县模拟)如图,△OAB是等腰直角三角形,∠AOB=90°,AB=8,且AB与⊙O相切,则⊙O的半径为4.OC=OC=AB=413.(3分)(2013•长海县模拟)某高校有两名男生和一名女生被录用为世博会的志愿者,如果从中随机选派两人做语言翻译,那么这两人都是男生的概率是..这两人都是男生的概率是=.14.(3分)(2013•长海县模拟)某商场为了解服务质量,随机调查到该商场购物的部分顾客.根据调查结果绘制如图所示的扇形统计图.如果有一天有5 000名顾客在该商场购物,请你根据统计图中的信息,估计对商场服务质量表示不满意的约有350人.15.(3分)(2013•长海县模拟)如图,在等腰梯形ABCD中,AB=2,AD=2,BC=4,DE∥AB,DE交BC于点E,则∠A的度数为120°.16.(3分)(2013•长海县模拟)如图,小红站在水平面上的点A处,测得旗杆BC顶点C的仰角为60°,点A到旗杆的水平距离为a米.若小红的水平视线与地面的距离为b米,则旗杆BC的长为a+b米.(用含有a、b的式子表示).a+ba+b17.(3分)(2013•长海县模拟)如图是函数y=x2+bx﹣1的图象,根据图象提供的信息,确定使﹣1≤y≤2的自变量x 的取值范围是2≤x≤3或﹣1≤x≤0.三、解答题(本题共3小题,每小题12分,共36分)18.(12分)(2010•大连二模)求的值,其中==19.(12分)(2013•长海县模拟)如图,点A、B、C在一条直线上,AE∥DF,AE=DF,AB=CD.求证:∠E=∠F.中,20.(12分)(2004•云南)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:(2)假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.)平均数是:四、解答题(本题共3小题,其中21题9分,22题10分,23题9分,共28分)21.(9分)(2010•大连二模)某公司有甲、乙两个水池,现将甲池中的水匀速注入乙池做水质处理后,再将乙池中的水全部注入甲池,且注水的速度不变.甲池水注入乙池的过程中,两个水池中水的深度y(m)与注水时间x(h)之间的关系如图,根据图象提供的信息,回答下列问题:(1)求甲池水注入乙池的过程中,甲池中水的深度y(m)与注水时间x(h)之间的函数关系式;(2)在将乙池中的水注入甲池过程中,需要多长时间才能使甲、乙两个水池的水一样深?(要求:先补充相应的图象,再直接写出结果)中,得,.22.(10分)(2010•大连二模)如图,△ABC内接于⊙O,AB是直径,点D是弧BC的中点,连接AD,交BC于点F.(1)过点D作DE∥BC,交AC的延长线于点E,判断DE是否是⊙O的切线,并说明理由;(2)若CD=6,AC:AF=4:5,求⊙O的半径.BAD=BAD=,∴∴∴又∵23.(9分)(2010•大连二模)足球比赛中,某运动员将在地面上的足球对着球门踢出,图中的抛物线是足球的飞行高度y(m)关于飞行时间x(s)的函数图象(不考虑空气的阻力),已知足球飞出1s时,足球的飞行高度是2.44m,足球从飞出到落地共用3s.(1)求y关于x的函数关系式;(2)足球的飞行高度能否达到4.88米?请说明理由;(3)假设没有拦挡,足球将擦着球门左上角射入球门,球门的高为2.44m(如图所示,足球的大小忽略不计).如果为了能及时将足球扑出,那么足球被踢出时,离球门左边框12m处的守门员至少要以多大的平均速度到球门的左边框?∴∴平均速度至少为(五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(11分)(2011•顺城区二模)如图,直线AB与x轴、y轴分别交于点A、B,AB=5,cos∠OAB=,直线分别与直线AB、x轴、y轴交于点C、D、E.(1)求证:∠OED=∠OAB;(2)直线DE上是否存在点P,使△PBE与△AOB相似,若存在,求点P的坐标;若不存在,请说明理由.OAB=,∴.,则,∴,∴.∴.∴(代入中,得中,得,∴,∴∴,∴,)25.(12分)(2010•大连二模)如图,在四边形ABCD中,AB∥CD,AB=CD,AB=kBC,点P是四边形ABCD内一点,且∠BAP=∠BCP,连接PB、PD.猜想∠ABP与∠ADP的关系,并证明.说明:如果你经过反复探索没有解决问题,可以补充条件k=1.在补充条件后,先画图,再完成上面的问题.∴∴CBP=CDP=26.(12分)(2010•大连二模)有一张长比宽多8cm的矩形纸板.如果在纸板的四个角处各剪去一个正方形(如图所示),可制成高是4cm,容积是512cm3的一个无盖长方体纸盒.(1)求矩形纸板的长和宽;(2)在操作过程中,由于不小心,矩形纸板被剪掉一角,其直角边长分别为3cm和6cm.如果在剩余的纸板上先裁剪一个各边与原矩形纸板各边平行或重合的矩形,然后再按如图裁剪方式制作高仍是4cm的无盖长方体纸盒,那么你认为如何裁剪才能使制作的长方体纸盒的容积最大,请画出草图,并说明理由.∴,则HM=,∴)(∴参与本试卷答题和审题的老师有:MMCH;xiaomo;liume。
2013年全国名校锐角三角函数中考数学模拟题汇编
2013年全国名校锐角三角函数中考数学模拟题汇编一、选择题1、(2013吉林镇赉县一模)如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为优弧ABO上的一点(不与O、A两点重合),则cosC 的值为()A. B. C. D.答案:D2、(2013温州市一模)在Rt△ABC中,∠C=90°,AC=3,AB=4,那么的值是()A.B.C.D.答案:B3、(2013吉林镇赉县一模)如图,在平面直角坐标系O 中,已知点A(3,3)和点B(7,0),则sin∠ABO的值等于.答案:4、(2013年广西南丹中学一摸)在平面直角坐标系xOy中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于A.55 B.52 C.32 D.12答案:A5、(2013年河北四摸)cos30°=()A.B.C.D.答案:C二、填空题1、(2013江苏东台实中)如图,tan∠1= 。
2、(2013江苏东台实中)计算(1)答案:03、(2013江苏东台实中)计算(2)答案:-14、(2013江苏东台实中)如图,在中,AD是BC边上的高,。
(1)求证:AC=BD(2)若,求AD的长。
答案:(1)∵,,∴,∴AC=BD(4分)(2)AD=8(4分)5、(2013江苏射阴特庸中学)(1)计算:(3+6)(2-1)-3tan30°-2cos45答案:原式=3-3×33 -2×22 =3-3-1=-1.6、(2013江苏射阴特庸中学)小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(结果精确到1mm)答案:解:作BE⊥l于点E,DF⊥l于点F.……2分∵∠α+∠DAF=180°-∠BAD=180°-90°=90°,∠ADF+∠DAF=90°,∴∠ADF=∠α=36°.根据题意,得BE=24mm, DF=48mm.……4分在Rt△ABE中,sinα=BE/AB,∴AB=BE/sin36°=40(mm).……6分在Rt△ADF中,cos∠ADF=DF/AD,∴AD=DF/COS36°=60(mm).8分∴矩形ABCD的周长=2(40+60)=200(mm).……10分7、(2013山东省德州一模)如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ =60°,EF=1km.(1)判断AB、AE的数量关系,并说明理由;(2)求两个岛屿A和B之间的距离(结果精确到0.1km).(参考数据:3≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)解:1)过点B作BD∥AE,交AC于点D。
2013年四川省眉山市仁寿县汪洋镇中中考数学模拟试卷(word解析)
2013年四川省眉山市仁寿县汪洋镇中中考数学模拟试卷参考答案与试题解析一、选择题:本大题共12个小题.每小题4分;共48分.1.(4分)(2008•德阳)﹣的绝对值是().由﹣解:∵﹣<﹣﹣(﹣).2.(4分)(2006•北京)如图,AD∥BC,点E在BD的延长线上,若∠ADE=155°,则∠DBC的度数为()B故两枚硬币正面都向上的概率是.5.(4分)(2006•湛江)不等式组:的解集用数轴表示为()B.解:不等式组可化为:6.(4分)(2006•菏泽)若分式的值为0,则x的值为()7.(4分)(2007•宁波)与如图所示的三视图对应的几何体是( )B.8.(4分)如图,DE 与△ABC 的边AB ,AC 分别相交于D ,E 两点,且DE ∥BC .若DE=2cm ,BC=3cm ,EC=cm ,则AC 等于( )EC=,,EC=cmAE=AC==29.(4分)如图,矩形OABC的边OA在x轴上,O与原点重合,OA=1,OC=2,点D的坐标为(2,0),则直线BD的函数表达式为(),解得10.(4分)如图,已知AD是△ABC的外接圆的直径,AD=13cm,cosB=,则AC的长等于()ADC=,ADC==,AC===12cm11.(4分)(2012•天桥区三模)在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC 是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()12.(4分)(2013•大港区一模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()=1 b,则﹣﹣﹣,则﹣﹣二、填空题:本大题共5个小题.每小题3分;共15分.13.(3分)(2013•昭通)因式分解:2x2﹣18=2(x+3)(x﹣3).14.(3分)(2013•和静县一模)已知反比例函数y=的图象在第二、四象限,则m的取值范围是m <5.y=本题考查了反比例函数的性质,对于反比例函数(15.(3分)(2013•景德镇二模)用扇形统计图反映地球上陆地与海洋所占的比例时,“陆地”部分对应的圆心角是108°.宇宙中一块陨石落在地球上,落在陆地的概率是0.3.部分占地球总面积的比例为=∴宇宙中一块陨石落在地球上,落在陆地的概率是16.(3分)若m<﹣1,则下列函数①y=(x>0);②y=﹣mx+1;③y=mx;④y=(m+1)x中,随x的增大而增大的是①②(填写编号).(17.(3分)(2007•南昌)如图,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线.(请保留画图痕迹).三、解答题:7个小题,57分.18.(7分)(1)化简(2)解方程:.)根据多项式乘单项式法则展开得出×﹣×,求出×﹣×,19.(7分)(1)如图1,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=30°,求BC的长.(结果保留根号)(2)如图2,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC.判断△ACE的形状并证明.,再由∠tan,×=420.(8分)(1)解方程组:(2)二次函数图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.①求C的坐标;②求二次函数的解析式,并求出函数最大值.,∴原方程组的解为:;,则解得,所以二次函数的解析式为.到原方程组的解,用的形式表示;21.(8分)某社区从不同住宅楼中随机选取了200名居民,调查社区居民双休日的学习状况,并将得到的数据制成扇形统计图(如图①)和频数分布直方图(如图②).(1)在这个调查中,200名居民双休日在家学习的有120人;(2)在这个调查中,在图书馆等场所学习的居民学习时间的平均数和众数分别是多少?(3)估计该社区2 000名居民双休日学习时间不少于4小时的人数.小时的频率是:22.(9分)(2008•南充)某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.23.(9分)将两块形状大小完全相同的直角三角板按如图1所示的方式拼在一起.它们中较小直角边的长为6cm,较小锐角的度数为30°.(1)将△ECD沿直线AC翻折到如图2的位置,连接CF,图中除了△ABC≌△ECD≌△ECD′外,还有没有全等的三角形?若有,请指出一对并给出证明.(2)以点C为坐标原点建立如图3所示的直角坐标系,将△ECD沿x轴向左平移,使E点落在AB上,请求出点E′的坐标.=2224.(9分)(2010•呼和浩特)如图,在直角坐标平面内,函数(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB.(1)若△ABD的面积为4,求点B的坐标;(2)求证:DC∥AB;(3)当AD=BC时,求直线AB的函数解析式.)由函数),即﹣,)依题意可证,(y=,),,.a﹣)EC==a且∠,解得,解得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年中考数学模拟试题(五)(考试用时:120分钟 满分: 120分)一、选择题(共12小题,每小题3分,共36分.). 1.2011的倒数是( ). A .12011 B .2011 C .2011- D .12011- 2.在实数2、0、1-、2-中,最小的实数是( ). A .2 B .0 C .1- D .2- 3.下面四个图形中,∠1=∠2一定成立的是( ).4.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是( ).5.下列运算正确的是( ).A. 22232x x x -= B .22(2)2a a -=- C .222()a b a b +=+ D .()2121a a --=-- 6.如图,已知Rt △ABC 中,∠C =90°,BC=3, AC=4, 则sinA 的值为( ).A .34B .43C .35D .457.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的 俯视图是( ).8.直线1y kx =-一定经过点( ).A .(1,0)B .(1,k)C .(0,k)D .(0,-1) 9.下面调查中,适合采用全面调查的事件是( ).A .对全国中学生心理健康现状的调查.B .对我市食品合格情况的调查.C .对桂林电视台《桂林板路》收视率的调查.D .对你所在的班级同学的身高情况的调查.10.若点 P (a ,a -2)在第四象限,则a 的取值范围是( ).A .-2<a <0B .0<a <2C .a >2D .a <0 11.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( ).A .2(1)2y x =-++B .2(1)4y x =--+C .2(1)2y x =--+D .2(1)4y x =-++12.如图,将边长为a 的正六边形A 1 A 2 A 3 A 4 A 5 A 6在直线l 上由图1的位置按顺时针方向向右作无滑动滚动,当A 1第一次滚动到图2位置时,顶点A 1所经过的路径的长为( ). A.4233a π+ B. 8433a π+ C.433a π+ D. 4236a π+ 二、填空题(共6小题,每小题3分,共18分,请将答案填在答题卡...上). 13.因式分解:22a a += .14.我市在临桂新区正在建设的广西桂林图书馆、桂林博物馆、桂林大剧院及文化广场,建成后总面积达163500平方米,将成为我市“文化立市”和文化产业大发展的新标志,把163500平方米用科学记数法可表示为 平方米.15.当2x =-时,代数式21x x -的值是 .16.如图,等腰梯形ABCD 中,AB ∥DC,BE ∥AD, 梯形ABCD的周长为26,DE=4,则△BEC 的周长为 .17.双曲线1y 、2y 在第一象限的图像如图,14y x=,过1y 上的任意一点A , 作x 轴的平行线交2y 于B ,交y 轴于C ,若1AOB S ∆=,则2y 的解析式是 . 18.若111a m=-,2111a a =-,3211a a =-,… ;则2011a 的值为 .(用含m 的代数式表示)三、解答题(本大题共8题,共66分,请将答案写在答题卡...上). 19.(本题满分6分)计算:01(21)22452tan -︒+--+-20.(本题满分6分)解二元一次方程组:35382x y y x=-⎧⎨=-⎩21.(本题满分8分)求证:角平分线上的点到这个角的两边距离相等.已知: 求证: 证明:22.(本题满分8分)“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为 ;(2)请补全条形统计图和扇形统计图; (3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是 .3.(本题满分8分)某市为争创全国文明卫生城,2008年市政府对市区绿化工程投入的资金是2000万元,2010年投入的资金是2420万元,且从2008年到2010年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2012年需投入多少万元?24.(本题满分8分)某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得一盒.(1)设敬老院有x 名老人,则这批牛奶共有多少盒?(用含x 的代数式表示). (2)该敬老院至少有多少名老人?最多有多少名老人?25.(本题满分10分)如图,在锐角△ABC 中,AC 是最短边;以AC 中点O 为圆心,12AC 长为半径作⊙O ,交BC 于E ,过O 作OD ∥BC 交⊙O 于D ,连结AE 、AD 、DC . (1)求证:D 是 AE 的中点; (2)求证:∠DAO =∠B +∠BAD ; (3)若12CEF OCD S S ∆∆=,且AC=4,求CF 的长.26.(本题满分12分)已知二次函数21342y x x =-+的图象如图.(1)求它的对称轴与x 轴交点D 的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x 轴,y 轴的交点分别为A 、B 、C 三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M ,以AB 为直径,D 为圆心作⊙D ,试判断直线CM 与⊙D 的位置关系,并说明理由.① ②35382x y y x =-⎧⎨=-⎩参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ADBCACCDDBBA二、填空题:13.(2)a a + 14.51.63510⨯ 15.43- 16.1817.26y x =18.11m- 三、解答题:19.(本题满分 6分)解:原式=112122--⨯+ ………4分(求出一个值给1分)=12……………………6分20.(本题满分6分)解: 把①代入②得:382(35)y y =-- ……………………1分 2y = ……………………3分把2y =代入①可得:325x =⨯- ……………………4分1x = ……………………5分所以此二元一次方程组的解为12x y =⎧⎨=⎩. ……………………6分21.(本题满分8分)已知:如图,OC 是∠AOB 的平分线,P 是OC 上任意一点,PE ⊥OA ,PF ⊥OB ,垂足分别为E 、F ……………2分 求证:PE=PF ……………3分 证明:∵OC 是∠AOB 的平分线∴∠POE=∠POF ……………4分 ∵PE ⊥OA ,PF ⊥OB∴∠PEO=∠PFO ……………………5分 又∵OP=OP ………………6分∴△POE≌△POF ……………………7分∴PE=PF ……………………8分22.(本题满分8分)解:(1)100 ;………………2分(2)条形统计图:70,………………4分扇形统计图:赞成:10﹪,反对:70﹪;………………6分(3)25. ………………8分23.(本题满分8分)解:(1)设该市对市区绿化工程投入资金的年平均增长率为x………………1分根据题意得,22000(1)2420x+=…………3分得110%x=,22.1x=-(舍去)…………5分答:该市对市区绿化工程投入资金的年平均增长率为10﹪. …………6分(2)2012年需投入资金:22420(110%)2928.2⨯+=(万元)…………7分答:2012年需投入资金2928.2万元. …………8分24.(本题满分8分)解:(1)牛奶盒数:(538)x+盒…………1分(2)根据题意得:5386(1)55386(1)1x xx x+--<⎧⎨+--≥⎩…………4分∴不等式组的解集为:39<x≤43 …………6分∵x为整数∴x=40,41,42,43答:该敬老院至少有40名老人,最多有43名老人. …………8分25.(本题满分10分)证明:(1)∵AC是⊙O的直径∴AE⊥BC …………1分∵OD∥BC∴AE⊥OD …………2分∴D是 AE的中点…………3分(2)方法一:如图,延长OD 交AB 于G ,则OG ∥BC …4分 ∴∠AGD=∠B∵∠ADO=∠BAD+∠AGD …………5分 又∵OA=OD ∴∠DAO=∠ADO∴∠DAO=∠B +∠BAD …………6分 方法二:如图,延长AD 交BC 于H …4分 则∠ADO=∠AHC∵∠AHC=∠B +∠BAD …………5分 ∴∠ADO =∠B +∠BAD 又∵OA=OD∴∠DAO=∠B +∠BAD …………6分 (3) ∵AO=OC ∴12OCD ACD S S ∆∆=∵12CEF OCDS S ∆∆= ∴14CEF ACD S S ∆∆= …………7分 ∵∠ACD=∠FCE ∠ADC=∠FEC=90° ∴△ACD ∽△FCE …………………8分 ∴2()CEF ACD S CF S AC ∆∆= 即: 21()44CF = …………9分 ∴CF=2 …………10分26.(本题满分12分)解: (1)由21342y x x =-+得 32bx a=-= …………1分∴D(3,0)…………2分(2)方法一:如图1, 设平移后的抛物线的解析式为21342y x x k =-++ …………3分则C (0,)k OC=k令0y = 即 213042x x k -++=得 1349x k =++ 2349x k =-+ …………4分 ∴A (349,0)k -+,B (349,0)k ++∴22(493349)1636AB k k k =++-++=+………5分222222(349)(349)AC BC k k k k +=+-+++++22836k k =++……………………6分∵222AC BC AB += 即: 228361636k k k ++=+得 14k = 20k =(舍去) ……………7分∴抛物线的解析式为213442y x x =-++ ……………8分方法二:∵ 21342y x x =-+∴顶点坐标93,4⎛⎫⎪⎝⎭设抛物线向上平移h 个单位则得到()0,C h ,顶点坐标93,4M h ⎛⎫+ ⎪⎝⎭……………………3分∴平移后的抛物线: ()219344y x h =--++……………………4分 当0y =时, ()2193044x h --++= 1349x h =-+ 1349x h =++∴ A (349,0)h -+ B (349,0)h ++ ……………………5分 ∵∠ACB=90° ∴△AOC ∽△COB∴2OC =OA ·OB ……………………6分()()2493493h h h =+-++解得 14h =,()20h =舍去 …………7分 ∴平移后的抛物线: ()()22191253434444y x x =--++=--+…………8分(3)方法一:如图2, 由抛物线的解析式213442y x x =-++可得A(-2 ,0),B(8,0) ,C(4,0) ,M 25(3,)4…………9分 过C 、M 作直线,连结CD ,过M 作MH 垂直y 轴于H则3MH = ∴2225625()416DM ==22222252253(4)416CM MH CH =+=+-=在Rt △COD 中,CD=22345+==AD∴点C 在⊙D 上 …………………10分 ∵2225625()416DM ==2222225256255()16416CD CM +=+==……11分 ∴222DM CM CD =+∴△CDM 是直角三角形,∴CD ⊥CM ∴直线CM 与⊙D 相切 …………12分 方法二:如图3, 由抛物线的解析式可得A(-2 ,0),B(8,0) ,C(4,0) ,M 25(3,)4…………9分 作直线CM,过D 作DE ⊥CM 于E, 过M 作MH 垂直y 轴于H 则3MH =, 254DM =由勾股定理得154 CM=∵DM∥OC∴∠MCH=∠EMD∴Rt△CMH∽Rt△DME …………10分∴DE MDMH CM=得5DE=…………11分由(2)知10AB=∴⊙D的半径为5∴直线CM与⊙D相切…………12分。